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ABSTRACT 

Iron is crucial for maintaining normal bodily function, with well-documented roles in 

erythropoiesis, haemostasis and inflammation. Despite this, little is known about the 

temporal regulation of iron during wound healing, nor how iron contributes to wound 

biology and pathology. Here we profiled tissue iron levels across a healing time-course, 

identifying iron accumulation during late-stage repair. Interestingly, diabetic murine 

wounds displayed significantly reduced iron levels, delayed extracellular matrix 

deposition and dysregulation of iron gene expression. In vitro studies revealed 

important cellular roles for iron, promoting both deposition and remodelling of 

extracellular proteins. Functional studies identified oxidative stress-dependent 

upregulation of the iron-converting metalloreductase, STEAP3, as a key mediator of 

extracellular matrix production. Taken together, these data reveal a to our knowledge 

previously unreported mechanistic role for iron in facilitating the remodelling stage of 

wound healing. Indeed, targeting tissue iron may be a promising future strategy to 

tackle the development and progression of chronic wounds.  
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INTRODUCTION 

Iron is one of the body’s most abundant trace elements, responsible for orchestrating 

the action and inaction of a diverse range of cellular functions. The importance of iron 

pertains to its ability to alter its oxidative state, where it drives biological processes that 

require electron transfer, such as oxidative phosphorylation and DNA synthesis and 

repair (Bogdan et al, 2016). However, in its biologically active state (Fe2+), iron reduces 

O2 to form free radicals that cause cellular damage (Ray et al, 2012). Thus, crucial 

mechanisms have evolved to tightly regulate bodily iron fluxes and prevent toxicity.  

Iron (Fe3+) is exported into the bloodstream, where it binds mainly to transferrin (Tf). 

Tf-Fe then binds to transferrin receptor 1 (TfR1) at the cell surface (Arezes and Nemeth, 

2015), the Tf-TfR1 complex is internalised via clathrin-mediated endocytosis, and Fe3+ 

is released (Mayle et al, 2012). Fe3+ is reduced to Fe2+ via the ferrireductase, STEAP3 

(six-transmembrane epithelial antigen of prostate), with Fe2+ transported into the 

cytoplasm by divalent metal transporter 1 (DMT1; Muckenthaler et al, 2017). 

Intracellular iron can then be stored (in ferritin) or exported via the only known cellular 

iron exporter, ferroportin (Ward and Kaplan, 2012). 

Despite this sophisticated regulation, there exist a number of iron deficiency or iron 

overload disorders (reviewed in Arezes and Nemeth, 2015), in turn linked to chronic 

pathologies (e.g. cardiovascular disease, Qi et al, 2007; fatty liver disease, Valenti et al, 

2012). Indeed, iron loading causes insulin resistance and increases glucose uptake (in 

mice, Huang et al, 2013) and elevated iron is associated with increased risk of type II 

diabetes mellitus (T2DM) in humans (Eshak et al, 2018). The effects of iron in 

mediating diabetes risk are further shown in the iron-loading disorder hereditary 

hemochromatosis (HH), which increases apoptosis of pancreatic β cells (Cooksey et al, 
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2004), contributes to abnormal glucose homeostasis, and increases the prevalence of 

diabetes in those affected (reviewed in Barton and Acton, 2017; McClain et al, 2006). 

Thus, it is clear that altered iron metabolism mediates many of the risks factors for the 

development of T2DM. 

In wound healing, iron is known for its oxidative role in haemostasis, where ferrous 

iron is released from haemoglobin (Lipinski and Pretorius, 2012) and acts to promote 

blood clotting (Kell and Pretorius, 2015; Pretorius et al, 2013). Abundant wound heme 

also directs inflammation through the release of hydroxyl radicals (Yeoh-Ellerton and 

Stacey, 2003), influences monocyte differentiation into macrophages (Haldar et al, 

2014), and Fe2+ itself retains effects on macrophage function and polarisation (e.g.  

