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Abstract

This thesis deals with the following two problems, the Maximum Distance-d In-
dependent Set problem (MaxDdIS for short) and the Maximum Induced Matching
problem (MaxIM for short), where d ≥ 3. We design some approximation algo-
rithms to solve MaxDdIS and MaxIM.

(1) We first study MaxDdIS. Our main results for MaxDdIS are as follows:
(i) It is NP-hard to approximate MaxD3IS on 3-regular graphs within 1.00105
unless P=NP. (ii) For every fixed integers d ≥ 3 and r ≥ 3, MaxDdIS on r-regular
graphs is APX-hard, and show the inapproximability of MaxDdIS on r-regular
graphs. (iii) We design polynomial-time O(rd−1)-approximation and O(rd−2/d)-
approximation algorithms for MaxDdIS on r-regular graphs. (iv) We sharpen the
above O(rd−2/d)-approximation algorithms when restricted to d = r = 3, and
give a polynomial-time 2-approximation algorithm for MaxD3IS on cubic graphs.
(v) Furthermore, we design a polynomial-time 1.875-approximation algorithm for
MaxD3IS on cubic graphs. (vi) Finally, we consider planar graphs and obtain
that MaxDdIS admits a polynomial-time approximation scheme (PTAS) for planar
graphs.

(2) We then investigate MaxIM on r-regular graphs. For subclasses of r-regular
graphs, several better approximation algorithms are known. The previously known
best approximation ratios for MaxIM on C5-free r-regular graphs and {C3,C5}-free
r-regular graphs are

(
3r
4 −

1
8 +

3
16r−8

)
and (0.7084r + 0.425), respectively. We

design a
(
2r
3 +

1
3

)
-approximation algorithm, whose approximation ratio is strictly

smaller/better than the previous one for C5-free r-regular graphs when r ≥ 6, and
for {C3,C5}-free r-regular graphs when r ≥ 3.
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Chapter 1

Introduction

In theoretical computer science and combinatorial optimization, one of the most
important and most investigated computational problems is the Maximum Inde-
pendent Set problem (MaxIS for short). There is a huge number of its applications
in diverse fields, such as scheduling, computer vision, pattern recognition, coding
theory, map labeling, and computational biology; many different problems have
been modeled using independent sets. Let G be an unweighted graph; we denote
by V (G) and E(G) the sets of vertices and edges, respectively, and let n = |V (G) |.
An independent set (or stable set) of G is a subset S ⊆ V (G) of vertices such
that {u, v } < E holds for all u, v ∈ S. Then, given a graph G, the goal of MaxIS
is to find an independent set S of maximum cardinality in G. MaxIS is one of
the most popular NP-hard problems. Therefore, there is a large literature on the
approximability/inapproximability of MaxIS. Here, we define the distance between
two vertices, that is, for any pair of vertices u, v ∈ S, the distance (i.e., the number
of edges) of any path between u and v is at least d in G. Then, MaxIS is also named
theMaximum Distance-2 Independent Set problem.

The Maximum Matching problem (MaxM for short) is also one of the most
important graph optimization problems. For a simple unweighted graphG = (V, E),
two edges are called adjacent if they have a common vertex. A matching in the
graph G is a subset of edges, no two of which are adjacent. Given a graph G, the
goal ofMaxM is to find a matching S of maximum cardinality inG. It is well known
that the Maximum Matching problem is in P, i.e., the problem can be solved by a
polynomial time algorithm.

In this thesis, we study two generalized variants of the maximum independent
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set and maximum matching problems, which are named maximum distance-d
independent set problem and maximum induced Matching problem, respectively.

1.1 Maximum Distance-d Independent Set

In the chapter 3, we firstly consider MaxDdIS when d ≥ 3. For an integer d ≥ 2,
a distance-d independent set of an unweighted graph G is a subset DdIS ⊆ V (G)

of vertices such that for an integer d ≥ 2, the distance of any pair of vertices
u, v ∈ DdIS is at least d in G. Then, MaxDdIS is formulated as the following class
of problems [1, 9]:

Maximum Distance-d Independent Set (MaxDdIS)

Input: An unweighted graph G

Output: A distance-d independent set of G with the maximum cardinality

When d = 2, MaxDdIS (i.e., MaxD2IS) is equivalent to the original MaxIS.
Zuckerman [23] proved that MaxD2IS cannot be approximated in polynomial time,
unless P = NP, within a factor of n1−ε for any ε > 0. Moreover, MaxD2IS re-
mains NP-hard even if the input graph is a cubic planar graph, a triangle-free
graph, or a graph with large girth. Chlebík and Chlebíková [7] proved the 1.0107,
1.0216, 1.0225, and 1.0236-inapproximability forMaxD2IS on 3-regular, 4-regular,
5-regular, and r-regular (r ≥ 6) graphs, respectively. Fortunately, however, it is
well known that MaxD2IS can be solved in polynomial time when restricted to,
for example, bipartite graphs [15], chordal graphs [12], circular-arc graphs [13],
comparability graphs [14], and many other classes [20, 19, 6]. On the other hand,
we can obtain polynomial-time 1.2, 1.4, and 1.6-approximation algorithms for
MaxD2IS on 3-regular, 4-regular, and 5-regular graphs, respectively, by applying
the ∆+35 -approximation algorithm proposed by Berman and Fujito [5] for the prob-
lem on general graphs of maximum degree ∆ ≤ 613. We note that, for a larger
maximum degree ∆ (and hence general r), Halldórsson and Radhakrishnan de-
veloped polynomial-time approximation algorithms within factors of ∆+23 [16] and
O( ∆

log log∆ ) [17]. For planar graphs, it is well known that the Baker’s shifting tech-
nique [3] for NP-hard optimization problems can be applied to MaxD2IS on planar
graphs; it yields a polynomial-time approximation scheme (PTAS). Thus,MaxD2IS
can be approximated within an arbitrarily small factor for planar graphs.

3



Table 1.1: Previous and new approximation ratios for MaxDdIS

Maximum Distance-d Independent set(MaxDdIS)

MaxD2IS
r-regular(r ≤ 613) (r + 3)/5 [Berman and Fujito., 1999 ]

Planar graphs (1+ε) [B.S.Baker., 1994]

MaxD3IS 3 -regular

2.4 [This Thesis]

2+ε [This Thesis]

2 [This Thesis]

1.875 [This Thesis]

MaxDdIS(d ≥ 3)

r -regular
O(rd−1) [This Thesis]

O(rd−2/d) [This Thesis]

Planar graphs 1+ε [This Thesis]

When d ≥ 3, Eto, Guo, and Miyano [9] proved that MaxDdIS is NP-hard even
for planar bipartite graphs of maximum degree three. Furthermore, they showed
that it is NP-hard to approximate MaxDdIS on bipartite graphs and chordal graphs
within a factor of n1/2−ε (ε > 0) for every fixed integer d ≥ 3 and every fixed
odd integer d ≥ 3, respectively. On the other hand, interestingly, they showed
that MaxDdIS on chordal graphs is solvable in polynomial time for every fixed
even integer d ≥ 3. As the other positive results, Agnarsson, Damaschke, and
Halldórsson [1] showed the tractability of MaxDdIS on interval graphs, trapezoid
graphs, and circular-arc graphs.

Our main results are obtained in the chapter 3: (i) It is NP-hard to approximate
MaxD3IS on 3-regular graphs within 1.00105 unless P=NP. (ii) For every fixed
integers d ≥ 3 and r ≥ 3, we show the inapproximability of MaxDdIS on r-
regular graphs, where d ≥ 3 and r ≥ 3. (iii) We design polynomial-time O(rd−1)-
approximation andO(rd−2/d)-approximation algorithms forMaxDdIS on r-regular
graphs. (iv) We sharpen the above O(rd−2/d)-approximation algorithms when
restricted to d = r = 3, and give a polynomial-time 2-approximation algorithm for
MaxD3IS on cubic graphs. (v) Furthermore, we design a polynomial-time 1.875-
approximation algorithm for MaxD3IS on cubic graphs. (vi) Finally, we consider
planar graphs and obtain that MaxDdIS admits a polynomial-time approximation
scheme (PTAS) for planar graphs.

Here is a list of previous and new results on approximation ratios in Table 1.1(
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ε is denoted to be any positive number).

1.2 Maximum Induced Matching

In the chapter 4, we then consider MaxIM. MaxIM is a generalized problem of
Maximum Matching problem. A matching M is induced if no two vertices
belonging to different edges ofM are adjacent. In other words, an inducedmatching
M in G is formed by the edges of a 1-regular induced subgraph of G. An induced
matching is often called the strongmatching [28, 30]. Then, theMaximum Induced
Matching problem (MaxIM) is that of finding an induced matching of maximum
cardinality in an input graph. Then, our problem is formulated as follows:

Maximum Induced Matching (MaxIM)

Input: An unweighted graph G

Output: An induced matching of G with the maximum cardinality

TheMaxIM problemwas originally introduced by Stockmeyer and Vazirani [37]
as a variant of the Maximum Matching problem and motivated as the Risk-Free
Marriage problem. Inducedmatchings have applications in the areas of concurrent
transmission of messages in wireless ad hoc networks [24], secure communication
channels in broadcast networks [29], communication network testing [37], and
many other fields. Thus, MaxIM has received much attention in recent years.

The MaxIM problem is generally intractable. Stockmeyer and Vazirani [37],
and Cameron [25] independently proved that MaxIM is NP-hard. Also, it remains
NP-hard for several graph classes such as planar graphs of vertex degree at most
four [32], bipartite graphs of vertex degree at most three [34, 36], line graphs,
chair-free graphs, Hamiltonian graphs [33], and r-regular graphs for r ≥ 3 [26].

In this thesis, we focus only on C5-free r-regular graphs as input and consider
the approximability of MaxIM on C5-free r-regular graphs. On r-regular graphs,
Zito [38] proved that a natural greedy strategy yields an approximation algorithm for
MaxIM on r-regular graphs with approximation ratio r− 1

2+
1

4r−2 . Then, Duckworth,
Manlove, and Zito [26] improved the approximation ratio slightly into n(r−1)

n−2 , i.e.,
asymptotically r − 1 for r-regular graphs of n vertices. Subsequently, Gotthilf
and Lewenstein [31] provided a

(
3r
4 + 0.15

)
-approximation algorithm for MaxIM

on r-regular graphs by combining a greedy approach with a local search. For
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Table 1.2: Previous and new approximation ratios for MaxIM

Maximum Induced Matching

General r -regular 0.75r+0.15 [Z. Gotthilf et al., 2005]

{C3,C5}-free r-regular 0.7084r+0.425 [D.Rautenbach ,2015]

{C3,C4}-free r-regular ( r2 +
r

4r−2 ) [M. Furst et al., 2018]

{C4}-free r-regular ( 9r16 +
33
80 ) [M. Furst et al., 2018]

{C5}-free r-regular (3r4 +
1
8 +

3
16r−8 ) [M. Furst et al., 2018]

{C3,C5} or {C5}-free r-regular (2r3 +
1
3 ) [This Thesis]

subclasses of r-regular graphs, several better approximation algorithms are known.
Rautenbach [35] designed a (0.7084r +0.425)-approximation algorithm forMaxIM
on {C3,C5}-free r-regular graphs. Fürst, Leichter, and Rautenbach [27] provided
approximation algorithms for the following three subclasses of r-regular graphs: a(
9r
16 +

33
80

)
-approximation algorithm forC4-free r-regular graphs, a

(
r
2 +

1
4 +

1
8r−4

)
-

approximation algorithm for {C3,C4}-free r-regular graphs, and a
(
3r
4 −

1
8 +

3
16r−8

)
-

approximation algorithm for C5-free r-regular graphs.
The inapproximability results on MaxIM for graph subclasses are also known.

Duckworth, Manlove, and Zito [26] proved that for any ε > 0, it is NP-hard to
approximate MaxIM on graphs of maximum degree three within 475

474 − ε, 3-regular
graphs within 2375

2374 − ε, and bipartite graphs of maximum degree three within
6600
6659−ε. On the other hand, polynomial-time algorithms forMaxIM have been devel-
oped, for example, for chordal graphs, interval graphs [25], trees [28], circular-arc
graphs [30], trapezoid graphs, k-interval-dimension graphs, and cocomparability
graphs [29].

The goal of this thesis is to improve the previously best known
(
3r
4 −

1
8 +

3
16r−8

)
-

approximation algorithm forC5-free r-regular graphs [27], andwedesign a
(
2r
3 +

1
3

)
-

approximation algorithm, whose approximation ratio is strictly smaller/better than
the previously best one when r ≥ 6. It is important to note that our approximation
algorithmworks also for {C3,C5}-free r-regular graphs, i.e.,MaxIM on {C3,C5}-free
r-regular graphs can be better (than [35]) approximated within an approximation
ratio of

(
2r
3 +

1
3

)
for r ≥ 3.

Here, we give a list of previous and new results on approximation ratios in
Table 1.2.
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Chapter 2

Preliminaries

In this chapter, we introduce some theoretic terminologies on approximation al-
gorithms and graph theoretic definitions, which will be utilized throughout the
following chapters.

First, some theoretic terminologies on approximation algorithms are shown in
the following.

1. α-approximation algorithm [22]: For maximum problems on graphs, an
algorithm ALG is defined a α- approximation algorithm when the approxima-
tion ratio of ALG is α, that is, OPT (G)/ALG(G) ≤ α holds for each graph
G, where OPT (G) and ALG(G) are a solution by the ALG and a optimal
solution, respectively.

2. Gap-preserving reduction [22]: Two maximum problems are MaxA and
MaxB. More specifically, we are given an instance P1 of the problemMaxA
and another instance P2 of the problem MaxB. A gap-preserving reduction
from MaxA to MaxA is a set of functions (α1(n1), α2(n2), c1(n1), c2(n2))

such that ifOPT (P1) ≥ g1(P1), thenOPT (P2) ≥ g2(P2), and ifOPT (P1) <

g1(P1)/α(|P1 |), thenOPT (P2) < g2(P2)/β(|P2 |), where g1, g2, α, and β are
four functions, andOPT (P1) andOPT (P2) are the cost of an optimal solution
of instances P1 and P2, respectively. Then, we can say that no polynomial
time β(|P2 |)- approximation algorithm unless P=NP.

3. Polynomial-time approximation scheme(PTAS for short) [22]: A PTAS
is an algorithm which takes an instance of an optimization problem and a
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parameter α > 0 and, in polynomial time, produces a solution that is within
a factor 1 + α of being optimal (or 1 − α for maximization problems).

Then, we introduce graph theoretic definitions, which are used throughout this
thesis:

1. Degree [15]:The degree of a vertex of a graph is the number of edges incident
to the vertex.

2. Regular Graph [15]: A graph is r-regular graph if the degree deg(v ) of
every vertex v is exactly r ≥ 0.

3. Cubic Graph [15]: A 3-regular graph is often called cubic graph.

4. Planar graph [15]: A planar graph is a graph that can be embedded in the
plane, i.e., it can be drawn on the plane in such a way that its edges intersect
only at their endpoints.

8



Chapter 3

Maximum Distance-d
Independent Set problem

In this chapter, we focus on the problem of MaxDdIS on regular graphs and planar
graphs. First, study inapproximability of MaxDdIS on regular graphs for a fixed
integer d ≥ 3. Then, we design approximation algorithms to solve MaxDdIS on
regular graphs and planar graphs for a fixed integer d ≥ 3.

3.1 Preliminaries

In this section, we introduce some definitions, which will be utilized in this chapter.
For a graph G = (V, E), we denote an edge with endpoints u and v by {u, v }.
For a pair of vertices u and v , the length of a shortest path from u to v , i.e., the
distance between u and v is denoted by distG (u, v ), and the diameter G is defined
as diam(G) = maxu,v∈V distG (u, v ).

For a graph G and its vertex v , we denote the (open) neighborhood of v in G

by D1(v ) = {u ∈ V (G) | {v, u} ∈ E(G)}, i.e., for any u ∈ D1(v ), distG (v, u) = 1
holds. More generally, for d ≥ 1, let Dd (v ) = {w ∈ V (G) | distG (v, w) = d} be
the subset of vertices that are distance-d away from v . Similarly, let D1(S) be the
open neighborhood of a subset S of vertices, D2(S) be the open neighborhood of
D1(S) ∪ S, and so on. That is, Dk (S) = D1

(∪k−1
i=1 Di (S) ∪ S

)
. The degree of v is

denoted by deg(v ) = |D1(v ) |.
A graph GS is a subgraph of a graph G if V (GS) ⊆ V (G) and E(GS) ⊆ E(G).

For a subset of vertices U ⊆ V , let G[U] be the subgraph induced by U . For
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a positive integer d ≥ 1 and a graph G, the dth power of G, denoted by Gd =

(V (G), Ed), is the graph formed from V (G), where all pairs of vertices u, v ∈ G

such that distG (u, v ) ≤ d are connected by edges {u, v }’s. Note that E(G) ⊆ Ed,
i.e., the original edges in E(G) are retained.

3.2 Inapproximability of MaxDdIS for reguar graphs

In this section, we discuss inapproximability ofMaxDdIS for regular graphs, which
these results can give some advice for designing approximation algorithm. Our
main results are summarized as follows:

(i) For every fixed integers d ≥ 3 and r ≥ 3, we analyze that it is NP-hard to
approximate MaxDdIS on r-regular graphs.

(ii) In particular, when restricted to d = r = 3, we show that it is NP-hard to
approximate MaxD3IS on 3-regular graphs within 1.00105.

3.2.1 MaxD3IS for cubic graphs

First, we prove the following lower bound of the approximability of MaxD3IS on
cubic (i.e., 3-regular) graphs.

Theorem 1. There exists no σ-approximation algorithm for MaxD3IS on cubic
graphs for constant σ < 1.00105 < 950

949 unless P = NP.

Proof. The hardness of approximation of MaxD3IS on cubic graphs is shown by a
gap-preserving reduction fromMaxD2IS on cubic graphs. It is known [7] that there
exists no σ′-approximation algorithm for the latter problem for constant σ′ < 95

94
unless P = NP. Consider an input cubic graph G0 = (V0, E0) with n-vertices and
m edges of MaxD2IS. Then, we construct another cubic graph G = (V, E) as an
instance of MaxD3IS on cubic graphs from G0.

Let #OPT2(G0) (and #OPT3(G), resp.) denote the number of vertices of
an optimal distance-2 independent set in the cubic graph G0 (and one of an
optimal distance-3 independent set in G, resp.). Let V0 = {v1, v2, · · · , vn} and
E0 = {e1, e2, · · · , em} be vertex and edge sets of G0, respectively. Also, let g(n)
be a parameter function of the instance G0, meaning a solution size. Then, we
provide the gap preserving reduction such that (C1) if #OPT2(G0) ≥ g(n), then

10



(a) (b)

Figure 3.1: (a) two vertices ui, u j and edge-gadget G5,3
p and (b) reduced graph G

#OPT3(G) ≥ g(n)+ 2m, and (C2) if #OPT2(G0) <
g(n)
γ′ for a constant γ′ > 1, then

#OPT3(G) < g(n)
γ′ + 2m.

From G0, we construct the cubic graph G which consists of (i) n vertices, u1
through un, which are associated with n vertices in V0, v1 through vn, respectively,
and (ii) m subgraphs, G1 through Gm, which are associated with m edges in E0, e1
through em, respectively. We often call those subgraphs edge-gadgets in the fol-
lowing. See Figure 3.1(a). For every p, 1 ≤ p ≤ m, the pth diamond-shape gadget
Gp contains ten vertices V (Gp) = {up1 , u

p
2 , u

p
3 , u

p
4 } ∪ {α

p
1 , α

p
2 } ∪ {β

p
1 , β

p
2 , β

p
3 , β

p
4 },

and the pth edge set E(Gp) has 14 edges as illustrated in Figure 3.1(a). (iii) If
ei = {vi, vj } ∈ E0, then we introduce two edges {up1 , ui } and {u

p
1 , u j }. As shown

in Figure 3.1(b), all the edges are replaced with edge-gadgets. This completes the
reduction. One can see that the constructed graph G is cubic. Also, the above
construction can be accomplished in polynomial time.

For the above construction of G, we show that G has a distance-3 independent
set S such that |S | ≥ g(n) + 2m if and only if G0 has a distance-2 independent set
S0 such that |S0 | ≥ g(n). Suppose that the graph G0 of MaxD2IS has the distance-
2 independent set S0 = {v1∗, v2∗, · · · , vg(n)∗ } in G0, where {1∗, 2∗, · · · , g(n)∗} ⊆
{1, 2, · · · , n}. Then, we select a subset of vertices S′ = {u1∗, u2∗, · · · , ug(n)∗ } and
two vertices in each edge-gadget, arbitrary one of the four pairs {αp1 , β

p
3 }, {α

p
1 , β

p
4 },

{αp2 , β
p
3 }, and {α

p
2 , β

p
4 }. Let S′′ be the set of vertices in edge-gadgets. Hence

|S′ | = g(n) and |S′′ | = 2m. One can see that S = S′ ∪ S′′ is a distance-3
independent set in G since the pairwise distance in S′ is at least four, the pairwise
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distance in S′′ is at least six, and the distance between αp1 (or αp2 ) in S′′ and every
vertex in S′ is at least three for each p.

Conversely, suppose that the graph G has the distance-3 independent set S such
that |S | ≥ g(n) + 2m. Take a look at Figure 3.1(a) again. One can verify that we
can select at most two vertices as the distance-3 independent set from the subgraph
Gp, at most one of {βp1 , β

p
2 , β

p
3 , β

p
4 } and at most one of {αp1 , α

p
2 , u

p
1 , u

p
2 }. Thus, the

maximum size of the distance-3 independent set inV (G1)∪V (G2)∪· · ·∪V (Gm) is
at most 2m, whichmeans that |S∩{u1, u2, . . . , un}| ≥ g(n). Let {u1∗, u2∗, · · · , ug(n)∗ }
be a subset of g(n) vertices in S ∩ {u1, u2, · · · , un}. Then, the pairwise distance
in the corresponding subset of vertices {v1∗, v2∗, · · · , vg(n)∗ } of G0 is surely at least
2, i.e., G0 has a distance-2 independent set S0 such that |S0 | ≥ g(n). Hence, the
reduction satisfies the conditions (C1) and (C2). This implies that MaxD3IS on
cubic graphs cannot be approximated within

γ =
g(n) + 2m
g(n)/γ′ + 2m

.

In the remaining we obtain the value of γ: Note that a cubic graph has m = 3n
2

edges. Thus,

g(n) + 2m
g(n)/γ′ + 2m

=
g(n) + 3n
g(n)/γ′ + 3n

It is important to note that any optimal solution of MaxD2IS on a cubic graph with
n ≥ 5 is at least n

3 since Brooks’ theorem says [2] that such a graph has a (proper)
coloring using three colors, and hence has an independent set of cardinality at least
n
3 . Thus, g(n) ≥

n
3 , and

γ =
g(n) + 3n
g(n)/γ′ + 3n

≥ 10γ′

9γ′ + 1

since γ′ > 1. By setting γ′ = σ′ = 95
94 , we obtain γ ≥ 950

949 > 1.00105, i.e.,
the approximation gap remains at least 1.00105. This completes the proof of this
theorem. □

3.2.2 MaxDdIS for r-regular graphs

Next, we give the inapproximability for MaxDdIS on r-regular graphs:

12



(a) (b) (c) (d) (e) (f)

Figure 3.2: Edge-gadgets (a) G4,3, (b) G5,3, (c) G6,3, (d) Gd,3 for d mod 3 = 1, (e)
Gd,3 for d mod 3 = 2, and (f) Gd,3 for d mod 3 = 0

Theorem 2. There exists no σ-approximation algorithm forMaxDdIS on r-regular
graphs (i) for d = 3, r ≥ 3 and σ < 95r2 (r−1)+190

95r2 (r−1)+188 , (ii) for d = 4, r ≥ 3 and

σ < 95r2 (r−2)+190
95r2 (r−2)+188 , and (iii) for d ≥ 5, r ≥ 3 and σ < 95r2 ( ⌈d/2⌉−1)+190

95r2 ( ⌈d/2⌉−1)+188 , unless P =
NP.

Proof. Similarly to the proof of Theorem 1, the hardness of approximation of
MaxDdIS on r-regular graphs is shownby a gap-preserving reduction fromMaxD2IS
on r-regular graphs. Let G0 = (V0, E0) be an input cubic graph with n-vertices and
m edges of MaxD2IS on r-regular graphs. Then, we construct another r-regular
graph G = (V, E) as an instance of MaxDdIS on r-regular graphs from G0. In
the following, we first give basic ideas of the gap-preserving reductions to prove
lower bounds of the approximation ratio for MaxDdIS on r-regular graphs. All we
have to do is replace the subgraph illustrated in Figure 3.1-(a) with several gadgets
illustrated in Figures 3.2 through 3.7. In the figure, each subgraph is referred to as
Gd,r , which is used for the proof for MaxDdIS on r-regular graphs.

(1) Firstly, we focus only on 3-regular graphs. For MaxD4IS (MaxD5IS and
MaxD6IS, resp.), we use a graph in Figure 3.2-(a) ((b) and (c), resp.) as an edge-
gadget. For d mod 3 = 1 (2 and 0, resp.), the edge-gadget is illustrated in Figure 3.2-
(d) ((e) and (f), resp.). Now take a look at Figure 3.3. In the case of MaxD4IS on
3-regular graphs, we replace one edge, say, ep = {ui, u j }, of an instance ofMaxD2IS
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(a) (b)

Figure 3.3: Edge-gadgets for (a) MaxD4IS on 3-regular graphs, and (b) MaxD5IS
on 3-regular graphs

on 3-regular graphs with one edge gadget G4,3
p , which consists of six vertices. Note

that distG (ui, v ) ≤ 4 and distG (u j, v ) ≤ 4 for any v ∈ V (G4,3
p ), and diam(Gp) = 3.

Therefore, we can select at most one vertex as the distance-4 independent set from
the subgraphG4,3

p . In the case ofMaxD5IS on 3-regular graphs, twoG5,3’s, say,G5,3
p,1

and G5,3
p,2, are replaced with one original edge ep as shown in Figure 3.3(b). From

each G5,3, we can find at most one solution vertex for MaxD5IS. For larger d ≥ 6,
one edge ep = {ui, u j } is replaced with the subgraph, say, Gd,3

p , which consists of
many edge-gadgets like Figure 3.4. For example, when d = 6, one original edge ep
is replaced with two G6,3

p ’s in Figure 3.2(c). When d = 7, the edge ep is replaced
with two G7,3

p ’s and one G6,3
p . The important points are: distG (ui, u j ) = ⌈d/2⌉,

distG (ui, α
p
1,1) = distG (ui, α

p
2,1) = · · · = distG (ui, α

p
1/2( ⌈d/2⌉−1),1) = d and so on.

