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Abstract: Transfer learning aims for high accuracy by applying knowledge of source domains
for which data collection is easy in order to target domains where data collection is difficult, and
has attracted attention in recent years because of its significant potential to enable the application
of machine learning to a wide range of real-world problems. However, since the technique is
user-dependent, with data prepared as a source domain which in turn becomes a knowledge source
for transfer learning, it often involves the adoption of inappropriate data. In such cases, the accuracy
may be reduced due to “negative transfer.” Thus, in this paper, we propose a novel transfer learning
method that utilizes the flipping output technique to provide multiple labels in the source domain.
The accuracy of the proposed method is statistically demonstrated to be significantly better than
that of the conventional transfer learning method, and its effect size is as high as 0.9, showing
high performance.

Keywords: transfer learning; ensemble learning; data expansion; flipping output

1. Introduction

In recent years, machine learning has attracted attention, while the need to utilize data that can
be acquired from various sites is increasing. For example, at manufacturing sites, the manufacturing
data collected during a given process, the operation history of a given machine, and the like can all
be acquired as data as a result of innovations in sensor technology. In supervised learning, learning
using supervised data (a set of signals acquired using sensors and their affiliated class labels) makes it
possible to acquire abilities comparable to humans in the fields of speech and object recognition [1,2].
However, many of the proposed algorithms are designed for training situations, showing excellent
performance under conditions typically encountered during training, but often weaker performance
in other situations. What is required in the real world is not algorithms that show high performance
only in limited, training situations, but those which demonstrate general-purpose high performance in
a wide range of situations similar to these. The generalization of such algorithms to various conditions
remains underdeveloped. Real-world datasets are typically messy, and inappropriate predictions are
often made based on models developed from carefully constructed datasets.

One means of addressing this problem is to utilize transfer learning [3,4] to apply learned
knowledge to a new problem domain. Transfer learning deals with situations where two types of
datasets are available: A source domain and a target domain. The target domain contains data related
to the task which we wish to accomplish, while the source domain contains data related to tasks similar
to, but not including, the task of the target domain. Due to real-world limitations, such as difficulty in
protecting a sufficient amount of data, the target domain often has an insufficient number of data items.
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However, the source domain can easily prepare abundant data, and the task of the source domain can
be efficiently accomplished. The purpose of transfer learning is to show high accuracy in tasks to be
accomplished using the data not only of the target domain, but of the source domain, and it aims at the
acquisition of new knowledge based on the two types of data sets. As such, it is a valuable technique
not only in the manufacturing process, but also in many fields, such as natural science experimentation
and financial strategies.

When using transfer learning, it is not necessary to prepare a large number of target domain items,
typically involving high collection costs. Instead, it is possible to obtain complementary data from
the source domain, which can be easily collected in large quantities. Inductive transfer learning is
a transfer learning method in which different labels are given to the respective data of the target and
source domains. The technique is utilized in situations where the respective distributions of the target
and source domains are different, as well as in situations where the label definitions differ in the two
domains. In inductive transfer learning, it is possible to learn independently in each domain, taking
advantage of the fact that labels are given to both domains. In one example of the method, Kamishima
proposed TrBagg [5], an algorithm with applied bagging [6]. TrBagg employs only weak learners
that are effective for learning in the target domain, selected from the weak learners learned from the
original domain.

The key issue in applying transfer learning to real environments is that it is not known how much
data among the data collected in the source domain can be used for transfer learning. Furthermore,
we cannot know which data items are available. If the source domain contains many inappropriate
data items for accomplishing the task of the target domain, “negative transfer” [7] may occur, and the
target domain learning may not be successful. In order to suppress negative transfer, it is desirable
that the data in the source domain should fit the target domain as much as possible, but a trade-off

between the quality of the source domain data and the data collection cost cannot be avoided. Since the
similarity between the source domain and target domain is generally unmeasurable, it is up to the user
to decide what source domain to prepare. In order to increase the effectiveness of transfer learning,
to lower the data collection cost, a general-purpose algorithm that can show a high discrimination rate
is desirable, even if the source domain contains many data items that are inappropriate for learning the
target domain.

