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ABSTRACT 

 

Seasonal snow is a significant source of runoff in Western Canada. Mountainous 

snow depth distributions are challenging to quantify over large areas. Enhanced 

monitoring methods can provide the necessary data for more accurate flood and 

drought forecasts. Using multiple datasets, this research provides the 

foundation to optimize LiDAR snow depth data collection. Snow depth 

distribution consistency during mid-winter and melt onset was assessed and 

depth driver (elevation, aspect, slope, TPI and canopy cover) importance was 

determined. Consistent inter-annual relationships between aspect, TPI, elevation, 

treeline and snow depth distributions could be exploited in future sampling 

designs. Random forest models were utilized to predict depth over a 103 km2 

area, based on high resolution (3m) watershed scale and partial datasets. 

Statistically significant correlations were found between parent and modelled 

datasets in all trials. This thesis illustrates that machine learning is a promising 

means of optimizing airborne LiDAR snow surveys in headwater environments. 
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1 INTRODUCTION 

1.1 Background 

In temperate zone mountainous watersheds, seasonal snowmelt is often 

the largest source of runoff. The Oldman Watershed in Southern Alberta is 

primarily snow fed, with 70-90% of streamflow originating in the headwaters 

from seasonal snowpack (Byrne et al. 2006). The spatial availability of snow data 

is quite limited relative to the size of the Oldman watershed and the variable 

terrain within its mountainous headwaters. Across the ~26,000 km2 Oldman 

Basin (Figure 1.1), the Government of Alberta currently measures seasonal snow 

water equivalent (SWE) and snow depth at four upper elevation and five mid to 

low elevation sites. Daily depth and SWE data are provided at the upper 

elevations (snow pillows and sonic depth rangers) while the low elevation sites 

(snow courses) are only measured approximately once a month with manual 

methods. The density of snow monitoring stations in the Oldman basin is low at 

approximately one data point per 2889 km2. Water supply forecasts are 

generated using linear, long term regression formulae from these data points. 

Enhanced monitoring could be achieved by utilizing multiple data streams to fill 

in temporal and spatial data gaps to improve water supply forecasts in data-

poor regions.  

Instead of adding to and relying on historic water supply trends, more 

spatially extensive annual datasets have the potential to save lives as well as 

millions of dollars in flood damage and drought induced crop losses by 

improving the ability to predict high and low flow events. Over 90% of water 

extracted from the predominately snow fed Oldman River in southern Alberta is 
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used for irrigation of agricultural crops (OWC, 2010). In Alberta, floods cost the 

province over $6 billion in 2013 (Calgary Herald, 2013) and drought related crop 

losses in 2015 were valued at $700 - $900 million (CBC News, 2015). The crop 

loss figures do not include losses in Saskatchewan and Manitoba, provinces that 

also receive streamflow from mountainous headwaters in Alberta via the 

Saskatchewan River. As part of the greater South Saskatchewan watershed 

(Figure 1.1), snowpack monitoring is vital to ensuring that sufficient natural 

flows remain available to meet interprovincial and international transboundary 

water sharing agreement quotas (Figliuzzi, 2002) while also meeting domestic, 

municipal and ecological demands in Alberta. 

Integrated snowpack monitoring frameworks, utilizing manual, 

telemetered continuous and remote sensing data are not a new idea. The United 

States utilizes a network of automated stations, remotely sensed data and field 

measurements in snowpack monitoring workflows (Molotch and Bales, 2005). 

The research presented in this thesis provides a foundation for combining 

machine learning methods and high-resolution airborne LiDAR data as part of 

an integrated mountain snowpack monitoring framework. Random forest (RF) is 

the machine learning method that will be explored. Unlike other common 

statistical modelling techniques, such as multiple linear regression (MLR) and 

binary regression trees (BRTs), random forest can overcome challenges 

surrounding correlated predictor variables through random variable selection. 

This is particularly useful for modelling in mountainous settings. A predictor 

such as slope, for example, may be correlated with elevation due to the 

occurrence of cliffs and steeper slopes at higher elevations. Canopy cover, 

conversely, is generally abundant at lower elevations and declines towards 



3 
 

mountain summits. RF is similar to BRT approaches, although a BRT is a single 

decision tree whereas RF is an ensemble, or forest, of decision trees which each 

equally contributes to the final output of variable order importance. As a 

machine learning technique, RF is still relatively under explored in the statistical 

snowpack modelling literature where MLR and BRT based publications are 

abundant. This research aims to determine RF’s suitability for use with airborne 

LiDAR data as part of an integrated environmental monitoring network.  

 
Figure 1.1 The South Saskatchewan watershed is comprised of the Oldman, Bow 

and Red Deer River basins (Government of Alberta, 2015). 
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1.2 Snowpack Applications of Airborne LiDAR 

Understanding variations in snow depth in mountainous settings is 

complex due to the many factors that influence snow accumulation such as 

elevation, slope, aspect and vegetation (Elder et al. 1991) making its 

measurement and modelling a challenge. Airborne LiDAR is advantageous for 

measuring snow depth compared to manually acquiring depth measurements as 

it can provide millions of depth values over large spatial extents in a matter of 

hours. This research seeks to identify and lay the foundation for optimization of 

LiDAR snow depth sampling needs by combining high resolution snow depth 

data with a machine learning based model for spatial imputation. While still in 

its infancy for modelling purposes, airborne LiDAR derived snow depth data has 

the potential to revolutionize snowpack monitoring. 

LiDAR has been utilized for snow and glacial studies since the early 

2000s (Hopkinson et al. 2004; Deems et al. 2013). LiDAR is highly advantageous 

for mesoscale snow studies as it provides high resolution (1m) spatial grids of 

snow depth data with up to decimeter precision (Hopkinson et al. 2004; 

Hopkinson et al. 2012) in far less time than manually acquiring the 

measurements. With the use of LiDAR for snow depth estimation, researchers 

can collect and analyze data acquired in alpine areas that were previously 

inaccessible due to access and safety concerns. For detailed information on the 

components of a LiDAR system and survey parameters, please see “Hydroscan: 

Airborne laser mapping of hydrological features and resources” by Hopkinson, 

Pietroniro and Pomeroy (2006). Data for this thesis was primarily collected with 

airborne LiDAR, using three different systems. The extent and resolution of 
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these data (1m) enabled a more thorough analysis of snow depth distributions 

than would be possible using manual methods.  

 

1.3 Objectives 

Declining flows of the Oldman River since the early 1900s (Schindler and 

Donahue, 2006; Rood et al. 2008), due to damming, anthropogenic withdrawals 

and increased evapotranspiration as well as decreasing snowpack and glaciers 

support improvements to integrated snowpack monitoring frameworks in this 

headwater study area (the West Castle watershed) to ensure future water 

security for Southern Alberta. Considering the low sampling density of 

monitoring sites, a logical priority of an improved monitoring regime is to 

determine if the public sites are good proxies for watershed snow conditions. If 

so, the potential to integrate those datasets into a new spatially explicit 

framework should be considered. Understanding the study area’s dominant 

snow depth drivers and their spatiotemporal consistency can help with the 

optimization of snow depth sampling locations for dense, airborne LiDAR 

derived datasets. If snow depth at the watershed scale can be inferred from 

LiDAR sample datasets, combining that approach with knowledge of sampling 

priority could reduce the spatial extent of airborne snow surveys necessary for 

an entire study area. With more robust and spatially complete snow depth data, 

water supply and climate change models would be enhanced to allow for more 

precise management of freshwater resources.  

Government snow data with low spatial resolution (and in some cases, 

high temporal resolution) were combined with high spatial resolution LiDAR 



6 
 

data to determine the current monitoring infrastructure’s representativeness of 

watershed scale snow depth. Multiple LiDAR datasets enabled examination of 

terrain and land cover-based snow depth trends as well as evaluation of random 

forest model performance under various snow pack conditions, mid-winter and 

melt onset. LiDAR’s utility will continue, if not increase, into the future as 

machine learning and data collection platforms are further evaluated. Objectives 

are as follows: 

i) Given that estimates of snow-based water supply rely on historic 

trends, we wish to assess how spatially consistent snowpack depth is 

across different terrain and land cover attributes in the Castle 

headwaters.  

ii) Explore snow depth driver importance and new statistical modelling 

methods to simulate snow depth across Rocky Mountain Headwater 

environments using full and partial LiDAR datasets as random forest 

statistical modelling inputs. 

 

Thesis Organization 

First, a review of the terrain and land-cover based snow depth drivers 

which influence snow depth is given (Chapter 2) along with background on the 

use of LiDAR in snow studies. A spatiotemporal index of snow depth 

distributions (Chapter 3) is presented as the first of two research chapters, 

followed by Random Forest modelling (Chapter 4).  
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2 LITERATURE REVIEW OF SNOW DEPTH DRIVERS 

2.1 Elevation and Hydrometeorology 

Much peer-reviewed research exists describing the influence of various 

topographic and terrain features on the accumulation, persistence, and melt of 

seasonal snow. Elevation, slope, aspect, canopy attributes, wind exposure, and 

topographic position all affect snow depth distribution. Elevation has been well 

established as the depth driver with the greatest influence when examining 

snow accumulation in both forested and open sites (Daugharty and Dickson, 

1982). Understanding the distribution of snow along elevation gradients is 

important from a water resource management point of view as it is often the 

case that watersheds with higher variability in elevation carry lower flood risk as 

spring snowmelt onset and rates of melting are distributed over the full gradient 

(Hendrick et al. 1971; Alili et al. 2009). Elevation often overrides the importance 

of other factors as it affects both the magnitude of snowfall events and 

processes of accumulation and melt due to its effect on orographic precipitation 

and environmental lapse rates. Other drivers such as canopy cover, slope, and 

aspect do not influence the magnitude of individual snowfall events but as with 

elevation, these drivers do affect snow depth accumulation processes and 

therefore spatial distribution (Anderson and West 1965; Zheng et al. 2016). 

Toews and Gluns (1986) found that SWE increased with elevation in both 

forested and open sites, with 11-15mm SWE increases per 100m elevation gain 

in forested areas relative to 21-27mm increases in open areas. A 2004 study by 

D’Eon that examined snow accumulation in open and forested areas along an 

elevation gradient found that depth was significantly correlated with elevation, 
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yet canopy and snow accumulation were only significantly correlated at lower 

elevations (D’Eon, 2004). The author attributed this to greater accumulation at 

higher sites with less canopy cover as a function of lower temperatures reducing 

ablation, suggesting that the importance of canopy cover varies with elevation 

(D’Eon, 2004). Greater snow accumulation at higher elevations, where terrain is 

more complex and variable, makes it difficult for practical and safety reasons to 

obtain widespread and comprehensive snow measurements. Means of acquiring 

more robust depth measurements are crucial to producing accurate SWE 

estimates.  

The first study to utilize airborne LiDAR in Albertan mountains to explain 

terrain influence was conducted in 2008 (Hopkinson et al. 2012).  Their findings 

provided a baseline for similar results in future studies, particularly concerning 

elevation and aspect. They found that snow depth increased linearly to the 

treeline, where depth peaked and subsequently decreased with further elevation 

gains (Hopkinson et al. 2012). Their results were most accurate in the upper 

alpine zones as canopy cover decreased and the terrain being sampled by LiDAR 

was closer to the sensor and thus less prone to error propagation (see Goulden 

and Hopkinson, 2010). In a LiDAR based study of multiple study areas and 

repeat scans in the Swiss Alps, Grunewald et al. 2014 found the same elevation 

distribution as described by Hopkinson et al. 2012 to be the most common 

pattern (Figure 2.1) LiDAR snow depth measurements are most accurate in open 

areas (Hopkinson et al. 2004), which has prompted some researchers to only 

examine LiDAR derived snow depth trends in open areas (Kirchner et al. 2014). 

Kirchner and others, 2014, studied an area with an elevation range of 1800-3500 

m a.s.l., also found a linear increase in snow depth to a point (2050m) after 
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which depth decreased. They detected orographic effects from maximum 

elevation down to 2050m, below which differences in aspect, slope, wind 

redistribution and ablation explained varying magnitudes of depth changes in 

100m elevation bins. These factors had a greater influence than orographic 

precipitation below 2050m, but not above that elevation, which was the point 

where snow transitioned to rain or descending air masses became depleted of 

moisture and snow input stopped completely. Type A snow depth distributions 

(Figure 2.1) have been observed in mountainous watersheds all over the world – 

in the Central Rocky Mountains of the U.S. (Sospedra-Alfonso et al. 2015), the 

Spanish Pyrenees (Lopez-Moreno et al. 2005), Switzerland (Moran-Tejeda et al. 

2013a) and Iberia (Moran-Tejedea et al. 2013b).  

 

Figure 2.1 Elevation trends observed by Grunewald et al 2014. 

 

A snow accumulation study by Zheng et al. (2016) based in the Sierra 

Nevada Mountains of California also provided valuable information regarding 

the interaction between elevation and snow depth. This study examined the 

influence of other variables such as aspect and vegetation along the elevation 
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gradient and found that elevation had the highest relative importance in basins 

with elevation ranges >500m. Both Sierra Nevada, California based LiDAR based 

studies attributed the location of maximum depth below maximum elevation to 

a combination of snowfall magnitude below and above the rain on snow 

transition zone and redistribution from the wind scoured upper elevations 

(Kirchner et al. 2014; Zheng et al. 2016). Zheng et al. (2016) concluded that 

elevation was the most important factor influencing snow depth, with the 

relative importance of aspect, slope and penetration fraction (of light through a 

forest canopy) varying across the elevation gradient.  

The elevation trends presented thus far all suggest similar conclusions: a 

defined snow depth peak is observed below maximum elevation. Similar 

hypotheses have explained this result as orographic precipitation and wind 

redistribution influencing the location peak depth while lapse rates drive the 

linear increase in depth from the elevation minima to peak snow depth. 

Environmental lapse rates describe the nearly linear decrease in air temperature 

with increased elevation, which can vary widely in alpine settings (Pigeon and 

Jiskoot, 2008). Differential temperatures along an elevation gradient (Figure 2.2) 

can lead to more persistent snow and/or delayed melt at higher elevations. 

Orographic precipitation events promote differential precipitation intensities at 

the watershed scale, in the form of rain or snow, varying with moist adiabatic 

lapse rate of saturation specific humidity, and the wind speed perpendicular to 

the mountain and the vertical displacement of saturated air parcels above the 

windward slope (Shi and Durran, 2013). X-band radar has demonstrated that 

orographic snowfall is enhanced near mountain summits (Mott et al. 2015), but 
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these inputs are then subject to wind and gravitational redistribution, so 

orographic effects cannot fully explain snow depth distribution.    

 

Figure 2.2 Orographic precipitation and environmental lapse rates (Butler, 2018). 

 

With orographic effects mostly limited to upper elevations (Mott et al. 

2015), it is believed that a point exists along mountainous elevation gradients 

above and below which precipitation and temperature are, respectively, primary 

influences of snow depth distributions. At this point, a break in the linear 

increase of snow depth with elevation is observed and depths begin to decline 

(Grunewald et al. 2014). This elevation-based boundary zone has many potential 

implications for water supply and flood forecasting. An approximate 0.8°C 

increase in temperature in the American Pacific Northwest over the last century 

(Mote et al. 2014) is believed to have caused the runoff pulse of seasonal snow 

to occur 5-15 days earlier in basins whose maximum elevation is less than 

~2000m (Steward et al. 2004; Fritze et al. 2011). Sospedra-Alfonso et al. (2015) 

determined that this threshold has increased by 140-280m since the late 1960s. 

Above the threshold, where precipitation is the driving force, snow inputs are 
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determined by storm events, the track of each storm, and how wind, land cover 

and topography interact to redistribute snow. If the elevation break for 

temperature driven snow distributions continues to migrate upwards, there is 

potential that the perennial snow line, a macroscale phenomenon, will shift 

downwards. Downwards perennial snowline migration has already been 

observed (Pelt et al. 2016). Should these changes persist into the future, less 

snow (and glacial) inputs to streamflow will be available throughout summer as 

a source of runoff. This input is valuable for its slow release as rivers naturally 

approach baseflow. 

 

2.2 Canopy Cover 

Canopy cover is perhaps the most complex driver to analyze with respect 

to its effect on snow depth distribution. The interaction between canopy cover 

and accumulation or ablation can be complicated by:  

“snowfall magnitude (Anderson, 1956), year to year variations (Berndt, 
1965), elevation (Daugharty and Dickinson, 1982), aspect and slope (Anderson et 
al. 1958a; Moore and Wondzell, 2005), size of the clear-cut used as a reference 
(Golding and Swanson, 1986), wind speed (Woods et al. 2006), local weather 
conditions (Lundquist et al. 2004; Lundquist and Flint, 2006), spatial distribution 
of trees (Dunford and Niederhof, 1944; Veatch et al. 2009), and canopy geometry 
(Essery et al. 2008)” (Varhola, 2010).  

 

The size of open areas, whether they be clear cuts or naturally occurring, 

can affect the magnitude of accumulation relative to forested stands (Pomeroy 

et al. 2002). Smaller open areas can be impacted by the shelter of surrounding 

forests, which may reduce ablation as outlined below leading to differential melt 

rates relative to forested stands, whereas large open areas can have reduced 
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accumulation due to increased wind erosion (Pomeroy et al. 2002). The feedback 

between forest cover and the processes of accumulation and ablation makes 

separating trends and attributing them to a single process extremely difficult in 

treed areas. Intermediate sized open areas have maximum accumulation, with 

the sizes of plots being relative to each other and specific to the study.  

Ablation is primarily driven by the net availability of energy from incoming 

and reflected shortwave radiation, incoming and outgoing longwave radiation, 

sensible, latent and ground heat fluxes (Brooks et al. 2003; Boon, 2007). Forest 

cover can affect the energy budget (Figure 2.3) relative to open areas in that 

vegetation increases long wave radiation inputs but reduces short wave 

radiation from the sun leading to a net loss of energy available for melt at 

certain times of year (Essery, 2008). While snow accumulation is typically greater 

in clear cuts and open areas, radiative budget differences often lead to these 

areas melting out faster than in surrounding forested stands. Some studies 

show a 10-day difference between melt onset in open and forested areas (Berdnt, 

1965). The magnitude of sensible and latent turbulent heat fluxes, which are 

also part of the net available energy for snow ablation, are lower in forested 

areas due to reduced wind speed by canopy cover. Because of canopy cover, 

melt rates in forested areas can be up to 70% lower than in open areas 

(Hendrick, 1971; Boon 2007; Teti, 2008). The distribution of snow depths in 

mountainous watersheds due to the effects of radiation on snow accumulation 

and melt can be more difficult to identify than elevation because insolation is 

affected by so many interacting variables.  
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Figure 2.3 Radiation sources in forested zones (Pugh and Gordon, 2012). 

