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Abstract 

The aim is to study the use of machine learning algorithms for the classification 

hydrothermal seafloor rocks measured underwater using Laser-Induced Breakdown 

Spectroscopy.  The rocks were classified concerning their labels assigned to each rock, and 

geological groups formed ternary diagram with the relative ratio of Cu-Pb-Zn. In this 

research the target rocks are obtained from deep-ocean in Okinawa Japan. These were 

hydrothermal deposit sea-floor rocks. 

Further, these rocks were brought into the laboratory and broken into pieces and made the 

pellets. The experimental setup which resembles the ocean, then to test using ChemiCam 

device which is a LIBS device which is specifically designed for the chemical elemental 

analysis in the deep ocean is used to fire the laser beams on rocks. The proposed methods 

for classification of rocks with respect to their labels and for geological group are evaluated 

using with and without linear detrend along with the principal component analysis (PCA) 

as a pre-processing step which significantly reduces the dimensionality of the data, with 

classification algorithms such as the support vector machine (SVM), k-nearest neighbor 

search (KNN) and artificial neural network (ANN) methods. The performance of the 

classification algorithms depends on the size of the dataset, to prove this the dataset has 

been divided into two sets of 100 laser shots of each rock and 300 laser shots of each rock.  

Additionally, removing the noise from the spectra such as linear trend using linear detrend 

operation from the data enhances the performance of the classification in terms of 

sensitivity. The best classification performance concerning the rock label concerning 
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sensitivity is obtained using an SVM linear kernel algorithm with 95%. The best 

classification performance concerning the geological group is obtained using the SVM 

method with 98% accuracy. The one-sided Wilcoxon signed rank test is applied to the 

classification results in the rock label and group cases, and the results indicate that the SVM 

algorithm has statistical significance over the other algorithms while classifying the rock 

labels and rock group.  

Keywords: Seafloor deposits, Classification, PCA, SVM, KNN, ANN, LIBS 
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1 Introduction  

1.1 Aim and highlights of this study 

The manufacture of hi-tech applications such as a smartphone, hybrid cars, photovoltaic 

installations and other goods and types of machinery requires abundant industrial minerals 

and metals. Today the demand for industrial minerals and metals are multiplying due to 

rapid growth and growing need of BRIC (Brazil, Russia, India and China) countries. Today 

most of the demands of metals and industrial minerals are derived from onshore mining 

but to satisfy the growing need; scientist predicts fear of a shortage shortly. To overcome 

this problem and to meet the demand in future, the scientists started to look for the 

alternative option, and one of the practical and feasible options is deep ocean mining, 

though it is still too expensive. The ocean mining sites are around hydrothermal vents at 

about 1000 – 3000 metres below the ocean surface. The vents create sulphide deposits, and 

it contains various minerals such as copper, manganese, cobalt and zinc. The survey of the 

location using before mining is one of the critical steps, it helps to understand the minerals 

and chemical present in surrounding that area beside this it helps to understand the deep 

sea geochemical processes.  Such types of surveys are carried out using a remotely operated 

vehicle (ROV) with modern chemical sensors. 

NASA has developed the Chemcam device using LIBS as a major device for in situ 

chemical analysis on Mars[1]. On similar grounds, of Chemicam device, the Chemicam is 

successfully developed for analysis in the ocean, and it is a modern oceanographic 
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sensor[2]. The LIBS works on the basic principle of atomic emission spectroscopy. The 

high energy and ultra-short beam is focused on breaking the molecular bonds of the 

compound and forms a plasma; this emits specific wavelength. LIBS analyses solid, liquid 

and gas matter regardless of its physical state. 

The hydrothermal rocks were obtained from the deep ocean using ROV from the site 

Okinawa Japan. These rocks were labelled concerning its geological location (latitude and 

longitude information) from where obtained. These rocks are further investigated in the lab. 

These rocks are broken into pieces and then crushed till the fine powder is obtained. Further, 

these rocks were pressed at pressure to make pellets. An artificial experimental setup was 

made in the lab which resembles the ocean. The pellet was dip into a container filled with 

ocean water. The LIBS device is also dipped into the ocean water container. The laser beam 

originated in the container filled with ocean water, strikes on pellet which is also in the 

container filled with ocean water; the plasma gets generated in the water, that plasma was 

recorded using ICCD camera. This experiment was repeated for 30 rocks.  

In this thesis, the method has been proposed to classify the rocks not only concerning its 

label but also concerning geological group it belongs[3]. The machine learning algorithms 

have been investigated those are SVM, KNN and ANN. The performance of these 

algorithms have been compared using one-sided Wilcoxen signed rank test, and the best 

algorithm has been proposed to classify the rocks not only concerning its label but also 

concerning the geological group.  
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1.2 Energy requirement  

Energy is the critical requirement for the growth of any society or country. One of the 

prominent energy resources is natural gases, oil, metals and minerals. The state which has 

more reservation of these natural resources has great ability to exert influence or project 

power on a global scale. No society or state can flourish without enough energy resources. 

The applications of these energy resources are ranges in every aspect of our life right from 

fuel required for cars to the airplane to travel, in the manufacturing industries such as a 

smartphone, computer hardware industries, cars and electronic devices industries which 

require industrial metals. Apart from these, the energy needed to operate any devices right 

from a smartphone, iPad, computer, laptop and to generate the electricity from coal, trains 

and aeroplanes to travel. It is almost impossible to imagine life without the need for energy. 

The demand for these natural gases, oils, minerals and metals has been increasing day by 

day, and the available resources are shrinking day by day[4]. Till today the energy demands 

were met by onshore mining, but it is time to look for alternative resources so that that 

requirement will be fulfilled in the near future.  One of the prominent alternative to 

extracting these energy resources is ocean mining also known as offshore mining[5]. 

It takes millions of years to form the gases and oils in the ocean. It is formed by flushed 

particles from the land, buried and compressed in the layers of several kilometres, the earth 

atmosphere, pressure and temperature conditions; bacteria convert the biomass into 

precursor substance to hydrocarbons[4]. These hydrocarbons spread over specific layers to 

form the rock and sediments[4]. Today’s natural resources are between 15 to 600 million 
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years old. Oil and gas are usually found where vast layers of sediment cover the ocean 

floor[4].  

As ocean covers almost over 70% of the earth. Usually, to find out the location of these 

natural gases, seismic equipment’s are used, which transmits the sound waves which get 

reflected from the layers of rock and sediments. From the sounds, geologists can estimate 

whether the layers could contain oil or natural gas[5].  

1.3 Marine Minerals 

The ocean is a treasure of valuable energy resources. The oil and gas have been extracted 

from the ocean for many years. Now, the primary focus is on manganese noodles which 

are usually located at a depth of below 4000m, gas hydrate located around 350 to 5000 

meters and cobalt crust which ranges between 1000 and 3000 meters[5].   

The manganese noodles are composed of iron, silicates and hydroxides. These elements 

are of economic interest. The manages noodles are usually found in the west coast of 

Mexico, Peru, Basin and the Indian ocean. The cobalt crusts form at the depths of 1000 to 

3000 meters on the flanks of volcanoes and therefore usually occur in submarine volcanoes. 

These submarine volcanoes consist of copper, nickel and platinum. Massive sulphides are 

sulphur-rich ore that originates at the “black smokers” are also of great interests[5].     

1.4 Hydrothermal Vents 

Hydrothermal vents were discovered in the Pacific in 1979; they are metal-bearing sulphur 

compounds[5]. Besides hydrothermal vents, there are manganese nodules and cobalt which 
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consists of metal-bearing mineral resources. Massive sulphides originate at hot vents in the 

ocean due to sulphide-enriched water flows out of the seabed[5]. One of the active 

hydrothermal vent images is shown in Fig.1.1. The hydrothermal vents are found along 

plate boundaries and active volcano in the ocean[5].  Table 1.1 shows the details of 

hydrothermal vents in the ocean. 

1.4.1 Basics of Hydrothermal Vents  

It forms due to heat exchange between crustal rocks and the ocean. Seawater penetrates the 

seafloor for several thousand meters. At these depths, the seawater is heated to due to 

temperatures of around 400 degrees Celsius by magma. It undergoes many chemical 

changes which bring nutrients to the sea-floor. These nutrients are essential because 

bacteria need them to perform chemosynthesis[6].  

Chemosynthesis is a process somewhat similar to photosynthesis but in the photo without 

the use of sunlight, after the water seeps through the crust oxygen and potassium are 

removed from the seawater as the water sinks deeper, sodium, potassium and calcium into 

the water from the surrounding crust. Even more in-depth in the crust, water reaches its 

highest temperature from being heated by the hot magma and other element dissolve in the 

water such as zinc, iron, hydrogen sulphide and hydrogen[6] as shown in Fig. 1.2[7].  

Next, the hot fluid carrying the metals starts to rise towards the crust. The hot hydrothermal 

fluids mix with the cold seawater as they are emitted from the hydrothermal vents and form 

metal sulphide materials as shown in fig. 1.2[7].  
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These warm fluids are rich in chemicals so chemosynthetic bacteria can use them for 

chemosynthesis they are the primary producers in this system, and they utilise sulphur, 

hydrogen, methane and other compounds released by the reactions between sea-water and 

magma.  

