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Abstract 

Polymer electrolyte membrane fuel cell (PEMFC) is recognized as one of the most 

effective, environmental-friendly, and futuristic technologies for clean energy. However, the 

low conversion efficiency of the oxygen reduction reaction (ORR) catalysts hindered its 

further practical application. Because a commercial and efficient ORR catalyst, Pt 

nanoparticles loaded on the carbon (XC-72) cannot meet the demand for widespread 

application due to its excessive cost, poor durability, and fast poisoning during the reaction. 

Identifying plausible solutions to these problems is still a challenge. In this thesis, we focused 

on the development of the novel efficient catalysts for ORR with ultra-low Pt loading amount 

and Pt-free materials. In order to further improve catalytic activity, we also synthesized a new 

2-D material Nb2C to replace the carbon support of the catalyst.  

In chapter 1, the fundamental theory and the structure of fuel cells were briefly described. 

The theoretical analyses of the ORR process were also introduced. Furthermore, the recent 

development of the ORR catalysts was summarized. Finally, we exhibited the issues of ORR 

catalysts and the purposes in this thesis. 

In chapter 2, the reagents and instruments used in this work were summarized. We also 

introduced the preparation methods of the working electrode and the characterizations. 

Finally, the electrochemical measurements and analyses, such as the cyclic voltammetry 

(CV) and the linear sweep voltammetry (LSV) were presented.   

In chapter 3, the synthesis procedure for PtM (M: Fe, Co, Ni) alloy samples through a 

simple method under the mild conditions was described. In detail, the transition metals were 

doped into the Pt nanoplate crystals to form PtM (M: Fe, Co, Ni) alloys. The physical 

characterizations proved that the PtFe alloy has a well-defined, homogeneous, and ultra-small 

particle size morphology. We found that the morphology contributes the higher catalytic 

activity. Finally, the PtM (M: Fe, Co, Ni) alloys are used as the ORR catalyst, and they show 

the excellent catalytic activity and stability both in the acidic and alkaline medium.  

In chapter 4, 3 kinds of Pt-free catalysts were successfully designed and synthesized. A 

metal-organic framework (MOF) was used as a precursor. The influences of the 

carbonization temperature and the ratios of the two transition metals were studied in terms of 

the ORR performance. Meanwhile, the synergistic effect of the dual transition metals was 
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considered to have a positive impact on improving the electrocatalytic activity. The 

electrochemistry analyses displayed that FCPA-900 shows the best ORR catalytic activities, 

because of the larger specific surface area and the better-defined amorphous carbon structure.  

In chapter 5, firstly, in order to obtain a 2-D MAX Nb2AlC under a mild condition, we 

studied on the influence of target materials under the different conditions, such as reaction 

method, type of molten salts flux, reaction temperature, and reaction time. The synthesis 

temperature of the MAX Nb2AlC was successfully decreased from 1600oC to 1000oC by 

using the molten salt assisted solid-state reaction. The reaction mechanism of the Nb2AlC 

was also investigated, and the effect of the NaCl flux on Nb2AlC synthesis was confirmed. 

Secondly, the multilayer 2-D MXene Nb2C material was obtained by etching the MAX 

Nb2AlC. Finally, the ORR catalytic activity of the Pt nanoparticles loaded on the multilayer 

2-D MXene Nb2C was studied. The results of the electrochemical measurements show that 

the 2-D MXene Nb2C is an excellent support material to replace carbon for the Pt loading 

catalyst.  

In chapter 6, the general conclusions and prospects were presented. The electrochemical 

performance of the obtained Pt-based and Pt-free catalysts for the ORR was summarized. 

Further studies need to focus on improving the stability, promoting the efficiency, and 

developing new high-performance ORR catalysts. 
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Chapter 1   Background 

1.1 Introduction  

  It is a key problem to balance the relationship of the environment protection and energy 

crisis in the future decades with the development of society. The fossil fuels such as coal and 

oil are low efficiency and highly polluted. All the fossil fuel transfer to useful work need to 

obey the Carnot Cycle, which is only 15-40 % energy conversion efficiency. At the same 

time, extensive use of fossil fuels would generate much greenhouse gas harmful or toxic to 

the environment, such as CO2 and poison NOx gas. Therefore, searching for a new energy 

resource becomes the development strategy for every country. Fuel cell is a device of 

renewable clean energy, due to that H2O is the only product. In addition, the energy 

conversion efficiency of the fuel cell device is up to 60-80% without through the Carnot-

cycle. Therefore, there is no doubt that fuel cell is recognized as the most effective and 

environmental technology in the world.      

  The diverse types of fuel cells are summarized in Table 1.1 [1-2]. Based on the working 

temperature, there are three kinds of fuel cells: high temperature, intermediate temperature, 

and low-temperature fuel cells. Molten carbonate fuel cells (MCFCs), solid oxide fuel cells 

(SOFCs) are the high-temperature fuel cells, used for large-scale power generation. 

Phosphate fuel cells (PAFCs) are the intermediate temperature fuel cells, used for large 

facilities or power plants. Proton exchange membrane fuel cells (PEMFCs), as known as 

polymer electrolyte fuel cells (PEFCs) or solid polymer electrolyte fuel cells (SPEFCs), and 

alkaline fuel cells (AFCs) belong to the low-temperature fuel cells, for which the working 

temperature is less than 100oC. In some reports, AFCs are acted as the intermediate 

temperature fuel cells, since their working temperature is not stable. The exchange current 

density of AFCs is much lower than PEMFCs. Therefore, PEMFCs have more potential to 

commercialize, such as fuel cell bus.  