In this study, we developed a novel transfer learning method that utilizes more data contained in
the source domain than conventional transfer learning methods. The proposed method is based on
TrBagg, which selectively utilizes source domain data. The selective use of data lessens the likelihood
of negative transfer, but essentially uses only data assigned labels on the same basis as the target
domain. If there are only a few items that can be transferred to the target domain, the benefits of
learning are small. We thus utilize flipping output [8] as an important tool in the proposed method.
We apply the flipping output technique to the source domain and newly generate the inverted label
data as the inverted source domain, then selectively utilize data from a combined set of source domain
and inverted source domain data items. With the flipping output, even items originally assigned
a label different from the target domain can be used. In theory, by utilizing data-based acceptance
algorithms typified by TrBagg, we can make use of all the data of the source domain. Among the key
features of the proposed method:

• By applying label flipping to the source domain, all data items have multiple labels at the
same time;

• Verification experiments using benchmark datasets confirmed that the proposed method performs
significantly better than TrBagg.

The paper is organized as follows. In Section 2, we outline the salient features of transfer learning
and TrBagg. Section 3 describes the flipping output technique utilized in the proposed method,
and details the algorithm. Section 4 compares the proposed and conventional methods, through
experiments using the benchmark dataset from UCI. In Section 5, we discuss related research, and in
Section 6, conclude the paper.
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2. Transfer Learning

In this section, we outline the salient features of transfer learning and TrBagg, which is its
solution method.

2.1. Inductive Transfer Learning for Classification

Transfer learning deals with data in two domains: A source domain and a target domain. Transfer
learning, in which labels are assigned to both source and target domains, is commonly referred to
as inductive transfer learning. The two main differences between the source and target domains in
inductive transfer learning are the different data distribution and label definition in each domain.
Inductive transfer learning often deals with situations in which there is a difference in distribution
between the target domain and the source domain. In this study, we focused on inductive transfer
learning and the classification problem. When the feature vector representing an object is described by
x, and the class is labeled by c, the data can be expressed as (x, c). The solution to the classification
problem involves prediction of the appropriate class label ci for the feature vector xi. In this paper,
we denote the target domain as DT and the source domain as DS. The data of the target domain can
be expressed as DT =

{
(xi, ci)

}NT
i=1, where NT = |DT |. Similarly, the data of the source domain can be

expressed as DS =
{
(xi, ci)

}NS
i=1, where, NS = |DS|. Since the source domain is sufficiently larger than

the target domain, NT � NS is satisfied. All cases included in the target domain are generated from the
simultaneous distribution PT[x, c], representing the target concept, but the source domain is not limited
to this distribution. The purpose of inductive transfer learning is to express PT[x, c] more accurately
than by learning using only DT[x, c] by including the two domains DT[x, c] and DS[x, c].

2.2. TrBagg: Conventional Inductive Transfer Method

TrBagg was utilized in the proposed method because bagging offers a solution for inductive transfer
learning. TrBagg is an example-based approach to transferring knowledge based on data. That is,
among the item of the source domain, the item that is effective for classification of the target domain
is selectively used. Since the respective data items in the two domains have different distributions
and/or definitions, it is impossible to directly compare data items with each other. Therefore, TrBagg
determines whether the classifier learned from part of the source domain has enough classification
accuracy for the target domain, and the data to be used is selected via the classifier.

