
University of Lethbridge Research Repository

OPUS https://opus.uleth.ca

Theses Arts and Science, Faculty of

Aryal, Chudamani

2019

Query-Focused Abstractive

Summarization using Neural Networks

Department of Mathematics and Computer Science

https://hdl.handle.net/10133/5400

Downloaded from OPUS, University of Lethbridge Research Repository

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS: Open Uleth Scholarship - University of Lethbridge Research Repository

https://core.ac.uk/display/211213282?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

QUERY FOCUSED ABSTRACTIVE SUMMARIZATION USING NEURAL
NETWORKS

CHUDAMANI ARYAL
Bachelor of Science in Computer Science, University of Texas at Arlington, 2012

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c© Chudamani Aryal, 2019

QUERY FOCUSED ABSTRACTIVE SUMMARIZATION USING NEURAL
NETWORKS

CHUDAMANI ARYAL

Date of Defence: April 8, 2019

Dr. Yllias Chali
Supervisor Professor Ph.D.

Dr. Wendy Osborn
Thesis Examination Committee
Member

Associate Professor Ph.D.

Dr. John Zhang
Thesis Examination Committee
Member

Associate Professor Ph.D.

Dr. Howard Cheng
Chair, Thesis Examination Com-
mittee

Associate Professor Ph.D.

Dedication

This thesis work is dedicated to my dearest brother, Sagar Aryal, who is the only reason

why I am here. Without his deep faith and unselfish support, I would not have become

who I am today. He stood by me when things looked bleak and led me through the valley

of darkness with light of hope and support.

This thesis work is also dedicated to my beloved wife, Nirmala Pandey, who has been a

constant source of support and encouragement during the challenges of graduate school

and life. She made sure that each and every second of these two years was fully dedicated

only for study, research and thesis work.

I am truly thankful to God for having you both in my life.

iii

Abstract

Query-focused abstractive document summarization (QFADS) is a process of shortening a

document into a summary while keeping the context of query in mind. We implemented a

model consisting of a novel selective mechanism for QFADS. A selective mechanism was

used for improving the representation of a long input (passage) sequence. We conducted

experiments on the Debatepedia dataset, a recently developed dataset for query-focused

abstractive summarization task, which showed that our model outperforms the state-of-the

art model in all ROUGE scores. Also, we proposed three models all of which consist of

a coarse-to-fine approach and a novel selective mechanism for query-focused abstractive

multi document summarization (QFAMDS). The coarse-to-fine approach was used to re-

duce the length of the passage input from multiple documents. We conducted experiments

on the MS MARCO dataset, a recently developed large scale dataset by Microsoft for read-

ing comprehension, and have reported our scores using various evaluation metrics.

iv

Acknowledgments

I would first like to express my most sincere gratitude to my supervisor, Prof. Yllias Chali,

for believing in me and giving me a wonderful opportunity to study and research at this re-

puted university. His support, patience, motivation, and immense knowledge have tremen-

dously helped me complete my Masters Degree in smooth and timely manner. He has been

like a father figure to me for these two years. I would not be able to come this far without

his help. His guidance helped me at all the time of my study, research and thesis work. I

could not have imagined having a better supervisor and mentor than him. I thank you very

much, Prof. Chali, from the bottom core of my heart.

I would also like to thank my M.Sc. supervisory committee members Dr. Wendy

Osborn and Dr. John Zhang for their time and effort spent on thesis committee meetings.

Dr. Wendy helped me boost my morale when I was going through tough times. Dr Zhang

helped me focus and narrow down the problems by carefully evaluating every possible

scenario.

I would also like to thank the University of Lethbridge for the financial support during

my Masters Degree. I am also thankful to Natural Sciences and Engineering Research

Council (NSERC) of Canada for providing our team with a TITAN X GPU machine to

carry out our experiments.

I would also like to thank my fellow researchers for their valuable insights and stimu-

lating discussions regarding my thesis topic. Special thanks to Elozino Ofualagba Egon-

mwan for her words of wisdom.

Last but not the least; I would like to thank my wife, my brother, and my parents for

providing me with constant support and encouragement throughout my Masters Degree.

v

Contents

Contents vi

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions of this Thesis . 2
1.3 Overview of the Thesis Organization . 3

2 Background 4
2.1 Automatic Text Summarization Using Neural Network: A survey 4

2.1.1 Extractive Summarization . 4
2.1.2 Abstractive Summarization . 5

2.2 Evaluation of Summarization Systems . 6
2.2.1 Recall-Oriented Understudy for Gisting Evaluation (ROUGE) . . . 6
2.2.2 Bilingual Evaluation Understudy (BLEU) 8

2.3 Machine Learning (ML) . 10
2.4 Deep Neural Networks (DNN) . 11
2.5 Programming Aspect . 12

2.5.1 Python . 12
2.5.2 TensorFlow . 12

2.6 Word Representation . 12
2.6.1 One Hot Vector . 13
2.6.2 Word2Vec Word Embeddings . 13
2.6.3 FastText Word Embedding . 16

2.7 Sentence Embedding . 17
2.7.1 Universal Sentence Encoder (USE) 17

2.8 Word Mover’s Distance (WMD) . 18
2.9 Neural Networks (NN) . 19

2.9.1 Feed Forward Neural Network (FFNN) 20
2.10 Recurrent Neural Network (RNN) . 20

2.10.1 Long Short-Term Memory (LSTM) 22
2.10.2 Gated Recurrent Unit (GRU) . 25
2.10.3 Bidirectional Recurrent Neural Network (Bi-RNN) 26
2.10.4 Deep Bidirectional Recurrent Neural Network (D-Bi-RNN) 27

vi

CONTENTS

2.11 Convolutional Neural Network (CNN) . 28
2.12 Model Improvement Techniques . 31

2.12.1 Residual Network (ResNet) . 31
2.12.2 Highway Network . 32
2.12.3 Linear Layer . 33
2.12.4 Dropout . 33
2.12.5 Batch Normalization . 34
2.12.6 Bucketing Mechanism . 35
2.12.7 Beam Search . 36

2.13 Sequence to Sequence (Seq2Seq) Network 37
2.13.1 Encoder-Decoder Framework . 37
2.13.2 Attention Mechanism . 38

2.14 Summary . 38

3 Query Focused Abstractive Document Summarization Using Neural Network 39
3.1 Introduction . 39
3.2 Task Description . 41
3.3 Proposed Model: A Complete Diagram 43
3.4 Proposed Model: An Overview . 44
3.5 Proposed Model: Layer Descriptions . 47

3.5.1 Input Embedding Layer . 48
3.5.2 Input Concatenation Layer . 51
3.5.3 Encoding Layer . 52
3.5.4 InceptionNet Layer . 53
3.5.5 Self-Attention Layer . 59
3.5.6 Gated Layer . 61
3.5.7 Attention Layer . 62
3.5.8 Final State Concatenation Layer 65
3.5.9 Output Embedding Layer . 66
3.5.10 Decoding Layer . 67
3.5.11 Output Layer . 68

3.6 Training and Inference Details . 69
3.7 Dataset . 71
3.8 Evaluation . 72

3.8.1 Baseline Models . 72
3.8.2 Results . 73

3.9 Summary . 74

4 Query Focused Abstractive Multi-Document Summarization Using Neural Net-
work 75
4.1 Introduction . 75
4.2 Task Description . 76
4.3 Proposed Models: A Complete General Diagram 77
4.4 Proposed Models: An Overview . 78
4.5 First Proposed Model: Sent2Query . 79

vii

CONTENTS

4.5.1 Sentence Extractor . 79
4.5.2 Encoder . 82
4.5.3 Feature Selector . 83
4.5.4 Attender . 83
4.5.5 Decoder . 84

4.6 Second Proposed Model: Sent2Summary 85
4.6.1 Sentence Extractor . 85
4.6.2 Encoder, Feature Selector, Attender, Decoder 86

4.7 Third Proposed Model: Sent2CQS . 86
4.7.1 Sentence Extractor . 87
4.7.2 Encoder, Feature Selector, Attender, Decoder 87

4.8 Training and Inference Details . 88
4.9 Dataset . 88
4.10 Evaluation . 89

4.10.1 Baseline Models . 89
4.10.2 Results . 90

4.11 Analysis . 91
4.12 Summary . 93

5 Conclusion & Future Work 94
5.1 Conclusion . 94
5.2 Future Work . 95

Bibliography 97

A Abbreviations 103

B Sample System Generated Query Focused Abstractive Summaries 105

C Sample System Generated Query Focused Abstractive Multi-Document Sum-
maries 107

viii

List of Tables

3.1 Average length of passages, queries, and summaries in the DBPedia Dataset 72
3.2 Performance of various model using ROUGE(1, 2, L), METEOR, EACS,

GMS, and CR metrics. 73

4.1 Performance of various model using ROUGE-L, BLEU (1, 2, 3, 4), ME-
TEOR, EACS, GMS, and CR metrics. 90

4.2 Performance of extraction methods using ROUGE-L, BLEU (1, 2, 3, 4),
METEOR, EACS, GMS, and CR metrics on training data. 91

A.1 Abbreviations used in this thesis . 104

ix

List of Figures

2.1 2D word embedding space, where similar words are found in similar loca-
tions. 14

2.2 Skip-gram Word2Vec Model. 15
2.3 Visualization of meaningful concepts such as gender or verb tense. 16
2.4 CBOW Word2Vec Model . 17
2.5 WMD: An example diagram from the paper by Kusner et al. (2015) 18
2.6 Unrolled Into Full Recurrent Neural Network 21
2.7 Long Short-Term Memory . 24
2.8 Gated Recurrent Unit . 26
2.9 An RNN vs. A Bidirectional Recurrent Neural Network 27
2.10 A Deep Bidirectional Recurrent Neural Network 28
2.11 Convolution Operation . 29
2.12 Example of max pooling . 30
2.13 Convolutional Neural Network: Putting Everything Together 31

3.1 Our Proposed Model For Query Focused Abstractive Document Summa-
rization . 42

3.2 A general encoder . 52
3.3 Modified Inception Module inspired by Szegedy et al. (2015) 55
3.4 InceptionNet Layer . 58
3.5 Scaled Dot Product Attention by Vaswani et al. (2017) 60
3.6 Gated Layer For Self-Attended InceptionNet Outputs 61
3.7 Example of Attention Mechanism . 64
3.8 Decoder Source: . 68

4.1 A general diagram to all our three proposed models for Query Focused
Abstractive Multi-Document Summarization. 77

4.2 Sentence Extractor for Sent2Query. 79

x

Chapter 1

Introduction

1.1 Motivation

A document summarization is a process of summarizing a document by shortening it

to a condensed summary where the summary retains the key information about the docu-

ment. Manually writing summaries for a huge number of text documents is a very labour

intensive task. Also, writing summaries requires a domain knowledge for the document

being summarized. With the massive overload of information, there has been a great need

to manage and retrieve important information in an efficient way. This problem led to the

rise of automatic summarization. Extractive and abstractive methods are two kinds of strat-

egy used in summarizing documents. Extractive methods generate the document summary

by obtaining important sentences from the original document. They have the advantage

of good grammaticality and the disadvantage of redundancy and incoherence between sen-

tences. Abstractive methods generate the document summary by forming sentences on its

own with the help of natural language generation techniques. They have the advantage of

conciseness and coherence between sentences and the disadvantage of bad grammaticality.

Query-focused Abstractive Summarization is the process of summarizing a document

into a condensed summary based on the context of the query in an abstractive manner. For

example, the query “How was the food on Christmas?” on “Christmas” documents would

generate a abstractive summary based on food and not cover the events that happened on

Christmas day. Generating a query-focused summary from multiple documents is more

practical than generating a general summary of a single document as readers want specific

1

1.3. OVERVIEW OF THE THESIS ORGANIZATION

information related to their questions from multiple sources.

Until recently, automatic summarization was dominated by traditional summarization

techniques and unsupervised information retrieval models. In 2014, Kågebäck et al. (2014)

demonstrated that the neural-based continuous vector models have better capabilities than

the traditional summarization techniques. This promise for the automatic summarization

marked the beginning of the widespread use of neural network-based summarization mod-

els.

1.2 Contributions of this Thesis

• We designed a novel selective mechanism for improving the representation of a long

input sequence. This selective mechanism helps remove redundant information from

the encoded passage and is used in all our proposed models.

• We implemented a model consisting of our novel selective mechanism for query-

focused abstractive document summarization using neural networks. Our model uses

a sequence-to-sequence network with an Encoder-Decoder Framework with Atten-

tion Mechanism architecture to solve the problem of query-focused abstractive doc-

ument summarization where the query and the document are the input sequences and

the summary is the output sequence.

• We implemented three models all of which consisted of our coarse-to-fine approach

and our novel selective mechanism for query-focused abstractive multi-document

summarization using neural networks. All of our models also use the same sequence-

to-sequence network structure of the single document summarization model. The

coarse-to-fine approach is the only difference between multi document and single

document model.

2

1.3. OVERVIEW OF THE THESIS ORGANIZATION

1.3 Overview of the Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 provides a brief survey of au-

tomatic text summarization along with a short introduction of the deep learning techniques

used in text summarization. Chapter 3 presents our proposed query-focused abstractive

summarization model for the single document setting. Chapter 4 presents our three pro-

posed query-focused abstractive summarization models for the multiple document setting.

Chapter 5 provides conclusions and future work.

3

Chapter 2

Background

2.1 Automatic Text Summarization Using Neural Networks: A survey

2.1.1 Extractive Summarization

Many research works have been done on extractive summarization methods as these

methods are comparatively easier than abstractive summarization. Important early research

works on extractive summarization methods include Edmundson (1969), Carbonell and

Goldstein (1998), and McDonald (2007). Recently with their success, neural network based

frameworks are used to tackle the extractive summarization problem. Cheng and Lapata

(2016) proposed a neural summarization model by extracting sentences and words. Nal-

lapati et al. (2017) proposed a recurrent neural network (RNN)-based sequence model for

the extractive summarization of documents. Zhang et al. (2016) proposed a convolutional

neural network based summarization framework which learns sentence features and per-

forms sentence ranking jointly. Ma et al. (2016) proposed a document-level reconstruction

framework named DocRebuild, which reconstructs the documents with summary sentences

through a neural document model and selects summary sentences to minimize the recon-

struction error. Cao et al. (2016) devised a summarization system called AttSum. This

system jointly performs query relevance ranking and sentence saliency ranking. Ren et al.

(2018) proposed a deep neural network model called sentence relation-based summariza-

tion where they studied the use of sentence relations, such as contextual sentence relations

(CSR), title sentence relations (TSR), and query sentence relations (QSR) to improve the

performance of extractive summarization.

4

2.2. EVALUATION OF SUMMARIZATION SYSTEMS

2.1.2 Abstractive Summarization

Considerably, few research works have been done with abstractive summarization meth-

ods as these methods are difficult to implement. However, good progress has been made

for abstractive summarization using neural network models. Rush et al. (2015) proposed

a neural attention model for abstractive sentence summarization based on a local attention

model. Gu et al. (2016) proposed a copying mechanism in sequence-to-sequence learning

to improve the grammar quality of the generated summaries. Chen et al. (2016) proposed

distraction-based neural networks for a document summarization, which avoids the redun-

dancies in the generated summaries. Nallapati et al. (2016) proposed a Recurrent Neural

Network (RNN) model which improves training efficiency, captures keywords, handles

rare/unseen words, and captures document hierarchy structure. Li et al. (2017) proposed a

deep recurrent generative decoder for abstractive text summarization which learns the latent

structure information in the reference summary by capturing the summary structure infor-

mation to improve the generated summary quality. Nayeem et al. (2018) proposed a para-

phrastic sentence fusion model which jointly performs sentence fusion and paraphrasing

using a skip-gram word embedding model at the sentence level. Niu et al. (2017) proposed

a chunk graph and recurrent neural network language model based summarization model

where the chunk graph organizes all the information in a sentence cluster and the language

model generates the abstractive, readable, and informative summaries. Nema et al. (2017)

proposed a diversity driven attention model for query based abstractive summarization,

which alleviates the problem of repeating phrases in the system summaries.

However, most of the papers still do not address all the keys factors of summarization

like saliency, fluency, coherence and novelty, and do not capture summary structure in-

formation all at once. Also, the performance of the state-of-art abstractive summarization

model are still comparable to the performance of the state-of-art extractive summarization

model; however, the abstractive summarization has the better upper bound than the extrac-

tive summarization.

5

2.2. EVALUATION OF SUMMARIZATION SYSTEMS

2.2 Evaluation of Summarization Systems

Evaluation is critical for the measurement of developed summarization systems. As

what makes a good summary is highly subjective, the evaluation criteria used for measur-

ing the summarization systems still remains unclear. The most common evaluation tech-

nique is to compare system-generated summaries (system summaries) with human-created

reference summaries. This allows the use of quantitative measures such as precision and

recall. Recall-Oriented Understudy for Gisting Evaluation (ROUGE) and Bilingual Evalu-

ation Understudy (BLEU) are the two tools that we have used to evaluate the performance

of our models.

2.2.1 Recall-Oriented Understudy for Gisting Evaluation (ROUGE)

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) (Lin, 2004) is an auto-

matic tool to determine the quality of a machine generated summary by comparing it against

a reference or a set of reference summaries. There are 4 different ROUGE metrics - namely

ROUGE-N (1,2,3,4), ROUGE-L, ROUGE-W, and ROUGE-SU.

• ROUGE-N computes the percentage of n-gram overlap between the system and ref-

erence summaries. ROUGE-1 refers to the overlap of unigrams between the system

summary and reference summary. ROUGE-2 refers to the overlap of bigrams be-

tween the system and reference summaries.

• ROUGE-L computes the sum of the longest in sequence matches of each reference

sentence to the system summary. It considers the sentence-level word orders and au-

tomatically identifies the longest in-sequence word overlapping without a pre-defined

n-gram length.

• ROUGE-W assigns different weights to consecutive in-sequence matches in the

Longest Common Sub-sequence (LCS).

• ROUGE-SU measures the percentage of overlapping skip-bigrams and unigrams.

6

2.2. EVALUATION OF SUMMARIZATION SYSTEMS

A Skip-bigram consists of two words from the sentence with arbitrary gaps in their

sentence order. As an example, for the phrase “cat in the hat” the skip-bigrams would

be “cat in, cat the, cat hat, in the, in hat, the hat”. Applying skip-bigrams without

any constraint on the distance between the words usually produce spurious bigram

matchings. Therefore, ROUGE-SU is usually used with a limited maximum skip

distance, such as ROUGE-SU4 with maximum skip distance of 4.

Among these above mentioned measures, ROUGE-N is used the most for multi-document

summarization research. ROUGE-N can be defined as follows:

ROUGE-N =
∑S∈R ∑gn∈S Countmatch(gn)

∑S∈R ∑gn∈S Count(gn)

where n is the length of the n-gram, Countmatch(gn) and gn are the maximum number of

n-grams co-occurring in a candidate summary and a set of reference summaries. When

multiple reference summaries are used for evaluation, a pairwise summary-level ROUGE-

N between a candidate machine generated summary S and every human produced reference

ri from the reference set R = {r1,r2, . . . ,rn} is computed. The final ROUGE-N score is then

obtained by taking the maximum of the summary-level ROUGE-N scores as follows:

ROUGE-Nmulti = argmaxi (ROUGE-N(ri,s))

Recall in the context of ROUGE means how much of the reference summary is the

system summary recovering or capturing. The recall can be computed as:

Recall =
num of overlapping words

total words in reference summary

Precision in the context of ROUGE mean how much of the system summary was in fact

relevant or needed. The precision is measured as:

7

2.2. EVALUATION OF SUMMARIZATION SYSTEMS

Precision =
num of overlapping words

total words in system summary

F-measure is a harmonic mean of precision and recall. It is measured as:

F-Measure = 2*
Precision*Recall

Precision + Recall

For example, let us say we have the following system and reference summaries:

System Summary: the the cat was found under the bed

Reference Summary: the cat was under the bed

Then,

ROUGE-1 Recall =
6
6
= 1.0

ROUGE-1 Precision =
7
7
= 1.0

ROUGE-1 F-Measure = 2∗ 1.0∗1.0
1.0+1.0

= 1.0

Also,

ROUGE-L Recall =
3
6
= 0.5

ROUGE-L Precision =
3
7
= 0.43

ROUGE-L F-Measure = 2∗ 0.5∗0.43
0.5+0.43

= 0.46

In this thesis, we report ROUGE scores for all our proposed models.