 

As previously discussed, LiDAR snow studies have produced results 

indicating that snow depth increases to a certain elevation after which depth 

starts to decrease (Hopkinson et al. 2012; Kirchner et al. 2014). Another 

explanation for hypsometric depth distributions is that snow from higher 

elevations is gravitationally redistributed and intercepted by vegetation below 

resulting in maximum snow depths at treeline (Hopkinson et al. 2012). The 

transition from sparse vegetation in upper alpine zones to a denser canopy at 

treeline leads to enhanced interception (Moeser et al. 2015) but also increases 

the potential for snow retention due to a variety of vegetation heights trapping 

snow below and within their branches. As the canopy thickens, reduced 

accumulation can be observed due to the sublimation of snow following canopy 

interception (Essery et al. 2003). Up to 60% of cumulative snowfall can be 
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intercepted by the canopy (Hedstrom and Pomeroy, 1998), much of which is 

then subject to sublimation (Pomeroy, 1998). As a result, forested sites can have 

up to 40% less snow than open reference areas (D’Eon, 2004; Winkler et al. 2005, 

Jost et al. 2007). Small snow events allow for a higher proportion of interception 

and subsequent sublimation (Brooks et al. 2003) as the capacity of the canopy to 

withstand the weight of the snow loading is greater, providing more time for 

sublimation to occur. The influence of canopy cover varies with the size of snow 

events because tree branches do not have the ability to intercept an unlimited 

amount of snow (Boon, 2009). As observed with topographic depressions, the 

degree of influence from features such as short vegetation or a small 

topographic depression diminishes after snow depth exceeds the vegetation 

height (or depression depth), creating a smooth surface over top with older 

snow layers below that were influenced to a greater degree by these small 

features. The effects of various tree species and/or vegetation classes on snow 

accumulation and ablation is an area of snow hydrology that remains poorly 

understood. 

2.3 Aspect and Slope 

In the Northern Hemisphere, north facing slopes experience the lowest 

exposure to solar radiation thus greater snow accumulation in these areas is 

observed relative to south facing zones where incoming solar radiation is 

greater (Golding and Swanson 1986; Anderson et al. 1958a). Solar radiation 

fluxes peak around mid-day when the south-facing slopes are exposed to 

sunlight while north-facing slopes remain shaded (Figure 2.4). Short and long 

wave radiation provide the energy for melt and refreezing (Marshall et al. 1999) 

which can create preferential depth losses and potential density gains in aspects 
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with high radiative inputs (south) versus those with little (north). This trend is 

still observable when aspect zones are stratified by elevation (D’Eon, 2004).  

 

Figure 2.4 Radiation loading by aspect (From Avalanche.org). 

 

Significantly high snowmelt rates in south facing areas relative to those 

with a north aspect have been confirmed in many studies ((Haupt, 1951; 

Anderson and West, 1965, Hendrick et al. 1971, Rowland and Moore, 1992; 

D’Eon, 2004; Jost et al. 2007). Work that examined both snow accumulation and 

melt rates in open and forested areas have found that melt rates on south facing 

sites with and without forest cover exceed those of clearcuts with a northern 

aspect (Murray and Buttle, 2003), likely due to enhanced short and long wave 

inputs to the snowpack.  



18 
 

Slope is another topographic variable that influences the radiation budget, 

and thus snow accumulation, of a given site. The zones with the least 

accumulation and/or highest melt rates (Anderson et al. 1958a) are south facing 

steep areas as a function of low incidence angles and thus high solar radiation 

inputs (Varhola, 2010). Snow accumulation is often more variable, and higher, on 

gentle slopes (Anderson et al. 1958a). Steep slopes display reduced 

accumulation as snow is transported downhill due to wind and gravity, and in 

the case of southern aspects, higher temperatures, which enhances melt 

(Golding and Swanson, 1986) and can trigger avalanches.   

 

2.4 Scale, Wind and Topography 

The accumulation of snow varies greatly at different scales in an alpine 

watershed within four categories: global scale, macroscale, mesoscale, and 

microscale (Pomeroy et al. 2002). LiDAR provides micro, meso and macroscale 

information on snow accumulation all within a single data layer. At the 

macroscale, from 10 km2 to 1000 km2, snow accumulation varies by latitude, 

elevation, orography, and lacustrine inputs.  At the mesoscale, from 100 m2 to 

10 km2, snow accumulation varies by terrain characteristics and vegetation 

cover.  The microscale occurs from 10 m2 to 100 m2, where the snow 

accumulation and distribution differs greatly with regards to “forested and open 

environments because of processes of interception, sublimation and wind 

redistribution” (Pomeroy et al. 2002) and variable boundary layer conditions 

(Oke, 1988).  
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Variety in spatial distribution of snow depth is governed by interacting 

drivers, namely topography, slope, aspect, vegetation, short and long wave 

radiation, wind, and precipitation inputs. The dominant processes of a given 

snowpack are heavily dependent on local weather patterns, terrain and land 

cover. These features vary widely in mountainous environments, particularly in 

the alpine, thus their effect on snow distribution is difficult to quantify and 

confidently model. Multiple studies have employed variogram analyses to 

identify thresholds after which snow depth distribution becomes random and 

hard to predict. Break values in the tens of meters (15-40m) (Shook and Gray, 

1994, 1996; Deems et al. 2006) are commonly observed for variogram analyses 

of snow depth, topography and vegetation. Arnold and Rees (2003) also 

observed this effect when comparing microscale plots to mesoscale plots with a 

100m threshold.  

Schirmer and Lehning (2010) used terrestrial laser scanning (TLS) to 

examine three 300m long slopes representing cross-loaded, lee side and 

windward terrain. Variograms of the three slopes showed lag distances of 6.4m, 

13.8m and 20.4m for lee, windward and cross-loaded slopes respectively.  The 

researchers attributed increasing scale break distances to the effect of wind 

speed on bare earth terrain, with high wind speed areas experiencing greater 

ablation. Examining changes pre and post storm revealed that increases in scale 

breaks on a cross-loaded slope were due to the filling of small-scale terrain 

features (Figure 2.5). The occurrence of the smallest break on the leeward side 

was attributed to lower wind speeds and the production of more, smaller wind 

eddies which interact with local topographic features to create a variety of 

microclimates and thus snow profiles.  
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Figure 2.5 Topographic and land cover smoothing due to snow accumulation 
(Greene et al. 1999). 

 

 When trees are considered, a similar study found more persistent snow 

structure compared to an area with pronounced wind effects (Trujillo et al. 

2007). The discrepancy between the two studies (areas with few wind effects as 

having persistent and antipersistent structure) is believed to arise from the 

absence and presence of vegetation, but also could be due to potential noise in 

the TLS data (Schirmer and Lehning, 2010). At the beginning of the accumulation 

period, these small terrain and land cover features have a more noticeable 

impact on the overall variation of snow depth within the plot, however as time 

goes on they are successively filled by wind redistribution and the storm events 

such that the surface becomes more smooth and scale breaks increase due to 

more homogeneity of the snowpack at the plot level (300m stretches of terrain). 

Surface roughness and topographic indices are more variable in montane and 
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alpine environments compared to flat areas, which can put the scale breaks as 

high as 80m in prairie environments where topography is more homogeneous 

(Shook and Gray, 1996). Deems et al. 2006 utilized LiDAR to identify scale 

breaks of 15m and 40m when analyzing snow depth, and 31 and 56m for 

vegetation topography (vegetation height + topography). Ultimately, this study 

highlighted the pronounced influence of snow redistribution by wind, which 

interacts with large-scale topographic orientation (Deems et al. 2006).  Trujilo et 

al.  (2007) demonstrated that while wind is an important influence of alpine 

snow distribution, snow depth itself is more related to breaks in topography and 

vegetation.  Wind influenced snow patterns are dependent on topographic 

depressions and/or vegetation to intercept the snow that has been entrained by 

the wind. This observation highlights the importance of examining interacting 

variables, especially when the behaviour of a variable such as wind is greatly 

affected by terrain and land cover features that produce a variety of 

microclimates within a larger overall area causing seasonal snow depth 

distributions to exhibit a high degree of spatiotemporal variation. 
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3 EVALUATION OF TEMPORAL CONSISTENCY OF SNOW DEPTH DRIVERS 

OF A MOUNTAINOUS WATERSHED IN SOUTHERN ALBERTA  

 

Abstract 

Collecting spatially representative data over large areas is a challenge within 

environmental monitoring frameworks. Identifying consistent trends in a 

phenomenon such as snow depth enables increased sampling efficiency by 

minimizing field collection time and costs associated with remote sensing 

methods. Seasonal snowpack depth estimations during mid-winter and melt 

onset conditions were derived from Airborne LiDAR over the West Castle 

Watershed over three years. Each dataset was divided into classes with respect 

to five snow depth drivers: elevation, aspect, TPI, canopy cover and slope. 

Although mid-winter class trends for each driver were similar, mid-winter depth 

distributions within each class were significantly different due to the occurrence 

or not of recent snowfall events and snowpack redistribution and settling 

processes. Class trends of melt onset data were also similar to mid-winter 

trends but are expected to vary with seasonality. This is due to the differing 

stages of accumulation or ablation and the upward migration in the 0° C 

isotherm during spring such that depth can be declining at valley levels while 

still increasing at higher elevations. The observed consistency in depth driver 

controls and identification of zones of characteristically high and low snow 

storage can be used to guide future integrated snow sampling frameworks.  
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3.1 Introduction 

Seasonal snow in headwater environments is crucial to water security in 

Western Canada, and anywhere with mountainous headwaters. Snow also has 

destructive potential when abundance aligns with certain climatic and terrestrial 

conditions. In 2013, Alberta experienced devastating floods due to a 

combination of high soil moisture and accelerated melt of a deep snowpack by a 

rare, but long-lasting low-pressure system which produced days of consistent 

rain (Fang and Pomeroy, 2016). Increased monitoring with airborne LiDAR has 

the potential to provide improved snow pack extent, depth and volume data to 

improve water supply forecasts. Understanding the spatiotemporal variation of 

snow depth with respect to terrain and land cover-based variables is vital to 

developing a snowpack monitoring framework that can be utilized in different 

locations and into the future. This information can help determine the timing 

and sampling strategy required for an airborne LiDAR based monitoring 

framework.  For example, if a large portion of snow is found to be stored at 

treeline, ensuring representative sampling of such terrain would be desirable in 

an operational monitoring framework. Conversely, landcover and terrain type 

classes with an overall small percent area may translate to less emphasis on 

those zones in an optimized sampling strategy unless they demonstrate 

anomalously high or low snow depth characteristics. A strong case for expanded 

snowpack monitoring will be developed and explained, and a basis for 

evaluating subsequent modelling results will be established. 

Upper alpine zones tend to contain the most exposed and steep terrain in 

a catchment which promotes snow redistribution by wind and gravity, therefore 

flatter terrain is expected to collect more snow. The effects of orographic 



25 
 

precipitation on snow distribution varies from windward to leeward slopes 

(Pomeroy and Bruin, 2001), and Roe and Baker (2006) suggest that maximum 

precipitation rates have high spatiotemporal variability which makes it difficult 

to assign a static location for maximum precipitation inputs. However, 

snowpack depth distributions with elevation are not solely due to orography 

and lapse rates but also the redistribution of snow by wind and gravity, followed 

by interception by vegetation (Greene et al. 1999; Hopkinson et al, 2010; 2012; 

Grunewald et al. 2014). Wind and gravity also promote the settlement of snow in 

areas of topographic transition from exposed to concave terrain (Revuelto et al. 

2014b; Lopez-Moreno et al. 2014). Therefore, it is expected that peak snow 

depths will occur within the treeline and greater snow accumulation within 

topographic depressions.   

Aspect is another well researched variable that impacts snow depth 

distributions. Short and long wave radiation provide the energy for melt which 

can create preferential depth losses and potential density gains in aspects with 

high radiative inputs versus those with little (Golding and Swanson 1986; 

Anderson et al. 1958a). This effect holds true at all elevations (D’Eon, 2004). 

Significantly high snowmelt rates in northern hemisphere south facing areas 

relative to those with a northerly aspect have been confirmed in many studies 

(Haupt, 1951; Anderson and West, 1965; Hendrick et al. 1971; Rowland and 

Moore, 1992; D’Eon, 2004; Jost et al. 2007). Higher mean depths should (all else 

being equal) occur on north facing terrain while the lowest depths should be 

found on south facing terrain where northern hemisphere shortwave radiative 

inputs are greater.  
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Studies of vegetation influences that examined both snow accumulation 

and melt rates in forested areas have found that melt rates in south facing sites 

with and without forest cover exceed those of clearcuts with a northerly aspect, 

confirming that aspect can have a greater effect on melt than forest cover 

(Murray and Buttle, 2003; Haupt, 1951; Anderson and West, 1965; Hendrick et al. 

1971; Rowland and Moore, 1992; D’Eon, 2004; Jost et al. 2007). Vegetation, 

which has a lower albedo than surrounding snow, can enhance melt by 

absorbing solar energy, which heats up stems and foliage and then re-emits 

energy as longwave radiation over nearby snowpack, creating a radiation 

feedback as some of this reflected radiation may be reabsorbed and re-emitted 

by the trees. Vegetation also promotes ablation by intercepting snow and leaving 

it exposed on branches to wind and radiation that may drive sublimation, the 

transition from solid to gaseous phase without a liquid intermediate. 

Considering these effects, closed canopies should have the lowest depths, 

especially later in the season as day length and shortwave energy inputs 

increase. More open canopies should exhibit greater snow accumulation due to 

wind trapping, reduced longwave radiation and lower amounts of intercepted 

snow being subject to sublimation prior to falling to the ground.  

3.1.1 Objective 

To optimize airborne LiDAR snow depth sampling, the priority in snow 

depth drivers and the variation in their distributions needs to be understood. 

Stratifying snow depth drivers into classes is one way to detect spatial variation 

in snow depth due to driver attributes. The objective of this analysis is to 

determine if well-established snow depth distribution trends, with respect to 
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various terrain and land cover-based snow depth controls, exist in the 

headwaters of the Oldman River Basin, southern Alberta. This is assessed by 

examining seasonal and inter-annual consistency of class-based snow depth 

drivers at mid-winter and melt onset. Snow volume estimates of storage are also 

provided to help with sampling prioritization. LiDAR based storage values are 

compared to estimates using publicly available snow records, to place the 

Government monitoring data into a broader context at the watershed scale. 

Evaluating the temporal consistency of high and low snow storage zones can 

determine if optimized sampling needs to be adaptive with seasonality. By 

examining these trends and relationships at the watershed and class scales over 

multiple years, a foundation for future sampling requirements is established 

under mid-winter and melt onset snowpack conditions. 

3.1.2 Study Area 

The West Castle watershed (WCW) is a sub-watershed of the Oldman River 

Basin in Southern Alberta near the Canada – US border. Within the Oldman 

headwaters ~8.4% of annual runoff yield is derived from the Castle Watershed, 

which includes the West and South Castle rivers, (Kienzle and Mueller, 2013), 

making it the 3rd highest yielding sub-basin. The ~103 km2 watershed is 

characterized by a large valley that runs NNW-SSE, montane forest and exposed 

rocky alpine summits (Figure 3.1). A snow course exists within the watershed, 

which is manually surveyed every month throughout the winter season. 
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Figure 3.1 The study area is situated in southwest Alberta, along the continental 

divide between Alberta and BC, just north of the USA/Canada border. 

 

3.2 Data and Methods 

3.2.1 LiDAR Data 

Winter flights to generate digital snow surface models (DSSMs) during snow- on 

conditions and another survey in summer to produce a digital elevation model 

(DEM) are required for LiDAR snow studies. A LSDM (LiDAR snow depth model) 

is created by subtracting the DEM from the DSSM (Eq 2.1, Hopkinson et al. 2004): 

LSDM = DSSM – DEM       (Eq 2.1) 
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The snow-off DEM was generated from a September 2014 survey of the 

same area when perennial snow was at its minimum. To produce snow-on 

DSSMs, airborne LiDAR surveys were conducted in February 24, 2014 (mid-

winter 2014), April 7, 2016 (melt onset 2016), and February 13, 2017 (mid-winter 

2017). A partial survey consisting of two flight lines was flown on March 17, 

2017 (late winter 2017) when rapid weather changes interfered with plans for a 

fourth complete snow-on survey thus enabling a test of interpolation methods. 

A small validation dataset exists for mid-winter 2014, which was mostly limited 

to elevations <1450 m a.s.l. The root mean square error (RMSE) of this dataset is 

0.27 m, which was measured using survey grade positioning of depth 

measurements using graduated depth probes. A snow depth validation dataset 

was collected along an elevation gradient in 2016 where RMSE was 0.25 m. Due 

to safety and logistical constraints, snow depth validation data were not 

collected for all surveys but all LiDAR datasets were calibrated to hard runway 

surfaces 35 km west of the study site at the start and end of each survey flight, 

so there is no reason to expect variations in depth accuracy from survey to 

survey. A well-calibrated LiDAR snow survey can produce a decimeter-level root 

mean square error, especially in zones of open canopy (Hopkinson et al. 2004; 

Grunewald et al. 2010; Lehning et al. 2011) but many studies report RMSE 

ranging up to 0.3m (Geist and Stotter, 2008; Moreno Banos et al. 2009; DeBeer 

and Pomeroy, 2010; Hopkinson et al. 2011; Grunewald et al. 2013). Considering 

the well-established accuracies of airborne LiDAR for snow depth in 

mountainous settings as well as the available field validation data in 2014 and 

2016, these datasets were determined to be suitable for further analyses. All 

datasets were gridded at a 1m spatial resolution using triangulation 
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interpolation after being quality controlled and filtered following standard 

cleaning and classification methods described in Hopkinson et al (2012).  