  PEMFCs acquire the advantages both of the fuel cells and themselves [3-5], such as low 

working temperature, high stability, and high-power generation efficiency. Due to these 

advantages and their potential application, PEMFCs are becoming the key point for every 

country to change the energy system.  
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Table 1.1   Introduction of different types of fuel cells 

Type  Low temperature Intermediate 
temperature  

High temperature  

PEMFCs AFCs PAFCs SOFCs MCFCs 

Electrode 
or catalyst 
(anode) 

Precious 
metal 
loading on 
carbon  

Precious metal 
loading on 
carbon 

Precious metal 
loading on 
carbon 

Perovskite 
oxides or Ni-
ZrO2(Y2O3)  
metal ceramic 

Ni-Cr alloy 
or Ni-Al 
alloy 

Fuel  H2  H2  H2, CH3OH, 
CH4 

H2, CH4 Hydrocarb
ons 

Electrolyt
e 

Proton 
exchange 
membrane 

KOH solution  High 
concentration 
HPO3 

ZrO2-Y2O3 
membrane  

Molten 
carbonate 
(Li2CO3-
KCO3) 

Electrode 
or catalyst 
(cathode) 

Precious 
metal 
loading on 
carbon  

Precious metal 
loading on 
carbon 

Precious metal 
loading on 
carbon 

La (Sr, Ca) 
MnO3 

Porous 
NiO 

Ions  H+/H3
+ OH- H+ O2- CO3

2- 

Oxide  O2/Air O2/Air  Air Air Air+CO2 

Working 
temperatur
e  

RT~80 oC ~100 oC ~200 oC 800~1000 oC ~650 oC 

Power 
generation 
efficiency  

~60% ~70% 36~45% 50~60% 45~60% 

Limited of 
CO in fuel 

<10 
ppm 

<10 ppm <1% OK OK 

Applic
ation 

Automotiv
e, Portable- 
equipment. 

 

Cosmos, 
Military, Large 
ship. 

Large CHP* 
systems (200 
kW)  

Vehicle 
auxiliary 
power, all sizes 
of CHP 
systems (2 kW 
to MW)  

 

Medium to 
large scale 
CHP 
systems 
(up to 
MW)  

 

*Combined Heat and Power 
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1.2 The history and development of PEMFCs 

  PEMFCs were introduced by Professor Grove in 1839, and developed by Professor L. Mond 

and C. Langer with the 3.5 mA cm-2 current density and the 0.73 V onset-potential. The great 

progress is acquired, such as the oxygen reduction reaction, Nafion membrane, sandwich 

structure of electrodes and remarkable efficiency. In 1993, a PEMFC’s bus was brought into 

the market, which is zero pollution and high speed (75 km h-1), promoting the application of 

the fuel cells. The market-oriented power station of the fuel cell was developed, such as the 

250 kW power stations in Germany in 2000.  

  Anyway, Japan is the best country in the world to improve PEMFCs. In 1997, the first fuel 

cell civil vehicle FCHV-1 was discovered by Toyota in Japan. Then the first production 

version FCHV-4 came out in 2001. In 2015, the first hydrogen fuel cell vehicle in the world 

was official production. Then Honda, Ford also founded different serials fuel cells vehicle 

project, such as FCX, Hydrogen, and Freedom Car Project.  

 

Figure 1.1 Structure illustration of a single PEFMC in acidic (a) and alkaline (b) media. 

 

1.3 The structure and working mechanism of PEMFCs 

  Figure 1.1 shows the structure of PEMFCs with the different electrolytes. It is clear that 

there are three main parts: the anode where is oxide the fuel, the polymer membrane where 

let the protons go through but prevent the electrons moving, and the cathode where can 

reduce the oxygen. The catalyst is loading on the cathode or anode to promote the reaction [2, 

6-9]. Figure1.1a is the mechanism schematic of PEMFCs in acid solution. In detail, H2 

decompose into two free protons H+ and two electrons e- with the help of anode catalyst. The 

a b 
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active H+ is formed from the free protons H+ to react with the nearby H2O, and then move to 

the cathode through the polymer membrane. In other words, the electrons are in the anode 

making a negative electrode. While, the active O2 atoms absorb the electrons, which are from 

the anode through the external circuit, and the protons form H2O with the help of the catalyst. 

The cathode becomes the positive electrode due to the accumulation of protons. Therefore, 

the protons transfer from the anode to the cathode through the internal circuit, and the 

electrons move from the negative electrode to positive electrode through the external circuit, 

forming a full circle current with the potential difference. 

  In general, the fuel cells would keep working forever with the adequate supply of H2 and O2. 

The reaction equation as follows: 

 

  Figure1.1 b shows another mechanism schematic of PEMFCs in alkaline solution. Similar to 

the PEMFCs in acid solution, the detailed mechanism shows in the following: the rich OH- 

ions react with the fuel H2 to become H2O and electrons on the surface of the catalyst loaded 

on the anode. In addition, the electrons through external circle move to the cathode react with 

O2. Under the effect of the catalyst loaded on the cathode, the O2 transfer into OH- to finish 

the whole reaction. The relevant reaction equation as follows:  
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1.4 The ORR mechanism of PEMFCs 

  Most of the investigations are the cathode catalyst, because of that only about 0.05 mg Pt 

/cm-2 is enough in the anode. The anode reaction is called HOR, showing a high exchange 

current density (ECD) about J=1×10-2~102 mA cm-2. Nevertheless, the cathode used to 

oxygen reduction reaction (ORR) shows a lower ECD about J=1×10-6~10-7 mA cm-2 than that 

of the anode.  In order to keep the reaction ongoing, the ORR needs to improve ECD by 

overcoming the high over-potential of the fuel cell.  

 

Figure 1.2 Two- or four-electrons pathway for oxygen reduction reaction in the acidic 

solution (aq means dissolved process in the water, ads means absorbed process by the active 

sites). 

 

  The route schematic [10, 11] of ORR in acidic and alkaline solution is shown in Figure 1.2 

and 1.3. The different electrolytes or catalysts lead to the complicated ORR process, such as 

the different intermediate compounds, the pathways, the reaction process, and the reaction 

products. Herein, Pt/C catalyst is used as a representative to introduce the ORR mechanism.   