2.2.2 Bilingual Evaluation Understudy (BLEU)

Bilingual Evaluation Understudy (BLEU) (Papineni et al., 2002) is also an automatic

tool to determine the quality of a machine generated summaries by comparing them against

a reference or a set of reference summaries. BLEU score is more precision oriented than

8

2.2. EVALUATION OF SUMMARIZATION SYSTEMS

ROUGE score. A combined BLEU score calculates the precision for n-grams overlap (of

size 1 to 4) between a system generated output and a reference. Also, it adds the brevity

penalty when a summary generation is too short. Usually, this score is computed over mul-

tiple sentences (i.e., entire corpus), not just single sentences. The formula for the combined

BLEU score is as follows:

BLEU = min(1,
generated summary length

reference length
)(

4

∏
i=1

precisioni)
1
4

The modified precision of each n-gram is calculated by finding the clipped count of

n-gram on reference and dividing that by the total count of n-gram on system summary.

Clipped count is the maximum the number of words present in the reference summary. The

formula for modified precision is as follows:

Precisionn-gram =
∑n-gram∈System Summary Countclipped(n-gram)

∑n-gram∈System Summary Count(n-gram)

For example, let us say we have the following system and reference summaries:

System Summary A: Israeli officials responsibility of airport security

Reference Summary: Israeli officials are responsible for airport security

System Summary B: airport security Israeli official are responsible

Here, “airport” is an example of 1-gram match for System A and “Israeli officials” is

an example of 2-gram match for System A. There are no 3-gram and 4-gram matches for

System A.

However, “Israeli officials are” is an example of 3-gram match for System B and “Israeli

officials are responsible” is an example of 4-gram match for System B.

The brevity penalty for both Systems is 6
7 as both Systems have an output length of 6

and a reference length of 7.

Hence, the combined BLEU scores for each Systems are as follows:

9

2.3. MACHINE LEARNING (ML)

System A: BLEU = min(1,
6
7
)∗ (4

6
∗ 2

5
∗ 0

4
∗ 0

3
)

1
4 = 0.0

System B: BLEU = min(1,
6
7
)∗ (6

6
∗ 4

5
∗ 2

4
∗ 1

3
)

1
4 = 0.52

In this thesis, we report BLEU scores for all our proposed query-focused abstractive

multi-document summarization models.

Now using the same example from ROUGE, let us compare these two evaluation met-

rics. Using ROUGE formula, we calculated that ROUGE-1 Precision was 1.0. Now, let us

calculate the BLEU-1 precision using the modified precision formula.

BLEU-1 Precision =
2(the)+1(cat)+1(was)+1(under)+1(bed)

7
=

6
7
= 0.667

Here, we can see that the BLEU score accounts for the extra the in the system summary

as the maximum numbers of the word present in reference summary (i.e., 2) is taken to

consideration while calculating the modified precision.

2.3 Machine Learning (ML)

A document summarization is a sub domain of Natural Language Processing (NLP)

that deals with extracting or abstracting summaries from huge chunks of texts. There are

two main types of techniques used for summarization: NLP-based techniques and deep

machine learning-based techniques. In this thesis, inspired by the popularity of neural

networks, we use deep learning-based techniques for document summarization. Machine

learning (ML) is the study of algorithms and mathematical models that computer systems

use to progressively improve their performance on a specific task such as summarization,

translation, and music generation. ML gives computers the capability to automatically

learn from data without exactly telling the machine what to learn. Machine learning can be

roughly separated into three categories:

10

2.4. DEEP NEURAL NETWORKS (DNN)

• Supervised learning: The machine learning program is given both the input data and

the corresponding labels. This means that the learning data has to be labelled by a

human being beforehand if it is not already labelled. Classification and regression are

examples of supervised learning algorithm.

• Unsupervised learning: No labels are provided to the learning algorithm. The algo-

rithm has to determine the clustering of the input data. Clustering and dimensionality

reduction are two examples of unsupervised learning algorithms.

• Reinforcement learning: A computer program dynamically interacts with its envi-

ronment. This means that the program receives positive and/or negative feedback

to improve it performance. Game playing and control problems such as elevator

scheduling are examples of reinforcement learning algorithm.

In this thesis, our query based summarization task is supervised learning. Although

there are various approaches within machine learning to solve the problem of query based

summarization, we are focusing mainly on deep neural network based frameworks.

2.4 Deep Neural Networks (DNN)

The idea of an artificial neural networks (ANN) was inspired by the functionality of a

human brain where the brain is a network of neurons. In an ANN, each neuron is composed

of an input unit, a processing unit, and an output unit. The network is composed of numbers

of simple, highly interconnected neurons. The neurons process information by its dynamic

state response to the inputs. The most common form of an ANN is a feed-forward neural

network (FFNN). The first layer of an FFNN is an input layer and the last layer of an FFNN

is an output layer. All the layers that are in between the input layer and the output layer

are called hidden layers. An FFNN can have one or more hidden layers. If the network

has more than one hidden layer, it is called a deep neural network. Although it is more

computationally expensive than a shallow neural network (i.e., network with one hidden

11

2.6. WORD REPRESENTATION

layer), a deep neural network shows greater promise on learning a task. In this thesis, we

use a deep neural network for the task of query-focused abstractive summarization.

2.5 Programming Aspect

2.5.1 Python

The Python programming language is used for the implementation of our query based

abstractive summarization strategy. By far, Python remains the most popular language

for use in machine learning. This language was built for readability, versatility and ease

of use. It can handle large datasets and has a large community support. Python provides

libraries and packages for many tasks from data pre-processing to difficult machine learning

algorithms. Due to its minimal syntax, it is also easy and quick to experiment with new

ideas and code prototypes in this language.

2.5.2 TensorFlow

Introduced by Abadi et al. (2016), the TensorFlow library is used to implement our

query based summarization strategy. It is a Python-friendly open source library for nu-

merical computation that makes machine learning faster and easier. TensorFlow can train

and run deep neural networks for sequence-to-sequence models in NLP. The single biggest

benefit TensorFlow provides for machine learning development is abstraction. Instead of

dealing with the specific details of implementing algorithms, the developer can focus on the

overall logic of the application. TensorFlow takes care of the details behind the scenes.

2.6 Word Representation

Word Representation means representing each part of a word in a way that the computer

can understand. There are many different ways of representing words in a document. Word

embedding is a vectorized form to represent the words. It is an extremely popular word

representation used in many natural language processing applications, such as document

12

2.6. WORD REPRESENTATION

classification, text summarization and question answering. The word embedding method

was first introduced by Bengio et al. (2003).

2.6.1 One Hot Vector

One hot vector is a word representation in which the sequence of the vector consist of

zeros and a single one where zero represent the absence of the word in the dictionary and

one represent the presence of the word in the dictionary. The size of the vector is equal to

the number of words in the dictionary. For example, let us say there are four words in a

dictionary: refrigerator, oven, microwave, and kitchen. Each word from the dictionary can

be represented to one hot vector representation as follows:

refrigerator = [1000]

oven = [0100]

microwave = [0010]

kitchen = [0001]

Although this is very simple to implement, it fails to capture meaningful representation

between two words or sentences. For example, let us say there are two words, oven and

microwave. According to their one hot vector representation, these two are different words.

However, these two words can have a similar meaning. As a result, one hot encoding is not

a common way for representing words.

2.6.2 Word2Vec Word Embeddings

The Word2Vec model is an efficient solution to the problem of one hot vector. Devel-

oped by Mikolov et al. (2013), Word2Vec is one of the most popular techniques to learn

word embeddings using shallow neural network. Word2Vec uses the surrounding words

to represent the target words with a neural network whose hidden layer encodes the word

13

2.6. WORD REPRESENTATION

representation. A large amount of text is used to learn the word embeddings in an unsu-

pervised manner. The dimension of Word2Vec word embeddings ranges from 50 to 300

where each dimension denotes a specific feature. As a result, semantically similar words

are placed as nearby points to each other because features of similar words would also have

similar feature values. Figure 2.11 shows a word-to-word similarity embedded using the

Word2Vec model. This figure shows an n-dimension Word2Vec space embedded into a 2-d

Word2Vec space using a dimensionality reduction technique (F.R.S., 1901). Mostly, the

pre-trained models are used to convert the words into the vector representation.

Figure 2.1: 2D word embedding space, where similar words are found in similar locations.

There are two types of Word2Vec models: Skip-gram and Continuous Bag of Words

(CBOW).

Skip-gram: For skip-gram, the input is the target word and the outputs are the words

surrounding the target words. For example, in the sentence “I have a good friend”, the input

would be “a”, and the output is “I”, “have”, “good”, and “friend”. The input would be “a”

1Source: https://www.shanelynn.ie/get-busy-with-word-embeddings-introduction/

14

2.6. WORD REPRESENTATION

because we want to train the embedding for this word. Also, let us assume, the window size

is five for this example. All the input and output words are converted into one-hot vectors

using the method described earlier and they all have same dimension as the dictionary

size is constant. The network contains one hidden layer whose dimension is equal to the

embedding size, which is smaller than the one hot vector size of input/output words. At

the end of the output layer, a softmax activation function is applied so that each element of

the output vector describes how likely a specific word will appear in that particular feature.

Figure 2.22 visualizes the network structure.

Figure 2.2: Skip-gram Word2Vec Model.

The vectors extracted using this method are more meaningful in terms of describing the

relationship between words. Figure 2.1 states that the word oven and microwave are in fact

similar. Based on the previous example, the one hot vector approach was not able to extract

this important semantic relationship as it considered the two words as two different words.

Also, the word2vec vectors obtained by subtracting two related words sometimes express a

meaningful concept such as gender or verb tense, as shown in Figure 2.33.

2Source: https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/
3Source: https://towardsdatascience.com/word-embedding-with-word2vec-and-fasttext-a209c1d3e12c

15

2.6. WORD REPRESENTATION

Figure 2.3: Visualization of meaningful concepts such as gender or verb tense.

CBOW: Continuous Bag of Words (CBOW) model finds which word is most likely to

appear, given a context. As a result, CBOW is very similar to the skip-gram model except

that the input and the output data are exchanged. In the case of Skip-gram, it feeds in one

one-hot encoded vector as input, while CBOW feeds the whole context sentence into the

neural network. For a Skip-gram, the outputs are the words surrounding the target words,

whereas, for CBOW the output is the target word.

For example, let us assume we only have two sentences using a word a, “He is a nice

man” and “She is a wise woman”. To compute the word representation for the word a, we

need to feed in all sentences containing a, two sentences in our example, “He is nice man”,

and “She is wise woman” into the neural network and take the average of the value in the

hidden layer. The hidden layer of a CBOW is similar to a Skip-gram model. Figure 2.44

visualizes the network structure.

2.6.3 FastText Word Embedding

FastText is an extension to Word2Vec proposed by Bojanowski et al. (2017). Instead

of feeding individual words into the Neural Network, FastText breaks words into several

n-grams (sub-words). For instance, the tri-grams for the word vector is vec, ect, cto, and

tor (ignoring the starting and ending of boundaries of words). The word embedding vector

for vector will be the sum of all these n-grams. After training the Neural Network, we will

4Source: http://www.claudiobellei.com/2018/01/06/backprop-word2vec/

16

2.7. SENTENCE EMBEDDING

Figure 2.4: CBOW Word2Vec Model

have word embeddings for all the n-grams given the training dataset. Rare words can now

be properly represented since it is highly likely that some of their n-grams also appears in

other words.

2.7 Sentence Embedding

Similar to the word embedding, a sentence embedding is a technique to map the sen-

tences into vectors of real numbers. There are currently many competing schemes for

learning sentence embeddings. While simple baselines like averaging word embeddings

consistently give strong results, a few novel unsupervised and supervised approaches, as

well as multi-task learning schemes, have emerged in late 2017-early 2018 and have led to

interesting improvements.

2.7.1 Universal Sentence Encoder (USE)

Google’s Universal Sentence Encoder (USE) model (Cer et al., 2018) is recently pro-

posed promising model. The USE model’s encoder uses a transformer-network that is

trained on a variety of data sources and tasks with the aim of being useful for a wide variety

of natural language understanding tasks. The USE model is trained with a deep averaging

network (DAN) encoder. The model is trained and optimized for greater-than-word length

text, such as sentences, phrases or short paragraphs. A pre-trained version has been made

17

2.8. WORD MOVER’S DISTANCE (WMD)

available for TensorFlow. In this thesis, we use this pre-trained model for sentence embed-

dings. The input is variable length English text sentence and the output is a 512 dimensional

vector.

2.8 Word Mover’s Distance (WMD)

Figure 2.5: WMD: An example diagram from the paper by Kusner et al. (2015)

Introduced by Kusner et al. (2015), Word Mover’s Distance (WMD) is proposed for a

distance measurement between two texts. In our proposed model, the two texts are two sen-

tences. It measures the distance between two texts as the cumulative sum of the minimum

distance each word in one text must move in vector space to the closest word in the other

text. To be precise, it uses normalized Bag-of-Words and Word Embeddings to calculate

the distance between texts. This distance function has an advantage over other distance

functions like Euclidean Distance, Cosine Distance and Jaccard Similarity as WMD was

designed to overcome the synonym problem in other distance functions. Also, it leverages

Word Embedding’s power to overcome those basic distance measurement limitations by

using word embeddings to calculate the similarities.

To understand better, for example, let us say we have two sentences.

Sentence 1: Obama speaks to the media in Illinois

18

2.9. NEURAL NETWORKS (NN)

Sentence 2: The president greets the press in Chicago

Here, except for the stop words, there are no common words between the two sentences,

but both of them are talking about the same topic. WMD uses word embeddings to calculate

the distance even though there is no common word. WMD works under the assumption that

similar words should have similar vectors.

First, the WMD function retrieves vectors from any pre-trained word embeddings mod-

els. Our choice of word vectors model was the FastText model. After this it uses a normal-

ized bag-of-words (nBOW) to represent the weight or importance. It assumes that higher

frequency implies that it is more important. Once we have collected the set of vectors and

weights of the two sentences, we use the Earth Mover’s Distance (EMD) solver to obtain

the distance. Introduced by Rubner et al. (2000), given a set of heaps of dirt and a set of

holes, where both the heaps and the holes have a point as a location (a vector) and a certain

mass or capacity (a weight), EMD determines the least amount of work needed to move all

the dirt into the holes or to fill all the holes completely (depending on whether there is more

total mass or total capacity).

As a result, the WMD function pairs together the most closest words between sentence

1 and sentence 2 based on the minimum transportation cost to transport every word from

sentence 1 to sentence 2. It is illustrated in Figure 2.5 for the above example. Stopwords

are removed from the example to reduce the computation cost.

For our proposed models, the WMD is calculated using a wmd() function in Gensim’s

KeyedVectors module (Řehůřek and Sojka, 2010).

2.9 Neural Networks (NN)

A Neural Network (NN) is composed of many simple neurons. Although these networks

are inspired by the neurobiological model, these networks are more closely related to the

mathematical and statistical models. A very common kind of a neural network is a feed

forward neural network.

19

2.10. RECURRENT NEURAL NETWORK (RNN)

2.9.1 Feed Forward Neural Network (FFNN)

A feed forward neural network (FFNN) is an artificial neural network where the in-

formation moves in only a forward direction, from input nodes, through hidden nodes to

output nodes. There are no cycles or loops in the network. It is the first proposed and a

simplest form of a neural network. McCulloch and Pitts (1988) created a computational

model for a neural networks based on mathematics and algorithms called threshold logic.

This model ignited the spark for the neural network research which led to the application

of neural networks to artificial intelligence.

The simplest kind of neural network in the field of artificial intelligence is a single-layer

perceptron network. In this network, the inputs are fed directly to the outputs via a series of

weights. The weighted sum of the inputs is calculated for each node. If the value is above a

certain threshold the neuron fires and takes the activated value; otherwise the value is below

a certain threshold and the neuron misses and takes the deactivated value.

Different than a single-layer perception network, a multi-layer perceptron (MLP) net-

work consists of multiple layers of computational units, usually interconnected in a feed-

forward way. Each neuron in one layer has directed connections to all the neurons of the

subsequent layers.

2.10 Recurrent Neural Network (RNN)

A recurrent neural network (RNN) is a type of advanced artificial neural network (ANN)

that involves directed cycles in memory as opposed to an FFNN which has no cycles. In a

traditional neural network we assume that all inputs (and outputs) are independent of each

other. In the case of an RNN, however, the output of the current element is dependent on

an RNN’s previous computation. For example, if we wanted to predict the next word in a

sentence, it would be easier to predict the word if we knew which words came before it.

An RNN keeps tracks of those words in a form of memory which captures the information

about what has been calculated so far. A traditional neural network will not be able to do

20

2.10. RECURRENT NEURAL NETWORK (RNN)

that as it does not have access to previous computations. As a result, it is easier to guess

the word using an RNN instead of a traditional neural network. The purpose of this RNN

is to make use of the previous sequential information in that sentence. In theory, an RNN

can make use of previous information in arbitrarily long sequences, but in practice they are

limited to looking back only a few steps. We will discuss more about this in a later section.

A typical RNN is shown in Figure 2.65:

Figure 2.6: Unrolled Into Full Recurrent Neural Network

Figure 2.6 shows an RNN being unrolled into a full network. Unrolling is to write out

the network for the complete sequence. For example, if the sequence is a sentence of five

words, the network would be unrolled into a five-layer neural network, one layer for each

word where output layer of previous layer in included in the computation of current layer.

The standard RNN contains following computations:

st = f(Uxt +Wst−1)

ot = softmax(Vst)

Here, U , V , and W are learnable parameters. st is the hidden state at time step t. It is the

so-called “memory” of the network. The hidden state st is calculated based on the previous

hidden state, st−1 and xt , the input at the current time step t. The function f usually is

a non-linear function such as tanh or ReLU. ot is the output at step t. For example, if we
5Source: http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-

rnns/

21

2.10. RECURRENT NEURAL NETWORK (RNN)

wanted to predict the next word in a sentence it would be a vector of probabilities across our

vocabulary. so f tmax represents a softmax function which takes an un-normalized vector,

and normalizes it into a probability distribution.

There are a few important things to note here:

• The hidden state st represents the “memory” of the network. st captures information

about what happened over all the previous time steps. This is unlike a traditional

neural network. The output at step ot is calculated solely based on the memory at

time t. As briefly mentioned above, it is more complicated in practice because st

typically can only capture information from previous few steps.

• Unlike a traditional deep neural network, which uses different parameters at each

layer, a RNN shares the same parameters (U,V,W above) across all steps. This re-

flects the fact that we are performing the same task at each step, just with different

inputs. This greatly reduces the total number of parameters we need to learn.

Due to its difference to traditional neural networks, RNNs have shown great success in

many NLP tasks. The most commonly used type of RNNs are Long Short Term Memory

(LSTMs) and Gated Recurrent Units (GRUs), which are much better at capturing long-term

dependencies than standard RNNs. LSTMs and GRUs have a different way of computing

the hidden state. They will be discussed more in depth in the following section. Some

example applications of RNNs in NLP are: Language Modeling and Text Generation, Ma-

chine Translation, Speech Recognition and Image Description Generation.

2.10.1 Long Short-Term Memory (LSTM)

Introduced by Hochreiter and Schmidhuber (1997), long short term memory (LSTM)

networks are a special kind of RNNs which are capable of avoiding the long-distance de-

pendencies problem (Bengio et al., 1994). They work exceptionally well, and are widely

used on a large variety of NLP problems recently.

22

2.10. RECURRENT NEURAL NETWORK (RNN)

Although standard RNNs are good at connecting previous information to the present sit-

uation, they can not connect previous information to the present situation if the gap between

the previous information and the current situation is too long. Standard RNNs become un-

able to learn to connect the information. However, an LSTM is good at learning information

having longer gaps. For example, if we had to guess the next word for the following sen-

tence: “I do some research work at the university. I am a ”. A standard RNN would know

that the next word would be a noun as the last word is a. However, it would not be able to

narrow down which noun the next word would be as it would not be able to learn to connect

too far to the word research. However, an LSTM would be able to learn to connect the

information to the present situation and would guess researcher as the next word, which is

the correct guess.

LSTMs do not have a fundamentally different architecture from standard RNNs, but

they use a different function to compute the hidden state. An LSTM includes a memory

cell c, an input gate i, a forget gate f and an output gate o. These gates and memory cells

have the ability to avoid the long term dependencies problem. We can formulate the LSTM

denoted as a function LST M, as follows:

st = LSTM(xt ,st−1)

The hidden state st of the LSTM contains ht and ct where ct is the current cell memory

of the LSTM and ht is the hidden output of the LSTM. The above LST M function contains

the formulations from Hochreiter and Schmidhuber (1997),

23

2.10. RECURRENT NEURAL NETWORK (RNN)

it = σ(Wxixt +Whiht−1 +bi) (2.1)

ft = σ(Wx f xt +Wh f ht−1 +b f) (2.2)

c̃t = tanh(Wxcxt +Whcht−1 +bc) (2.3)

ct = ft� ct−1 + it� c̃t (2.4)

ot = σ(Wxoxt +Whoht−1 +bo) (2.5)

ht = ot� tanh(ct) (2.6)

Here, xt represents the input vector, while it , ft , c̃t ,ct ,ot ,ht represent the input gate, for-

get gate, cell candidate, memory cell, output gate, and output vector respectively. W and b

are learnable model parameters. σ is the sigmoid function. tanh is the hyperbolic tangent

function, and � denotes an element-wise product operation as shown in Figure 2.76.