The organisms that thrive near these vents are called extremophiles. These extremophiles 

can survive extreme temperatures, pressures, salinities are hostile to normal life.  

 

1.4.2  Global distribution of hydrothermal vents.  

Hydrothermal vents have been found most of the places in the world map. They get formed 

between the range of 1000 to the 4000m range. As shown in Fig. 1.3[8] there are many 

locations where one can find the hydrothermal vents. There are many confirmed 

hydrothermal vents around east pacific rise. According to a geologist, there are four 

common areas of origin for hydrothermal vents[5].  

 At Mid Ocean Ridges: These are mountain ranges in the ocean that circle the earth 

like the seam on a baseball. At these locations, the oceanic plates drift apart, and 

this drift produces the fractures through which water sinks.  

 At Island-Arc Volcanoes: When one oceanic plate is forced beneath another one 

under the sea, these volcanoes get formed.  

 Volcanoes behind island arcs (black arc basins): These are formed when one plate 

submerges beneath another, tension is produced in the overlying plate.  
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 At intraplate volcanoes: These volcanoes form in the interiors. The Hawaiian island 

group is an example.  

Deep sea mining is an extremely challenging task and since the operation is being 

conducted in deep ocean surface where the environmental conditions are at extreme and 

using the remote sensing tool is one of the options. The laser-induced breakdown 

spectroscopy (LIBS) is one of the remote sensing devices which has been developed by the 

University of Tokyo[2].  

1.5 In-situ chemical sensors 

Since due to extreme environmental situation in the deep sea, the in-situ chemical sensors 

are used. There are various advantages of using an in-situ chemical sensor such as it can 

cover the larger area with a maximum number of sampling, with high spatial resolution. 

Some of the in-situ chemical sensors are sensors with electrodes such as pH sensor [9]. 

There are other sensors as well such as optical sensors. Optics widely used in-situ for 

monitoring physical, chemical and biological parameters in the deep sea [10]. Mass 

spectroscopic sensors have developed for multi-elements in gas sea-water[11], [12].  Laser 

Raman (LR) spectroscopy has been applied to deep-sea surveys; it is a technique based on 

inelastic scattering of light of vibration of the molecule [13].  The LR spectroscopy has 

been successfully deployed in the deep ocean for the measurement of rocks and vent fluids 

at hydrothermal vents [14].  
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1.6 Laser-induced breakdown spectroscopy 

To understand the Chemicam device, it is essential to understand the laser-induced 

breakdown spectroscopy(LIBS). LIBS is a chemical sensing device. Though there are 

several sensors, for example, Raman sensor for in-situ chemical analysis of the chemicals, 

gases in liquids but in-situ analysis of solids remains limited[15].  Laser-induced 

breakdown spectroscopy is one of such sensors. It is a tool to provide a fast and in situ 

chemical analysis that determines the elemental composition of the target. The advantage 

of using laser-induced breakdown spectroscopy that it does not need sample preparation[2]. 

It is extremely fast in measurement time. It usually takes a few seconds for analysis of a 

single spot. It covers a wide range of elements such as H, Be, Li, C, N, O, Na and Mg[16].  

It is a form of atomic emission spectroscopy that analyses the light emitted from atom and 

ions of material from the plasma emitted by focussing the laser beam on the target. In the 

first stage, the plasma is highly ionised and then electron-ion recombination[17]. The light 

emitted from the spectrometer is recorded using the intensified charged-coupled device 

(ICCD) for elemental analysis. The plasma produced for each atom and ion varies. The 

significant advantages of LIBS are that it requires no sample preparation; the results are 

available in real time.  

1.6.1 LIBS Applications  

LIBS has been used for many in-situ elemental analysis which includes a solid, a liquid or 

a gas, and has wide applications in the medical science[18], geomaterials[19], 
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explosives[20], recycling[21], forensics[22], agriculture[23] and nuclear sectors[24]. 

Considering overall accuracy, it can be said that the suitability of LIBS for in-situ analysis 

is comparable to XRF [25].  LIBS has a great advantage in application to aquatic 

environments since XRF suffers from great attenuation of X-rays in water. The main reason 

for this LIBS popularity is its detection ability[26]. The spatial confinement and fast 

discharge enhance the signal multiple times[26]. So it has become famous and promising 

analysis method in the steel industry[21]. The LIBS application has been demonstrated in 

the food industry for the inspection of the wheat, barley etc. LIBS has shown element 

tracing at ppm level in the starch-based food samples with an acceptable precision[27]. 

1.6.2 The working principle of LIBS 

The Fig. 1.4 shows the general setup for laser-induced breakdown spectroscopy. A mirror 

transfers the pulsed laser radiation to a focusing lens. The sample to be analysed is placed 

in a rotating sample holder. The laser beam is being adjusted in such a way using a mirror 

that if directs on sample perpendicularly to the sample surface. The focused laser beam 

generates the plasma at the sample surface. The emitted plasma is collected using collecting 

lens as shown in Fig. 1.4.   The control unit generates the laser. The monochromator collects 

the signal. To improve the signal to noise ratio, the plasma radiation is recorded only during 

the lifetime of the plasma. 
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1.6.3 The working principle of plasma  

In principle, whenever the laser strikes on the object, the electrons get excited, and it 

transits to a higher level as shown in Fig.1.5. However, the excited electron will be unstable 

and cannot remain at the higher state and returns to its original state while transiting to its 

original position it emits the photon which will be recorded. If we plot the intensity of 

photon along with the wavelength, we will get the characteristics of the material.  

1.7 ChemiCam Device 

ChemiCam is a laser-induced breakdown spectroscopy device (LIBS). LIBS is a rapid 

chemical analysis device. It uses a laser pulse and creates micro plasma on the target sample. 

The laser is a Q-switched Nd: YAG DPSS laser with a wavelength of 1064nm. It has 

maximum pulse energy is 20mJ, with the frequency of 2Hz. It has a pulse duration of 150ns. 

In the next generation device, the pulse duration can be raised up to 250ns. The laser system 

is consisting of two photodiodes that monitor the laser-pulse characteristics. The Fig. 1.6[2] 

shows the ChemiCam device.  

The plasma generated underwater exist for a concise time, not more than 2.5µs. The 

intensity of the plasma generated in the air is higher than the intensity of the plasma 

generated in the water. The custom built Czerny-Turner spectrometer is used in the 

ChemiCam device. It has light throughput of f/4.5. The ICCD model with high sensitivity 

in the spectral range was used. The range and resolution of the spectrometer were chosen 

based on preliminary experiments using rocks.  
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The optical system of ChemiCam has a high efficiency of light collection by separating 

fibres for laser delivery and plasma observation. One 600-µm-core fibre is used for delivery 

of laser light to the target’s surface and multiple bundled 100--µm-core fibres for 

observation of light emitted from the plasma. The CPU controls and communicates with 

the laser, ICCD camera and other components and stores data. Fig 1.7 shows the long pulse 

laser beam. The deep sea LIBS sensor has been developed over the years by improving the 

performance and adding new features. It was all started in the year 2012; the first model 

was known as I-SEA (IN-situ Seafloor element analyser). The length was 1.5m diameter 

0.3m and weight of 110kg in the air. It has two lasers, a double pulse technique, a 

spectrograph, ICCD for a detector and CPU[16]. The next generation was of the sensor is 

Chemicam developed in 2013. It is slightly smaller than the I-SEA, with a length of 1.3m 

and a diameter of 0.3m. The weight is more than the I-SEA around 150 Kg in the air[16]t. 

In this thesis 4th generation of the LIBS, the sensor device has been used as shown in fig. 

1.6 and Fig. 1.7[2] The detail specification is listed in Table 1.2 [15] 

1.8 Literature Review  

One of the purposes of usage of machine learning algorithms in LIBS is classified as the 

material on an elemental basis. Obtaining the desired information is one of the significant 

challenges. This can be achieved by using machine learning. The machine learning learns 

the patterns in the data and predict future events or predict[28]. The LIBS data contain 

many features; in other words, it is also called as dimensions. Not all the dimensions are 

useful; some of the dimensions contain important information while other dimensions 
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contain less critical information. The principal component analysis (PCA) has been used 

for dimensionality reduction purpose. There are other techniques as well which could have 

been used for dimensionality reduction purposes such as wavelet transform (WT) and 

independent component analysis (ICA). However, PCA is a linear dimensionality 

reduction technique, and the data will be rearranged in decreasing order of variance. The 

dimensionality can be reduced manually, by choosing an important dimension which 

represents an important chemical element, and it includes human interference for pre-

processing data. In order to keep it completely autonomous, the principal component 

analysis (PCA) algorithm has been used.  