Figure 1.2 shows the reaction processes in acidic solution [10]. The O2, aq is adsorbed by the 

active sites when O2 is dissolved in water and diffused nearby the catalyst, forming O2, ads. At 

this time, O2, ads has two ways to be reduced: the direct way or the four-electron pathway and 

the indirectly way or the two-electron pathway. The four-electron pathway can directly 

transfer O2 into the H2O (k1 route in Figure 1.2), the full reaction equation is in the following.  
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In the two-electron pathway, O2, ads is first reduced by two electrons forming the unstable 

intermediate product H2O2, ads (k2 route in Figure 1.2). Then the H2O2, ads continuously obtains 

two electrons to generate H2O along with the k3 way. However, H2O2, ads also can diffuse into 

the water (k5 route), or decompose H2O and O2,  ads or O2,  aq (k4 route). The full reaction 

equation is in the following. 

 

  Now there is a critical problem coming out, that the high concentration of H2O2 erodes the 

proton exchange membrane. In addition, the H2O2 is sensitive for thermodynamic, the 

concentration of H2O2 is decided by the thermodynamic reaction not the kinetic process, 

suggesting that H2O2 is easy concentrating. That is the reason of the complicated reaction 

process. 

 

Figure 1.3 The two- or four-electrons pathway for ORR in the alkaline solution (aq means 
dissolved in the water, ads means absorbed by the active sites). 

 

  Similar to the reaction process of oxygen in the acid solution, Figure 1.3 is the ORR process 

in the alkaline solution. The adsorbed O2 can transfer into OH- through directly (k1 route) 

path or two steps (k2 and k3 routes) path. 

  The unstable intermediate product HO2
- have three paths to decompose: the k3 route to finish 

the ORR, k5 route to diffusion the electrolyte, and k4 route to back to O2, aq, suggesting that 

the two-electron pathway is lower energy transfer efficiency. 

  So according to the introduction, the intermediate product is a judgment criterion for the 

two-electron pathway or the four-electron pathway. In fact, we hope the ORR along with the 
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highest efficiency four-electron pathway to increase the reduced current. However, there are 

too many influences to decide the reaction path, such as the structure of air electrode, the 

interaction ways between the oxygen and electrode, and the catalyst. Among them, the 

adsorbed way of the oxygen atoms is critical for the reaction paths. It is complicated to define 

the adsorbed way, because that the oxygen can be adsorbed as molecular or push into the 

crystalline of metal as atoms. Professor Yeager developed three adsorbed ways of oxygen in 

1984: Griffiths, Pauling, and Bridge (Figure 1.4) [12]. 

  (1) Griffiths: In detail, in the reaction, the bonds of oxygen are parallel to the surface of the 

catalyst. Two oxygen atoms each react with the one catalytic active site, leading to that the p 

orbit of oxygen reacts with the empty orbit of the catalytic active site each other. The 

decreasing or the stretching of the O-O bonds energy lead to the dissociated of the oxygen 

molecular, suggesting this is a high-energy reaction. Therefore, this way is beneficial to the 

four-electron pathway.  The catalytic surface of the precious metal (Pt, Ru, Pd) and metal 

phthalocyanine show the Griffiths way, suggesting the high electrocatalytic activity.  

  (2) Pauling: One atom of oxygen molecules reacts with the active site, adsorbed by the 

surface of the catalyst. Only one atom adsorbs the energy, disadvantage for the broken of the 

O-O bonds. Most materials are proved to belong to the two-electron pathway. 

 

Figure 1.4 The adsorption ways of the O2 on the surface of the catalyst. 

 

  3) Bridge: This behavior is similar to the Griffiths way, except for that the O-O bond is 

activation by two active sites. This way happens only when the distance of the O-O bond is 

similar to the two active sites, displaying the four-electron pathway due to the absorbed 

energy.  
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  However, there is no consensus for the oxygen adsorbed pathways. Recently, Professor 

Norskov founded a new theory to explain ORR according to the d-band theory and 

thermodynamics, which is the two steps protonation: dissociative and associative [13].  

  The dissociative theory is that: the O-O bonds are broken by forming the free O* atoms; then 

the O* adsorb the proton and electron to produce the intermediate product HO*; the HO* react 

with the other proton and electron to finish ORR, the * means the active sites on the surface 

of the electrode. The detailed reaction equation is:  

 

  The associative theory is similar to the dissociative theory: the O2 diffuses into the active 

sites to react with the proton and electron forming intermediate product HO2*, then continue 

to adsorb another proton and electron to complete the reaction. The following is the reaction 

equation: 

 

  More information also obtained from the same group, such as that the density functional 

theory calculation shows that it equates to two dissociative and associative theories from the 

thermodynamic view. However, there is a controversy for which way is real in different 

groups, because they are lack of the powerful evidence. They analyzed the model of 

dissociative and associative molecular on the surface of the metal through the density 

functional theory, discovered that it is the linear relationship between the activation energy of 

the molecule dissociation and the binding energy of the atom on the metal surface. The 

Bronated-Evans-Polanyi (BEP) theory belonging to the linear free energy theory shows that 

the intermediate products are similar for molecule absorbed by the surface of the different 

metals, acted as a bridge of the thermodynamics and the kinetics. 

Meanwhile, the onset-potential is up to 1.23 V when the ORR goes along with the four-

electron pathway. However, the ORR is an irreversible reaction with the complicated 

products. For example, the over-potential is up to 0.2 V to maintain the reaction when Pt as 



Chapter 1 

15 
 

the ORR catalyst. It needs to higher over-potential for other materials as the ORR catalyst 

with the more complicated products.  In fact, about 80% loss of the whole fuel cell efficiency 

comes from ORR in the PEMFCs.  