Figure 2.7: Long Short-Term Memory

6Source: https://medium.com/@saurabh.rathor092/simple-rnn-vs-gru-vs-lstm-difference-lies-in-more-
flexible-control-5f33e07b1e57

24

2.10. RECURRENT NEURAL NETWORK (RNN)

2.10.2 Gated Recurrent Unit (GRU)

Introduced by Cho et al. (2014), a Gated Recurrent Unit (GRU) also aims to solve the

long-distance dependencies problem associated with a standard RNN by using a different

gating mechanism than an LSTM. The GRU and LSTM are considered almost equivalent

because both are designed similarly and, in many cases, produce equally excellent results.

An GRU controls the flow of information like the LSTM unit, but without having to use

a memory unit. Also, it combines the forget and input gates into a single “update gate”.

GRUs are relatively new, have a less complex structure, train faster, are computationally

more efficient and can perform better than LSTM on less training data. We can formulate

the GRU denoted as a function GRU , as follows:

st = GRU(xt ,st−1)

The above GRU function contains the formulations from Cho et al. (2014),

zt = σg(Uzxt +Wzst−1 +bz)

rt = σg(Urxt +Wrst−1 +br)

st = zt� st−1 +(1− zt)�σh(Usxt +Ws(rt� st−1)+bs)

Here, xt and st denotes input vector and hidden state, respectively. zt and rt denotes the

update gate and the reset gate. The U,W,B denotes model parameters. σg and σh denotes

sigmoid function and hyperbolic tangent. The reset gate determines how to combine the

new input with the previous memory, and the update gate defines how much of the previous

memory to keep as shown in Figure 2.87.

7Source: https://www.kaggle.com/honeysingh/intro-to-recurrent-neural-networks-lstm-gru

25

2.10. RECURRENT NEURAL NETWORK (RNN)

Figure 2.8: Gated Recurrent Unit

2.10.3 Bidirectional Recurrent Neural Network (Bi-RNN)

Over the years researchers have developed more sophisticated types of RNNs to deal

with some of the shortcomings of the standard RNN model. Bidirectional RNNs (Bi-RNNs)

are based on the idea that the output at time may not only depend on the previous elements

in the sequence, but also in future elements in the sequence. For example, to predict a

missing word in a sequence we look at both the left and the right context. A bidirectional

RNN is two RNNs (forward and backward RNN) stacked on top of each other. Here, the

forward RNN encodes the source sequence in its original order (x1,x2, . . . ,xT) from left-

to-right and generates a sequence of hidden states (−→s1 ,
−→s2 , . . . ,

−→sT). The backward RNN

encodes the source sequence in reverse order, from right-to-left (xT ,xT−1, . . . ,x1) and gen-

erates (←−s1 ,
←−s2 , . . . ,

←−sT). The final hidden state is then computed based on the combined hid-

den state of both RNNs i.e., si =
[−→

sT
i ,
←−
sT

i

]T
. Figure 2.98 shows the conceptual diagram of

an Bi-RNN. This figure also shows the difference between a simple RNN and an Bi-RNN.

These Bi-RNN can be a simple RNN, LSTM or GRU.

8Source: http://colah.github.io/posts/2015-09-NN-Types-FP/

26

2.10. RECURRENT NEURAL NETWORK (RNN)

Figure 2.9: An RNN vs. A Bidirectional Recurrent Neural Network

2.10.4 Deep Bidirectional Recurrent Neural Network (D-Bi-RNN)

Deep Bidirectional RNNs (D-Bi-RNNs) are similar to Bidirectional RNNs; however

they have multiple layers per time step. For example, let us say we have a 3-layer deep Bi-

RNN. Then at every time step t, the output of Layer 1 becomes the input for Layer 2, and the

output of Layer 2 becomes the input for Layer 3. In practice this gives us a higher learning

capacity; however, we need more training data to show its improved learning capacity.

Figure 2.109 shows the conceptual diagram of an D-Bi-RNN. An D-Bi-RNN can use an

RNN, LSTM or GRU. The calculation at time step t for a 3-layer deep Bi-RNN can be

formulated as follows:

s1,t = RNN1(xt ,s1,t−1)

s2,t = RNN2(s1,t ,s2,t−1)

s3,t = RNN3(s2,t ,s3,t−1)

where sn,t is the hidden state for the nth layer at time step t of an RNN. RNNn is the RNN

function for the nth layer. This formula can be generalized to calculate a n-layer deep

9Source: http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-
rnns/

27

2.11. CONVOLUTIONAL NEURAL NETWORK (CNN)

Bi-RNN.

Figure 2.10: A Deep Bidirectional Recurrent Neural Network

2.11 Convolutional Neural Network (CNN)

Proposed by LeCun et al. (1999), a convolutional neural network (CNN) is one of the

variants of neural networks used heavily in the field of Computer Vision. It derives its name

from the convolution operation which is performed on the hidden layers of the network.

The hidden layers of an CNN typically consist of convolutional layers, pooling layers, fully

connected layers, and normalization layers. Instead of just using the normal activation

function such as a Rectified Linear Unit (ReLU), the convolution and pooling operations

are used in addition to the activation function. Weight sharing is one of its main features. As

a result, it reduces the number of weights significantly. Also, CNNs are very good feature

extractors. They can extract useful attributes from an already trained CNN with its trained

weights. The following are the major building blocks of a basic CNN:

Convolutional Layer: A convolutional layer applies a convolution operation on the

input layer, passing the results to next layer. A convolution operation is computing a dot

product between the filter weight and a small region in the input. This will change the output

28

2.11. CONVOLUTIONAL NEURAL NETWORK (CNN)

dimensions depending on the filter size used and number of filters used. Figure 2.1110

shows the convolution operation. Here, red box in matrix I denotes the small region for

convolution, K denotes the weights for the filter and * denotes the dot product. Therefore,

I*K denotes the convoluted feature and the 4 shown in green is the dot product of red box

and blue box. The matrix for the convoluted feature is filled by sliding the convolution

operation from left to right and top to bottom. The sliding operation is determined by a

parameter called stride in an CNN.

Figure 2.11: Convolution Operation

Activation Function Layer: This layer applies one of the activation functions. Recti-

fying Linear Unit (ReLU) is the most common activation function in the case of an CNN.

The ReLU layer applies the ReLU activation element-wise. It does not change the dimen-

sions of the previous layer. It is a mathematical function, which returns a positive value

or 0 in place of previous negative values. Other examples of activation functions for an

CNN are: Leaky ReLU, Scaled Exponential Linear Unit (SELU), tanh, sigmoid, and step

activation functions.

Pooling Layer: The Pooling layer performs a down-sampling operation along the width

and results in the reduction of the dimensions. The sole purpose of pooling is to reduce

the number of spatial dimensions. There are various types of pooling in which the most

common is max pooling (i.e., taking the maximum element from the window). Figure

10Source: http://www.deeplearningessentials.science/convolutionalNetwork/

29

2.11. CONVOLUTIONAL NEURAL NETWORK (CNN)

2.1211 shows an example of max pooling.

Figure 2.12: Example of max pooling

Stride: Stride indicates by how much we move our window. For example, when we

have a stride of one we move across and down a single pixel. With higher stride values, we

move a larger number of pixels at a time and hence produce smaller output volumes.

Padding: Padding is used to preserve the boundary information, since without padding

they are only traversed once.

Flattening Layer: This layer converts the 3-dimensions (height,width,depth) into a

single long vector inorder to feed it to next layer which is usually a fully connected layer or

Dense layer. It connects every neuron in one layer to every neuron in the next layer.

Fully Connected Layer: Fully connected layers or dense layers are the same hidden

layers consisting of a defined number of neurons connected with elements of adjacent layers

that we discussed in Section 2.9.1.

Output Layer: The output layer is also the same as a fully connected layer but the

number of neurons depends on our task. For example, a task to classify five sentiments will

have five neurons on the output layer.

Figure 2.1312 shows the complete process of a convolutional neural network. We pass

an input image to the first convolutional layer. The convoluted output is obtained as an

activation map. The filters applied in the convolution layer extract relevant features from

11Source: http://cs231n.github.io/convolutional-networks/
12Source: https://towardsdatascience.com/how-to-teach-a-computer-to-see-with-convolutional-neural-

networks-96c120827cd1

30

2.12. MODEL IMPROVEMENT TECHNIQUES

Figure 2.13: Convolutional Neural Network: Putting Everything Together

the input image to pass further. Each filter gives a different feature to help with the correct

class prediction. In case we need to retain the size of the image, we use the same padding

(zero padding). Otherwise valid padding is used since it helps to reduce the number of

features. Pooling layers are then added to further reduce the number of parameters. Several

convolution and pooling layers are added before the prediction is made. A convolutional

layer helps in extracting features. As we go deeper in the network more specific features are

extracted as compared to a shallow network where the features extracted are more generic.

The output layer in an CNN as mentioned previously is a fully connected layer, where the

input from the other layers is flattened and sent so as to transform the output into the number

of classes as desired by the network.

2.12 Model Improvement Techniques

In this section we will discuss some improvement techniques that were used in our

proposed model.

2.12.1 Residual Network (ResNet)

A Residual Network (ResNet) is a Neural Network architecture which solves the prob-

lem of vanishing gradients by skipping over a layer during gradient computation. It pro-

31

2.12. MODEL IMPROVEMENT TECHNIQUES

vides a shortcut at each layer during back propagation when it is difficult to compute the

gradient. Usually, the activation function at the traditional network’s layer is defined as:

y = f (x). Here, f(x) can be a convolution, matrix multiplication, or batch normalization.

When calculating the gradient during back propagation through time, the gradient always

must pass through f (x). This computation can be problematic when these functions are

non-linear. ResNet solves this problem by creating a skip connection and by avoiding the

gradient computation of “f(x)”. Residual connection is formulated as below:

y = f(x) + x

Here, “+ x” creates the shortcut to the activation function for the layer. This shortcut allows

the gradient to pass backwards directly by skipping over the “f(x)” part. In theory, by stack-

ing these layers, the gradient could skip over all the layers and reach the bottom without

being diminished. As a result, this architecture could be used to create a deeper Network

without having the issue of vanishing gradient.

2.12.2 Highway Network

The Highway Network is the extension of the Residual Network. For the Residual

Network, the activation function consists of the non-linear function and the skip connection

in a uniform way; whereas for the Highway Network, the activation function consists of

the weighted average of the non-linear function and the skip connection. The weights are

learned by the model. These weights determines to what extent each layer should have a

skip connection or a nonlinear connection. A Highway Network is formulated as below:

y = W f(x) + (1 - W) x

Here, f (x) and x are similar to the Residual Network. However, this time in Highway

Network each non-linear connection and skip connection are governed by the weight W .

32

2.12. MODEL IMPROVEMENT TECHNIQUES

This weight is learned by the model itself and determines to what extent each connection

should be used during gradient computation.

2.12.3 Linear Layer

The linear layer is a fully connected feed forward layer without having any activation

function. A fully connected feed forward network is one of the types of a Feed Forward

Network. We already talked about Feed Forward Networks in Section 2.9.1. In a Fully Con-

nected Feed Forward Neural Network (FCFFNN), each unit of one layer are connected to

all units of the previous and forward layers. FCFFNN is one of the most basic and simplest

neural networks. FCFFNNs are usually governed by an activation function for each unit;

however in the linear layer, there is no activation function. The output of each processing

unit is just the weighted sum of its inputs. This layer is used when the contribution of each

input to another layer is not known and these inputs are passed to the linear layer so the

model learns the weights or contributions for each input. Also, we use a linear layer when

we know or assume that there exists a linear relationship between one layer and another

layer.

2.12.4 Dropout

One of the most common problems while training a model is overfitting as this reduces

the model’s performance on unseen data. Regularization is a technique which makes slight

modifications to the learning algorithm such that the model generalizes better, and thus im-

proves the model’s performance on the unseen data. Introduced by Srivastava et al. (2014),

dropout is the most sought after regularization technique which produces very good results.

Dropout performs better than a normal neural network model. Dropout is usually preferred

when we have a large neural network structure in order to introduce more randomness.

Hence, we have used the dropout technique in our proposed model.

The term “dropout” refers to dropping out units (i.e., neurons) in a neural network.

Chosen randomly, these selected units are not considered during a particular forward or

33

2.12. MODEL IMPROVEMENT TECHNIQUES

backward pass of the training phase. The probability of choosing how many nodes are

dropped is one of the hyperparameters of the model. To understand dropout better, say we

have a fully connected neural network architecture where each neuron of one layer are con-

nected to all neurons of another layer. At every layer, a dropout function randomly selects

some nodes and removes them along with all of their incoming and outgoing connections.

As a result, each iteration has a different set of nodes and this results in a different set of

outputs.

2.12.5 Batch Normalization

Introduced by Ioffe and Szegedy (2015), batch normalization is a technique used for

improving the performance and stability of a neural network. Batch normalization leads to

faster training and can help avoid large weights in the network. It is a technique to provide

any layer in a neural network with inputs and outputs that are zero mean variance.

Usually we only normalize our input layer with the hope of scaling our input data and

just ignore to normalize the hidden layer. We assumed that only normalizing the input layer

is sufficient for our purpose. However, this is not the case. For example, in our neural

network, if one of the weights of the hidden layer drastically increases to a big number,

then this will result in the exploding of the weights of the subsequent layers. This might

trigger the exploding of the whole network. This exploding can be prevented with the help

of batch normalization where the outputs of each activation layer are normalized. As the

normalization is done per batch basis, the name of batch normalization is given to it. The

batch normalization can be formulated as below:

z =
x−m

s

z = z∗g+b

Here, the first equation normalizes output from the activation function. The second equa-

34

2.12. MODEL IMPROVEMENT TECHNIQUES

tion passes the normalized activation output through a linear equation where g and b are

trainable parameters. x is the activation output, m is the mean, and s is the standard devi-

ation, and z is the normalized activation output which is the input for the next layer. For

example, say there is a batch normalization between hidden layer 1 and hidden layer 2.

Then the output of hidden layer 1 is the input to batch normalization (represented by x in

above equation). Then the output of the batch normalization will be the input to hidden

layer 2 (represented as z in above equation).

2.12.6 Bucketing Mechanism

The bucketing mechanism is implemented in our model to improve the training speed.

As bucketing helps reduce the amount of padding, this leads to faster training. To under-

stand it better, let us say we have two buckets [100, 20, 20] and [200, 40, 400]. The first

bucket takes the passage length of 100, the query length of 20, and the summary length

of 20 and the second one takes the passage length of 200, the query length of 40, and the

summary length of 40. Now let us assume we have four data of length (50, 10, 10), (100,

20, 20), (150, 30, 30) and (200, 40, 40). Assuming the batch of 2, and not using bucketing

mechanism, if we pick two data, then those two data could be random. For simplicity, let

us pick the data of length (50, 10, 10) and (200, 40, 40). Now to pass both the data as a

batch, the data of length (50, 10, 10) would have to be padded 150 times for the passage,

30 times for the query and 30 times for the summary. For the second batch with data of

length (100, 20, 20) and (150, 30, 30), the data of length (100, 20, 20) would be padded 50

times for the passage, and 10 times for the summary. All together, the total padding would

be (150+30+30+50+10+10) = 280 times. Now, if we implement a bucketing mechanism,

then data of length (50, 10, 10) and (100, 20, 200) would go under the bucket [100, 20,

20] and the data of length (150, 30, 30) and (200, 40, 40) would go under the bucket [200,

40, 40]. The padding for the first bucket would be 50 times for the passage, 10 times for

the query, and 10 times for the summary. The padding for the second bucket would be 50

35

2.12. MODEL IMPROVEMENT TECHNIQUES

times for the passage, 10 times for the query, 10 times for the summary. All together, the

total padding would be (50+10+10+50+10+10) = 120 times. As a result, with this example

we can sense that the bucketing mechanism reduces the unnecessary padding at the end of

the sequence. This would lead to less computation and hence lead to faster training of the

model. In a way, the bucketing mechanism helps partially sort the data based on the data

length. Selection of similar length data for the batch reduces the amount of padding.

2.12.7 Beam Search

Since the summarization task is considered an NP-hard problem, it is computationally

expensive to get an exact solution to the decoding the output sequence. We normally use

some heuristic algorithm to solve this task. The most basic one is a Greedy Search al-

gorithm. This algorithm is useful in machine translation and many seq2seq models. In a

greedy search, we simply calculate the probability distribution of the word at every time

step, and select the word that gives us the highest probability, and use it as the next word in

our sequence. However, a greedy search is not guaranteed to find the output translation with

the highest probability due to the local optimum. One possible solution to this problem is

to consider the n-best words at each time step of the decoder. A Beam Search is a heuristic

search algorithm that explores a graph by expanding the most probable node in a limited set

(usually called beam search size). It is often used when the solution space is significantly

very large for the applications such as machine translation, speech recognition and natural

language generation. It is extremely useful where there is not enough memory available to

consider all the possible solutions.

A Beam search builds a search tree using a breadth first search algorithm and sorts

the nodes according to the sum of the log probability of the generated words at each level

of the tree. A Beam search is similar to a greedy search, but instead of considering only

the 1-best word, we consider the b best words at each time step of the decoding, where b

is the beam search size. Thus, the b best nodes with highest scores are expanded in the

36

2.13. SEQUENCE TO SEQUENCE (SEQ2SEQ) NETWORK

next level. This reduces the space and time requirements significantly. However, as it is

a heuristic algorithm, there is no guarantee of a global optimum solution in case of beam

search. However, a beam search is often used in decoding process as this algorithm yields

better performance than a greedy search. Our proposed model also uses the beam search

algorithm during the decoding at the inference or test phase.

2.13 Sequence to Sequence (Seq2Seq) Network

A Sequence to Sequence (Seq2Seq) network, or seq2seq network, is a model consisting

of two RNNs (or sometimes an CNN and an RNN) called the encoder and decoder respec-

tively. The encoder reads a variable length input sequence and outputs a single fixed size

context vector, and the decoder reads that fixed length context vector to produce a variable

length output sequence. The encoder-decoder model provides a pattern for using RNNs or

CNNs to address challenging sequence-to-sequence prediction problems, such as machine

translation and document summarization. As a result, the Encoder-Decoder architecture

with RNNs has become an effective and standard approach for both Neural Machine Trans-

lation (NMT) and Sequence-to-Sequence (Seq2Seq) prediction in general.

The key benefits of the network are the ability to train a single end-to-end model di-

rectly on input and output sentences and the ability to handle variable length input and

output sequences of text. Also, seq2seq network does not rely on human designed features

which was one of the major requirements to previous traditional approaches like statistical

machine translation. This eliminates the need to heavily pre-process the data.

2.13.1 Encoder-Decoder Framework

The details about the encoder-decoder framework will be discussed in Chapter 3. But

in general, the task of an encoder network is to understand the input sequence, and create a

smaller dimensional representation of it. This representation is then forwarded to a decoder

network which generates a sequence of its own that represents the output. The encoder of a

37

2.14. SUMMARY

seq2seq network is an RNN that outputs some value for every word from the input sentence.

For every input word the encoder outputs a vector and a hidden state, and uses the hidden

state for the next input word. The decoder is another RNN that takes the encoder output

vector(s) and outputs a sequence of words to create the translation (in case of machine

translation) or the summary (in case of document summarization). In the simplest seq2seq

decoder we use only last output of the encoder. This last output is sometimes called the

context vector as it encodes context from the entire sequence. This context vector is used

as the initial hidden state of the decoder. At every step of decoding, the decoder is given an

input token and hidden state.

2.13.2 Attention Mechanism

If only the context vector is passed between the encoder and decoder, that single vector

carries the burden of encoding the entire sentence. Attention allows the decoder network

to “focus” on a different part of the encoder’s outputs for every step of the decoder’s own

outputs. First we calculate a set of attention weights. These will be multiplied by the

encoder output vectors to create a weighted combination. The result contains information

about that specific part of the input sequence to focus, and thus helps the decoder choose

the right output words. Calculating the attention weights is done with another feed-forward

layer, using the decoder’s hidden state and encoder’s hidden outputs as inputs.