Machine learning algorithms are used for decision making purpose[28]. The machine 

learning algorithms became popular because most of the classification challenges contain 

high dimensionality data, a human can perceive only three dimensions, so the machine 

learning algorithms can build models using high dimensional data, these models can be 

integrated into working software support the kinds of product.  Here, the LIBS data 

obtained from any material such as liquid, gas or solid contains patterns, these patterns 

reveal the information about the material, these patterns can be learnt by the machine 

learning algorithm, and it can predict the unknown inputs.  In this work, three algorithms 

have been used, and those are Support Vector Machine (SVM), K-nearest neighbour search 

(KNN) and Artificial Neural Network (ANN) with backpropagation algorithm. 

The rise of artificial intelligence has helped in deciding remote sensing. The  NASA 

in its Mars rover mission has accomplished multielement chemical analysis on the mars 

planet using ChemCam device[29]. The ChemCam device is a LIBS device which is used 
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for multielement chemical analysis on the mars[30] [31]. Statistical and machine learning 

techniques achieve the atomisation in the multielement chemicals.  

One of the challenges in the data obtained from the LIBS device is pre-processing of the 

data. The LIBS data is high dimensional; to reduce the dimensionality is a significant 

challenge. This can be achieved by PCA. It is a favourite feature extraction technique[32].  

It projects highly dimensional data onto a lower dimension using a linear transformation 

[33], [34]. Typically, not all features are essential for creating a model, and there is a 

threshold number of dimension above which the performance of the model can degrade 

[35]. The wavelet transform is an alternative to PCA, and it is applied to the LIBS signals 

[36]. Wavelet transforms and PCA functions in a different way, wavelet transforms use 

wavelets derived from the data as a basis, and PCA uses an eigenfunction derived from the 

data. In [37], [38], the authors carried out the manual identification of features based on 

the peak of the critical spectra and the respective wavelength.   

As NASA has developed ChemCam for Mars rover mission[39], on similar ground, The 

University of Tokyo has developed the ChemiCam device to probe the ocean[2].  Much 

work has been carried out by our team using ChemiCam. The ChemiCam equipped with 

ROV is used for deep-sea hydrothermal vent analysis and performed in-situ multielement 

chemical analysis[2]. Hydrothermal vents are essential since it contains essential industrial 

minerals and metals such as copper, lead zinc and iron[40].  The ChemiCam device has 

been inspected for generating spectra at high pressure up to 30MPa [41], [42]. This 

ChemiCam device is inspected for both liquids and immersed solids in in-depth ocean 

surveys [2]. A calibration-free technique was applied to measure the brass alloy standard 
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samples that were merged in seawater [42]. The LIBS spectra’s nonlinear temperature is 

quantified using the principal component regression (PCR) and partial least squares (PLS) 

algorithms[43].  

After developing the chemicam by the University of Tokyo and tested under various 

conditions, there is still one thing that was remained which can help in deciding remote 

sensing. The use of machine learning algorithms to create a model, the model which is 

trained from enough data, if it identifies the unknown data, then this will save much time. 

By using such a model, rock identification can be made in real time in the ocean. This was 

the research gap which was necessary to fill. This thesis is a successful attempt to fill this 

gap.  

1.9 Motivation and research gap  

In section 1.2 and 1.3, it has already been explained about the need for minerals, metals, 

gas and oil to the human society. The demand has been being rapidly increasing, and the 

available resources are not enough to meet the demand, in such condition, it better to search 

for other viable options[5]. Until now, we have done onshore mining, and it is estimated 

that the resources obtained from onshore mining may not meet future demand. It is known 

that earth contains only around 30% of land and 70% water. So it is evident that most of 

the energy resources are hidden in the ocean. Ocean mining also knew offshore mining. 

Other than onshore and offshore mining, there is one more option that is, outer planet 

mining, but in the situation, it seems to be very difficult for at least few more decades and 

also it will be much expensive than offshore mining.  
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This thesis has explored the use of machine learning algorithms with help laser-induced 

breakdown spectroscopy (LIBS) ChemiCam device to aid in the hydrothermal rock 

classification not only concerning its label but also concerning its group. The group of the 

rocks have been formed based on the copper, zinc and lead elemental content in the rocks. 

The outcome machine learning model of this thesis will be helpful for in-situ multi-element 

chemical analysis in real time as shown in Fig. 1.8 

1.10 Thesis Overview 

This thesis focus on classification and statistical analysis of rocks obtained from Okinawa 

and measured using laser-induced breakdown spectroscopy. In the Chapter 1 introduction, 

the need of the research, literature survey, motivation and research gap have been explained 

along with that, the significant keywords have been explained such as marine minerals, in-

situ chemicals, LIBS, ChemiCam etc.  Chapter 2 is focused on ChemiCam device, data 

collection during sea-trials and experimental setup during in the lab. Chapter 3 is focused 

on methodology, machine learning and statistical analysis methods have been explained. 

Chapter 4 focused on, results and analysis, the results obtained for label classification of 

10 rocks and 30 rocks, and group classification of 30 rocks have been explained.  The last 

chapter 5 is focused on the conclusion of the whole thesis.  
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1.11 Figures 

 

Fig. 1. 1 Active Hydrothermal vent. Image from NDSF, ROV Jason, © Woods Hole Oceanographic 
Institution  
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Fig. 1. 2 Basics of a Hydrothermal vent 
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Fig. 1. 3 Distribution of Hydrothermal vents  
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Fig. 1. 4 Working principle of LIBS 

 

 

Fig. 1. 5 Plasma emission principle 
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Fig. 1. 6 The 3000 m depth rated LIBS device ChemiCam 

 

 

Fig. 1. 7  A long pulse laser beam 
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Fig. 1. 8 Research gap and motivation 

1.12 Tables 

Table 1. 1 Deep-sea Hydrothermal Vents 

 Hydrothermal Vent  

Depth  [m] 700 ~ 2000 

Mineral from  Polymetallic sulphides  

Element  Cu, Pb,Zn,Au, Ag 
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Characteristics  Hot vent field with a maximum fluid 

temperature of 270 to 380 degree Celsius  

Sources  Ocean Basins 

Location  Back-arc basin, mid-ocean ridge, 

Volcanic Arc 

 

Table 1. 2 Specifications of ChemiCam device 

Specification  Quantity  

Length (m) 1300 

Diameter (mm) 300 

Maximum depth (m) 3000 

Weight in the air (kg) 160 

Weight in water (kg) 40 

Power consumption (W) 140 

Power Supply (VAC) 100 

Communication  RS 232 or Ethernet  

Laser type Q-switched DPSSL Nd: YAG 

Laser pulse type Long pulse 

Maximum pulse energy (mJ) 20 

Pulse duration (ns) 150 

Laser wavelength (nm) 1064 

Frequency (Hz)  2 

Spectrometer type Czerny-Tuner 

Spectral range (nm) 320-550 

Spectral resolution (nm) 0.25 

Detector Type ICCD 

Number of pixels 1024 x 256 
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Fibre length (m) 5 

Fibre type  1 600-µm-core and 45 100 µm-core bundle  

Focussing lens  5 x Objective lens 

Functions  Linear stage pump for removing debris  

Autofocus Yes 
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2 Machine Learning Models for Classification 

2.1 Introduction  

The search of ocean mining to meet the hunger of energy is on demand, the use of artificial 

intelligence is the smart way meet the hunger of energy. The hydrothermal deposits carry 

importance since it contains essential metals and minerals.  The second chapter is focused 

on data preparation. Now in this chapter, how this data has been used to create the learning 

model which identifies the certain patterns from the data and predicts the unknown data, 

the methodology has been explained, the algorithms used for pre-processing, classification 

and statistical analysis purpose. The data was normalised before it pre-processed. The new 

technique has been investigated that is “linear detrend” on the spectroscopic data to see the 

effect of it on the classification results. The principal component analysis has been used as 

a dimensionality reduction technique.  

The overview of the methodology is shown in Fig. 2.1. Total of 300 LIBS shots was 

recorded on each rock. This dataset is divided into two parts, in the first part, only 100 

shots of each rock were considered, and in the second part, all data that is 300 shots of each 

rock were considered as shown in Fig. 2.1. The dataset has been divided into two parts, to 

investigate the effect of increasing the dataset on the learning models.  

Further, the effect of linear detrend has been investigated. To investigate the effect of linear 

detrend, each part of the dataset is verified by applying linear detrend operation and without 
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linear detrend operation. So the total four learning models have been verified as shown in 

Fig.2.1 

2.2 Pre-processing of data 

The Fig.2.2 shows the sequence of methods followed to create the model. The final block 

shown in Fig 2.2 shows the statistical analysis using the Wilcoxon signed rank test. The 

normalisation process brings the feature values between -1 to 1. This is achieved by 

subtracting the mean value and divided it by standard deviation from each feature. The 

linear detrend is removes the regular shift occurred due to electronic noise. PCA is a feature 

reduction technique since all feature does not carry important function. Further various 

classification algorithms applied such as SVM, KNN and ANN to classify each spectrum.  

The details of each block are given further explanation.  

2.2.1 Normalisation 

The normalisation process brings all features on the same scale with a mean of -1 and a 

variance of 1 [44]. The normalisation process is achieved by subtracting the mean of the 

feature and divided it by the standard deviation of the feature. 