From each subgraph Gd,3
p shown in Figure 3.4, we can select at most one vertex in

each “tower,” i.e., at most ⌈ d2 − 1⌉ vertices in total as the distance d-independent
set. It is important to note that both ui and u j cannot be selected into the distance-d
independent set as before.

(2) Secondly, we consider 4-regular graphs. For MaxD3IS on 4-regular graphs,
we prepare a graph, say, G3,4

p , illustrated in Figure 3.5-(a) as an edge-gadget, which
has 17 vertices. One can verify that we can select at most three vertices as the
distance-3 independent set from G3,4

p .
(3) Thirdly, consider r-regular graphs. For MaxD3IS on r-regular graphs, a

graph, say, G3,r
p , in Figure 3.5-(b) is used in our reduction, where Kr−1 and Kr−2

denote complete graphs of r − 1 and r − 2 vertices, i.e., (r − 2)-regular and (r − 3)-
regular graphs, respectively. The edge-gadget G3,r

p includes (r − 2) Kr−1’s, C1

14



Figure 3.4: Edge-gadget Gd,3
p for MaxDdIS on 3-regular graphs

through Cr−2, at the top in Figure 3.5-(b). For example, the top and rightmost
vertex has (r − 1) edges, each of which is incident to each vertex in C1, and the
bottom vertex has (r − 1) edges, each of which is incident to each vertex in Kr−2.
The number of vertices in G3,r

p is (r − 2)(r − 1+ 2) + 4+ (r − 2) + 1 = r2 + 1. Note
that we can select at most (r − 2) + 1 = r − 1 vertices as the distance-3 independent
set from G3,r

p , one from Ci (1 ≤ i ≤ r − 2) and one from the lower part in G3,r
p .

Edge-gadgets G4,r
p and G5,r

p for MaxD4IS and MaxD4IS on r-regular graphs are
shown in Figure 3.6(a) and (b), respectively. The edge-gadget G4,r

p has (r − 2)
complete graphs Kr−1 of (r − 1) vertices, C1 through Cr−2, and every vertex in Ci

is connected to two vertices, say, ui,1 and ui,2 outside of Ci The ith vertex, say, ui,
in Kr−2 is connected to the bottom center vertex and two vertices ui,1 and ui,2 at the
top. Note that at most (r −2) vertices can be selected as the distance-4 independent
set from G4,r

p , one from Ci for 1 ≤ i ≤ r − 2. In G5,r
p , every vertex in Kr−2 is

connected to three vertices, the bottom center vertex and two upper vertices. Note
that at most one vertex can be selected as the distance-5 independent set from G5,r

p ,
i.e., one from the top complete graph Kr−1.

(4) Finally, for more general d ≥ 5 and r ≥ 3, the edge-gadgets in Figure 3.7
are used in our reduction. When d mod 3 = 0 (d mod 3 = 1 and d mod 3 = 2,
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(a) (b)

Figure 3.5: Edge-gadgets (a) G3,4
p for MaxD3IS on 4-regular graphs and (b) G3,r

p

for MaxD3IS on r-regular graphs

(a) (b)

Figure 3.6: Edge-gadgets (a) G4,r
p for MaxD4IS on r-regular graphs and (b) G5,r

p

for MaxD5IS on r-regular graphs

resp.) and d ≥ 5, the edge-gadget Gd,r shown in Figure 3.7(a) ((b) and (c), resp.)
is prepared. Note that the diameter diam(Gd,r ) ≤ d − 1 holds, and thus we can
select at most one vertex from Gd,r as the distance-d independent set. By using the
similar construction to one of the subgraph Gd,3

p shown in Figure 3.4, every edge
in G0 is replaced with ⌈ d2 − 1⌉ edge-gadgets.

All the above reduction can be done in polynomial time. In the following, we
show that our reduction still preserves the approximation gap of 95

94 for MaxD2IS
on r-regular graphs (r ≥ 3) shown in [7]. Let #OPT2(G0) (and #OPTd (G), resp.)
denote the number of vertices of an optimal distance-2 independent set in the r-
regular graph G0 (and one of an optimal distance-d independent set in G, resp.).
Let g(n) be a parameter function of the instanceG0, meaning a solution size. From
Brooks’ theorem, we can assume that g(n) ≥ n/r holds [2].
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(a) (b) (c)

Figure 3.7: Edge-gadgets (a) Gd,r for d mod 3 = 0, (b) Gd,r for d mod 3 = 1, and
(c) Gd,r for d mod 3 = 2

(i) Assume that d = 3. See again G3,r
p in Figure 3.5-(b), and recall that

we can select at most (r − 1) vertices as the distance-3 independent set from
G3,r

p for each 1 ≤ p ≤ m. By the similar arguments to ones of the proof of
Theorem 1, we can show that the above reduction satisfies the following condition:
(C1) If #OPT2(G0) ≥ g(n), then #OPTd (G) ≥ g(n) + m(r − 1), and (C2) if
#OPT2(G0) <

g(n)
γ′ for a constant γ′ > 1, then #OPTd (G) < g(n)

γ′ + m(r − 1).
Therefore, MaxDdIS on r-regular graphs cannot be approximated within

g(n) + m(r − 1)
g(n)/γ′ + m(r − 1) ≤

95r2(r − 1) + 190
95r2(r − 1) + 188

by setting m = n
2r , γ

′ = 95
94 and g(n) ≥ n

r .
(ii) Next, assume that d = 4. Since at most (r − 2) vertices can be selected as

the distance-4 independent set from G4,r
p in Figure 3.6(a), the approximation gap is

obtained as follows:

g(n) + m(r − 2)
g(n)/γ′ + m(r − 2) ≤

95r2(r − 2) + 190
95r2(r − 2) + 188

.
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(iii) Now assume that d ≥ 5. Recall that each edge in G0 is replaced with
⌈ d2 − 1⌉ edge-gadgets shown in Figures 3.7(a), (b), and (c), and also recall that
at most one vertex can be selected from Gd,r as the distance-d independent set.
Hence, the approximation gap is obtained as follows:

g(n) + m(⌈d/2⌉ − 1)
g(n)/γ′ + m(⌈d/2⌉ − 1) ≤

95r2(⌈d/2⌉ − 1) + 190
95r2(⌈d/2⌉ − 1) + 188

.

This completes the proof of this theorem. □

3.3 Approximability of MaxDdIS for reguar graphs

In this section, we design some approximation algorithms to solve MaxDdIS on
r-regular graphs, and furthermore, concentrate on a special regular graph of cubic
graph. Moreover, we study MaxDdIS on planar graphs.

Our main results are summarized as follows:

(i) For MaxDdIS on r-regular graphs, we design polynomial-time O(rd−1)-
approximation and O(rd−2/d)-approximation algorithms. (The approxima-
tion ratio of each algorithm will be analyzed precisely.) Note that the running
time of each algorithm is independent from r and d.

(ii) Fixing d = r = 3, we give a polynomial-time 2-approximation algorithm
for MaxD3IS on 3-regular graphs. We note that the simple applications
of the above O(rd−2/d)-approximation algorithm yields an approximation
ratio strictly greater than two. To improve the ratio to two, we sharpen
and precisely analyze the approximation algorithm. Finally, we design an
improved 1.875-approximation algorithm.

(iii) By employing the Baker’s shifting technique [3], we show that MaxDdIS on
planar graphs admits a PTAS for every fixed constant d ≥ 3.

3.3.1 MaxDdIS for r-reguar graphs

We design two approximation algorithms for MaxDdIS on r-regular graphs. The
first one finds a (distance-2) independent set from the (d − 1)th power of an input
graph by using the previously known approximation algorithm for MaxIS. The
second one iteratively executes the following: (i) Picks one vertex v into a solution
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and (ii) removes all vertices whose distance from the “center” vertex v is less than
d. Then, we show that, from the point of view of the approximation ratio, the latter
is better than the former for sufficiently large d and/or r .

Power-graph-based algorithms

In this section we design an ( r (r−1)
d−1+2r−6

5(r−2) + ε)-approximation algorithm for
MaxDdIS on r-regular graphs, which uses the following approximation algorithm
for MaxIS, i.e., MaxD2IS as a subroutine:

Proposition 1 ([4]). There exists a polynomial-time ∆+35 + ε-approximation algo-
rithm for MaxD2IS on graphs with the maximum degree ∆, where ε is a constant.

Let ALG2 be such a rough ∆+35 + ε-approximation algorithm for MaxD2IS on
graphs with the maximum degree ∆. The above proposition immediately suggests
the following simple algorithm: First, construct the (d − 1)th power Gd−1 of an
input graphG, and then obtain a distance-2 independent set ofGd−1. The following
is a description of the algorithm POWERd.

Algorithm POWERd

Input: r-regular graph G = (V (G), E(G))

Output: Distance-d independent set DdIS(G) in G

Step 1. Obtain the (d − 1)th power Gd−1 of G by the following:

(1-1) Compute distG (u, v ) for any pair u, v ∈ V .

(1-2) Add an edge {u, v } if distG (u, v ) ≤ d − 1.

Step 2. Apply ALG2 toGd−1, and then obtain a distance-2 independent
set ALG2(Gd−1) in Gd−1.

Step 3. Output DdIS(G) = ALG2(Gd−1) as a solution.

Theorem 3. The algorithm POWERd runs in polynomial time, and achieves a
( r (r−1)

d−1+2r−6
5(r−2) + ε) -approximation ratio for MaxDdIS on r-regular graphs, where

ε is a constant.
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Proof. First, we must verify that the output DdIS(G) = ALG2(Gd−1) of POWERd
is a feasible solution for MaxDdIS, i.e., the distance-2 independent set in Gd−1 is a
distance-d independent set in G. Suppose for contradiction that there is a pair of
vertices u, v ∈ ALG2(Gd−1) (i.e., distGd−1 (u, v ) ≥ 2) such that distG (u, v ) ≤ d−1.
Since distG (u, v ) ≤ d − 1, in Step 1 of POWERd, an edge {u, v } must be added
between u and v . That is, distGd−1 (u, v ) = 1 holds, which is a contradiction.
Therefore, the output of POWERd is always feasible.

Next, we show the approximation ratio of POWERd by estimating the maximum
degree of the (d − 1)th power graph Gd−1. Now consider a vertex v ∈ V (G).
Since G is an r-regular graph, v has r neighbor vertices, i.e., |D1(v ) | = r . Also,
|D2(v ) | ≤ r (r − 1) holds since each neighbor vertex u ∈ D1(v ) has at most r − 1
neighbors, each of which is not v . That is, |Di (v ) | ≤ r (r − 1)i−1 holds for each
1 ≤ i ≤ d − 1. Therefore, the maximum degree ∆ of Gd−1 is at most:

∆ ≤ r + r (r − 1) + r (r − 1)2 + · · · + r (r − 1)d−2

=
r

r − 2 {(r − 1)
d−1 − 1}.

Since POWERd applies the (∆+35 + ε) -approximation algorithm ALG2 for Gd−1, the
approximation ratio of POWERd is as follows:

r (r − 1)d−1 + 2r − 6
5(r − 2) + ε.

The algorithm clearly runs in polynomial time and hence this completes the proof
of this theorem. □

Roughly, the approximation ratio of POWERd is O(rd−1).

Iterative-pick-one algorithms

Next, we consider a naive algorithm for MaxDdIS on r-regular graphs, which
iteratively picks a vertex v into the distance-d independent set and eliminates all
the vertices in D1(v ) ∪ D2(v ) ∪ · · · ∪ Dd−1(v ) from candidates of the solution.
Then we show its approximation ratio. Here is a description of the “pick-one”
algorithm, where DdIS(G) stores vertices in the distance-d independent set, B
contains vertices which are determined to be not candidates of the solution, andW
does vertices which can be picked in the next iteration:

20



Algorithm PICK_ONEd

Input: r-regular graph G = (V (G), E(G))

Output Distance-d independent set DdIS(G)

Step 1. Set DdIS(G) = ∅, B = ∅, andW = V (G).

Step 2. IfW , ∅, then repeat the following; else goto Step 3:
Select one arbitrary vertex v from W . Then, let Bi =

{v } ∪ ∪
1≤i≤d−1 Di (v ) for the ith iteration of this step, update

DdIS(G) = DdIS(G)∪{v }, B = B∪Bi, and setW = D1(B)\B.

Step 3. Terminate and output DdIS(G) as a solution.

In order to prove the approximation ratio of the algorithm PICK_ONEd, we
now provide an upper bound of the maximum number of vertices in the distance-d
independent set in an input graph G with n vertices:

Lemma 1. Consider an r-regular graph G = (V, E) with |V | = n vertices. Then, if
r ≥ 3 and d ≥ 4, then the size #OPTd (G) of optimal solutions ofMaxDdIS satisfies
the following inequality:

#OPTd (G) ≤


3n
r (d − 2) d is even,

3n
r (d − 1) otherwise.

Proof. Given an r-regular graph G, let OPTd (G) = {v∗1, v∗2, · · · , v∗L } be an optimal
solution of MaxDdIS and let #OPTd (G) = L. Then, if d is even, then, for every
1 ≤ i ≤ L, consider a ball Ball (v∗i ) = D1(v∗i )∪D2(v∗i )∪ · · · ∪D(d−2)/2(v∗i ), where
the center of the ball is v∗i and its radius is (d − 2)/2 (or, equivalently, its diameter
is (d − 2)). If d is odd, then we consider a ball Ball (v∗i ) = D1(v∗i ) ∪ D2(v∗i ) ∪
· · · ∪ D(d−1)/2(v∗i ) of diameter (d − 1). Since, for every pair of i and j (i , j),
distG (v∗i , v

∗
j ) ≥ d holds from the feasibility of the solution, Ball (v∗i )∩Ball (v∗j ) = ∅

is surely satisfied for every pair i and j. It follows that
∑L

i=1 |Ball (v∗i ) | ≤ n.
Now, we estimate the value of

∑L
i=1 |Ball (v∗i ) | by considering the “smallest”

r-regular graph of diameter diam, that is, a lower bound of the size of |Ball (v∗i ) |.
Recently, Knor has proven [21] that the minimum number of vertices in an r-regular
graph of diameter diam is at least r ·diam

3 if r ≥ 3 and diam ≥ 4. As a result, the
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following inequality holds:

L∑
i=1
|Ball (v∗i ) | ≥

r · diam
3

× L.

Then, we have

#OPTd (G) = L ≤ 3n
r · diam,

where diam = d − 2 if d is even and diam = d − 1 if d is odd as mentioned above.
This completes the proof of this lemma. □

Now we calculate the number #ALGd (G) of vertices in DdIS(G) output by
PICK_ONEd, and obtain the following lemma:

Lemma 2. Assume that PICK_ONEd finds a solution of size #ALGd (G), give an
r-regular graph with n vertices. Then, the following is satisfied:

#ALG(G) ≥



n(r − 2) − r (r − 1) d
2 −1 + 2

r (r − 1)d−1 − r (r − 1) d
2 −1

d is even,

n(r − 2) − 2(r − 1) d−1
2 + 2r − 2

r (r − 1)d−1 − 2(r − 1) d−1
2 + 2r − 4

otherwise.

Proof. Let DdIS(G) = {s1, s2, · · · , sℓ } be an output of PICK_ONEd, and assume
that PICK_ONEd picks those ℓ vertices into DdIS(G) in this order, i.e., first s1,
next s2, and so on. In the ith iteration of Step 2 in PICK_ONEd, we select si into
a solution, remove Bi from the candidate vertices V of the distance-d independent
set since distG (si, v ) ≤ d − 1 for v ∈ Bi, and merge Bi to B. Note that the current
B =

∪
1≤ j≤i−1 Bj and Bi have the common vertices, i.e., B ∩ Bi , ∅ is already

removed from V before the ith iteration. Then, we call vertices in Bi \ B the ith
newly conflict vertices of si. Since all the vertices in the graph G are eventually
merged into B, we can easily get the following:

������
∪

1≤i≤ℓ
Bi

������ = n.

In the following, we estimate an upper bound of the number, say, Γi, of the ith
newly conflict vertices in Bi \

∪
1≤ j≤i−1 Bj :
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Figure 3.8: Bi−1 and Bi share all the black vertices

(1) An upper bound of the number Γ1 of the first newly conflict vertices in B1

is bounded as follows:

Γ1 = |B1 | ≤ 1 + r + r (r − 1) + · · · + r (r − 1)d−2 = r (r − 1)d−1 − 2
r − 2 .

(2) We then consider an upper bound of Γi = |Bi \
∪

1≤ j≤i−1 Bj | for si. In the
ith iteration, si is selected into a solution, and then set Bi = {si } ∪

∪
1≤i≤d−1 Di (si).

The upper bound of the size of Bi is the same as above:

|Bi | ≤ 1 + r + r (r − 1) + · · · + r (r − 1)d−2 = r (r − 1)d−1 − 2
r − 2 . (3.1)

But, in the (i − 1)th iteration, si−1 was selected and all the “black” vertices B1 ∪
· · · ∪ Bi−1 have been already removed from V as illustrated in Figure 3.8. Namely,
those black vertices are doubly counted in the above inequality 3.1; we make an
estimate of the number of black vertices in the following.

Now take a look at two vertices si−1 and si. Suppose that the path of length
d from si−1 to si is denoted by Psi−1,si = ⟨si−1, v1, v2, · · · , vd−2, vd−1, si⟩. Then,
for 1 ≤ j ≤ d − 1, every vertex vj on the path Psi−1,si is included in Bi−1 since
distG (si−1, vj ) ≤ d − 1 for every j. Also, every vj is included into Bi since
distG (si, vj ) ≤ d − 1 for every j. Moreover, for example, the vertices in D1(v3) ∪
D2(v3) are also “shared” by Bi−1 and Bi. We consider two cases in the following:
(Case 1) d is even and (Case 2) d is odd:

(Case 1) Let d = 2h (h ≥ 1). Then, the center vertex of the path Psi−1,si is
denoted by v d

2
. One can see that the neighbor vertices D1(v2) of v2 and D1(vd−1)
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of vd−1, vertices in D1(v3) ∪ D2(v3) and ones in D1(vd−3) ∪ D2(vd−3) and so on
are shared by Bi−1 and Bi. Then, |D1(v3) ∪ D2(v3) | = |D1(vd−3) ∪ D2(vd−3) |,
|D1(v4) ∪ D2(v4) ∪ D3(v4) | = |D1(vd−4) ∪ D2(vd−4) ∪ D3(vd−4) |, and so on.
Therefore, the number Λ of those black vertices shared by Bi−1 and Bi is calculated
as follows:

Λ = 2 × (1 + (1 + |D1(v2) |) + (1 + |D1(v3) ∪ D2(v3) |)

+(1 + |D1(v4) ∪ D2(v4) ∪ D3(v4) |)

+ · · · + (1 + |D1(vd/2−1) ∪ · · · ∪ Dd−2− d
2
(vd/2−1) |))

+(1 + |D1(vd/2) ∪ · · · ∪ Dd−1− d
2
(vd/2) |)

= 2
(r − 1) d

2 −1 − 1
r − 2 + (r − 1) d

2 −1

=
r (r − 1) d

2 −1 − 2
r − 2

Therefore, we obtain the number of the ith newly conflict vertices:

Γi ≤ |Bi (si) | − Λ

≤ r (r − 1)d−1 − 2
r − 2 − r (r − 1) d

2 −1 − 2
r − 2

=
r (r − 1)d−1 − r (r − 1) d

2 −1

r − 2 .

The above arguments on Γi are applied to every i, 2 ≤ i ≤ ℓ. Now we know that
Γ1 + (ℓ − 1)Γi ≥ n, and thus,

ℓ ≥ n(r − 2) − r (r − 1) d
2 −1 + 2

r (r − 1)d−1 − r (r − 1) d
2 −1
.

(Case 2) Let d = 2h+1 (h ≥ 1). Similarly to Case 1, we can show the following
inequality on the number of the ith newly conflict vertices:

Γi ≤ |Bi (si) | − Λ

≤ r (r − 1)d−1 − 2
r − 2 − 2 (r − 1)((r − 1)

d−h−2 − 1)
r − 2

=
r (r − 1)d−1 − 2(r − 1)d−h−1 + 2r − 4

r − 2 .
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Since Γ1 + (ℓ − 1)Γi ≥ n, we can get

ℓ ≥ n(r − 2) − 2(r − 1)d−h−1 + 2r − 2
r (r − 1)d−1 − 2(r − 1)d−h−1 + 2r − 4

=
n(r − 2) − 2(r − 1) d−1

2 + 2r − 2
r (r − 1)d−1 − 2(r − 1) d−1

2 + 2r − 4

This completes the proof of this lemma. □

Theorem 4. The approximation ratio σ of PICK_ONEd is as follows:

σ =


3(r − 1)d−1 − 3(r − 1) d

2 −1

(r − 2)(d − 2) +O(
1
n
) d is even,

3r (r − 1)d−1 − 6(r − 1) d−1
2 + 6r − 12

r (r − 2)(d − 1) +O(
1
n
) otherwise.

Proof. The approximation ratio σ is bounded by #OPTd (G)/#ALGd (G).
From the upper bound of #OPTd (G) and the lower bound of #ALGd (G) shown in
Lemmas 1 and 2, respectively, we can obtain this theorem. □

That is, the approximation ratio of PICK_ONEd isO(rd−2/d), while the approx-
imation ratio of POWERd is O(rd−1).

3.3.2 MaxD3IS for cubic graphs

In this section, as a special case, we study the approximability ofMaxD3IS on cubic
graphs, i.e., d = 3 and r = 3 and show the approximation ratios of POWER3 and
PICK_ONE3. Furthermore, by a slight modification, we obtain a 2-approximation
algorithm for MaxD3IS on cubic graphs.

Power-graph-based algorithm

First, as an immediate consequence of Theorem 3, we have the following corollary:

Corollary 1. The algorithmPOWER3 achieves a 2.4-approximation ratio forMaxD3IS
on cubic graphs.

Proof. There exists a polynomial-time (∆+35 -approximation algorithm forMaxD2IS
on graphs with the maximum degree ∆ ≤ 613 [5]. Since the maximum degree of
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the second power G2 of an input 3-regular graph G is nine, the approximation ratio
is 12/5 = 2.4. □

Iterative-pick-one algorithm

In this section, we prove that PICK_ONE3 achieves 2+O(1/n)-approximation ratio,
and furthermore, the ratio can be improved into exactly 2 by a slight modification
of PICK_ONE3 and careful observations.

Recall that the upper bound of optimal solutions of MaxDdIS on r-regular
graphs provided in Lemma 1 holds only for the case where d ≥ 4. Then, we give
an estimation of the upper bound of the maximum number of vertices in an optimal
solution for the case where r = 3 and d = 3:

Lemma 3. Consider a cubic graphG = (V, E) with |V | = n vertices. Then, the size
#OPT3(G) of every optimal solution of MaxD3IS satisfies the following inequality:

#OPT3(G) ≤ n
4
.

Proof. Given a 3-regular graph G of n vertices, let OPT3(G) = {v∗1, v∗2, · · · , v∗L } be
an optimal solution of MaxD3IS and let #OPT3(G) = L. Also, let OPT3(G) be the
set of vertices not in OPT3(G), i.e., OPT3(G) = V (G) \ OPT3(G). Then, three
edges, say, {{v∗i , ui,1}, {v∗i , ui,2}, {v∗i , ui,3}}, are incident to every vertex v∗i ∈ OPT3(G)

for 1 ≤ i ≤ L, and ui,1, ui,2, ui,3 ∈ OPT3(G). Therefore, |OPT3(G) | ≥ 3L. From
the definition, |OPT3(G) | = n − L holds. As a result, the following inequality is
obtained:

#OPT3(G) = L ≤ n
4
.

This completes the proof of this lemma. □

Consider a graph D2 = (V (D2), E(D2)) of eight vertices such that

V (D2) = {v1, v2, v3, v4, v5, v6, v7, v8}

E(D2) = {{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4},

{v5, v6}, {v5, v7}, {v6, v7}, {v6, v8}, {v7, v8},

{v4, v5}, {v8, v1}}.
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That is, D2 consists of two diamond graphs and two edges. One can verify that
D2 is cubic and |OPT3(D2) | = 2 = 8/4. Similarly, by circularly joining diamond
graphs, we can obtain an infinite family of tight examples for Lemma 3; for a graph
Dℓ having ℓ diamond graphs (4ℓ vertices), |OPT3(Dℓ ) | = ℓ.

Theorem 5. The algorithm PICK_ONE3 achieves a
(
2 + 4

n−2
)
-approximation ratio

for MaxD3IS on cubic graphs.

Proof. Let D3IS(G) = {s1, s2, · · · , sℓ } be an output of PICK_ONE3, and without
loss of generality, assume that PICK_ONE3 picks those ℓ vertices into D3IS(G) in
this order, i.e., first s1, next s2, and so on.

(i) In the first iteration of Step 2 of PICK_ONE3, the first vertex s1 is selected
into D3IS(G), then B1 = {s1} ∪ D1(s1) ∪ D2(s1) are removed from V (G), and set
V = V (G) \ B1. One can see that the number of vertices in B1 is at most 10 since
s1 has at most three neighbors, i.e., |D1(s1) | ≤ 3, and each vertex in D1(s1) has at
most two other vertices, i.e., |D2(s1) | ≤ 6.

(ii) In the second iteration, the second vertex s2 is selected from neighbor
vertices of B1 into D3IS(G), and then B2 = {s2} ∪ D1(s2) ∪ D2(s2) are removed
from V updated in Step 2. The number of vertices in B2 is again at most 10, but
|B1 ∩ B2 | ≥ 2 because there must exist at least two vertices between s1 and s2 from
the fact distG (s1, s2) ≥ 3. That is, |B2 \ B1 | ≤ 8 and thus at most eight vertices
currently in V are removed from V in the second iteration. Similarly, when si for
3 ≤ i ≤ ℓ are selected into D3IS(G), at most eight vertices in V are removed from
V . Therefore,

|B1 | + |B2 \ B1 | + · · · + |Bℓ \ (
∪

1≤i≤ℓ−1
Bi) | ≤ 10 + 8(ℓ − 1).

At the time when PICK_ONE3 terminates, V = ∅ and thus the following inequality
holds since the value of the left-hand side of the above inequality is equal to n:

10 + 8(ℓ − 1) ≥ n.

Namely,

ℓ ≥ n − 2
8
.
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Since #OPT3(G) ≤ n
4 , the approximation ratio of PICK_ONE3 is as follows:

#OPT3(G)
ℓ

≤ 2 +
4

n − 2 .

□

REV_PICK_ONE3

To improve the above ratio of 2 + ε (ε > 0) to 2, we slightly modify Step 2 of
PICK_ONE3, and get the following algorithm, called REV_PICK_ONE3:

Algorithm REV_PICK_ONE3:

Input: 3-regular graph G = (V (G), E(G))

Output: Distance-3 independent set D3IS(G)

Step 1. Set D3IS(G) = ∅, B = ∅, andW = V (G).