2.14 Summary

In this chapter, we presented recent related works in neural summarization research

and discussed the necessary background information. All information from this chapter is

necessary to understand this thesis work as our proposed models heavily depend on these

concepts. From the next chapters, we will start introducing our proposed query-focused

summarization models.

38

Chapter 3

Query Focused Abstractive Document
Summarization Using Neural Network

3.1 Introduction

Query-focused abstractive document summarization (QFADS) is a process of summa-

rizing a single document into a condensed summary that focuses on the context of the query

where the summary sentences are formed on its own with the help of natural language gen-

eration techniques. According to our previous explanation of a seq2seq network, QFADS

can be regarded as a sequence mapping task where the source text (i.e., query combined

with a document) should be mapped to the target summary. The dataset for QFADS con-

tains (query, document, summary) triplet tuples. Therefore, a sequence-to-sequence learn-

ing can be applied to QFADS when the model consists of two encoders (one each for the

query and the document) and a decoder. Attention mechanisms have been broadly used in

seq2seq models where the decoder focuses on the specific parts of the document to extract

information which are considered important for the decoding process. The same attention

mechanism can be used for query-focused abstractive summarization as well. Many pro-

posed attention-based seq2seq methods for abstractive summarization have outperformed

the traditional statistical methods.

One of the current major problems in the research field of query-focused document

summarization is the lack of research on this task. Although attention based seq2seq mod-

els have gained popularity on generic abstractive summarization, not enough attention is

given to the query-focused abstractive text summarization where the aim is to generate the

39

3.1. INTRODUCTION

summary of a document given the context of a query. Although query-focused summariza-

tion is more practical than the generic summarization, there has not been enough research

conducted in this field. In addition, there does not exist a proper standard dataset which can

be used for the task of query-focused summarization.

Also, recent studies have shown that there are various shortcomings to the attention

mechanism. Although the purpose of the attention mechanism is to show the alignment

relationship between the input sequence and the output sequence, no clear alignment re-

lationship exists between an input sequence and an output sequence (Zhou et al., 2017).

The alignment is the match between the target output and the specific input word. High

alignment score shows that the decoder was focusing heavily on that input word while gen-

erating the target output. Our thesis work is based on the hypothesis that the encoder is

too confused and noisy with only simple bidirectional RNN (Bi-RNN) unit. The Bi-RNN

unit was initially proposed for sentence summarization; however, current research is us-

ing the Bi-RNN to encode the whole document. As a result, the confused encoder output

contains noise for the attention. This eventually leads to unclear alignment between the

input sequence and the output sequence. Hence, the current attention-based seq2seq model

for query-focused and generic abstractive summarization suffer from grammatical errors,

repetitions, and poor representations of important ideas from the source document.

To solve the above problems, we propose a model consisting of a novel selective mech-

anism for the QFADS task. In text summarization, the document texts are usually very

long and noisy. The document often contains unnecessary or redundant information. By

the time an RNN is encoding the end text of the document, the start encoding information

has already vanished due to the inability of the RNN to represent long texts. This results in

the bad representations of the long texts, and therefore making the encoder outputs noisy

and confused. Although it takes twice the encoding time, an Bi-RNN is an alternative to

deal with the problem. However, an Bi-RNN does not represent the middle of a text well

when the texts are too long. One way to solve this problem is by selectively encoding a

40

3.3. PROPOSED MODEL: A COMPLETE DIAGRAM

long text. Many words in a long text are unimportant and can be discarded. Using this

idea, we propose a novel selective mechanism to better represent long texts. This selective

mechanism can reduce the unnecessary information and enhance the important information

to represent a long text in a better way. We use a convolutional gated network for the pur-

pose of selective mechanism on a long document text. An CNN architecture is chosen in

our mechanism as they are great feature extractors as mentioned in Section 2.11. Also due

to its parameter sharing ability, CNNs are great at learning global features of the corpus.

CNNs also learn important local features from the document due to its convolution oper-

ation. The final selective encoding is done on a document with the consideration of these

global and local features. As the queries are relatively short, the selective encoding is only

done on documents. We conduct experiments on Debatepedia (Nema et al., 2017) dataset,

a recently developed dataset for query-focused abstractive summarization, which shows

that our model outperforms the state-of-the art model in ROUGE-1, ROUGE-2, ROUGE-L

scores.

3.2 Task Description

Given a query q = q1, q2, . . . , qk containing k words, a passage s = s1, s2, . . . , sn

containing n sentences, and a sentence w = w1, w2, . . . , wl containing l words, the task is

to generate a context based summary y = y1, y2, . . . , ym containing m words. This task of a

QFADS can be achieved by finding the probability y* such that it maximizes the probability

p(y|q,s). Using Bayes theorem, it can be further decomposed into following:

y∗ = argmaxy

m

∏
t=1

p(yt |y1, . . . ,yt−1,q,s)

The above equation for y* can be modeled using the neural network framework.

41

3.3. PROPOSED MODEL: A COMPLETE DIAGRAM

Figure 3.1: Our Proposed Model For Query Focused Abstractive Document Summarization

42

3.3. PROPOSED MODEL: A COMPLETE DIAGRAM

3.3 Proposed Model: A Complete Diagram

Figure 3.1 shows the complete diagram of our proposed model for the QFADS. The

lines with the arrow show the flow of the data from one layer to another layer. The solid

lines signify that the data remains same at every time step of decoding process whereas the

dotted lines signify that the data may change at every time step of the decoding process. For

example, the solid line from the self-attention layer to the gated layer indicates that the data

will be same throughout all time steps of the decoding process, but the dotted line between

the passage gated layer and the passage attention layer indicate the weights of the attention

may change at every time step of the decoding process.

For both the query and the passage of the document:

• The embedding layer consists of three different embeddings: character-level, word-

level, and sentence-level embedding and they are denoted by a gold, purple, and pink

colored box, respectively.

• The concatenation layer consists of a linear layer and two highway layers to combine

all the embeddings into a single embedding.

• The encoding layer encodes the concatenated embeddings using two LSTMs (one

each for query and passage). The double-sided arrow on the encoding layer indicates

that the LSTMs for both the passage and the query are bidirectional.

Only the passage of the document goes through next three layers (InceptionNet Layer,

Self-Attention Layer, and Gated Layer) as a part of our novel selective mechanism.

As it would be too confusing to show all the connections of the attention mechanism

for the passage and the query at every time step of the decoding process, we are only

showing the connections of the attention mechanism for time step 2 of the decoding process

assuming the time step started from zero. The inputs to the query attention are the outputs

of the query D-Bi-LSTM encoder and the hidden decoder state at time step 1 (shown in

dotted blue). The query attention is used to calculate the query context. The query context

43

3.4. PROPOSED MODEL: AN OVERVIEW

is used to calculate the passage attention and to predict the next output word. As a result,

the query context is passed to the passage attention layer (shown in dotted dark green) and

the current output layer (shown in dotted red) as input. The inputs to the passage attention

are the outputs of gated layer, the query context, and the hidden decoder state at time step 1

(shown in dotted dark green). The passage attention is used to calculate the passage context.

The passage context is used to calculate the current hidden decoder state and to predict the

next output word. As a result, the passage context is passed to the current decoding layer

(shown in dotted light green) and the current output layer (shown in dotted red) as input.

The decoder initial state is the input at time step 0 (shown in solid dark orange). For time

step 2, the passage context (shown in dotted light green), the embedding of the predicted

output word at time step 1 (shown in dotted dark orange), and the previous hidden decoder

state at time step 1 (shown in solid black) become the inputs for the decoding layer. Then

the hidden output of the decoder layer (shown in solid black), the passage context (shown

in dotted red), and the query context (shown in dotted red) become the inputs for the output

layer. The output of the output layer is the predicted word at time step 2. For time step 2,

in our diagram, the output of the output layer is the word “of” as shown in Figure 3.1.

3.4 Proposed Model: An Overview

Our model uses a sequence-to-sequence network to solve the problem of QFADS. The

Encoder-Decoder Framework with Attention Mechanism (EDA) architecture with RNNs

has become an effective and standard approach for Sequence-to-Sequence (Seq2Seq) pre-

diction in general. We are also using this EDA architecture to solve the task. However, our

EDA architecture is different as compared to the traditional EDA architecture. First of all,

our model uses CNNs along with RNNs to predict the output sequence. Also, our model

has multiple layers before the encoding layer and in between the encoding and the attention

layer. Usually the traditional EDA architecture has layers in following order: input em-

bedding layer, encoding layer, attention layer, output embedding layer, decoding layer, and

44

3.4. PROPOSED MODEL: AN OVERVIEW

finally output layer; however, our model has layers in following order: input embedding

layer, concatenation layer, encoding layer, InceptionNet layer, self-attention layer, gated

layer, attention layer, concatenation layer, output embedding layer, decoding layer, and fi-

nally output layer. Therefore, we add four new layers to the EDA framework; concatenation

layer, InceptionNet layer, self-attention layer, and gated layer. Also, our model uses a differ-

ent embedding layer. Usually the traditional EDA framework only has the word embedding

layer which is forwarded to the encoding layer; however, our model’s embedding layer has

the character-level, word-level, and sentence-level embeddings which are concatenated us-

ing the concatenation layer and forwarded to the encoding layer. Multi-level embedding

is done for both the query and the passage of the document. Also, most of the traditional

seq2seq networks were used for the task of generic abstractive document summarization;

however, we are using this framework for QFADS. The rest of this section shows the flow

of the data of our modified sequence-to-sequence network:

• First, the words are embedded into vector spaces, one using a character level embed-

ding layer and another using a word level embedding layer. Then, the sentences are

embedded into another vector space using a sentence level embedding layer. Since

our proposed model is query-focused summarization, this is done for both the query

and the passage of the document.

• Then, three query embeddings are concatenated into a single query embedding using

a concatenation operation, a linear layer and two highway layers. Similarly, three

passage embeddings are concatenated into a single passage embedding. As a result,

we will have one concatenated embedding for the passage of the document and have

another concatenated embedding for the query.

• Once all the embeddings are concatenated, the query embedding is fed into the query

encoder to produce hidden query encoder states. Similarly, the passage embedding is

fed into the passage encoder to produce hidden passage encoder states.

45

3.4. PROPOSED MODEL: AN OVERVIEW

• Then, the hidden passage encoder outputs are passed through the InceptionNet layer.

we use InceptionNet layer because the hidden passage encoder outputs are too noisy

and confused due to the inability of the LSTM to handle long lengths of passage

text in a document. Local and global features are learned for the document and the

corpus, respectively. Unlike the hidden passage encoder outputs, the hidden query

encoder outputs are not passed through the InceptionNet layer as the query of the

document is relatively short and an LSTM can handle short lengths of query text in a

document. As a result, the hidden query encoder outputs are also not passed through

self-attention layer and gated layer.

• Once all the features of the document and the corpus are learned through the In-

ceptionNet layer, the hidden feature passage encoder outputs are passed to the self-

attention layer to further strengthen the local and global information learning.

• Then, this hidden strengthened featured passage encoder outputs are passed through

the gated layer which removes the unnecessary words based on the information of

local and global features. The combined effect of the InceptionNet, self-attention and

gated layers results in a comparatively shorter but important text which the LSTM

can handle comfortably. One downside to this text shortening process may be that the

syntax information of the sentence might be forfeited as several words in a sentence

are eliminated. However, we hope that the feature extraction layer learns this syntax

information as well since the feature extraction layer learns various local and global

features.

• Then gated passage encoder outputs and the hidden query encoder outputs are calcu-

lated, they are passed to the attention layer in order to calculate the passage attention

and the query attention. For the query attention, the hidden query encoder outputs

and the previous hidden decoder state are used to calculate the query attention energy

score. Then, this query attention energy score is used to calculate the query context.

46

3.5. PROPOSED MODEL: LAYER DESCRIPTIONS

For the passage attention, the gated passage encoder outputs, the query context, and

the previous hidden decoder state are used to calculate passage attention energy score.

Then this passage attention energy score is used to calculate the passage context. The

query context and passage context may be different at each time step of the decoding

process.

• Then, the final hidden states of both the query encoder and the passage encoder are

passed through the final state concatenation layer to get the hidden decoder initial

state. This hidden decoder initial state is used at time step 0 of the decoding process

as an input to the decoding layer.

• Then, during inference, the previously predicted word is embedded into vector spaces

using the output embedding layer. This output embedding layer only uses a word

level embedding layer unlike the query and the passage. During the training, the

target input is embedded into vector spaces.

• Then, the passage context is passed to the decoding layer in order to generate the

current hidden decoder state. This decoding layer also takes the previous hidden

decoder state and the embedded vector as input.

• Then, the current hidden decoder output is fed into the output layer along with the

passage context and the query context to predict the next output word. This predicted

output word is fed into the next time step’s decoding layer as an input during inference

and is compared against the target output during training.

3.5 Proposed Model: Layer Descriptions

In this section, we will describe each layer which are included in our proposed model

for the QFADS task. The layers described are in accordance to the data flow mentioned in

Section 3.4.

47

3.5. PROPOSED MODEL: LAYER DESCRIPTIONS

3.5.1 Input Embedding Layer

The input embedding layer is the first layer of the model. As told earlier in Section

2.6, the embedding layer is responsible for converting the words from human language to

high-dimensional vector space which the machine/computer is able to understand. This

layer is different than the embedding layer of a traditional EDA framework. The traditional

EDA framework’s embedding layer consists of single word level embedding layer whereas

our embedding layer consists of three sub-layers: character level embedding layer, word

level embedding layer, and sentence level embedding layer. The reason behind having

these three sub-layers is to include the information on the overall text document structure in

the proposed model. As a document text consists of characters, words, and sentences, we

chose to embed the texts of the document on the character-level, word-level and sentence-

level respectively. By having these layers, it reflects the true nature of the document text

structure. Paragraph-level and document-level embedding can be performed as a part of

future work as the document consists of paragraphs and complete document along with

characters, words, and sentences. The remaining of the section describes each embedding

sub-layer.

Character Level Embedding Layer

The Character level embedding layer is responsible for mapping each word to a high-

dimensional vector space using a character-level CNN. Let w1, . . . ,wD and q1, . . . ,qQ repre-

sent the words in the passage and query of the document, respectively. Using the technique

from Kim (2014), we obtain the character level embedding of these words (i.e., both the

query words and the passage words) using an CNN. The characters in these words are

embedded into vectors (of size 300 dimension for this proposed model), which can be con-

sidered as two dimensional (2D) inputs to the CNN, and whose size is the input channel size

of the CNN. The outputs of the CNN are fixed-size vectors for each word. As a result, any

length of word is converted into a fixed-sized vector representation. In our proposed model,

48

3.5. PROPOSED MODEL: LAYER DESCRIPTIONS

the output size of the CNN is the same as the embedding size of the word embedding layer

(i.e., 300). Advanced regularization techniques like dropout and batch normalization are

used to improve the model performance. The character level embedding layer for the query

and the passage can be formulated as follows:

CLQWE = Conv2D (query inputs character embeddings)

CLPWE = Conv2D (passage inputs character embeddings)

Here, CLQWE and CLPWE represent Character-Level Query Word Embeddings and Character-

Level Passage Word Embeddings, respectively. The query inputs character embeddings are

obtained via the lookup of character embedding matrix for each characters in query words.

The passage inputs character embeddings are obtained via the lookup of character embed-

ding matrix for each characters in passage words. Conv2D computes a 2-D convolution

given 4-D input.

Word Level Embedding Layer

The Word level embedding layer also maps each word to a high-dimensional vector

space. Word embeddings provide a dense representation of words and their relative mean-

ings as compared to a one hot vector. They are an improvement over sparse representations

like one hot encoding or the bag of words model. Word embeddings can be learned from

text data and reused among projects. They can also be learned as part of fitting a neural

network on text data. We use pre-trained word vectors called FastText Word Embedding

(Bojanowski et al., 2017), to obtain the fixed word embedding of each word. The pre-

trained word embedding used in this model can be further fine tuned as well; however,

our word level word embeddings remained constant throughout the training and inference

period. A Word level embedding layer was utilized for both the query and the passage of

the document using the same pre-trained word embedding matrix. The word embedding

of each word (both the query and the passage) is obtained via the lookup of that particular

49

3.5. PROPOSED MODEL: LAYER DESCRIPTIONS

word on same word embedding matrix. The word level embedding layer for the query and

the passage can be formulated as follows:

WLQWE = Lookup (query word inputs, matrix)

WLPWE = Lookup (passage word inputs, matrix)

Here, WLQWE and WLPWE represent Word-Level Query Word Embeddings and Word-

Level Passage Word Embeddings, respectively. The query word inputs and the passage

word inputs represents the input sequence of query words and passage words, respectively.

Lookup represents the lookup operation mentioned above, and matrix represents the word

embedding matrix mentioned above.

Sentence Level Embedding Layer

The Sentence level embedding layer also maps each sentence to a high-dimensional

vector space. Sentence embeddings provide a dense representation of sentences and their

relative meanings. We used Google’s pre-trained Universal Sentence Encoder (USE) model

(Cer et al., 2018) to obtain the fixed sentence embedding of each sentence. The embedding

size of the sentence embedding is 512 dimension. The sentence embedding remained con-

stant throughout the training and inference period. The sentence level embedding layer for

the query and the passage can be formulated as follows:

SLQSE = USE (query sentence inputs)

SLPSE = USE (passage sentence inputs)

Here, SLQSE and SLPSE represent Sentence-Level Query Sentence Embeddings and

Sentence-Level Passage Sentence Embeddings, respectively. The query sentence inputs

are the input sequence of the query sentence and the passage sentence inputs are the input

50

3.5. PROPOSED MODEL: LAYER DESCRIPTIONS

sequence of the passage sentence. USE represents the Google’s pre-trained USE model

which is used to obtain the sentence embedding for each sentence in the query and the

passage.

3.5.2 Input Concatenation Layer

The input concatenation layer is a utility layer that concatenates three embeddings into

a single embedding. As only a single embedding for each word is accepted as the input

to the encoder, it is required to combine all three embeddings into a single embedding for

each word for both the query and the passage of the document. The model automatically

learns how much information should be taken from each embedding as all three embed-

dings are passed through the linear and highway layer and the weighted average of all three

embeddings is passed to the encoding layer.

First, using a linear layer the sentence embeddings are converted into the 300-dimension

vectors as both the character-level and the word-level word embeddings are of that size.

Once all the embeddings have the same dimension, they are concatenated using another

linear layer. Then, those concatenated embeddings are passed through a highway layer. We

are using a highway layer as the part of concatenation process because the highway layer is

superior to the basic linear layer. This whole process is done for both the query embeddings

and the passage embeddings. The input concatenation layer for the query and the passage

can be formulated as follows:

QE = ConcatLayer (CLQWE, WLQWE, SLQSE)

PE = ConcatLayer (CLPWE, WLPWE, SLPSE)

Here, CLQWE, CLPWE, WLQWE, WLPWE, SLQSE and SLPSE are defined in pre-

vious layers. QE and PE represent the final concatenated Query Embeddings and Passage

Embeddings, respectively. ConcatLayer represents the concatenation operation along with

51

3.5. PROPOSED MODEL: LAYER DESCRIPTIONS

the linear and highway layers.

3.5.3 Encoding Layer

Figure 3.2: A general encoder

The encoding layer is the third layer of our proposed model. This layer is responsi-

ble for encoding the input sequence (both the query and the passage of the document) a

via deep bidirectional LSTM. The encoding layer consists of two encoders: Query Encoder

and Passage Encoder. The query encoder encodes the query representation whereas the pas-

sage encoder encodes the passage representation. Figure 3.213 illustrates a general encoder

which shows the process of encoding words to sequential hidden encoder states.

Query Encoder

The query encoder in our proposed model is a deep bidirectional LSTM as an LSTM

has the same performance as an GRU along with the advantage of customizability. Given a

query q = q1, q2, . . . , qk containing k words, the query encoder encodes the source query.

The query encoder takes the concatenated query embeddings and the previous query en-

coder state as the input. The output of this query encoder is hidden encoder query state.

This can be described mathematically as follows:

13Source: https://towardsdatascience.com/sequence-to-sequence-model-introduction-and-concepts-
44d9b41cd42d

52

3.5. PROPOSED MODEL: LAYER DESCRIPTIONS

sq
i = DeepBiLSTM(sq

i−1,e(qi))

Here, sq
i represents hidden encoder state at time step i. As mentioned before in Section

2.10.1, sq
i contains hq

i and cq
i . hq =

{
hq

1, . . . ,h
q
k

}
is the sequential hidden query outputs of the

first k words from the input query sequence. DeepBiLST M is a deep bidirectional LSTM

function discussed in Section 2.10.4. e(qi) represents the concatenated embedding of query

word at position i. Once encoded, the sequential hidden query outputs are passed to the

attention layer to calculate query attention.