Algorithm 1: Algorithms of TrBagg.

i = 1
for n in 1 : T:

Bootstrap sampling from Ds as dn

Create classifier Cn learning from dn

Calculate experience error for DT as accn

If accn < th :
Save classifier Cn as Cad

i
i = i + 1

Else:
Discard classifier Cn

n = n + 1
Calculate result using Cad

1 · · ·C
ad
i

Specifically, the TrBagg’s algorithm is as follows (Algorithm 1). First, T training datasets
d1, d2, · · · , dT are generated from DS by bootstrap sampling. Learning from the generated individual
datasets, T classifiers C1, C2, · · · , CT are generated. Among C1, C2, · · · , CT the classifiers whose
experience error acc1, acc2, · · · , accT are less than the threshold th with respect to DT are adopted as Cad

i .
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If the experience error of a classifier is higher than th, the classifier is discarded. This determination is
made for all the classifiers, and the result is calculated using only the adopted classifiers. The above
flow is shown in Figure 1.

Algorithms 2019, 12, x FOR PEER REVIEW 4 of 12 

 

  Discard classifier 𝐶  

 𝑛 = 𝑛 + 1 

Calculate result using 𝐶 ⋯ 𝐶  

 

 
Figure 1. Flow chart of TrBagg. 

3. Proposed Method 

As described in Section 2, TrBagg selectively uses data from the source domain. However, it is 
generally unknown how much data among the data contained in the source domain can be utilized. 
One example may be seen in the sensory testing commonly employed for quality control at 
manufacturing sites. Although such sensory testing enables quality determination based on the 
examiner's vision and hearing, the determination criteria is often difficult to quantify. Therefore, large 
numbers of samples must be labeled by multiple inspectors, and variations in examiner criteria and 
judgment are inevitable. In this case, since it is not known by which criteria a plurality of inspectors 
is making decisions, it becomes unclear which samples are labeled according to the desired criteria; 
and if there are few available data items, the benefits of metastatic learning cannot be expected. 
Therefore, in this paper we propose a method that is effective even when there are few available data 
items in the source domain. We address situations with different label criteria, as described above, 
and utilize flipping output, whereby different labels are given to the source domain at the same time. 
Further, we propose a method based on TrBagg, aiming to increase the number of usable data items, 
as well as the generalization of the method, using flipping output.  
  

Figure 1. Flow chart of TrBagg.

3. Proposed Method

As described in Section 2, TrBagg selectively uses data from the source domain. However,
it is generally unknown how much data among the data contained in the source domain can be
utilized. One example may be seen in the sensory testing commonly employed for quality control
at manufacturing sites. Although such sensory testing enables quality determination based on the
examiner’s vision and hearing, the determination criteria is often difficult to quantify. Therefore,
large numbers of samples must be labeled by multiple inspectors, and variations in examiner criteria
and judgment are inevitable. In this case, since it is not known by which criteria a plurality of inspectors
is making decisions, it becomes unclear which samples are labeled according to the desired criteria; and
if there are few available data items, the benefits of metastatic learning cannot be expected. Therefore,
in this paper we propose a method that is effective even when there are few available data items in
the source domain. We address situations with different label criteria, as described above, and utilize
flipping output, whereby different labels are given to the source domain at the same time. Further,
we propose a method based on TrBagg, aiming to increase the number of usable data items, as well as
the generalization of the method, using flipping output.
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3.1. Flipping Output

In this section, we outline the flipping output employed in the study. Flipping output is a method
used to improve generalization through ensemble learning. With flipping output, several data items
are randomly selected from the learning dataset and given different labels. We obtain classifiers that
show better generalization performance by learning from data with different labels. The reason why
flipping output works well is explained by bias-variance theory [9]. The generalization error Err of
ensemble learning of T classifiers can be expressed as:

Err = bias + variance + noise, (1)

where bias is error derived from the learning algorithm, variance is error derived from the learning data
to be used, and noise is the lower bound of the expected error of an arbitrary learning algorithm, a form
of error that cannot be reduced. In ensemble learning, we attempt to reduce variance by learning
using various training examples; while, through the use of flipping output, we aim to reduce the
generalization error by further reducing the variance through varying the label. In general, flipping
output assumes that all the data used for learning is correctly labeled according to the target concept.
However, in the transfer learning focused on in this study, the source domain contains data that is
correctly labeled according to the target concept, as well as data that is not. Therefore, we expect
two effects from the use of flipping output: One is reduced variance, and the other is that labels
describing the target concept will be assigned to data already assigned labels differing from the concept.
As a result, the number of data items labeled according to the target concept is increased, and the
number of available data items is increased.