 

3.2.2 Snow Depth Driver Classes  

Slope, aspect and TPI (Topographic Position Index) are controls that 

require neighbourhood functions to derive the surfaces from a DEM. To ensure 

that cells along the outer edge of the area of interest had a sufficient 

neighbourhood, they were computed on a DEM that extended past the area of 

interest and then clipped to the watershed extent. Neighbourhood size for slope 

and aspect calculations is limited to the neighbours immediately adjacent to a 

given cell, whereas neighbourhood settings for TPI are user defined. Using 

ArcGIS 10.4, slope (Eq 2.2) and aspect were calculated with the aspect and slope 

tools.  

Slope (˚) = arctan(rise / run)      (Eq. 2.2) 

TPI is calculated by comparing a cell’s elevation to that of its neighbours 

within a user defined window (Eq 2.3; Weiss, 2001).  

TPI = E – M          (Eq 2.3) 

Where E is the elevation of an individual grid cell and M is the mean 

elevation of grid cells within the window. TPI values are unique to the DEM used 

as an input so they are generally stratified into three classes: depressions, 

uplands and transitional terrain which can be flat or sloped.  
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Random Forest (Breiman, 2001) was utilized to rank the importance of 

multiple TPI surfaces generated from different window sizes and shapes. With 

this method, importance corresponds to a higher “Increase MSE” value (Breiman, 

2001). This refers to the change in model MSE when a predictor is removed from 

the analysis. The more important the predictor, the greater the change in MSE in 

its absence. MSE values for each dataset were summed by window type (which 

vary in size and shape). Little was published on LiDAR snow depth models and 

appropriate TPI parameters prior to Lopez-Moreno et al (2017). With minimal 

research available regarding appropriate window sizes, study area specific 

sensitivity analyses can be employed to inform this decision. Too small of a 

window may create unnecessary detail within the three TPI classes whereas too 

large of a window will include complex terrain features that don’t represent the 

simple ridge / depression type of relief – and snow depth driver processes – that 

we are aiming to represent. Maximum window sizes were therefore limited to 

100m. The 101m rectangular window was determined to be the most 

appropriate choice (Figure 3.2). The WCW’s elevation range (1390-2630 m a.s.l.), 

so a 100m window avoids capturing micro-scale elevation change. 
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Figure 3.2 Importance of TPI surfaces. 

 

 Data collected in September 2014 was used to create a DEM, which was 

the input for creating snow depth control variable classes. Canopy Cover was 

calculated as a ratio of LiDAR canopy to total returns (Barilotti et al., 2006) (Eq 

2.4).  

Fractional Cover = Canopy Returns / All Returns  (Eq 2.4) 

Given the almost 1400 m of elevation range in the WCW and high local 

variation in snow depth, elevation was divided into 100m increments. The choice 

of a 100m elevation class was also found to be congruent with the optimal 

window size for the TPI window sensitivity analysis (see below). Aspect was 

divided into eight cardinal directions. “Flat” is a class produced by the aspect 

tool in ArcGIS, but it was not considered in this analysis as it contains only 

7,191 data points whereas the next smallest aspect class (north) has 5,218,741 

points. Exclusion of small or outlier classes (<0.5% of total area) has been 
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implemented in other snow studies (Grunewald et al. 2014). TPI and canopy 

cover were stratified using a three-class quantile approach, to ensure 

comparable class population sizes, while maximizing the chance of class 

separability. Slope also had three classes based on evenly distributed physical 

slope breaks at 30 degree increments instead of statistical sample breaks. As 

with aspect and elevation terrain classes, it was assumed that slope influences 

will be identified through linear, rather than statistical, stratification of physical 

slope attributes. The reclassified rasters were then used to create polygons for 

each class to use as a mask for extracting data from the LSDMs. Appendix A 

outlines the script locations and order for the analyses in this chapter. 

3.2.3 LSDM Quality Control 

LiDAR data must be carefully analyzed when making conclusions on snow 

depth distribution. The main sources of error with LiDAR are vertical and 

horizontal errors as well as incorrect classification of returns from the forest 

canopy, buildings or other obstructions, which may be labeled as ground returns 

(Hodgson, 2004). Even after cleaning raw LiDAR data, further quality control on 

snow depth models is required prior to analysis. It is intuitive that snow depth 

cannot be a negative number. Multipath (deflection of laser pulse energy from a 

single travel path due to multiple reflections from high reflectance surfaces) 

leads to low points or pits in LiDAR snow surface data that lie beneath the true 

surface (Hopkinson et al. 2004). This occurs because the ground to aircraft 

portion of the two-way travel time exceeds the time it took for the pulse to reach 

the ground after emission from the sensor (Hopkinson et al. 2006). Multipath is 

more likely to occur over a frozen snow surface than bare ground due to the 
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difference in reflectivity, and this is likely to produce occasional negative snow 

depth values in the LSDM. Such erroneous values are typically set to 0 (to 

mitigate their overall impact) or removed entirely (set to ‘nodata’). For further 

information on LiDAR as a snow depth measurement tool, and for specific 

examples of its use in cryospheric applications, see the review papers by Deems 

et al. (2013) and Bhardwaj et al. (2013). 

Steep slopes and horizontal DEM uncertainty can produce erroneous 

depth values that exceed plausible snow depths (Hodgson et al. 2005). 

Horizontal coregistration errors may arise where the location of a steep cliff face 

has shifted a few meters in the x or y direction in the DSSM compared to DEM. If 

horizontal coregistration is an issue, when the DEM is subtracted from the DSSM 

the result may be a large negative value because the elevation associated with 

the top of the cliff face is in a different cell between datasets. One approach to 

quality controlling slope induced errors is to eliminate steep areas from the 

datasets under analyses (e.g. Zheng et al. 2016). At the watershed scale, the total 

area of steep terrain and cliff faces is not a large proportion (1.8% of grid cells). 

To test if quality control does indeed produce more accurate snow depth 

measurements, pre and post quality control mean depths were presented for 

slope and elevation classes, because of known slope issues and the general 

occurrence of steeper slopes at higher elevations. It is expected depth values in 

steep and upper elevation classes to be most affected by quality control.  

The abundance of data in a LSDM makes removal of the upper 1% of cells 

a statistically valid approach to limit the upper range of snow depth. Eliminating 

these cells entirely instead of simply thresholding implausible snow depths 
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excludes questionable zones from the analysis (i.e. eliminating a snow free slope 

with a depth of 60m snow depth instead of assigning a thresholded value to a 

cell where snow doesn’t exist). Revuelto and others (2014b) employed a routine 

using the field-measured depth of a topographic depression as their maximum 

depth value while others (Kirchener et al. 2014; Grunewald et al. 2010) have 

employed knowledge of the area or canopy-based metrics to determine a 

maximum depth. A 99th percentile-based quality control method implicitly 

addresses steep slope errors and provides a statistically consistent, reasonable, 

and automated means of setting a limit on maximum depth. The 99th percentile 

was calculated after eliminating negative values, which removed ~1% of total 1m 

grid cells.  

3.2.4 Temporal Depth Distribution Analysis 

Determining how snow depth distributions and drivers vary temporally at 

the watershed scale supports future sampling design. For example, knowledge 

of snow depth driver variable spatial extent and which drivers are most 

important in controlling snow depth can inform driver class sampling 

prioritization and location. The consistency of depth distributions was first 

assessed at the watershed scale using Kendall’s Tau correlation, given its non-

parametric status and the non-normal distributions of the datasets. Snow depth 

distributions and storage estimates were derived at the watershed scale for two 

different stages in winter: mid-winter (MW) and melt onset (MO). Creating 

classes for each snow depth driver allowed a more refined test of mid-winter 
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depth distribution consistency for which an ANOVA (analysis of variance) was 

employed at a 95% confidence level.  

Two mid-winter datasets were collected as well as one captured at late 

winter (LW), March 2017, which covers two flightlines (FL) as opposed to the 

whole watershed (Figure 3.3). From the snow pillow records at Gardiner Creek 

(AEP, 2017), MW 2014 and LW 2017 demonstrated similar conditions on the 

survey dates: a recent accumulation of fresh snow (Figure 3.4). Mean air 

temperature prior to these surveys was similar but it was warmer on the day of 

MW 2017 data collection (Table 3.1). SWE at Gardiner Creek was highest at the 

time of the LW 2017 survey but air temperatures were similar to MW 2017 

(Table 3.1). Melt is evident prior to the 2016 survey and was observed during 

validation data collection, which corresponded to declining SWE at Gardiner 

Creek (Figure 3.4) and air temperatures were near or above zero (Table 3.1). This 

dataset is therefore considered to represent melt onset (MO) conditions. 
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Figure 3.3 The data extents utilized in this study. Except for the March 2017 flight 
lines, the DEM extent represents the area covered for all winter LiDAR surveys. 

 

 

Figure 3.4 Daily SWE from the Gardiner Creek site (1924 m a.s.l.), for 200 days 
starting on November 1st through to mid-May of the following year (AEP, 2017). 
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Table 3.1 Air temperature at Gardiner Creek prior to and on the day of the 
LiDAR surveys (AEP, 2017). 

 

 

 

 

 

 

The snow depth driver class polygons generated in section 3.2.2 were 

inputs to a python script (Cartwright, 2018), which provides a text file 

containing raster summary statistics. Storage is derived by multiplying mean 

depth of each control class by the number of grid cells (excluding ‘nodata’ 

values) in that class. To detect statistically significant differences between depth 

distributions at mid-winter, ANOVAs were implemented on a sample of each 

class’ populations at a 95% confidence level. Sample n values of each snow depth 

driver class were as follows: elevation 10,000, aspect 25,000, canopy cover 

30,000, TPI 30,000 and slope 30,000. A challenge of working with high 

resolution data is that there are many data points and more research is needed 

regarding how to representatively sample classes of varying sizes (i.e. achieve 

the same level of class representation for predictors with 9 classes versus a 

different predictor with 3 classes). These effects should be considered in 

interpretation of the results along with summary statistics such as class means 

and standard deviations. 

Dataset 
Air Temperature (°C) 

30 days prior Day of survey 

February 24 2014 -13.9 -12.9 

April 7 2016 -1.9 6.16 

February 13 2017 -10.6 -3.23 

March 17 2017 -7.4 -3.76 
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3.2.5 Government Snow Monitoring Comparison 

A government hydrometeorological station (Gardiner Creek) which 

measures snow depth, water equivalent and other meteorological variables is 

located just beyond the northern edge of the watershed boundary, making it the 

closest Government snowpack monitoring site to the WCW with automated, 

daily data collection. Depth is measured with a SR-50 and SWE data is collected 

with a snow pillow. A snow course exists within the watershed as well, which is 

manually surveyed every 4-5 weeks, depending on weather conditions, 

throughout the winter season. To give context for how the publicly available 

snow data relates to watershed snow conditions as determined with LiDAR, 

average watershed scale snow depth from the LiDAR data was compared to the 

SR-50 average daily snow depth value at Gardiner Creek (GC). Mean depth 

derived from LiDAR data as well as the SR-50 depth on the survey date were 

both multiplied by the number of grid cells (excluding no data points) in each 

LSDM to calculate volume. Average depth from the LSDM was calculated by 

finding the mean of all cells (excluding no data points). The depth at the West 

Castle snow course (WCSC) was also used to estimate volume, although the only 

date on which snow course measurements coincided with a LiDAR survey was 

for the first mid-winter LSDM. For the other survey dates, the WCSC was 

surveyed 2+ weeks after the LiDAR surveys. This comparison is intended to 

explore how snow volume estimates from the existing monitoring network data 

compare to LiDAR based estimates for the WCW. Integrating LiDAR and 

continuous, automated data streams has the potential to enhance monitoring 

networks by increasing temporal and spatial availability of data in highly 

complex landscapes. It is likely that multiple weather stations in strategically 
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chosen locations a priori to commencement of a study would be necessary to 

observe consistent spatiotemporal trends. Maintenance of the weather station is 

costly, especially with many locations requiring helicopters for access, and there 

may be an argument to put funds towards LiDAR monitoring if a large 

difference in snow volume between the publicly available and remote sensed 

data exists. 

 

3.3 Results 

3.3.1 Snow Depth Driver Classes 

Watershed land surface classifications derived from the lidar data produced 14 

elevation classes, 8 aspect classes, and 3 classes for slope, TPI and canopy cover 

(Figure 3.5). 
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Figure 3.5 Snow depth driver classes. 



42 
 

 

3.3.2 LSDM Quality Control 

Quality control (QC) reduced watershed scale depth by 0.1m for MW 2014 

and MO 2016 due to the removal of extreme depth outliers while MW 2017’s 

mean depth was unchanged (Table 3.2). Mid-winter 2017 elevation means were 

the least affected by QC, whereas half of the melt-onset elevation class means 

changed by >0.1m (Table 3.3). Larger differences generally occur at upper 

elevations and means below 1800m were relatively unaffected (<0.05m change 

in mean) for all years. As slope increased, so did the magnitude of difference 

between pre- and post- quality control datasets (Table 3.3). Slopes >60˚ make up 

only 1.8% of the watershed (Table 3.4). Although depth changes were larger in 

steeper and higher terrain (Table 3.3), QC in this analysis only has a small effect 

on mean depth at the watershed scale, as shown by Table 3.2. After QC, 

elevation and aspect class area distributions remained within 0.1% of the 2014 

DEM areas (Table 3.4). However, slope, TPI and canopy cover class area 

distributions differed by up to 0.6% relative to the DEM following QC. 

Table 3.2 Mean depth at the watershed scale prior to and following QC. 

Dataset 

Snow Depth (m) 

No 
QC 

99th 
percentile 

clip 

MW 2014 1.6 1.5 

MW 2017 1.5 1.5 

MO 2016 1.3 1.2 
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Table 3.3 Mean snow depth change as a result of quality control. 

Snow Depth Driver 
Class 

Δ Depth (m) 

Mid-
winter 
2014 

Mid-
winter 
2017 

Melt 
Onset 
2016 

Elevation 
(m a.s.l.) 

<1400 0.00 0.00 0.00 

1400-1500 0.00 0.00 0.00 

1500-1600 0.00 0.00 0.00 

1600-1700 0.00 0.00 0.00 

1700-1800 0.01 0.00 0.01 

1800-1900 0.06 0.01 0.06 

1900-2000 0.11 0.03 0.12 

2000-2100 0.09 0.02 0.12 

2100-2200 0.13 0.05 0.20 

2200-2300 0.07 0.03 0.11 

2300-2400 0.08 0.03 0.12 

2400-2500 0.09 0.03 0.17 

2500-2600 0.13 0.04 0.23 

>2600 0.01 0.00 0.03 

Slope (°) 

0-15 0.01 0.00 0.01 

15-30 0.03 0.01 0.04 

30-45 0.08 0.02 0.10 

45-60 0.13 0.05 0.18 

60-75 0.20 0.17 0.31 

75-90 0.85 0.95 1.35 
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Table 3.4 Percent area of snow depth control classes after quality control. 

Snow Depth Driver Class 
Fall 2014 

(DEM) 

Mid-
winter 
2014 

Mid-
winter 
2017 

Melt Onset 
2016 

Elevation 
(m a.s.l.) 

<1400 1.3 1.3 1.3 1.3 

1400-1500 9.5 9.6 9.5 9.6 
1500-1600 11.5 11.6 11.5 11.6 
1600-1700 11.3 11.4 11.3 11.4 
1700-1800 11.7 11.8 11.7 11.8 
1800-1900 11.6 11.6 11.6 11.6 
1900-2000 12.6 12.5 12.6 12.5 

2000-2100 11.3 11.2 11.3 11.2 
2100-2200 8.7 8.6 8.7 8.6 

2200-2300 6.0 6.0 6.0 6.0 
2300-2400 3.4 3.4 3.4 3.3 
2400-2500 0.9 0.9 0.9 0.9 
2500-2600 0.2 0.2 0.2 0.2 

>2600 0.0 0.0 0.0 0.0 

Aspect 

Flat 0.0 0.0 0.0 0.0 

N 10.0 9.8 9.9 9.8 

NE 12.7 12.5 12.7 12.5 

E 17.7 17.6 17.7 17.6 

SE 15.4 15.4 15.4 15.4 

S 7.9 7.9 7.9 7.9 

SW 11.5 11.6 11.6 11.6 

W 14.1 14.2 14.1 14.2 

NW 10.8 10.8 10.8 10.8 

Slope 

0-30 57.1 57.4 57.1 57.4 

30-60 41.2 40.9 41.1 40.9 

60-90 1.8 1.7 1.7 1.7 

TPI 

Depressions 33.1 32.5 33.0 32.6 

Transitional 33.8 34.1 33.9 34.1 

Uplands 33.1 33.4 33.1 33.4 

Cover 

Open (0 - 0.13) 33.2 32.7 33.1 32.7 

Intermediate (0.13 - 
0.57) 

33.1 33.3 33.1 33.3 

Closed (0.57 - 1) 33.7 34.1 33.8 34.0 
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3.3.3 Snow Depth Distributions 

3.3.3.1 Quality Controlled Outputs and Watershed Scale Correlations 

Following QC, depth distributions for MW 2014 and 2017 have more in 

common than MO 2016, which appears to display a more distinct transition 

from low to high depths around valley sides (Figure 3.6). This is confirmed with 

statistically significant (p < 0.05) Kendall’s tau results indicating a higher 

correlation between mid-winter datasets relative to the mid-winter and melt 

onset LSDM comparisons (Table 3.5). Of the two mid-winter datasets, 2014 has a 

slightly higher correlation with melt onset 2016. No correlation was possible for 

LW 2017 due to the limited spatial overlap between the flightlines and 

watershed extent (Figures 3.3 and 3.6). 
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Figure 3.6 LSDMs within the WCW extent. 
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Table 3.5 Correlation results between WCW snow depth distributions (n = 50,000). 