Passage Encoder

The passage encoder in our proposed model is also a deep bidirectional LSTM. Given

a passage p = p1, p2, . . . , pl containing l words, the passage encoder encodes the source

passage. The passage encoder takes the concatenated passage embeddings and the previous

passage encoder states as the input. The output of this passage encoder is hidden encoder

passage state. This can be described mathematically as follows:

sp
i = DeepBiLSTM(sp

i−1,e(pi))

Here, the notations are similar to query encoder except for letter q (for query) which is

replaced by letter p (for passage). The hidden passage encoder outputs are then forwarded

to the InceptionNet layer.

3.5.4 InceptionNet Layer

The InceptionNet layer is the fourth layer of our proposed model and the first layer to

our novel selective mechanism. This layer is new to the traditional EDA framework. The

InceptionNet layer is responsible for learning the local and global features of the document

and the corpus. This layer is applied only to a passage of the document as the length of

passage text can be quite long. During the introduction of this chapter, we discussed the

53

3.5. PROPOSED MODEL: LAYER DESCRIPTIONS

problem related to long text. Our discussed solution was to selectively encode the long text.

This idea of selectively encoding the text was introduced by Lin et al. (2018). Our model

is inspired by their model; however, our proposed model is different than their model. First

of all, their model was used for the task of generic abstractive document summarization;

however, our model is used for the task of QFADS. Along with passage (document) en-

coder and passage (document) attention, our model also includes query encoder and query

attention. Also, their model uses an Inception module to learn the local and global features

whereas our model uses an Inception Network. An Inception Network chains together mul-

tiple Inception modules to form a single network. The size of each Inception Model is

varied to create a filtering effect. Furthermore, their model uses an attention mechanism

as a post-step to the decoding layer whereas our model uses an attention mechanism as a

pre-step to the decoding layer. Also, inputs to the passage (document) attention mechanism

are different as the query contexts are included in the passage (document) attention along

with the addition of separate query attention to the model’s attention mechanism.

Introduced by Szegedy et al. (2015), the main idea of the Inception module or network

is to carefully design a model that would allow the model to increase the depth (the number

of network levels) and width (the number of units on each level) of the network while

keeping the computational complexity constant. One of the easiest ways to improve the

performance of the neural network is to increase the depth and the width of the network.

However, a uniform increase in the depth and the width of the network leads to a drastic

increase in the computational cost of the network. For example, if two convolutional layers

are chained, any uniform increase in the number of their filters results in a quadratic increase

of the computation cost. Since our computation resources are finite, we need some way to

keep the computational complexity constant despite the increase in the depth and width

of the network. The Inception module solves this problem by introducing sparsity and

replacing the fully connected layers by the sparse ones. This idea was based on the work

by Arora et al. (2014) which states that the optimal network topology can be constructed

54

3.5. PROPOSED MODEL: LAYER DESCRIPTIONS

layer after layer by analyzing the previous layer and putting together neurons with highly

correlated outputs, given the probability distribution of the dataset can be represented by a

large, very sparse deep neural network. This idea also fits nicely with well known Hebbian

(Shaw, 1986) principle which states that the neurons that are fired together, are also wired

together.

The Inception module is the basic building block for our InceptionNet layer. The Incep-

tionNet layer consists of five Inception modules, five residual connections (one connection

for each Inception module), one concatenation operation followed by a linear layer, and

one batch normalization operation. The rest of the section describes in details about the

Inception module and complete InceptionNet layer.

Inception Module

Figure 3.3: Modified Inception Module inspired by Szegedy et al. (2015)

The Inception module is the heart of the InceptionNet layer as it is the most important

unit of the InceptionNet layer. As mentioned earlier, our Inception module is inspired by

55

3.5. PROPOSED MODEL: LAYER DESCRIPTIONS

the Inception Model (Szegedy et al., 2015). Our Inception module consists of several 1-

D convolution layers which convolves all the passage encoder outputs. Each convolution

unit extract local features related to the input passage. Similar to image, the language also

contains local correlations, such as the internal correlation of phrase structure. The con-

volutional units extract these common features in the passage and indicate the correlations

among the input passage sequences. Also, the parameters sharing the convolutional kernels

allow the model to extract certain types of global features, specifically n-gram features.

However, the key thing about this Inception module is not the use of the CNN architec-

ture but the structure of this module. The structure of the Inception module can be seen in

Figure 3.3. The idea of the original Inception model was to use all 1x1 convolution, 3x3

convolution, 5x5 convolution, and max pooling operation and let the model learn which

operation to use instead of guessing which operation to use. However, the increase in the

number of operations to the network lead the drastic increase in the computational cost of

the network. To keep the computational cost of the network constant despite the increase

in the number of operations, they introduced the concept of sparsity. Basically, except for

the 1x1 convolution operation, they created a bottleneck layer by adding 1x1 convolution

before 3x3 convolution and 5x5 convolution and by adding 1x1 convolution operation after

the max pooling operation. This reduced the computational cost to one-tenth of its previous

computational cost. This result inspired us to design our Inception module is a similar way.

However, our structure is modified as compared to the original Inception model. Instead of

using 5x5 convolution, we used two 3x3 convolutions to avoid a huge kernel size. Also,

we have not used the max pooling operation at all. As shown in Figure 3.3, our Inception

56

3.5. PROPOSED MODEL: LAYER DESCRIPTIONS

module can be formulated as below:

IMFO = Conv1D (Passage Encoder Outputs)

IMSO = Conv1D (Passage Encoder Outputs)

IMSO = Conv1D (IMSO)

IMTO = Conv1D (Passage Encoder Outputs)

IMTO = Conv1D (IMTO)

IMTO = Conv1D (IMTO)

IMO = Linear(Concat (IMFO, IMSO, IMTO))

Here, IMO represents the final Inception module outputs and IMFO, IMSO, IMTO repre-

sent the convolved outputs for three different operations (as compared to original Inception

module which consists a 1x1 convolution, a 3x3 convolution, a 5x5 convolution, and a

max pooling). Passage Encoder Outputs represents the hidden outputs from the passage

encoder, denoted as hp in Section 3.5.3. They are the inputs for each initial 1x1 convolution

operation. Conv1D represents the 1-D convolution operation on 3-D inputs and the kernel

size of each 1-D convolution are shown in Figure 3.3 represented as k. Also, each Conv1D

unit includes dropout and batch normalization operation along with convolution operation.

Concat represents the concatenation of the convolved outputs for three different operations

into one final inception module outputs. The concatenation is followed by a linear layer

(represented as Linear) to match the output size.

InceptionNet Layer: Details

The InceptionNet layer chains together five Inception modules to form a single network

which is used by the model to learn the local and global features of the document and the

corpus. Even though a single Inception module would be sufficient to learn the features,

we chained multiple modules together to give the increased depth to the network of our

57

3.5. PROPOSED MODEL: LAYER DESCRIPTIONS

Figure 3.4: InceptionNet Layer

proposed model as one of the many ways to improve the performance of the model is by

increasing the depth of the network. As a result, using a InceptionNet layer instead of only

using an Inception module leads to better learning of the features. Also the width (i.e.,

the size of the Inception module) of each Inception module is varied. The regular size

of the Inception module is same as the size of LSTM (i.e., 400). The size of Inception

Module 2 is reduced to half and the size of Inception 4 is doubled. The variation in size

of the Inception module is done to create a filtering effect to the features. Size variation

is a popular technique in neural network to create filtering effect. As a result, along with

extracting features, the InceptionNet layer filters the features. Furthermore, five residual

connections are added (one for each Inception module) to the InceptionNet layer. Residual

connections help the network go even deeper. They also help ease the training of the deeper

neural network. As shown in Figure 3.4, the complete process of the InceptionNet layer

58

3.5. PROPOSED MODEL: LAYER DESCRIPTIONS

can be formulated as below:

IMO1 = InceptionModule (Passage Encoder Outputs)

IMO1 = ResidualConnection (Passage Encoder Outputs, IMO1)

IMO2 = InceptionModule (IMO1)

IMO2 = ResidualConnection (IMO1, IMO2)

IMO3 = InceptionModule (IMO2)

IMO3 = ResidualConnection (IMO2, IMO3)

IMO4 = InceptionModule (IMO3)

IMO4 = ResidualConnection (IMO3, IMO4)

IMO5 = InceptionModule (IMO4)

IMO5 = ResidualConnection (IMO4, IMO5)

INO = Linear(Concat (IMO1, IMO2, IMO3, IMO4, IMO5))

INO = BatchNorm (INO)

Here, IMO1, IMO2, IMO3, IMO4, and IMO5 represents the outputs of each Inception

module. INO represents the final output of the InceptionNet layer. InceptionModule rep-

resents the steps that are taken in each Inception module which are described above subsec-

tion. ResidualConnection represents the addition of residual connection for each Inception

module. It is represented by a dotted line in Figure 3.4.

3.5.5 Self-Attention Layer

The self-attention layer is the fifth layer of our proposed model and the second layer to

our novel selective mechanism. This layer is applied only to the passage of the document

as the length of the passage text is quite long. This layer is also new to the traditional

EDA framework. For the traditional EDA framework, the energy score of regular attention

59

3.5. PROPOSED MODEL: LAYER DESCRIPTIONS

Figure 3.5: Scaled Dot Product Attention by Vaswani et al. (2017)

mechanism is calculated based on both the hidden encoder outputs and the previous hidden

decoder state ; however, the energy score for the self-attention mechanism is calculated

based only on a single hidden outputs or states.

Introduced by Vaswani et al. (2017), self-attention has less computational complexity

per layer as compared to the recurrent and convolutional networks. Also, it reduces the

number of sequential operations required. As a result, self-attention can be used to par-

allelize the computation which would lead to faster training of the model. Furthermore,

self-attention is good at learning long range dependencies in a sequence transduction tasks.

Also, based on the observations of the authors, self-attention learns the behavior related to

the syntactic and semantic structure of the sentences. Hence, the use of self-attention in

our proposed model is to strengthen the learning of features as the syntactic and semantic

structure of the sentences are among the many features to be learned. As it can be used

for improving the learning of long range dependencies, self-attention is also used for im-

proving the encoding of the passage of the document. The authors call their self-attention

as “Scaled Dot-Product Attention” and we will keep the same name. Scaled Dot-Product

Attention can be formulated as below:

Attention(Q,K,V) = softmax(
QKT
√

dk
)V

Here, Q and V both are the dense representation of the final output of the InceptionNet

60

3.5. PROPOSED MODEL: LAYER DESCRIPTIONS

layer. K = WattV where Watt is a learnable matrix. Also, so f tmax represents a softmax

function which takes an un-normalized vector, and normalizes it into a probability distri-

bution. KT represents the tranpose of K. dk represents the dimension of the InceptionNet

outputs which is same as the size of RNN (i.e., 400). Attention(Q,K,V) represents the

self-attended outputs of the InceptionNet layer. Figure 3.514 shows the process of the Self-

Attention layer.

3.5.6 Gated Layer

Figure 3.6: Gated Layer For Self-Attended InceptionNet Outputs

The gated layer is the sixth layer of our proposed model and the third and final layer

of our selective mechanism. This layer is applied only to the passage of the document as

the length of the passage text is quite long. This layer is also new to the traditional EDA

framework as most of the EDA frameworks do not use a selective mechanism approach.

This Gated layer is responsible for filtering the outputs of the passage encoder in order to

remove unnecessary and unimportant information and only select the information relevant

to the local and global features of the document and the corpus. A gated mechanism is very

popular in LSTMs and GRUs as well. This can be seen in Figure 3.6. The Gated layer for

14Source: https://medium.com/syncedreview/memory-attention-sequences-8522f531dd43

61

3.5. PROPOSED MODEL: LAYER DESCRIPTIONS

the passage of the document can be formulated as below:

SG = Sigmoid(SAINO)

GEO = SG�PEO

Here, SAINO represents Self-Attended InceptionNet Outputs which are the outputs from

the previous self-attention layer. The outputs of previous self-attention layer are fed into

this layer as input. Sigmoid represents the sigmoid activation function whose outputs ranges

from [0, 1]. SG represents the selection gate just like the forget gate and input gate of an

LSTM. � is element-wise product of matrices also known as the Hadamard product. This

is represented by X in Figure 3.6. PEO represents the outputs of the passage encoder.

GEO represents the final passage encoder outputs after the gating mechanism removes

unnecessary and unimportant information and only selects the information relevant to the

local and global features. The gated passage encoder outputs are then fed into the attention

layer as an input to generate the passage context.

3.5.7 Attention Layer

The attention layer is the seventh layer of our proposed model. This layer is responsi-

ble for aligning the input sequence for the purpose of decoding the output sequence. Our

attention layer consists of two sub-layers: Query Attention and Passage Attention. The

query attention aligns the query representations to the decoder whereas the passage atten-

tion aligns the passage representations to the decoder keeping in mind about the query

representations. In a traditional EDA framework, the attention layer sits in between the

encoder and the decoder. The attention mechanism takes the hidden encoder outputs and

the hidden decoder state as input and gives out the context vectors to the decoder as output;

whereas, our attention layer sits in between the gated layer and the decoding layer.

Proposed by Bahdanau et al. (2014), the attention mechanism is a recent trend for model

improvement in the deep learning community. This process is loosely based on the human

62

3.5. PROPOSED MODEL: LAYER DESCRIPTIONS

visual attention mechanism. Human eyes have the ability to focus on a certain region of an

image with high intent while taking the surrounding image with low intent, and then adjust-

ing the focal point over time. The idea of human visual attention applies to the summary

generation as well. For example, when a reader is summarizing a document, the reader fo-

cuses on the words that are deemed important as a probable summary word and ignores the

words that are deemed unimportant. This focus keeps on changing as the reader writes the

complete summary of the document. Hence, the reader gives attention to different parts of

the document at each step of the summary generation. As a result, the attention mechanism

is suitable for our summarization task.

Without the attention mechanism, the encoder has the full burden to encode the whole

document into a fixed vector. This fixed vector is then used at every time step to decode

the summary. At every decoding step, the decoder focuses more on the end information

as an RNN encoder has a problem with learning long range dependencies. Also, the focus

is constant over all time steps because same vector is fed into the decoder at every time

step. However, with the attention mechanism, the encoder does not have the full burden

to encode the whole document into a fixed vector as this mechanism allows the decoder

to attend to different parts of the source document (or query in case of query attention) at

each step of the summary generation. The focus on different parts of the document at each

decoder time step is learned with the help of this attention mechanism. The model learns

what to attend to based on the input sequence and what it has produced so far. There are

many variations to attention mechanism. In our work, we are using a scaled multiplicative

attention mechanism. The concept of scaling an attention came from Vaswani et al. (2017),

whereas the concept of multiplicative attention came from Luong et al. (2015).

Figure 3.715 shows the attention mechanism. Here, the y’s are our summary words pro-

duced by the decoder, and the x’s are our input words. Each decoder output word depends

on a weighted combination of all the encoder outputs, not just the previous decoder state.

15Source: https://medium.com/syncedreview/memory-attention-sequences-8522f531dd43

63

3.5. PROPOSED MODEL: LAYER DESCRIPTIONS

Figure 3.7: Example of Attention Mechanism

The a’s are weights that define how much each encoder output should be considered for

each summary output. For example, a1,2 indicates what is the attention of decoder at time

step 1 for input word x2.

Query Attention

At each time step, the decoder produces an output word by focusing on different por-

tions of the query. The query attention produces the query context vectors which are used

for the passage attention and for the output layer. Passage context vectors calculated from

the passage attention are used as an input to the decoding layer. As a result, query atten-

tion is used in the decoder layer in an indirect way. The query attention mechanism can be

formulated as follows:

eQ
t,i = Score(hD

t ,h
QE
i)

α
Q
ti = Scale(Softmax(eQ

t,i))

cvQ
t =

N

∑
i=1

α
Q
ti h

QE
i

Here, hQE
i represents the query encoder output at word position i. hD

t represents the

hidden decoder output at time step t. Score represents Luong’s multipicative score function

64

3.5. PROPOSED MODEL: LAYER DESCRIPTIONS

to calculate the energy of the attention. eQ
t,i represents the energy score at time step t for

query sequence at position i. Scale represents the scaling operation. α
Q
t,i represents the

scaled attention weights of query sequence at position i for the decoding time step t. cvQ
t

represents the query context vector at the decoding time step t. This context vector is then

fed to the passage attention and to the output layer.

Passage Attention

At each time step, the decoder also produces an output word by focusing on different

portions of the passage. The passage attention takes the query context vectors as input

(along with hidden decoder state and hidden gated passage encoder outputs) and produces

the passage context vectors and these vectors are used to decode the output word. The

passage attention mechanism can be formulated as follows:

eP
t,i = Score(hD

t ,h
PE
i ,cvQ

t)

α
P
ti = Scale(Softmax(eP

t,i))

cvP
t =

N

∑
i=1

α
P
tih

PE
i

Here, the notations are almost identical to above query attention except for letter Q

of query attention is replaced by letter P of passage attention. Also, the query context

vector, cvQ
t is added along with others to calculate the energy score for passage attention.

The passage context vector is then fed to the decoding layer and to the output layer. For

example, cvP
1 is fed into the decoding layer at time step 1.

3.5.8 Final State Concatenation Layer

The final state concatenation layer is the eighth layer of our proposed model. Just like

input concatenation layer at Section 3.5.2, this layer is also a utility layer that combines

the final hidden state of two encoders. This layer is responsible for combining the final

65

3.5. PROPOSED MODEL: LAYER DESCRIPTIONS

hidden state of both the query and the passage encoder. The final hidden encoder state

is the initial hidden decoder state for the traditional EDA framework. Since our task is

query based summarization, we have two encoders in our proposed model. As a result, the

final hidden state of both encoders need to be passed to the decoder as an initial hidden

decoder state. Hence, the final hidden state of both encoders are combined in this final state

concatenation layer followed by a linear layer. The combined final hidden state is the initial

hidden decoder state for the decoding layer at time step 0. The final state concatenation

layer can be formulated as below:

sD
0 = Linear(Concat(sQ

L ,s
P
M))

Here, sD
0 represents the initial (at time step 0) hidden state of the decoder. sQ

L represents the

final hidden query encoder state assuming the query has L words. sP
M represents the final

hidden passage encoder state assuming the passage has M words.

3.5.9 Output Embedding Layer

The output embedding layer is the ninth layer of our proposed model. This layer is re-

sponsible for converting the summary words into vector space. Word level embedding layer

is applied for the summary of the document using the same pre-trained word embedding

matrix used for embedding the query and the passage. Character level and sentence level

embeddings are not used in this layer. As a result, there is no concatenation layer for output

embedding as there is only one word embedding for each word. The word embedding of

each word in the summary is obtained via the lookup of that particular word on the word

embedding matrix. The word level embedding layer for the summary can be formulated as

follows:

WLSWE = Lookup (SWI, matrix)

Here, WLSWE represents Word-Level Summary Word Embeddings. The SWI are the

66

3.5. PROPOSED MODEL: LAYER DESCRIPTIONS

output sequence of summary words. During the training phase, these words are the target

input words. During the inference phase, these are words predicted in the previous layer.

matrix represents the word embedding matrix mentioned above.

3.5.10 Decoding Layer

The decoding layer is the tenth layer of our proposed model. This layer is responsible

for decoding the output sequence (i.e., the summary of the document). The decoder consists

of a uni-directional LSTM with the same hidden-state size as that of the encoder LSTM.

The decoding layer takes the concatenated final hidden state of both encoders and uses it as

an initial state to its first recurrent layer. The inputs of the decoder are the previous hidden

decoder state, the embedded target input word and the passage context vectors. The output

of the decoding layer is the hidden decoder state. The hidden decoder output is passed to

the output layer to predict the next output word. The decoding layer generates a hidden

state one at a time until some maximum number of summary words are generated or a

special end-of-sequence token is reached by the output layer. The decoding layer can be

formulated as follows:

sD
t = LSTM(sD

t−1, [e(x
D
t),cvP

t])

Here, cvP
t represents the passage context vector at time step t. [] represents the concate-

nation of two vectors followed by a linear layer. The hidden output of this layer is fed to

the output layer to predict the summary word. Along with the hidden decoder output, the

query context and the passage context are also fed to the output layer as input. Figure 3.816

shows the process of decoding during the inference phase for a standard EDA framework.