Kroner et al, 2014; Sindrilaru et al, 2011; Sindrilaru and Scharfetter-Kochanek, 2013; 

Agoro et al, 2018). Iron-dependent enzymes are also required for stimulating 

angiogenesis (Loenarz and Schofield, 2008; Ozer and Bruick, 2007) and are involved 

in the post-translational stabilisation of collagen (Hutton et al, 1967; Markolovic et al, 

2015). Despite this, little is known about the spatial or temporal distribution of 

endogenous iron in cutaneous wound biology, or how this links to pathological healing.  

In the present study, we report temporal changes in endogenous iron distribution during 

normal acute wound healing and across a pathological murine model. We determine a 

specific, to our knowledge previously unreported, role for iron in aiding extracellular 

matrix (ECM) remodelling and deposition. Finally, we explore the mechanistic 

importance of iron-induced oxidative stress via STEAP3, thus elucidating a 

fundamental role for iron in ECM distribution during cutaneous wound repair.  
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RESULTS 

Iron accumulates during the remodelling phase of wound healing. ICP-MS, the gold 

standard technique for measuring metal abundance (Lee et al, 2014), was used to 

characterise tissue iron concentration across a normal healing time-course. Wounds 

were evaluated at days 1, 3, 7 and 14 post-wounding (D1, D3, D7 and D14 PW) in 

C57/Bl6 mice, with iron abundance compared to unwounded skin (D0; Figure 1a). A 

substantial increase in tissue iron concentration was observed at D7 and D14 PW, 

compared to D0 (P < 0.001). Perl’s Prussian blue (PPB) histological staining 

independently confirmed the ICP-MS data (Figure 1b), where quantification (Figure 

1c) showed increased iron deposition at D7 (P < 0.001) and D14 (P < 0.001) PW. The 

deposition of iron at D7 correlated temporally with wound collagen production (Figure 

1d-f; Supplementary Figure 1a) and increased Col3a1 (P < 0.01) and Col1a1 (P < 

0.001) mRNA (Supplementary Figure 1d). 

Diabetic wound pathology is characterised by impaired iron accretion and 

reduced ECM deposition. We next asked whether delayed healing diabetic wounds 

(Wilkinson et al, 2019) displayed altered local iron levels. Specifically, ICP-MS/ICP-

OES was used to evaluate iron abundance in non-diabetic (NDb) and diabetic (Db) skin 

(D0) and wounds at D3 and D7 PW (Figure 2a). As in wild-type mice (Figure 1a), 

NDb wounds displayed significantly elevated iron at D7 (P < 0.01, versus D0). 

Crucially, at all time-points, Db skin (P < 0.001) and wounds (D3, P < 0.01; D7, P < 

0.001) presented with significantly reduced iron compared to NDb. Once again PPB 

histology confirmed metal profiling data, showing reduced iron deposition in the Db 

model at D3, D7 and D14 (P < 0.001; Figure 2b-c).  
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In line with observed iron changes, Db wounds displayed reduced collagen deposition 

at D7 PW (Figure 2d-g; Supplementary Figure 1b-c) and impaired Col3a1 and 

Col1a1 transcription (Supplementary Figure S1e). Indeed, immature/mature ECM 

fibre analysis (picrosirius red) confirmed reduced mature fibres in Db wounds 

(Supplementary Figure S2). Collectively, these data highlight strong correlation 

between wound tissue iron levels and deposition of wound extracellular matrix.    

Iron administration increases intracellular iron storage. In order to evaluate the 

direct effects of iron on ECM production and deposition, we moved to an in vitro model. 

Human dermal fibroblasts (HDFs) were treated with ferric ammonium citrate (FAC) 

for up to 11 days. The highest concentration of FAC tested (100 µM) increased cell 

growth (Figure 3a) and was non-cytotoxic (Figure 3b). A ferrozine assay (Riemer et 

al, 2004) directly quantified increased intracellular iron in 100 µM FAC treated HDFs 

(Figure 3c). Moreover, treatment with 100 µM FAC resulted in high cytoplasmic 

ferritin stores, demonstrated by western blot (P < 0.05; D5; Figure 3d) and 

immunocytochemistry (P < 0.001; Figure 3e-f). Thus, it is clear that HDFs internalise 

and store iron from exogenously administered FAC.  