3.2. Algorithm of the Proposed Method

Here we describe the proposed method involving flipping output. The method is based on
TrBagg. First, a source domain D f

S, including data with different labels, is generated using flipping

output. Then the two source domains DS and D f
S are combined to generate a new source domain D′S.

Next, T training datasets d1, d2, · · · , dT are generated from D′S by bootstrap sampling. Learning from
the generated individual datasets, T classifiers C1, C2, · · · , CT are generated. Among C1, C2, · · · , CT,
classifiers whose experience error acc1, acc2, · · · , accT is less than the threshold th with respect to DT are
adopted as Cad

i . If the experience error of a classifier is higher than th, the classifier is discarded.

Algorithm 2: Algorithm of the proposed method.

i = 1
Create Ds using flipping output

Prepare a new source domain D′S (DS + D f
S)

for n in 1 : T:
Bootstrap sampling from D′S as dn

Create classifier Cn learning from dn

Calculate experience error for DT as accn

If accn < th :
Save classifier Cn as Cad

i
i = i + 1

Else:
Discard classifier Cn

n = n + 1
Calculate result using Cad

1 · · ·C
ad
i

This determination is made for all classifiers, and the result is calculated using only the adopted
classifiers. The above algorithm is shown in Algorithm 2 and the flow chart in Figure 2.
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4. Experimental

In order to confirm the effectiveness of the proposed method, verification experiments were
conducted using benchmark datasets and focusing on a binary classification problem.

4.1. Datasets

We conducted a verification experiment using two datasets described in the UCI benchmark
dataset: The “abalone dataset” [10] and the “wine quality dataset” [11]. The abalone dataset summarizes
measurements of physical characteristics of the abalone (eight dimensions) and the age of each. The wine
quality dataset summarizes the measured values of the chemical composition of wine (11 dimensions)
and the quality determined by sensory evaluation by wine experts (10 levels). In this experiment,
in order to consider it as a binary classification problem, the age of the abalone was used as a target
variable in the abalone dataset, and the quality of wine was used as a target variable in wine quality
dataset. In the abalone dataset, data under 10 years old was assigned class label #1, and data of 10 years
and older was assigned class label #2. In the wine quality dataset, data with quality level 5 or lower
was assigned class label # 1, and data with quality level 6 or more was assigned class label #2. Table 1
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shows the abalone dataset and Table 2 the wine quality dataset used in this experiment. As shown in
Tables 1 and 2, the abalone dataset was a balanced problem with approximately the same number of
data items in each class, and the wine quality dataset was an imbalanced problem with a class ratio of
about 1:2.

Table 1. Abalone dataset.

Label Original Label Number of Data Items

#1 1~9 2096
#2 10~29 2081

Table 2. Wine quality dataset.

Label Original Label Number of Data Items

#1 3~5 1640
#2 6~9 3258

4.2. Experimental Conditions

From the datasets prepared in Section 4.1, we created the target and source domains randomly so
that they were disjointed. As a specific procedure, first, NT data are extracted from the data set and
used as a target domain. Then, let the remaining data be the source domain. Since transfer learning is
usually employed in situations where sufficient data for the target domain cannot be secured, we set
NT = {40, 60, 80, 100}, to reproduce such situations. In addition, since the source domain contains
data labeled with a standard different from the target concept, we intentionally included data with
an erroneous label, in this paper referred to as non-target data. The number of non-target data items
was determined based on the size of the source domain, that is, we set the percentage of non-target
data contained in the source domain at α= {0.2, 0.4, 0.6}, and α × NT data items were mislabeled
in the source domain. In this study, we used a decision tree commonly used in ensemble learning,
and generated multiple classifiers using bootstrap sampling. We set the amount of data extracted by
bootstrap sampling at 50% of the NT. In addition, the accuracy rate for the target domain of the base
classifiers learned from the target domain was calculated using five-fold cross validation, and used as
the adoption standard for the classifiers. In order to evaluate each method, five-fold cross validation
was used.