The blue line in the figure represents the passage context vector. During the decoding of

the word “by”, the figure shows that the passage vector is calculated by taking the weighted

average of all hidden encoder outputs. In our model, the passage vector is calculated by

16Source: http://www.googblogs.com/author/open-source-programs-office/page/9/

67

3.5. PROPOSED MODEL: LAYER DESCRIPTIONS

taking the weighted average of gated encoder outputs.

Figure 3.8: Decoder Source:

3.5.11 Output Layer

The output layer is the eleventh and the final layer of our proposed model. This layer

is responsible for converting the hidden decoder output to an output word. This layer takes

the hidden decoder output, the passage context and the query context as inputs and gives

the predicted summary word as output. The output of the output layer is also the final

output of the model. First, the output layer combines all the inputs into one vector and that

vector is passed through two linear layers. Then, a softmax function is used to calculate

the probability distribution of the word. Then an argmax function is used to determine the

predicted word. This predicted word is compared with its corresponding target output as

a part of a loss computation during training phase. The output layer can be formulated as

below:

OV = Projection(Linear(Concat(hD
t ,cvQ

t ,cvP
t)))

OD = softmax(OV)

68

3.6. TRAINING AND INFERENCE DETAILS

ID = argmax(OD)

yt = Id2Word(ID)

Here, hD
t , cvQ

t , and cvP
t represent the hidden decoder output, the query context, and the

passage context, respectively at time step t. OV represents the output vector. Pro jection

represents converting the dense representation into the sparse representation matching the

output size to the size of the vocabulary. OD represents the probability distribution of the

output summary word. The argmax function takes the probability distribution and returns

the index having highest probability. This index is the ID for the predicted word. This

index is converted into word by using Id2Word function which does a lookup on the model

vocabulary. For the loss calculation at the training, the output distribution, OD is compared

to the target output.

3.6 Training and Inference Details

Maximum log-likelihood estimation (MLE) is a common statistical technique to train

a seq2seq model. Let us assume we have a parallel corpus D, where each sample in the

corpus is a triplet (Xm,Qo,Y n) of passage, query, and summary of an individual document.

Here m, n, o represent the length of passage, summary and query in a sample. Also, the

passage and the query are the part of source sequence and the summary is the part of target

sequence. Given any triplet from the corpus, the neural seq2seq model can compute the

conditional log-probability of Y n given Xm and Qo: logP(Y n|Xm,Qo,θ), where, θ is the

training parameter. The training process can be can be formulated as below:

Lt(θ) = ∑
(x,y)∈D

−log P(Y|X;Q;θ)

where

69

3.6. TRAINING AND INFERENCE DETAILS

P(Y|X;Q;θ) = ∏
t=1

P(yt |y1:t−1,X,Q)

Here, Lt(θ) is the loss function. The training process helps us find the global optimum

of the loss function.

After setting up the neural seq2seq model, we need to train the model with enough

training data. For this model to be trainable we need to decide what optimization algorithms

to apply. We have used the Adam optimizer as our choice of optimizer. An optimizer is used

to calculate the gradient descent of the loss. Since recurrent neural networks are known for

vanishing/exploding gradients, a gradient clipping technique is used to address these issues.

We have used sequence loss function to calculate the loss function. This loss function is

just a weighted softmax cross entropy loss function. Cross entropy loss can be formulated

as below:

Cross Entropy Loss =
n

∑
i=1

-logpi[yi]

where, pi[yi] represents the yi-th entry of the probability vector pi from the i-th decoding

step and n represents the number of summary outputs.

As we used a 10 fold dataset to compare our result against the baseline model, we

trained 10 models based on the respective 10 folds. The hyperparameters for all 10 mod-

els are kept same to test the robustness of model on different data combinations. We used

a 300-dimensional FastText embeddings trained on the Debatepedia dataset as our em-

beddings initialization and the embeddings remained constant throughout the training and

the inference phase. The same embedding matrix was used for the query, passage, and

summary of the document. We used 512-dimensional USE embeddings for our sentence

embedding. We limited the vocabulary size to 50k and we used the bucketing mechanism

to speed up the computation. We fixed the model hidden size for both the encoders and the

decoder at 4000. We used the batch size of 50 at the training time and did not shuffle the

training data at every epoch. We used the Adam optimizer to train our model with an initial

70

3.7. DATASET

learning rate of 0.001. We employed gradient clipping, dropout, and batch normalization to

regularize our model. Gradient clipping is adopted with the max global norm of 5. Dropout

probabilities are separate for each encoder. For the inference phase, we used the beam

search algorithm to predict the output sequence with a beam size of 12. We trained our

models on a Nvidia TITAN X GPU card with 12G RAM and each model took on average

about 24 hours to train. In total, the training took about 10 days. On average, each train-

ing phase consisted of about 700 epochs. Generating summaries at test time is reasonable

(given our GPU type) with the throughout of about 2 summaries per second on a single

GPU, using a batch size of 1. Our neural network based framework is implemented using

Tensorflow (v 1.10) and Python (v 3.5).

3.7 Dataset

As there is no standard existing dataset for query-based abstractive summarization, we

used the dataset created by Nema et al. (2017) from Debatepedia. Debatepedia is an en-

cyclopedia of pro and con arguments and quotes on critical debate topics. There are 663

debates in the corpus. The creators of the dataset have considered only those debates which

have at least one query with one document. These 663 debates belong to 53 overlapping

categories such as politics, law, and crime. A given topic can belong to more than one cate-

gory. The average number of queries per debate is 5 and the average number of documents

per query is 4. The summary is an abstractive summary. The creators crawled 12695 such

query, passage, summary triples from Debatepedia. They used 10 fold cross validation for

all their experiments. Each fold uses 80% for training, 10% for validation, and 10% for

testing. Each fold is used to train a separate model. We have used the exact 10 fold dataset

so that we could evaluate our model against their model. Basically, we used the script

provided17 by the creators to download our required 10 fold data for the task. Table 3.1 re-

ports the average length of the query, summary, and passage in this dataset. Before feeding

17https://github.com/PrekshaNema25/DiverstiyBasedAttentionMechanism

71

3.8. EVALUATION

the model with data for the training, basic pre-processing was done to remove words and

symbols like <eos>, <s>, #, [,], “, ′′, and so on.

Table 3.1: Average length of passages, queries, and summaries in the DBPedia Dataset

Average number of words

Passage Query Summary

66.4 9.97 11.75

3.8 Evaluation

We use different metrics to evaluate the performance of our proposed model. These

metrics are ROUGE(1, 2, L), METEOR, EACS, GMS, and CR.

Metric for Evaluation of Translation with Explicit ORdering (METEOR) (Banerjee and

Lavie, 2005) uses a combination of both precision and recall in the METEOR metric. Fur-

thermore, the alignment is based on exact token matching, followed by WordNet synonyms,

stemmed tokens and look-up table paraphrases.

Embedding Average Cosine Similarity (EACS) averages the cosine similarities of the

embeddings. Higher EACS means improved abstractiveness in generated summaries.

Greedy Matching Score (GMS) indicates information coverage. Higher GMS means

the generated summaries contain diversified contents.

We define Copy Rate (CR) as how many tokens are copied to the abstract sentence (or

target sentence) from the source sentence without modifying the tokens. A lower Copy

Rate score means more abstraction is involved in the generated abstract sentence. A Copy

Rate of 100% means no abstraction is involved in the process.

3.8.1 Baseline Models

We compare our model with the current state-of-art model on query based abstractive

document summarization model called “Diversity driven attention model for query-based

abstractive summarization” (Nema et al., 2017). For simplicity, let us call it Diversity

72

3.8. EVALUATION

model. Besides the tradition EDA framework, their model augments two key additions (i)

a query attention model which learns to focus on different portions of the query at different

time instead of using a static representation for the query (ii) a new diversity based attention

model which aims to alleviate the problem of repeating phrases in the summary. They

have compared various diversity models and have shown that soft LSTM based diversity

attention model gives the best performance. We will compare our model against their best

performing Diversity model. Just like their model, we will also report average scores across

the 10 folds.

Also, we also compare our results against the standard EDA framework to show the

readers how far we have come for the task of query based abstractive summarization. This

model does not contain the encoder and attention module for the query.

3.8.2 Results

Table 3.2: Performance of various model using ROUGE(1, 2, L), METEOR, EACS, GMS,
and CR metrics.

Model R-1 R-2 R-L METEOR EACS GMS CR

Standard EDA 13.73 2.06 12.84 - - - -
Diversity 41.26 18.75 40.43 - - - -

Our Model 43.22 27.40 42.73 25.72 85.49 72.59 40.47

Table 3.2 summarizes the result of our experiment. We have compared various model

using full-length ROUGE metrics. F-measure scores are reported. All standard or default

options are chosen to evaluate the model. We have reported the average scores of ROUGE-

1, ROUGE-2, ROUGE-L across the 10 folds. This result clearly shows that our proposed

model outperforms the current state-of-art (Diversity) model for the task of query based

abstractive summarization.

Also, we have reported our model’s scores using METEOR, EACS, GMS, and CR

metrics. The script by Maluuba 18 was used to obtain the evaluation scores. These scores

18https://github.com/Maluuba/nlg-eval

73

3.9. SUMMARY

are also reported as the part of results because these scores are more popular evaluation

metrics than ROUGE scores. It will be easier in future for upcoming work to compare their

results against ours.

3.9 Summary

In this chapter, we proposed our query-focused abstractive document summarization

model using neural network. We described our model of novel selective mechanism for

the task in full detail. Then, we presented our training and testing details and described

the dataset that was used to train the model. Finally, we evaluated our proposed model

against the current state-of-art model. In the next chapter, we will apply document level

query-focused abstractive summarization to multi-document level query-focused abstrac-

tive summarization.

74

Chapter 4

Query Focused Abstractive
Multi-Document Summarization Using
Neural Network

4.1 Introduction

query-focused abstractive multi-document summarization (QFAMDS) is the process of

summarizing the main points from multiple documents which are focused on the context of

the query into a condensed summary. Similar to QFADS, sequence-to-sequence learning

can be applied to query-focused neural abstractive multi-document summarization, whose

model consists of two encoders (i.e., one each for the query and the documents), two atten-

tion models (query attention and documents attention), and a decoder.

Some of the current problems in this field are limited research and the shortcomings to

the attention mechanism. These problems are mentioned in detail in Section 3.1.

To solve the above problems, we propose three models for QFAMDS. These models dif-

fer from our previous QFADS model. The input sequence of a QFAMDS model contains

multiple documents and a query whereas the input sequence of QFADS model contains sin-

gle document and a query. A simple way to solve QFAMDS task is to view it as a QFADS

task, and treat all documents as the input to seq2seq models. Unfortunately, the documents

are too long to be the input to this simple seq2seq model. We used a selective mechanism

in our single document model because a single document was too long. Now, imagine how

long the input sequence of combined multiple documents would be? As a result, using

the previously implemented selective mechanism is not enough for this multi-document

75

4.2. TASK DESCRIPTION

model. Also, a significantly long input sequence will make the model too hard to train.

Training on multiple documents will mostly confuse the model and produce poor results.

Inspired by Tan et al. (2017), we propose a coarse-to-fine framework to tackle the challenge

of QFAMDS. Our approach first extracts ordered top-k important sentences from multiple

documents. Then, these extracted sentences are passed as an input to our previously im-

plemented QFADS model to further abstract these sentences to a multi-doc summary. The

extraction methods for all proposed methods are different during the training phase and are

same during the inference phase. During the training phase, the top-k sentences are ex-

tracted based on the similarity comparison of all sentences of the multiple documents to the

query for the first QFAMDS model and to the summary for the second QFAMDS model

and to the combined query and summary of the document for the third QFAMDS model.

During the inference phase, the top-k sentences are extracted based on the similarity com-

parison of all sentences of the multiple documents to the query for all proposed models.

We conducted experiments on the MS-MARCO (Nguyen et al., 2016) dataset, a recently

developed dataset by Microsoft for reading comprehension, and have reported the various

scores as our evaluation metrics.

4.2 Task Description

In this section, we formalize our QFAMDS task. Given a query q = q1, q2, . . . , qk

containing k words, a list of document d = d1, d2, . . . , do containing o documents, a doc-

ument (passage) s = s1, s2, . . . , sn containing n sentences, and a sentence w = w1, w2, . . . ,

wl containing l words, the task of QFAMDS is to generate a context based summary y =

y1, y2, . . . , ym containing m words. This task can be achieved by finding the probability

y* such that it maximizes the probability p(y|q,d). Using Bayes theorem, it can be further

decomposed into following:

y∗ = argmaxy

m

∏
t=1

p(yt |y1, . . . ,yt−1,q,d)

76

4.3. PROPOSED MODELS: A COMPLETE GENERAL DIAGRAM

The above equation for y* can be modeled using the neural network framework.

4.3 Proposed Models: A Complete General Diagram

Figure 4.1: A general diagram to all our three proposed models for Query Focused Abstrac-
tive Multi-Document Summarization.

Figure 4.1 shows the general diagram for all three of our proposed models for the

77

4.5. FIRST PROPOSED MODEL: SENT2QUERY

QFAMDS task. Passages and the query are the input sequence to the QFAMDS mod-

els. The multi-document summary is the output sequence to the QFAMDS models. Here,

passages are passed to these models along with the query. The reduction of size in passages

is performed at the sentence extraction layer where each sentence from all documents are

scored, ranked, ordered, and selected. The Sentence Extraction layer is different for all

three proposed models. Details about each sentence extraction layer will be explained un-

der their respective sections. The rest of the diagram is very similar to the QFADS model

from the previous chapter. The description about the QFADS model diagram is mentioned

in Section 3.3.

4.4 Proposed Models: An Overview

Similar to our previous QFADS model, our models use sequence to sequence network

having an EDA architecture to solve the problem of QFAMDS. The differences between our

proposed QFAMDS models and the traditional EDA framework are mentioned in Section

3.4. Also, these QFAMDS models differ from our previous QFADS model. The input

sequence of QFAMDS models contain multiple documents whereas the input sequence of

previously implemented QFADS model contains a single document. The rest of this section

shows the flow of the data of our proposed models for QFAMDS task:

• First, 10 passages are combined together to form a big, single document. Then,

the combined document is tokenized into several sentences. Then these tokenized

sentences are compared to the query and/or summary (depending on the model and

its phase) to extract important sentences. These extracted sentences are combined

together in their original order and send to a seq2seq model as an input for training.

During inference, the comparison is made to the query.

• Then, the rest of the data flow is similar to the data flow mentioned in Section 3.4.

78

4.5. FIRST PROPOSED MODEL: SENT2QUERY

Figure 4.2: Sentence Extractor for Sent2Query.

4.5 First Proposed Model: Sent2Query

In this section, we propose our first model for the QFAMDS task. This model will

be referred to as Sent2Query as the top-k sentences are extracted based on the similarity

comparison of the sentences to the query. The key idea to all our proposed models is take

coarse-to-fine approach and reduce the amount of text from multiple documents. But there

exist multiple viable solutions for this coarse-to-fine approach. In the Sent2Query model,

we filter out the unnecessary sentences by only selecting those sentences which are most

similar to the query and treat those selected sentences as a part of input sequence to the

seq2seq model instead of all documents related to the sample data.

4.5.1 Sentence Extractor

The sentence extractor of this model is responsible for extracting the most similar sen-

tences to the query from the multiple documents while preserving the ordering of the sen-

tences. These top-k extracted sentences are usually the most important sentences of all the

documents. Shortening the input sequence by just keeping the most important sentences

will make the model easier to train and give better results. The sentence extractor can be

visualized in Figure 4.2. The sentence extractor contains the following procedures.

79

4.5. FIRST PROPOSED MODEL: SENT2QUERY

Sentence Tokenization

A sample data for this task is a triplet containing a query, ten passages associated with

the query, and a summary summarizing 10 passages based on the query. Once 10 docu-

ments (passages) are loaded from the dataset for the query, they are combined to form a

single document. Then, the combined document is broken down into sentence tokens us-

ing the sentence tokenization operation by the Natural Language Toolkit (NLTK). Sentence

tokenization is the process of splitting a paragraph or document into a list of sentences.

In general, tokenization is the process of splitting a stream of text into a list of pieces or

tokens. In case of sentence tokenization, the piece or token is a sentence. Once tokenized,

these tokenized list of sentences are fed to the sentence similarity model to calculate the

sentence similarity score.

Sentence Scoring

The sentence similarity model is used to calculate the similarity of a given sentence with

respective to its reference sentence. We are using Gensim’s KeyedVectors module as our

sentence similarity model. Introduced by Řehůřek and Sojka (2010), Gensim is a robust

open-source vector space modeling and topic modeling toolkit implemented in Python.

Before using this module, our choice of word2vec embedding needs to be loaded into this

KeyedVectors model. We used pre-trained FastText word vectors. Once the embeddings

are loaded, then KeyedVectors model can be used to perform similarity lookup on word,

sentence, paragraph, and even whole document. The KeyedVectors model is used instead

of full word2vec model for faster and easier training of our proposed model.

The list of tokenized sentences along with their corresponding reference sentence is

passed to the loaded KeyedVectors model to calculate the sentence similarity score. In the

case of the Sent2Query model, the query of the sample data is considered as the reference

sentence. Therefore, every sentence is compared to its corresponding query of the sample

data to find the sentence similarity between the sentences and the query. There are various

80

4.5. FIRST PROPOSED MODEL: SENT2QUERY

ways to calculate the sentence similarity between two sentences. We are using the Word

Mover’s Distance (WMD) for this purpose. Introduced by Kusner et al. (2015), the WMD

is a distance function that measures the distance between two texts as the cumulative sum

of the minimum distance each word in one text must move in vector space to the closest

word in the other text. Here, we are comparing the similarity of the sentences to the query

with the assumption that the sentences which are the most similar to the query are the most

important sentences from multiple documents, which will be fed into the seq2seq model.

The sentence scoring function for Sent2Query model can be formulated as below:

LSDS = WMD (LTS, Query)

Here, LTS refers to the list of tokenized sentences. Query refers to the query corresponding

to the list of tokenized sentences of the sample data. WMD refers to the WMD function

mentioned above. LSDS represents the list of sentence distance scores for each sentence

from the list of tokenized sentences. For example, LSDS[1] is the sentence distance score

between the sentence LTS[1] and the Query. In this example, [1] refers to the index 1 of

the list. A lower distance score means that the two sentences are considered more similar.

Once the distance scores between each sentence and the query are calculated, these scores

are forwarded for ranking based on their distance scores, for ordering based on their oc-

currences in their documents, and for selection based on one of the hyperparameters (the

number of sentences to be selected).

Sentence Ranking, Ordering, and Selection

Once the distance scores are calculated, we need to find the most similar sentences to

the query and use them as an input to the seq2seq model. However, there are few things to

keep in mind while finding the most similar sentences. First, we need to know how many

sentences are we selecting. This is one of the hyperparameters of our proposed model. This

is important to the performance of the model as choosing too few sentences might lead to

81

4.5. FIRST PROPOSED MODEL: SENT2QUERY

missing important information and choosing too many sentences might lead to a confused

model. Then, we need to make sure that there is an order to the sentences in a logical

manner. The original occurrence order to the sentences must be preserved. This is done to

make sure that the flow of all the documents is not broken because having a different order

to the sentences could mean something completely different or unreadable. This is also

very important while generating a comparatively sensible summary. The ranking function

gives a rank to each sentence based on their sentence distance scores. This function gives

the top ranks to the least sentence distance scores meaning the sentences having the least

distance score to the query are ranked among the most similar sentences to the query. An

ordering function ensures that the original occurrence order of the sentences are preserved.

Finally, a selection function selects the top ranked sentences with their original order based

on the hyperparameter mentioned above. Once the top ranked and ordered sentences are

selected, they are combined to form a single document. From the next section, we will call

the combined sentences as document or passage. Along with the query, these shortened but

important combined sentences (passage or document) are treated as an input sequence to

the query based summarization model.

4.5.2 Encoder

The encoder of this model is responsible for encoding the input sequence (the query and

the passage) using an LSTM into a fixed dense representation. Before passing the query

and the combined sentences (let us call it a passage) to the encoder, they are converted into

vector space using the character-level, word-level, and sentence-level embeddings men-

tioned in Section 3.5.1 and concatenated into a single word embedding as mentioned in

Section 3.5.2. Then the concatenated query word embeddings and the concatenated passage

word embeddings are fed to two separate encoders. Both encoders are deep bi-directional

LSTMs. The query embedding fed to the query encoder produces hidden query encoder

state. Similarly, the passage embedding fed to the passage encoder produces hidden pas-

82

4.5. FIRST PROPOSED MODEL: SENT2QUERY

sage encoder state. The exact formula governing the query encoder and the passage encoder

are both mentioned in Section 3.5.3.