FAC treatment of HDFs dose-dependently increases fibronectin remodelling. 

Interestingly, 100 µM FAC led to reduced endogenous fibronectin deposition compared 

to 10 µM FAC (P < 0.01; Figure 4a-b). We next performed an Fn-488 assay to assess 

the influence of FAC on the remodelling of exogenous fibronectin. HDFs treated with 

100 µM FAC for 24 hours demonstrated substantially increased remodelling (P < 0.01; 

increased 488 intensity), while treatment with ARP101, an inhibitor of matrix 

metalloproteinase 2 (MMP2), significantly reduced remodelling in the presence of FAC 

(P < 0.01; Figure c-d). As MMP2 inhibition reduced fibronectin remodelling, MMP2 

activity in HDFs was assessed via gelatin zymography. Here, FAC treatment 
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significantly increased activity of the protease MMP2 (P < 0.05; Figure 4f-g). 

Confirmation that MMP2 degrades fibronectin is provided in Supplementary Figure 

S3a. Zymography performed on MMP2 and MMP9 standards incubated with FAC 

excludes direct inhibition of MMP activity (Supplementary Figure S3b-d). Returning 

to HDF cells, increased MMP2 expression was observed following 100 µM FAC 

treatment (P < 0.01; Figure 4f). Clearly, high levels of FAC increased MMP2 activity 

in HDFs, with MMP able to remodel fibronectin in vitro. 

FAC administration accelerates extracellular deposition of type I and type III 

collagen. Hydroxyproline assay was used to assess collagen content in HDFs treated 

with FAC. Here, significantly increased hydroxyproline was observed following 100 

µM FAC treatment (P < 0.001; Figure 4g). This was confirmed by 

immunocytochemistry, where 100 µM FAC significantly increased the deposition of 

collagen III (P < 0.01) and collagen I (P < 0.001) in HDFs in vitro (D11; Figure 4h-i). 

These assays were also performed on a range of FAC treatments, where we saw a dose-

dependent increase in collagen. Co-treatment with the iron chelator deferoxamine 

attenuated this increase in collagen, while the non-iron oxidant (phorbol 12-myristate 

13-acetate, PMA) failed to increase collagen levels, demonstrating an iron-specific 

effect (Supplementary Figure S3e-f). Finally, SEM allowed determination of 

structural changes following FAC treatment at higher resolution than confocal 

microscopy. Intriguingly, 100 µM FAC treatment led to large microvesicles and 

increased extracellular secretion versus the control group (Figure 4j). Together, these 

data indicate that iron administration leads to significant extracellular matrix deposition.  

Cytoplasmic iron loading leads to oxidative stress-induced ECM production via a 

STEAP3 dependent mechanism. As iron is known to cause free radical production 

(reviewed in Bresgen and Eckl, 2015), we evaluated oxidative stress in FAC-treated 
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HDFs. A CellROX™ assay showed that FAC treatment increased oxidative stress in 

HDFs, which was attenuated by deferoxamine (P < 0.01; Supplementary Figure S4a-

b), and the antioxidant, mannitol (P < 0.05, Figure 5a-b). Interestingly, mannitol 

treatment also reduced the FAC-mediated secretion of collagen III (P < 0.001, Figure 

5a, c) and collagen I (P < 0.01, Figure 5a, d). To explore the mechanistic link between 

FAC-induced oxidative stress and subsequent ECM deposition, a tissue expression 

screen of selected iron-associated genes was performed (Supplementary Figure S4c). 