Step 2. IfW , ∅ , then repeat the following; else goto Step 3:
Select one vertex v from W such that |(D1(v ) ∪ D2(v )) \ B |
is minimum among all vertices in W . Then, let Bi = {v } ∪
D1(v )∪D2(v ) in the ith iteration of this step, update D3IS(G) =

D3IS(G) ∪ {v }, B = B ∪ Bi, and setW = D1(B) \ B.

Step 3. Terminate and output D3IS as a solution.

Recall that PICK_ONE3 selects an arbitrary vertex v in each iteration in Step 2.
On the other hand, REV_PICK_ONE3 selects a vertex v such that |(D1(v )∪D2(v ))\B |
is minimum among all vertices inW in each iteration, only which is the difference
between PICK_ONE3 and REV_PICK_ONE3.

Theorem 6. The algorithm REV_PICK_ONE3 runs in polynomial time, and
achieves a 2-approximation ratio for MaxD3IS on cubic graphs.

Proof. Again, let D3IS(G) = {s1, s2, · · · , sℓ } be an output of REV_PICK_ONE3,
and assume that REV_PICK_ONE3 picks those ℓ vertices into D3IS(G) in this order.
That is, in the first iteration, REV_PICK_ONE3 picks s1 such that |(D1(s1)∪D2(s1)) |
is minimum among all vertices in V (G) since B = ∅. Then, we update B = B1 =
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{s1} ∪ D1(s1) ∪ D2(s1). We have the following three cases according to the size of
|B1 |: (i) |B1 | ≤ 8, (ii) |B1 | = 9, and (iii) |B1 | = 10.

(i) First consider the case where |B1 | ≤ 8. Similarly to the proof of Theorem 5,
in the second iteration of Step 2, the second vertex s2 is selected from neighbor
vertices of B1 into D3IS(G), and then B2 = {s2} ∪ D1(s2) ∪ D2(s2) are removed
fromV updated in Step 2. Recall that |B2\B1 | ≤ 8. Similarly, when si for 3 ≤ i ≤ ℓ
are selected into D3IS(G), |Bi \ (

∪
1≤ j≤i−1 Bj ) | ≤ 8 holds. Therefore,

|B1 | + |B2 \ B1 | + · · · + |Bℓ \ (
∪

1≤i≤ℓ−1
Bi) | ≤ 8ℓ. (3.2)

Namely,

ℓ ≥ n
8
.

Since #OPT3(G) ≤ n
4 , the approximation ratio of REV_PICK_ONE3 is as follows:

#OPT3(G)
ℓ

≤ 2.

(ii) Next suppose that |B1 | = 9. Similarly, again |Bi \ (
∪

1≤ j≤i−1 Bj ) | ≤ 8 holds
for the ith iteration, 2 ≤ i ≤ ℓ. It is now important to note that the number n of
vertices in the cubic graphG must be even since the degree r is odd. Thus, actually,
at least one of |Bi \ (

∪
1≤ j≤i−1 Bj ) | for 2 ≤ i ≤ ℓ must be at most seven. Therefore,

the left-hand side of the inequality (3.2) is at most 9+7+8(ℓ−2) = 8ℓ. As a result,
the inequality (3.2) holds again, which means that the approximation ratio is two.

(iii) Finally, suppose that |B1 | = 10, which implies that |{si }∪D1(si)∪D2(si) | =
10 for every vertex si since |{s1} ∪ D1(s1) ∪ D2(s1) | is minimum. Indeed, for
example, |{v } ∪D1(v )∪D2(v ) | = 10 holds for any vertex v in aC4-free cubic graph
(i.e., the graph including no induced cycles of length 3 and 4). Fortunately, if at least
one, say, |Bi \ (

∪
1≤ j≤i−1 Bj ) | is seven, then there must exist at least one iteration,

say, i′ (, i) such that |Bi′ \ (
∪

1≤ j≤i′−1 Bj ) | ≤ 7 holds since n is even. That is, the
inequality (3.2) is true as well. Unfortunately, however, if |Bi \ (

∪
1≤ j≤i−1 Bj ) | = 8

holds for every 2 ≤ i ≤ ℓ, then the ratio of REV_PICK_ONE3 is 2 + 4/(n − 2)
similarly to PICK_ONE3. Now, as the worst case, we suppose that in the second
through the (ℓ − 1)th iterations, s2 through sℓ−1 are selected and |B2 \ B1 | through
|Bℓ−1 \ (

∪
1≤ j≤ℓ−2 Bj ) | are all eight. Then, we take a look at the last iteration in

detail. (iii-1) If the current V has at least nine vertices, then we can get further
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two vertices in the distance-3 independent set since |Bℓ \ (
∪

1≤ j≤ℓ−1 Bj ) | ≤ 8,
which is a contradiction from the assumption of |D3IS(G) | = ℓ. Thus, (iii-
2) we can assume that the number of the remaining vertices in V is at most eight
after the (ℓ − 1)th iteration. Then, one can see that if those eight vertices are
connected, then we again get two vertices in the distance-3 independent set, which
is another contradiction. (iii-3) Now suppose that the remaining graph G[V ] has
at least two connected components. Then, there must exist a vertex sℓ such that
|Bℓ \ (

∪
1≤ j≤ℓ−1 Bj ) | ≤ 5. As a result, again we can obtain the inequality (3.2),

which follows that the approximation ratio is two. This completes the proof of this
theorem. □

Improved 1.875-Approximation Algorithm

Then, we design an improved approximation algorithm, which achieves the ap-
proximation ratio of 1.875 for MaxD3IS on cubic graphs. Now we make a simple
observation; see figure 3.9(a). In the previous algorithm in [10], if si−1 is selected
in the (i − 1)st iteration and black vertices are removed from the solution candi-
dates, then we select, for example, v1 into a solution D3IS(G) in the ith iteration
since distG (si−1, v1) = 3, and remove eight “gray” vertices, v1 through v8, from the
solution candidates. In other words, we can select one vertex v1 into the solution
among (at most) eight candidates in {v1} ∪ D1(v1) ∪ D2(v1) \ B, where B is a set of
“non-candidate vertices.” For the case in figure 3.9, however, if we select a neighbor
v2 of v1 into D3IS(G), then at most seven vertices in {v2} ∪ D1(v2) ∪ D2(v2) \ B (=
{v1, v2, v3, v4, v5, v6, v9}) are removed; now we could select one among seven candi-
dates. As a desirable example, if we can averagely select one vertex into D3IS(G)

among seven vertices in an iteration, then we can find a solution of size n/7, i.e.,
we achieve the 7/4-approximation ratio. Hence, it is our goal to find a vertex s such
that |{s} ∪ D1(s) ∪ D2(s) \ B | is as small as possible in each iteration. As another
desirable example, if v1 has two neighbors in B as shown in figure 3.9(b), then
|{v1} ∪ D1(v1) ∪ D2(v1) \ B | ≤ 4. In the following, we show that we can averagely
select one vertex among “15/2” vertices, which implies the approximation ratio of
(n/4)/(2n/15) = 15/8 = 1.875. Our new algorithm ALG basically selects (i) the
first candidate vertex v f from D1(B) if |{v f } ∪ D1(v f ) ∪ D2(v f ) \ B | ≤ 7, but (ii) a
neighbor u of v f if |{v f } ∪D1(v f ) ∪D2(v f ) \ B | ≥ 8. Unfortunately, however, there
are special subgraphs such that for any neighbor u ∈ D1(v f ) of the first candidate v f ,
|{u} ∪D1(u)∪D2(u) \B | ≥ 8must hold. Therefore, ALG initially finds such special
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Figure 3.9: Observations (a) and (b)

subgraphs and gives some special treatments to them as preprocessing, which these
procedure can be clearly implemented in polynomial time.

There are eight special subgraphs, SG1, SG2, SG3, SG4, SG5, SG6, SG7 and
SG8, which are illustrated in figures 3.10(a), (b), (c), (d), (e), (f), (g) and (h),
respectively. The first special subgraph SG1 consists of nine “white” vertices, the
second one SG2 consists of seven white vertices, and so on.

(a) SG1 (b) SG2
(c) SG3

(d) SG4 (e) SG5 (f) SG6

(g) SG7 (h) SG8

Figure 3.10: Special subgraphs (a) SG1, (b) SG2, (c) SG3, (d) SG4, (e) SG5, (f)
SG6, (g) SG7 and (h) SG8

(a) See figure 3.10(a). The first special subgraph SG1 has nine white vertices,
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the first candidate v f , its three neighbor vertices v , u and w, two neighbors u1 and u2
of u, two neighbors w1 and w2 of w, and the top vertex v1, where distG (v f , v1) = 2,
and vertices of {v f , u, w, v1, u1, u2, w1, w2} are not in set B and maybe v is in the
set B. The vertex v1 is connected to either of u1 and u2 and either of w1 and
w2. As shown in figure 3.10(a), assume that the graph has two edges {v1, u2}
and {v1, w1}. Furthermore, there are three edges, {u1, w1}, {u1, w2}, and {u2, w2}.
For SG1, if v is not removed, then our algorithm ALG selects u1, which is not
connected to v1, and v into D3IS(G), and eliminates nine vertices in V (SG1)

and three vertices in (D1(v ) ∪ D2(v )) \ V (SG1), i.e., (at most) 12 vertices in
{v, u1} ∪ D1({v, u1}) ∪ D2({v, u1}) from the solution candidates; else our algorithm
ALG only selects u1, which is not connected to v1 into D3IS.

(b) See figure 3.10(b). The second special subgraph SG2 has seven white
vertices, the first candidate v f , its two neighbors u and w, two neighbors u1 and u2
of u, two neighbors w1 and w2 of w, and moreover, these vertices are not in the set
B. (b1) Neither of u1 and u2 (w1 and w2, resp.) is connected to w (u, resp.), and
(b2) u1 is connected to either w1 or w2, and u2 is connected to the other. Without
loss of generality, assume that u1 (u2, resp.) is connected to w1 (w2, resp.) as
shown in figure 3.10(b). (b3) Either of distG (u1, w2) = 1 and distG (u2, w1) ≥ 3,
distG (u1, w2) = distG (u2, w1) = 1, and distG (u1, w2) ≥ 3 and distG (u2, w1) ≥ 3
holds. Note that the case of distG (u1, w2) ≥ 3 and distG (u2, w1)) = 1 is essentially
the same as the case of distG (u1, w2) = 1 and distG (u2, w1)) ≥ 3. Then, (i) If
distG (u1, w2) ≥ 3 and distG (u2, w1) ≥ 3, then ALG selects u2 and w1 into D3IS(G).
(ii) If distG (u1, w2) = 1 and distG (u2, w1) ≥ 3, then ALG selects u2 and w1
into D3IS(G). (iii) If distG (u1, w2) = distG (u2, w1) = 1, then ALG selects one
arbitrary vertex in {u1, u2, w1, w2} into D3IS(G). One can see that the case where
distG (u1, w2) = distG (u2, v1) = distG (w1, v1) = 1 is essentially equivalent to SG1,
where distG (v1, v f ) = 2 and v < {v f , u, w, u1, u2, w1, w2}.

(c) See figure 3.10(c). The third special subgraph SG3 has eight white vertices,
the first candidate v f , its two neighbors u and w, two neighbors u1 and u2 of u, two
neighbors w1 and w2 of w, and z, where distG (z, v f ) ≥ 3, and moreover, vertices
of {v f , u, w, u1, u2, w1, w2} are not in set B and maybe z is in set B. The conditions
(c1) and (c2) are the same as (b1) and (b2), respectively. (c3) The conditions on
distG (u1, w2) and distG (u2, w1) are different from the above: distG (u1, w2) = 2 or
distG (u2, w1) = 2 holds. That is, there is one vertex z between u1 and w2( or one
vertex z between u2 and w1). For SG3 with distG (u1, w2) = 2 in figure 3.10(c), if
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z is not removed, then ALG selects v f and z into D3IS(G); else ALG selects u1.
(d) See figure 3.10(d). The fourth special subgraph SG4 consists of nine white

vertices, the first candidate v f , its two neighbors u and w, two neighbors u1 and u2 of
u, two neighbors w1 and w2 of w, and z1, and moreover, vertices v f , u, w, u1, u2, w1
and w2 are not removed into set B. (d1) is the same as (b1). (d2) distG (u1, w1) = 1
and distG (u2, w1) = 2 hold. (d3) u2 and w1 are intersected at the vertex z1. Since
this subgraph is not contained in SG3, it holds distG (u2, w2) ≥ 2, and then ALG
selects w and u2 into D3IS(G).

(e) See figure 3.10(e). The fifth special subgraph SG5 consists of eight white
vertices, v f , its two neighbors u and w, two neighbors u1 and u2 of u, two neighbors
w1 and w2 of w, and z1, and moreover, vertices v f , u, w, u1, u2, w1, w2 are not
eliminated into set B. (e1) is the same as (b1). (e2) distG (z1, v f ) ≥ 3 holds.
(e3) distG (u2, z1) = distG (w1, z1) = 1 and distG (u1, w2) = 1 hold. Then, SG5

is not contained in subgraphs SG2 and SG3, and distG (w1, u2) ≥ 2. Then, ALG
selects u and w1 into D3IS(G).

(f) See figure 3.10(f). The sixth special subgraph SG6 has seven white vertices,
v f , its two neighbors u and w, two neighbors u2 and w1 of u, two neighbors w1 and
w2 of w, and u1 whose distG (u1, v f ) = 2 holds, and these vertices are not removed
into set B. (f1) u and w are intersected at a same vertex w1. (f2) There are three
edges, {u1, w1}, {u2, w2}, and {u1, w2}. ALG selects w1 into D3IS(G).

(g) See figure 3.10(g). The seventh special subgraph SG7 consists of eight white
vertices, v f , its two neighbors u and w, two neighbors u1 and u2 of u, two neighbors
w1 and w2 of w, and v1, where distG (v f , v1) = 2. Vertices v f , u, w, v1, u2, w2 are
not eliminated into B, and maybe vertex u1 or w1 is eliminated. (g1) is the same
as (b1). (g2) The vertex v1 is connected to one of u1 and u2, and one of w1 and
w2. Now, without loss of generality, we assume that there are two edges {v1, u2}
and {v1, w2} as shown in figure 3.10(g). Then, (g3) There is no edge {u2, w2}.
(g4) Possibly, there is one edge,{u1, w1}, {u1, w2} or {u2, w1}. Note that maybe u1
or w1 is eliminated, and thus, any vertex of {u1, w1} is not selected into D3IS(G)

in the algorithm. (i) If distG (u1, w1) = 1 and distG (u1, w2) ≥ 2 (i.e., SG2 or
SG3 implies no the edge {u1, w2}), then ALG selects two vertices w2 and u into
D3IS(G). (ii) If distG (u1, w2) = 1 and distG (u2, w1) ≥ 2(i.e., SG2 or SG3 implies
no the edge {u1, w2}), then ALG selects two vertices w and u2 into D3IS(G). (iii) If
distG (u2, w1) = 1 and then distG (u1, w2) ≥ 2(i.e., SG2 or SG3 implies no the edge
{u1, w2}), then ALG selects two vertices w2 and u into D3IS(G). (iv) there are no
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three edges, {u1, w1}, {u1, w2}, and {u2, w1}, then ALG selects two vertices w2 and u
into D3IS(G).

(h) See figure 3.10(h). The eighth special subgraph SG8 consists of eight
white vertices, the first candidate vertex v f , two neighbors u and w, two neighbors
u1 and u2 of u, two neighbors w1 and w2 of w, and v1, and these vertices are
not removed into set B. (h1) is the same as (b1). (h2) There are three edges,
{v1, u2}, {u2, w1}, and {u1, w1}. One can verify that if the graph has an edge {v1, w2},
then it can be regarded as SG7, and if there is an edge {u1, w2}, then it can be
regarded as SG1 or SG2. Therefore, all the three vertices v1, u1 and w2 have
neighbors which are not in SG8. Note that v = D1(v f ) \ {u, w} holds. Then, (i) If
the black vertex v is not removed, then ALG selects v and w1 into D3IS(G), and
|{v, w1} ∪ D1({v, w1}) ∪ D2({v, w1}) | ≤ 13. (ii) If v is removed, then ALG selects w
and v1 into D3IS(G).

Recall that our algorithm ALG first finds every special subgraph and determines
a (part of) solution in the special subgraphs as the preprocessing phase. After that,
ALG iteratively executes the general phase, that is, it selects (i) the first candidate
vertex v f from D1(B) if |{v f }∪D1(v f )∪D2(v f )\B | ≤ 7, but (ii) a neighbor u of v f if
|{v f }∪D1(v f )∪D2(v f ) \B | ≥ 8 into the distance-3 independent set. The following
is the detailed description of ALG. In the preprocessing phase (Phase 1), the first
candidate vertex v f is selected and removed from a set F; the subgraph induced by
{v f } ∪ D1(v f ) ∪ D2(v f ) is repeatedly checked whether it is identical to SG1; after
all SG1’s have been processed, the subgraph induced by {v f } ∪ D1(v f ) ∪ D2(v f )

is checked whether it is one of the seven special subgraphs SG2, SG3, SG4, SG5,
SG6, SG7 and SG8; and v f is stored into a set C of “already checked” vertices.
The vertex si in the distance-3 independent set is stored in D3IS(G); its (closed)
neighbors in {si } ∪ D1(si) ∪ D2(si) are eliminated from V and stored into B.

Algorithm ALG

Input: Cubic graph G = (V, E).

Output: Distance-3 independent set D3IS(G) of G.

Initialization: Set C = ∅, B = ∅, D3IS(G) = ∅, and F = ∅.

Phase 1. Find all special subgraphs and determine a partial solution in them.
/* The vertices in all the special subgraphs SG1, SG2, SG3, SG4, SG5, SG6,
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SG7 and SG8 are labeled as shown in figures 3.10(a), (b), (c), (d),(e),(f), (g)
and (h), respectively. */

Step 0. Select arbitrarily one vertex v from V and set F = F ∪ {v }.

Step 1 (SG1). (i) If B ∪ C , V and thus F , ∅, then select arbitrarily one vertex
v f ∈ F, and set F = F \ {v f } and C = C ∪ {v f }. If the induced subgraph
G[{v f } ∪ D1(v f ) ∪ D2(v f )] includes SG1 as its subgraph, then if v < B, then
set D3IS(G) = D3IS(G)∪{v, u1}, B = B∪{v, u2}∪D1({v, u2})∪D2({v, u2}),
elseif v ∈ B, then set D3IS(G) = D3IS(G)∪{u1}, B = B∪{u1}∪D1({u1})∪
D2({u1}). F = D1(B ∪ C) \ B. Repeat Step 1. (ii) If B ∪ C = V , then set
C = ∅ and F = D1(B) \ B, and goto Step 2.

Step 2. (i) If B∪C , V , then select v f ∈ F and set F = F \ {v f } and C = C ∪ {v f }.
If the induced subgraph G[{v f } ∪ D1(v f ) ∪ D2(v f )] does not include any of
the special subgraphs SG2, SG3, SG4, SG5, SG6, SG7 and SG8, then set
F = D1(B ∪C) and repeat Step 2 (i.e., select a vertex v ′f , v f from F in the
next iteration of Step2). If G[{v f } ∪ D1(v f ) ∪ D2(v f )] includes SG2, SG3,
SG4, SG5, SG6, SG7 and SG8, then execute Case 2-1, Case 2-2, Case 2-3,
Case 2-4, Case 2-5,Case 2-6, Case 2-7 and Case 2-8, respectively. (ii) If
B ∪ C = V , then goto Phase 2.

Case 2-1 (SG2): (i) If distG (u1, w2) = distG (u2, w1) = 3, then setD3IS(G) =

D3IS(G)∪{u2, w1} and B = B∪{u2, w1}∪D1({u2, w1})∪D2({u2, w1}).
(ii) If distG (u1, w2) = 1 and distG (u2, w1) = 3, then set D3IS(G) =

D3IS(G)∪{u2, w1} and B = B∪{u2, w1}∪D1({u2, w1})∪D2({u2, w1}).
(iii) If distG (u1, w2) = distG (u2, w1) = 1, then setD3IS(G) = D3IS(G)∪
{u1} and B = B ∪ {u1} ∪ D1({u1}) ∪ D2({u1}). Set F = D1(B ∪C) and
goto Step 2. Set F = D1(B ∪ C) \ B and goto Step 2.

Case 2-2 (SG3): (i) if there is a z, which is not removed, then SetD3IS(G) =

D3IS(G)∪{v f , z} and B = B∪{v f , z}∪D1({v f , z})∪D2({v f , z})); else
D3IS(G) = D3IS(G)∪ {u1} and B = B∪ {u1} ∪D1({u1})∪D2({u1})).
Set F = D1(B ∪ C) \ B and goto Step 2.

Case 2-3 (SG4): D3IS(G) = D3IS(G) ∪ {w, u2} and B = B ∪ {w, u2} ∪
D1(w, u2) ∪ D2(w, u2). Set F = D1(B ∪ C) \ B and goto Step 2.

Case 2-4 (SG5): Set D3IS(G) = D3IS(G) ∪ {u, w1} and B = B ∪ {u, w1} ∪
D1({u, w1}) ∪ D2({u, w1}). Set F = D1(B ∪ C) \ B and goto Step 2.
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Case 2-5 (SG6): SetD3IS(G) = {w1}∪D3IS and B = B∪{w1}∪D1({w1})∪
D2({w1}). Set F = D1(B ∪ C) \ B and goto Step 2.

Case 2-6 (SG7): (i) If distG (u1, w1) = 1 and distG (u1, w2) ≥ 2, then
D3IS(G) ∪ {w2, u} and B = B ∪ {u, w2} ∪ D1({u, w2}) ∪ D2({u, w2}).
(ii) If distG (u1, w2) = 1 and distG (u2, w1) ≥ 2, then D3IS(G) ∪
{w, u2} and B = B ∪ {w, u2} ∪ D1({w, u2}) ∪ D2({w, u2}). (iii) If
distG (u2, w1) = 1 and then distG (u1, w2) ≥ 2, then D3IS(G) ∪ {w2, u}
and B = B ∪ {w2, u} ∪ D1({w2, u}) ∪ D2({w2, u}). (iv) If there are no
three edges {u1, w1}, {u1, w2}, and {u2, w1}, then D3IS(G)∪ {w2, u} and
B = B ∪ {w2, u} ∪ D1({w2, u}) ∪ D2({w2, u}). Set F = D1(B ∪ C) \ B
and goto Step 2.

Case 2-7 (SG8): (i) If the black vertex v is not in B, then Set D3IS(G) =

D3IS(G) ∪ {v, w1} and B = B ∪ {v, w1} ∪ D1({v, w1}) ∪ D2({v, w1}).
(ii) If the black vertex v is in B, then D3IS(G) = D3IS(G) ∪ {w, v1}
and B = B∪{w, v1}∪D1({w, v1})∪D2({w, v1}). Set F = D1(B∪C) \B
and goto Step 2.

Phase 2. If B , V , then F = D1(B) \ B repeat the following Step 3. Otherwise,
goto Termination.

Step 3. Select one candidate vertex v f from F such that |{v f }∪D1(v f )∪D2(v f )\B |
is minimum among all vertices in F.

Case 3-1: If |({v f } ∪ D1(v f ) ∪ D2(v f ) \ B | ≤ 7, then set D3IS(G) =

D3IS(G) ∪ {v f } and B = B ∪ {v f } ∪ D1({v f }) ∪ D2({v f }). Goto
Phase 2.

Case 3-2: /* Reselect a new candidate vertex from unremoved neighbors of
set B at some time */
(i) If |({v f } ∪ D1(v f ) ∪ D2(v f ) \ B | = 8 and |D1(D2(v f ) \ B) ∩ B | = 1,
then T1

B = D1(B) ∩ (D2(v f ) \ B) and TB = D1(D2(v f ) \ B) ∩ B, and
furthermore, if D1(D1(TB)∩ (D2(v f )\B))∩ (D1(T1

B)∩ (D2(v f )\B)) ,
ϕ, then select one new candidate vertex v f from T1

B, and then go to Case
3-3. (ii) If |({v f } ∪D1(v f )∪D2(v f ) \ B | = 8, |D1(D2(v f ) \ B)∩ B | ≥ 2
and there are two vertices in D1(D2(v f ) \ B) ∩ B such that each vertex
of these two vertices in D1(D2(v f ) \B)∩B is connected to two vertices
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in D2(v f ) \ B, then D+2 = D2(v f ) \ B and select one new candidate
vertex from D1(B) ∩ D+2 , and then go to Case 3-3.

Case 3-3: If |({v f } ∪ D1(v f ) ∪ D2(v f ) \ B | ≥ 8 and at most one vertex
in D2(v f ) \ B is adjacent to vertices in B ∪ D2(v f ), then D3IS(G) =

D3IS(G)∪{v f } and B = B∪{v f }∪D1({v f })∪D2({v f }). Goto Phase 2.

Case 3-4: If |{v f } ∪ D1(v f ) ∪ D2(v f ) \ B | ≥ 8 and at least two vertices in
D2(v f ) \ B are adjacent to vertices in B ∪ D2(v f ), then select one, say,
u, of two vertices in D1(v f ) such that |{u} ∪ D1(u) ∪ D2(u) \ B | is
minimum. Goto Phase 2.

Case 3-5: If |{v f }∪D1(v f )∪D2(v f )\B | ≥ 8 and |{u}∪D1(u)∪D2(u)\B | =
|{w} ∪ D1(w) ∪ D2(w) \ B | = 7 for u, w ∈ D1(v f ) and u is in a cycle
⟨u, u1, u2⟩, then set D3IS(G) = D3IS(G) ∪ {u} and B = B ∪ {u} ∪
D1({u}) ∪ D2({u}). Goto Phase 2.