 
𝑋′ =

(𝑋 − 𝑋̅)

𝜎
 

(2.1) 

 

Where X is the original feature, 𝑋̅ is a mean value,  𝜎 is the tandard deviation, 𝑋′ is a 

normalized value 
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2.2.2 Principal component analysis  

The Principal component analysis is a dimensionality reduction technique. The data 

produced from the laser-induced breakdown spectroscopy, i.e. ChemiCam device is 1024 

dimension. As the attributes of the data increases, the complexity of the data also increases, 

most of the time, all dimensions do not carry relevant information, in such cases, the 

dimensionality reduction technique plays a vital role to discard the redundant information 

from the data[45]. The principal component analysis (PCA) is one of such techniques. 

 Definition of Principal Components[46]:  

Suppose 𝑥 is a vector of 𝑟 random variables and 𝑥𝑇 denotes the transpose of 𝑥. So, 

 𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, … . , 𝑥𝑟]𝑇 (2.2) 

 

Let us look at the linear function ∝1
𝑇 𝑥 of the elements of 𝑥 which has maximum variance, 

where, ∝1 is a vector of r constants, ∝11, ∝12, … , ∝1𝑟, so that  

 
∝1

𝑇 𝑥 = 𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑟𝑥𝑟 = ∑ ∝1𝑗 𝑥𝑗

𝑟

𝑗=1

 
(2.3) 

 

So the aim is to find out the linear function that transforms random variables into a new 

random variable so that new variable ∝1
𝑇 𝑥 has maximum variation.  

Next step is to find out a new set of random variables using linear functions based 

decreasing order maximum variance, these new random variables are called as principal 

components.  
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2.3 Machine learning 

2.3.1  What is Machine Learning  

Today is a big data era, there are about 1 trillion webpages and almost one hour of video is 

being uploaded for every second[47]. Similarly, data is being been generated everywhere 

and every point for example in medical labs, in the ocean from Hubble telescope and the 

images sent by Mars rover etc., the meaningful information can be obtained from this big 

data. Machine learning is a set of methods which uncover meaningful information from the 

big data. Machine learning is a subtopic of artificial intelligence (AI). It provides the ability 

to learn and improve the experience automatically without being programmed. Its main 

aim is to allow a computer to learn automatically without human assistance. In machine 

learning, the learning occurs by extracting useful information from the data through 

algorithms that distinguish between signal and noise, once it finds the usage pattern, it lefts 

the everything else as noise, for this reason, the machine learning algorithms also known 

as pattern recognition[48]. Learning requires intelligence, and it covers a wide range of 

processes, so it is difficult to define precisely[47]. Zoologist and psychologists study 

learning in humans and animals, and with the help of this, we can design a machine which 

learns similarly. One of such learning is artificial neural networks, similar to biological 

learning.  
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2.3.2 Types of Machine Learning Methods 

Machine learning algorithms are roughly categorised into two main types. Those are 

supervised learning and unsupervised learning.  

2.3.2.1  Supervised Machine Learning  

In this type of algorithms, labelled data is used to predict future events. It maps the input 

variable and the output variable. Supervised learning algorithms are used when we know 

the exact label of output data. The objective is to learn a mapping from inputs 𝑥 to outputs 

𝑦, given a labelled set of input-output pairs 𝑀 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁   here M is called the training 

set and N is the number of training examples. In the same way, the response variable 𝑦𝑖 

can be anything, in general 𝑦𝑖 ∈ {1,2, … , 𝐶}. The response variable can be categorical or 

nominal variable from some finite set. If C=2 then this is called binary classification if C>2 

then this is called as Multiclass classification.  

Some of the examples of supervised learning are as follows,  

 Predicting the stock market  

 Predicting age viewer of youtube 

 Predicting the location of 3d space of robot arm end effector.  

 Predicting temperature at any location 

 

2.3.2.2 Unsupervised Machine learning  

In this case, only output data will be given without any inputs; the goal is to discover the 

“interesting patterns” in the data; this is also known as “knowledge discovery”. In 
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supervised learning, the desired output is known, but in this case, it is unknown. This kind 

of algorithms is used when one does not know corresponding output variables concerning 

input data. The goal of this kind of algorithms is to find out the clustering or structure or 

association among the data. There are types of unsupervised learning such as clustering 

and data compression. Clustering algorithms run through data and find the natural clusters 

if they exist. There are various types of clustering algorithms such as K-Means clustering, 

Hierarchical clustering and Probabilistic clustering. There are some challenges in 

unsupervised learning algorithms for example in supervised learning algorithms, the label 

of the data is given so we can measure how accurately the algorithm is working, but in the 

case of the unsupervised learning algorithm, it is difficult to know how better the algorithm 

is working.  

2.3.2.3 Semi-supervised Machine learning algorithms  

The difference between supervised and unsupervised machine learning algorithms is that 

supervised learning dataset has labels whereas unsupervised learning algorithm dataset has 

no labels. The semi-supervised learning algorithms are a combination of labelled and 

unlabeled data. Labelling a massive amount of data is time-consuming and expensive[49]. 

This means a lot of unsupervised data combined with supervised data, tend to reduce the 

cost spent on building the model. The applications of semi-supervised learning are like 

webpage classification, speech recognition and genetic sequence.    
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2.3.3 Support Vector Machine (SVM) 

The Support vector machine learning algorithm is a supervised learning algorithm; it 

defines a hyperplane that divides the data in descriptive space forming a group of data[50]. 

SVM is a kernel-based learning algorithm, where the kernel is a mapping function. SVM 

transforms given dimensional space into higher dimensional space. It transforms into 

higher dimensional space using the kernel trick described below. The SVM method 

introduces the trade-off parameter referred to as ‘C’ that penalises the data points that 

cannot be separated. The user can choose the kernel 'K'. If there are two points M1 and M2 

in space, then the chosen ‘K’ kernel maps these points in the transformed space, as shown 

in Fig. 2.3 

 

 𝑆(𝑀1, 𝑀2)  =  〈𝐾(𝑀1), 𝐾(𝑀2)〉 (2.4) 

The kernel trick defines the similarity function ‘S’. There are two types of kernels used, 

namely, the SVM linear kernel (SVM Linear) eq. (4) moreover, the SVM radial basis 

function (SVM-RBF) eq. (5). 

 𝑆(𝑀1, 𝑀2)  = 𝑀1
𝑇 . 𝑀2 (2.5) 

 

 𝑆(𝑀1, 𝑀2)  =  𝑒(−𝛾‖𝑀1−𝑀2‖2)  (2.6) 

 



 
 

31 
 

Where 𝛾  defines how far the single training sample affects the performance. This 

parameter is inversely proportional to the influence of samples selected by the model as 

support vectors. 

2.3.4 K-Nearest Neighbour Search (KNN) 

The KNN algorithm is widely used for supervised classification problems where the label 

of the data is known [51]. In the KNN algorithms, the data points are spread in the metric 

space. The Euclidian distance is used to determine the class of the test data point based on 

the most significant number of k-closest training data points [52]. 

It falls in the supervised learning family. Suppose training observations represented as (x, 

y). To find out the relationship between x and y, the goal is to learn a function ℎ: 𝑋 → 𝑌, 

so that test observations x, h(x) can correctly predict the corresponding output y.   

KNN is a non-parametric and instance-based learning algorithm. Non-parametric methods 

that do not make explicit assumptions about the data, avoiding the probability of 

misleading underlying distribution of the data.   

The KNN works by forming a majority vote between the K most similar instances to a 

given “unseen” observation. The distance metric between two data points is given as,  

 𝑑(𝑥, 𝑥′) = √(𝑥1 − 𝑥1
′ )2 + (𝑥2 − 𝑥2

′ )2 + ⋯ + (𝑥𝑛 − 𝑥𝑛
′ )2 (2.7) 
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2.3.5 Artificial Neural Network (ANN) 

Artificial neural networks are one of the vital technique used in machine learning. It is a 

brain-inspired system which replicates the way human learns. The neural network consists 

of the input layer, an output layer and hidden layers as shown in Fig. 2.5. If the numbers 

of hidden layer are one, then it is called a shallow neural network, if the number of hidden 

layers is more than one, then it is called a deep neural network. It is an excellent tool to 

find out patterns which are far too complicated. Neural networks, also known as perceptron 

concepts exists since the 1940s, but since the last several decades, they have become a 

significant part of artificial intelligence. In the ANN algorithm, a multilayer perceptron 

with a tangent hyperbolic sigmoid transfer function is used. The network has one hidden 

layer with ‘h’ hidden neurons, and the final layer is the output layer[53]. The neural 

network is trained using a feedforward algorithm [54]. 