Here, Steap3 was identified as elevated in D7 WT wounds (P < 0.05; Figure 5e), and 

decreased in D7 Db wounds (P < 0.01; Figure 5f). STEAP3 was significantly increased 

in HDFs following 100 µM FAC administration (D3; P < 0.05, Figure 5g). Thus, both 

oxidative stress and STEAP3 appear crucial for FAC-mediated ECM deposition. 

Finally, we assessed the functional link between oxidative stress, STEAP3 and ECM 

production. Treatment with the antioxidant mannitol attenuated STEAP3 expression (P 

< 0.05; Figure 5h) and reduced HDF ferritin stores (P < 0.001, Supplementary Figure 

S4d). Next, siRNA was used to target STEAP3 in HDFs and assessed its role in iron-

induced collagen production. qRT-PCR demonstrated significant, stable knockdown of 

STEAP3 (Supplementary Figure S4e). In HDFs treated with STEAP3 siRNA, 

extracellular production of collagen III (Figure 5i-j) and collagen I (Supplementary 

Figure S4f-g) was significantly reduced following 100 µM FAC (compared to control 

siRNA). Finally, siRNA targeting STEAP3 led to reduced oxidative stress in the 

presence of 100 µM FAC (P < 0.001; Figure 5k). Together, these data suggest that 

FAC-induced oxidative stress mediates collagen deposition, in part, through STEAP3. 
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DISCUSSION 

Iron is a vital trace element, essential for life. Its role as a redox active metal is well-

known, as is its major function in erythropoiesis (Majmundar et al, 2010). Here, we 

provide to our knowledge previously unreported findings showing the temporal 

regulation of iron during murine wound healing, and reveal its impairment in diabetic 

wound pathology. To date, iron has been largely recognised for driving haemostasis 

(e.g. Lipinski and Pretorius, 2012) and modulating inflammatory cell behaviour 

(Kroner et al, 2014; Agoro et al, 2018) during early-stage wound healing processes. 

Our data now demonstrate that iron plays a major role in modulating dermal 

extracellular matrix deposition and remodelling that characterises late-stage wound 

repair (Young and McNaught, 2011). We note that previous groups have measured iron 

in experimental rat wounds (using flame atomic absorption spectroscopy, Lansdown et 

al, 1999), and in chronic wound exudate (ICP-optical emission spectroscopy, Yeoh-

Ellerton and Stacey, 2003). However, to our knowledge, this is the first time that 

endogenous iron has been compared between acute and pathological murine wound 

tissue using the more sensitive and accurate technique of ICP-MS.  

Previous in vitro studies have shown that HDFs readily uptake and store administered 

iron, which aids cellular proliferation (Jenkins et al, 2011; Le and Richardson, 2002). 

In this study, we show that iron clearly stimulates HDFs to increase MMP2 expression, 

which may contribute to remodelling of fibronectin in vitro. Indeed, MMP2 has 

previously been shown to successfully cleave fibronectin (Jiao et al, 2012), an ECM 

component required during haemostasis and granulation tissue formation for epithelial 

migration and cellular adhesion (Barker and Engler, 2017; Leiss et al, 2008).   
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Despite its crucial roles in early repair, stronger and more stable collagen fibres replace 

fibronectin during dermal remodelling (reviewed in Lenselink, 2013). Our data 

demonstrates that iron strongly stimulates extracellular deposition of both collagen type 

III and collagen type I in vitro. In HH, patients show local inflammation and fibrosis 

(Wang et al, 2017; reviewed in Wood et al, 2008), although this is most likely an 

indirect result of comorbities known to contribute to fibrosis (e.g. alcohol consumption, 

Bataller et al, 2003). This fits with the observation that in experimental 

hemochromatosis mouse models, iron loading occurs in the liver, but is not correlated 

with increased ECM production (Subramaniam et al, 2012).   

Experiments were performed exclusively in female mice. However, given the widely 

reported gender differences in healing (Gilliver et al., 2008), future studies could assess 

gender variation in the role of iron in wound repair. Similarly, although the db/db mouse 

model is widely used, it fails to fully replicate human chronic wounds. A future priority 

will be to confirm the role of iron in human Db wound pathology. 