Termination. Terminate and output D3IS(G) as a solution.
[End of ALG]

Approximation ratio. The algorithm ALG always outputs a feasible solution since
ALG eliminates all vertices in {s} ∪ D1(s) ∪ D2(s) from the solution candidates if s
is in the solution. In this section, we will investigate the approximation ratio of ALG.
We first give notation used in the following. Suppose that given a graph G, ALG
outputs ALG(G) = D3IS(G) = {s1, s2, · · · , sℓ }. Also, without loss of generality,
suppose that ALG selects those ℓ vertices into D3IS(G), one by one in the order,
i.e., first s1, next s2, and so on. We say a vertex as a first candidate vertex, which is
picked up from neighbors of the set B before a solution vertex is selected. Let vi
denote the first candidate vertex when the ith vertex si is selected into D3IS(G),
and it is called the ith first candidate. Also, we call si the ith solution vertex. Note
that if Case 3-2 of ALG was executed, then the previous first candidate vertex of the
set D1(B) \ B, say v f , is changed to anther vertex, say v ′f , which is also in the set
D1(B) \ B, and then we say that the ith first candidate is changed to the vertex v ′f ,
and in other words, vi = v f is modified to vi = v

′
f , and the vertex v f is not a first

candidate vertex, otherwise v f is a first candidate vertex vi.
For a vertex v , let B(v ) = {v } ∪ D1(v ) ∪ D2(v ) be a set of vertices such that

distG (u, v ) ≤ 2 for any u ∈ B(v ). We say that a block is a set of vertices. Especially,
for the ith solution vertex si in ALG(G) (i = 1, · · · , ℓ), we call B(si) the ith solution
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Figure 3.11: Blocks, and near/far boundary vertices

block. Let B−(si) = B(si) ∩ (
∪i−1

j=1 B(s j )) and B+(si) = B(si) \ (
∪i−1

j=1 B(s j )),
and we call B−(si) and B+(si) the ith old solution block and the ith new solution
block, respectively. Let D+1 (si) = D1(si) ∩ B+(si) and D+2 (si) = D2(si) ∩ B+(si).
Consider the time when the ith solution si is selected and

∪i
j=1 B(s j ) are removed

fromV . Then, we define the set of boundary vertices in the block B(si) (= B−(si)∪
B+(si)) by BV (si) = D1(V \ (

∪i
j=1 B(s j ))) ∩ B+(si) for each i (1 ≤ i ≤ ℓ − 1).

Let BV (ALG) =
∪ℓ−1

i=1 BV (si) be the set of all the boundary vertices, and a
vertex in BV (ALG) is a boundary vertex. Also, we define the near boundary
vertices from si by BVnear (si) = (D1(si) ∪ D2(si)) ∩ (

∪i−1
j=1 BV (s j )). Note that

BVnear (si) is not in B+(si). Let B∗(si) = B+(si) ∪ BVnear (si). Moreover, let
BVnear (ALG) =

∪ℓ−1
i=1 BVnear (si) and BVf ar = BV (ALG) \ BVnear (ALG) be the

sets of all the near boundary and all the far boundary vertices, respectively.
For example, take a look at figure 3.11, which illustrates the first i − 1 blocks∪i−1

j=1 B(s j ), the ith block B(si) = B−(si) ∪ B+(si), the (i + 1)st block B(si+1),
and the remaining new blocks

∪ℓ
j=i+2 B

+(s j ). The five vertices b1 through b5 are
the boundary vertices in

∪i−1
j=1 B(s j ), i.e.,

∪i−1
j=1 BV (s j ) = {b1, b2, b3, b4, b5} since

those five vertices are connected to vertices in V \ (∪i−1
j=1 B(s j )). Also, the vertex

b6 is the boundary vertex in B(si) since there is at least one edge between b6 and
a vertex in

∪ℓ
j=i+2 B

+(s j ). The three vertices b2, b4, and b5 are the near boundary
vertices since distG (si, b2) ≤ 2, distG (si+1, b4) ≤ 2, and distG (si+1, b5) ≤ 2 hold.
Furthermore, three vertices b2, b4, and b5 are in set BVnear (si) ∪ BVnear (si+1).
The vertex b1 is a far boundary vertex since distG (si, b1) ≥ 3 holds (in other words,
“b1 is far from all the new blocks”).

Next, consider ℓ integers, δ1 through δℓ , which are associated with ℓ new
solution blocks, B+(s1) through B+(sℓ ), and initially set δ1 = · · · = δℓ = 0. Recall
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that each far boundary vertex bv in BVf ar ∩ B(si) must be connected to one or two
vertices not in B(si). Suppose that the far boundary vertex bv is connected to two
vertices in B+(s j ). Then, we set δ j = 1. Suppose that the far boundary vertex bv

is connected to two vertices, one in B+(s j ) and one in B+(sk ) for j , k. Then, if
j > k, then we set δ j = 1; otherwise, δk = 1. Therefore,

∑ℓ
i=1 δi = |BVf ar | holds.

Now see figure 3.11 again. Suppose that b1 and b3 are far boundary vertices. Since
the ith new block B+(si) is connected to two far boundary vertices b1 and b3, we
set δi = 2.

Lemma 4. For a first candidate vi, where 2 ≤ i ≤ ℓ, we can observe that |B+(vi) | ≤
8 holds. Then, Suppose that the ith solution vertex si is selected in Phase 2 of
ALG, and si is not the first candidate vi. Also, suppose that |B+(vi) | = 8. Then,
|B+(si) | ≤ 7 holds, and furthermore, if |B+(si) | = 7 occurs, then si must be in a
cycle of length at most three.

Figure 3.12: B(vi) \
∪i−1

j=1 B(s j )

Proof. See figure 3.12. For ease of exposition, take a look at a graph consisting
of vertices in B+(vi) = {vi, w1, w2, u1, u2, u3, u4, u5}. The algorithm implies that
si is a selected vertex of set {w1, w2} into the solution. Now suppose that all
special subgraphs have been already processed in Phase 1 of ALG. Then, from the
assumption that si is not vi and Phase 2 of ALG is executed, at least two vertices,
say, ui1 and ui2 , in {u1, u2, u3, u4, u5} are only adjacent to vertices in

∪i−1
j=1 B(s j ) ∪

{u1, u2, u3, u4, u5}. Without loss of generality, we only need to consider the following
three cases on the edge {ui1, ui2 }: Case (1) {ui1, ui2 } = {u1, u2}, Case (2) {ui1, ui2 } =
{u2, u3}, and Case (3) {ui1, ui2 } = {u3, u4}. For example, {ui1, ui2 } = {u2, u5} is
essentially the same as (3).

See case (1). Now suppose that u1 and u2 are only adjacent to vertices in∪i−1
j=1 B(s j ) ∪ {u1, u2, u3, u4, u5}. Note that the following arguments can be applied

for the cases where {u1, u3}, {u1, u4}, and {u1, u5}. If u1 is connected to a vertex in
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∪i−1
j=1 B(s j ), thenu1 has two neighbors in

∪i−1
j=1 B(s j ) and then |B+(vi) | ≤ |B+(u1) ≤

6, which is a contradiction. Therefore, we can assume that u1 is connected to two
vertices in the set {u2, u3, u4, u5}. (1-1) Suppose that u1 is connected to u2 and u3
(a pair of u4 and u5 is essentially equivalent). Then, it holds |B+(u1) | ≤ 7, which
is a contradiction again. Moreover, the remaining cases (except for the essentially
equivalent ones) contain that u1 is connected to either (1-2) u3 and u4, or (1-3) u2
and u4. (1-2) Suppose that u1 is connected to u3 and u4. If u2 is connected to
two vertices in the set

∪i−1
j=1 B(s j ), then we can verify |B+(u2) ≤ 6, which is also

contradictory. Thus, u2 is connected to at least one vertex of the set {u3, u4, u5}.
Then, if u2 is connected to u3, then ALG should select w1 into D3IS(G) and w1 is in
a cycle ⟨w1, u2, u3⟩ of length three. If u2 is connected to u4 or u5, then the graph is
equivalent to SG7 or SG1, contradiction. (1-3) Suppose that u1 is connected to u2
and u4. If u2 is connected to a vertex in

∪i−1
j=1 B(s j ), then |B+(vi) | ≤ |B+(u2) | ≤ 7

holds, which is a contradiction. Then, u2 is connected to one vertex of the set
{u3, u4, u5}. If u2 is connected to u3 and ALG selects w1 as a solution vertex, then
w1 is in a cycle ⟨w1, u2, u3⟩ of length three. If |B+(w2) | < |B+(w1) | ≤ 7, then ALG
might select w2. One can verify that w2 must be again in a cycle ⟨w2, u4, u5⟩ of
length three when si = w2 and |B+(w2) | = 7. The case, where u2 is connected to
u4, is also a contradiction since |B+(u1) | ≤ 6. Finally, if u2 is connected to u5, then
the graph is again equivalent to SG7 or SG1, contradiction.

Consider case (2). Next suppose that u2 and u3 are only adjacent to vertices
in

∪i−1
j=1 B(s j ) ∪ {u1, u2, u3, u4, u5}. First, if u1 is connected to two vertices in

{u2, u3, u4, u5}, then u1 and u2 are adjacent to vertices in
∪i−1

j=1 B(s j ) ∪ D2(vi), and
the case has been discussed in the previous Case (1). Thus, we can only consider
cases, where u1 is connected to at most one vertex of the set {u2, u3, u4, u5}. Then,
except equivalent cases, all cases contain: (2-1) u1 is connected to u2, and u1 is
connected to neither u3, u4, nor u5(which the following analyses can be applied for
the case that u1 is connected to u3, and u1 is connected to neither u2, u4 nor u5.),
and (2-2) u1 is connected to neither u2 nor u3.

(2-1) Suppose that distG (u1, u2) = 1, distG (u1, u3) ≥ 2, distG (u1, u4) ≥ 2, and
distG (u1, u5) ≥ 2. Since u2 is only connected to vertices in

∪i−1
j=1 B(s j ) ∪ D2(vi),

this case is further divided to three cases: (i) distG (u2, u3) = 1 is satisfied. Then,
ALG should select w1 since |{w1}∪D1(w1)∪D2(w1)\(

∪i−1
j=1 B(s j )) | ≤ 7, or select w2

if |B+(w2) | ≤ 6, and w1 is in a cycle of length three. (ii) distG (u2, u4) = 1 occurs.
If u3 is connected to u4 and u5, then the graph is equivalent to SG2, contradiction.
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If u3 is connected to a vertex in
∪i−1

j=1 B(s j ) and u4 (u5, resp.), then u3 must be
the first candidate (the graph is equivalent to SG2 or SG3, resp.), contradiction.
(iii) distG (u2, u5) = 1 holds. If u3 is connected to both u4, then the graph contain
SG2 or SG3. Then, u3 is only connected to vertices in {u5} ∪

∪i−1
j=1 B(s j ), and

furthermore, if u3 is only connected to two vertices in
∪i−1

j=1 B(s j ), then |B+(vi) | ≤
|B+(u3) | ≤ 6 occurs, which is contradictory. Then, u3 must be connected to u5 and
one vertex in

∪i−1
j=1 B(s j ), and we can count |B+(vi) | ≤ |B+(u3) | = 7, contradiction.

(iv) u2 is connected to one vertex in
∪i−1

j=1 B(s j ), and then |B+(u2) | = 7 holds, which
implies |B+(vi) | ≤ |B+(u2) | = 7, contradiction.

(2-2) Suppose that u1 is not connected to any vertex in {u2, u3}. Then, it occurs
distG (u2, u1) ≥ 2 and distG (u3, u1) ≥ 2, and since u2 or u3 is not connected to
two vertices in

∪i−1
j=1 B(s j ), and thus, u2 must be connected to one vertex of the set

{u3, u4, u5}, and u3 must be connected to one vertex of the set {u2, u4, u5}. Concen-
tration on the vertex u2, the cases of (i) distG (u2, u3) = 1 and (ii) distG (u2, u3) , 1
and distG (u2, u4) = 1(equivalently, distG (u2, u5) = 1) are need to be considered.
(i) Suppose distG (u2, u3) = 1. First, we can verify |B+(si) | ≤ |B+(w1) | ≤ 7 and
w1 is in a cycle of length three. Then, if si = w1 occurs, then si is in a cycle of
length three. If |B+(si) | = 7 and si = w2 hold, then one can verify that w2 is also
in a cycle of length three. (ii) Suppose distG (u2, u3) , 1 and distG (u2, u4) = 1.
Recall that u3 must be connected to one vertex of the set {u2, u4, u5}, u3 must be
connected to one in {u4, u5}. If distG (u3, u5) = 1 holds, then the block B+(vi)

contains a subgraph of SG2 or SG3, contradiction. Thus, u3 must be connected to
u4. Recall that u3 is not connected to u1, u2 or u5, and thus, u3 must be connected to
one vertex in

∪i−1
j=1 B(s j ), and can find |B+(u3) | ≤ 7, and algorithm should select a

vertex vi, and |B+(vi) | ≤ |B+(u3) | ≤ 7 holds, which is contradictory.
See case (3). Finally, suppose that u3 and u4 are adjacent to vertices in∪i−1

j=1 B(s j ) ∪ {u1, u2, u3, u4, u5}. Since all cases, where u1 is connected to two
vertices in {u2, u3, u4, u5}, has been discussed in case (1). Thus, can further suppose
that u1 can be connected to at most one vertex in {u3, u4}, we consider the following
two cases: (3-1) u1 is connected to one vertex in {u3, u4}, and (3-2) u1 is not
connected to any in {u3, u4}.

(3-1) Suppose that u1 is connected to u3, and it is equivalent with another
assumption, which u1 is connected to u4. If u1 is connected to u3, then u1 is not
connected to u4, and u3 can be connected to one vertex in {u2, u4, u5} or one vertex in∪i−1

j=1 B(s j ). (i) If distG (u3, u2) = 1, then we can verify |B+(si) | ≤ |B+(w1) | ≤ 7,
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and w1 is in a cycle of length three, and thus, if |B+(si) | = 7 holds, then the operation
of this algorithm implies that si must be in a cycle of length three. (ii) Consider
the case distG (u3, u4) = 1. Moreover, u4 is connected to u2, u5 or one vertex in∪i−1

j=1 B(s j ). If u4 is connected to u2, then B+(vi) contain the subgraph of SG8. If
u4 is connected to u5, then |B+(si) | ≤ |B+(w2) | ≤ 7 holds and w2 is in a cycle of
length three. When |B+(si) | = 7 occurs, this algorithm should select si, which is
in a cycle of length three. If u4 is connected to one vertex b in

∪i−1
j=1 B(s j ), then for

distG (v1, b) ≤ 2, we should verify |B+(vi) | ≤ |B+(v1) | ≤ 7, which is contradictory.
Thus, distG (v1, b) = 3, and then Case 3-2(i) of this algorithm should be executed,
and then, v1 is picked up as a new first candidate vertex substituting the previous first
candidate vertex vi, i.e., the vertex vi in the figure 3.12 is not a first candidate vertex,
and then, v1 is the first candidate vertex vi, and since |B+(vi) | = |B+(v1) | = 8, we
can obviously find that at least four vertices in D+2 (v1) is connected to

∪ℓ
j=i+1 B

+(s j )

and si = vi occurs, i.e., this algorithm selects the first candidate vertex as a solution
vertex si. (iii) Suppose that distG (u3, u5) = 1. Then, we only need to consider two
cases, that is, (iii-1) u4 is connected to both u2 and u5, or (iii-2) u4 is connected
to one in {u2, u5} and another in

∪i−1
j=1 B(s j ). (iii-1) If u4 is connected to both u2

and u5, then the graph is SG2 or SG3, contradiction. (iii-2) If u4 is connected to
u2 and one vertex in

∪i−1
j=1 B(s j ), then the graph is equivalent to SG2 or SG3, again

contradiction. If u4 is connected to u5 and one vertex in
∪i−1

j=1 B(s j ), then we can
verify |B+(u4) | ≤ 7, and ALG should choose the vertex vi as a first candidate vertex
such that |B+(vi) | ≤ |B+(u4) | ≤ 7, contradiction.

(3-2) Suppose that u1 is not connected to any in {u3, u4}. Obviously, each
vertex of the set D+2 (vi) is connected to at most one vertex in

∪i−1
j=1 B(s j ). Thus, u3

and u4 must be connected to one vertex in {u2, u3, u4, u5}. (i) If distG (u2, u3) = 1
(distG (u4, u5) = 1, resp.), then w1 (w4, resp.) is selected and it is in a cycle of length
three. Therefore,|B+(w1) | ≤ 7 (|B+(w2) | ≤ 7, resp.) holds. Then, it implies that
if |B+(si) | = 7 is satisfied, then si is in a cycle of length three. Then, (ii) suppose
that distG (u2, u3) ≥ 2 and distG (u4, u5) ≥ 2. Then, there are two cases: (ii-1) u3
is connected to u4 and u5, and (ii-2) u3 is connected to one vertex in {u4, u5} and
another vertex in

∪i−1
j=1 B(s j ). (ii-1) If u3 is connected to both u4 and u5, then u4 can

be connected to u2 or one vertex in
∪i−1

j=1 B(s j ). If distG (u4, u2) = 1, then the graph
is equivalent to SG2 or SG3, or if u4 is connected to one vertex in

∪i−1
j=1 B(s j ),

and then, |B+(vi) | ≤ |B+(u4) | ≤ 7 holds, contradiction. (ii-2) Suppose that u3
is connected to one vertex in {u4, u5} and another vertex in

∪i−1
j=1 B(s j ). Then, if
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distG (u3, u4) = 1 and another vertex in
∪i−1

j=1 B(s j ), then ALG selects u3 as the first
candidate vertex since |B+(u3) | ≤ 7. If distG (u3, u5) = 1 and another vertex in∪i−1

j=1 B(s j ), then recall that distG (u4, u5) ≥ 2, distG (u4, u1) ≥ 2 and u4 must be
connected to one vertex in {u2, u3, u4, u5}, and then, u4 must be connected to u2 and
thus the block B+(vi) contain a subgraph SG2 or SG3, which is a contradiction.
This completes the proof of this lemma. □

Lemma 5. Suppose that si (2 ≤ i ≤ ℓ) is selected into D3IS(G) in Phase 2 of
ALG. Then, |B∗(si) | ≤ 9 holds.

Proof. (1) First, suppose that si is identical to vi, which is the first candidate. Then,
distG (si, s j ) ≥ 3 holds for 1 ≤ j < i, i.e., there must exist the path, say, ⟨s j, u, v, si⟩
of length three. One can see that v is a boundary vertex in B(s j ), but u is not. Since
|B(si) | ≤ 10, we obtain |B∗(si) | ≤ 10 − 1 = 9. (2) Then, suppose that si is not
identical to vi. (2-1) If |B+(si) | = 7, then from Lemma 4, we can know that si is in a
cycle of length three, and |{si }∪D1(si)∪D2(si) | ≤ 8 . Therefore, it holds |B∗(si) | ≤
|B(si) | ≤ 8. (2-2) Next assume that |B+(si) | ≤ 6. Since si is not identical to vi,
|B+(vi) | = 8 holds, and si is in D+1 (vi), and we can verify that no vertex in D1(si)

are in
∪i−1

j=1 B(s j ), and |D1(si) | = |D+1 (si) | = 3. If a vertex u in D1(si) is connected
to at least two vertices in

∪i−1
j=1 B(s j ), then one can verify |B+(vi) | ≤ |B+(u) | ≤ 6,

and then, si is identical to vi, contradiction. Thus, each vertex of the set D1(si)

is connected to at most one vertex in
∪i−1

j=1 B(s j ), and |B(si) ∩
∪i−1

j=1 B(s j ) | ≤ 3.
Then, we further obtain |B(si) | = |B+(si) | + |B(si) ∩

∪i−1
j=1 B(s j ) | ≤ 6 + 3. Thus,

obtain |B∗(si) | ≤ |B(si) | ≤ 9.This completes the proof of this lemma. □

Lemma 6. Suppose that given a graphG = (V (G), E(G)), onlyPhase 1 is executed
in ALG. Then, |V (G) |/|ALG(G) | ≤ 7.5 is satisfied.

Proof. (1) Suppose that ALG finds SG1 in figure 3.10(a). Note that in this step, only
SG1 is verified and processed. If ALG selects one vertex u1 and the vertex v into
D3IS(G), and eliminates at most 12 vertices in {{v, u1}∪D1({v, u1})∪D2({v, u1})}.
Then, if algorithm ALG only selects u1, which is not connected to v1, into D3IS,
and then v is in the set B. We find that if three subgraphs SG1 are connected
to one same neighbor vertex of the vertex v of each subgraph SG1, then ALG
verifies these three subgraph SG1 successively, and algorithm ALG must select
an optimal solution, and thus, without loss of generality, consider that at most
two subgraphs SG1 are connected to one same neighbor vertex of the vertex v
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of each subgraph SG1, which one subgraph generates two solution vertices v ′

and u′1 into D3IS, and another subgraph generate a solution vertex u1 into D3IS.
Furthermore, if we can regard such two subgraphs as an unit, and then for the unit,
since |{u1, v ′, u′1} ∪ D1({u1, v ′, u′1}) ∪ D2({u1, v ′, u′1}) | ≤ 8 + 12 < 21, we can know
that after selecting three solution vertices u1, v ′ and u′1, 21 vertices are removed into
the set B. That is, we can averagely select one vertex among seven ones. On the
average, we can select one vertex among seven vertices for all subgraphs SG1.

(2) Suppose thatALGfinds SG2 as labeled in figure 3.10(b). (i) If distG (u1, w2) =

distG (u2, w1) = 3, then ALG selects u2 and w1 into D3IS(G) and eliminates vertices
in {u2, w1} ∪ D1({u2, w1}) ∪ D2({u2, w1}). Note that u2 (and w1) has one neigh-
bor not in V (SG2), which has at most two neighbors. Furthermore, v may be in
D2({u2, w1}). Therefore, |{u2, w1} ∪D1{u2, w1} ∪D2{u2, w1}| ≤ |V (SG2) | + 7 = 15
holds. That is, we can select two vertices among 15 ones; on the average, one
among 7.5. (ii) If (distG (u1, w2), distG (u2, w1)) (or (distG (u2, w1), distG (u1, w2)))
= (1, 3), then ALG selects u2 and w1 (or u1 and w2) into D3IS(G). Simi-
larly, |{u2, w1} ∪ D1{u2, w1} ∪ D2{u2, w1}| ≤ |V (SG2) | + 7 = 15 holds. (iii) If
distG (u1, w2) = distG (u2, w1) = 1, then ALG selects one arbitrary vertex in
{u1, u2, w1, w2} into D3IS(G). Let u1 be selected. Then, |{u1}∩D1(u1)∪D2(u1) | =
7.

(3) For SG3 in figure 3.10(c), ALG selects v f and v ′f , and |B+(v f )∪B+(v ′f ) | ≤ 14
since v ′f has further one neighbor, which has two neighbors. That is, ALG finds one
solution vertex among seven vertices on the average.

(4) For SG4 in figure 3.10(d), ALG selects w, u2 into D3IS(G) and |{w, u2} ∪
D1(w, u2) ∪ D2(w, u2) | ≤ 14. That is, ALG finds one solution vertex among at most
7 vertices on the average.

(5) For SG5 in figure 3.10(f), ALG selects u, w1 into D3IS(G), and |{u, w1} ∪
D1(u, w1) ∪ D1(u, w1) | ≤ 7+ 8 ≤ 15. ALG finds one solution vertex among at most
7.5 vertices on the average.

(6) For SG6 in figure 3.10(e),ALG selects w1 into D3IS(G), and |{w1} ∪
D1({w1}) ∪ D2({w1}) \ B | ≤ | |{w1} ∪ D1({w1}) ∪ D2({w1}) | ≤ 7. As above
shown, ALG finds one solution vertex among at most 7 vertices on the average.

(7) See again SG7 in figure 3.10(g). (i) IfdistG (u1, w1) = 1 and distG (u1, w2) ≥
2, then D3IS(G) ∪ {w2, u} and |{u, w2} ∪ D1({u, w2}) ∪ D2({u, w2}) | < 15. (ii) If
distG (u1, w2) = 1 and distG (u2, w1) ≥ 2, then D3IS(G) ∪ {w, u2} and |{w, u2} ∪
D1({w, u2})∪D2({w, u2}) | < 15. (iii) If distG (u2, w1) = 1 and then distG (u1, w2) ≥
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2, then D3IS(G)∪{w2, u} and |{w2, u}∪D1({w2, u})∪D2({w2, u}) | < 15. (iv) There
are no three edges, {u1, w1}, {u1, w2}, and {u2, w1}, then D3IS(G) ∪ {w2, u} and
|{w2, u}∪D1({w2, u})∪D2({w2, u}) | ≤ 15. As above shown, ALG finds one solution
vertex among at most 7.5 vertices on the average.

(8) Consider SG8 in figure 3.10(h). If the black vertex v is not in B, then ALG
selects v and w1 into D3IS(G), and |{v, w1} ∪ D1({v, w1}) ∪ D2({v, w1}) | ≤ 13. If
v is in B, then ALG selects w and v1 into D3IS(G), and |{w, v1} ∪ D1({w, v1}) ∪
D2({w, v1}) \ B | ≤ 13. That is, ALG finds one solution vertex among at most 7.5
vertices on the average.

As a result, ALG selects one solution vertex among at most 7.5 vertices on the
average. □

Now observe a block B+(si), and then, we can find that any far boundary vertex
can be connected to at least one vertex in D+2 (si) or at most two vertices of D+2 (si).
Here, we give two kinds for boundary vertices. For a boundary vertex, if it is
connected to two vertices in D+2 (si), then we define this boundary vertex be a far-2
boundary vertex, else say this boundary vertex be a far-1 boundary vertex. For a
block B+(si), any far boundary vertex, where is connected to the block B+(si), is
in set

∪i−1
j=1 B(s j ). Then, we can obtain observed results for boundary vertices as

follows:

Observation 1. All neighbors except vertices of D+2 (si) of any far boundary vertex
containing itself are in

∪i−1
j=1 B(s j ).

Observation 2. Each boundary vertex in
∪i−1

j=1 B(s j ) is connected to at least one
vertex in

∪i−1
j=1 B(s j ).

Observation 3. If a vertex u in the set D+2 (si) is connected two boundary vertices
of

∪i−1
j=1 B(s j ), then |B+(si) | ≤ |B+(v ) | ≤ 6 holds. If a vertex u in the set D+2 (si)

is connected three boundary vertices in
∪i−1

j=1 B(s j ), then |B+(si) | ≤ |B+(v ) | ≤ 4.
We can observe this result since Observation 2.

Observation 4. If two far-1 boundary vertices bv ′ and bv ′1 are intersected to one
same vertex u in D+2 (si), then |B+(si) | ≤ |B+(u) | ≤ 4 holds since Observation 1.

Observation 5. If a far-1 boundary vertex bv ′ and a far-2 boundary vertex bv ′′ are
intersected at one same vertex u in D+2 (si), then |B+(si) | ≤ |B+(u) | ≤ 5 holds since
Observation 1.
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Observation 6. If one far-2 boundary vertex is intersected with one far-2 boundary
vertex at only one vertex u in D+2 (si), then we can find |B+(si) | ≤ |B+(u) | ≤ 6. We
can observe this result since Observation 3.

Observation 7. If one far-2 boundary vertex is intersected with another far-2
boundary vertex at both vertices u1, u2 in the set D+2 (si), then we can verify
|B+(si) | ≤ |B+(u) | ≤ 5, where u ∈ {u1, u2}. We can observe this result since
Observation 1.

Observation 8. If one far-1 boundary vertex bv ′ in D+2 (si) is connected to one
vertex u in D+2 (si) and moreover, this vertex u is connected to one other boundary
vertex in

∪i−1
j=1 B(s j ) except the vertex bv

′, thenwe can find |B+(si) | ≤ |B+(u) | ≤ 5.
We can observe this result since 1 and 2.