  Therefore, it is urgent to develop free-precious metal ORR catalyst with the high activity, in 

order to improve the efficiency of PEMFCs, to promote the development of basic research, 

and to accelerate the practical application [14-17].  

1.5   Recent advancements of catalyst for ORR 

  Searching for the high catalytic activity with low cost is the final target for researchers. 

After investigated for decades, scientist gradually confirmed the necessary properties for 

ORR catalyst, such as high catalytic activity, high stability, high conductivity, high surface 

area, resistance to oxidation and reduction, preservative, rich source, and cheap price.  By 

now, different types of catalysts are developed: precious metals and their alloys, metal 

chelating agent, conducting polymer, transition metal oxides, chalcogenides, nitrides, and 

metal-free materials.   

1.5.1 Precious metals as ORR catalysts 

  Due to the complicated products, Pt and Pt-based materials [3-7, 17-23] are the only 

commercial catalyst with precious metal the by now. The reason is that; the d-band orbit of Pt 

has the empty position to adsorb the O2 molecular forming the unstable intermediate product, 

and shows the highest ORR activity in all the precious transition metals. However, the high 

price, rare reserve, and poor durability limit its application. Most publications suggest that 

decreasing the diameter of Pt particles, preparation the specific surface orientation or 

morphology of Pt particles, Pt-based alloy, and searching for the high conductivity and 

preservative support to loading Pt are the effective methods to optimization the catalytic 

activity and durability.   

(1) The effect of the Pt particle diameter 

  Pt particles as the ORR catalyst, it is known that the diameter of Pt particles has an 

important effect on catalytic activity [23, 24]. Decreasing the diameter of Pt particles can 

promote the dispersion of Pt particles to improve the active surface and reduce the Pt loading. 

Amra Peles et al. found that the quality activity increase with the decreasing the diameter of 

Pt particles from 5.5 nm to 2.2 nm [25]. However, the quality activity would be decreased 
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with the decreasing the diameter of Pt particles from 2.2 nm to 1.3 nm due to the negative 

particle size effect, proved by several groups [26].  

(2) The effect of the specific surface orientation or morphology of Pt particles 

  In the beginning, most scientists believed that the low index planes of Pt crystal have the 

advantage to promote ORR [27-30]. In 1997, Joelma Perez investigated the cyclic 

voltammetry (CV) performance for the low index planes of Pt crystal in the 0.1 M HClO4 

solution [31]. It is clear that much difference is in the three planes (110), (100), and (111). 

The detailed data suggest that Pt (110) shows the best ORR performance. They believed that 

the power of adsorption of O2 molecular is the main reason.  

  However, the deeper research showed that the more active sites from the corner and 

boundary of the high index planes and terraced planes of Pt crystal could improve the 

catalytic activity [32-35]. In 2012, Professor Nagahiro Hoshi prepared different active planes 

of Pt crystal. It is clear that the highest electrochemical activity surface orientation is the high 

index planes of Pt (332) [36]. Yet, another scientist believed that higher index planes Pt (730) 

and (520) are more active than other index planes [37]. 

  Another important useful method to improve the active sites is to discover different 

morphology of Pt particles, such as Pt tetra-hexahedron, core-shell structure, and hexagonal 

nanoplates.  

(3) Pt-based alloy  

  Pt-based alloy obtains not only the excellent properties of Pt but also the original metal 

properties due to the synergistic effect. Generally, transition metals are introduced into the Pt-

based alloy, due to their abundance, low price, and excellent ORR properties. Huang et al. 

synthesized PtPb/Pt core/shell nanoplates showed better electrochemical activity than 

commercial Pt/C [38, 39]. They found that the edge, top, and bottom of Pt (110) facets 

undergo large tensile strains, indicating advantages for helping optimize the Pt-O bond 

strength. Professor Stamenkovic discovered volcano linear relationship between ORR activity 

and the transition metal properties [40]. The deeper investigation confirmed that they show 

the weaker adsorption oxygen molecular than Pt nanoparticle, suggesting that the oxide 

product can detach in time. 

(4) Searching for the high conductivity and preservative support for Pt-loading 
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  Now, the commercial ORR catalyst is using XC-72 as support to load Pt nanoparticles [41-

47]. That is due to the carbon material’s high surface area and good conductivity [48, 49]. 

However, the carbon materials are easy to corrosion at the high potential and oxygen 

bumbling, leading to the Pt nanoparticle loss or oxide [50].  Several new structures of carbon 

materials were discovered, such as carbon fiber, graphene, carbon nanotube, and grade hole 

carbon, which were the only oxide on the edge of materials with stable π bonds. Otherwise, 

new carbon-free materials are also developed, such as WC, WOx, TiC, TiOx, and some 

nitrides [51-58].  

  Although, these methods are beneficial to improve the catalytic activity and the durability. It 

cannot solve the use of precious metal. Therefore, the limited reserve, high price, poison and 

oxide of Pt-based materials suggest that developing the precious metal-free catalyst is the 

fundamental method to promote the commercial development of PEMFCs. 

1.5.2 Metal-free catalysts 

  Carbon materials as the traditional ORR catalyst have the advantages of the rich source, 

cheap price, high conductivity, environmental, and good stability. As we know, pure carbon 

is low ORR catalytic activity. The heteroatom (N、B、S and P) single- or co-doped carbon 

show high catalytic activity [59-63], due to increasing asymmetry of the carbon atomic spin 

density [59].  

  Recently, Dai’s group researched the p-group elements doped in graphene, confirmed that 

the ORR catalytic activity has a relation to the free energy of heteroatom atoms. They 

developed the theory to explain why the N, S, and P atoms doping have a better ORR 

catalytic activity than other elements in adsorption of electrons and electronegativity. In fact, 

N-doped carbon is the most investigated materials in the ORR catalysts [60, 64].    