4.5.3 Feature Selector

The feature selector of this model is responsible for learning strong global and local fea-

tures of the document as well as the corpus and selecting the most important information

among the passage while considering the relevant features. Despite having the coarse-

to-fine approach to reduce the number of inputs, the outputs to the passage encoder still

contains significant noise as each sentence still contains unnecessary or redundant informa-

tion. As a result, we add the previously implemented selective mechanism to help reduce

more redundancy. The feature selector goes through the InceptionNet layer, Self-Attention

Layer, and Gated Layer. These layers are mentioned in Section 3.5.4, Section 3.5.5, and

Section 3.5.6, respectively. The addition of these layers results in a comparatively shorter

but important passage text which the LSTM can handle comfortably. Once all the gated pas-

sage encoder outputs and the hidden query encoder outputs are calculated, they are passed

to the attention layer in order to calculate the passage attention and the query attention.

4.5.4 Attender

The attender of this model is responsible for aligning the input sequence for the purpose

of decoding the output sequence. Our attender consists of two parts: Query Attention and

Passage Attention. The query attention aligns the query representations to the decoder

whereas the passage attention aligns the passage representations to the decoder keeping

in mind the query representations. The key difference between the query attention and

the passage attention is how both calculate the energy score. For the query attention, the

hidden query encoder outputs and the previous hidden decoder state are used to calculate the

query attention energy score. Then, this query attention energy score is used to calculate

the query context. For the passage attention, the hidden gated featured passage encoder

outputs, the query context, and the previous hidden decoder state are used to calculate the

83

4.5. FIRST PROPOSED MODEL: SENT2QUERY

passage attention energy score. Then this passage attention energy score is used to calculate

the passage context. The formula governing the query attention and the passage attention

are both mentioned in Section 3.5.7.

4.5.5 Decoder

The decoder of this model is responsible for decoding the output sequence (the multi-

document summary). The decoder consists of a uni-directional LSTM with the same

hidden-state size as that of the encoder LSTM. The decoder takes the concatenated final

hidden state of both encoders and uses it as decoder’s initial state to its first recurrent layer.

For all remaining recurrent layers, the inputs of the decoder are the previous hidden de-

coder state, the embedded target input word (or previously predicted word) and the passage

context vectors. At each decoding step, based on its input, the decoder LSTM generates

the hidden state. The hidden output along with the query context and the passage context at

that time step are passed through linear layer, projected to sparse representation of vocabu-

lary size, normalized, and used to predict the probable summary word. The decoder can be

formulated as below:

sD
t = LSTM(hD

t−1, [e(x
D
t),cvP

t])

yt = Output(hD
t ,cvP

t ,cvQ
t)

Here, sD
t−1 represents the previous hidden decoder state. It contains hidden output (hD

t−1) and

hidden cell memory (cD
t−1). e(xD

t) represents the embedding of summary word at position

t. cvP
t represents the passage context vector at time step t. [] represents the concatenation

of two followed by a linear layer. During the training period, the embedded target input

will be the input to the decoder whereas during the inference period the embedding of the

previously predicted word will be the input to the decoder. cvQ
t represents the query context

vector at time step t. Output represents the steps performed at the output layer in Section

3.5.11. Finally, yt represents the predicted word at decoding step t. During training, the

probability distribution of the predicted word is used to calculate the loss function and

84

4.6. SECOND PROPOSED MODEL: SENT2SUMMARY

whereas during the inference, the predicted word becomes the input to the decoder at next

decoding step and is also a part of the multi-document summary.

4.6 Second Proposed Model: Sent2Summary

Sent2Summary is our second proposed model for the QFAMDS task. In this model,

important sentences are extracted based on the comparison of the sentences to its corre-

sponding summary. Here, sentences having higher distance measures to the summary are

discarded as these sentences are considered least similar to the summary. Once the unnec-

essary sentences are filtered out, the length of the passage is shortened. These extracted

sentences having a reduced length are then fed into query-focused seq2seq model as a part

of input sequence.

4.6.1 Sentence Extractor

This sentence extractor is responsible to extracting the most similar sentences to the

summary from the multiple documents while preserving the ordering of the sentences. The

visualization of the sentence extractor is very similar to Figure 4.2 except the query in the

figure is replaced by the summary. The sentence extractor contains following procedures.

Sentence Tokenization

The sentence tokenization of the Sent2Summary model is the same to the sentence tok-

enization of Sent2Query model discussed in Section 4.5.1. Once tokenized, these tokenized

list of sentences are fed to the sentence similarity model to calculate the sentence similarity

score.

Sentence Scoring

A similarity comparison of all sentences is done to its corresponding summary of the

sample data to find out the sentence similarity score. We use the same Word Mover’s

Distance (WMD) to calculate the sentence similarity between two sentences. The sentence

85

4.7. THIRD PROPOSED MODEL: SENT2CQS

scoring function for Sent2Summary model can be formulated as below:

LSDS = WMD (LTS, Summary)

Here, Summary refers to the summary corresponding to the list of tokenized sentences of the

sample data. The representation of LST , WMD, and LSDS are already mentioned before.

Sentence Ranking, Ordering, and Selection

The sentence ranking, ordering and selection function of the Sent2Summary model is

the same as the sentence ranking, ordering and selection function of Sent2Query discussed

in Section 4.5.1. Once top ranked and ordered sentences are selected, they are combined

to form a single document. Along with the query, these shortened but important combined

sentences (passage or document) are treated as an input sequence to the query based sum-

marization model.

4.6.2 Encoder, Feature Selector, Attender, Decoder

The encoders, feature selector, attenders, and decoder of the Sent2Summary model are

the same to the encoders, feature selector, attenders, and decoder of the Sent2Query model

discussed in Section 4.5.2, Section 4.5.3, Section 4.5.4, Section 4.5.5, respectively.

4.7 Third Proposed Model: Sent2CQS

Sent2CQS is our third proposed model for the QFAMDS task. This model is almost

similar to other proposed models except for its sentence extractor component. The ex-

traction of salient sentences is based on the similarity comparison of the sentences to its

corresponding combined query and summary of the sample data.

86

4.7. THIRD PROPOSED MODEL: SENT2CQS

4.7.1 Sentence Extractor

The sentence extractor is responsible for extracting sentences which are the most similar

to the combined query and summary of the sample data from the multiple documents while

preserving the ordering of the sentences. Very similar to Figure 4.2, this model’s sentence

extractor can be visualized by replacing the query with combined query and summary from

the figure. The sentence extractor contains following procedures.

Sentence Tokenization

The sentence tokenization process is same as previous two models.

Sentence Scoring

Sentence scoring is performed by calculating the distance similarity score of all sen-

tences to its corresponding combined query and summary. The same WMD function is used

to calculate the distance similarity score. The sentence scoring function for the Sent2CQS

model can be formulated as below:

LSDS = WMD (LTS, CQS)

Here, CQS refers to the combined query and summary corresponding to the list of tokenized

sentences of the sample data.

Sentence Ranking, Ordering, and Selection

In this model, the idea behind the sentence ranking, ordering, and selection functions is

same and hence they are also same to previous two models.

4.7.2 Encoder, Feature Selector, Attender, Decoder

Once separate input are generated based on previous sentence extraction layer, the idea

now is to pass them to a seq2seq model for training and then compare the results to other

87

4.9. DATASET

models. As a result, all three models have same seq2seq components like encoder, feature

selector, attender, and decoder.

4.8 Training and Inference Details

Maximum log-likelihood estimation (MLE) is a common statistical technique to train a

seq2seq model. More about the MLE technique is mentioned in Section 3.6.

We used the Adam optimizer as our choice of optimizer. We have used sequence loss

function to calculate the loss function. The gradient clipping technique is used to alleviate

the problem of vanishing/exploding gradient.

For each proposed model, the hyperparameters are the same. This was done to check the

effectiveness of each model. The hyperparameters and choice of these models are mostly

same as the previously implemented summarization model for the single document setting.

We fixed the model hidden size for both the encoders and the decoder at 400. We used the

batch size of 32 at the training time. We trained our model on a Nvidia TITAN X GPU

card with 12G RAM. The Sent2Query model took about 5 days and 5 hours to train. Its

training phase consisted of about 1900 epochs. The Sent2Summary model took about 3

days 13 hours to train. Its training phase consisted of about 1300 epochs. The Sent2CQS

model took about 1 day 21 hours to train. Its training phase consisted of about 700 epochs.

Generating summaries at test time is reasonable (given our GPU type) with the throughput

of about 2 summaries per second on a single GPU, using a batch size of 1. Our neural

network based framework is implemented using Tensorflow (v 1.10) and Python (v 3.5).

4.9 Dataset

Introduced by Nguyen et al. (2016), The Microsoft Machine Reading Comprehension

(MS MARCO) is a large scale dataset focused on machine reading comprehension, question

answering, and passage ranking. We are using this dataset for the task of QFAMDS. In

the MS MARCO dataset, all questions (queries in our case) have been generated from

88

4.10. EVALUATION

real anonymized Bing user queries. The context passages, from which the answers in the

dataset are derived, are extracted from real web documents using the most advanced version

of the Bing search engine. The answers to the queries are human generated, and the dataset

contains such question, passages, answer triples. For each query, the dataset also contains

a query intent type across five different categories (a) description, (b) numeric, (c) entity,

(d) person and (e) location. The dataset contains 1,010,916 real Bing user queries. The

dataset also provides a well-formatted 182,669 natural language answers. About half of the

dataset contains “No Answer” in their answer. There are 10 passages per query making it a

dataset for multi-document summarization. All the 10,109,160 passages in the dataset are

extracted from 3,213,835 full web documents. For our task, we used a subset of the MS

MARCO dataset. This subset contains only “DESCRIPTION” query intent type samples

whose length of answer was more than 20 words. Our selected subset was divided into

13400 training pairs, 1000 validation pairs, and 1000 testing pairs.

4.10 Evaluation

We use different metrics to evaluate the performance of our proposed models. These

metrics are ROUGE-L, BLEU (1, 2, 3, 4), METEOR, EACS, GMS, and CR.

4.10.1 Baseline Models

As there is not much research conducted on the task of QFAMDS using the MS MARCO

dataset, we do not have a good baseline to compare our proposed models against. As a re-

sult, we compare our results against the standard seq2seq model. Introduced by Sutskever

et al. (2014), the Seq2Seq model is one of the most commonly used RNN models. The team

for the MS MARCO dataset trained a standard Seq2Seq model similar to the one described

in Sutskever’s paper with a query as a source sequence and the answer as a target sequence.

The team trained this model on a subset of MS MARCO dataset but the MS MARCO paper

does not explain the subset very well. What examples or samples does this subset contain

89

4.10. EVALUATION

remains unclear in the MS MARCO paper. As a result, our proposed models’ compari-

son to the vanilla seq2seq is not straightforward since our model’s training and testing data

might be different than the vanilla seq2seq model’s training and testing data.

4.10.2 Results

Table 4.1: Performance of various model using ROUGE-L, BLEU (1, 2, 3, 4), METEOR,
EACS, GMS, and CR metrics.

Model R-L B-1 B-2 B-3 B-4 M EACS GMS CR

Standard Seq2Seq 8.9 - - - - - - - -
Sent2Query 17.72 18.35 5.65 1.57 0.46 6.95 85.17 61.47 56.84

Sent2Summary 18.05 19.94 6.49 2.16 0.88 7.49 86.73 62.53 59.88
Sent2CQS 18.71 21.83 7.04 2.52 1.03 6.25 84.22 62.64 64.88

Table 4.1 summarizes the result of our experiments. First, we have compared our vari-

ous proposed models using the ROUGE and BLEU evaluation metrics. The official evalu-

ation script19 from the MS MARCO team was used to evaluate our proposed models. Both

the ROUGE-L and BLEU scores are required for the evaluation of the system which used

MS MARCO dataset for training and testing. All our proposed models outperform the stan-

dard Seq2Seq model in ROUGE-L score. Sent2CQS model has the best ROUGE-L score

among all our proposed models. BLEU scores are only provided for our proposed models

as the MS MARCO paper did not report BLEU score for Vanilla Seq2Seq model. The

Sent2CQS model outperforms both the Sent2Query and Sent2Summary models wuth re-

spect to all BLEU(1, 2, 3, 4) scores. In overall, Sent2CQS outperforms all other compared

models in all evaluation metrics. Sent2CQS is the best performing system because during

sentence extraction this model takes in account both the query and the summary rather than

only the query or summary. Information of both the query and summary are represented

in the extracted sentences. Also, our proposed models are significantly better than Stan-

dard Seq2Seq model because our proposed models encode the passage as well as the query

19https://github.com/dfcf93/MSMARCOV2/tree/master/Q+A/Evaluation

90

4.11. ANALYSIS

giving some extra useful information about the document to the decoder to process.

Secondly, we have compared our various proposed models using METEOR, EACS,

GMS and CR evaluation metrics as well.

4.11 Analysis

Table 4.2: Performance of extraction methods using ROUGE-L, BLEU (1, 2, 3, 4), ME-
TEOR, EACS, GMS, and CR metrics on training data.

Model R-L B-1 B-2 B-3 B-4 M EACS GMS CR

Sent2Query 20.22 20.42 16.17 7.38 6.57 9.11 71.38 71.33 100
Sent2Summary 73.66 70.59 68.56 67.14 65.94 43.99 96.42 93.59 100

Sent2CQS 71.67 68.05 65.79 64.28 63.06 42.86 96.01 92.83 100

If we compare our single document model against our the multiple document models,

we can see that the single document model outperforms the multiple document models.

This section contains our analysis of the poor performance of multi document models.

The first reason could be the encoding of long text on the multi document models. As

compared to the single document model, the multiple document models contain longer pas-

sages of text which need to be encoded using an LSTM encoder and we know that encoding

long text leads to noisy and confused encoder outputs. Using a selective mechanism might

help in reducing the length of passage text; but, in the case of the multiple document model

where the length of the passage was too long, the selective mechanism might not be a suf-

ficient approach. As a result, the encoder outputs could still be noisy despite being passed

through the selective mechanism.

The second reason could be the selection of bad sentences by the sentence extraction

layer which were eventually forwarded to the seq2seq model for training and inference. To

check the quality of the selected sentences, we extracted the sentences using the same WMD

distance function and evaluated those extract sentences against the reference summaries.

Table 4.2 shows the performance of different models’ extraction methods using different

91

4.12. SUMMARY

evaluation metrics on the training data from the MS MARCO data set. This shows that

except for the query based selection, the quality of sentence selection for extraction layer are

generally good. One negative effect of selecting sentences from multiple source documents

despite capturing the original sentence occurrence order is that the structure of the passage

is destroyed. Reading the combined ordered selected sentences might not make sense as

much as the complete passage would. This effect has negatively affected the generated

outputs as well. The outputs generated from the multi document models having sentence

extraction layer are less coherent than the outputs generated from the multi document model

having no sentence extraction layer.

The third reason could be the use of query based sentence selection layer during infer-

ence for all models. During the training, sentence selection is done based on the query for

the Sent2Query model, and based on the summary for the Sent2Summary model, and based

on the combined query and summary for the Sent2CQS model. However, during inference

all models’ sentence selection layer is based on the query as the summary is not available

during prediction. As a result, there is a discrepancy between the selected sentences of the

training phase and the inference phase. For example, for the Sent2Summary model, during

training, the selected sentences based on the summary are passed to the seq2seq model and

during inference, the selected sentences based on the query are passed to the seq2seq model

for prediction. But in reality, the selected sentences based on the summary are trained for

the seq2seq model. The same is the case for the Sent2CQS model. Also, we know from

Table 4.2 that the performance of the Sent2Query model’s extraction method is poor as

compared to the performance of other models extraction method. As a result, good quality

sentences are not selected during the inference which are passed to the seq2seq model for

prediction. This could also lead to degradation of the performance of the multi document

models.

92

4.12. SUMMARY

4.12 Summary

In this chapter, we proposed three different models for the task of query-focused ab-

stractive multi-document summarization model using neural networks. Then, we presented

our training and testing details and described the dataset that was used to train the model.

Then, we evaluated our proposed models. Finally, we analyzed the poor performance of

our proposed models. In the next chapter, we will conclude this thesis with conclusion and

future work.

93

Chapter 5

Conclusion & Future Work

5.1 Conclusion

We proposed four models for the task of query-focused abstractive document summa-

rization and query-focused abstractive multi-document summarization. Sequence to Se-

quence mapping using neural networks were applied for all these models. Firstly, we imple-

mented a model for query based abstractive document summarization. The unique feature

of this model is its novel selection mechanism based on an Inception Network. Convolu-

tional gated units are used for this selection mechanism. The concept of the novel selective

mechanism was introduced to reduce the noise present in long text of the input (passage)

sequence. Advanced techniques like residual connection, highway connection, dropout,

batch normalization, bucketing and beam search were used to improve the performance of

the model. Experiments were conducted on the Debatepedia dataset which showed that our

model outperforms the state-of-the art model in all ROUGE scores. Secondly, we proposed

three models for query-focused abstractive multi-document summarization. The unique

feature of these models is their coarse-to-fine approaches. Multiple passage inputs are

refined by extracting the top-k sentences and those extracted sentences were passed as a

passage to the single document level summarization model. In addition to previously men-

tioned advanced techniques, the Word Mover’s Distance (WMD), a new promising distance

function, was used to improve the models’ performance. We conducted experiments on the

MS-MARCO dataset and have reported our scores using various evaluation metrics. As

there is not any good baseline model to compare our results we hope that our proposed

94

5.2. FUTURE WORK

model will be a good baseline model for upcoming works on the query-focused abstractive

multi-document summarization task.

5.2 Future Work

Although the results we obtained have shown the effectiveness of the proposed query

based abstractive summarization model for both single and multiple document settings, it

could be further improved in a number of ways:

• Data augmentation is a regularization technique which helps improve a model’s per-

formance and helps reduce the overfitting problem. We plan to have this step before

the input sequence are passed to the embedding layer.

• Due to the lack of time, we did not get enough time to experiment with all the hyper-

parameters of the model. We plan to tune the hyperparameters which could lead to

improvement of the model’s performance.

• Currently our top-k sentence extraction is based on Gensim’s Word Mover’s Dis-

tance algorithm. We plan to train the sentences to a neural network to extract top-k

sentences.

• Currently, we replace our <UNK> words at the inference phase with word corre-

sponding to having the maximum probability of attention distribution. We plan to

implement pointer-generator model proposed by See et al. (2017).

• Currently our model avoids the document structure hierarchy except for the embed-

ding layer. We plan to implement a model which captures the hierarchical document

structure with hierarchical attention.

• Even though our model is good at capturing local and global features of the document

and the corpus, we think our model is still not good enough to capture keywords. We

plan to implement feature rich encoder.

95

5.2. FUTURE WORK

• The training of our model took longer than expected. We plan to use large vocabulary

trick to reduce the training time and to improve model’s performance.

• Currently our model implements single headed attention. We plan to use multi-

headed attention to improve model’s performance.

• Inspired by Paulus et al. (2018), we plan to implement a hybrid model which com-

bines standard supervised word prediction and reinforcement learning.

• Currently, our embedding layer consists of character level, word level, and sentence

level embedding. We plan to extend our embedding layer by adding paragraph level

and document level embedding to it.

96

BIBLIOGRAPHY

References
Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kud-
lur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiao-
qiang Zheng. 2016. Tensorflow: A system for large-scale machine learning. In
Proceedings of the 12th USENIX Conference on Operating Systems Design and Im-
plementation. USENIX Association, Berkeley, CA, USA, OSDI’16, pages 265–283.
http://dl.acm.org/citation.cfm?id=3026877.3026899.

Sanjeev Arora, Aditya Bhaskara, Rong Ge, and Tengyu Ma. 2014. Provable bounds for
learning some deep representations. In Eric P. Xing and Tony Jebara, editors, Pro-
ceedings of the 31st International Conference on Machine Learning. PMLR, Bejing,
China, volume 32 of Proceedings of Machine Learning Research, pages 584–592.
http://proceedings.mlr.press/v32/arora14.html.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine transla-
tion by jointly learning to align and translate. CoRR abs/1409.0473.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An automatic metric for mt evaluation
with improved correlation with human judgments. pages 65–72.

Y. Bengio, P. Simard, and P. Frasconi. 1994. Learning long-term dependen-
cies with gradient descent is difficult. Trans. Neur. Netw. 5(2):157–166.
https://doi.org/10.1109/72.279181.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003.
A neural probabilistic language model. J. Mach. Learn. Res. 3:1137–1155.
http://dl.acm.org/citation.cfm?id=944919.944966.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching
word vectors with subword information. Transactions of the Association for Computa-
tional Linguistics 5:135–146.