2.3.6 Cross-validation technique  

The cross-validation (CV) technique is used to find out the best-optimised parameters.  It 

finds out the best parameters by generalising across all the samples. This technique assists 

in selecting the best model, that does not overfit. The dataset is divided into training and 

test datasets with a ratio of 0.8 and 0.2. Further, to find the best parameter of the algorithms, 

the training dataset is divided into n folds. The (𝑛 − 1) fold datasets are used to train the 

model and are evaluated on the remaining fold of the data; this process is repeated n times, 

and the average CV hit ratio is calculated. The parameters that provide the highest CV hit 
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ratio are used to create the training model and are evaluated on the test dataset. The flow 

chart is shown in Fig. 2.6 [55] As ma easure of the performance, the hit ratio of the classifier 

on the test dataset is defined as, 

 
ℎ𝑟 =

𝑇ℎ𝑖𝑡

𝑇𝑛

 (2.8) 

 

Where,  ℎ𝑟  hit ratio, 𝑇ℎ𝑖𝑡 total number of correctly classified samples, 𝑇𝑛 total number of 

samples 

2.4 Statistical Analysis  

2.4.1 Wilcoxon Signed Rank Test 

The test is named for Frank Wilcoxen who proposed this technique[56]. Sidney Siegel 

popularised this test in his book on nonparametric statistics[57]. It is a non-parametric 

statistical test used to compare two related samples. So the statistical significance is 

evaluated for the algorithms by using a one-sided Wilcoxon signed rank sum test [58]. This 

test is a nonparametric method. It does not assume that the population has any particular 

form, unlike parametric tests such as the t-test or the analysis of variance (ANOVA). One 

of the principal reasons to choose a nonparametric test such as the Wilcoxen signed rank 

test is that it works well with small sample sizes and has few assumptions about the data. 

Some of the assumptions such as data are paired and come from the same population. Each 

pair is chosen randomly and independently.  
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2.4.1.1 The test procedure of Wilcoxon signed rank test[59]  

Let “N” be the total number of pairs. Thus there are total 2N data points. For pairs, 𝑖 =

1,2, … , 𝑁 , let 𝑥1,𝑖 and  𝑥2,𝑖 denote the measurements.  

Let us make two hypothesis  

H1- the difference between the pairs follows a symmetric distribution around zero. 

H2- the difference between the pairs does not follow a symmetric distribution around zero.  

1. For 𝑖 = 1,2, … , 𝑁, calculate |𝑥2,𝑖 − 𝑥1,𝑖| and 𝑠𝑔𝑛(𝑥2,𝑖 − 𝑥1,𝑖), where sgn is the sign 

function.  

2. Exclude pairs with |𝑥2,𝑖 − 𝑥1,𝑖|=0. Let 𝑁𝑟 be the reduced sample size. 

3. Order the remaining 𝑁𝑟  pairs from smallest absolute difference to lathe rgest 

absolute difference, |𝑥2,𝑖 − 𝑥1,𝑖|. 

4. Starting from 1, Rank the pairs. Ties receive a rank equal to the average of the ranks 

they span. Let 𝑅𝑖 denote the rank.  

5. Calculate the test statistic W 

 
𝑊 = ∑[𝑠𝑔𝑛(𝑥2,𝑖 − 𝑥1,𝑖). 𝑅𝑖]

𝑁𝑟

𝑖=1

 
(2.9) 

 

 

6. Under the null hypothesis, “W” follows a specific distribution with no simple 

expression. This distribution has an expected value of 0 and variance of  
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 𝑁𝑟(𝑁𝑟 + 1)(2𝑁𝑟 + 1)

6
 

(2.10) 

 

           

“W” is compared to a critical value from a reference value from a reference table. 

The two-sided test consists in rejecting 𝐻0 if |𝑊| > 𝑊𝑐𝑟𝑖𝑡𝑖𝑐𝑙𝑒,𝑁𝑟 . 

7. As 𝑁𝑟 increases, the sampling distribution of W converges to a normal distribution. 

Thus for 𝑁𝑟>20, a z-score can be calculated as 𝑧 =
𝑊

𝜎𝑤
, where,  

 
𝜎𝑤 = √

𝑁𝑟(𝑁𝑟 + 1)(2𝑁𝑟 + 1)

6
 

(2.11) 

 

8. For 𝑁𝑟<20 the original test using the T statistics is applied. 

So, this is the test procedure applied to the calculating significance of Wilcoxon signed 

rank test. 

2.5  Summary  

This chapter was focused on methodology. The explanation starts with why we need data 

processing and the necessary reasons for pr-processing. Further, the normalisation process 

has been explained. Linear detrend is a new technique for pre-processing; the necessary 

reasons to use this technique has been explained. The machine learning algorithms such as 

Support Vector Machine with two kernels those are a linear kernel, and radial basis 

function kernel has been explained. The other machine learning algorithms such as 
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Artificial neural network and K-nearest neighbour search has been explained. The 

statistical tool such as Wilcoxen signed rank test has explained which is used for comparing 

the performance of classification algorithms.  

In the next chapter, I have explained how these algorithms are used on spectroscopy data 

to classify the spectra of each rock. Not only concerning labels but also concerning its 

geological group. The detailed analysis of results is given.   

2.6 Figures  

 

Fig. 2. 1 Methodology Overview 

 

Fig. 2. 2 Methodology sequence 
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Fig. 2. 3 2D-view of SVM classification 

 

Fig. 2. 4 KNN classification in 2-Dimension 
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Fig. 2. 5 A backpropagation neural network 
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Fig. 2. 6 Flow chart of cross-validation algorithm 
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3 Result and Discussion  

The first chapter was focussed on introduction, where the background of research, literature 

survey, research gap and motivations have been explained. The second chapter was 

focussed on the machine learning algorithms used in this thesis. In this chapter, we focused 

on LIBS experimental setup to get the rock dataset, the geological characteristics of the 

data, pre-processing of the data, training a model using machine learning algorithms and 

testing the performance of the trained algorithm using test data, the statistical analysis of 

the performance of the classifiers.  

3.1 Experimental Setup 

The experimental setup is shown in Fig. 3.1[53]. A pulse is generated with a 1064 nm Nd: 

YAG Q-switched laser having the energy of the laser pulse of 5 mJ. The pulse duration is 

250 ns. The frequency is 2 Hz. The laser pulses are struck onto the rock pellets using 600 

µm fused silica fibre. The high-power laser pulse produces a plasma on the rock pellet. The 

plasma is the fourth state of matter; other states are solids, liquids and gases. It consists of 

ions, atoms and charged particles. A plasma produces a variety of the wavelength of light 

that is collected through a spectrograph using an intensified charge coupled device (ICCD) 

records all the wavelengths simultaneously after the diffraction grating has dispersed the 

light. The quantitative analysis of plasma is made possible because the wavelength emitted 

from rock pellets unique to each species. The maximum signal-to-noise ratio was achieved 

with a gate delay and a width of 400 ns and 500 ns, respectively. A Czerny-Turner type 
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spectrometer is used with an input slit measuring 20 × 800 µm, the spectral range is from 

320nm to 550nm, and a spectral resolution varies from 0.22nm to 0.24nm across the 

range.[60].  

Each laser shot creates one vector of 1024 dimension. Each dimension corresponds to a specific 

wavelength of light. Total of 30 rocks have been used, and 300 laser shots have been recorded. 

Fig. 3.2 shows the matrix of LIBS data.  

3.2 Classification model  

Three types of classification models have been created those are support vector machine 

(SVM), k-nearest neighbour search (KNN) and artificial neural network (ANN). These are 

the supervised classification algorithms because the label assigned to each data is known. 

A label classifies the signal to each rock in the dataset [61]. The data is described as (𝑥𝑖 , 𝑦𝑖), 

where 𝑥𝑖 is a k-dimensinal input vector containing k values (i.e., attributes or features), 

𝑖 =  1, … . , 𝑁 represent rocks and 𝑦𝑖 ∈ 𝑀 =  {1,2, … , 𝑚} is a class label from the finite set 

M containing m classes[62]. The goal of classification is to learn a function 𝑓 that assigns 

a class label from the finite set. The Fig. 3.3 shows the model training using machine 

learning algorithms.  

3.3 Rock label classification  

To verify the effect of the “detrend” operation on the data and the effect of varying dataset 

size on the classification models, the dataset is divided into 4 cases as explained in section 

2.1. For the first case, the 100 shots of each rock were considered without the detrend 

operation, and in the second case, 100 shots of each rock were considered with the detrend 
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operation. In the third and fourth cases, 300 shots were considered without detrending and 

with detrend, respectively.  

Fig. 3.4[53] shows the difference between the LIBS spectra before and after the removal 

of the linear trend (data cleaning). The PCA algorithm is applied to both cases, to 

investigate the effect of dimensionality reduction. The principal components are extracted 

after the normalisation operation, and these principal components are the eigenvalues of 

the attributes correlation matrix. These are arranged in descending order. Fig. 3.5[53] 

shows the scatter plot of the first three principal components of the data. Table 3.5 shows 

the percentage of variance of the first three principal components with and without detrend. 