Datasets 
Kendall's 

tau 
p-value 

MW 2014 vs LW 2017 0.76 * 

MW 2014 vs MO 2016 0.68 * 

MO 2016 vs LW 2017 0.65 * 

 

3.3.3.2 Elevation 

For each year of data, class-based depth distributions increased with 

elevation gains for the first half of the elevation range (Figure 3.7). Peak depth 

mean snow depths occur in the 1800-2200 m a.s.l. range (Table 3.6). Although 

the exact elevation of peak depths varied, they were within the treeline ecotone 

for all years. Above 2100 m a.s.l., mid-winter 2014 and mid-winter 2017 depths 

declined more sharply than late winter 2017 and melt onset 2016.  Mid-winter 

2014 is the only dataset in which a consistent decline in depth after the peak is 

observed (Figure 3.7). Both of the mid-winter depth distributions are 

significantly different except for the uppermost elevation class (Table 3.6). Most 

of these results align with the magnitudes of standard deviations observed in 

each class for both datasets, except for elevations >2600 which, due to 

comparatively small class size over extended distances, has a large standard 

deviation value resulting in no significant difference between the two datasets.  
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Figure 3.7 Mean snow depth of each elevation class for watershed scale datasets. 
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Table 3.6 Elevation class depth summary. * = significant difference (p < 0.05). N = 
10,000 for all classes except >2600 m a.sl. where N = 1,200. 

Elevation 
Class    

(m a.s.l.) 

Mean Depth (m) Standard Deviation (m) ANOVA 
Significant 
Difference 

MW 
2014 

MW 
2017 

LW 
2017 

MO 
2016 

MW 
2014 

MW 
2017 

LW 
2017 

MO 
2016 

<1400 0.7 0.8 0.6 0.0 0.4 0.3 0.3 0.1 * 

1400-
1500 

0.9 1.0 0.7 0.2 0.4 0.3 0.2 0.2 * 

1500-
1600 

1.1 1.1 0.9 0.3 0.4 0.4 0.6 0.3 * 

1600-
1700 

1.4 1.3 1.1 0.6 0.6 0.4 0.5 0.5 * 

1700-
1800 

1.7 1.6 1.3 1.0 0.7 0.6 0.6 0.8 * 

1800-
1900 

1.9 1.8 1.6 1.5 0.9 0.9 1.0 1.1 * 

1900-
2000 

1.9 1.9 1.9 1.8 1.0 1.1 1.3 1.2 * 

2000-
2100 

1.9 1.9 2.1 2.0 1.1 1.1 1.5 1.2 * 

2100-
2200 

1.8 1.8 1.8 1.9 1.1 1.3 1.4 1.3 * 

2200-
2300 

1.5 1.5 1.7 1.7 1.1 1.2 1.4 1.3 * 

2300-
2400 

1.2 1.2 1.6 1.4 1.2 1.3 1.5 1.4 * 

2400-
2500 

1.1 1.2 1.4 1.3 1.2 1.4 1.5 1.4 * 

2500-
2600 

1.0 1.3 1.7 1.4 1.1 1.5 1.7 1.4 * 

>2600 1.0 1.1 1.3 1.6 1.1 1.0 1.1 1.2  

 

 

Maximum storage was in the 1900-2000 m a.s.l. elevation class at mid-

winter in both years (Table 3.7). At melt onset, maximum storage shifted 

upwards to the 2000-2100 m a.s.l. class. The uppermost elevation classes (>2500 

m a.s.l.) stored the least amount of snow for all years of data. For all datasets, 

the majority of snow is stored in elevation bands approximating the treeline 

ecotone (1800-2100 m a.s.l.). 
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Table 3.7 Storage of elevation classes at the WCW scale. 

Elevation 
Class (m 

a.s.l.) 

Storage (x 106 m3) 

MW 
2014 

MW 
2017 

MO 
2016 

<1400 1.0 1.1 0.0 

1400-1500 8.5 9.5 1.5 

1500-1600 13.3 13.4 3.8 

1600-1700 15.8 15.1 6.7 

1700-1800 20.0 18.7 12.4 

1800-1900 22.5 21.8 18.5 

1900-2000 24.6 24.2 23.1 

2000-2100 22.6 22.2 23.2 

2100-2200 15.8 15.9 17.0 

2200-2300 9.4 9.3 10.4 

2300-2400 4.3 4.2 5.0 

2400-2500 1.0 1.2 1.3 

2500-2600 0.3 0.3 0.4 

>2600 0.0 0.0 0.0 

 

3.3.3.3 Aspect 

West facing terrain had the lowest mean depth for all years (Table 3.8), 

although the median depth value of the southwest class was slightly lower in 

2016 (Figure 3.8). The lowest zones of storage were south and south west zones 

(Table 3.9). The deepest mean snow depth occurred on north and northeast 

facing terrain (Table 3.8), although the east class had the highest storage value 

(Table 3.9). All classes had significantly different mid-winter depth distributions. 
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Figure 3.8 Boxplots of aspect class depth distributions. 

  

Table 3.8 Aspect class depth summary. * = significant difference (p < 0.05). N = 
20,000. 

Aspect 
Class 

Mean Depth (m) Standard Deviation (m) 

ANOVA  MW 
2014 

MW 
2017 

LW 
2017 

MO 
2016 

MW 
2014 

MW 
2017 

LW 
2017 

MO 
2016 

N 1.9 1.9 1.9 1.7 1.0 1.1 1.4 1.3 * 

NE 1.9 1.9 1.9 1.7 1.0 1.1 1.3 1.4 * 

E 1.7 1.7 1.6 1.4 0.9 1.0 1.2 1.2 * 

SE 1.6 1.6 1.5 1.3 0.9 0.9 1.1 1.1 * 

S 1.3 1.3 1.5 0.9 0.8 0.8 1.0 1.0 * 

SW 1.2 1.2 1.2 0.7 0.7 0.7 1.0 0.8 * 

W 1.1 1.1 1.1 0.6 0.8 0.7 1.1 0.8 * 

NW 1.5 1.5 1.5 1.2 1.0 0.9 1.3 1.1 * 
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Table 3.9 Snow depth storage by aspect class. 

Aspect 
Class 

Storage (x106 m3) 

MW 
2014 

MW 
2017 

MO 
2016 

N 19.4 19.2 17.3 

NE 24.9 24.4 21.6 

E 31.6 30.8 25.3 

SE 25.6 24.6 20.7 

S 10.6 10.6 7.7 

SW 13.9 14.1 7.9 

W 15.9 16.3 9.3 

NW 17.1 16.8 13.3 

 

3.3.3.4 Topographic Position Index 

Across all datasets, topographic depressions demonstrate the highest 

mean snow depths, and as terrain transitions from depressions to uplands, 

depths tend to decrease (Table 3.10). Transitional terrain classes have the most 

variability across all datasets (Figure 3.9). Storage values follow the same pattern 

(Table 3.11), with greater snowpack storage in depressions. All mid-winter TPI 

class depth distributions were significantly different. 

Table 3.10 TPI class depth summary. * = significant difference (p < 0.05). N = 
30,000. 

TPI Class 

Mean Depth (m) Standard Deviation (m) 

ANOVA  MW 
14 

MW 
17 

LW 
17 

MO 
16 

MW 
14 

MW 
17 

LW 
17 

MO 
16 

Depressions 1.9 1.9 2.0 1.6 1.2 1.3 1.5 1.4 * 

Transitional 1.5 1.4 1.5 1.0 0.8 0.7 1.1 1.0 * 

Uplands 1.4 1.3 1.2 1.1 0.5 0.5 1.0 0.6 * 
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Figure 3.9 TPI class depth distribution boxplots. 

 

Table 3.11 Snowpack storage volume within TPI classes. 

TPI Class  

Storage (x106 m3) 

MW 
2014 

MW 
2017 

MO 
2016 

Depressions 64.8 64.8 54.6 

Transitional 52.2 48.8 34.8 

Uplands 47.7 44.3 37.5 

 

 

3.3.3.5 Canopy Cover 

In mid-winter, peak mean snow depth occurs in the intermediate (0.13 - 

0.57 fractional canopy cover) canopy cover class with the lowest mean depth 

under closed canopy (Table 3.12). With the melt onset 2016 data, mean depth 

decreases as canopy cover increases. Open canopy class values were the same 

for all years. Each canopy cover class yielded a significant difference via ANOVA. 

Storage was highest in areas of intermediate cover (Table 3.13), and open areas 
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stored much less snow than intermediate and closed canopies in mid-winter. At 

melt onset, closed canopies displayed lower storage volumes than open areas. 

 

Figure 3.10 Canopy cover depth distributions. 

 

Table 3.12 Canopy cover depth summary. * = significant difference (p < 0.05). N = 
30,000. 

Cover 
Class 

Mean Depth (m) Standard Deviation (m) 
AN-
OVA  MW 

2014 
MW 

2017 
LW 

2017 
MO 

2016 
MW 

2014 
MW 

2017 
LW 

2017 
MO 

2016 

Open 1.6 1.6 1.7 1.6 1.2 1.3 1.6 1.4 * 

Interm
-ediate 

1.8 1.7 1.7 1.4 0.8 0.7 1.2 1.0 * 

Closed 1.2 1.2 1.1 0.6 0.5 0.5 0.6 0.6 * 
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Table 3.13 Cover class storage. 

Cover Class 
Storage (x106 m3) 

MW 2014 MW 2017 MO 2016 

Open 52.0 54.1 53.1 

Intermediate 62.4 58.7 52.0 

Closed 44.2 44.9 24.3 

 

3.3.3.6 Slope 

Patterns of mean snow depth with slope through time are not as 

consistent as other driver variables. Mean snow depth was lowest above 60° in 

2014, with intermediate sloped terrain (30-60°) displaying the greatest depth 

(Table 3.14). Intermediate terrain also contains the greatest mean depth in late 

winter 2017. The 60-90° depth distributions appear to contain the most 

variability regardless of season or year. The mid-winter 2014 and 2017 snow 

depth distributions are statistically different. At melt onset, a positive 

relationship between slope class and mean depth exists (Table 3.14). Despite 

this, steep slopes stored the least amount of snow at melt onset and mid-winter 

due to these classes representing a small (~1.8%) portion of the watershed (Table 

3.4). Flatter terrain stored the most snow for all time periods sampled (Table 

3.15) but the difference from the 0-30° and 30-60° classes is less pronounced at 

melt onset compared to mid-winter. 
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Figure 3.11 Slope class depth distributions. 

 

Table 3.14 Slope class depth summary. * = significant difference (p < 0.05). N = 
30,000. 

Slope 
Class 

Mean Depth (m) Standard Deviation (m) 

ANOVA  MW 
2014 

MW 
2017 

LW 
2017 

MO 
2016 

MW 
2014 

MW 
2017 

LW 
2017 

MO 
2016 

0-30° 1.5 1.5 1.4 1.0 1.5 0.8 1.1 1.0 * 

30-60° 1.6 1.6 1.6 1.4 1.6 1.1 1.3 1.4 * 

60-90° 1.2 1.5 1.7 1.5 1.2 1.5 1.6 1.5 * 

 

 

Table 3.15 Slope class storage. 

Slope Class 
Storage (x106 m3) 

MW 
2014 

MW 
2017 

MO 
2016 

0-30 87.5 86.3 60.9 

30-60 69.3 67.9 59.4 

60-90 2.1 2.8 2.6 
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3.3.4 Public and LiDAR Snow Data Comparison 

The lowest depths from all three data sources (GC, WCSC, WCW LiDAR) 

was during MO 2016 (Table 3.17). It should be noted that there is a temporal 

disparity between the WCSC and LiDAR as the snow course was visited 2-3 

weeks after from the 2017 and 2016 LiDAR surveys. GC depths were 

consistently higher than the LiDAR derived watershed mean while the WCSC 

were consistently less than LiDAR means. As a result, GC consistently 

overestimated storage, whereas the WCSC consistently underestimated storage 

(Table 3.16).  

Table 3.16 Mean depths and volumes of LiDAR and provincial snow data. 

LiDAR 
Survey Date 

Mean Depth (m) Volume (x108 m3) 

GC WCSC LiDAR GC WCSC LiDAR 

Mid-winter 
2014 1.91 1.15 1.53 1.95 1.17 1.56 

Mid-winter 
2017 1.90 1.18 1.51 1.94 1.20 1.54 

Melt Onset 
2016 1.70 0.54 1.18 1.73 0.55 1.20 

 

 

3.4 Discussion 

3.4.1 Snow Depth Drivers and Quality Control 

The only predictor variable with user-defined calculation parameters was 

TPI, and it is unsurprising that the largest window was the best predictor. Our 

TPI results corroborate findings elsewhere (Lopez-Moreno et al. 2014). Spanish 

snow research has found that study areas with larger elevation ranges have 

snow depths that correlate best with larger TPI windows (Lopez-Moreno et al. 

2014). Revuelto et al. 2014b used a 25m window in a small Spanish Pyrenees 

catchment with a 400m elevation range whereas a more recent Spanish study 
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(Lopez-Moreno et al. 2017) over a ~1361m elevation range found that a 200m 

TPI window produced the best correlations with snow depth, suggesting that as 

study area and terrain complexity increase, so should window size. It was 

appropriate based on their observations and exploratory analyses to use a 101m 

rectangular window for the TPI surface in our simulations for a watershed with 

an elevation range of 1238m. 

For all datasets, the zones excluded by quality control are associated with 

steeply sloped terrain (Figure 3.12). LSDM extreme outlier values in cliff edge 

areas ranged from 62-110m prior to quality control. The bigger post-QC change 

in depths at both upper elevations and in the 60-90˚ slope class is due to a 

concentration of high snow depth values where steep slopes exist along with 

small class sizes associated with single grid cells or small patches.  
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Figure 3.12 Zones removed by 99th percentile quality control (teal, blue or pink 
outlines) were often consistent between datasets and occurred near steep slopes. 

 

At the watershed scale, mean snow depth was either unchanged or 

adjusted downwards by ~0.1m (Table 3.2) using the 99th percentile approach. 

Effects of co-registration errors and steep slopes on mean snow depths are 

pronounced when the data are broken down into classes (Table 3.3). This 

suggests that co-registration errors do not affect the mean snow depth at the 

watershed scale but erroneous depth values may complicate class-based 

analyses or modelling workflows. Thresholding values using either the 99th 

percentile or 10m (an arbitrary but reasonable upper depth value) produces 

values within 0.1m of the pre- or post-QC data. Snow depth values to use as an 

upper threshold have been determined with field-based measurements of known 

depressions and zones of wind loading during the season of LiDAR data 



60 
 

collection in other studies (Revuelto et al. 2014). Overall, any of these methods 

could be suitable if depth means are to be used in further analyses. While this 

QC workflow does not substantively alter watershed scale depths, further 

localised analyses in high elevation or steep sloped areas may require dedicated 

QC. For example, a detailed slope-based assessment of upper elevation 

snowpack on north-facing aspects might require additional QC, as these areas 

are generally the last to melt and are important in understanding late season 

runoff. Ultimately there are several valid QC methods for LiDAR data, and 

exclusion of the upper 1% of data was desirable in lieu of field-based 

measurements to determine reasonable thresholds for each year, and to remove 

extreme values for subsequent modelling analyses.  

Table 3.17 Mean snow depth sensitivity to QC method. 

Dataset 

Mean WCW Snow Depth (m) 

No 
QC 

99th percentile 
elimination 

60° Slope 
elimination 

Threshold 99th 
percentile 

Threshold 
10m 

MW 
2014 

1.6 1.5 1.6 1.6 1.6 

MW 
2017 

1.5 1.5 1.5 1.5 1.5 

MO 
2016 

1.3 1.2 1.3 1.2 1.3 

 

 

3.4.2 Inter-annual Depth Distributions 

3.4.2.1 Elevation 

Elevation is a well-researched explanatory variable of snow depth 

distributions. Peak depth for all years occurred within the general location of 

the treeline ecotone. Treeline is a transitional zone from predominately forested 
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hill slopes to more rocky, complex open terrain areas devoid of vegetation. As 

snow is redistributed from exposed upper elevations, the increase in mean 

fractional canopy cover with descending elevation (Figure 3.13) results in greater 

potential for canopy interception. Moeser et al. (2015) used LiDAR data to show 

that the variety of canopy traits (height and cover) at the interfaces between 

open and forested areas promote complex and variable snow accumulation and 

ablation patterns relative to zones with more homogenous canopy traits. 

Grunewald et al. (2014), Hopkinson et al. (2012), Kirchner et al. 2014 and Zheng 

et al. (2016) have all published papers where peak snow depth along an 

elevation gradient occurred below maximum elevation.  

 

Figure 3.13 Mean of fractional canopy cover within elevation classes. 

 

Declining snow depth below treeline can be explained by 

hydrometeorological conditions. Environmental lapse rates are the thermal 

gradients of decreasing air temperatures with elevation gains, which can vary 

widely in alpine settings (Pigeon and Jiskoot, 2008). Lapse rates frequently result 

in temperatures >0°C at the base of mountains while below freezing conditions 

exist at upper elevations. Low elevation melt can also be enhanced by rain, 
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which adds thermal energy to the snowpack (Garvelmann et al. 2015). The 

topographic relief created by mountain ranges promotes orographic 

precipitation events, where precipitation is enhanced on the leeward sides of 

mountains. As air masses descend the leeward side of a mountain, they can 

become exhausted of precipitation prior to reaching the valley bottoms, thus 

depositing more snow in alpine and sub-alpine zones than mid and lower 

elevations (Mott et al. 2015). Elevations above the zone of greatest snow depth 

did not produce a consistent pattern across the years (Figure 3.8). While linear 

decreases in snow depth are sometimes reported above the peak value 

(Grunewald et al. 2014; Hopkinson et al. 2010), seasonal and inter-annual 

distributions influenced by a dynamic phenomenon such as wind are unlikely to 

be identical at all times of snow depth sampling. LiDAR scans of multiple 

mountainous study areas have confirmed a variety of upper elevation site-

specific micro-scale effects (Grunewald et al. 2014). Peak erosion and 

redistribution of snowpack typically occurs during and immediately after 

snowfall while the surface layers are less dense than deeper settled layers 

(Pomeroy et al. 1997). How far unconsolidated snow is transported depends on 

shelter, wind speed and potential obstructions (changes in topography or 

vegetation) along the wind vector after snow crystals are entrained. 