4.3. Experimental Results

In this section, the results of experiments using the proposed method are reported. One of the
merits of the proposed method is the extension of the source domain by using flipping output. Using the
proposed method, which enables learning from the expanded source domain, we demonstrated that
the accuracy could be improved in comparison with the conventional TrBagg transfer learning method.

4.3.1. Abalone Dataset

The experimental results for the abalone dataset are shown in Table 3. The table shows the
accuracy for test data of the proposed method, and additionally, the accuracy of TrBagg, a conventional
transfer learning method, bagging for learning using only the target domain, and bagging for learning
using only the source domain. We can see that the accuracy of bagging is low. This is considered to be
due to the fact that the number of data items contained in the target domain is too small for sufficient
learning. In most cases, TrBagg showed a higher accuracy than bagging, but when α = 0.6, the accuracy
was sometimes lower than bagging. On the other hand, the proposed method showed higher accuracy
than TrBagg under all conditions, and higher accuracy than bagging even when TrBagg’s accuracy was
lower (NT = 100,α = 0.6).



Algorithms 2019, 12, 95 8 of 12

Table 3. Accuracy of test data using the abalone dataset.

NT α Bagging Using DT Bagging Using DS TrBagg Proposed Method

40
0.2 68.18 69.17 76.73 82.92
0.4 72.55 66.58 75.89 76.73
0.6 69.31 65.50 71.47 76.81

60
0.2 70.67 68.31 72.48 77.76
0.4 70.01 66.96 73.83 74.74
0.6 69.52 66.57 76.10 76.30

80
0.2 71.62 67.42 76.98 77.01
0.4 71.22 65.50 76.90 78.36
0.6 70.85 65.26 73.95 75.14

100
0.2 72.87 71.92 78.35 81.74
0.4 72.99 66.14 74.88 80.91
0.6 72.52 65.78 71.53 78.67

4.3.2. Wine Quality Dataset

The experimental results for the wine quality dataset are shown in Table 4, which is structured
similarly to Table 3. Table 4 shows that, as in the abalone dataset, bagging has low accuracy, and in
many cases, the TrBagg accuracy is better than that of bagging. However, even in this experiment,
there were cases where the accuracy of TrBagg was inferior to that of bagging when α = 0.6. As in
Table 3, the proposed method showed higher accuracy than TrBagg under all conditions, and higher
accuracy than bagging even when TrBagg’s accuracy was worse (NT = 100,α = 0.6).

Table 4. Accuracy of test data using the wine quality dataset.

NT α Bagging Using DT Bagging Using DS TrBagg Proposed Method

40
0.2 58.02 62.71 64.41 66.84
0.4 59.61 60.25 60.46 65.54
0.6 53.31 59.46 60.03 64.43

60
0.2 59.97 63.71 64.44 66.05
0.4 60.98 62.90 63.74 67.01
0.6 61.89 61.83 62.95 68.92

80
0.2 63.55 62.71 66.21 70.34
0.4 64.02 63.63 65.98 68.68
0.6 63.51 62.44 62.64 70.35

100
0.2 64.45 62.71 67.69 69.87
0.4 64.79 62.99 67.21 69.89
0.6 64.52 61.98 61.29 68.96

4.4. Discussion

Consider the experimental results described in Section 4.3. The target variable in the abalone
dataset is a quantitative label because it is the age of the abalone, while the objective variable in the
wine quality dataset is a qualitative label because it is based on sensory evaluation by a wine expert.
Therefore, it is considered that the labels in the wine quality dataset had variation. First, we discuss
the accuracy of the two bagging (learning using target domain and learning using source domain).
In the bagging learned using the target domain, the accuracy is improved as the number of target
domains increases. On the other hand, bagging learned using the source domain shows a stable
accuracy. It is important to note that as α increases, the accuracy of bagging with the source domain
tends to decrease. When there are many target domains, learning with source domains shows a worse
accuracy than with target domains. Next, we discuss the accuracy of TrBagg, a conventional transfer
learning method, under the conditions of this experiment. In the case of NT = 40, 60, 80, it can be