It shows that without detrend operation, the percentage of variance of the first principal 

component is 70% whereas without detrend operation is 31%. It implies that PCA with 

detrending increases the variability among the rocks. Therefore it increases the 

classification sensitivity as shown in Fig. 3.6[53] and Table 3.3 [53]. Table 3.1 [53] shows 

the various tuning parameters. These parameters were varied over a broad range, to 

determine the values that are given in an optimised training model. The grid search 

technique is used to find the optimised parameters [63]. From Table 3.2 [53], the number 

of principal components (NPC) is different for all of the algorithms. The other parameters 

were such as the regularisation parameter ‘C’ in case of SVM linear and ‘C’ & ‘𝛾’ in the 

case of SVM-RBF. The number of nearest neighbors in the case of the KNN algorithm and 

number of hidden layers in case of the ANN algorithm in the CV loop  The SVM linear, 

SVM-RBF, KNN and ANN classification techniques are explained in the methodology 

section.  
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Table 3.3 [53] shows the average sensitivity, specificity and accuracy of each algorithm 

for every set of data. Usually, the sensitivity and specificity are calculated for binary classes, 

but in our case, the data are multiclass, so the one vs all approach is used to calculate the 

sensitivity and specificity[53]. The sensitivity, specificity and accuracy of the classifiers 

are calculated using the formula given in equation 3.1,3.2 and 3.3 respectively.  

 
𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (3.1) 

 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
 (3.2) 

 

 
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.3) 

 

Where, TP: True Positives, TN: True Negatives, FN: False Negatives, FP: False Positives 

The sensitivity measures the percentage of accurately identified spectra; for example, the 

percentage in the rock two spectra is correctly identified as rock 2. Fig. 3.6[53] shows a 

graph of all the combined dataset of all used algorithm vs average sensitivity. It can be 

viewed that there is an increase in sensitivity when a detrend is performed. There is an 

increase in classification sensitivity when the 100 shots per rock dataset size are used with 

the detrend operation compared with the without detrend operation. For example, the ANN 

sensitivity increased from 68% to 74.6% when the detrend operation was operated on the 

dataset of 100 shots. In the case of the 300 shots per rock dataset size, there is a small 

increase in sensitivity when the detrend operation is performed. For example, the 
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sensitivity of ANN is increased from 87.5% to 89.5%. It can be concluded from Fig. 3.6[53] 

that the detrend operation is a vital operation for increasing the true positive rate. The 

classification models can efficiently learn the patterns in the data when the 300 shots per 

rock dataset are used. Therefore there is no much effect of linear detrend on a relatively 

larger dataset. 

 The specificity is a measure of the true negative rate; for example, the percentages of not 

rock one spectra are correctly identified[53]. The specificity of every the algorithm is 

approximately 99%. It shows that all the algorithms have a better ability to identify true 

negative results. The accuracy of the classifier is the ratio of the combination of true 

positive rate and true negative rate to the total population. There is a slight improvement 

in accuracy as the effect of detrending and dataset size. For example, it can be seen from 

Table 3.3 [53] that ANN accuracy increases from 97.8% to 98.3% when detrend operation 

is performed on the 100 shots dataset. In case 300 shots dataset the accuracy is increased 

from 99.3 to 99.4 in case of ANN. From Table 3.3 [53] it can be seen that SVM linear 

algorithm has performed best among all algorithm, it shows that, data are linearly separable 

at higher dimensions. The ANN algorithm has performed better than KNN as shown in 

Table 3.3 [53] 

It can be inferred from the results that NPC value differs from one algorithm to another and 

therefore the percentage of information from the original data also differs as shown Table 

3.2[53]. Table 3.2[53] also shows that a number of required number principal components 

for ANN are much fewer than the SVM and hence the percentage of information from the 

original data is also less in the case of ANN compared to SVM. Hence it shows that the 
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ANN algorithm is computationally efficient in extracting useful information since it 

requires a minimum number of features to classify the rocks. The KNN is a nonparametric 

classification technique, so it demonstrated the lowest performance of the methods tested.  

The statistical significance is evaluated for the algorithms by using a one-sided Wilcoxon 

signed rank sum test [58]. This test is a nonparametric method. It does not assume that the 

population has any particular form whereas parametric tests such as the t-test or the analysis 

of variance (ANOVA). One of the principal reasons to adopt a nonparametric test such as 

the Wilcoxen signed rank test is that it works well with relatively smaller sample sizes and 

has few assumptions about the data. In the one-sided Wilcoxon signed rank test, the null 

hypothesis is that algorithm A and algorithm B have equal importance, and the hypothesis 

fails if the p-value is less than 0.05. Table 3.4[53] shows the Wilcoxon test applied to SVM-

RBF, KNN and ANN against the SVM linear kernel since the SVM linear technique of 300 

shots per rock with the detrend dataset has performed the best with the highest 

classification sensitivity. In the case of the RBF kernel, the test passes the null hypothesis 

since the p-value is higher than 0.05. In the case of the KNN and ANN algorithms, the p-

value is less than 0.05, so the null hypothesis fails. From the above statistical analysis, it 

can be concluded that SVM linear and SVM-RBF perform equally well, whereas ANN and 

KNN perform poorly.  

3.4 Rock Materials and geological classification  

The composition of the 30 rocks calculated from ICP-MS data is shown in Table 3.6[53] 

The concentrations of Cu, Pb and Zn for each rock are plotted on a ternary diagram as 
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shown in fig.3.7[53]. The boundaries for rock classification were defined by the C rate 

(CR) and Z rate (ZR), as shown in Eq. (1) moreover, eq. (2) [3].  

 𝐶 =  
𝐶𝑢

𝐶𝑢+𝑍𝑛
× 100  (3.4) 

 𝑍 =  
𝑍𝑛

𝑍𝑛+𝑃𝑏
× 100  (3.5) 

 The boundaries in the ternary diagram are defined as follows[3]: 

 1) Pb-Zn deposits (Z < 60);  

2) Zn-Pb-Cu deposits (C < 60, 60 < Z < 90);  

3) Zn-Cu deposits (C < 60, Z > 90); and  

4) Cu deposits (C > 60, Z > 60).  

None of the rocks was classified into the Cu group.  

The spectral wavelength identification can be done using website atomic spectra database 

of NIST[64]. The Fig.3.8[53] shows a spectrum of each group. The crucial elements such 

as Cu, Pb and Zn wavelength lines were identified using the NIST website. The wavelength 

lines in nanometre are listed in Table 3.7[53]  

For example, for Pb-Zn group’s rock spectrum, the Cu wavelength line can be observed at 

521.8nm and 515.3nm. Similarly, for Zn-Cu group’s rock spectrum the Pb wavelength line 

can be observed at 404.9nm.   

3.5 Rock Group Classification  

The geological groups of the rocks are defined based on the ratio of Cu-Pb-Zn in each rock 

using the ternary diagram as shown in Fig. 3.7[53]. Here, the performance of the classifier 

is investigated while classifying the spectrum of each rock by considering its group. The 
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results of the rock group are derived from the rock label learning models results. So it is 

essential to understand how it is derived. 

3.5.1 Rock group vs rock label  

To understand the difference between rock label and rock group, it is important to go 

through the Fig. 3.9. This thesis aims to classify the rocks not only according to label but 

also concerning the group; all the rocks have been divided into three groups. Those are Pb-

Zn, Zn-Cu and Pb-Zn-Cu groups. To understand the concept, consider the Fig 3.10[53] and 

take only two groups those are Pb-Zn and Zn-Cu. For example, rock 6 and rock 20 belong 

to Pb-Zn group, and rock 4 and rock 18 belong to the Zn-Cu group.  

If the rock six is classified as rock six, then the rock group and rock label are the same. If 

rock six is classified as rock 20, then the rock label classification failed, but the rock group 

classification gets passed because rock 6 and rock 20 belong to the same group. Similarly, 

if rock six is classified as rock four, then rock group and rock label both get failed because 

rock 6 and rock 4 are of course two different label rocks but also belong to two different 

groups. In this way, the rock group and rock and label were classified. 

Fig. 3.10 shows an effect of the increasing number of shots per rock on the accuracy of the 

rock group classification and detrend operation of each case. Fig. 3.10[53] and Table 3.8 

[53] shows the 300 shots per rock dataset exhibit an increased accuracy compared to that 

of the 100 shots per rock dataset, and when the using the detrend operation with the 100 

shots per rock dataset, a significant improvement in the rock group classification accuracy 

is demonstrated. 
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The one-sided Wilcoxon signed rank test technique is applied to search the statistical 

significance of the algorithms in the case of the 300 shots per rock with detrending dataset 

since it has performed well compared with the other methods [58]. The one-sided Wilcoxon 

signed rank test is applied concerning SVM linear. The result of the one-sided Wilcoxon 

signed rank test as shown in Table 3.9 [53] states that SVM linear and SVM-RBF methods 

have statistical significance over the ANN and KNN methods. 

3.6 Summary  

In this chapter, in the first part, under the title of rock label classification, the results of the 

SVM algorithm on ten rocks has been explained.  The effect of the varying number of 

principal components on the accuracy of the SVM algorithms has been explained. Later, 

the number of rocks has been extended to 30 and along with SVM, the KNN and ANN 

algorithms have been used. Along with it, the effect of linear detrend operation on the 

classification sensitivity has been studied.   

In the second part, the rock group classification has been explained. The analysis of each 

classification algorithm has been verified concerning its group. The performances of the 

algorithms concerning labels and groups have been shown graphically which makes it 

easier to conclude.  