Above observations are some important keys to discuss the lower bound value
of |BV (si) | − δi. Obviously, |B+(si) | ≤ 8 for 2 ≤ i ≤ ℓ holds, and then we analyse
each lower bound value of |BV (si) | − δi when |B+(si) | = 8, 7, 6, 5 or |B+(si) | ≤ 4
holds.

Lemma 7. If δi = 0, i.e., no far boundary vertex is connected to this block B+(si),
then we can obtain |BV (si) | − δi ≥ 4 for |B+(si) | = 8, and |BV (si) | − δi ≥ 0 for
|B+(si) | = 7, 6, 5 or |B+(si) | ≤ 4.

Proof. If |B+(si) | = 8 holds, then this algorithm implies that four vertices in D+2 (si)
are connected to vertices in

∪ℓ
j=i+1 B

+(s j ), and |BV (si) | ≥ 4. δi = 0 holds and
thus, we can know |BV (si) | − δi ≥ 4 for |B+(si) | = 8. If |B+(si) | ≤ 7 holds, then
δi = 0 holds and |BV (si) | − δi = |BV (si) | ≥ 0 is known, obviously. This lemma
is proved. □

Then, for the convenience of discussion, without loss of generality, we first
consider a block, and at least one far-1 boundary vertex must be connected to this
block from Lemma 4 to Lemma 11, and then discuss other blocks of the remaining
case, where no far-1 boundary vertex and only some far-2 boundary vertices are
connected to the block in Lemma 13.

From previous Lemma 4, we know that if |B+(si) | = 8 holds for 2 ≤ i ≤ ℓ,
and thus, suppose that si is always identical to vi for the case, where |B+(si) | = 8
occurs. Note that vi is a first candidate vertex in this block B+(si). Then, we can
obtain the following lemma:
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Lemma 8. Suppose that |B+(vi) | = 8 for 2 ≤ i ≤ ℓ and vi is selected into D3IS(G)

in Phase 2 of ALG, i.e., si = vi. Then, this block B+(si) is not connected to any
far-1 vertex. That is, if a far-1 boundary vertex is connected to a vertex of D+2 (si),
then |B+(vi) | ≤ 7 holds.

Proof. Suppose a far-1 boundary vertex bv ′ is connected one vertex, say u, in
D+2 (si), and then since Observation 1, can know |B+(u) | ≤ 7 holds, which implies
that for the first candidate vi in B+(si), |B+(vi) | ≤ |B+(u) | ≤ 7, which implies that
the algorithm should select the first candidate vertex vi into this solution. Thus, if
a far-1 boundary vertex is connected to this block B+(si), then |B+(si) | ≤ 7 holds.
Hence, this completes the proof of this lemma. □

Lemma 9. Suppose that si ∈ D3IS(G) is selected in Phase 2 of ALG. Then, if
|B+(si) | = 7, then it always holds δi ≤ |BV (si) |, i.e., |BV (si) | − δi ≥ 0.

Proof. Obviously, any case contains either si = vi or si , vi. Since this block
is connected to at least far-1 boundary vertex and by Observation 1, implies that
there is one vertex u in D+2 (si) such that |B+(u) | ≤ 7 holds, where u is connected
to a far-1 boundary vertex. Thus, |B+(si) | ≤ |B+(vi) | ≤ |B+(u) | ≤ 7 holds, and
algorithm should select the first candidate vertex vi. Thus, si = vi always occurs.
By observation, we can find that at least two vertices in BV (vi) are in

∪i−1
j=1 B(s j ),

and then, get |B+(vi) | = 7 ≤ |BV (vi) | − 2, and furthermore, |B(vi) | ≥ 9 holds,
which it implies that vi is not in any cycle of length three and is in at most one
cycle of length four. Thus, there are only three cases, which can be illustrated in
figure 3.13, where si = vi must hold. When vi is not in a cycle of length four, case
(1) and case (2) are illustrated in figure 3.13(a) and figure 3.13(b), respectively.
When vi is in a cycle of length four, the case (3) is shown in figure 3.13(c).

(a) Case 1 (b) Case 2 (c) Case 3

Figure 3.13: Three cases in the proof of Lemma 9.
For case (1), see figure 3.13(a), which a block B+(vi) contains a set {vi, u, w, v, u1, u2, w1}

of vertices. From Observation 3, we take note that v is connected to at most one
boundary vertex in

∪i−1
j=1 B(s j ), and then, any far-1 and any far-2 boundary vertex
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are not connected to v since Observation 3. Moreover, if a far-1 is connected to
w1, then from Observation 1, we can verify |B+(si) | ≤ |B+(w1) | ≤ 6, contra-
diction. Thus, w1 is not connected to any far-1 boundary vertex. Furthermore,
any far-1 boundary vertex is connected to u1 or u2. Without loss of generality,
we can suppose that a far-1 boundary vertex, say bv ′, is connected to u1, which
is equivalent to distG (bv ′, u2). Then, the block can be connected to some far-2
boundary vertices except far-1 boundary vertices, and thus, only two cases are
further generated, that is, (i) some far-2 boundary vertices are connected to the
block, or (ii) no far-2 boundary vertex is connected to the block. See (i). Recall
that any far-1 and any far-2 boundary vertex are not connected to the vertex v , and
from Observation 3, we know that u1 is not connected to any other boundary vertex
in

∪i−1
j=1 B(s j ) except bv

′. Then, any far-2 boundary vertex is connected to both
vertices u2 and w1, and furthermore, any vertex of the set {u2, w1} is connected to
at most one boundary vertex in

∪i−1
j=1 B(s j ) since Observation 3, and thus, except

the far-1 boundary vertex bv ′, at most one far-2 boundary vertex is connected to
both vertices u2 and w1, and say this far-2 boundary vertex be bv ′′. Then, δi ≤ 2
holds. We find that if |BV (si) | − δi < 0 holds, then implies that at least one vertex
p of the set {u1, u2, w1} is not in BV (si), and recall that each vertex of the set
{u1, u2, w1} is connected to at most one boundary vertex in

∪i−1
j=1 B(s j ), and then,

the vertex p is connected to one vertex except itself of the set {v, u1, u2, w1}. If
distG (u1, v ) = 1, distG (u1, u2) = 1 or distG (u1, w1) = 1 holds, then we can verify
|B+(si) | ≤ |B+(u1) | ≤ 6 since Observation 1, contradiction. Thus, it must be
distG (u1, v ) ≥ 2, distG (u1, u2) ≥ 2 and distG (u1, w1) ≥ 2, and then the vertex p is
not denoted to the vertex u1, and it must be p ∈ {u2, w1}. Then, if p = w1 holds,
then w1 is connected to one vertex of the set {v, u1, u2}, and then since Observa-
tion 1, we can always verify |B+(si) | ≤ |B+(w1) | ≤ 6, contradiction. Thus, it must
be p = u2, and then u2 is connected to one vertex of the set {v, u1, w1}, and we
find that if it holds distG (u2, u1) = 1 or distG (u2, w1) = 1, then since Observa-
tion 1, it holds |B+(si) | ≤ |B+(u2) | ≤ 6, contradiction. Thus, distG (u2, u1) ≥ 2
and distG (u2, w1) ≥ 2 hold. Then, it must be distG (u2, v ) = 1, and then, since
SG7 does not appear and recall distG (v, u1) ≥ 2 holds, distG (v, w1) ≥ 2 holds.
Moreover, recall distG (w1, u1) ≥ 2, and furthermore, Observation 3 shows that v
or w1 is connected to at most one boundary vertex in

∪i−1
j=1 B(s j ), and then, two

vertices v and w1 are connected to vertices in
∪ℓ

j=i+1 B
+(s j ), i.e., v ∈ BV (si)

and w1 ∈ BV (si). Then, it holds |BV (si) | ≥ 2. Recall δi ≤ 2 holds, and then
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the previous assumption of |BV (si) | − δi < 0 does not hold and this lemma is
hold in the case (i). Then, see (ii) and no far-2 boundary vertex is connected
to the block. By previous analyses, we can know that any far-1 boundary vertex
is connected to u1 or u2. Here, suppose a contradiction of |BV (si) | − δi < 0,
which implies that a vertex p of D+2 (si) is connected to a far-1 boundary vertex
and meanwhile, this vertex p is not in BV (si). Without loss of generality, we can
suppose p = u1, that is, a far-1 boundary vertex bv ′ is connected to u1(equivalently,
u2). Then, Observation 3 shows that u1 must be connected to one vertex of the
set {v, u2, w1}. If distG (u1, v ) = 1 or distG (u1, u2) = 1 holds, then it holds
|B+(si) | ≤ |B+(u1) | ≤ 6 since Observation 1, contradiction. Thus, it must be
distG (u1, w1) = 1. If distG (w1, u2) = 1 holds or w1 is connected to one boundary
vertex in ∩∪i−1

j=1 B(s j ), then one can verify |B+(si) | ≤ |B+(u1) | ≤ 6 since Ob-
servation 1, contradiction. Thus, distG (w1, u2) ≥ 2 holds and w1 is connected to
one boundary vertex in

∪i−1
j=1 B(s j ). Then, only two cases are further generated,

that is, either (ii-1) distG (w1, v ) = 1 holds or (ii-2) w1 ∈ BV (si) holds. Then, for
(ii-1) distG (w1, v ) = 1 holds, and then since SG7 does not appear, distG (v, u2) ≥ 2
holds, and then Observation 3 shows that v or u2 is connected to at most one
boundary vertex in

∪i−1
j=1 B(s j ), and thus, u2 can be connected to at most one far-1

boundary vertex and u2 ∈ BV (si), v is not connected to any far-1 boundary vertex
and it also holds v ∈ BV (si), and moreover, at most two far-1 boundary vertex
are connected to u1 and u2, respectively, and thus, δi ≤ 2 and |BV (si) | ≥ 2 hold,
and thus, the previous assumption of |BV (si) | − δi < 0 does not hold. For (ii-2),
w1 ∈ BV (si) holds, which w1 is not connected to any vertex of the set {v, u1, u2, w1}.
Recall v or w2 is connected to at most one boundary vertex in

∪i−1
j=1 B(s j ), and thus,

v is connected to vertices of the set {u2} ∪
∪ℓ

j=i+1 B
+(s j ) and at most one addi-

tion far-1 boundary vertex is connected to w2, and thus δi ≤ 2, and v must be in
BV (si), and furthermore, recall w1 ∈ BV (si) also holds, and thus |BV (si) | = 2,
and then obtain |BV (si) | − δi ≥ 0 since δi ≤ 2. Thus, the previous assumption of
|BV (si) | − δi < 0 does not hold and |BV (si) | − δi ≥ 0 is satisfied in this case (ii-2).
In the final, we can know that all cases, which can be illustrated in figure 3.13(a),
hold this lemma.

See case (2) in figure 3.13(b), which vertices in B+(si) are vi, u, w, u1, u2, w1 and
w2. Similarly, all cases contain that (i) at least one far-1 vertex and far-2 boundary
vertices are connected to this block, or (ii) no far-2 boundary vertex is connected
to this block. See (i), and then we can default that a far-1 boundary vertex, say bv ′,
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is connected to u1, which is equivalent to distG (bv ′, u2) = 1,distG (bv ′, u3) = 1
or distG (bv ′, u4) = 1. Then, u1 is not connected to any other boundary vertex
in

∪i−1
j=1 B(s j ) except bv ′, and moreover, u2, w1 or w2 is connected to at most

one boundary vertex in
∪i−1

j=1 B(s j ) since Observation 3, and thus, at most one
far-2 boundary vertex is connected to two vertices of the set {u2, w1, w2}. Thus,
suppose the far-2 boundary vertex is bv ′′, and then distG (bv ′, u1) = 1 holds,
and moreover, either (i-1) distG (bv ′′, u2) = distG (bv ′′, w1) = 1 holds, which is
equivalent to distG (bv ′′, u2) = distG (bv ′′, w2) = 1, or (i-2) distG (bv ′′, w2) =

distG (bv ′′, w1) = 1 holds. For (i-1), from Observation 3, we can know that for
the block, except the far-1 boundary vertex bv ′ and the far-2 boundary vertex bv ′′,
at most one additional far-1 boundary vertex except the far-1 vertex bv ′ is con-
nected to w2, and then 2 ≤ δi ≤ 3, and then, if |BV (si) | − δi < 0 holds, then
implies that at least two vertices p and q of the set {u1, u2, w1, w2} such that p
and q are not in BV (si), and then, it holds that for 2 ≤ δi ≤ 3, at least one
vertex, say p of the set {u1, u2, w1}, is not in BV (si), and since Observation 3,
the vertex p is connected to at most one boundary vertex in

∪i−1
j=1 B(s j ), and thus,

the vertex p is connected to one vertex except itself of the set {u1, u2, w1, w2}.
We find that if distG (w2, w1) = 1, distG (u2, w1) = 1 or distG (u2, u1) holds,
then one can verify |B+(si) | ≤ 6 since Observation 1, contradiction. Thus, it
must be distG (w2, w1) ≥ 2, distG (u2, w1) ≥ 2 and distG (u2, u1) ≥ 2. Then, if
distG (u1, w1) = 1, distG (u1, w2) = 1, distG (w2, u1) = 1 or distG (w2, u2) = 1
holds, then this block contains SG4 or SG5, contradiction. Then, it must be
distG (u1, w1) ≥ 2, distG (u1, w2) ≥ 2, distG (w2, u1) ≥ 2 and distG (w2, u2) ≥ 2.
Thus, u1, w1 or u2 is not connected to any vertex the set {u1, u2, w1, w2}. Then, such a
vertex p of the set {u1, u2, w1} dose not exist, contradiction, and thus the assumption
of |BV (si) |−δi < 0 does not occur. Hence, |BV (si) |−δi ≥ 0 for this case (i-1). For
(i-2), distG (bv ′, u1) = 1 and distG (bv ′′, w2) = distG (bv ′′, w1) = 1 holds. Here,
suppose a contradiction that |BV (si) | − δi < 0 holds again. Recall three vertices
are connected to at most two far boundary vertices, i.e., the far-1 boundary vertex
bv ′ and the far-2 boundary vertex bv ′′. If u2 is in BV (si), then |BV (si) | − δi < 0
holds, which implies that at most one vertex of the set {u1, w1, w2} is in BV (si), and
then at least two vertices of the set {u1, w1, w2} are not in BV (si). Then, we can
only consider that either u1 or both vertices w1, w2 is not in BV (si). Then, when u1
is not in BV (si), and recall Observation 3, we can know that u1 is connected to one
vertex of the set {u2, w1, w2}, and we always verify |B+(si) | ≤ |B+(u1) | ≤ 6 since
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Observation 1, contradiction, and thus, both w1, w2 are not in BV (si). Similarly,
Observation 3 shows that each vertex of the set {w1, w2} is connected to one vertex
except itself of the set {u1, u2, w1, w2}. If distG (w1, w2) = 1, distG (u1, w1) = 1 or
distG (u1, w2) = 1 holds, then we can alway find one vertex p of the set {u1, w1, w2}
such that |B+(si) | ≤ |B+(p) | ≤ 6 holds since Observation 1, contradiction. Thus, it
must be distG (w1, w2) ≥ 2, distG (u1, w1) ≥ 2 and distG (u1, w2) ≥ 2. Then, w1 is
connected to one vertex u2 and w2 is also connected to the vertex u2, and then, one
can verify |B+(si) | ≤ |B+(w2) | ≤ 6 since Observation 1, contradiction. Thus, the
previous assumption of |BV (si) | −δi < 0 does not hold, and thus, |BV (si) | −δi ≥ 0
is hold in this case (i-2). Finally, see (ii) and no far-2 boundary vertex is connected
to this block. Without loss of generality, still suppose that |BV (si) | − δi < 0 holds.
If |BV (si) | − δi < 0 holds, then there is one vertex p of the set {u1, u2, w1, w2},
which the vertex p is connected to a far-1 boundary vertex and meanwhile, the
vertex p is not in BV (si). Without loss of generality, suppose that the vertex p is
u1, i.e., a far-1 boundary vertex, say bv ′, is connected to u1. Since Observation 3,
u1 is not connected to other boundary vertex in

∪i−1
j=1 B(s j ) except bv

′, and then, u1
is connected to one vertex of the set {u2, w1, w2}. We find that if distG (u1, u2) = 1
holds, then since Observation 1, |B+(si) | ≤ |B+(u1) | ≤ 6 holds, contradiction.
Thus, u1 is connected to one vertex of the set {w1, w2}. Then, without loss of
generality, can suppose distG (u1, w1) = 1(equivalently, distG (u1, w2) = 1). Then,
if w1 is connected to one boundary vertex in

∪i−1
j=1 B(s j ), then since Observation 1,

|B+(si) | ≤ |B+(u1) | ≤ 6 holds, contradiction. Thus, generates only two cases, that
is, (ii-1) w1 is connected to one vertex of

∪ℓ
j=i+1 B

+(s j ) or (ii-2) vertex u2. Then,
(ii-1) if w1 is connected to one vertex of

∪ℓ
j=i+1 B

+(s j ), i.e., w1 ∈ BV (si), then
since SG2 and SG3 do not exist, distG (u2, w2) ≥ 2 holds. From Observation 3, u2
or w2 is connected to at most one boundary vertex in

∪i−1
j=1 B(s j ), and then we find

that u2 and w2 are in BV (si), and thus, at most three far-1 boundary vertices are
connected to this block, i.e., δi ≤ 3, and three vertices w1, u2 and w2 are in BV (si),
and thus |BV (si) | − δi ≥ 0 holds and the previous assumption of |BV (si) | − δi < 0
does not hold. (ii-2) In the final, if w1 is connected to u2, then since Observation 1,
we can verify |B+(si) | ≤ |B+(u1) | ≤ 6 holds, contradiction. Thus, the previous
assumption of |BV (si) | − δi < 0 does not hold and |BV (si) | − δi ≥ 0 holds for this
case (ii). In conclusion, all cases, which can be described in figure 3.13(b), hold
this lemma.

Consider case (3) in figure 3.13(c), which vertices in B+(si) are vi, u, w, u1, u2, w1
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and w2. By Observation 3, any vertex of the set {u1, u2, w1, w2} is connected to
at most one boundary vertex in

∪i−1
j=1 B(s j ) and u1 is connected to at most one

boundary vertex in
∪i−1

j=1 B(s j ), and thus, u1 is not connected to any far boundary
vertex. From Observation 1, if w1 is connected to a far-1 boundary vertex, then
we can find |B+(si) | ≤ |B+(w1) | ≤ 6, contradiction. Thus, any far-1 boundary
vertex must be connected to u2 or w2. Here, we can suppose that a far-1 boundary
vertex, say bv ′, is connected to u2, and we take note that it is equivalent to cases of
distG (bv ′, w2) = 1. If there is a far-2 boundary vertex bv ′′, then the Observation 3
shows that u1 or u2 is connected to at most one boundary vertex in

∪i−1
j=1 B(s j ), and

thus can know that any far-2 boundary vertex, say bv ′′, must be connected to both
vertices w1 and w2, and by Observation 1, we can verify |B+(si) | ≤ |B+(w1) | ≤ 6,
contradiction. Thus, no far-2 boundary vertex is connected to this block. Without
loss of generality, suppose a contradiction that |BV (si) | − δi < 0 holds. Then,
implies that there is a vertex p of the set {u2, w2}, which is connected to a far-1
boundary vertex and meanwhile, is not in BV (si). We can default that p is denoted
to the vertex u2. Then, Observation 3 shows that u2 is connected to one vertex of
the set {u1, w1, w2}. If it holds distG (u2, u1) = 1 or distG (u2, w1) = 1, then since
Observation 1, we alway find |B+(si) | ≤ |B+(u2) | ≤ 6, contradiction. Thus, it
must be distG (u2, w2) = 1. Here, only two cases are further generated, that is,
either (i) w2 ∈ BV (si) holds or (ii) w2 < BV (si) holds. For (i), we can know
|BV (si) | ≥ 1. Recall that any vertex of the set {u1, u2, w1, w2} is connected to
at most one boundary vertex in

∪i−1
j=1 B(s j ) and w1 is not connected to any far-1

boundary vertex, and thus, we can know that at most one far-1 boundary vertex is
connected to this block, and δi ≤ 1. Then, the previous assumption is not satisfied,
and |BV (si) | − δi ≥ 0 holds for this case (i). In the final, for (ii), w2 < BV (si)

holds. Then, w2 is connected to one vertex of the set {u1, w1} ∪
∪i−1

j=1 B(s j ). If w2 is
connected to one vertex of

∪i−1
j=1 B(s j ), then we can find |B+(si) | ≤ |B+(u2) | ≤ 6

by Observation 1, contradiction. Thus, w2 is connected to one vertex of the set
{u1, w1}. Then, if distG (w2, w1) = 1 holds, then since Observation 1, also find
|B+(si) | ≤ |B+(u2) | ≤ 6, contradiction. Thus, it must be distG (w2, u1) = 1. Since
u1, w1 and w2 are not connected to any far-1 boundary vertex and Observation 3
shows that u2 is connected to at most one far-1 boundary vertex, we can know that
δi ≤ 1 holds. Since SG6 does not occur, it must be distG (u1, w1) ≥ 2 and u1 is
connected to one vertex of the set

∪i−1
j=1 B(s j ) ∪

∪ℓ
j=i+1 B

+(s j ), and furthermore
u1 is connected to at most one boundary vertex in

∪i−1
j=1 B(s j ), and thus u1 must be
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connected to one vertex of set
∪ℓ

j=i+1 B
+(s j ), i.e., u1 ∈ BV (si). Thus, |BV (si) | ≥ 1

holds, and recall δi ≤ 1, and thus, the previous assumption of |BV (si) | − δi < 0
does not hold. Thus, |BV (si) | − δi ≥ 0 is also satisfied for this case (ii). Therefore,
this lemma is proved. □

Lemma 10. Suppose that si ∈ D3IS(G) is selected inPhase 2 of ALG. If |B+(si) | ≥
6, then δi ≤ |D+2 (si) |.

Proof. First, if a far-1 boundary vertex is intersected with a far-2 boundary vertex
at a vertex w of D2(si) ∩ B+(si), then we can verify |B+(si) | ≤ B+(w) ≤ 5. This
lemma holds. Thus, can suppose that the set of vertices, which are connected to
far-2 boundary vertices, is D2−sub (si). Then, vertices of the set D2−sub (si) are only
connected to far-2 boundary vertices. Since each far-2 boundary vertex is connected
to two vertices in the set D2−sub (si), at most |D2−sub (si) | far-2 boundary vertices
are connected to vertices of the set D2−sub (si). For each vertex of the set D2(si) \
D2−sub (si), if there is a vertex, which is connected to at least two far-1 boundary
vertices, then by Observation 4, one can verify |B+(si) | ≤ 4. Thus, each vertex
of D2(si) \ D2−sub (si) is connected to at most one far-1 boundary vertex, and the
number of far-1 boundary vertices is atmost |D2(si)\D2−sub (si) |. Then, the number
of far boundary vertices is at most |D2−sub (si) |+|D2(si) \ D2−sub (si) |. Thus, we
can obtain βi ≤ |D2−sub (si) |+|D2(si) \ D2−sub (si) | = |D+2 (si) |. Therefore, the
lemma is proved. □

Lemma 11. Suppose that si ∈ D3IS(G) is selected in Phase 2 of ALG. Then, (1) if
|B+(si) | = 6, then |BV (si) | − δi ≥ −2. (2) |B+(si) | = 5, then |BV (si) | − δi ≥ −3.
(3) If |B+(si) | = 4, then |BV (si) | − δi ≥ −4.