Intriguingly, iron delivery in vitro aids spheroid growth and ECM production (rat aortic 

smooth muscle cells, Casco et al, 2017), causes fibrogenesis in murine hepatic stellate 

cells (Mehta et al, 2018), and increases proliferation in human myeloid progenitor cells 

(Pourcelot et al, 2015). As a potential mechanism, iron loading is also known to induce 

cellular oxidative stress through the release of hydroxyl radicals (Gao et al, 2009). In 

turn, H2O2-induced oxidative stress promotes collagen production in cardiac rat 

fibroblasts via NAD(P)H oxidase (Nox; Wang et al, 2013), and induces fibrosis in 

human hepatic stellate cells in vitro (Andueza et al, 2018). More recently, high levels 

of protein oxidation have been linked to idiopathic pulmonary fibrosis, and bleomycin 

and TGFβ-induced murine fibrosis models (Anathy et al, 2018). Finally, systemic 

sclerosis (Ssc) skin fibroblasts (from patients and mice), which possess excessive 
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dermal ECM, are characterised by heightened ROS (Sambo et al, 2001; Kavian et al, 

2010), which can be downregulated by the antioxidant stimulator, nuclear factor-like 2 

(Kavian et al, 2018). Thus, we and others show that oxidative stress is a potential 

contributor to accelerated ECM deposition in a variety of contexts. 

A tissue screen of iron-related genes elucidated upregulation of Steap3 at D7 PW, yet 

Db wounds displayed an altered profile of iron gene expression, with significant 

downregulation of Steap3 compared to NDb wounds. In fact, targeting of STEAP3, 

which is required for iron transport into the cytoplasm (via DMT1, Ohgami et al, 2005), 

led to reduced collagen deposition in vitro. In silico, Han et al, (2018) recently 

demonstrated that STEAP3-associated genes are linked to several cellular functions, 

including ECM organisation. Finally, antioxidant treatment in vitro dampened STEAP3 

expression in iron-stimulated HDFs and siRNA targeting of STEAP3 reduced oxidative 

stress, thus implying a direct role for STEAP3 in oxidative stress-induced ECM 

deposition.  

Taken together, these data demonstrate a previously unappreciated role for iron in late 

stage wound repair in vivo, with clearly reduced iron in murine pathological healing. 

Of therapeutic interest, endosomal conversion of exogenously administered iron via 

STEAP3 may accelerate ECM deposition through an oxidative stress-dependent 

mechanism. Further studies, particularly using human tissue, are now essential to 

explore the feasibility of directly manipulating tissue iron levels to promote wound 

healing.    

MATERIALS AND METHODS 

Animal Experimentation: Mice, purchased from Envigo Ltd. (UK), were housed at 

the Biological Services Facility at The University of Manchester (UK) with ad libitum 
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access to food and water. All animal experimentation was performed according to UK 

Home Office regulations under project licence 70/8136. 

Wounding Experiments: Female WT (wild-type) C57/Bl6, NDb (non-diabetic; Lepr-

/+) and Db (diabetic; Lepr-/-) mice were anaesthetised and wounded at 8-10 weeks old 

using our established protocol (Ashcroft and Mills, 2002) with modifications. Here, 

two equidistant 6mm excisional wounds were created with trace metal free (TMF) 

titanium instruments (World Precision instruments, Hertfordshire, UK) on the dorsum 

of each mouse. Mice were administered buprenorphine post-operatively. For WT time 

course experiments, wounds were collected at days one (D1), three (D3), seven (D7) 

and fourteen (D14) post-wounding (PW). For NDb vs Db time course experiments, 

wounds were collected at D3 and D7 PW only. Normal skin (D0) was also collected. 

Further details are provided in the supplementary text. 