In the next chapter, the conclusion of the whole thesis has been drawn.  
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3.7 Figures  

 

Fig. 3. 1 Experimental Setup 

 

Fig. 3. 2 Matrix of data 
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Fig. 3. 3 Model training using machine learning algorithms  

 

 

Fig. 3. 4 Effect of detrend operation 
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Fig. 3. 5 First three principal component projection of all the rocks (A) without detrend operation 
and (B) with detrend operation 
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Fig. 3. 6 The sensitivity plot of the four cases for rock label classification 

 

Fig. 3. 7 Ternary diagram plot 
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Fig. 3. 8 Spectra of each group rock 
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Fig. 3. 9 Rock label vs Rock Group  

 

Fig. 3. 10 The average accuracy plot of the four cases for rock group classification 
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3.8 Tables 

Table 3. 1 Variation in the model parameters 

 

KNN ANN SVM Linear SVM-RBF 

NPC  { 1,2,… 400} NPC  {1,400} NPC  {1,400} NPC  {1,400} 

    

NNP  {1,2,….20} NHL  {4,5,…100} C  {2−5, 25} C  {2−8, 220} 

σ = {2−20, 23} 

 

Abbreviations: 

NPC: Number of principal components 

NNP: Nearest neighbour points  

NHL: Number of hidden layers  

w/o: without 

Table 3. 2 Summary of the best parameters 

 KNN ANN SVM- Linear SVM- RBF 

100 shots w/o 

detrend 

NPC = 23 

NNP = 8 

PerInfo=94.2% 

NPC = 16 

NHL = 80 

PerInfo=93.5% 

NPC = 336 

C = 𝟐𝟏.𝟖 

PerInfo=99.9 

NPC = 368 

C = 𝟐𝟏𝟑 

σ = 𝟐−𝟏𝟖 

PerInfo=99.9% 
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100 shots with 

detrend 

NPC = 28 

NNP = 5 

PerInfo=97.8% 

NPC = 24 

NHL = 82 

PerInfo=97.5% 

NPC = 388 

C = 𝟐−𝟎.𝟔 

PerInfo=99.8% 

NPC = 360 

C = 214 

σ = 𝟐−𝟏𝟓 

PerInfo=99.8% 

300 shots w/o 

detrend 

NPC = 10 

NNP = 6 

PerInfo=92.1% 

NPC = 19 

NHL = 65 

PerInfo=93.8% 

NPC = 312 

C = 21.1 

PerInfo=99.9% 

NPC = 323 

C = 𝟐𝟏𝟐 

σ = 𝟐−𝟗 

PerInfo=99.9% 

300 shots with 

detrend 

NPC = 17 

NNP = 3 

PerInfo=96.8% 

NPC = 15 

NHL = 78 

PerInfo=96.4% 

NPC = 345 

C = 2−2.8 

PerInfo=99.8% 

NPC = 370 

C = 𝟐𝟏𝟒 

σ = 𝟐−𝟏𝟏 

PerInfo=99.8% 

Abbreviations:  

NPC: Number of principal components 

NNP: Nearest neighbor points  

NHL: Number of hidden layers  

w/o: Without 

PerInfo: Percentage of information from original data 

 

 

 

 

 



 
 

57 
 

Table 3. 3 Summary of the average classification accuracies sensitivities and specifies in percentage 
(%) 

 KNN ANN SVM- Linear SVM- RBF 

100 shots w/o 

detrend 

Sensi = 56.5 

Specifi = 99.7 

Acc=97.1 

Sensi = 68 

Specifi = 99.7 

Acc=97.8 

 

Sensi = 71 

Specifi = 99.8 

Acc=98 

 

Sensi = 72 

Specifi = 99.8 

Acc=98.1 

 

100 shots with 

detrend 

Sensi = 67 

Specifi = 99.7 

Acc=97.8 

 

Sensi = 74.6 

Specifi = 99.7 

Acc=98.3 

 

Sensi = 77 

Specifi = 99.8 

Acc=98.4 

 

Sensi = 74 

Specifi = 99.8 

Acc=98.2 

 

300 shots 

w/o.detrend 

Sensi = 80.5 

Specifi = 99.3 

Acc=98.7 

 

Sensi = 87.5 

Specifi = 99.6 

Acc=99.3 

 

Sensi = 93.4 

Specifi = 99.7 

Acc=99.5 

 

Sensi = 94.1 

Specifi = 99.7 

Acc=99.6 

 

300 shots with 

detrend 

Sensi = 84.8 

Specifi = 99.4 

Acc=98.9 

 

Sensi = 89.5 

Specifi = 99.5 

Acc=99.4 

 

Sensi = 95.2 

Specifi = 99.1 

Acc=99.6 

 

Sensi = 94.8 

Specifi = 99.8 

Acc=99.6 

 

 

Abbreviations:  

w/o: Without 

Sensi: Sensitivity  

Specifi: Specificity  
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Acc: Accuracy  

Grp Acc: Group accuracy 

 

Table 3. 4 The p-values of the one-sided Wilcoxon signed rank test for rock label classification 

 RBF KNN ANN 

Linear kernel 0.47 <0.01 <0.01 

 

Table 3. 5  Percentage of Principal component for with and without detrend  

 PC1 [%] PC2 [%] PC3 [%] 

Without detrend 70 10 4 

With detrend  31 24 13 

 

Table 3. 6 Mass fractions of Cu, Pb and Zn 

Rock 

number 

Cu Zn Pb Others Group 

1 4.63 42.6 4.99 47.78 Zn-Pb-Cu 

2 3.08 28.5 15.1 53.32 Zn-Pb-Cu 

3 3.69 30.9 4.36 61.05 Zn-Pb-Cu 

4 1.85 22.9 0.02 75.22 Zn-Cu 

5 0.19 43.4 26.5 29.91 Zn-Pb-Cu 

6 1.55 37.5 26.2 34.75 Pb-Zn 

7 0.009 2.98 2.12 94.89 Pb-Zn 

8 0.153 5.21 2.22 92.41 Zn-Pb-Cu 

9 6.12 35.1 24.1 34.68 Pb-Zn 

10 0.216 2.25 0.77 96.75 Zn-Pb-Cu 

11 2.63 21.9 1.61 73.86 Zn-Cu 

12 3.65 30.7 17.9 47.75 Zn-Pb-Cu 

13 4.66 37.8 12.7 44.84 Zn-Pb-Cu 

14 3.6 44.3 8.79 43.31 Zn-Pb-Cu 
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15 6.3 35.72 0.65 57.28 Zn-Cu 

16 4.57 34.06 11.79 49.57 Zn-Pb-Cu 

17 4.29 33.28 14.85 47.56 Zn-Pb-Cu 

18 8.02 27.98 1.50 62.48 Zn-Cu 

19 3.05 23.59 10.31 63.03 Zn-Pb-Cu 

20 3.73 0.0679 0.161 96.04 Pb-Zn 

21 5.11 28.2 3.79 62.90 Zn-Pb-Cu 

22 3.05 26.4 10.5 60.05 Zn-Pb-Cu 

23 0.045 1.24 1.14 97.57 Pb-Zn 

24 2.13 24.8 5.77 67.30 Zn-Pb-Cu 

25 1.77 11.7 2.61 83.92 Zn-Pb-Cu 

26 3.36 24.58 5.98 66.06 Zn-Pb-Cu 

27 2.34 16.48 1.62 79.54073 Zn-Cu 

28 2.09 20.43 11.40 66.07762 Zn-Pb-Cu 

29 2.29 21.71 10.64 65.34545 Zn-Pb-Cu 

30 3.86 51.19 7.24 37.69415 Zn-Pb-Cu 

 

Table 3. 7 Spectral lines for each group (nm) 

Group Cu Pb Zn 

Pb-Zn 521.8; 515.3 406.2 472.2;481.1 

Zn-Pb-Cu 521.8; 510.3 (Cu II) 406.2 472.2;481.1 

Zn-Cu 515.3;510.6 404.9 (Pb IV) 472.2;481.1 
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Table 3. 8 Group Classification accuracy 

 KNN ANN SVM- Linear SVM- RBF 

100 shots w/o 

detrend 

Grp Acc=83.3 Grp Acc=88.6 Grp Acc=87 Grp Acc=88 

100 shots with 

detrend 

Grp Acc=85.8 Grp Acc=90 Grp Acc=91 Grp Acc=88.6 

300 shots 

w/o.detrend 

Grp Acc=94.6 Grp Acc=96 Grp Acc=97 Grp Acc=97.3 

300 shots with 

detrend 

Group acc=95 Grp Acc=96.2 Grp Acc=98.2 Grp Acc=97.8 

 

Table 3. 9 The p-values of the one-sided Wilcoxon signed rank test for rock group classification 

 RBF ANN KNN 

Linear 0.3               < 0.01 < 0.01 
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4 Conclusion and Future Scope 

This study demonstrates the use of machine learning algorithms in the classification of 

hydrothermal rocks obtained from Okinawa Trough. This study is motivated by the need 

for energy, and limited resources are available to fulfil future demand. The ocean covers 

70% of the earth, and most of the ocean is unexplored. Studies show that it contains many 

energy resources such as hydrothermal vents. Exploring deep ocean is a challenge, and 

mining ocean too. Hydrothermal vents are around 3000m below the sea surface. It is so 

below that even sun rays cannot reach there; in fact, this is one reason to form the 

hydrothermal vents. The recent rise of artificial intelligence and machine learning can help 

to solve the major issues in exploring the deep ocean. The laser-induced breakdown 

spectroscopy is a chemical sensing device. The ChemiCam device which is nothing but the 

LIBS device developed by the University of Tokyo specifically for deep ocean coupled 

with the technology of artificial intelligence can automate the process of identifying 

hydrothermal rocks obtained around hydrothermal vents in the deep ocean.  Artificial 

intelligence method such as machine learning and the laser-induced breakdown 

spectroscopy which is a chemical measurement device can help in identifying the 

hydrothermal rocks not only concerning labels but also for the group. A Study compared 

the three algorithms those were SVM, KNN and ANN with an increasing dataset of 30 

rocks.  The effect of removing linear trend from each spectrum on the classification is 

verified, and it was found that the use of the 300 shots per rock dataset with the detrend 

operation shows an improvement in sensitivity. This study demonstrates that not all the 
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spectral dimensions from the set of hydrothermal rocks contain information that is relevant 

to group them. The number of dimensions can be efficiently reduced by applying PCA. 