Upper elevations tend to have sporadic and heterogenous vegetation 

cover among exposed, variable rocky terrain. Varhola et al.’s (2010) review 

highlights that the effects of forest attributes on snow depth are highly variable, 

in large part due to the influence of canopy geometry on wind patterns. This is 

supported by significantly different mid-winter elevation class distributions in 

all classes except one. It is possible that the upper elevation class mid-winter 
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distributions are not significantly different due to wind effects and the potential 

for smooth surfaces to develop over topographic and vegetation features 

(Schirmer and Lehning, 2011). Another possible explanation for this result is 

that the uppermost elevation class had a smaller N value than other classes 

(1,200 vs. 10,000) because the >2600 m a.s.l. class is only comprised of 11,288 

grid cells whereas the next smallest elevation class contains 247, 468 cells. Too 

large of an N value, especially with these dense datasets, could produce a Type 2 

statistical error and false results (Kaplan et al., 2014). Larger N values were 

sampled for other depth drivers with bigger class sizes. Statistical power and 

appropriate sample size is a major hurdle with large datasets and the associated 

field of research is rapidly expanding as methods to address this issue are 

developed. 

 

3.4.2.2 Aspect 

Aspect delineated mean snow depths have a consistent trend across all 

datasets. As anticipated, south facing terrain had the lowest mean depth values 

each year. North and Northeast mean values rounded to the same number for all 

years, and the means of these classes were the largest. This result was also 

expected. Significantly high snowmelt rates in south facing areas relative to 

those with a north aspect have been confirmed in many studies (Haupt, 1951; 

Anderson and West, 1965; Hendrick et al. 1971; Rowland and Moore, 1992; 

D’Eon, 2004; Jost et al. 2007). Shortwave radiation provides the energy for melt 

and refreezing which can create preferential depth losses and potential density 

gains in aspects with high radiative inputs (south) versus those with little (north) 
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(Golding and Swanson 1986; Anderson et al. 1958a). This effect holds true at all 

elevations (D’Eon, 2004). A variety of elevations, topographic features and 

vegetation attributes within each aspect class is likely to explain why all aspect 

class distributions are significantly different at mid-winter (Table 3.9). 

Considering the effects of late-day sensible and solar heat inputs with 

knowledge of frequent south and southwest winds in the WCW, which enhance 

ablation and redistribution of snow from wind exposed zones, it is possible that 

complimentary wind and radiative effects produced lower mean depths (S, SW) 

directly across from the zones of deeper snow (N, NE).  

 

3.4.2.3 Topographic Position Index 

A 101m rectangular window was the best predictor of snow depth for all 

datasets (Figure 3.2). TPI is still a relatively under researched snow depth driver, 

and it is complex due to the variation in window sizes across various studies as 

well as study area size and elevation range. A 25m window has been determined 

as the optimal size for a small Spanish Pyrenees catchment with a 400m 

elevation range, whereas a more recent Spanish study found that a 200m TPI 

window produced the best correlations with snow depth for a different study 

area with a larger elevation range, suggesting that as study area size and terrain 

complexity increases, so should window size. 

Enhanced snow accumulation was expected to occur in topographic 

depressions and decline as terrain became more exposed. This occurred in each 

dataset, however the difference between Upland and Transitional snow depth 

means were small. These results suggest that the transport of snow to 
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depressions is a reliable and predictable process, which was also established by 

Lopez-Moreno et al. (2014) in a study of intra- and inter-annual snow persistence 

where topographic position index received more attention as an explanatory 

variable of snow depth than in previous studies.  

A challenge of using TPI in snow depth and modelling studies is that 

depressions vary in depth throughout a given winter season. Once a depression 

is full of snow, a relatively smooth surface is created. After this point the terrain 

feature will continue to have a high depth, but new snow loading on top of the 

smooth surface will not be subject to the same localized shelter that earlier 

season snow was. With a variety of topographic depressions throughout a large 

study area, they will likely fill at different rates as a function of depression size, 

availability of snow for redistribution, and other factors that may influence or 

intercept the snow while being transported across the landscape. Schirmer and 

Lehning (2011) confirmed with variorum analyses that scale breaks increased 

after a snow storm as small scale terrain features were filled. Similar effects 

have been observed during field and recreation in our study area, as deceivingly 

smooth snow surfaces occur in areas which are known to have highly complex 

and variable terrain beneath. Given this, to use TPI as a predictor of event-based 

snow depth accumulation, a dynamic TPI surface would need to be generated 

representing different levels of overall snow accumulation throughout the 

winter season.   
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3.4.2.4 Canopy Cover  

As with topographic depressions, some vegetative features eventually 

become buried after which topographic smoothing occurs (Schirmer and 

Lehning, 2011). If all or some of the short vegetation gets buried during the 

winter and the surface is much smoother than it is in snow-off conditions, 

subsequent snow accumulation may no longer be influenced by short canopy in 

that area falling within the Open class. Tree geometry and opening patch size 

influences snow accumulation patterns (Varhola et al. 2010) by creating 

localized microclimates with unique wind flows and vectors. Open vegetation is 

generally more prominent in the sub- alpine and alpine areas as a lack of 

continuous zones of flat topography starts to limit the formation of stable, 

fertile soils and thus the size of tree patches, whereas closed canopy is 

abundant at lower elevations for the opposite reason. Areas of open canopy 

have greater potential for enhanced redistribution and ablation by wind and 

radiation. Mean fractional canopy cover is lowest at upper elevations (Figure 

3.13), but the mean snow depth for open cover classes is usually higher than the 

mean snow depth for elevation classes above treeline (Table 3.7). Much of the 

terrain with intermediate canopy cover has an elevation within 1900-2100 m 

a.s.l. (Figure 3.13), an approximation of what is a highly variable alpine treeline 

ecotone within the WCW (McCaffrey, 2017). Treeline elevation classes (Table 3.6), 

like the intermediate cover class, demonstrated the greatest mean snow depths 

among the elevation classes. The highly localized nature of turbulence and wind 

eddies combined with snowfall patterns likely explains the significant difference 

between canopy cover classes. Previous studies of treeline and snow 

accumulation using LiDAR (Moeser et al., 2015) found depths to be most 
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variable at treeline, and this is confirmed visually over a sample area at mid-

winter in 2014 (Figure 3.15). With aspect also influencing treeline elevation 

(McCaffrey, 2017), the distribution of watershed-scale class sizes should be 

reflected in the sampling while attempting to also capture a representative 

sampling of elevations and canopy cover strata within each aspect class. 

 
Figure 3.14 Approximate treeline ecotone elevation zone (1900-2100 m a.s.l.) and 

canopy cover classes. 
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Figure 3.15 2014 depth variability near treeline. 

 

Mean snow depth was lowest in the closed canopy class for all datasets. 

The closed canopy supports greater interception of snow, increasing the time 

available for sublimation losses. There is potential to lose 60-80% of intercepted 

snow in conifer canopies to sublimation during favourable hydrometeorological 

conditions (low humidity and wind) (Hedstrom and Pomeroy, 1998; Pomeroy et 

al. 1998). Lodgepole pine (Pinus contorta) conifers are the dominant tree type in 

the study area. If conditions are not favourable for sublimation, snow 

accumulation can increase below closed canopies as the branch loading capacity 

is exceeded and intercepted snow reaches the ground. Increased longwave 
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radiation emitted from tree stems and branches can enhance melt, which is 

likely why the closed class mean is low during melt onset when temperatures 

were higher than either of the mid-winter surveys. Canopy cover’s relation to 

snow accumulation and ablation suggest that this variable may less temporally 

consistent than other snow depth drivers and may require further research or 

an adaptive sampling approach in an integrated framework.  

 

3.4.2.5 Slope 

Considering potential issues arising from slope-induced errors, the higher 

depth means in the 60-90⁰ class at melt onset 2016 and mid-winter 2017 are 

likely skewed by erroneous outliers in the form of cornices and/or deep drifts 

adjacent to near-vertical cliff edges. The steep slope class represents <2% of the 

total area while low and intermediate slopes contain 57% and 41%, respectively. 

Many of the steepest class cells were eliminated in the quality control step. 

However, remaining cells in the steep class may still possess slope-induced 

elevation errors in addition to those associated with cornices and drifts, so the 

potential for LiDAR snow depth measurements bias in high slope class areas is 

high. A variety of elevations, terrain and vegetation features as well as aspects is 

captured in each slope class therefore the significant differences between mid-

winter classes is unsurprising. Snow storage increased with decreasing slope 

angle which is likely more influenced by class size than the depth values 

themselves. Storage in the steep class is quite small relative to terrain <60˚. 

Mean snow depths of slope classes didn’t produce consistent patterns across 

the datasets. Considering the potential for terrain induced errors associated 
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with steep slopes and class size influence storage results, further refinement of 

this variable and its classes may be warranted if slope is to be used in future 

analyses. With that said, inclusion of slope in future studies to explain spatial 

snow depth distributions may not be a valuable use of time based on these 

generic findings.  

 

3.4.3 Public and LiDAR Snow Data Comparison 

Placement of the Gardiner Creek site near treeline is a good start for weather 

station integration into a monitoring framework, as it captures snow depth in 

the zone where depths are expected to be higher, although a single 

measurement in this zone of higher snow accumulation can bias estimates such 

as snow volume, as seen in Figure 3.16. Conversely, placement in the valley 

bottom at low elevations, as is the case with the WCSC, can bias estimates in an 

opposite way, causing underestimations. Grunewald & Lehning 2015 as well as 

Hopkinson et al 2012 also found that public monitoring sites do not correspond 

well to LiDAR based estimated of volume and are the only studies to use LiDAR 

to assess potential relationships. Grunewald and Lehning (2015) emphasize that 

“It appears that representative cells are rather randomly distributed and cannot 

be identified a priori” in reference to identifying areas that are representative of 

static monitoring sites where hydrometeorological data is collected. The 

elevation of each monitoring station likely explains some of the disparity 

between public data and LiDAR snow volume estimates, although there is 

variation in other terrain attributes and temporal alignment (ie sampling WCSC 

on a different day than the LiDAR survey) to consider as well. A network of 
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monitoring stations would ideally capture more variation in a variety of terrain 

attributes, as LiDAR data for the WCW illustrates that snow depth distributions 

are highly variable even when broken down into classes, and that the 

relationships between class-based depth distributions from different seasons 

are not significant. 

 

3.5 Conclusion 

Airborne LiDAR is a useful means of acquiring spatially explicit snow 

depth data due to the large areas covered quickly compared to manual methods. 

A variety of quality control methods have been implemented on LiDAR snow 

datasets, each having negligible impacts on watershed scale means. Ultimately 

the method chosen should be what is most appropriate for the objectives of a 

given study, although the 99th percentile approach is a consistent approach to 

creating a comparative metric for multiple datasets. If watershed scale depth is 

used for modelling or water supply forecasting, the quality control implemented 

here is not crucial for storage estimates. However, if stratified classes are 

utilized for local scale estimates, volumes could be skewed at upper elevation 

and steeper slope sites. An accurate quantification of upper elevation snowpack 

is useful to understand late season runoff, as these elevations are generally the 

last to melt. The discrepancy between volume predictions using LiDAR versus 

public data suggests that the current monitoring regime does not provide a high 

level of detail of seasonally variable mountain region water resources at the 

watershed scale. New approaches to evaluating linkages between static 

monitoring sites and high resolution data may help integrate these sites into 
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remotely sensed data analyses, such as the examination of snow class 

signatures. 

Many of the well-established spatial snow depth distribution trends that 

have been observed with manually collected and remotely sensed data are 

confirmed through the analyses presented here. The occurrence of peak snow 

depths within treeline was observed across all datasets in the WCW, with this 

zone also storing most of the seasonal snowpack. The elevation distribution of 

snow depths above and below treeline, primarily driven by orographic 

processes, lapse rates and wind redistribution, compliments the work of other 

LiDAR mountain watershed snowpack distribution studies (Hopkinson et al. 

2010; 2012; and Grunewald et al. 2014). Reduced snow depth on terrain subject 

to the highest amounts of solar radiation as well as frequent winds, south and 

southwest classes, was another expected result that occurred consistently across 

all datasets. As expected, TPI results demonstrated depressions contain more 

snow than other terrain types but of note, this result most consistent for a TPI 

window of approximately 100m. Closed canopies consistently displayed the 

shallowest snowpack in mid-winter, likely due to interception sublimation losses 

and higher longwave radiation fluxes. Slope results were inconsistent, 

suggesting that for this study area and using these LSDM data, slope is an 

unreliable explanatory variable of snow depth. The exclusion or further 

exploration of slope effects are particularly important to consider in modelling 

exercises too, as it may be confounded by elevation. 

In terms of seasonality, a significant Kendall correlation of mid-winter 

watershed scale depths was observed but the individual class-based strata 
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illustrated significant differences in snow depth. For this to occur at mid-winter, 

when distributions are more variable than later in the season (Lopez-Moreno et 

al. 2017), as well as at melt-onset suggests that terrain depressions and uplands 

are more reliable drivers of snow depth than other variables, regardless of 

timing, and that this is a useful variable for locating and stratifying all-season 

depth sampling strategies or for snow depth modelling routines. As methods of 

assessing sample size as it relates to statistical power become more established 

for data mining, N values for both the Kendall correlation and ANOVA could be 

revisited to ensure the results accurately represent the consistency (or lack 

thereof) of inter-annual snow depth distributions. 

Class sizes, as well as the storage of snow within each, can also help guide 

future sampling. Considering the occurrence of peak depth and the large storage 

of snow observed within treeline elevation classes, accurately characterizing this 

area would be important in an optimal spatially explicit snowpack monitoring 

framework. The consistent TPI results suggest that this may be a flexible 

variable to sample, as the clear trend of more snow in depressions and less in 

upland zones could be compensated for in a model if a TPI class was slightly 

under-sampled. Slope can and probably should be ignored in sampling design, at 

least in so far as not all slope classes need to be equally represented given slope 

is an unreliable driver of snow depth, high slope classes will amplify errors and 

tend to cover small proportions of watershed terrain, anyway. LiDAR provides a 

more thorough spatial overview of snow depth distributions and their drivers 

than is possible by manual measurements, especially in mountainous 

environments where critical water resources are often difficult to access and 

quantify in efficient and safe manner.  
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The spatial, seasonal and inter-annual consistency and variability in snow 

depth driver classes presented here provide the basis for: a) designing a more 

time- and cost-effective LiDAR snowpack sampling strategy; and b) extrapolating 

watershed-wide snow depths from LiDAR sample datasets using spatial 

imputation techniques. These two objectives, combined with spatially explicit 

watershed-scale snow density modeling, will be the next steps in building this 

research into an operational snowpack monitoring framework. As climate 

change advances, a better understanding of mountainous water supply and 

therefore a clearer depiction of possible changes in snow depth and volume 

through more robust monitoring regimes is paramount.  
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4 SPATIAL AND TEMPORAL CONSISTENCY OF SNOWPACK DEPTH DRIVERS 

TO SUPPORT OPERATIONAL LIDAR SAMPLING AND MACHINE 

LEARNING-BASED EXTRAPOLATION 

 

Abstract 

 Airborne LiDAR can provide high resolution snow depth datasets in a 

short time period. These datasets provide the spatial coverage necessary to 

support water supply forecasts, as snow is an integral source of streamflow 

draining mountainous headwaters. This research utilized LiDAR and random 

forest modelling to assess the feasibility of using partial datasets (two 

flightlines) to extrapolate snow depth at the watershed scale under mid and late 

winter conditions as well as at melt onset. Rasters in integer format proved to be 

the fastest type of input data to implement the random forest workflow with. 

Models developed from flightlines had lower R2 values than watershed based 

models, with all trials ranging from 0.41—0.61. Spatially imputed datasets were 

significantly correlated with the original LiDAR values (Pearson Correlation 

Coefficients of 0.5-0.8, p < 0.05). The importance of various snow depth drivers 

was also assessed, with aspect and TPI shown to be valuable predictors 

regardless of seasonality.  
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4.1 Introduction 

4.1.1 Snowpack Monitoring 

Mountainous terrain is highly complex and the seasonal snow that 

accumulates in these regions exhibits large spatial variability as a result. This 

variability can limit the accuracy of spatial snow depth models (Erxleben et al., 

2002; Pomeroy et al., 1997). Models can be valuable prediction tools based on a 

small amount of input data to fill in spatial data gaps over a broad area. 

Understanding water storage by seasonal snow is especially important in regions 

where major rivers start in the mountains and are therefore influenced by snow 

melt (Byrne et al. 2006). Data collection is challenging in mountains due to 

logistical access and safety constraints. In Alberta, continuous seasonal snow 

depth is measured by sonic rangers and snow water equivalent by snow pillows. 

These technologies are automated and typically record values at time 

increments of 15, 30 or 60 minutes. Both depth and SWE (snow water equivalent) 

values are also collected manually once every 4-5 weeks, at snow course sites, 

which are often co-located or at lower elevations than the automated stations. If 

climate and headwater snowpack trends continue to change, the small number 

of snowpack monitoring sites in Alberta may not be sufficient for future water 

supply predictions.   

Snow water equivalent is the variable desired for modelling water 

resource availability and it is the product of snow depth and density. Density 

can be sampled in the field and has the potential to be modelled from 

hydrometeorological data (Jonas et al. 2009). The localized range in snow depth 

can exceed four times that of density (Dickinson and Whiteley, 1972; Steppuhn 
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1976), thus SWE values are more sensitive to the range in depth variations than 

density.  It is therefore important to prioritize the time and cost-efficient means 

of acquiring depth data over density, which is where the use of LiDAR and 

modelling could improve the current availability of headwaters snow data. 

LiDAR is often used to collect baseline terrain data and if budgets permit, can be 

an effective environmental monitoring tool that has demonstrated potential for 

spatially explicit seasonal snowpack monitoring (see Chapter 3 of this thesis), 

Grunewald et al. 2010, Revuelto et al. 2014b). Considering the high variability of 

snow depth distributions and the infeasibility of collecting spatially explicit and 

landcover-representative data manually, coupling LiDAR snow depth models 

with density data will provide more spatially complete and accurate headwater 

SWE estimates than is currently possible using traditional methods. 