Metal Quantification: The samples were analysed by a combination of ICP-MS, one 

of the most sensitive, commercially available techniques for element analysis (Liu et 

al, 2014), and ICP-OES (ICP-optical emission spectrometry). Tissue frozen at -80ºC 

was freeze dried in TMF vacutainers (BD Biosciences, Wokingham, UK) at -50ºC and 

0.03-0.04 mBAR. Freeze-dried samples, along with certified reference material 

(DOLT-5 dogfish liver, National Research Council, Canada) were prepared in TMF 

nitric acid (HNO3, Sigma-Aldrich, Dorset, UK) and 30% hydrogen peroxide (H2O2, 

Sigma-Aldrich) as in Ouypornkochagorn and Feldmann (2010) and digested as 

described in the supplementary text. Samples were subsequently analysed on an Agilent 

7500cx inductively coupled plasma mass spectrometer (Agilent Technologies, 

Cheshire, UK) or Optima 5300DV inductively coupled plasma optical emission 

spectrometer (PerkinElmer, Buckinghamshire, UK). 
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Histological Analysis: Tissue samples were stained with Perl’s Prussian blue (PPB) to 

detect iron deposits. Immunohistochemistry was performed using mouse anti-

fibronectin (clone EP5, Santa Cruz Biotechnology, Heidelberg, Germany), rabbit anti-

collagen III (ab7778) and rabbit anti-collagen I (clone EPR7785, Abcam, Cambridge, 

UK) primary antibodies. Further details are provided in the supplementary text.  

Quantitative Real-Time PCR (qRT-PCR): RNA was extracted from wounds, normal 

skin tissue and cells. Full information for qRT-PCR experiments are in the 

supplementary text with primer sequences provided in Supplementary Table S1. 

Fibroblast Culture: Primary human dermal fibroblasts (HDFs) were isolated from 

human skin from donors < 50 years of age, obtained with institutional approval and full, 

written informed consent from Castle Hill Hospital, Hull, UK (17/SC/0220) as 

previously described (Wilkinson et al, in press). HDFs were cultured in MEM 

(Minimum Essential Media, Thermo Fisher Scientific, Loughborough, UK) containing 

10% FBS (foetal bovine serum) and 1% P/S (penicillin-streptomycin solution, both 

Thermo Fisher Scientific). FAC was used as described in the supplementary text. 

Growth and viability with FAC treatment were determined. ECM production was 

assessed via immunocytochemistry, western blotting and scanning electron microscopy 

as described in the supplementary text. 

SiRNA Experiments: HDFs were transfected with two different validated Silencer® 

Select SiRNAs (Thermo Fisher Scientific) targeting STEAP3 mRNA. Transfection was 

achieved using Lipofectamine® RNAiMAX in Opti-MEM™ (Thermo Fisher 

Scientific) following manufacturer’s instructions. After 6 hours, media was replaced 

with fresh antibiotic-free MEM containing 2% FBS and HDFs were treated with FAC 
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for 5 days and analysed (qRT-PCR, immunocytochemistry and oxidative stress). 

Silencer® Select Negative Control No. 1 SiRNA was used as a validated control.  

Oxidative Stress Experiments: Oxidative stress was measured in HDFs following 

FAC treatment using CellROX™ Green Reagent (Thermo Fisher Scientific). HDFs 

were imaged via confocal microscopy (LSM 710, Carl Zeiss Ltd., Cambridge, UK) at 

20X magnification and intensity of staining (CTCF, corrected total cell fluorescence) 

was determined (McCloy et al, 2014). To inhibit oxidative stress, mannitol (Thermo 

Fisher Scientific) was added at the time of FAC administration. 

Statistical Analysis: Mean +/- standard deviations of the mean (SEM) were used for 

all data sets. Statistical analyses were performed on all quantitative data using 

GraphPad Prism 7 (GraphPad Software, California, US). Independent t tests, one-way 

ANOVA and two-way ANOVAs were used, with post-hoc analyses (Dunnett’s and 

Tukey) performed on significant ANOVAs. Significance between experimental groups 

was accepted when P < 0.05.  
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FIGURE LEGENDS 

Figure 1. Wound iron abundance increases during normal repair and temporally 

correlates with collagen deposition. Iron abundance increased at day 7 (D7) and D14 

post-wounding in normal mice (a, n=5 per group), confirmed via Perl’s Prussian Blue 

(PPB) staining (b), quantified in c. Arrows = deposits. Spleen = PPB positive control. 