Proof. (1) First consider |B+(si) | = 6. From Observation 3, we know that
si is connected to at most two boundary vertices in

∪i−1
j=1 B(s j ). Then, only

three cases are shown: (i) |D1(si) ∩
∪i−1

j=1 B
+(s j ) | = 0, i.e., |D+1 (si) | = 3;

(ii) |D1(si)∩
∪i−1

j=1 B
+(s j ) | = 1, i.e., |D+1 (si) | = 1; (iii) |D1(si)∩

∪i−1
j=1 B

+(s j ) | = 2,
i.e., |D+1 (si) | = 2. (i) if |D+1 (si) | = 3 holds, then obtain |D+2 (si) = B+(si) \
({si } ∪ D+1 (si)) | = 2. Since Lemma 10, δi ≤ |D+2 (si) | ≤ 2 holds, and can know
|BV (si) | − δi ≥ −2 since |BV (si) | ≥ 0. Thus, this lemma holds. (ii) If |D1(si) ∩∪i−1

j=1 B
+(s j ) | = 1 occurs, then obtain |D+2 (si) = B+(si)\({si }∪D+1 (si)) | = 3, which

implies that there are three vertices in D+2 (si), say u1, u2 and u3. Since Lemma 10,
we can get δi ≤ |D+2 (si) | ≤ 3. For δi ≤ 2, obviously, |BV (si) | − δi ≥ −2 is
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obviously satisfied since |BV (si) | ≥ 0 holds. Thus, we can only consider δi = 3.
We know that at least one far-1 boundary vertex is connected to one vertex of the
set {u1, u2, u3}, and then, without loss of generality, suppose that a far-1 boundary
vertex bv ′ is connected to u1. Then, from Observations 4 and 5, we can know
that any far-2 boundary vertex, or other far-1 boundary vertex except the vertex
bv ′ is not connected to u1. Then, if there is a far-2 boundary vertex, which is
connected to two vertices of the set {u1, u2, u3}, then from Observation 7, we can
know that at most one far-2 boundary vertex is connected to both vertices u2 and
u3, and recall that only one far boundary, i.e., bv ′ is connected to u1. Thus, at
most two far boundary vertices are connected to vertices in the set D+2 (si), i.e.,
δi ≤ 2 is always satisfied, which is contradictory for the previous assumption of
δi = 3. Thus, we can then suppose that δi = 3 holds and no far-2 boundary vertex
is connected to this block. Then, the Observation 4 implies that each vertex of the
set {u1, u2, u3} is connected to one far-1 boundary vertex. Thus, except the far-1
boundary vertex bv ′, which is connected to u1, suppose that two additional far-1
boundary vertices bv ′2 and bv ′3 are connected to u2 and u3, respectively. Then, by
Observation 8, we can know that except far boundary vertices, u1, u2 and u3 are not
connected to other boundary vertex in

∪i−1
j=1 B(s j ). Then, suppose |BV (si) | = 0

and thus, u1, u2 and u3 are connected with each other, and we find that u1, u2 and u3
are not connected with each other since degree of vertices is three, and implies that
it does not occur |BV (si) | = 0. Thus, if δi = 3 holds, it must be |BV (si) | ≥ 1, and
|BV (si) | − δi ≥ −2 holds. As above shown, if |D1(si) ∩

∪i−1
j=1 B

+(s j ) | = 1 occurs,
then this lemma is proved. (iii) If |D1(si) ∩

∪i−1
j=1 B

+(s j ) | = 2 holds, then we can
know |D+2 (si) = B+(si) \ ({si } ∪ D+1 (si)) | = 4. all blocks, whose |D+2 (si) = 4
holds, can be illustrated in figure 3.14, where si is denoted to the vertex vi and four
vertices in D+2 (si) are w1, w2, u2 and u1. Note that w1 and w2 are connected to one
boundary vertex b1 and b2 in

∪i−1
j=1 B(s j ), respectively. Then, from Observation 8,

Figure 3.14: A block with six un-removed vertices

we can know that any far-1 boundary vertex is not connected to w1 or w2, and then,
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since the Observation 4, each vertex of the set {u1, u2} is connected to at most one
far-1 boundary vertex. Thus, at most two far-1 boundary vertices are connected to
vertices in B+(si). Furthermore, we only need to consider cases, that is, (iii-1) there
is only one far-1 boundary vertex, or (iii-2) there are two far-1 boundary vertices,
and then, these two far-1 boundary vertices are connected u2 and u1, respectively.
(iii-1) Without loss of generality, suppose a far-1 boundary vertex, say bv ′, is con-
nected to u2, which is equivalent to distG (bv ′, u1) = 1. Since Observation 8, u2 is
not connected to other boundary vertex in

∪i−1
j=1 B(s j ) except the vertex bv ′. Thus,

any far-2 boundary vertex is connected to two vertices of the set {w1, w2, u1}. We
find that if a far-2 boundary vertex bv ′′ is connected to both vertices w1 and w2, then
w1 or w2 is not connected to other boundary vertex in

∪i−1
j=1 B(s j ) except the bv

′′,
and furthermore, u2 is not connected to other boundary vertex in

∪i−1
j=1 B(s j ) except

the vertex bv ′, and thus, at most two far boundary vertices, i.e., the far-2 boundary
vertex bv ′′ and the far-1 boundary vertex bv ′ are connected to vertices in B+(si).
Thus, can get δi ≤ 2. Then, if there is a far-2 boundary vertex bv ′′, then the bv ′′ is
connected a vertex u1 and another vertex of the set {w1, w2}. Furthermore, we can
find that there are at most two far-2 boundary vertices, and δi ≤ 3. Suppose that
there are two far-2 boundary vertices, and then besides only one far-1 boundary ver-
tex, three far-boundary vertices are connected to vertices in D+2 (si), and obtain that
δi = 3 must be hold. Then, only one possibility is that the two far-2 boundary ver-
tices are connected to two vertices u1 and w1 and both vertices u1, w2, respectively.
Here, suppose |BV (si) | = 0, which implies that all vertices of the set {w1, w2, u1, u2}
are not in BV (si). The Observation 3 implies that w1 must be connected to u2 or
w1 when w1 is not in BV (si). Then, we always find |B+(si) | ≤ |B+(w1) | ≤ 5 since
Observation 1, contradiction. Thus, if δi = 3 occurs, then it must be |BV (si) | ≥ 1,
and |BV (si) | − δi ≥ −2 holds. Next, if δi ≤ 2 holds, then |BV (si) | − δi ≥ −2
obviously holds. Thus, the case (iii-1) holds this lemma. (iii-2) Suppose that two
far-1 boundary vertices bv ′1 and bv ′2 are connected to u1 and u2, respectively. From
Observation 5, we can know that any far-2 boundary vertex must be connected to
both vertices w1 and w2, and moreover, u1, u2, w1 or w2 is connected to at most
one far boundary vertex from Observation 3, and then, one far-2 boundary vertex
must be connected to w1 and w2, and moreover, two far-1 boundary vertices bv ′1
and bv ′2 are connected to u1 and u2, respectively. Thus, we know δi ≤ 3. Then,
suppose that a far-2 boundary vertex is connected to w1 and w2. Recall two far-1
boundary vertices are connected to u1 and u2, respectively. Thus, δi = 3 holds.
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If |BV (si) | = 0 holds, then w1 is not BV (si), and furthermore, the Observation 3
shows that w1 must be connected to one vertex of the set {w2, u1, u2}, and then, we
always find |B+(si) | ≤ |B+(w1) | ≤ 5 since Observation 1, contradiction. Thus, if
δi = 3 is satisfied, then it must be |BV (si) | ≥ 1, and |BV (si) | − δi ≥ −2 holds, and
then, for δi ≤ 2, it must be |BV (si) | − δi ≥ −2. Thus, for this case (iii-2), it holds
|BV (si) | − δi ≥ −2. Therefore, we obtain this lemma for |B+(si) | = 6.

(2) Then, consider |B+(si) | = 5. |B+(si) | = 5 holds, and since Observation 3,
|D1(si) ∩

∪i−1
j=1 B

+(s j ) | ≤ 2 holds, and then, |D+1 (si) | = 3, 2, or 1. Then, by
|D+2 (si) | = |B+(si) \ (si ∪ D+1 (si)) |, we further need to consider only three cases,
i.e., (i) |D+2 (si) | = 1, (ii) |D+2 (si) | = 2 or (iii) |D+2 (si) | = 3. (i) If |D+2 (si) | = 1
holds, then the Observation 5 shows that the vertex in the set D+2 (si) is connected
to at most one far-1 boundary vertex, and obviously, no far-2 boundary vertex is
connected to this block. Thus, δi ≤ 1 holds, and |BV (si) | − δi ≥ −1 is satisfied.
This lemma holds. (ii) |D+2 (si) | = 2 holds, and we denote two vertices of the set
D+2 (si) to u1 and u2. We know that at least one far-1 boundary vertex is connected
to one vertex of the set {u1, u2} and from Observation 5, u1 or u2 is connected to
at most one far-1 boundary vertex, and moreover, since degree of vertices is three,
we can verify that at most three far boundary vertices are connected to vertices in
B+(si), i.e., one far-2 boundary vertices are connected to both vertices u1 and u2,
only one far-1 boundary vertex is connected to u1 and only one other far-1 boundary
vertex is connected to u2, and δi ≤ 3. Thus, |BV (si) | − δi ≥ −3 and holds this
lemma. (iii) |D+2 (si) | = 3 holds and by simply observing, we can find that si is
connected to two boundary vertices in

∪i−1
j=1 B(s j ) and say that si is connected to

two boundary vertices b1, b2. Furthermore, we can find that at least one vertex in
D+2 (si) is connected to one boundary vertex in

∪i−1
j=1 B(s j ). We can suppose that

vertices in D+2 (si) are w1, w2 and w3, and the vertex w1 is connected to b1. Then,
from Observation 8, we know that w1 is not connected to any far-1 boundary vertex,
and furthermore, the Observation 3 shows that w1 is connected to at most one far-2
boundary vertex by one edge. Moreover, w2 or w3 can be connected to at most
two far boundary vertices by two edges. Thus, w1, w2 and w3 are connected to far
boundary vertices by at most five edges. Here, give two variables x1, x2. Then, x1
is the number of far-1 boundary vertices, and x2 is the number of far-2 boundary
vertices. Then, it holds δi = x1 + x2. Since one far-1 boundary vertex is connected
to one vertex of the set D+2 (si) by an edge, and one far-2 boundary vertex is two
vertices of the set D+2 (si) by two edges. Recall that w1, w2 and w3 are connected to
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far boundary vertices by at most five edges, and thus, 2x2 + x1 ≤ 5 holds. Since
w1 is not connected to any far-1 boundary vertex and each of {w2, w3} is connected
to at most one far-1 boundary vertex by Observation 4, and then, we can obtain
x1 ≤ 2. Note that this block is connected to at least one far-1 boundary vertex, and
we can know 1 ≤ x1 ≤ 2. Then, for x1 = 1 or x1 = 2, can get x2 ≤ 2 or x2 ≤ 1.5,
and x1 + x2 ≤ 3. Thus, δi ≤ 3, and |BV (si) | − δ1 ≥ −3 holds for the case(iii).
Therefore, if |B+(si) | = 5 holds, then the lemma is hold.

(3) Finally, consider |B+(si) | ≤ 4. When |B+(si) | ≤ 3 holds, |D+2 (si) | ≤ 2
is satisfied. Then, know that there are two vertices in the set D+2 (si). Obviously,
vertices in D+2 (si) are connected to at most 4 far boundary vertices, that is, each
vertex in D+2 (si) is connected to at most two far-1 boundary vertices and δi ≤ 4.
Thus, can obtain |BV (si) | − δi ≥ −4. We now consider |B+(si) | = 4. By
observation, we can easily obtain |D+2 (si) | ≤ 3. When |D+2 (si) | ≤ 2 holds, we
can verify that vertices in D+2 (si) are connected to at most 4 far boundary vertices,
and δi ≤ 4. In the following, only consider |D+2 (si) | = 3. Without loss of
generality, suppose that three vertices in the D+2 (si) are w1, w2 and w3. In this
case, si is connected to three boundary vertices in

∪i−1
j=1 B(s j ), say b1, b2 and

b3, and furthermore, suppose that b1, b2 and b3 are connected to w1, w2 and w3,
respectively. There is at least one far-1 boundary vertex bv ′, which is connected to
one vertex of set {w1, w2, w3}, and then, we can firstly suppose this bv ′ is connected
to w1(equivalently, w2 or w3). Then, if w1 is connected to one far-2 boundary
vertex bv ′′ or other far-1 boundary vertex except bv ′, then can verify |B+(si) | ≤
|B+(w1) | ≤ 3 by observation, and thus, w1 is not connected to other far boundary
vertex except bv ′. Similarly, if w2 or w3 is connected to one far-1 boundary
vertex bv ′, then w2 or w3 is not connected to other far boundary vertex except bv ′.
Moreover, we find that at most far-2 boundary vertices are connected to w2 and w3
and meanwhile, w2 or w3 is not connected to any far-1 boundary vertex since degree
of vertices is three. Thus, it implies that either at most two far-1 boundary vertices
are connected to w2 and w3, or at most one far-2 boundary vertex is connected to
w2 and w3. Thus, besides the far-1 boundary bv ′, which is connected to w1, at most
four far boundary vertices are connected to vertices in B+(si), and δi ≤ 4. Thus, it
holds |BV (si) | − δi ≥ −4. Therefore, this lemma holds. □

So far, we have discussed all cases that at least one far-1 boundary vertex
is connected to one vertex in B+(si). From now on, we investigate the lower
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bound value of |BV (si) | − δi of remaining cases, where no far-1 boundary vertex
is connected to vertices in block B+(si) and at least one far-2 boundary vertex is
connected to two vertices in block B+(si), when |B+(si) | = 8, 7, 6, 5 or |B+(si) | ≤ 4
holds.

Lemma 12. If |B+(si) | = 8 holds and any far-1 boundary vertex is not connected
to vertices in D+2 (si), then there is at most one far-2 boundary vertex, which is
connected to vertices of the set D+2 (si).

Figure 3.15: Each of two far boundary vertices is connected to two vertices of the
set D+2 (vi).

Proof. For |B+(si) | = 8, if there is at least three boundary vertices in
∪i−1

j=1 B(s j ),
which is connected to two vertices of set D+2 (si), then there are two boundary
vertices in

∪i−1
j=1 B(s j ) such that these two boundary vertices are intersected at one

same vertex in set D+2 (si), and then, find that at least one vertex in set D+2 (si)
is connected to two boundary vertices in

∪i−1
j=1 B(s j ) by observation, and then,

it implies |B+(vi) | ≤ |B+(vi) | ≤ 6 since Observation 3. Then, without loss of
generality, suppose that there are two far-2 boundary vertices, and then, Case 3-
2(ii) of this algorithm is executed. Here, suppose that before changing the first
candidate vertex, the first candidate vertex is v ′f , and after implementing Case 3-
2(ii) of this algorithm, the vertex v f substitutes v ′f as a first candidate vertex. By
Lemma 4, the algorithm selects a vertex si = v f into the solution. The block
B+(v ′f ) can be illustrated in figure 3.12, where v

′
f is denoted to vi. As figure 3.12 is

shown, the block B+(v ′f ) contains vi, v1, u, w, u1, u2, w1 and w2. Then, Case 3-2(ii)
of this algorithm is executed and implies that two boundary vertex in

∪i−1
j=1 B(s j ),

say b1 and b2, which are in the D3(vi), are connected to two vertices of the set
{u2, u3, u4, u5}, respectively. If a boundary vertex in

∪i−1
j=1 B(s j ) is connected to u1,

two vertices u2 and u3, or two vertices u4 and u5, then we can verify |B+(si) | ≤ 7,
contradiction. Furthermore, the Observation 3 shows that two boundary vertices in
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∪i−1
j=1 B(s j ) are not intersected at one same vertex of the set {u2, u3, u4, u5}. Thus,

without loss of generality, we can suppose distG (b1, u2) = distG (b1, u4) = 1, and
then distG (b2, u3) = distG (b2, u5) = 1 holds, which the case can be illustrated by
figure 3.15. The Case 3-1(ii) of this algorithm is executed, and v f is one vertex
of the set {u2, u3, u4, u5}. Considering equivalent cases, without loss of generality,
v f can be denoted to u2. Here, we denote another vertex except w1 in D+1 (v f ) to
be the vertex f . When f is denoted to u1, we can find |B+(u1) | ≤ 7, and thus,
|B+(si) | ≤ |B+(u1) | ≤ 7holds, contradiction. If f is connected to u3 or u4, then we
can find |B+(u2) | ≤ 7, and thus, implies |B+(vi) | ≤ 7, contradiction. Thus, vertices
vi, u3 and u4 in figure 3.15 are contained in D+2 (v f ), i.e., in D+2 (si). Observation 3
shows that u3 and u4 are not connected to vertices

∪i−1
j=1 B(s j ) except vertices of

the set {b1, b2}, and furthermore, u3 is not connected to any far-2 boundary vertex.
Each far-2 boundary vertex must be two vertices in D+2 (si), and b1 is not far-2
boundary vertex. Here, b2 can be one far-2 boundary vertex. If b2 is not one
far-2 boundary vertex, then u4 is not connected to any far-2 boundary vertex, and
recall that u3 is not connected to any far-2 boundary vertex, any far-2 boundary
vertex must be connected to vi and other two vertices, which are not u3 and u4, and
furthermore, if there are at least two far-2 boundary vertices, then there are two
far-2 boundary vertices such that they are intersected to one same vertex x, which is
in D+2 (si) and not in set {u3, u4}, and then it implies |B+(si) | ≤ |B+(x) | ≤ 6 since
Observation 3. Thus, at most one far-2 boundary vertex is connected to vertices
in D+2 (si). Then, if b2 is one far-2 boundary vertex, then besides u3, u5 must
be also in D+2 (si), and thus, f must be connected to u5. By Observation 3, we
further know that u3 or u5 is not connected to other far-2 boundary vertex except
b2. Recall that u4 is not connected to any far-2 boundary vertex, and then u3, u5 and
u4 are connected to at most one far-2 boundary vertex, i.e., b2. Now, suppose that
there is one far-2 boundary vertex bv ′′ except b2. Then, bv ′′ must be connected to
vertices in D+2 (si) \ {u3, u4, u5}, where D+2 (si) contains u3, u4, u5, vi and one vertex
f1 of D1( f ) \ {w1, u5}, and furthermore, the far-2 boundary vertex bv ′′ must be
connected to one vertex of D1( f ) \ {w1, u5} and vi. Then, we can verify that
|B+( f1) | ≤ 7, and implies |B+(si) | ≤ |B+(vi) | ≤ |B+( f1) | ≤ 7, contradiction, and
thus, the far-2 boundary vertex bv ′′ does not appear, and at most one far-2 boundary
vertex is connected to vertices in D+2 (si). Therefore, if |B+(si) | = 8 holds, then at
most one far-2 boundary vertex is connected to vertices in D+2 (si), and this lemma
holds. □
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Lemma 13. If there is one far boundary vertices bv which connects with two
vertices of D+2 (si), then some equalities are shown: (1) |BV (si) | − δi ≥ 4 when
|B+(si) | = 8, (2) |BV (si) |−δi ≥ 0when |B+(si) | = 7, (3) |BV (si) |−δi ≥ −2when
|B+(si) | = 6, (4) |BV (si) | −δi ≥ −3when |B+(si) | = 5, and (5) |BV (si) | −δi ≥ −4
when |B+(si) | ≤ 4.

Proof. (1) Consider |B+(si) | = 8. From Lemma 4, we can know that it always
holds si = vi, where vi is the first candidate vertex, and can use figure 3.12 again,
which vertices in B+(si) are vi, w1, w2, u1, u2, u3, u4 and u5. FromLemma 12, we can
know that at most one far-2 boundary vertex is connected to this block B+(si). Note
that no far-1 boundary vertex is connected to this block B+(si) and then δi ≤ 1.
Without loss of generality, suppose that the far-2 boundary vertex is bv ′′. If the
bv ′′ is connected to the vertex u1, two vertices u2 and u3, or two vertices u4 and
u5, then by Observations 1 and 3, we can verify |B+(si) | ≤ 7, contradiction. Thus,
bv ′′ is connected to one vertex of the set {u2, u3} and one vertex of the set {u4, u5}.
Except equivalent cases, without loss of generality, can suppose that the vertex bv ′′

is connected to two vertices u2 and u4. If u2 or u4 is not in BV (si), then we can
find that u2 or u4 is connected to one other boundary vertex in

∪i−1
j=1 B(s j ) except

the vertex bv ′′ or one vertex of the set {u1, u2, u3, u4, u5}, and then, observing each
possibility, we can verify that either there is a vertex u′ of the set {u1, u2, u3, u4, u5}
such that |B+(si) | ≤ |B+(u′) | ≤ 6, or the block B+(vi) contains the subgraph SG3,
SG4 or SG5, which is preprocessed inPhase 1 of ALG. Thus, u2 and u4 are in BV (si).
Then, observe two vertices u3 and u5. The vertex u3 is equivalent to the vertex u5,
and thus, we can only discuss the vertex u3. From Observation 3, u3 is connected
to at most one boundary vertex in

∪i−1
j=1 B(s j ). Then, if u3 is not in BV (si), then u3

must be connected to one boundary vertex in
∪i−1

j=1 B(s j ) or two vertices of the set
{u1, u2, u4, u5}. Since the subgraph SG3, SG4 or SG5 does not occur in Phase 2 of
ALG, u3 is not connected to u4 or u5, and furthermore, if u3 is connected to u2, then
one can verify |B+(si) | ≤ |B+(u2) | ≤ 6 since Observation 1, contradiction. Thus,
u3 is not connected to u2, u4 or u5, and u3 is connected to one boundary vertex in∪i−1

j=1 B(s j ) or one vertex u1. If u3 is connected to u1, then u3 must be connected
to one vertex in set

∪i−1
j=1 B

+(s j ), and one can verify |B+(si) | ≤ |B+(u2) | ≤ 6,
contradiction. Thus, u3 is not connected to any vertex of the set {u1, u2, u3, u4, u5}.
Recall that u3 is connected to at most one boundary vertex in

∪i−1
j=1 B(s j ), and thus,

u3 must be connected to one vertex in the set
∪ℓ

j=i+1 B
+(s j ), and u3 is in BV (si).

Then, u3 is equivalent to the vertex u5, and similarly, u5 is also in BV (si). Thus, any
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vertex of the set {u1, u2, u3, u4, u5} is in the BV (si), and |BV (si) | = 5 is satisfied.
Recall δi ≤ 1, and thus, |BV (si) | − δi ≥ 4 holds. Therefore, if |B+(si) | = 8 holds,
then this lemma is proved.

(2) Consider |B+(si) | = 7. For |B+(si) | = 7, all cases are further generated,
i.e., (i) si , vi, or (ii) si = vi. Consider (i). Since si , vi, this algorithm implies
|B+(vi) | = 8. Then, this block B+(si) can be illustrated by figure 3.12 and note
vi , si. By Lemma 4, it can show that si = w1 or si = w2, and si is in a cycle
of length three. Without loss of generality, can suppose si = w1, where wi is in
a cycle of length three. We can observe that w2 is in D+2 (si) and is not connected
any far boundary vertex. Since SG2, SG3 does not exist, w2 must be in BV (si), and
|BV (si) | ≥ 1. Since |D+1 (si) ∪ {si }| = 4, we can know |D+2 (si) | = 3 and w2 in
D+2 (si) is not connected to any far boundary vertex by observation, and then, we
can find that some far-2 boundary vertices must be connected to two vertices of set
D+2 (si) \w2. Since Observation 3, each vertex in D+2 (si)\w2 is connected to at most
one boundary vertex in

∪i−1
j=1 B(s j ), and thus, we can know that there is at most one

far-2 boundary vertex, which must be connected to vertices in D+2 (si) \ w2. Recall
|BV (si) | ≥ 1, and can get δi ≤ 1. Thus, |BV (si) | − δi ≥ 0 holds. Consider (ii),
which it occurs si = vi. Similarly, all three cases can be illustrated in figure 3.13.
Firstly, discuss cases, which can be illustrated by figure 3.13(a), and no far-1
boundary vertex is connected to this block. We can find that if a far-2 boundary
vertex is connected to v(or w1), then one can verify |B+(si) | ≤ |B+(v ) | ≤ 6(or
|B+(si) | ≤ |B+(w) | ≤ 6, resp.) from Observation 3 (or Observations 1 and 2,
resp.), contradiction. Thus, any far-2 boundary vertex must be connected to both
vertices u1 and u2. Observation 7 shows that at most one far-2 boundary vertex
is connected to both vertices u1 and u2 and furthermore, only one far-2 boundary
vertex is connected to vertices in B+(si). Thus, we can know δi ≤ 1. Here,
we can suppose |BV (si) | = 0 and a far-2 boundary vertex bv ′′ is connected to
two vertices u1 and u2. Then, Observation 3 shows that u1 or u2 is connected
to one boundary vertex in

∪i−1
j=1 B(s j ) or one vertex in D+2 (si), and furthermore,

since Observation 3, any vertex of {u1, u2} is connected to one vertex in D+2 (si).
If u1 or u2 is connected to v , then one can verify |B+(si) | ≤ |B+(u1) | ≤ 6 or
|B+(si) | ≤ |B+(u2) | ≤ 6 since Observations 1 and 2. Since Observation 1, if u1 is
connected to u2, then we can verify |B+(si) | ≤ |B+(u1) | ≤ 6, and thus, u1 is not
connected to u2. Thus, u1 and u2 must be connected to w1. Then, one can verify
|B+(si) | ≤ |B+(u1) | ≤ 6 since Observations 1 and 2, contradiction. Thus, the
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assumption of |BV (si) | = 0 does not occur, and recall δi ≤ 1, and thus, this lemma
holds. Secondly, consider cases, which can be illustrated by figure 3.13(b), and
the block B+(si) contains vi, u, w, u1, u2, w1 and w2, which no far-1 boundary vertex
is connected to this block. Recall Observation 3, we can know that any vertex of
the set {u1, u2, w1, w2} is connected to at most one boundary vertex, and implies
that two far-2 boundary vertices are not intersected at one same vertex of the set
{u1, u2, w1, w2}, and at most two far-2 boundary vertices are connected to vertices
of the set {u1, u2, w1, w2}, and δi ≤ 2. If there are two far-2 boundary vertices, then
the two far-2 boundary vertices are connected to two different vertices of the set
the set {u1, u2, w1, w2}, respectively. Then, Observation 3 shows that each of the
set {u1, u2, w1, w2} is not connected to other boundary vertex in

∪i−1
j=1 B(s j ) except

far-2 boundary vertices. If distG (u1, u2) = 1 or distG (w1, w2) holds, then one can
verify |B+(si) | ≤ |B+(u1) | ≤ 6 or |B+(si) | ≤ |B+(w1) | ≤ 6 since Observation 1,
contradiction. Thus, it must be distG (u1, u2) ≥ 2 and distG (w1, w2) ≥ 2. If no
vertex of the set {u1, u2, w1, w2} is connected to one vertex of the set {u1, u2, w1, w2},
then recall that each of the set {u1, u2, u3, u4} is not connected to other boundary
vertex in

∪i−1
j=1 B(s j ) except the far-2 boundary vertex, and thus, each vertex of the

set {u1, u2, w1, w2} is connected to one vertex in the
∪ℓ

i+1 B
+(s j ), i.e., is in BV (si),

and |BV (si) | = 4. Obviously, it holds |BV (si) | − δi ≥ 0 since δi ≤ 2. Then,
if at least one vertex of the set {u1, u2, w1, w2} is connected to one vertex except
itself of the set {u1, u2, w1, w2}, and without loss of generality, suppose that u1 is
connected to one vertex of the set {u2, w1, w2}, and then recall distG (u1, u2) ≥ 2
holds, and then u1 is connected to one vertex of the set {w1, w2}, and then, when
distG (u1, w1) = 1( or distG (u1, w2) = 1) holds, SG2 or S3 appears inPhase 2 of this
algorithm, and then it holds distG (u2, w2) ≥ 2( or equivalently, distG (u2, w1) ≥ 2).
Then, we can only discuss distG (u2, w2) ≥ 2, and then recall distG (u1, u2) ≥ 2
and distG (w1, w2) ≥ 2 hold and each of the set {u1, u2, u3, u4} is not connected to
other boundary vertex in

∪i−1
j=1 B(s j ) except the far-2 boundary vertices, and thus,

we can verify that u2 and w2 are connected to a vertex in the
∪ℓ

i+1 B
+(s j ) and are

in BV (si), and |BV (si) | ≥ 2, and thus, |BV (si) | − δi ≥ 0 holds. Thus, if there are
two far-2 boundary vertices are connected to vertices of the set {u1, u2, u3, u4}, then
|BV (si) | − δi ≥ 0 is satisfied. In the final, there is one far-2 boundary vertex, which
is connected to two vertices of of the set {u1, u2, u3, u4}. Then, δi = 1 holds. Suppose
that the far-2 boundary vertex is bv ′′ and then, find that either bv ′′ is connected to
two vertices u1 and u2( or w1 and w2) or bv ′′ is connected to one of the set {u1, u2}
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and one of the set {w1, w2}. Then, except equivalent cases, without loss of generality,
we can only consider two cases, that is, (i) bv ′′ is connected to u1 and u2, or (ii) bv ′′

is connected to u1 and w1. (i) Suppose a contradiction that |BV (si) | − δi < 0 holds.
Then, it shows |BV (si) | < δi ≤ 1, i.e., u1 and u2 are not in BV (si). Furthermore,
the Observation 3 shows that any vertex of the set {u1, u2} is connected to at most
one boundary vertex in

∪i−1
j=1 B(s j ), and thus, u1 and u2 are connected to one

vertex of the set {u1, u2, w1, w2}. If distG (u1, u2) = 1 holds, then one can verify
|B+(si) | ≤ |B+(u1) | ≤ 6 since Observation 1, contradiction. Thus, u1 and u2 are
connected to a vertex of the set {w1, w2}. Since SG2 and SG3 do not appear in Phase
2 of this algorithm, u1 and u2 are connected to one same vertex of the set {w1, w2},
and then we can find |B+(si) | ≤ |B+(u1) | ≤ 6 since Observation 1, contradiction.
Thus, |BV (si) | − δi < 0 does not hold, and |BV (si) | − δi ≥ 0 is satisfied in
this case(i). (ii) If distG (u1, w1) = 1, distG (u1, u2) = 1 or distG (w1, w2) = 1
holds, then |B+(si) | ≤ 6 is verified since Observation 1, contradiction. Thus, it
shows distG (u1, w1) ≥ 2, distG (u1, u2) ≥ 2 and distG (w1, w2) ≥ 2. Since bv ′′ is
connected to u1 and w1 and furthermoreSG2 and SG3 do not appear in Phase 2 of
this algorithm, u1 is not connected to w1 or w2, and u2 is not connected to w1 or
w2, and then, recall distG (u1, w1) ≥ 2, distG (u1, w2) ≥ 2 and distG (w1, w2) ≥ 2,
and then we can find that any vertex of the set {u1, w1} is not connected to any
vertex of the set {u1, u2, w1, w2}. Observation 3 shows that any vertex of the set
{u1, w1} is connected to at most one boundary vertex in

∪i−1
j=1 B(s j ), and thus,

any vertex of the set {u1, w1} is connected to a vertex of the set
∪ℓ

j=i+1 B
+(s j ),

and thus, u1 and w1 are in BV (si), and |BV (si) | ≥ 2. Recall δi = 1, and thus
|BV (si) | − δi ≥ 0 holds for this case(ii). As the conclusion, all cases, which can be
illustrated in figure 3.13(b), hold the lemma. Finally, consider cases, which can be
showed in figure 3.13(c). u1 is connected to one boundary vertex in

∪i−1
j=1 B(s j ), and

Observation 3 shows that u1 is not connected to any far boundary vertex. If a far-2
boundary vertex is connected to w1 and one vertex of {u2, w2}, then one can verify
|B+(si) | ≤ |B+(w1) | ≤ 6 holds, contradiction. Then, any far-2 boundary vertex
must be connected to both vertices u2 and w2. Here, suppose that a far-2 boundary
vertex bv ′′ is connected to both vertices u2, w2, and without loss of generality, let
|BV (si) | − δi < 0 hold. Since Observation 3, u2 or w2 is connected to at most one
boundary vertex in

∪i−1
j=1 B(s j ), and then, can know that except bv ′′, no other far-2

boundary vertex is connected to w2 or u2, and furthermore, recall that u1 or w1 is
not connected to any far-2 boundary vertex and this block is not connected to far-1
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boundary vertex, and then, at most only one far boundary vertex, i.e., the bv ′′ is
connected to both vertices u2 and w2, and get δi ≤ 1. Since |BV (si) | − δi < 0
holds, we can know |BV (si) | = 0, and then u2 or w2 is connected to one vertex of
{u1, u2, w1, w2} except itself, where u2 or w2 is connected to at most one boundary
vertex in

∪i−1
j=1 B(s j ). If u2 is connected to w1 or w2, then since Observation 1,

|B+(si) | ≤ |B+(u2) | ≤ 6 holds, contradiction. Similarly, if w2 is connected to w1 or
u2, then since Observation 1, |B+(si) | ≤ |B+(w2) | ≤ 6 holds. Thus, for the block, if
|BV (si) | − δi < 0 holds, then u2 must be connected to u1, and w2 is connected to u1,
and then, since Observation 1, |B+(si) | ≤ |B+(u1) | ≤ 6 holds, contradiction. Thus,
the assumption of |BV (si) | − δi < 0 does not occur, and |BV (si) | − δi ≥ 0 holds
for any block, which can be showed by figure 3.13(c). Therefore, if |B+(si) | = 7
occurs, then this lemma is hold.