  There are four types of N-doped carbon structure: oxide N, pyridine-like N, graphite-like N 

and pyrrole-type N [60, 65]. It is generally believed that pyridine-like N and graphite-like N 

(named quaternary N) have a higher activity than the other two types, due to that the special 

structure of the pyridine-like N and the graphite-like N would increase the adsorption ability 

of the oxygen.  

  After that, B, S, and P also investigated a lot [66-78]. S atom has a similar electronegativity 

with a higher diameter than N atoms, promoting ORR with the increasing spin density of 

carbon brings in structure defect sites. However, single S-doped carbon shows weak ORR 
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catalytic activity due to much more intermediate products and lower electrons transfer 

number. Normally, S atoms are used to co-dope carbon with other heteroatom atoms [67, 69]. 

B is another usual heteroatom atom in different theories with N and S [66, 70]. The theory 

calculation discovered that B-doping would break down the neutral of carbon to form B+ 

structure. P element, the same group with N, is an effective heteroatom atom. P atom shows a 

bigger covalent diameter (107 pm) than carbon atom [68]. When introduced the P atoms 

doped in carbon, the C-plane structure becomes a conical junction of P atoms combined with 

three C atoms structure. Therefore, the sp2 hybrid state will transfer into the sp3 hybrid state, 

resulting in more distortion and defects to promote ORR. 

  Altering the synthesized method to control the material structure, surface area, the type of 

doped heteroatom atoms, and the amount can improve the heteroatom atom doped carbon 

electrocatalytic activity, and the theoretical calculation and/or experiment investigated a lot. 

However, the electrocatalytic activity still cannot compete with commercial Pt/C, and there is 

no consensus on the active sites. In other views, the metal-free catalyst cannot fully avoid the 

metal in the sample, due to the trace metal in the preparation of carbon as catalyst. So 

searching for the metal and heteroatom atoms co-dope carbon materials become a research 

point. 

1.5.3 Transition metal-heteroatom atom co-dope carbon materials as catalysts 

  Transition metal (Co, Fe, Ni)-heteroatom atom (N, P, S, B) co-dope carbon catalyst is also 

called metal chelates catalyst, which is firstly found by Professor Jastnski in 1964 with 

phthalocyanine cobalt promoting ORR [71-74]. After decades, too many metal chelates were 

published, such as metal phthalocyanine chelate, metal porphyrin chelate, and metal 

tetraazacyclotrope alkene. Among them, MeN/C was the most studied, N is chelate, Me is 

transition metal (Fe or Co is the most). Nevertheless, there are also too many key points not 

clear or need to be overcome [75-77]. Firstly, these materials show good catalytic activity in 

base solution but not in acid solution, and many publications show that their electrochemical 

activities are related to the high-temperature carbonization. Secondly, we cannot make sure 

the relationship between the component and catalytic activity. As we known, the material 

performance is controlled by material component, but a huge controversy is in the component 

and performance in MeN/C or the active sites. Thirdly, designing the excellent material 

structure is good to promote the reaction. Generally, the large surface area is good for 
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supporting active sites, and the suitable hole has advantages to transfer reactants and 

products, which are beneficial to catalytic reaction.   

1.5.4 Metal oxides, nitrides, carbides and other metal-based compounds  

In addition, there are also other different types of catalysts, such as oxides (MnOx [78], CoO 

[79], and Co3O4 [80]), chalcogenide compounds (M-X, M=Co, Ru, Re, Rh; X=S, Se, Te) [81-

86], nitrides (MoN [87], MoN2 [88]), carbides (WC [89], FeC [90]) and oxynitrides. 

However, they have the same shortcoming as the free-noble metal materials.  

Therefore, developing free precious metal catalyst with the high activity and the excellent 

performance in the acidic media, and exploring the catalytic mechanism have the far-reaching 

theoretical and practical significance. 

1.6 The challenges of ORR catalysts for PEMFCs 

As the previous discussion, ORR catalysts as the most important part of the cathode are 

developed for decade’s years, but they are still facing many challenges, such as efficient and 

stability [91-93].  

  The cathode is the place of accepting the electrons, and absorbing the oxygen to form OH- 

[94-98]. It controls the ongoing of the reaction. Although, ORR is investigated more than the 

hydrogen oxide reaction (HOR), the mechanism of ORR is not clear, due to too many the 

uncertainties such as the electrolyte and reaction surrounding. [91-96] However, there is a 

consensus that the unstable intermediate products in the reaction are determined by the 

thermodynamic but not kinetic reaction. Moreover, the poor reversibility of the unstable 

intermediate products results in the low exchange current density (ECD). For example, the 

ECD of the popular commercial catalyst Pt-Pd alloy is less than 10-10~10-9 mA/cm2, much 

lower than that of the anode. It leads to the high over-potential, and that the onset-potential is 

only 1 V lower than the theoretical 1.23 V. In the commercial devices, the onset-potential is 

only lower than 0.8 V.  

Improving the catalyst performance is the most suitable method for PEMFCs. However, it 

is difficult to improve, such as poisoning of CO, loss activity, aggregating, and dissolving 

[97-101]. More important, not only the price but also the reserved of the precious metal in the 

earth cannot meet the requirement of the practical. In the anode, only about Pt 0.05 wt. % is 

enough, but it needs about 40 wt. % in the cathode in the commercial fuel cell. In fact, 
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according to the investigation of the U.S. Department of Energy, 46% of the whole fuel cell 

price is used for the catalyst.  

  In summary, improving the fuel cell performance can obtain through the engineering 

practice and technical research, but there is no ideal way for nonrenewable resource Pt [94, 

102]. Therefore, decreasing the Pt-based catalyst amount or discovering new Pt-free catalyst 

are the most useful method to improve the performance of the PEMFCs.  

1.7 Research topic 

  As discussed above, PEMFC shows much more advantages to response to the energy crisis 

and environmental pollution, which is considered as the most potential power substitute. 