Immunocytochemistry staining (d) and quantification for fibronectin (e), collagen III (f) 

and collagen I (g). DAPI = counterstain. Bars = 50 µm. Mean +/- SEM. * = P < 0.05, ** = P < 

0.001, red * = P < 0.001. 

Figure 2. Diabetic wounds display impaired iron accumulation and delayed 

collagen deposition. Diabetic (Db) skin and wounds possessed significantly less iron 

than non-Db (NDb; a; n=5 per group). # = NDb versus Db. PPB staining (b, quantification 

in c). Arrows = deposits. Spleen = PPB positive control. Immunocytochemistry staining 

(d) for fibronectin (e), collagen III (f) and collagen I (g). D0 = normal skin. D3 = day 3 

post-wounding. DAPI = counterstain. Bar = 50 µm. Mean +/- SEM. * = P < 0.05, ** = P < 

0.001, red * or # = P < 0.001.  

Figure 3. Human dermal fibroblasts sequester administered iron. Human dermal 

fibroblasts (HDFs) growth kinematics (a) and viability (b) following ferric ammonium 

citrate (FAC) treatment. PI = propidium iodide. EtOH = ethanol control. Sequestration of 

FAC determined by ferrozine (c), western blot (d) and immunocytochemistry (e, 

quantified in f). Ferritin statistics versus 100 µm FAC. DEF = deferoxamine iron chelator 

plus 100 µm FAC. Ferritin = red. DAPI = counterstain. Arrows = ferritin. Bars = 50 µm. 

CTCF = corrected total cell fluorescence. n=3 donors. Mean +/- SEM. * = P < 0.05, ** = P < 

0.001, red * = P < 0.001.  

Figure 4. Iron administration causes fibronectin remodelling and accelerated 

collagen deposition in vitro. Human dermal fibroblasts (HDFs) treated with FAC (ferric 

ammonium citrate, 11 days) and stained for fibronectin (green, a-b). Fn-488 remodelling 
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(c, images, d). ARP101 MMP2 inhibitor groups plus 100 µM FAC. Zymography (e). A = 

control, B = 10 µM FAC, C = 100 µM FAC. MMP2 qRT-PCR (f). Hydroxyproline (g) and 

collagen type III (COL III) and I immunocytochemistry (h, quantification, i). Collagens = 

green. Bars = 50 µm.  Scanning electron microscopy (j). Secretions = grey arrows. 

Microvesicles = white arrows. Bars = 10 µm. Inset bars = 2.5 µm. n=3 donors. Mean +/- 

SEM. * = P < 0.05, ** = P < 0.01, red * = P < 0.001.  

Figure 5. Intracellular iron loading accelerates collagen deposition via oxidative 

stress-dependent upregulation of STEAP3. Ferric ammonium citrate (FAC) increased 

oxidative stress, inhibited by mannitol (MAN; a, quantified, b). CellROX® 488 = oxidative 

stress, phalloidin (red) and DAPI (blue). Collagen III (c) and I (d) deposition. Steap3 qRT-

PCR in normal (e) and diabetic (Db) wounds (f). D0 = skin. D7 = day 7 post-wounding. 

STEAP3 qRT-PCR in human dermal fibroblasts (g), which is inhibited by MAN (h). STEAP3 

siRNA (si-S3) reduced collagen I (i and j) and oxidative stress (k). si-Ctrl = control siRNA. 

CTCF = corrected total cell fluorescence. Bars = 50 µm. n=3 donors. Mean +/- SEM. * = P 

< 0.05, ** = P < 0.01, red * = P < 0.001.  
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