4.1.2 LiDAR and Snowpack Measurement 

Data availability and quality has limited snow depth model performance 

in the past when manual acquisition was the primary means of acquiring model 

inputs. With manual measurements, values are often irregularly spaced over 

large study areas. Interpolation techniques are then applied to the field data to 

generate spatially complete datasets (Erxleben et al. 2002). When depth data 

collection is limited to manual measurements, and in some cases georadar 

(Marchand and Killingtveit, 2005), values are often irregularly spaced. Field 

measurements are, however, invaluable for calibrating and validating remotely 

observed products. Due to LiDAR’s ability to provide high resolution data over 

large areas in a relatively short data collection period, airborne LiDAR is gaining 

popularity as a snow depth measurement tool (Grunewald et al. 2010, Banos et 
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al. 2011, Lehning et al. 2011, Hopkinson et al. 2012, Grunewald et al. 2013, 

Bhardwaj 2016, Zheng et al. 2016, Lopez-Moreno et al. 2017). LiDAR datasets are 

generally collected over entire study areas which is less cost and time efficient 

than using a spatial sampling and statistical modelling approach to infer snow 

depth at the watershed scale (e.g. Hopkinson et al. 2012). 

LiDAR provides dense point clouds from which snow depth can be 

computed with decimeter accuracy under ideal survey conditions (Hopkinson et 

al. 2004) at a 1m grid cell resolution. Tens or hundreds of millions of depth 

measurements are provided by a LSDM (LiDAR Snow Depth Model), whereas 

intensive field sampling campaigns will only yield datasets with 100s of depth 

values (Elder et al. 1998), and possibly low 1000s if the measurements are 

collected over multiple days. Only three of the studies presented in Table 4.1 

utilized LiDAR (terrestrial or airborne) for model inputs. LiDAR’s ability to make 

observations quickly and safely are advantages when spatial coverage and 

measurement resolution are considered, as manual measurements can introduce 

spatial bias as safety and ease of access are high priorities during field 

campaigns. It can be expensive, however, to conduct airborne LiDAR surveys 

over large areas and requires favourable weather conditions for flying. Quality 

control is an essential step in preparing remotely sensed data for analysis. Some 

values in LiDAR datasets are the result of vertical and horizontal error, 

misclassification of canopy returns as ground returns (Hodgson, 2004) and 

multipath. If the ground – aircraft portion of the two-way travel time of a laser 

pulse is increased due to reflection off multiple surfaces before returning to the 

sensor, a pit is created below the true surface (Hopkinson et al. 2004). 

Unreasonable snow depth values can also occur when steep slopes and 
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horizontal DEM uncertainty are present (Hodgson et al. 2005), as a small shift in 

either the x or y direction on a steep slope can cause a high angle cell to change 

location between the DSSM and DEM.  

Quality control approaches vary across LiDAR snow studies. Thresholding 

is one method, where a maximum possible depth is assigned. Measuring depth 

in a topographic depression to assign a threshold value was used by Revuelto 

and others (2014b). Other researchers (Kirchener et al. 2014; Grunewald et al. 

2010) have employed long-term field depth records or canopy height 

information to determine a feasible threshold depth value. Alternatively, cells 

can be eliminated from dense datasets based on their outlying and 

unrepresentative properties within the overall sample population.  Deems et al. 

(2013) and Bhardwaj et al. (2013) both provide further explanation of LiDAR as a 

cryospheric measurement tool and the inherent challenges of this technology, 

particularly in mountainous zones.  

The potential to use LiDAR sampling (i.e. not covering the whole study 

area) to model the complete extent of a study area is an under-explored field of 

research and was first addressed in Alberta by Hopkinson et al. (2012). 

Hopkinson et al. (2012) adopted a snow accumulation unit approach to 

modelling, where terrain and land cover class means were determined with 

LiDAR transect sample datasets and extended over larger, unsampled areas 

based on the physical attributes of the terrain.  This concept is the basis for the 

analyses in this chapter, which were conducted to provide a foundation for data 

mining and optimization of dense LiDAR snow depth data collection with a 

machine learning approach. Optimized LiDAR snow depth sampling has the 
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potential to reduce the costs of surveys and enable more widespread use of 

LiDAR for collecting high resolution data as water supply monitoring data 

inputs.  

4.1.3 Snow Depth Modelling 

Since the inception of snow depth and SWE modelling, primary methods 

used have been multiple linear regression (MLR; Golding, 1974; Elder et al., 

1991) and binary regression trees (BRT; Elder et al. 1998; Balk & Elder, 

2000).These techniques can determine the order of snow depth predictor 

variable importance (as measured by the contribution of the variable to overall 

model accuracy) and apply those statistical relationships in a predictive 

modelling context. This has been achieved primarily through using different 

combinations of variables, power functions of variables and/or interactions with 

variables to see which produces the best model, rather than determining a 

ranked order of predictor variables ability to explain snow depth distribution. 

The first documented regression model for predicting snow accumulation was 

developed in 1960 (Ku’zmin, 1960) using canopy cover in a Russian boreal forest 

study area. Early multiple linear regression (MLR) studies typically focused on 

SWE, instead of depth. Another early study that utilized MLR included multiple 

predictors, which could explain 48% of the variability in SWE using elevation, 

topographic position index, aspect, slope and forest density (Golding, 1974). A 

similar approach was applied by Lopez-Moreno and Nogues-Bravo (2006) who 

used elevation, elevation range, radiation and two location parameters to explain 

50% of SWE variability. As a statistical method MLR is well established and 

model performance is generally limited by input data complexity and quality.  
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A variety of MLR-based studies have used different variable combinations 

with varying degrees of success (e.g. Hosang and Dettwiler, 1991; Elder et al. 

1991. Chang and Li, 2000; Jost et al. 2007). Comparing results across studies can 

be challenging given the source and quality of input snow data, choice of 

predictor variables, as well as model workflow is often study specific (Table 4.1). 

Consequently, the results could also reflect methodological choices. Results (in 

terms of R2) of other studies are provided as ranges as many of the authors used 

multiple study areas or input data types to explore model performance but 

maintained the goal of predicting snow depth or water equivalent. Multiple 

linear regression modelling techniques were recently used in tandem with 

Airborne LiDAR snow depth data from around the world (Grunewald et al. 2013). 

This paper represents what is still a small subset of publications which utilize 

LiDAR snow data for modelling instead of interpolated rasters from relatively 

small field data sets. With LSDMs from around the world, the authors compared 

snow depth drivers in mountainous zones. They concluded that global snow 

depth models do not exist and that predictor variables interact in such a 

complex manner that their importance is often study-site dependent, which is in 

line with other research suggesting some snow modelling may be site-specific 

(Molotch et al., 2005). 

 

 

 

 



83 
 

Table 4.1 Summary of snow modelling studies. 

Author and Year Data Method Variables Results (r2) 

Elder et al., 1998 Field BRT solar radiation, slope angle, elevation 0.6-0.7 (snow depth) 

Balk and Elder, 2000 Field BRT net solar radiation, elevation, slope, vegetation 
cover type 

0.54-0.65; 0.60-0.85 
(snow depth) 

Erxleben et al., 2002 Field BRT elevation, slope, aspect, net solar radiation, 
vegetation 

0.18-0.30 (snow depth) 

Winstral et al., 2002 Field BRT upwind index, drift delineator, elevation, solar 
radiation, slope 

<0.4; 0.50-0.60 (snow 
depth) 

Marchand and 
Killingtveit, 2005 

Field, 
Geodar 

MLR elevation, aspect, curvature, slope 0.5-0.48 (snow depth) 

Lopez-Moreno and 
Nogues-Bravo, 2006 

Field BRT elevation, elevation range, solar radiation, slope, 
location (to seas/oceans, elevational divide) 

0.15-0.70 (snow depth) 

Lopez-Moreno and 
Nogues-Bravo, 2006 

Field MLR elevation, elevation range, radiation, slope, 
location (to seas/oceans, elevational divide) 

0.51-0.58 (snow depth) 

Lehning et al., 2011 ALS MLR elevation, fractal roughness >0.70 (snow depth) 

Grunewald et al., 2013 ALS MLR elevation, slope, northing, wind, surface 
roughness 

0.27-0.90 (snow depth) 

Golding, 1974 Field MLR elevation, TPI, aspect, slope, forest density 0.48 (SWE) 

Elder et al., 1991 Field MLR elevation, slope, radiation 0.27-0.40 (SWE) 

Molotch et al., 2005 Field BRT elevation, slope, aspect, northness 0.28-0.41 (SWE) 

Plattner et al., 2006 Field MLR elevation, curvature, distance from ridge, shelter 0.41 (SWE) 

Jost et al., 2007 Field MLR elevation, aspect, forest cover, solar radiation, 
temperature 

0.83-0.88 (SWE) 

Litaor et al., 2008 Field BRT upwind index, elevation, slope, aspect, slope-
aspect topoclimatic index, solar radiation, plant 

biomass, species richness 

0.85-0.91 (snow depth 
and SWE) 

Grunewald et al., 2010 TLS MLR elevation, slope, aspect, radiation/elevation, slope, 
max SWE, wind speed 

0.30-0.40 (daily ablation 
rates) 
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Binary regression trees (BRTs), a type of decision tree, are another common 

statistical method applied in snowpack modelling. Decision trees are a non-parametric 

means of recursively splitting predictor variable data to minimize each group’s sum of 

squared residuals (Breiman et al. 1984). The non-linear, hierarchical means by which 

BRTs relate dependent and independent variables makes this approach highly desirable 

for analyzing a medium as complex as the cryosphere.  As is common with 

classification/regression techniques, BRTs bin input data such that subsets become 

progressively homogenous as more splits are made (Kuhn and Johnson, 2013). At each 

node of a BRT, splits remain binary down a series of nested if/then statements.  

Individual BRTs typically yield better results for distributed snow depth and 

water equivalence estimates than other methods (Molotch et al. 2005). An advantage of 

decision trees over MLR is their interpretability, as well as their capacity to handle 

more predictor variable distributions (e.g. skewed, continuous, categorical) than MLR, 

for which a primary assumption of the technique is that distributions are normal (Kuhn 

and Johnson, 2013). Details on BRTs and their use in snow depth and water equivalent 

modelling are further described in Molotch et al. 2005, Breiman et al. 1984, Elder et al. 

1995 and 1998, Balk and Elder 2000. Across the previously mentioned studies, 18-90% 

of variation in snow depth or water equivalence has been explained with BRT or MLR 

approaches (Table 4.1). Both methods can provide information on variable importance, 

but this information has typically been reported in terms of which combination of 

variables in a model produce the best results rather than a ranking of individual 

predictor importance.  
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The complex nature of snow, terrain and microclimatology is perhaps one of the 

greatest challenges to establishing replicable snowpack modelling routines, despite 

impressive technological advances in data collection, processing and analysis over 

recent decades. Considering the logistical challenges associated with collecting robust 

datasets manually, as well as the cost of high resolution LiDAR datasets, optimized 

LiDAR sampling has the potential to provide the data, at a reduced cost, required for 

site (watershed) specific models to provide sufficient detail for meaningful water 

supply predictions.  

 

4.1.4 Random Forest Modelling 

In mountainous environments, there are many predictors which interact at a 

variety of spatiotemporal scales to produce an observed snow depth distribution. 

Relationships between snow depth and independent variables are often non-linear, 

which complicates predictive modelling (Anderton, 2000; Nogues-Bravo, 2003), 

especially when MLR is used. Random Forest, a statistical method similar to BRTs with 

classification and regression capabilities, is an algorithm which creates ensembles of 

decision trees or a forest. Variable order importance of snow depth controls in the 

Spanish Pyrenees has been determined with RF (Lopez-Moreno et al. 2017) and it has 

also been used to quantify snow volume and predict snow depth errors (Tinkham et al. 

2014), but the combination of RF and snow depth remains relatively underexplored 

compared to MLR and BRT methods. Random forest has recently been utilized in 

studies of wetland mapping (Chignell et al. 2018; Wang et al. 2015) as well as crop yield 
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monitoring (Jeong et al. 2016) in attempts to reduce the costs and/or time of field or 

aerial photography-based monitoring.  

Random forest (RF) employs a sophisticated data splitting process that gives it 

machine learning status over MLR or BRT workflows. BRT and RF methods are similar 

in that they both rely on decision trees with binary nodes that create branches (yes/no). 

A forest is created when multiple decision trees are used. RF splits data more 

intelligently than is possible through other techniques. First, a subset of the data is 

randomly selected, from which a portion is used to create the tree/model and the other 

portion is used to test and validate the model. As many bootstrap samples as there are 

trees are taken from the data, and a tree is fit to each sample (Cutler, 2007). As the 

data are split, a few randomly selected variables are used at each binary node of the 

tree. Unused predictors at a given split do not influence the results and make 

computation more efficient. Predictor variable importance and models based on 

ensembles rather than a single tree result in more stable models, making RF more 

desirable than BRTs (Kuhn and Johnson, 2013). RF’s ability to detect relationships 

within extremely large datasets makes it an optimal choice for modelling snow depth 

using high resolution airborne LiDAR data, provided sufficient spatially coincident 

predictor variables are available. 

RF differs from other statistical modelling techniques in that it does not rely on 

statistical significance (as in MLR) to determine variable importance. Importance in RF 

can be determined by the R statistical software program using the Random Forest 

package (Liaw and Wiener, 2002). Outputs of variable performance from this package 

are increase in mean square error (MSE). The package’s MSE output is essentially a 
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comparison of how the MSE of the original bootstrap sample changed when variable 

values were permuted. When a variable is important to a model, permuting values for 

that variable over the dataset will negatively affect predictions. Output MSE values, 

given as “% Increase MSE”, can sometimes be greater than 100%. This metric is derived 

first by finding MSE for the whole model before and after permutation of predictor 

values, then the percent change in MSE between the two values (Breiman, 2002). Larger 

MSE values indicate that when random values replace true predictor values the results 

are degraded, thus demonstrating the replaced predictor variable is important.  

 

4.2 Objectives 

It is important to find a balance between the optimal data collection coverage, 

computer resources, total analysis time and quality of the outputs for it to become a 

viable component of operational water resource monitoring frameworks. To efficiently 

utilize LiDAR data and reduce input data requirements, machine learning approaches, 

such as Random Forest (RF), to model and impute snow depth over large areas offer 

great potential. Knowledge of snow depth predictor variable importance over multiple 

years can help guide decisions in sampling schemes if any terrain and landcover 

stratification is to be implemented. The temporal element of this analysis can also 

guide timing of data collection by illustrating which time during the winter yields 

better predictive results: mid-winter or melt onset. Mid-winter sampling might produce 

similar results, while melt onset may represent more homogeneous conditions in late 

season snowpacks (Lopez-Moreno et al. 2014). Data points extracted from the 

watershed and individual flightlines will be compared to determine if acceptable 
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results can be achieved with partial datasets. With the dense datasets provided by 

LiDAR, machine learning is a logical choice for analyses and modelling.  

This research chapter addresses the following objectives:  

1) Use of RF to model snow depth and assess prediction accuracy under mid-winter 

and melt onset conditions 

2) Assess the consistency of inter-annual and seasonal predictor variable 

importance; i.e. do watershed-scale snowpack depth controls vary through time? 

3) Determine the feasibility of using lidar snow depth sample datasets for high-

resolution, spatial imputation 

4) Optimise the RF snow depth modeling approach by exploring trade-offs between 

computation time and output quality as a result of training data sample sizes, 

input raster type, raster resolution and input data quality control methods. 

 

Ultimately, this workflow is being developed and evaluated for operational 

monitoring purposes. Therefore, a variety of modelling trials will be executed to 

determine more effective ways to utilize computer resources and thus save time. These 

trials are meant to provide a foundation for the use of RF with airborne LiDAR snow 

depth data to predict snow depth in unsampled areas. Results of optimized steps are 

given, as well as further recommendations for potential efficiency gains. This chapter 

presents the first machine learning study that utilizes the Random Forest algorithm 

with LiDAR snow depth models (LSDMs) to explore an operational snow depth 

sampling and spatial imputation framework. 
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4.3 Methods 

4.3.1 Data 

The West Castle Watershed (WCW) study area is in southwestern Alberta, 

Canada, along the continental divide (Figure 4.1). The extent of the LSDMs from which 

input data were taken is shown in Figure 4.1. LSDMs are acquired by subtracting a 

snow-free DEM (digital elevation model) from a winter DSSM (digital snow surface 

model) (Eq 4.1). Three LSDMs covering 103 km2 and a fourth dataset covering the extent 

of two flightlines (Figure 4.1) exist for the WCW. Larger scale regional context of the 

study area is provided in chapter 3. Two of the datasets were collected in February, 

corresponding to mid-winter (MW) conditions, and the third dataset with complete 

watershed coverage was surveyed at melt onset (MO). The flightlines (FL) used in this 

analysis are the result of an intended full survey in March 2017 being interrupted by a 

rapid weather change, resulting in one sweep of the area of interest on its east and 

west boundaries in late winter (LW). For analyses in this chapter, WCW trials refer to 

those utilizing data from the entire watershed whereas FL trials only utilized input data 

from within the flightline extent (Figure 4.1). Each 1m LSDM was processed as per 

Hopkinson et al. (2012) and the canopy cover raster was calculated as a ratio of canopy 

returns to all returns (Barilotti et al., 2006) (Eq 4.2).  

 LSDM = DSSM – DEM      (Eq 4.1) 
  

Fractional Cover = Canopy Returns / All Returns  (Eq 4.2) 

Multiple quality control options exist for LSDMs (Chapter 3 of this thesis) and 

one approach is to assume all data beyond the 99th percentile value are outliers and can 

be removed from the sample without substantively impacting the population 
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attributes. That approach was used in this study, as the objective is to develop a snow 

depth mapping and interpolation routine that is generally applicable to the watershed 

as a whole rather than accurately characterising the behaviour of outlying data points. 

With the upper 1% of data eliminated, we can avoid assigning a depth value to places 

where there may not be any snow, as would be done by thresholding, and modelling is 

restricted to areas where we are more confident in data quality.  

 

Figure 4.1 The WCW is southwest of Calgary, Alberta, with the west and south edges of 
the watershed following the continental divide between British Columbia and Alberta. 