Ziqiang Cao, Wenjie Li, Sujian Li, Furu Wei, and Yanran Li. 2016. Attsum: Joint
learning of focusing and summarization with neural attention. In Proceedings
of COLING 2016, the 26th International Conference on Computational Linguis-
tics: Technical Papers. The COLING 2016 Organizing Committee, pages 547–556.
http://aclweb.org/anthology/C16-1053.

Jaime Carbonell and Jade Goldstein. 1998. The use of mmr, diversity-based rerank-
ing for reordering documents and producing summaries. In Proceedings of the
21st Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval. ACM, New York, NY, USA, SIGIR ’98, pages 335–336.
https://doi.org/10.1145/290941.291025.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John,
Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Yun-Hsuan Sung,

97

BIBLIOGRAPHY

Brian Strope, and Ray Kurzweil. 2018. Universal Sentence Encoder. arXiv e-prints
page arXiv:1803.11175.

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, and Hui Jiang. 2016. Distraction-based
neural networks for modeling documents. In Proceedings of the Twenty-Fifth Interna-
tional Joint Conference on Artificial Intelligence. AAAI Press, IJCAI’16, pages 2754–
2760. http://dl.acm.org/citation.cfm?id=3060832.3061006.

Jianpeng Cheng and Mirella Lapata. 2016. Neural summarization by extracting sentences
and words. In Proceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). Association for Computational Linguistics,
pages 484–494. https://doi.org/10.18653/v1/P16-1046.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase represen-
tations using rnn encoder–decoder for statistical machine translation. In Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguistics, Doha, Qatar, pages 1724–1734.
http://www.aclweb.org/anthology/D14-1179.

H. P. Edmundson. 1969. New methods in automatic extracting. J. ACM 16(2):264–285.
https://doi.org/10.1145/321510.321519.

Karl Pearson F.R.S. 1901. Liii. on lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science 2(11):559–572. https://doi.org/10.1080/14786440109462720.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K. Li. 2016. Incorporating copying mech-
anism in sequence-to-sequence learning. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 1631–1640. https://doi.org/10.18653/v1/P16-
1154.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural compu-
tation 9(8):1735–1780.

Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Proceedings of the 32Nd International
Conference on International Conference on Machine Learning - Volume 37. JMLR.org,
ICML’15, pages 448–456. http://dl.acm.org/citation.cfm?id=3045118.3045167.

Mikael Kågebäck, Olof Mogren, Nina Tahmasebi, and Devdatt Dubhashi. 2014. Extrac-
tive summarization using continuous vector space models. In Proceedings of the 2nd
Workshop on Continuous Vector Space Models and their Compositionality (CVSC). As-
sociation for Computational Linguistics, pages 31–39. https://doi.org/10.3115/v1/W14-
1504.

98

BIBLIOGRAPHY

Yoon Kim. 2014. Convolutional neural networks for sentence classification. In Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP). Association for Computational Linguistics, pages 1746–1751.
https://doi.org/10.3115/v1/D14-1181.

Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, and Kilian Q. Weinberger. 2015. From word
embeddings to document distances. In Proceedings of the 32Nd International Con-
ference on International Conference on Machine Learning - Volume 37. JMLR.org,
ICML’15, pages 957–966. http://dl.acm.org/citation.cfm?id=3045118.3045221.

Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio. 1999. Object recognition
with gradient-based learning. In Shape, Contour and Grouping in Computer Vision.
page 319. https://doi.org/10.1007/3-540-46805-6 19.

Piji Li, Wai Lam, Lidong Bing, and Zihao Wang. 2017. Deep recurrent generative decoder
for abstractive text summarization. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing. Association for Computational Linguistics,
pages 2091–2100. https://doi.org/10.18653/v1/D17-1222.

Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries. In
Stan Szpakowicz Marie-Francine Moens, editor, Text Summarization Branches Out:
Proceedings of the ACL-04 Workshop. Association for Computational Linguistics,
Barcelona, Spain, pages 74–81.

Junyang Lin, Xu SUN, Shuming Ma, and Qi Su. 2018. Global encoding for abstractive
summarization. In Proceedings of the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers). Association for Computational Lin-
guistics, pages 163–169. http://aclweb.org/anthology/P18-2027.

Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Effective approaches to
attention-based neural machine translation. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, pages 1412–1421. https://doi.org/10.18653/v1/D15-1166.

Shulei Ma, Zhi-Hong Deng, and Yunlun Yang. 2016. An unsupervised multi-document
summarization framework based on neural document model. In Proceedings of
COLING 2016, the 26th International Conference on Computational Linguistics:
Technical Papers. The COLING 2016 Organizing Committee, pages 1514–1523.
http://aclweb.org/anthology/C16-1143.

Warren S. McCulloch and Walter Pitts. 1988. Neurocomputing: Foundations of research.
MIT Press, Cambridge, MA, USA, chapter A Logical Calculus of the Ideas Immanent
in Nervous Activity, pages 15–27. http://dl.acm.org/citation.cfm?id=65669.104377.

Ryan McDonald. 2007. A study of global inference algorithms in multi-
document summarization. In Proceedings of the 29th European Conference
on IR Research. Springer-Verlag, Berlin, Heidelberg, ECIR’07, pages 557–564.
http://dl.acm.org/citation.cfm?id=1763653.1763720.

99

BIBLIOGRAPHY

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Dis-
tributed representations of words and phrases and their compositionality. In Neural and
Information Processing System (NIPS). https://papers.nips.cc/paper/5021-distributed-
representations-of-words-and-phrases-and-their-compositionality.pdf.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017. Summarunner: A recurrent
neural network based sequence model for extractive summarization of documents.
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14636/14080.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Caglar Gulcehre, and Bing Xi-
ang. 2016. Abstractive text summarization using sequence-to-sequence rnns and be-
yond. In Proceedings of The 20th SIGNLL Conference on Computational Natu-
ral Language Learning. Association for Computational Linguistics, pages 280–290.
https://doi.org/10.18653/v1/K16-1028.

Mir Tafseer Nayeem, Tanvir Ahmed Fuad, and Yllias Chali. 2018. Abstractive unsuper-
vised multi-document summarization using paraphrastic sentence fusion. In Proceed-
ings of the 27th International Conference on Computational Linguistics. Association for
Computational Linguistics, pages 1191–1204. http://aclweb.org/anthology/C18-1102.

Preksha Nema, Mitesh M. Khapra, Anirban Laha, and Balaraman Ravindran. 2017. Di-
versity driven attention model for query-based abstractive summarization. In Proceed-
ings of the 55th Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computational Linguistics, pages 1063–1072.
https://doi.org/10.18653/v1/P17-1098.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder,
and Li Deng. 2016. MS MARCO: A human generated machine reading comprehension
dataset. In Proceedings of the Workshop on Cognitive Computation: Integrating neural
and symbolic approaches 2016 co-located with the 30th Annual Conference on Neural
Information Processing Systems (NIPS 2016), Barcelona, Spain, December 9, 2016..
http://ceur-ws.org/Vol-1773/CoCoNIPS 2016 paper9.pdf.

J. Niu, H. Chen, Q. Zhao, L. Su, and M. Atiquzzaman. 2017. Multi-document
abstractive summarization using chunk-graph and recurrent neural network. In
2017 IEEE International Conference on Communications (ICC). pages 1–6.
https://doi.org/10.1109/ICC.2017.7996331.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method for
automatic evaluation of machine translation. In Proceedings of the 40th Annual Meet-
ing of the Association for Computational Linguistics. http://aclweb.org/anthology/P02-
1040.

Romain Paulus, Caiming Xiong, and Richard Socher. 2018. A deep reinforced model for
abstractive summarization. In International Conference on Learning Representations.
https://openreview.net/forum?id=HkAClQgA-.

100

BIBLIOGRAPHY

Radim Řehůřek and Petr Sojka. 2010. Software Framework for Topic Modelling with
Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks. ELRA, Valletta, Malta, pages 45–50. http://is.muni.cz/
publication/884893/en.

Pengjie Ren, Zhumin Chen, Zhaochun Ren, Furu Wei, Liqiang Nie, Jun Ma, and Maarten
de Rijke. 2018. Sentence relations for extractive summarization with deep neural net-
works. ACM Trans. Inf. Syst. 36(4):39:1–39:32. https://doi.org/10.1145/3200864.

Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. 2000. The earth mover’s distance as
a metric for image retrieval. International Journal of Computer Vision 40(2):99–121.
https://doi.org/10.1023/A:1026543900054.

Alexander M. Rush, Sumit Chopra, and Jason Weston. 2015. A neural attention model
for abstractive sentence summarization. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, pages 379–389. https://doi.org/10.18653/v1/D15-1044.

Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get to the point: Summariza-
tion with pointer-generator networks. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Association for
Computational Linguistics, pages 1073–1083. https://doi.org/10.18653/v1/P17-1099.

G. L. Shaw. 1986. Donald hebb: The organization of behavior. In Günther Palm and
Ad Aertsen, editors, Brain Theory. Springer Berlin Heidelberg, Berlin, Heidelberg,
pages 231–233.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. 2014. Dropout: A simple way to prevent neural net-
works from overfitting. Journal of Machine Learning Research 15:1929–1958.
http://jmlr.org/papers/v15/srivastava14a.html.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with
neural networks. In Proceedings of the 27th International Conference on Neural Infor-
mation Processing Systems - Volume 2. MIT Press, Cambridge, MA, USA, NIPS’14,
pages 3104–3112. http://dl.acm.org/citation.cfm?id=2969033.2969173.

C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. 2015. Going deeper with convolutions. In 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pages 1–9.
https://doi.org/10.1109/CVPR.2015.7298594.

Jiwei Tan, Xiaojun Wan, and Jianguo Xiao. 2017. From neural sentence summarization
to headline generation: A coarse-to-fine approach. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI-17. pages 4109–4115.
https://doi.org/10.24963/ijcai.2017/574.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In NIPS.

101

BIBLIOGRAPHY

Y. Zhang, M. J. Er, and M. Pratama. 2016. Extractive document summariza-
tion based on convolutional neural networks. In IECON 2016 - 42nd An-
nual Conference of the IEEE Industrial Electronics Society. pages 918–922.
https://doi.org/10.1109/IECON.2016.7793761.

Qingyu Zhou, Nan Yang, Furu Wei, and Ming Zhou. 2017. Selective encoding for ab-
stractive sentence summarization. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Association for
Computational Linguistics, pages 1095–1104. https://doi.org/10.18653/v1/P17-1101.

102

Appendix A

Abbreviations

103

A. ABBREVIATIONS

Table A.1: Abbreviations used in this thesis

Abbreviations Full Forms
ANN Artificial Neural Network
Bi-RNN Bidirectional Recurrent Neural Network
BLEU Bi-lingual Evaluation Understudy
CBOW Continuous Bag of Words
CNN Convolutional Neural Network
CR Copy Rate
DAN Deep Averaging Network
D-Bi-RNN Deep Bidirectional Neural Network
DP Deep Learning
EACS Embedding Average Cosine Similarity
EDA Encoder-Decoder Framework with Attention Mechanism
EMD Earth Mover’s Distance
FCFFNN Fully Connected Feed Forward Neural Network
FFNN Feed Forward Neural Network
GMS Greedy Matching Score
GRU Gated Recurrent Unit
LCS Longest Common Sub-Sequence
LSTM Long Short Term Memory
METEOR Metric for Evaluation of Translation with Explicit ORdering
ML Machine Learning
MLE Maximum Likelihood Estimation
MLP Multiple Layered Perceptron
MS MARCO Microsoft Machine Reading Comprehension
NLP Natural Language Processing
NLTK Natural Language Toolkit
nBOW Normalized Bag of Words
NMT Neural Machine Translation
QFADS Query Focused Abstractive Document Summarization
QFAMDS Query Focused Abstractive Multi-Document Summarization
RNN Recurrent Neural Network
ReLU Rectified Linear Unit
ResNet Residual Network
ROUGE Recall-Oriented Understudy for Gisting Evaluation
S2S or Seq2Seq Sequence to Sequence
USE Universal Sentence Encoder
WMD Word Mover’s Distance

104

Appendix B

Sample System Generated Query
Focused Abstractive Summaries

Here, we show some examples of our system-generated summary using our query fo-
cused abstractive document summarization model described in Chapter 3 along with
their query, document, and original summary from the Debatepedia dataset. Some of
them are as follows:

Sample 1:
QUERY: proliferation/npt : does the us-india nuclear deal undermine non-proliferation ?
DOCUMENT: jayshree bajoria . the u.s.-india nuclear deal . council on foreign relations .
july 21 2008 - what effect will the u.s.-india deal have on the npt ? it could gut the agree-
ment experts say . article 1 of the treaty says nations that possess nuclear weapons agree
not to help states that do not possess weapons to acquire them . albright says that without
additional measures to ensure a real barrier exists between india ’s military and civilian
nuclear programs the agreement could pose serious risks to the security of the united states
by potentially allowing indian companies to proliferate banned nuclear technology around
the world . in addition it could lead other suppliers including russia and china to bend the
international rules so they can sell
ORIGINAL SUMMARY: a us-india nuclear deal will gut the npt .
GENERATED SUMMARY: a us-india nuclear deal will gut the npt .

Sample 2:
QUERY: vs. harm reduction : is a war a better idea than harm reduction ?
DOCUMENT: many of the health dangers associated with recreational drugs exist or are
made worse precisely because they are illegal . the government can not enforce quality
control on products sold and manufactured illegally . examples include : the easier to make
derivative mda being sold as mdma heroin users unintentionally injecting brick dust quinine
or fentanyl with which their heroin had been cut ; and heroin/cocaine overdoses occurring
as a result of users not knowing exactly how much they are taking .
ORIGINAL SUMMARY: legalizing drugs would improve quality control
GENERATED SUMMARY: legalizing drugs would improve quality control

Sample 3:
QUERY: history : does history prove democracy to be the best form of government ?

105

B. SAMPLE SYSTEM GENERATED QUERY FOCUSED ABSTRACTIVE
SUMMARIES

DOCUMENT: the existence of an overweening state machine that meddles in everything
can tempt leaders to use it against their political foes . total control of the economy also
sucks the air away from what istvan bibo a hungarian political thinker called the little cir-
cles of freedom the free associations and independent power centres that a free economy
allows . the economist crying for freedom january 16th 2010
ORIGINAL SUMMARY: democracy has never endured in countries with mainly non-
market economies .
GENERATED SUMMARY: democracy has never endured in countries with mainly non-
market economies

Sample 4:
QUERY: victims : is allowing victims to see trials important ?
DOCUMENT: do n’t ’trust ’ court to try terrorists . lancaster online . nov 20 2009 : in-
stead of a straightforward finding of guilt and execution in a military court americans who
suffered the loss of loved ones on 9/11 will have to suffer through a lengthy trial designed
to show the world that americans are fair to terrorists and they will have to suffer that
trial within blocks of where two planes commandeered by fellow terrorists flew into and
destroyed the twin trade towers .
ORIGINAL SUMMARY: nyc civilian trial re-opens wounds of 9/11 victims
GENERATED SUMMARY: york civilian trial re-opens wounds of / victims

Sample 5:
QUERY: markets : are market forces insufficient in demanding sound public discourse ?
DOCUMENT: michael gerson . where the mines are . washington post . 14 nov. 2008 -
during the campaign obama signaled that he did not support the reimposition of the fairness
doctrine . but house speaker nancy pelosi and other democratic leaders are big fans of this
regulation . and talk radio is already preparing for a showdown . if obama were to endorse
this doctrine even reluctantly the resulting fireworks would obscure every other topic .
ORIGINAL SUMMARY: fairness doctrine would open costly political battle
GENERATED SUMMARY: fairness doctrine would open costly political battle

106

Appendix C

Sample System Generated Query
Focused Abstractive Multi-Document
Summaries

Here, we show some examples of our system-generated summary using our query
focused abstractive multi-document summarization model (Sent2CQS) described in
Chapter 4 along with their query, documents, and original summary from the MS
MARCO dataset. Some of them are as follows:

Sample 1:
QUERY: why is coconut oil good for the skin
DOCS: using coconut oil on your skin can be the difference between flaky , dry skin , and
soft , glowing skin , as this oil is known for its moisturizing benefits.widely used in skin
creams , soaps and lotions for its effectiveness in fighting dry skin , coconut oil also helps
to sooth various other types of skin conditions.kin benefits of coconut oil . using coconut
oil on your skin can be the difference between flaky , dry skin , and soft , glowing skin ,
as this oil is known for its moisturizing benefits . coconut oil ’s origins : in parts of the
world , using coconut oil on your hair and skin has been an ancient practice . the amount of
coconut oil you ’ll need depends on the length and thickness of your hair . you can also put
the coconut oil on a piece of cotton and rub the cotton onto your skin.oconut oil is a great
skin softener and helps you do away with dry and hard skin conditions . rub the coconut
oil into your hair . use your fingers to massage it in and smooth it down your hair shaft
all the way to the tips.easure 3 - 5 tablespoons of coconut oil into a bowl . coconut oil ’s
origins : in parts of the world , using coconut oil on your hair and skin has been an ancient
practice.he sees the effects by way of shiny hair and breakout-free skin . when we apply
chemical gels on the lips , it is possible to consume those gels accidentally , even though
they are somewhat toxic.oconut oil is a great skin softener and helps you do away with dry
and hard skin conditions . if you have long , thick hair , use 5 ; if your hair is shorter and
thinner , you only need 3 or 4.easure 3 - 5 tablespoons of coconut oil into a bowl .
ORIGINAL SUM: Because a great skin softener and helps you do away with dry and hard
skin conditions. Simply take some coconut oil on your palms, rub your palms against each
other once or twice and then on your face, hands, or wherever you want to see the moistur-
izing effect.
GENERATED SUM: massaging is good to help your skin and it helps your skin and it is

107

C. SAMPLE SYSTEM GENERATED QUERY FOCUSED ABSTRACTIVE
MULTI-DOCUMENT SUMMARIES

good to smooth your skin .

Sample 2:
QUERY: what is the purpose of a condenser on a car
DOCS: best answer : the condensor is a coil of wire inside a metal canister that has the
function of capturing voltage spikes or surges that occur when the breaker points ... the
refrigerant enters the condenser as a high-pressure vapor , but as it flows through the con-
denser and cools , it turns back into a cooler high-pressure liquid . the condenser can be
compared to a radiator in an engine cooling system : the radiator releases heat from the
hot engine coolant passing through it , to the atmosphere . things that can go wrong with
condensers the air temp outside is cooler than the air inside the car , so moisture forms on
the inside of the glass surface . your breath contains a lot of moisture and it lands on the
inside of the car windows . purpose of a condensor the purpose of a condenser in the cycle
of compression refrigeration is to change the hot gas being discharged from the compressor
to a liquid prepared for use in the evaporator . the condenser accomplishes this action by
the removal of sufficient heat from the hot gas , to ensure its condensation at the pressure
available in the condenser . the condensor , or capicator , stores the emf discharged by the
coil when the points open , and the collapsing force field generates a current in the sec-
ondary winding of the coil . without the condenser , there is no spark when the points open
. the condenser acts like a capacitor and stores and boosts the spark until it is sent to the
spark plug .
ORIGINAL SUM: In cars A/C system, the condenser is the other heat exchanger in a mo-
bile A/C system; it condenses the refrigerant while releasing heat that was in the car.
GENERATED SUM: the purpose of a gas vehicle is to treat the air and the system is to
make the seed .

Sample 3:
QUERY: what is the weather in muskogee?
DOCS: average weather muskogee , ok - 74401 - 1981-2010 normals . mostly cloudy ,
with a high near 75 . new rainfall amounts between a tenth and quarter of an inch , except
higher amounts possible in thunderstorms . damaging winds , hail , perhaps a tornado or
two will be possible from the lower great lakes into the ohio valley . elsewhere , heavy
snow will impact the upper elevations of the northern and central rockies . these one-page
documents provide a quick glimpse at the historical climate of the county . summarized
data for weather observing stations in the county . average weather in muskogee oklahoma
, united states . muskogee has a warm humid temperate climate with hot summers and no
dry season . the hot season lasts for 103 days , from june 6 to september 17 , with an aver-
age daily high temperature above 84f .
ORIGINAL SUM: A warm humid temperate climate with hot summers and no dry season.
The temperature typically varies from 29F to 93F over the course of the year and is rarely
below 15F or above 101F. The hot season lasts for 103 days from June 6 to September 17
with an average daily high temperature above 84F.
GENERATED SUM: the weather in march , poland has a warm humid climate . there is a
hot with air in 9 , and a year on clear from 0 . during summer , with a close or more up .
from its park in summer , with a little on july 9 .

108