However, there is still a key point needs to be considering. Firstly, the high effective Pt 

nanoparticles are introduced in ORR catalyst to promote the PEMFC practical application. At 

the same time, the poor stability, easy poison, and high price limited the PEMFC large-scale 

application. So keeping the high efficiency with decreasing Pt loading is a key point. 

Secondly, as introduced before, the precious metals free catalyst cannot obtain a comparable 

catalytic activity with Pt, so how to improve their catalytic activity is the main question. 

Thirdly, in the past decades, we cannot obtain a suitable support to load precious metal to 

substitute the commercial carbon. In other words, we cannot avoid the corrosion of carbon. 

Therefore, searching for an excellent support is another promising method.   

  To meet these three challenges, in this thesis we use an effective catalyst to decrease the 

price of PEMFC.  

  1, Hexagonal nanoplates PtFe alloy with facile operating conditions was prepared to 

enhance electrocatalytic activity and durability. In this part, we synthesized a series of PtM 

(M: Fe, Co, Ni) alloy as a catalyst by the mild simple method. The electrochemical 

measurements confirmed that the transition metals controlled the catalytic activity of Pt-

based alloys due to their natural properties. The PtFe alloy catalyst showed the highest 

catalytic activity due to its homogeneous morphology and ultra-small particle size. 

  2, Fe, Co incorporated in P-doped porous carbon catalysts were prepared to promote the 

ORR process. Temperature-dependence of electrocatalytic activity for dual transition metals 

embedded in P-doped porous carbon was synthesized to enhance ORR performance. This 

thesis explored the relationship between catalytic activity and carbonization temperature, the 
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ratios of the transition metals. It is interesting that this thesis confirmed that the synergistic 

effect of dual transition metals is controlled by their ratios.  

  3. 2D MXene Nb2C was synthesized as support to improve the ORR process. The traditional 

molten salt assisted solid-state reaction was used to prepare the product MAX Nb2AlC at low 

temperature, which decreased the synthesized temperature from 1600oC to 1000oC. This 

thesis investigated the effect of the different fluxes, reaction times, heating temperatures, and 

the amount of the fluxes. The results confirmed that the reaction time is the key factor in the 

synthesis. Then, the multi-layer MXene Nb2C was obtained by using the HF solution to etch 

the MAX Nb2AlC. At last, we compared the ORR catalytic activity of four samples (Pt-

loading or free of before and after HF etching), showing that the multi-layer MXene Nb2C is 

beneficial for improving the catalytic stability and activity. 
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Chapter 2   Experimental section for electrode 

preparation, physic characteristic, and data analysis 

2.1 Raw materials and instruments  

  All the raw materials purchased from the company are listed in Table 2.1 without any 

further treatment.  The instruments used in the experiment are shown in Table 2.2. 

Table 2.1 The starting materials used in the experiments in this thesis 

Reagent Purity Company 

Chloroplatinic acid 99.99% Sigma-aldrich 

Formic acid   98% Wako Pure Chemical Industries 

XC-72 99.99% Strem chemicals 

HCl 36.5% Wako Pure Chemical Industries 

CoCl2 99.5% Wako Pure Chemical Industries 

FeCl3 99.5% Wako Pure Chemical Industries 

NiCl2 99.5% Wako Pure Chemical Industries 

Phytic acid  98% Wako Pure Chemical Industries 

NaOH 99% Wako Pure Chemical Industries 

Nb powder  99.99% Wako Pure Chemical Industries 

Al powder  99% Wako Pure Chemical Industries 

Graphene  99.7% Macklin Co., LTD. 

NaCl  AR Sigma-aldrich 

2-Propanol Super Dehydrated Wako Pure Chemical Industries 

KF 99% Wako Pure Chemical Industries 

LiF 99% Wako Pure Chemical Industries 

KCl 99% Wako Pure Chemical Industries 

HClO4 70% Wako Pure Chemical Industries 

KOH 99% Wako Pure Chemical Industries 

Ethanol 99.5% Wako Pure Chemical Industries 
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Table 2.2 The instruments used in the experiments in this thesis 

Apparatus MODEL Company 

Muffle Furnace FO300 Yamato Scientific Co., Ltd., Japan  

Electrochemical 

workstation  
CHI-760 CH Instruments, Inc. China 

Compact pine rotator AFCPRBE Pine Instrument Company,  USA 

Electrolyte cell  RRPG310 Pine Instrument Company,  USA 

Counter electrode   AFCTR5 Pine Instrument Company,  USA 

Working electrode  E7R9 Pine Instrument Company,  USA 

Reference electrode  RREF0024 Pine Instrument Company,  USA 

Hot stirrer CHPS-170DN As one Co., Ltd., Japan 

Vacuum oven AVO250N As one Co., Ltd., Japan 

Normal oven  SONW-450S As one Co., Ltd., Japan 

Balance  VIBRA Shinko denshi Co., Ltd., Japan 

Balance  
New Classic 

ML 
Mettler toledo Co., Ltd., Japan 

Dryer  EKK-450 As one Co., Ltd., Japan 

Energy dispersive X-

ray spectrometry 
Genesis XM2 EDAX Co., Ltd., Japan 

X-ray diffractometer Rigaku Rigaku Co., Ltd, Japan 

Scanning electron 

microscope 
JCM-6000 JEOL Co., Ltd,  Japan 

Inductively coupled 

plasma 

SPS1700HV

R 
Seiko Instruments Co., Ltd., Japan 

ionization energy 

measuring device 
KV205-HK Bunkoukeiki Co., Ltd, Japan 
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X-ray photoelectron 

spectroscopy 
AXIS-HS KRATOS Co., Ltd., Japan 

Tube Furnace ARF-30KC ASAHI RIKA Co., Ltd., Japan 

Field emission- 

scanning electron 

microscope 

S5200 Hitachi Co., Ltd., Japan 

2.2 Physical characterization and electrode preparation 

2.2.1 X-ray diffraction 

  X-ray diffraction (XRD) is used to measure the crystal structure, which can analyze the 

materials with qualitative and quantitative. The prepared samples recorded on Rigaku 

D/MAX2550 diffractometer using Cu-Ka radiation (35 kV, 25 mA, λ= 1.54056 Ǻ) with a 

scanning rate of 5° min-1. 