All surveys covered the same extent except for the March 2017 flight lines. 
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Although the input data is available as 1m grid cells, the LSDMs, DEM and 

canopy cover layers were resampled to 3m x 3m using Bilinear interpolation after 

quality control. This resolution could integrate well into hydrological models, especially 

considering that resampling from high to low resolution is more feasible than low to 

high. Adopting such a high resolution for snow modelling is rare and not necessary for 

a watershed-scale operational estimate of snowpack volumes.  Carrying out statistical 

modelling workflows at a 1m grid cell resolution, particularly when the end goal is to 

optimize the analysis to take as little time as possible without compromising 

results/performance, is not conducive to efficient computation. With higher resolution 

data, more grid cells exist and a larger sample of training data would be required to 

adequately represent the total number of grid cells across a 103 km2 area. A great deal 

of computational power is required to manage large datasets and implement the 

random forest workflow, so carrying it out efficiently is important, especially in 

operational settings. With lower resolution input data and data volume, processing 

time can be reduced through use of less RAM than 1m input data would require.  

Resampling rasters derived from neighbourhood functions such as aspect, slope 

and TPI can change z-values in the process and can potentially create surfaces that 

misrepresent true terrain attributes (Kienzle, 2004). For this reason, aspect, slope and 

TPI were calculated after a 3m DEM was available. Slope was calculated in degrees (Eq 

4.3). Topographic position index (TPI) is a measure of terrain concavity (depressions), 

convexity (ridges) or transitional terrain, which compares each DEM grid cell to the 

elevation change of surrounding cells in a user-defined window. The optimal window 

size and shape to explain WCW snow depth is explained in Chapter 3 (Figure 3.2).     
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Slope (˚) = arctan( rise / run)      (Eq. 4.3) 

4.3.2 Random Forest Workflow 

Five predictors were used for this study (elevation, aspect, slope, topographic 

position and fractional canopy cover), all of which have proven to be important 

predictors of snow accumulation in the Albertan Rockies (Golding, 1974b). Golding 

(1974b) determined this using multiple linear regression, which has also been used to 

demonstrate that elevation, aspect and slope are crucial to snow accumulation 

modelling (Chang and Li, 2000; Lopez-Moreno and Nogues-Bravo, 2006; Marchand and 

Killingtveit, 2005; Grunewald et al., 2013). Elevation has consistently performed well in 

BRT modelling workflows (Elder et al. 1998; Balk and Elder, 2000; Winstral et al., 2002). 

 

Before random forest models were applied to each dataset and extent (WCW and 

FL), the impact on processing time and model statistics of training data format and 

sample size as well as forest size was assessed. An explanation of script order and 

location for the analyses in this chapter is available in Appendix A. Using the training 

data and predicted snow depths at the same X, Y locations, R2 and RMSE (root mean 

square error) were both presented as R2 is a relative measure of statistical 

correspondence whereas RMSE is an absolute measure. Using both metrics to assess 

model performance provides an opportunity for more thorough assessment in the 

workflow optimization. These trials were carried out with the Melt Onset 2016 data as 

later season snowpacks are more homogenous than earlier distributions, reducing 

variability in the input data (Lopez-Moreno, 2017). For random forest size analyses 

(100, 250, 500 and 1000 trees; Table 4.2), which was the first step in optimizing 
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workflow parameters (Green steps in Figure 4.2), integer format was used to reduce 

computation time (Bonham-Carter, 1994) with a 50,000 training point sample. Raster 

format influences the amount of storage space required (Bonham-Carter, 1994), making 

it important to assess how using integer-based rasters as modelling inputs, which 

occupy less memory than floating point data, could affect processing time and results. 

To create integer format rasters, predictors and the LSDMs were converted to a larger 

unit (i.e. The LSDM was multiplied by 10 to produce whole number snow depths in 

decimeters), then rounded and converted to integer. The maximum negative value of 

the TPI range was added to each TPI layer to avoid potential problems handling 

negative values during subsequent R script implementation. A trial with classified 

integer data, which further reduces the range of values and memory required (Bonham-

Carter, 1994), was also included in the comparison of integer and floating point data. 

Predictions were not made over the whole watershed for exploratory optimization 

(number of trees, raster format and sample size) trials to save time, but rather just the 

model statistics between training and the corresponding predicted points are 

presented.  
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Figure 4.2 Random forest modelling workflow. 

 

To determine an appropriate sample size of training points with respect to 

processing time and correspondence between training and predicted data, trials using 

50,000 (0.44% of 3m grid cells in the WCW) and 100,000 (0.88% of 3m grid cells in the 

WCW)  points from the WCW were completed. Once a suitable sample size for the WCW 

was determined, the same proportion of WCW training points was used to identify the 

sample size of training points for the flight lines. For sampling training data, rasters 

were stacked by XY coordinates (Figure 4.3) and a random sample of points was taken 

across the entire area (WCW or FL extent). This step of the code simply requires 

identifying a seed value to ensure the same XY locations are sampled for each data 

extent and does not involve any specification of sampling a certain amount of snow 
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depth driver attributes (e.g. X% of sample must contain north facing terrain) as it is 

purely random. Sampling a stack returns a matrix with the values of each layer at every 

X, Y location (Figure 4.3). This information was used to determine the proportion of 

each snow depth driver class (Figure 3.5) present in the random sample (Table 4.3). The 

matrix is also the input dataset for creating the final random forest models (Figure 4.2) 

with the Random Forest package for R statistical programming software (Liaw & 

Wiener, 2018). After the ideal numbers of trees and sample points as well as raster 

format was determined, the TuneRF function within the Random Forest package was 

added to the script, which recreates a random forest using only the most useful 

variables in the predictive model. Making predictions is computationally intensive, 

therefore predictions were made for subsets of the WCW (tiles) and multi-core 

capabilities were implemented in the prediction portion of the script using the 

DoSNOW (Simple Network of Workstations) package in R (Tierney et al., 2018). Tiles 

were mosaicked to create a single raster for which correlation results and summary 

statistics (mean, maximum depth etc.) could be determined (Figure 4.2). Model 

performance was assessed in three ways at the watershed scale: R2, RMSE and Pearson 

Correlation Coefficients (PCC) using the same n-value as the training data sample size 

in each trial. While R2 and RMSE is calculated from training data and corresponding 

predictions, PCC values are derived from independent samples of the LSDMs and RF 

SDMs (snow depth models), maintaining the same sample size.  
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Figure 4.3  An example of a raster stack of the WCW, aligned by XY coordinates. 

 

4.4 Results 

4.4.1 Input Raster Types/RF Optimization 

Results are presented in the order they are output by the workflow (Figure 4.2). 

For the green boxes which represent model optimization, forest size was the first 

parameter assessed. The R2 and RMSE of the model (between training and 

corresponding predicted points) was unchanged by forest size (Table 4.2). As forests 

got larger, processing time to create a random forest model increased. RMSE is given in 

units of meters, and therefore rounded to a single decimal place. 

Table 4.2 Forest size (ntree) optimization timing. 

ntree R2 RMSE Time (min) 
100 0.61 0.5 83 

250 0.61 0.5 159 
500 0.61 0.5 202 

1000 0.61 0.5 275 
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Random sampling of the two data extents (WCW and FL) resulted in relatively 

similar proportions of each snow depth driver class being present in the training data, 

compared to the proportion of grid cells each class occupies at the WCW scale (Table 

4.3). Elevation, TPI and slope classes are well represented in the WCW training data. 

Notable deviations from the watershed proportions are present in the WCW seed (the 

value that dictates which XY locations are randomly sampled) for the intermediate and 

closed canopy cover classes, where the seed oversampled intermediate cover and 

undersampled closed canopies. The WCW seed also contains fewer grid cells that face 

northeast and a greater amount of northwest terrain compared to the percent areas of 

those classes for the entire watershed. The FL seed has a higher proportion of data in 

classes above 1700 m a.s.l. as well as below 1400 m a.s.l. Open canopies were 

oversampled by the FL seed compared to the other cover classes. Slope and aspect 

classes training data proportions corresponded the best with watershed class percent 

areas. TPI was poorly represented by the FL training data with 98.1% of the training 

data coming from uplands. 
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Table 4.3 Percent of each WCW snow depth driver class in the training data. 

Driver Class 
% of 
WCW 
area 

% of WCW 
Training 

Data 

% of FL 
Training 

Data 

Elevation 
(m a.s.l.) 

<1400 1.4 1.4 3.0 

1400-1500 9.5 9.6 6.0 

1500-1600 11.5 11.8 4.8 

1600-1700 11.3 11.2 9.3 

1700-1800 11.7 11.7 12.1 

1800-1900 11.6 11.7 12.6 

1900-2000 12.6 12.5 12.4 

2000-2100 11.3 11.1 12.2 

2100-2200 8.7 8.6 10.6 

2200-2300 6.0 6.0 8.9 

2300-2400 3.3 3.2 5.5 

2400-2500 0.9 0.9 2.1 

2500-2600 0.2 0.2 0.4 

Cover 

Open 33.2 33.9 46.4 

Intermediate 33.2 40.9 36.9 

Closed 33.6 25.3 16.7 

TPI 

Depressions 25.3 25.5 1.5 

Transitional 38.7 38.3 0.4 

Uplands 36.0 36.2 98.1 

Aspect 

N 5.1 5.4 5.3 

NE 17.6 12.4 12.8 

E 17.7 17.7 14.3 

SE 15.4 15.3 12.9 

S 7.9 8.0 12.2 

SW 11.5 11.9 12.4 

W 14.1 13.5 14.7 

NW 10.8 15.7 15.5 

Slope 

0-30 58.5 58.6 53.0 

30-60 39.8 39.7 44.7 

60-90 1.7 1.7 2.3 

  

Using 50,000 points from integer files performed best in terms of model R2, 

RMSE and processing time compared to other trials (Table 4.4). Although classified 

integer data had a faster run time than continuous integer data, model R2 and RMSE was 
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compromised. Minimal variation in RMSE and R2 was observed for trials with 

continuous data, although floating point inputs and larger sample sizes increased 

processing time. 50,000 point sample sizes extracted from continuous, integer format 

rasters was therefore used in subsequent modelling (Section 4.4.2). 

Table 4.4 Outputs and timing as a result of input data type and point count. 

Raster Format n R2 RMSE 
Time 
(min) 

Floating point 50,000 0.61 0.5 140 

Integer 50,000 0.61 0.5 79 

Integer classes 50,000 0.56 0.5 18 

Floating point 100,000 0.63 0.5 606 

Integer 100,000 0.62 0.6 602 
 

4.4.2 Inter and Intra-annual Predictor Importance 

Predictor importance is represented by % Increase in MSE, the change in model 

MSE when a predictor is removed from the permutation process. Under mid-winter 

conditions, aspect was the most important predictor for both MW 2014 and 2017 

(Figure 4.4). TPI was among the top three as well, as 3rd most important for MW 2014 

and 2nd for MW 2017. Elevation had the 2nd highest importance for MW 2014 whereas its 

was less important than slope for MW 2017, which was 3rd. Elevation and aspect’s 

importance under melt onset conditions was much higher than other drivers.  

For the flight line-based predictions, aspect and TPI were consistently among the 

top three drivers for each dataset (Figure 4.5). Slope displayed higher importance than 

cover or elevation under mid-winter conditions whereas late winter and melt onset 

importance did not have slope in the top three. Elevation was only in the top three 
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drivers for late winter and melt onset data when training data was extracted from the 

flightlines.  

 

 

Figure 4.4 MSE values for input data from the watershed (WCW). Note: higher ‘Inc MSE’ 
represents better predictive capability (see text). 

 

 

Figure 4.5 MSE values for input data from the flight line (FL) sample extent. 
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4.4.3 RF-Predicted Snow Depth Models 

Model R2 was consistently higher for WCW based training points compared to the 

flight lines (Table 4.5). PCC values between the original LSDM and predicted RF SDMs 

were also higher for WCW data, although all coefficients were significant. The best R2 

and PCC values occur under melt onset conditions. RMSE (in units of meters) values 

indicate the same absolute error with WCW data, and similar values for MW and MO 

conditions with FL based models. Although LW 2017 R2 is low and RMSE is higher, the 

PCC between LiDAR and RF predicted data is slightly higher than for either mid-winter 

prediction using flightline training points.  

Table 4.5 Workflow timing, model performance and depth correlation data using 
Pearson Correlation Coefficients. * indicates p < 0.05. 

Data 
Extent 

Season R2 RMSE 
Time 
(min) 

PCC  

WCW 

MO 
2016 

0.61 0.7 236 0.79*  

MW 
2014 

0.47 0.7 252 0.69* 

MW 
2017 

0.44 0.7 260 0.66* 

Flight 
line 

MO 
2016 

0.51 0.8 70 0.66* 

MW 
2014 

0.44 0.8 80 0.42* 

MW 
2017 

0.41 0.7 76 0.44* 

LW 
2017 

0.41 1.0 75 0.46* 
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Figure 4.6 WCW and FL trained RF SDMs. 

 

Summary statistics of each SDM (Table 4.6) illustrate that the LSDMs and RF 

SDMs had the same mean when training points were extracted from the whole 

watershed. Flightline based training points produced higher mean depths than 

observed in the LSDMs or WCW-based RF SDMs. RF predicted maximum depth values 

were consistently smaller than the LSDM value. Smaller standard deviations were 

observed for flightline based data compared to LSDMs and WCW RF SDM statistics.  
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Table 4.6 Summary statistics for LiDAR and Random Forest based snow depth models 
(SDMs), predicted using points from the watershed (WCW) or flight lines (FL). 

Season SDM Mean (m) Stdev (m) Max (m) 

MO 2016 

LSDM 1.2 1.2 6.3 

WCW RF 1.2 0.9 5.5 

FL RF 1.5 1.1 5.3 

MW 2014 

LSDM 1.5 0.9 5.4 

WCW RF 1.5 0.7 4.7 

FL RF 2.2 0.7 4.5 

MW 2017 

LSDM 1.5 0.9 8.1 

WCW RF 1.5 0.7 7.2 

FL RF 1.9 0.8 6.2 

LW 2017 
LSDM 1.3 1.5 8.1 

FL RF 2.0 1.0 7.2 

 

 

4.5 Discussion 

4.5.1 Sampling and Model Optimization 

The potential viability of flight line sampling as a basis for RF snow depth model 

training is supported by the results in Tables 4.5 and 4.6. However, the disparities in 

depth and driver class proportions between flight line training data and the whole 

WCW is likely a function of sub optimal sampling locations. The flight lines (Figure 4.1) 

were surveyed on the east and west edges of the N/S oriented watershed. By sampling 

the watershed boundaries, high elevation (>2100 m a.s.l.) and upland terrain is more 

abundant (Table 4.2) as it is indeed elevation that defines the watershed boundaries. 

With much of the FL training data falling within treeline and above, higher depths in 

these zones (Figure 3.7) could skew predictions if elevation is an important predictor. 

The WCW training data class proportions are more similar to the WCW class sizes, 
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although the WCW and FL training data included fewer closed canopy points than are 

present in the entire WCW (Table 4.2). Canopy cover decreases with elevation gains 

above treeline in the WCW (Figure 3.13), explaining why more cells with open and 

intermediate canopy attributes were present compared to closed canopy. Closed 

canopies had lower depth distributions compared to the other classes (Figure 3.10), 

and their undersampling in the training data may inflate depth values. With that said, 

mean depth values in Table 4.6 remained the same for WCW based predictions as they 

were in the original LSDM, suggesting that the training data was not influenced by the 

distribution of canopy characteristics in the input dataset. Upland terrain was 

represented by 98.1% of the FL training data, which could favour lower depth values 

(Figure 3.9; Hopkinson et al. 2004). With varying driver importance across seasons and 

data extents (Figure 4.4 & 4.5) as well as the potential for variables to interact, it is 

difficult to attribute the random forest modelling results solely to training data point 

location. The under or over representation of certain driver classes (Table 4.2) does 

however provide a basis to guide future flight line planning, especially when combined 

with RF-based driver importance rankings. 

Optimized LiDAR sampling with strategic flight line positioning could increase 

the viability of using LiDAR to monitor snowpack. Efficiency is also a function of the 

data processing and analysis steps. One area to reduce computation time in the 

modelling workflow is observed with forest size (Table 4.2). Creating too many or too 

few trees in a random forest can lead to over or under-fitting of models (Kuhn and 

Johnson, 2013) so it was important to test a range of values. R2 and RMSE were 

unchanged by forest size, but the computation times varied. It was decided that 250 
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trees would be a conservative choice when predictions were made over the 103 km2 

watershed, without expending the time required for 500 or 1000 trees. 1000 trees used 

in another RF snow study that did not test various forest sizes (Lopez-Moreno et al., 

2017). The faster production of models with integer formats and fewer points was 

expected, as it is as an established concept in spatial and visual data processing to 

reduce storage space/memory with certain data formats or types of compression 

(Bonham-Carter, 1994). Table 4.4 illustrates a RAM limitation when 100,000 training 

points were used, as the difference in run time for integer and raster input data is 

much smaller compared to these data types in the 50,000 point trials. The RMSE value 

for the 100,000 point don’t follow the expected correspondence of a higher R2 with 

lower RMSE values, and more computational power might clarify this issue. Converting 

float data to integer format using a multiplier is an ideal approach to time-saving 

without compromising end results in term of both R2 and RMSE. While a larger sample 

size may increase correspondence between the LSDMs and RF SDMs, the significant 

correlations between these datasets (Table 4.5) suggest that the current sample size is 

suitable. If a stronger correlation was desired, training data point placement (ie. 

Ensuring a representative variety of terrain and cover attributes are sampled) and large 

sample sizes should be considered. 
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4.5.2 Snow Depth Driver Variables 

4.5.2.1 Elevation 

Elevation has consistently proven to be a valuable predictor of snow depth 

distribution (Revuelto, 2014b; Elder et al. 1998; Erxleben et al. 2002; Hopkinson et al., 

2012; Molotch and Bales, 2005; Grunewald et al. 2015). Lopez-Moreno et al (2010) 

found that elevation increases in importance as grid size increases. Elevation was often 

a useful variable as indicated by MSE (Figure 4.4 and Figure 4.5). Its utility was 

pronounced at melt onset, which is likely influenced by spring warming and 

environmental lapse rates (Pigeon and Jiskoot, 2008) creating a negative temperature 

gradient from valley bottoms to mountain summits. Lower elevations are also subject 

to rain on snow events in spring time. Rain adds thermal energy to the snowpack 

(Garvelmann et al. 2015), enhancing melt in areas that may already be prone to reduced 

snow inputs relative to upper elevations, where precipitation may still be adding to the 

snowpack.  