Algorithms 2019, 12, 95 9 of 12

seen that TrBagg exhibits higher accuracy than bagging learned using the target domain, under all
conditions. However, when NT = 100 and α = 0.6, TrBagg exhibits lower accuracy than bagging.
There are two possible causes. One is that when α = 0.6, there were few classifiers that could be
adopted from the source domain. The data used for learning relies on random sampling by bootstrap
sampling, because it is not known which data in the source domain is in accordance with the target
concept. In a source domain in which more than half the data is erroneously labeled, it is considered
that many data items with erroneous labels will inevitably be extracted. Therefore, it can be inferred
from the results above that many classifiers could not properly learn the target concept. The other
possible cause was the evaluation method for classifier adoption. Each classifier learned from data
in the source domain is adopted or discarded based on its accuracy for the target domain. In this
process, the target-domain accuracy of bagging learned from the target domain is used as the adoption
criterion. In the case of NT = 100, the accuracy of bagging learning from the target domain is improved.
As a result, the adoption criterion is also improved, and it is considered that it is difficult to adopt
many classifiers. It can be said that TrBagg is not fully effective when there are a large number of data
items in the target domain, and more than half the data in the source domain is erroneously labeled.

Next, we consider the proposed method. It can be seen that under all conditions of the validation
experiments, the accuracy of the proposed method is higher than that of TrBagg. This shows the effect
of extending the source domain by flipping output. There are two expected effects of the flipping
output: 1) An increase in diversity as the number of data items increases, and 2) proper labeling of
mislabeled data. Let us examine each of these effects. We will assume that all the data in the source
domain is assigned a correct label (i.e., α = 0), and evaluate the improvement in accuracy in the
proposed method. Table 5 shows the results. We can see that the accuracy in the proposed method
is not improved, compared to TrBagg, in many cases. From this, it can be seen that the performance
improvement due an increase in diversity cannot be expected very much. Therefore, it is judged that
the improvement in performance of the proposed method is due to proper labeling of mislabeled
data. Notably, even when the accuracy of TrBagg is worse than that of bagging (NT = 100, α = 0.6),
the accuracy can be improved by using the proposed method.

Table 5. Accuracy of test data when α = 0.

Abalone Dataset Wine Quality Dataset
NT Bagging TrBagg Proposed Method Bagging TrBagg Proposed Method
40 74.87 79.40 79.08 60.10 63.07 64.37
60 69.76 76.68 76.54 60.86 65.16 66.00
80 74.78 79.56 79.54 62.06 68.96 69.71

100 64.27 69.86 69.86 66.27 72.41 72.73

In order to further verify the effectiveness of the proposed method, we introduce effect size,
a statistical indication of the effectiveness of a proposed method. In this paper, we used Cohen′ s d [12],
an effect size that represents the difference between two groups. Cohen′ s d between the two groups g1

and g2 is as follows:

Cohen′ s d =

∣∣∣µ1 − µ2
∣∣∣√

n1σ
2
1+n2σ2

2
n1+n2

(2)

Here, the sample size of g1 is n1, the variance σ2
1, and the sample average µ1. The sample size

of g2 is n2, the variance σ2
2, and the sample average µ2. The larger the value of Cohen′ s d, the larger

the difference between the average values of the two groups. Table 6 shows the comparative effect
size between the proposed method and bagging in each condition of the verification experiment,
and Table 7 shows the effect size between the proposed method and TrBagg. Tables 6 and 7 clearly
show that the proposed method has a large effect size. Table 6 shows that the effect size increases as α
increases. In particular, when α = 0.6, the effect size compared with TrBagg is expected to be very
large, 0.9 or more. Therefore, it can be seen that the proposed method is more effective as more data
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are incorrectly labeled in the source domain. However, when α is small, the effect size is as small as 0.2.
This suggests that the proposed method is effective when the source domain contains many errors.
Table 7 also shows that the proposed method is effective when NT is small.