2.2.2 The morphology and microstructure characterization  

  The morphology and microstructure of the samples are analyzed by transmission electron 

microscopy (TEM, Tecnai G2 F20 S-TWIN at 200kV) and search engine marketing (SEM, 

JSM-6701).  

2.2.3 Specific surface and pore size analysis  

  Specific surface is the total surface area per unit mass of the materials, used to calculate the 

surface area of sample particle. As we know, the specific surface area has a strong correlation 

with the adsorption of materials and stability. The high specific surface area is beneficial to 

the catalytic activity, because the higher specific surface area would expose more structure 

defect to increase the active sites. Therefore, it is important to explore the specific surface 

area of samples. In this thesis, Autosorb-iQ2 (Quantachrome Instruments) is used to obtain 

the surfaces area and the pore size distribution with nitrogen adsorption-desorption 

measurements at -196oC. In detail, the specific surface area is calculated by the Brunauer-

Emmett-Teller (BET) method, and pore size distribution from the N2 adsorption is calculated 

by the quenched solid density functional theory (QSDFT). All the samples are outgassed 

under vacuum at 200oC for 10 h using a turbo-molecular vacuum pump before the sorption.  

2.2.4 Inductively coupled plasma-atomic emission spectrometry 
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  Generally, the trace amount of transition metals is confirmed by the inductively coupled 

plasma-atomic emission spectrometry (ICP-AES, SPS1700HVR). The solution is prepared as 

the following process: 50 mg samples dissolved in the HCl: HNO3 = 3:1 mixture solution 

stirring for 48 h, and then added the ultrapure water up to 50 mL with the filtrate.  

2.2.5 X-ray photoelectron spectroscopy  

  In order to analyze the state of chemical bonds and valence, X-ray photoelectron 

spectroscopy (XPS, ESCALAB 250Xi system using monochromatic Cu KR X-ray source) is 

used. All the results are calibrated by the C 1s (284.6 eV). 

2.2.6 Energy dispersive spectrometer 

  Energy dispersive X-ray spectrometry (EDS, Genesis XM2, EDAX) is recorded to 

determine the type of different elements and their stoichiometric ratio of the material.  

2.2.7 Rotating disk electrode test system 

  Rotating disk electrode (RDE) is used to analyze the distribution of current density with the 

reduced or eliminated the effects of the diffusion layer. In this thesis, the standard three-

electrode system connected to a CHI 760E electrochemistry workstation is the test system. 

Ag/AgCl with saturated 3 M KCl solution is the reference electrode. The platinum wire is 

acted as the counter electrode, and the working electrode preparation will be discussed in the 

following. 

2.2.8 The preparation of working electrode and electrolyte 

  The catalyst ink is prepared by the following method. 4 mg prepared sample is dispersed in 

the mixture solution: 100 µL Nafion solution (5 wt.%), 150 µL ultrapure water and 250 µL 

isopropyl alcohol, and then kept in the ultrasonic bath more than 30 min to obtain the catalyst 

ink. In the measurement, the suitable volume ink is transferred onto the surface of glass-

carbon (GC) by the micropipette, and then kept in the open oven at 60oC for 15 min, which is 

used as the working electrode. For the comparison, the Pt/C catalyst ink is prepared as the 

same process. The 0.1 M KOH or 0.1 M HClO4 solution is the electrolyte.  

2.3 The electrochemical measurements and analysis  

  This part is used to introduce the different methods of electrochemical measurements and 

the analyses. 
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2.3.1 Cyclic voltammetry  

  Cyclic voltammetry (CV), one of the most commonly used electroanalytical techniques, is 

an excellent method, which is used to analyze the electrochemical process between the 

electrode and the surface of the electrolyte. In order to receive the precise data, all the tools 

such as the cell, the reference electrode, and the counter electrode need to be washed by the 

ultrapure water (Millipore, 18.2 MU cm). All the catalysts prepared in this thesis including 

Pt/C should be acquired the CV curves in N2 and O2 saturated electrolyte. Bumbling more 

than 30 min N2 obtain the CV curves in the N2 saturated electrolyte, and then bumbling more 

than 30 min O2 obtain the CV curves in the O2 saturated electrolyte, the potential range from 

-0.2 to 1 V in acidic medium and -1 to 0.2 V in alkaline medium (corresponding to the 

Ag/AgCl as reference electrode). It should be noted that the catalysts need to be 

electrochemical washing named as activation before taking points: the working electrode is 

cycled at least five times before the data recorded in all CV tests. 

  Figure 2.1 is a standard CV curve of Pt/C in the 0.1 M HClO4 solution. There is three main 

part in the CV curve: H zone, double layer, and O zone. In the H zone, peak 1 and peak 2 are 

the H desorption, peak 5 and peak 6 are the H adsoption. The double layer is charging 

showing the lower current. O zone includes the O desorption and adsorption, corresponding 

to the decomposition of water. Peak 4 is the oxygen reduced peak, which is the most 

important for ORR.  

  Generally, in the different CV curves may be not clearly showing all the peaks like the 

Figure 2.1, due to the different reaction mechanisms. However, the peak 4 is the most 

important due to it is the reflection of ORR catalytic activity. 
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Figure 2.1 The CV curve of commercial Pt/C in 0.1 M HClO4 solution with the scan rate of 10 mV/s 

at room temperature.  