This study also showed that with a sufficiently large number of PCs and an appropriate 

classification algorithm, each spectrum of a rock recorded using LIBS could be classified 

with an accuracy of > 90% using a 300 shots per rock dataset with the detrend operation. 

The group of rocks is formed based on the composition ratio of Cu-Pb-Zn using a ternary 

diagram. The performance of the classifiers according to rock group is investigated, and 

the results indicate that the SVM algorithm performs well with an accuracy > 95% using 

the 300 shots per rock dataset with the detrend operation.   

As future scope, this study can be extended to create a learning model of regression, which 

can predict the amount of chemical composition in the rock. It is a very challenging task 

because rocks are not homogenously composite. The rock label and rock group 

identification along with the rock composition estimation can help to create the chemical 

map of the ocean.   
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Appendix-A: Data Collection using Sea Trials  

Observation  

It was an investigation of the laser-induced breakdown spectroscopy plasma as a method 

to perform in-situ multi-element analysis of the composition of the liquids and solid 

deposits on the seafloor.  During this cruise, an in situ sensors called the ChemiCam was 

deployed, which was developed under the ‘Program for the development of fundamental 

tools for the utilization of marine resources’ of the Japanese Ministry of Education. 

ChemiCam uses a technique known as laser-induced breakdown spectroscopy (LIBS) to 

perform atomic emission spectroscopy on-site at depths of up to 3000m[65]. During NT13-

23, was deployed using ChemiCam in Iheya North Field.  On-site chemical analysis of 

both liquids and the exposed surface of hydrothermal deposits blocking the C0013E 

artificial vent orifice were performed and well-resolved spectra were obtained. The purpose 

of this cruise was to enhance the operational efficiency of ChemiCam device.  The 

measurements of liquids are common; the measurement of the solids is considered to be 

complicated because the focal point of the laser has to be precisely aligned with the surface 

of the solid. To overcome this, a guide laser has been integrated with ChemiCam, together 

with a laser-focusing system that measures the intensity of light reflected from targets 

surface and uses this signal to control a linear stage[65]. One of the major disadvantages 

of LIBS is that it can only measure the exposed surfaces. In order to overcome this issue, 

we developed a deep-sea grinder to remove the weathered surface of the deposits, so that 
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measurements can be made of freshly exposed surfaces that are more representative of 

whole rock composition[65]. The main objective was to use these tools to enable efficiently, 

‘sub-surface’ measurements of hydrothermal deposits using ChemiCam.  

The ChemiCam device as shown in fig. 1.6 is used to perform in-situ multi-element 

analysis of the composition of liquid and solids at the depths of up to 3000m. The focusing 

probe was attached to ROV manipulator. The manipulator would be taken to the vicinity 

of the sample, after which laser will be focussed. The manipulator and the laser were 

controlled by RS232 communication line on the ROV. The data were monitored in real-

time.    

A deep –sea grinder was deployed using to remove the weathered surface of hydrothermal 

deposits. The central hydraulic unit of the ROV supplies pressure that was being controlled 

in control room. The grinder was operated using ROV manipulator.  

Table A- 1 Summary of the sea trial 

Sr. No.  January 2016 

1 Device  ChemiCam 

2 Cruise number  NT-16-01 

3 Chief Scientist  Blair Thornton (Institute of 

Industrial Science, The 

University of Tokyo) 

4 Drive number #1928,1929,1930 
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5 Location Ihoya North field, Okinawa 

trough, Japan 

6 Depth [m] 1000  

7 Ship R/V Natsushima 

8 Target measured  Natural rocks at 12 points (Cu, 

Fe, Pb, Zn,Ca,Ba) 

9 Achievement  Robust measurement of rocks.  

ROV operation  

There were two main objectives of the dive  

1. ROV dye and 

2. To collect the hydrothermal samples from the following locations  

a. Landing point: 27-47, 484N 126-53.821E, 1011m 
b. Landing point: 27-47.505N 126-53.804E, 1080m 

c. Landing point: 27-47.495N 126-53.813E, 1015m 
The ROV dolphin was equipped with ChemiCam F device. The ROV manipulator was 

used to hold the ChemiCam.  

The objective of the ROV dye is to collect the hydrothermal samples. The ROV hyper-

dolphin (ROV-HPD) is shown in fig. A-1 with ChemiCam device. Fig. A-2 (a) to (d) shows 

the sequence of the events of the in order that how it is taken into the ocean.  
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Fig. A-1. 1ROV Hyper-Dolphin (HPD) with ChemiCam device 

 

 

(a) 
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(b) 

 

 

 

(c) 
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(d) 

Fig. A-1. 2 (a) to (d) shows the sequence of events of how ROV is controlled by crane for under 
ocean research 

Once the location was decided, grinding is done using grinding machine, attached to the 

ROV manipulator as shown in fig. A-1   

 

 

 

Fig. A-1. 

3Grinding machine operating on rocks in the ocean 
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(a) 

 

 

 

 

          

(b) 

Fig. A-1. 4 (a) and (b) shows the sequence of events in collecting hydrothermal rocks from the deep 
ocean. 
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(a) 

 

 

 

       

(b) 

Fig. A-1. 5 (a) and (b) shows the sequence of events of how the rocks have been brought back on 
land and then broken into pieces and packed into a plastic bag for further investigation  
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Rock Sample list 

The sample list of all the operation is shown below. It consists of sample code for each 

location, the latitude and longitude information has been given from where the rocks have 

been collected, and the depth in meter has also been shown in the tables A-2 

 

Table A- 2 Samples obtained in the Iheya North field (Operation code 1928) 

Sample Code Latitude  Longitude Depth (m) 

HPD 1928 R1 27 47.476 N 126 53.800E 1003 

HPD 1928 R2 27 47.465N  126 53.788E 996 

HPD 1928 R3 27 47.465N 126 53.802E 993 

 

   

Fig. A-1. 6 Samples obtained in the Iheya North Field (#1928) 

 

Table A- 3 Samples obtained in the Iheya North field (Operation code 1929) 

Sample Code  Latitude  Longitude  Depth (meter)  
HPD 1929 R1 27 47.464N 126 53.823E 1016 
HPD 1929 R2 27 47.448N  126 53.796E 999 
HPD 1929 R3 27 47.465N 126 53.801E 993 
HPD 1929 R4  27 47.465N 126 53.801E  993 
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Fig. A-1. 7 Samples obtained in the Iheya North Field (#1929) 

 
1) #1930 Operation. 

 

Table A- 4 Samples obtained in the Iheya North Field (#1930) 

Sample Code Latitude Longitude Depth (meter)  

HPD 1930 R1 27 47.466N 126 53.798E 1001 

HPD 1930 R2 27 47.461N 126 53.821E  1013 

HPD 1930 R3 27 47.461 N 126 53.821E 1013 

HPD 1930 R4 27 47.444 N 126 53.819E 1015 

HPD 1930 R5  27 47.430N 126 53.816E 1018 

HPD 1930 R6 27 47.452N 126 53.803E  992 

HPD 1930 R7 27 47.458N 126 53.800E 1015 

HPD 1930 R8  2747.458N 126 53.800E 1015 
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Fig. A-1. 8 Samples obtained in the Iheya North Field (#1930) 
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Appendix-B List of Publication  

Conference 

1. Yelameli M, Thornton B, Takahashi T, Weerkoon T, Takemura Y, Ishii K. Support 

vector machine based classification of seafloor rock types measured underwater 

using Laser-Induced Breakdown Spectroscopy. InOCEANS 2016-Shanghai 2016 

Apr 10 (pp. 1-4). IEEE. 

Journal 

1. Yelameli M, Thornton B, Takahashi T, Weerakoon T, Ishii K. Classification and 

statistical analysis of hydrothermal seafloor rocks measured underwater using laser‐

induced breakdown spectroscopy. Journal of Chemometrics. 2018:e3092. 
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