Snowpacks become more homogenous as melt conditions progress (Lopez-

Moreno et al. 2017), so a variable such as elevation which operates over larger scales 

(1000s of meters) rather than micro-features, such as changes in terrain or canopy 

cover, explains much of the overall watershed-scale snow depth distribution. Snow 

water equivalent records indicate that the mid and late winter datasets were surveyed 

while snow was still accumulating (Figure 3.4), meaning that snow from upper 

elevations may have limited gravitational redistribution down slope relative to the end 

of the season, making elevation a less important driver than it was at melt onset. Wind 
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erosion and reduced shading by vegetation promotes lower and/or non-linear snow 

accumulation with elevation gains above treeline (Grunewald et al. 2014; Hopkinson et 

al., 2012; Zheng et al. 2016), and it is possible that these effects were more pronounced 

in the February 2014 and April 2016 datasets, increasing elevation’s importance as a 

snow depth control. These observations suggest LiDAR sampling and RF modeling is 

most successfully implemented late in the winter season, after a period of snowpack 

settling and homogenisation, several days after fresh snowfall. 

4.5.2.2 Aspect 

Aspect consistently performed well across the datasets. South facing terrain 

often accumulates the least amount of snow (Hopkinson et al. 2012; Kirchner et al. 

2014; Zheng et al. 2016) primarily due to high solar radiation inputs relative to north-

facing slopes. Higher accumulation on north facing terrain can be the result of reduced 

radiative inputs due to daytime shadowing and solar azimuth (Anderson and West, 

1965; Haupt, 1951). In a watershed where strong wind gusts originate from south and 

south-westerly directions, the potential for complimentary wind and radiation loading 

effects exist. Wind erosion on the south and southwest slopes could enhance the 

ablation of snow that is already subject to more radiation-induced melt than on 

opposite facing terrain and therefore lower depth values result (Table 3.8). A 

combination of spatially variable radiation budgets as well as wind transport (Hiemstra 

et al. 2002) could explain why aspect ranked highly, as both are well-established drivers 

of snow depth distributions. With aspect consistently in the top three important 

variables for all seasons and extents, the proportion of training points for aspect 
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classes compared to the WCW class sizes may have more influence on the predicted 

depths than less important drivers. 

 

4.5.2.3 TPI 

 Topographic position is comparable to curvature which is also used as a snow 

depth predictor in some studies (e.g. Marchand and Killingtveit, 2005; Lopez-Moreno 

and Nogues-Bravo, 2006; Plattner et al., 2006). These variables represent localized, 

potentially down to sub-meter terrain surface features where snow can either be 

trapped in depressions or scoured off convexities. Hopkinson et al. (2004) found that 

LSDM values were greater in valleys and shallower on ridge tops, with open area 

distributions closely related to topography. Topographic smoothing is the filling of 

depressions and the spaces between short vegetation (Schirmer and Lehning, 2011), 

and these processes increase with snow accumulation and persistence throughout the 

winter season. As discussed in the aspect section above, a consistent variable in terms 

of importance such as TPI may have more influence if it is not proportionately 

represented in the training data.    

 

4.5.2.4 Canopy Cover 

The burial of low vegetation by wind redistribution and trapped snow, coupled 

with the decline in cover as elevation increases, could have contributed to canopy 

cover’s low performance as a depth predictor. A study by D’Eon (2004) that examined 
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snow accumulation in open and forested areas along an elevation gradient found that 

depth was significantly correlated with elevation, yet canopy and snow accumulation 

were only significantly correlated at lower elevations. The author attributed this to 

greater accumulation at higher sites with less canopy cover as a function of lower 

temperatures reducing ablation, suggesting that the importance of canopy cover varies 

with elevation (D’Eon, 2004).  

Other recent LiDAR-based research, using regression, has illustrated that up to 

50% of snow depth distributions can be explained by canopy metrics (Zheng et al. 

2018). The development of consistent relationships between cover and snow depth in 

this analysis may have been complicated by parameters that could not be adequately 

represented at the watershed scale. A likely contender in this environment is the effect 

of variable wind fields across complex terrain and canopies, as this is a source region 

for strong Chinook winds where speeds frequently exceed 100km/h (Pigeon & Jiskoot, 

2008). Considering that high elevation relationships between depth and canopy are 

difficult to establish (D’Eon 2004), as well as the large amount of training data that falls 

within open and intermediate classes where depth distributions were more variable in 

the WCW (Figure 3.10), these concepts may explain the higher mean depths produced 

by FL-trained models.  

 

4.5.2.5 Slope 

The West Castle Watershed is mostly forested below treeline, with a variety of 

slopes throughout the entire ~1200m elevation range. Steep slopes are often observed 
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in alpine zones, where snow depth in the WCW is more variable than areas below 

treeline (Figure 3.7). Depending on the surrounding terrain and wind vectors, the top of 

a slope or cliff could be the location of a depth outlier due the formation of a cornice 

(Schweizer et al. 2003) or an area of little snow due to wind erosion and exposure to 

solar radiation (Varhola et al. 2010). Areas where wind loading and/or cornice 

formation occur can eventually lose the built-up snow due to downward redistribution 

of snow by natural avalanches and sloughing (Schweizer et al. 2003). While an open 

area at the top of a steep slope may be bare due to these effects, the same level of 

canopy cover at a lower elevation may translate to enhanced accumulation (Varhola et 

al. 2010). If a study area is limited to open canopies and gentle/moderate slopes, slope 

can be an important predictor of snow depth (Grunewald et al. 2013). These interacting 

effects as well as the influence of wind and gravity make it difficult to establish 

consistent terrain-depth relationships in steep areas throughout the winter season.  

When comparing slope surfaces derived from airborne LiDAR it is also important 

to consider the amplification of vertical uncertainty over steeper slopes, as horizontal 

uncertainty is higher than in other areas and must be considered during quality control 

and analysis (Hodgson, 2004; Hodgson et al. 2005). The study area does not contain 

many grid cells with slopes >60˚and most of these cells were eliminated by quality 

control. Future work may benefit from finding another study area with a different 

distribution of terrain slope values to determine if this driver should be kept in future 

modelling exercises. Including a wind parameter in modelling workflows may be 

another way to establish reliable snow depth trends in steep areas. 
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4.5.3 Watershed Snow Depth Predictions 

Correlations between LSDMs and RF-predicted rasters (Table 4.5), indicate that 

using LiDAR flight line sample datasets to impute watershed-scale snow depth is 

viable. Mid and late winter trials did not perform as well as melt onset in terms of PCC 

or R2 values. However, the PCC values were all significant and correspondence in 

watershed-scale mean depths is more important from a water resources inventory 

perspective (Table 4.5). Model performance results such as R2 simply indicate that 

models are imperfect. Absolute error, as indicated by RMSE, was unchanged for the 

WCW trials though. With mid-winter datasets, more complex snow depth distribution 

patterns produce weaker correlations (Lopez-Moreno et al. 2017). Our lower R2 mid-

winter results as well as the conclusions of Lopez-Moreno et al (2017) could be 

influenced by snow that had yet to undergo further metamorphosis and redistribution 

relative to more settled snowpacks (Figure 3.4). By melt onset, much of the low-lying 

vegetation and topographic depressions are buried (Schirmer and Lehning, 2013), 

creating smoother surfaces for new snow to settle on top of rather than being 

influenced by surface features. Once new snow stops accumulating, aspect and canopy-

influenced ablation processes, such as radiation and sensible heat (Golding and 

Swanson 1986; Anderson et al. 1958a), might be more pronounced over a settled 

snowpack relative to wind distribution processes on a freshly accumulated snow 

surface. Static (or grid-cell level) features such as elevation, aspect and canopy cover, 

which were the top three WCW trained variables at melt onset, can therefore be more 

easily separated at melt onset than during mid-winter when localized turbulence and 

wind redistribution of fresh snow may mask their influence.  
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Under mid-winter conditions, WCW-based training points resulted in a RF SDM 

with the same mean depth as the LSDM (Table 4.6), despite regression results that are 

not strong (R2 < 0.5; Table 4.5). Late-winter R2  was the lowest but the PCC for this 

season was still significant. Standard deviation values for the FL SDMs also suggest 

more variability from these models in most cases. RMSE is an absolute measure of error 

and of the variance that isn’t explained by the model, whereas relative fit of the model 

is provided by R2. RMSE was provided to one decimal place as two decimal places for 

units of meters of snow depth is beyond the expected accuracy of most LiDAR surveys 

(~10cm). Although the RMSE values would be expected to show an inverse relationship 

with R2, they were not always in correspondence which illustrates the need for further 

analysis of sample sizes and the best seed to use for all datasets. In order to objectively 

assess variable order importance to guide future sampling design, the X, Y locations of 

input data was constant across the datasets. This compromises the representativeness 

of the training sample compared to the depth distribution of the original LSDM as the 

locations of data to produce a good sample are not necessarily constant year to year. 

Statistical power and appropriate sample sizes could benefit from further exploration 

as more variety in depths might be captured from larger samples but increase the 

chance of type 2 statistical errors (Kaplan et al., 2014). R2 is more sensitive to oddities 

in the dataset therefore it is possible that with a different seed and a more 

representative sample, R2 values would be more reliable and possibly increase (Grace-

Smith, 2019). However, direct comparisons of variable order importance would be less 

valid if varying depth driver attributes were present in the various training datasets as 

a result of using different seeds to sample the raster stack, as we would be unable to 

separate the effects of varying terrain attributes from seasonality when assessing 
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variable order. For the purposes of this exploratory analysis, assessment of watershed 

scale means provides a simple metric that illustrates how a dense dataset with millions 

of data points can be modelled within reasonable accuracy of the original LSDMs. 

It is clear from the mean depth results (Table 4.6) that the FL RF SDM outputs 

for the watershed are higher relative to the RF SDM or LSDM means. Given no such 

systematic over-estimation occurs for the watershed-scale RF SDM (Table 4.6), this bias 

must be the result of the sampling configuration. While all landcover and terrain types 

are represented in the training datasets (Table 4.2), the centre of the valley, where 

elevations <1700 m a.s.l. and closed canopy covers are greatest, is under-represented 

by FL samples which likely explains the higher mean depths predicted from FL training 

data. Improved FL model results would be facilitated through more strategic flight line 

sampling to represent the range of land surface attributes and snow depth driver 

classes experienced within the watershed.  

While many studies have included a radiation parameter (e.g. see Table 4.1), 

researchers have found that using a canopy cover or forest density parameter is an 

acceptable proxy for transmittance and better represents radiative inputs than 

parameters calculated from a DEM that excludes forest cover (Davis et al 1997; Hardy 

et al 1997). Erxleben et al (2000) found using the BRT methodology that model 

performance was improved when the radiation parameter was excluded, so only 

vegetation, elevation, aspect and slope were employed in model development. 

Considering these findings, and the ultimate goal of an efficient modelling workflow, 

we limited the predictors to the five chosen in situ (grid cell-level) properties. This is a 

simplification of reality, as other external (beyond the grid cell) snowpack controls, 
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such as wind or radiation load are ignored due to such spatial and temporal continuous 

data not being readily available. Dynamic external drivers that vary in time and space 

can be simulated, however (Winstral et al. 2002; Molotch et al. 2005) but are expected 

to have variable predictive power and thus add non-deterministic complexity that may 

reduce the effectiveness of a machine learning snow depth extrapolation framework. 

Additional predictors may improve modelling results in future analyses. 

Although Lopez-Moreno 2017 also used LiDAR and random forest, they applied 

the algorithm to determine variable order importance, not to predict depths. With R2 

values ranging from 0.41-0.61 (Table 4.4), the RF results presented here exceed others’ 

model performance in some cases (Table 4.1). Grunewald et al. 2013 reported R2 values 

of 0.27-0.90 for MLR based models using LiDAR data in various mountainous study 

areas. It is important to recognize that the grid cell resolution in this modelling study, 

3m, is high and the results in Grunewald et al. (2013) include resolutions of 100m, 

200m and 400m. With a high spatial resolution, it can be more difficult to draw a 

representative sample from the population because the population size is larger for a 

high-resolution dataset than it is with a coarser grid cell size. <1% of the available 

depth values were utilized in the 3m RF modelling process. Random Forest is 

advantageous for such dense datasets compared to MLR or other methods primarily 

because the algorithm splits the data and introduces randomness by variable 

permutation at tree nodes. The re-creation of watershed scale snow maps from 

spatially sampled datasets is a novelty of this work, and the results presented 

demonstrate there is potential for further refinement. 
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4.6 Conclusion  

Random forest is a promising machine learning routine for modelling snow 

depth from airborne LiDAR sample data, especially if strategic flight paths are chosen. 

Integration of this algorithm into snowpack monitoring frameworks may require an 

annually adaptive approach. Although the variables aspect, TPI and elevation were 

often chosen for random sampling at node splits, their inconsistent ranking suggests 

that one variable cannot be permanently prioritized over others when designing 

sampling routines using random forest. Other studies have suggested that importance 

measures are site-specific (Grunewald et al. 2013), but importance appears to be 

specific to individual datasets/seasons as well based on our results in the West Castle 

Watershed. While melt onset yields the best model performance metrics (PCC and R2), 

similar watershed depth means at mid-winter suggest the ideal time for collection of 

partial LiDAR datasets as inputs to integrated hydrological monitoring frameworks is 

not necessarily limited to a certain season if other metrics of model performance are 

considered. Modeling late-season snowpack is desirable as it is this snow, not what is 

present earlier in the accumulation season, which represents the stored freshwater 

resource that has the potential to influence subsequent downstream flood or drought 

hazards. However, if and when early or mid-winter watershed-scale snowpack 

conditions are desired, then LiDAR sampling and RF modeling should be implemented 

after snowpack settling and homogenisation, and not immediately following fresh 

snowfall.  

Significant correlations between FL and WCW RF SDMs and LSDMS (Table 4.4) 

demonstrate that Random Forest has great potential for snow depth imputation as part 



116 
 

of an overall operational LiDAR snow depth monitoring framework. Collection of data 

over an optimally selected flight path that considers variable importance of drivers, as 

presented in this thesis (Section 4.6.2), should improve model performance when 

trained from spatial sample data. This is an objective that needs to be addressed to 

operationalize LiDAR-based snow monitoring in a cost- and time-effective manner. 

Further analysis is required to develop such a flight line sampling strategy. Using 

spatial sampling to train the RF routine is a viable approach to integrated 

snowpack/hydrological monitoring with airborne LiDAR, but more research is needed 

to optimize landcover and terrain sampling. This analysis shows that airborne LiDAR in 

tandem with random forest produces results that are comparable to, or in some cases 

better than, previous work using multiple linear regression and binary regression trees 

to model snow depth over large spatial scales. Overall, LiDAR continues to be a 

valuable snowpack monitoring tool and this research confirms that the ability to use it 

in a more time- and cost-efficient manner is feasible.  
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5 RESEARCH CONCLUSION 

5.1 Summary of Research Purpose 

The need for enhanced headwater snowpack monitoring in the face of a changing, 

intensifying climate provided the basis for this thesis research. Western Canada is 

heavily reliant on seasonal snow for runoff, especially considering the degree to which 

agriculture in southern Alberta is dependent on irrigation. The use of spatially coarse 

public monitoring sites as indices for water supply forecasts may not hold into the 

future due to the dynamic nature of the Earth’s climate. In a watershed such as the 

South Saskatchewan, inter-provincial and international water sharing agreements on 

top of high water demand within semi-arid southern Alberta make a precise 

quantification of stored freshwater resources valuable for mitigation of risk associated 

with floods and drought, which have cost the province billions of dollars in the last 

decade alone.  

 

5.2 Research Findings and Future Research 

With a detailed index of snow depth distributions (Chapter 3) and random forest 

modelling (Chapter 4), snow depth driver consistency and importance was determined 

in the West Castle Watershed. Relationships between snow depth and elevation to 

treeline are consistent regardless of the time of year when data was collected. Within 

and above treeline, wind-redistributed snow from upper elevations to areas of closed 

canopy cover is evident. Aspect and TPI, drivers that exhibited consistent distributions 

inter-annually, were also identified among the top three most important variables in 
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Random Forest modelling. The reliability of these depth drivers for predicting snow 

depth distributions can guide future flight planning and sampling schemes for inter-

annual and seasonal integrated monitoring frameworks. An increased spatiotemporal 

availability of hydrometeorological data in the study area would help determine if 

public monitoring sites could be integrated with LiDAR and Random Forest data. 

Future analyses may benefit from thorough field campaigns and integration of 

continuous hydrometeorological data. Further research on the effect of grid cell 

resolution and quality control options could potentially improve random forest model 

performance. The most important aspect of this workflow to improvement upon are 

matters of sample size and statistical power. 

A novelty of this work is that a partial dataset (two flightlines) was used to predict 

snow depth at the watershed scale with a reasonable degree of accuracy and 

statistically significant correlation to the parent LSDM. Smaller standard deviations 

from RF-predicted SDMs compared to the LSDMs indicate RF under-estimated the 

variability of snow depth distributions, as is common with sample-based modeling of 

class means. Considering the size of the Rocky Mountains and the Canadian land base 

dependant on headwater regions for seasonal snow melt runoff, strategically planned 

LiDAR sampling and random forest modelling could provide spatially extensive 

datasets for water supply forecasts in a much more time and cost-efficient manner 

than a full survey. The methods presented here could be utilized strategically as part of 

an integrated framework that utilizes optimized data collection and modelling to 

produce high resolution snow depth models to aid water supply forecasts and risk 

management. 
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APPENDIX A – SCRIPTS 

 

 Chapter three explains LSDM quality control and snow depth driver class 
creation using python scripts. The resulting classes were summarized and statistical 
analyses were employed in R. Chapter four provides a random forest analysis to 
determine variable order importance, make snow depth predictions and calculate 
correlation statistics in R. The scripts for both programs are available on Github, where 
files are numbered in the order they were utilized. 

Scripts are maintained here:  

https://github.com/KelCbells/MSc_Thesis 
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