(3) Consider |B+(si) | = 6. Since Observation 3, we can know that only three
cases are shown as D+1 (si) | = (i) 3, (ii) 2 or (iii) 1. First, consider (i). If D+1 (si) | = 3,
then |D+2 (si) | = |B+(si)\ ({si }∪D+1 (si) | = 2. Lemma 10 shows δi ≤ |D+2 (si) | ≤ 2.
Thus, |BV (si) | − δi ≥ −2 is hold. Next, consider (ii). If D+1 (si) | = 2, then
|D+2 (si) | = |B+(si) \ ({si } ∪ D+1 (si) | = 3. Without loss of generality, we say three
vertices in D+2 (si) to be u1, u2 and w1. Since Observation 2, at most one vertex in
D+2 (si) is connected to one boundary vertex in

∪i−1
j=1 B(s j ), say b, and meanwhile,

this b is connected to the vertex si. Then, two cases are generated, that is, (ii-1) one
vertex, which is denoted to u1, is connected to the boundary vertex b in

∪i−1
j=1 B(s j ),

or (ii-2) no vertex of D+2 (si) is connected to the boundary vertex b in
∪i−1

j=1 B(s j ).
Here,no far-1 boundary vertex is connected to the block, and then, set one value
x2, which x2 is the number of far-2 boundary vertices. Then, it holds δi = x2. See
(ii-1), which can be depicted in figure 3.16(a). Since Observation 3, at most one
edge containing u1 is connected to one far-1 boundary vertex. For u2 and w1, at
most two edges containing u2 or w1 are connected to far-2 boundary vertices. At
most five edges are incident with far-2 boundary vertices. Furthermore, one far-2
boundary vertex is incident with two edges, and thus, 2x2 ≤ 5. Then, we can know
δi = x2 ≤ 2, and for the case(ii-1), it is satisfied for |BV (si) | − δi ≥ −2. See (ii-2).
By observing, it must occur that two vertices, say u1, u2 of D+2 (si) are intersected to
one same vertex of D+1 (si), which the same vertex is u. Then, it can be illustrated in
figure3.16(b). Since Lemma 10, we can know δi ≤ |D+2 (si) | ≤ 3. If δi = 3 holds,
it implies that each vertex of D+2 (si) is connected to some far-2 boundary vertices,
and we find that if no far-2 boundary vertex is connected to u1 and u2, then δi = 3
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does not appear and δi ≤ 2 holds, and then |BV (si) | −deltai ≥ −2 is satisfied since
|BV (si) | = 0. Thus, if δi = 3 holds, then we finds that it must occur that u1 and
u2 is connected to one far-2 boundary vertex, and then the second far-2 boundary
vertex is connected to u1 and w1, and the third far-2 boundary vertex is connected
to u2 and w1, and then one can verify |B+(si) | ≤ |B+(u1) | ≤ 5 since Observation 1,
which is contradiction. Thus,|BV (si) | − δi ≥ −2 is satisfied in the case(ii-2). In
the final, |BV (si) | − δi ≥ −2 is hold for the case(ii). Consider (iii). If D+1 (si) | = 1,

(a) Case 1 (b) Case 2

Figure 3.16: Two cases are shown.
then |D+2 (si) | = |B+(si) \ ({si } ∪ D+1 (si) | = 4. By observation, it can be illustrated
in figure 3.14 again, where si = vi, and four vertices in D+2 (si) are w1, u2, u1 and w2.
Since Observation 3, w1 or w2 is connected to at most one far-2 boundary vertex,
and thus, at most one edge containing w1 or w2 is connected to far-2 boundary
vertices. For u2 or u1, we can clearly know that at most two edges containing u2 or
u1 are connected to far-2 boundary vertices. No far-1 boundary vertex is connected
to this block. Thus, at most five edges are incident with far-2 boundary vertices.
Suppose that the number of far-2 boundary vertices is x2, and then δi = x2. Recall
that at most five edges are incident with far-2 boundary vertices and each far-2
boundary vertex is incident with two edges, and thus, it holds 2x2 ≤ 5. Since x2 is
integer, we can know δi = x2 ≤ 2. Thus,|BV (si) | − deltai ≥ −2 is also hold for
this case(iii). Therefore, if |B+(si) | = 6, then it holds |BV (si) | − δi ≥ −2

(4) Consider |B+(si) | = 5. Since Observation 3, we know |D+1 (si) | = 0, 1 or 2.
Then, three cases are generated, i.e., |D+2 (si) | = (i) 1, (ii) 2, or (iii) 3. Consider
(i). Since a far-2 vertex must be connected to two vertices of D+2 (si), obviously it
does not occur. Consider (ii). Since two vertices in D+2 (si) can be connected to
at most two far-2 boundary vertices and then δi ≤ 2, this lemma obviously holds.
Consider (iii).Since three vertices in D+2 (si) can be connected to at most three far-2
boundary vertices, and then δi ≤ 3, and this lemma obviously holds. Therefore, if
|B+(si) | = 5, then it holds this lemma, i.e., |BV (si) | − δi ≥ −3 holds.

(5) Consider |B+(si) | ≤ 4. For |B+(si) | ≤ 4, we can get 0 ≤ |D2 +
( si) | ≤ 3.
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Since each far-2 boundary vertex is connected to two vertices in D+2 (si), one can
verify that three vertices in D+2 (si) can be connected to at most three far-2 boundary
vertices, and δi ≤ 3. Therefore, |BV (si) | − δi ≥ −4 is satisfied, and this lemma is
proved. □

From above analyses from the Lemma 7 to Lemma 13, we can obtain the
following remark:

Remark 1. In conclusion (i) if |B+(si) | = 8 occurs, then |BV (si) | − δi ≥ 4 holds,
(ii) if |B+(si) | = 7 holds, then |BV (si) | − δi ≥ 0 is satisfied, (iii) if it holds
|B+(si) | = 6, |BV (si) | − δi ≥ −2 is hold, (iv) if |B+(si) | = 5 is satisfied, then it
holds |BV (si) | − δi ≥ −3. (v) when |B+(si) | ≤ 4, |BV (si) | − δi ≥ −4 holds.

In the following, we assume that ALG selects ℓ1 vertices, s1 through sℓ1 , and ℓ2
vertices, sℓ1+1 through sℓ1+ℓ2 , into D3IS(G) in Phase 1 and Phase 2, respectively.
That is, ℓ = ℓ1 + ℓ2. Let ik denote the number of the solution vertices si such that
|B+(si) | = k for 5 ≤ k ≤ 8. Also, let i≤4 denote the number of the solution vertices
si such that |B+(si) | ≤ 4. Let BV ′(ALG) =

∪ℓ
i=ℓ1+1 BV (si) and BV ′near (ALG) =∪ℓ

i=ℓ1+1 BVnear (si) . Then, if Phase 1 is executed (i.e., at least one special subgraph
is included in the input graph G), then let p be the number of vertices which are put
into B in Phase 1 and connected to vertices in

∪ℓ
i=ℓ1+1 B

+(si); otherwise, i.e., if no
special subgraphs are not included in G and thus Phase 1 is not executed, then let
p be equal to |BV (s1) |.

Lemma 14. (1) If Phase 1 of ALG is not executed, then |BVnear (ALG) | ≥ p +

4i8 − 2i6 − 3i5 − 4i≤4 is satisfied. (2) Suppose that Phase 1 is executed and
si ∈ D3IS(G) is selected in Phase 2 for ℓ1 + 1 ≤ i ≤ ℓ. Then |BV ′near (ALG) | ≥
p + 4i8 − 2i6 − 3i5 − 4i≤4 is satisfied.

Proof. (1) We first assume that Phase 1 is not executed. Since |BVnear (ALG) | =
|BV (ALG) | − |BVf ar |, it satisfies |BVnear (ALG) | = |BV (ALG) | − |BVf ar | ≥∑ℓ

i=1 |BV (si) | −
∑ℓ

i=1 δi =
∑ℓ

i=1(|BV (si) | − δi). By Remark 1, we can know
|BVnear (ALG) | ≥ ∑ℓ

i=1( |BV (si) | − δi) ≥ (|BV (s1) | − 0) +
∑ℓ

i=2(|BV (si) | − δi) ≥
p+4i8−2i6−3i5−4i≤4. (2) Suppose that Phase 1 is executed and si ∈ D3IS(G) is
selected inPhase 2 for ℓ1+1 ≤ i ≤ ℓ. Then, |BV ′near (ALG) | = (p+ |BV ′(ALG) |)−
|BVf ar | ≥ p +

∑ℓ
i=ℓ1+1(|BV (si) | − δi). By Remark 1, |BV ′near (ALG) | ≥ p + 4i8 −

2i6 − 3i5 − 4i≤4. This completes the proof of this lemma. □
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Corollary 2. (1) If Phase 1 of ALG is not executed, then it satisfies 4i8 ≤ 9ℓ + 1 +
2i6 + 3i5 + 4i≤4 − n − p. (2) Suppose that Phase 1 is executed and si ∈ D3IS(G)

is selected in Phase 2 for ℓ1 + 1 ≤ i ≤ ℓ. Let n2 = |
∪ℓ

i=ℓ1+1 B
+(si) |. Then,

4i8 ≤ 9ℓ2 + 2i6 + 3i5 + 4i≤4 − n2 − p is satisfied.

Proof. (1) Suppose that Phase 1 is not executed. From Lemma 14,
∑ℓ

i=1(|B∗(si) | −
|B+(si) |) ≥ |BVnear (ALG) | ≥ p + 4i8 − 2i6 − 3i5 − 4i≤4. Since |B∗(si) | ≤ 9
holds for i ≥ 2 from Lemma 5, 10 + 9(ℓ − 1) ≥ |B+(s1) | + 9(ℓ − 1) − n ≥
p + 4i8 − 2i6 − 3i5 − 4i≤4 and we can obtain the inequality 4i8 ≤ 9ℓ + 1 + 2i6 +
3i5 + 4i≤4 − n − p. (2) Suppose that Phase 1 is executed. From Lemma 14, we
know

∑ℓ
i=ℓ1+1(|B

∗(si) | − |B+(si) |) ≥ |BV ′near (ALG) | ≥ p + 4i8 − 2i6 − 3i5 − 4i≤4.
Furthermore, since |B∗(si) | ≤ 9 holds for i ≥ 2 from Lemma 5, the following
inequality holds: 9ℓ2−n2 ≥

∑ℓ
i=ℓ1+1(|B

∗(si) |− |B+(si) |) ≥ p+4i8−2i6−3i5−4i≤4.
Hence, we get 4i8 ≤ 9ℓ2 + 2i6 + 3i5 + 4i≤4 − n2 − p. □

Theorem 7. ALG achieves an approximation ratio of 1.875 +O( 1n ).

Proof. We need to investigate the following three situations: (1) 1 ≤ ℓ1 < ℓ, i.e.,
both Phase 1 and Phase 2 are executed, (2) ℓ1 = 0, i.e., Phase 1 is not executed,
and (3) ℓ1 = ℓ, i.e., Phase 2 is not executed.

(1) One can see that 7.5ℓ1 + 8i8 + 7i7 + 6i6 + 5i5 + 4i≤4 ≥ n holds. From
ℓ = ℓ1 + i8 + i7 + i6 + i5 + i≤4, we obtain 4ℓ + i5 + 2i6 + 3i7 + 4i8 + 3.5ℓ′ ≥ n.
Furthermore, since i7 = ℓ − ℓ1 − i8 − i6 − i5 − i≤4 holds, we get 4ℓ + i5 + 2i6 + 3(ℓ −
ℓ1− i8− i6− i5− i≤4)+4i8+3.5ℓ1 ≥ n. That is, 7ℓ−2i5− i6−3i≤4+ i8+0.5ℓ1 ≥ n

holds. Recall that 4i8 ≤ 9ℓ2+2i6+3i5+4i≤4−n2−p as shown in Corollary 2. Since
ℓ2 = ℓ − ℓ1 and n2 ≥ n − 7.5ℓ1, we get 4i8 ≤ 9ℓ + 2i6 + 3i5 + 4i≤4 − n − 1.5ℓ1 − p.
Since ℓ1 ≤ ℓ − 1, we obtain ℓ ≥ (5n + 1.5)/37.5 > n/7.5. (2) ℓ2 = ℓ and
n2 = n. Obviously, p ≥ 1. From |B+(s1) | ≤ 10 and the definitions on ik ,
10+ 8i8 + 7i7 + 6i6 + 5i5 + 4i≤4 ≥ |B+(s1) | + 8i8 + 7i7 + 6i6 + 5i5 + 4i≤4 ≥ n holds.
Note that 1+i8+i7+i6+i5+i≤4 = ℓ. Hence, we obtain 7ℓ+i8−2i5−i6−3i≤4+3 ≥ n.
From Corollary 2, 7ℓ+ (9ℓ+ 2i6 + 3i5 + 4i≤4 − n)/4− 2i5 − i6 − 3i≤4 + 3 ≥ n holds.
Therefore, we obtain ℓ ≥ (5n− 12)/37 > (5n− 12)/37 ≥ n/7.5− 12/37. (3) From
Lemma 6, ℓ ≥ n/7.5.

Since |OPT (G) | ≤ n
4 holds from Lamma 3, ALG achieves the approximation

ratio of 1.875 +O(1/n). □
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3.4 PTAS algorithm of MaxDdIS for planar graphs

For planar graphs, we find that there is a PTAS algorithm for MaxDdIS on planar
graphs. An outerplanar graph (often called a 1-outerplanar graph) is a graph that
can be drawn in the plane without any edge-crossing such that all vertices lie on
the unbounded face. A planar graph G is said to be k-outerplanar for k ≥ 2 if it
has a plane-embedding such that by removing the vertices on the unbounded face,
we obtain a (k − 1)-outerplanar graph; the deleted vertices form the kth layer of
G. Note that every planar graph G can be regarded as a k-outerplanar graph for
some integer k, although k can be Ω(

√
|V (G) |). Also note that the treewidth of a

k-outerplanar graph is at most 3k + 1. The outerplanar factor k plays an important
role in many polynomial-time approximation schemes based on the Baker’s shifting
technique for NP-hard optimization problems on planar graphs [3]. The Baker’s
shifting technique can be applied to MaxDdIS on planar graphs, as follows:

Algorithm SHIFTINGd

Input: D-outerplanar graph G

Output: Distance-d independent set DdIS(G) of G

Step 1. For each i ∈ {1, 2, . . . , k}, repeat the following:

(1-1) Delete all vertices in layers i through i + (d − 2), k + i +
(d − 2) through k + i + 2(d − 2), 2k + i + 2(d − 2) through
2k + i + 3(d − 2), and so on. Let Gi be the resulting graph.

/*Note that each connected component ofGi is a (k−1)-
outerplanar graph, and hence its treewidth is at most
3k − 2. */

(1-2) SolveMaxDdIS for each connected component ofGi, and
obtain an optimal distance-d independent set S∗i of Gi.

Step 2. Output the best S∗ among the k obtained distance-d indepen-
dent sets S∗1 through S∗

k
as the solution DdIS(G).

Theorem 8. For a fixed constant d ≥ 2, MaxDdIS admits a polynomial-time
approximation scheme for planar graphs.

Proof. As a seminal result of Courcelle [8], it is known that every problem definable
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in monadic second-order logic can be solved for graphs with bounded treewidth in
time linear in the number of vertices of the graph. By a simple extension of the
independent set problem (i.e., MaxD2IS), MaxDdIS can be also defined in monadic
second order logic. Therefore, MaxDdIS can be solved in linear time (although its
running time depends exponentially on the treewidth and the distance d). Thus, the
algorithm SHIFTINGd runs in time polynomial in n, which is the number of vertices.
Let S be any optimal distance-d independent set in a given planar graph. Let Si be
the distance-d independent set obtained from S by deleting all vertices in layers i
through i+ (d−2), k + i+ (d−2) through k + i+2(d−2), 2k + i+2(d−2) through
2k + i + 3(d − 2), and so on. Let S∗ be the output of the algorithm SHIFTINGd, and
S∗i be the distance-d independent set of Gi (and hence of G) obtained by Step 1-2.
From the definitions of these sets, both |Si | ≤ |S∗i | and |S∗i | ≤ |S∗ | hold for every
i ∈ {1, 2, . . . , k}. Then, since |Si | ≤ |S∗i | for every i ∈ {1, 2, . . . , k}, we have

|S1 | + |S2 | + · · · + |Sk | ≤ |S∗1 | + |S∗2 | + · · · + |S∗k |.

Next, since Gi (or Si) does not include any vertices in layers i through i + (d − 2),
k + i + (d − 2) through k + i + 2(d − 2), 2k + i + 2(d − 2) through 2k + i + 3(d − 2),
and so on, the following inequality holds:

|S1 | + |S2 | + · · · + |Sk | ≥ (k − (d − 1)) |S |.

Since |S∗ | = max{|S∗i | : 1 ≤ i ≤ k}, we have

|S∗1 | + |S∗2 | + · · · + |S∗k | ≤ k |S∗ |.

Therefore, the following holds:

(k − (d − 1)) |S | ≤ k |S∗ |,

that is,

|S |
|S∗ | ≤ 1 +

d − 1
k − (d − 1) .

Thus, by setting k = ⌈ d−1ε ⌉ + d − 1, we can conclude that SHIFTINGd is a (1 + ε)-
approximation algorithm, that is, it is a polynomial-time approximation scheme for
MaxDdIS on planar graphs. This completes the proof.
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Chapter 4

Maximum Induced Matching
Problem

In this chapter, we design an algorithm for the maximum induced matching on
C5-free r-regular graphs, which is better than the previous algorithm.

4.1 Preliminaries

In this section, we introduce some definitions, which will be utilized in this chapter.
Still, let G = (V, E) be a simple, unweighted, and undirected graph, where V and
E denote the set of vertices and the set of edges, respectively. V (G) and E(G)

also denote the vertex set and the edge set of G, respectively. Throughout the
paper, let n = |V | and m = |E | for any given graph. Let G[V ′] denote a vertex-
induced subgraph of G = (V, E), consisting of a subset V ′ ⊆ V and all the edges
connecting pairs of vertices inV ′. Also, letG[E ′] denote an edge-induced subgraph
of G = (V, E), consisting of a subset E ′ ⊆ E and the vertices that are endpoints of
edges in E ′. Let H be a set of graphs. A graph is H-free if it does not contain any
graph in H as a vertex-induced subgraph.

For a vertex v in a graph G, the open neighborhood of v in G is NG (v ) =

{u ∈ V (G) | {u, v } ∈ E(G)} and the closed neighborhood of v in G is NG[v] =
NG (v ) ∪ {v }. The degree of v in G is denoted by degG (v ) = |NG (v ) |. A graph
G is r-regular if all the vertices in G have degree r . Throughout the paper, we
assume that r ≥ 3 since MaxIM on 1-regular and 2-regular graphs can be solved in
polynomial time.
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A (simple) path Pk with k vertices v1, v2, · · · , vk is represented as a sequence
⟨v1, v1, · · · , vk⟩ of those k vertices where {vi, vi+1} is an edge in Pk for each i =

1, 2, · · · , k − 1. The length of the path P is the number of edges in P, i.e., the length
of Pk with k vertices is k − 1. A cycle Ck with k vertices is similarly written as
Ck = ⟨v1, v2, · · · , vk, v1⟩.

For a pair of vertices v and v ′ in G, the distance between v and v ′ is the
length of a shortest path from v to v ′, which is denoted by distG (v, v ′). For the
path P = {v1, v2, v3, v4, v5, · · · , vk } of length k − 1, for example, distP (v1, v1) = 0,
distP (v1, v2) = 1, distP (v1, v3) = 2 and so on. If distG (v, v ′) = ℓ for two vertices
v and v ′, then v ′ is called a distance-ℓ vertex of v . Let DVℓ (v ) be a set of distance-
ℓ vertices of v . Similarly, for a pair of edges e and e′ in E(G), we define the
distance distG (e, e′) between two edges e and e′: The line graph L(G) of G

is the graph whose vertices are the edges of G, and in which two vertices are
adjacent only if they share an incident vertex as edges of G. Then, the distance
distG (e, e′) between two edges e and e′ in G is defined as distL(G) (e, e′) between
two vertices e and e′ in L(G), i.e., the length of a shortest path from e to e′

in the line graph L(G) of G. For example, for P, distP ({v1, v2}, {v1, v2}) = 0,
distP ({v1, v2}, {v2, v3}) = 1, distP ({v1, v2}, {v3, v4}) = 2, and so on. If distG (e, e′) =

ℓ for two edges e and e′, then e′ is called a distance-ℓ edge of e. Let DEℓ (e) be
a set of distance-ℓ edges of e. Furthermore, we define the distance between an
edge e and a vertex v as the length of a shortest path from one endpoint of e to
v , i.e., distG (e, v ) = min{distG (ve, v ), distG (v ′e, v )} for e = {ve, v ′e}. For example,
distP ({v2, v3}, v1) = 1, distP ({v2, v3}, v4) = 1, distP ({v2, v3}, v5) = 2, and so on.

We say that an edge e ∈ E(G) is in conflict with another edge e′ ∈ E(G) if
distG (e, e′) ≤ 2 and the edge e ∈ E(G) is called a conflict edge of e′ ∈ E(G) Then,
for an edge e of a graph G, let

CG (e) = {e′ ∈ E(G) | distG (e, e′) ≤ 2}

= {e} ∪ DE1(e) ∪ DE2(e).

be the set of all the conflict edges of e. Also, the set of all the conflict edges of a
set E ′ ⊆ E(G) is defined as follows:

CG (E ′) =
∪
e∈E′

CG (e).
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Figure 4.1: Edges e1, e2, · · · , e11 and e in the dotted-line rectangle are conflict
edges of e. If M = {e, f , f ′, f ′′}, then the private conflict edges of e to M are e2,

e5, e7 and e.

For a subset E ′ ⊆ E(G) of edges and an edge e in G, let

PCG (E ′, e) = CG (e) \
∪

e′∈E′\{e }
CG (e′)

be the set of edges that are in conflictwith e but not in conflictwith every e′ ∈ E ′\{e}.
The edge in PCG (E ′, e) is called a private conflict edge of e to the set E ′. For
example, for the graph G shown in Figure 4.1, the conflict edges of e are e1, e2, e3,
e4, e5, e6, e7, e8, e9, e10, e11, and e. Also, the private conflict edges of e to the set
M = {e, f , f ′, f ′′} are e2, e5, e7, and e.

4.2 Induced Matching on C5-free r-regular graphs

In this section we design a
(
2r
3 +

1
3

)
-approximation algorithm forMaxIM onC5-free

r-regular graphs. Here is an outline of our approximation algorithm for an input
C5-free r-regular graph G, which mainly consists of two steps. (i) In the first step,
the algorithm initially finds amaximal inducedmatchingM by iteratively picking an
edge e into the inducedmatchingM , and eliminating all the edges inCG (e) from the
candidates of the solution. (ii) In the second step, the algorithm tries to find a larger
induced matching from the temporally obtained induced matching M by a “small
modification” as follows: Let M be the set of induced matching edges currently
obtained. The algorithm picks one edge e from M . Then, if there exist (at least) two
edges e′ and e′′ in PCG (M, e) \ {e} such that distG (e′, e′′) > 2, then the algorithm
updates the “old” induced matching M to the “new” M = (M \ {e}) ∪ {e′, e′′}. If
there does not exist such an edge e in M , then the algorithm tries to find an edge
emin from PCG (M, e) such that |CG (emin) | is the minimum among |CG (e′) | for
every e′ ∈ PCG (M, e). If the algorithm finds emin, then it swaps e and emin, i.e.,
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updates M = (M \ {e}) ∪ {emin}.