Table 6. Cohen′ s d using the proposed method and bagging.

NT α Abalone Dataset Wine Quality Dataset

40
0.2 0.551 0.555
0.4 0.596 0.510
0.6 0.578 1.019

60
0.2 0.508 0.432
0.4 1.019 0.417
0.6 1.103 1.038

80
0.2 0.973 0.779
0.4 0.902 0.555
0.6 1.092 0.788

100
0.2 0.548 0.888
0.4 0.753 0.884
0.6 0.705 0.603

Table 7. Cohen′ s d using the proposed method and TrBagg.

NT α Abalone Dataset Wine Quality Dataset

40
0.2 0.141 0.155
0.4 0.211 0.235
0.6 0.252 0.531

60
0.2 0.178 0.091
0.4 0.362 0.165
0.6 0.399 0.620

80
0.2 0.178 0.174
0.4 0.298 0.270
0.6 1.053 0.916

100
0.2 0.161 0.095
0.4 0.527 0.327
0.6 1.243 0.603

5. Related Research

As in the case of transfer learning discussed in this paper, several machine learning approaches
involving two types of data have been proposed. Semi-supervised learning [13] complements labeled
data with unlabeled data to improve the generalization performance of the classifiers. However,
in focusing on unlabeled data, the technique differs from inductive transfer learning, which focuses on
labeled data. In self-training [14], one of the semi-supervised learning methods, the labels of unlabeled
data are estimated using classifiers learned from labeled data, and these data are then employed for
learning. Self-training is similar to the proposed method in its use of two types of labeled data, but it
depends on the distribution of labeled data for label estimation. In inductive transfer learning, on the
other hand, data is labeled according to each standard, so that it has the possibility of more diverse
distribution than the target domain. As in the proposed method, TrAdaBoost [15] utilizes ensemble
learning as part of transfer learning. However, TrAdaBoost is based on Adaboost [16], which updates
the training case weights, and the sequential change in these weights marks a clear difference from the
proposed method. Finally, unlike in the proposed method, some transfer learning methods [17,18]
transfer knowledge based on features not case-dependent. However, in these methods, it is difficult to
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select data and to provide multiple labels for one feature vector, both of which are facilitated by the
proposed method.

6. Conclusions

In order to make transfer learning work effectively in various situations, we proposed in this
paper a transfer learning method that extends the source domain. The following key results were
obtained through verification experiments using benchmark datasets.

• If much data in the source domain is incorrectly labeled, conventional transfer learning methods
will tend to have reduced accuracy due to negative transfer.

• Negative transfer can be suppressed by extending the source domain using the proposed method.
• Even in situations where negative transfer does not occur, the accuracy of the proposed method is

higher than the conventional transfer learning method, because the proposed method increases
the amount of effective data for learning.

Overall, the results suggest that use of the proposed method can suppress negative transfer and
improve accuracy in various situations.

There are many practical fields (manufacturing, scientific experimentation, etc.) in which exact
labeling of data is difficult, and it is generally difficult to apply transfer learning to such fields. Use of
the proposed method, however, enables the transfer of appropriate knowledge even in such situations,
making it possible to construct systems that utilize more real-world data.

However, as noted in the discussion of the verification experiment in Section 4.4, if the data in the
source domain is largely correctly labeled (data that can be labeled with the correct index, α = 0.2 in
the experiment), the effect size of the proposed method (0.2) suggested that no significant improvement
could be expected over the comparison methods.

In sum, the study suggests that the features of the method proposed in this paper are suitable for
application to various real-world problems.

Future work will include refinement of the proposed learning technique, such as more efficient
sampling and improvement in the adoption criteria, to improve the discrimination accuracy.
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