4.2.1 Approximation Algorithm

The following is a description of our algorithm ALG, where let M be the induced
matching obtained by ALG:

Algorithm ALG

Input: A C5-free r-regular graph G = (V, E).

Output: An induced matching M of G.

Initialization: Set M = ∅, and obtain CG (e) and |CG (e) | for every edge e ∈ E.

Step 1. /* Find an initial maximal set M of induced matching edges. */
IfCG (M) = E, then go to Step 2; otherwise, arbitrarily select an edge e from
E \ CG (M), set M = M ∪ {e} and repeat Step 1.

Step 2. /* Find a larger set M of induced matching edges */
Obtain PCG (M, e) for every e ∈ M .

(i) If there exists an edge e such that the size of amaximal induced matching
MAX (e) in PCG (M, e) \ {e} is at least two, then set M = (M \ {e}) ∪
MAX (e) and repeat Step 2.

(ii) If there exists a pair of edges e ∈ M and e′ ∈ PCG (M, e) such that
|CG (e) | > |CG (e′) | and |CG (e′) | is the minimum among |CG (e′′) | for
every e′′ ∈ PCG (M, e), then setM = (M \{e})∪{e′} and repeat Step 2.

(iii) Otherwise, go to Termination.

Termination. Output the solution M and halt.
[End of ALG]

Here is a detailed implementation of Step 2(i): Suppose that PCG (M, e) has k
edges and let PCG (M, e) = {e, e1, e2, · · · , ek−1}. Also, for each 1 ≤ i ≤ k − 1, let
MAX (e, ei) be a maximal induced matching which is obtained by first selecting ei
from PCG (M, e)\{e} and then selecting inducedmatching edges from (PCG (M, e)\
{e}) \ CG (ei) if such induced matching edges exist. In Step 2(i), ALG first obtains
k − 1 maximal induced matchings MAX (e, e1) through MAX (e, ek−1), and then
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finds the set of maximum cardinality among those k − 1 sets as MAX (e). One can
see that if there exists at least one maximal matching which has at least two induced
matching edges, then ALG surely finds it in polynomial time.

Now we show the feasibility of the induced matching M output by ALG. One
can see that if an edge e is selected into M , then all the edges in CG (e) are
eliminated from candidates of the solution. Moreover, we can verify that each edge
in PCG (M, e) is not in conflict with any edge in M except the edge e. Thus, the
distance of any two edges in M is at least three and thus all the edges in the output
M are induced matching edges. That is, ALG can always output a feasible induced
matching M .

Next, we bound the running time of ALG: Clearly, Initialization and Step 1 can
be executed in O(m2) time. In each execution of Step 2(i), the number of induced
matching edges in M is incremented at least by one. Hence the total number of
executions of Step 2(i) is at most O(m). Each iteration of Step 2(i) can be done in
O(m2). Therefore, the total computational complexity of Step 2(i) is O(m3). As
for Step 2(ii), if |M | = i at some time point, then ALG has to check i private conflict
edge sets, PCG (M, e1) through PCG (M, ei), in Step 2(ii). That is, the total number
of executions of Step 2(ii) is at mostO(m2). Step 2(ii) can be implemented inO(m)

time. Hence the total comutational complexity of Step 2(ii) is again O(m3). In the
beginning of each iteration of Step 2 we need O(m2) time to obtain PCG (M, e)

for every e ∈ M . Since the iteration of Step 2 is bounded in O(m2), the time
complexity of Step 2 is O(m4). Therefore, ALG runs in O(m4).

We make a detailed observation on Step 2: From the maximality of M ,∪
e∈M CG (e) = E(G) holds after Step 1. Now suppose that in some itera-

tion of Step 2(i), ALG finds an edge e1 such that a maximal induced match-
ing MAX (e1) in PCG (M, e1) has at least two induced matching edges. At this
moment,

∪
e∈M\{e1 } CG (e) = E(G) \ PCG (M, e1) holds since all the edges in

PCG (M, e1) are in conflict only with e1. Moreover, from the maximality of
MAX (e1), PCG (M, e1) ⊆

∪
e′∈MAX (e1) CG (e′) must hold. Since ALG obtains

a new temporal solution M ′ by setting M ′ = (M \ {e1}) ∪ MAX (e1) in Step 2(i),∪
e∈M′ CG (e) = E(G) is satisfied again for M ′. Note that Step 2(ii) guarantees that

when M is eventually output by ALG, |CG (e) | ≤ |CG (e′) | must hold for every edge
e′ ∈ PCG (M, e) . Therefore, from the termination condition of ALG, the following
should be remarked:

Remark 2. When ALG terminates and outputs an induced matching M for an input
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graph G, the following three properties must be satisfied:

1. As for every private conflict edge set PCG (M, e) of e to M , any two edges in
PCG (M, e) must be in conflict with each other;

2. For every edge e′ ∈ PCG (M, e), |CG (e) | ≤ |CG (e′) | holds; and

3.
∪

e∈M CG (e) = E(G) holds, i.e., M must be a maximal set of induced
matching edges.

4.2.2 Approximation ratio

In this section, we investigate the approximation ratio of the algorithm ALG. Now
suppose that given a graph G = (V, E), ALG finally outputs a set M of induced
matching edges, and |ALG(G) | = |M |. Note that the output M by ALG cannot be
enlarged by picking other two or more edges from PCG (M, e) if edge e is in M .
We can obtain the following relationship between |CG (e) | and |PCG (M, e) |:

Lemma 15. For any maximal set M of induced matching edges in a graph G =

(V, E), the following inequality is satisfied:∑
e∈M

( |CG (e) | − |PCG (M, e) |) ≥ 2(|E | −
∑
e∈M
|PCG (M, e) |).

Proof. Consider an edge e in a subset M of edges, the conflict edge set CG (e) of
e, and the private conflict edge set PCG (M, e) of e to M . From the definitions, we
know

∪
e∈M

(CG (e) \ PCG (M, e)) = E \ *,
∪
e∈M

PCG (M, e)+- .
Since the private conflict edge sets are independent, the following equality holds:

������E \ *,
∪
e∈M

PCG (M, e)+-
������ = |E | −

∑
e∈M
|PCG (M, e) | .

Recall that every edge in CG (e) \ PCG (M, e) must be included in at least one
different conflict edge set, say, CG (e′) of e′ ∈ M for e′ , e. Therefore, the
inequality holds. □

Now we can estimate the maximum number Γd of conflict edges of an edge e
in r-regular graphs, which was shown in [26]:
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Proposition 2 (Theorem 3.1 in [26]). For any edge e in a r-regular graph G, the
number |CG (e) | of conflict edges is at most 2r2 − 2r + 1.

Let Γd be the upper bound of |CG (e) | of conflict edges over all of the edges
e ∈ E(G). One can see that the number |CG (e) | of conflict edges of the edge e

gets much smaller than 2r2 − 2r + 1 if an edge e′ in CG (e) is in a short cycle, for
example, C3 or C4. Indeed, the following results are known [31]:

Proposition 3 (Lemmas 4 and 6 in [31]). If a cycle C3 of length three contains
an edge e in CG (e) of a r-regular graph G, then the cycle C3 decreases the upper
bound Γd of |CG (e) | by at least r . Moreover, if a cycle C4 of length four contains
an edge e in CG (e), then the cycle C4 decreases the upper bound Γd by at least one.

Take a look at an edge e = {t, u} illustrated in Figure 4.2. If two neighbor
vertices, w1 and w2, of the edge e are connected by an edge e′ = {w1, w2}, then e′

is called the triangle edge of e, and we say that e owns the triangle edge e′ or e′ is
the triangle edge of e. Then, we can obtain Lemma 16:

t u

w
1

w
2

z
1

z
2

z
5

z
6

e
e'

Figure 4.2: An edge e = {t, u} owns a triangle edge e′ = {w1, w2}.

Lemma 16. If an edge e in a graph G owns a triangle edge e′, then e′ decreases
the upper bound Γd of |CG (e) | by at least one.

Proof. This lemma can be obtained by a simple observation on two graphs illus-
trated in Figure 4.3. The right graph does not have any triangle edge but the left one
has one triangle edge e′ = {w1, w2}. That is, we can think that two edges {w1, z3}
and {w2, z4} in the right graph are replaced with one triangle edge {w1, w2}, or two
edges are combined into one edge. Therefore, the value of Γd must decrease by at
least one, because of the triangle edge e′. □

Now consider an edge e = {t, u} in the solution M and the private conflict
edges of e to M , PCG (M, e). Then, let UG (e) = ({e′ | distG (e′, u) ≤ 1} ∩
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Figure 4.3: Since an edge e = {t, u} owns a triangle edge e′ = {w1, w2},
e′ = {w1, w2} decreases the upper bound Γd of |CG (e) | by at least one.

PCG (M, e)) \ {e} and TG (e) = ({e′ | distG (e′, t) ≤ 1} ∩ PCG (M, e)) \ {e}.
Roughly speaking,UG (e) and TG (e) are the “u-side” subset and the “t-side” subset
of edges in PCG (M, e), respectively. Note that PCG (M, e) = UG (e) ∪TG (e) ∪ {e}
and UG (e) ∩ TG (e) may be non-empty. Moreover, let U0

G
(e) = {e′ ∈ UG (e) |

distG (e′, u) = 0}, U1
G (e) = UG (e) \U0

G
(e), T0

G
(e) = {e′ ∈ TG (e) | distG (e′, t) =

0}, and T1
G (e) = TG (e) \ T0

G
(e).

From now on, let |PCG (M, e) | = β. Without loss of generality, we assume that
|UG (e) | ≥ |TG (e) | holds in the following. Then, we obtain the following lemma,
which is quite trivial but plays a key role to estimate the approximation ratio of ALG:

Lemma 17. For each e ∈ M , |U1
G (e) | ≥ β−1

2 − (r − 1) holds.

Proof. Clearly |U0
G
(e) | ≤ r − 1 holds. Since |UG (e) ∪ TG (e) | = β − 1 and

|UG (e) | ≥ |TG (e) | by the assumptions, |UG (e) | ≥ β−1
2 is satisfied. Hence, we can

obtain |U1
G (e) | = |UG (e) \U0

G
(e) | ≥ β−1

2 − (r − 1). □

See Figure 4.4. LetWG (e) = V (G[UG (e)]) ∩ DV1(u) = {w1, w2, · · · , wδ } be a
set of δ neighbor vertices of u, where δ ≤ |DV1(u) | − 1 holds (where “−1” comes
from the edge {t, u}). Then, we defineU1

G (e, wi) = {(wi, v ) | v ∈ DV1(wi)}∩U1
G (e)

for each wi ∈ WG (e). Without loss of generality, we assume that |U1
G (e, w1) | ≥

|U1
G (e, wi) | for each i = 2, · · · , δ. Now, we consider the case where |U1

G (e, w1) | ≤ 1
holds. Then, we obtain the following lemma:

Lemma 18. Suppose that |U1
G (e, w1) | ≤ 1 and the algorithm ALG outputs a solution

M . Then |PCG (M, e) | ≤ 4r − 3 and |CG (e) | + |PCG (M, e) | ≤ 2r2 + 2r − 2 hold
for every induced matching edge e ∈ M .
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Figure 4.4: WG (e) = V (G[UG (e)]) ∩ DV1(u) = {w1, w2, · · · , wδ } where wi has ki
neighbors, zi,1 through zi,ki .

Proof. From the definition, PCG (M, e) = {e} ∪ UG (e) ∪ TG (e). Then, by the
assumption |UG (e) | ≥ |TG (e) |, the following inequality holds:

|PCG (M, e) | ≤ 1 + |UG (e) | + |TG (e) |

≤ 1 + 2|UG (e) |.

For a r-regular graphG, |U0
G
(e) | ≤ r−1 holds. The assumption |U1

G (e, w1) | ≤ 1
means that |U1

G (e, wi) | ≤ 1 holds for each i, 2 ≤ i ≤ δ. It follows that |U1
G (e) | ≤

r − 1 and |UG (e) | = |U0
G
(e) | + |U1

G (e) | ≤ 2(r − 1). Therefore, |PCG (M, e) | ≤
1 + 4(r − 1) = 4r − 3 holds.

Since |CG (e) | ≤ 2r2 − 2r + 1 as shown in Proposition 2, the inequality

|CG (e) | + |PC(M, e) | ≤ (2r2 − 2r + 1) + (4r − 3)

= 2r2 + 2r − 2

is obtained. □

Next, suppose that |U1
G (e, w1) | ≥ 2 holds. We first depict all possible conflict

ways of an edge ofU1
G (e, w1) and another edge ofU1

G (e, wi), where i , 1.
Recall that any two edges in PCG (M, e) (and thus any two edges in U1

G (e))
are in conflict with each other to the solution M of ALG. There are five types of
conflicts of two edges, say, e1 and e2, in U1

G (e) as follows: (a) triangle-conflict,
(b) ^-quadrangle-conflict, (c) σ-quadrangle-conflict, (d) ρ-quadrangle-conflict,
and (e) pentagon-conflict. See Figure 4.5 and consider two edges e1 = {w1, z1} and
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Figure 4.5: Five types of conflicts of two edges e1 and e2 inU1
G (e)

e2 = {w2, z2} in U1
G (e). (a) If e1 is in conflict with e2 since there exists the edge

{w1, w2} as shown in Figure 4.5(a), then we say that e1 and e2 are in triangle-conflict
with each other by the edge {w1, w2}. (b) See Figure 4.5(b). If e1 and e2 are incident
to a common vertex z andU1

G (e) does not have the edge {w1, w2}, then we say that
e1 and e2 are in ^-quadrangle-conflict with each other. Note that if the graph
shown in Figure 4.5(b) has the edge {w1, w2}, then we regard the conflict of e1 and
e2 as the triangle conflict caused by {w1, w2}. (c) If there exists the edge {w1, z2}
but does not exist the edge {w1, w2} as shown in Figure 4.5(c), then we say that e1
and e2 are in σ-quadrangle-conflict with each other by {w1, z2}. (d) If there exists
the edge {w2, z1} but does not exist the edge {w1, w2} as shown in Figure 4.5(d),
then we say that e1 and e2 are in ρ-quadrangle-conflict with each other by {w2, z1}.
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(e) See Figure 4.5(e). If there exists the edge {z1, z2} but does not exist the edge
{w1, w2}, then we say that e1 and e2 are in pentagon-conflict with each other by
{z1, z2}. Recall, however, that all the input graphs are now C5-free. It follows that
the induced cycle ⟨u, w1, z1, z2, w2, u⟩ of length 5 must have at least one edge inside
of it. For example, the graph has the edge {w1, z2}, then we regard the conflict of e1
and e2 as the σ-quadrangle-conflict caused by {w1, z2}. Therefore, we do not need
to take the pentagon-conflict into account.

In the following, we slightly change the previous definition of triangle edges.
(We call the previously defined triangle edge the original triangle edge in the
following.) An edge in U1

G (e) is called a triangle edge of the edge e if its one
endpoints is wi and the other is w j inWG (e) \ {wi }, where wi , w1, w j , w1, and
wi , w j . That is, for example, an edge {w1, w3} is not regarded as a triangle edge
since its one endpoint is w1. Let TEG (e) be the set of triangle edges. Then, we
define as follows:

AG (e) = U1
G (e) \ (U1

G (e, w1) ∪ TEG (e)).

Every edge e2 in AG (e) is in conflict with every edge e1 in U1
G (e, w1), and

|U1
G (e, w1) | ≥ |U1

G (e, wi) | from the definition. Then, all the edges in AG (e)

are divided into the following two sets, the sets of triangle-conflict edges and
quadrangle-conflict edges.

Triangle-Conflict edge: If an edge e′ in AG (e) is in triangle-conflict with an edge
in U1

G (e, w1), then we say that e′ is a triangle-conflict edge. Let TCG (e) be
the set of triangle-conflict edges.

Quadrangle-Conflict edge: If an edge e′ in AG (e) is in^-quadrangle,σ-quadrangle,
or ρ-quadrangle-conflict with an edge in U1

G (e, w1), then we simply say
that the edge e′ is a quadrangle-conflict edge. Let QCG (e) be the set of
quadrangle-conflict edges.

From the definitions, U1
G (e) = TCG (e) ∪ QCG (e) ∪U1

G (e, w1) ∪ TEG (e) and
TCG (e) ∩QCG (e) = ∅ hold.

Recall that we are now assuming that |U1
G (e, w1) | ≥ 2. We take a look at the

edge e′ = {u, w1} and calculate the cardinality of the set CG (e′) of conflict edges
of e′. Note that each edge in TCG (e) creates one cycle C3 of length three, which
contains e′, and each edge in QCG (e) creates one cycle C4 of length four, which
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contains e′. Also, each edge in TEG (e) must be an original triangle edge of e′. It
follows that each edge in TCG (e)∪QCG (e)∪TEG (e) causes decrease of the upper
bound Γd of |CG (e′) | by at least one from Proposition 3 and Lemma 16.

Lemma 19. Suppose that |U1
G (e, w1) | ≥ 2. Also, suppose that the algorithm ALG

outputs a solution M . Then, |CG (e′) | ≤ 2r2 − β
2 −

1
2 holds, where e′ = {u, w1}.

Proof. See Figure 4.4 again and take a look at triangle-conflict, quadrangle-conflict,
and (original) triangle edges in the following:

(i) Suppose that p vertices in {w2, w3, · · · , wδ } of δ − 1 vertices are endpoints
of triangle-conflict edges. Then, we can verify that there are p cycles of length
three which contain the edge e′ = {u, w1}. Therefore, by Proposition 3, the value of
the upper bound Γd of e′ is reduced by at least pd. Since each of those p vertices
is connected to at most r − 1 edges in TCG (e), |TCG (e) | ≤ p(r − 1) ≤ pr holds.
Namely, we can estimate that each edge in TCG (e) reduces the value of Γd of e′ by
at least one on average.

(ii) Each edge in QCG (e) obviously generates one cycle of length four which
contains the edge e′ = {u, w1}. Thus, by Proposition 3, we can also estimate that
each edge in QCG (e) decreases the value of Γd of e′ by at least one.

(iii) Clearly, each edge in TEG (e) is a triangle edge of e. Also, it is an original
triangle edge of e′ = {u, w1}. Then, by Lemma 16, we can estimate that each edge
in TEG (e) decreases the value of Γd of e′ by at least one.

Consequently, we can estimate that each edge in TCG (e) ∪QCG (e) ∪ TEG (e)

decreases the value of Γd of e′ by at least one. Thus, all the edges in TCG (e) ∪
QCG (e) ∪ TEG (e) decrease the value of Γd of e′ by at least |TCG (e) ∪QCG (e) ∪
TEG (e) | in total.

Now, recall thatU1
G (e) = TCG (e) ∪QCG (e) ∪U1

G (e, w1) ∪ TEG (e). Then,

|TCG (e) ∪QCG (e) ∪ TEG (e) |

= |U1
G (e) \U1

G (e, w1) |

≥ |U1
G (e) | − (r − 1)

holds since |U1
G (e, w1) | ≤ r − 1. Furthermore, since |U1

G (e) | ≥ β−1
2 − (r − 1) as
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shown in Lemma 17, we obtain the following:

|TCG (e) ∪QCG (e) ∪ TEG (e) |

≥ |U1
G (e) | − (r − 1)

≥
(
β − 1
2
− (r − 1)

)
− (r − 1)

=
β − 1
2
− 2(r − 1).

Therefore, the upper bound Γd of e′ decreases by at least β−1
2 − 2r + 2.

From Proposition2, we obtain the following inequalities:

|CG (e′) | ≤ 2r2 − 2r + 1 −
(
β − 1
2
− 2r + 2

)
= 2r2 − 1

2
− β

2
.

This completes the proof of this lemma. □

From Lemma 19, we can get the following corollary:

Corollary 3. Suppose that |U1
G (e, w1) | ≥ 2 and the algorithm ALG outputs a solution

M . Then, |CG (e) | ≤ 2r2 − 1
2 −

β
2 for every induced matching edge e ∈ M .

Proof. From Lemma 19, we know that there is an edge e′ in UG (e) of PCG (M, e)

such that |CG (e′) | ≤ 2r2 − β
2 −

1
2 for any induced matching edge e. Furthermore,

Remark 2 shows that |CG (e) | ≤ |CG (e′) | must be satisfied for e and e′. Therefore,
|CG (e) | ≤ 2r2 − 1

2 −
β
2 holds. □

The above corollary gives us the following lemma:

Lemma 20. Suppose that |U1
G (e, w1) | ≥ 2 and the algorithm ALG outputs a solution

M . Then, |PCG (M, e) | ≤ 4r2−1
3 , and |CG (e) |+ |PCG (M, e) | ≤ 8r2−2

3 hold for every
induced matching edge e ∈ M .

Proof. From Corollary 3, we know that for each e ∈ M , |CG (e) | ≤ 2r2 − 1
2 −

β
2

holds. From the definitions, PCG (M, e) ⊆ CG (e) holds. Therefore, we obtain

|PCG (M, e) | = β ≤ |CG (e) | ≤ 2r2 − β
2
− 1
2
.
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That is, β ≤ 2r2 − β
2 −

1
2 holds and hence β is bounded from above as follows:

β ≤ 4r2 − 1
3
. (4.1)

By the definition |PCG (M, e) | = β,

|CG (e) | + |PCG (M, e) | ≤ 2r2 − β
2
− 1
2
+ β

= 2r2 +
β

2
− 1
2

≤ 8r2 − 2
3
,

where the last inequality comes from the above (4.1). This completes the proof of
this lemma. □

From Lemmas 18 and 20, we have the following corollary:

Corollary 4. Suppose that a solution M is obtained by the algorithm ALG. Then,
|CG (e) | + |PCG (M, e) | ≤ 8r2−2

3 holds for every induced matching edge e ∈ M .

Proof. By Lemma 20, we know that for |U1
G (e, w1) | ≥ 2,

|CG (e) | + |PCG (M, e) | ≤ 8r2 − 2
3
.

From the assumption r ≥ 3 and Lemma 18, we obtain the following inequality also
for |U1

G (e, w1) | ≤ 1:

|CG (e) | + |PCG (M, e) | ≤ 2r2 + 2r − 2

≤ 8r2 − 2
3
.

This completes the proof of this corollary. □

The following is our main theorem:

Theorem 9. The algorithm ALG is a
(
2r
3 +

1
3

)
-approximation algorithm for MaxIM

on C5-free r-regular graphs, whose running time is O(m4).

Proof. FromRemark 2, the solution for an inputC5-free r-regular graphG = (V, E)
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satisfies the inequality in Lemma 15, that is, we have obtained∑
e∈M

(|CG (e) | − |PCG (M, e) |)

≥ 2(|E | −
∑
e∈M
|PCG (M, e) |),

or equivalently,∑
e∈M

(|CG (e) | + |PCG (M, e) |) ≥ 2|E |. (4.2)

From Corollary 4 and |ALG(G) | = |M |, we obtain:∑
e∈M

(|CG (e) | + |PCG (M, e) |)

≤ |ALG(G) |(8r2 − 2)
3

(4.3)

Suppose that |V | = n, and hence |E | = nr
2 . Then, the above (4.2) and (4.3) give the

following inequality:

|ALG(G) |(8r2 − 2)
3

≥ nr .

Thus,

|ALG(G) | ≥ 3nr
8r2 − 2

.

It is known [38] that the size |OPT (G) | of an optimal solution is at most nr
4r−2 .

Therefore, the approximation ratio is as follows:

|OPT (G) |
|ALG(G) | ≤

2r
3
+
1
3
.

□

4.3 Remark

On the approximability of MaxIM on C5-free r-regular graphs. The previously best
known approximation ratio was ( 3r4 −

1
8 +

3
16r−8 ). In this thesis, we have provided a(

2r
3 +

1
3

)
-approximation algorithm ALG. One can verify that the new approximation

84



ratio of ALG is strictly better than the old one when r ≥ 6. Recall that ALG initially
finds a maximal induced matching M in Step 1. However, it is important to note
that Step 1 can be replaced with the

(
3r
4 −

1
8 +

3
16r−8

)
-approximation algorithm as a

subroutine. Step 2 surely finds an induced matching of the same or larger size than
the initial induced matching. This implies that the “hybrid” approximation algo-
rithm achieves the approximation ratio of min

{
3r
4 −

1
8 +

3
16r−8,

2r
3 +

1
3

}
for MaxIM

on C5-free r-regular graphs for every r ≥ 3.
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Chapter 5

Conclusion

In the chapter 3, we have studied the problem of MaxDdIS and have obtained
(in)approximability of MaxDdIS on r-regular graphs, where d ≥ 3 and r ≥ 3. On
inapproximability of MaxDdIS on r-regular graphs, we have proved that it is NP-
hard to approximate MaxD3IS on 3-regular graphs within 1.00105 unless P=NP.
Furthermore, restricting d ≥ 3 and r ≥ 3, we get results that there exists no σ-
approximation algorithm for MaxDdIS on r-regular graphs unless P=NP: (i) for
d = 3, r ≥ 3 and σ < 95r2 (r−1)+190

95r2 (r−1)+188 , (ii) for d = 4, r ≥ 3 and σ < 95r2 (r−2)+190
95r2 (r−2)+188 ,

and (iii) for d ≥ 5, r ≥ 3 and σ < 95r2 ( ⌈d/2⌉−1)+190
95r2 ( ⌈d/2⌉−1)+188 . On approximability of

MaxDdIS on regular graphs, we first concentrate on MaxDdIS on r-regular graphs,
and design O(rd−1)-approximation and an improved O(rd−2/d)-approximation al-
gorithms. Then, restricting r = d = 3, we focus on MaxD3IS on cubic graphs,
and we have designed four approximation algorithms with the approximation ratios
2.4 , 2 + 4

n−2 , 2 and 1.875, respectively. Moreover, we have produced a PTAS
algorithm for planar graphs.

In the chapter 4, we have studied MaxIM. On C5-free r-regular graphs, we have
designed an improved approximation algorithm with the perform factor of 2r+2

3 .
On general r-regular graphs, our algorithm can be utilized, and unfortunately,
we can not ensure that whether this algorithm is strictly better than the previous
approximation algorithm. Thus, restricted general regular graphs, it is still open
for designing a better algorithm than the previous best approximation algorithm.
Moreover, some variants of maximum matching problem is also open.
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