 

2.3.2 Linear sweep voltammetry 

  Linear sweep voltammetry (LSV) is to add a changing potential to obtain a curve, which is 

the current changing with the potential, suggesting the catalytic activity. The detailed test 

process in this thesis is the following: The onset-potential and the limited current are 

measured by displaying the catalytic activity. Bumbling more than 30 min N2 to remove the 

reflect of H2 and then bumbling more than 30 min O2, we obtain in the O2 saturated 

electrolyte. In order to further analyze the catalytic activity, LSV curves with different 

rotation speeds are needed: 625, 900, 1225, 1600, 2025 and 2500 rpm/min with the potential 

range from -0.2 to 1 V in acidic medium and -1 to 0.2 V in alkaline medium (corresponding 

to the Ag/AgCl as reference electrode).  

  Figure 2.2 is a typical ORR LSV curve. Clearly, the current density relies on the kinetic 

controlled in the high potential, the mix kinetic-diffusion controlled in the intermediate 

potential, and the diffusion controlled in the low potential. We can also obtain three 

parameters in the curve: onset-potential, half wave-potential, and the limited current. There 

are three pathways to confirm the onset potential: one is the point of zero current, one is the 

point at 0.1 mA/cm2, and the last one the intersection of the kinetic controlled and the mix 
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kinetic-diffusion controlled. In this thesis, the onset-potential is obtained from the last one 

method. 

 

Figure 2.2 The typical LSV curve of the commercial Pt/C catalyst in the electrolyte with the scan rate 

of 10 mV/s at room temperature. 

 

2.3.3 Koutecky–Levich curve  

  As introduced in Chapter 1, there are two thoroughly different electron transfer pathways, 

calculated by the Koutecky–Levich (K–L) equation [1-2]:  

1/j=1/jk +1/jd = 1/jk+ 1/(Bω1/2) 

Among them, j is the measurement current density, jd is the limited diffusion current density, 

jk is the kinetic current density, ω is the rotation speed, and B is the Levich slope called B 

factor, obtained from the equation:  

B=0.62nFDO2
2/3ʋ-1/6CO2 
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n is the number of electron transfer, F is the Faraday’s constant 96485 C/mol; DO2 is the 

coefficient of diffusion (1.86×10-5 cm2/s in alkaline solution); ʋ is the dynamic viscosity 

(0.01 cm2/s); C is the solubility of oxygen in the electrolyte (12).  

  Thus, we can obtain the number of electron transfer n combined with this two equations. 

2.3.4 Chronoamperometry 

  Chronoamperometry is performed to explore the stability of the catalysts, which measure 

the charging current with the time at the constant voltage. In this thesis, the detailed 

measurement process is that: testing in the O2-saturated 0.1 M KOH or HClO4 solution 

electrolyte with a rotation speed of 400 rpm at the -0.5 V or 0.2 V (corresponding to the 

Ag/AgCl as the reference electrode) for 30000 s, respectively.   

2.3.5 Electronic impedance spectroscopy 

  Electronic impedance spectroscopy (EIS) refers to a small amplitude symmetrical sine wave 

alternating current impedance method, used to analyze the physical properties of catalysts 

and the effect of electrochemical reaction on interface impedance. In the thesis, CHI 760 

electrochemical workstation is used to record in the O2-saturated 0.1 M KOH or HClO4 

solution electrolyte. The measurements range is from 0.1 to 1× 106 Hz at the open voltage. 

The ZView software is used to simulate the schematic illustrations of the equivalent circuit in 

the EIS of the samples.  

2.3.6 Tafel curve  

  In the dynamic process of electrochemical reaction, Tafel curve displays the correlation 

between the over-potential and current density, which is a typical line relationship. In the 

high polarization condition, the over-potential and current density meet the following 

equation [3-5]:  

η=2.303RT/(anF)log(jk/jd) 

where a is the electron transfer coefficient, R is the gas constant, F is the Faraday’s constant 

96485 C/mol, T is the temperature, the jk is the kinetic current density, n is the number of 

electrons transferred in the rate determining step, and jd is the exchange current density. 

Simplified this equation, we can obtain the following equation:  

η = a + blogjk 
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so a = (-2.303RT/anF)logjd and the Tafel slope b = 2.303RT/anF, in other words, 

electrocatalysts with low Tafel slopes and high exchange current density are better catalysts 

in reducing activation polarization. Generally, according to the peer report that the Tafel 

slope b is close to 60 mV per decade.  

Connected with the K–L equation in 2.3.3, the kinetic current was calculated from the mass 

transport correction of the LSV curve with a rotation speed of 1600 rpm in this thesis using 

the following equation: 

JK = (J×JL)/ (JL-J) 

  In the equation, J is the measured current density on the GC disk, and JK and JL are the 

kinetic and limited diffusion current densities, respectively. 
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Chapter 3   PtM (M: Fe, Co, Ni) alloys as the ORR 

electrocatalysts with the facile operating conditions 

3.1 Introduction  

  In the background, we discussed different types of fuel cells, and we pointed out that the key 

problem is to develop an effective catalyst for ORR. The Pt-based alloys as the most 

promising cathode catalyst show an excellent electrocatalytic activity for oxygen reduction 

reaction (ORR) [1-10]. However, there are three questions need to be solved before it is 

applicated in practice. Firstly, Pt is one of the lowest natural abundances in the world, 

according to the book: Geological environments of the platinum group elements (Hulbert, L 

J). And except the rare, it is very difficult to mine due to it scattered all over the world [2-7]. 

Secondly, many papers showed that Pt nanoparticles would be solvent in acid or base 

solution under the higher over-potential, which is also the main reason for the insufficient 

durability [5-8]. Thirdly, scientists prepared different morphology Pt nanoparticles such as a 

cube, dodecahedron. However, it still cannot prevent dissolving with bringing in a new 

question: aggregation [9-11]. How to solve these questions attracted many scientists to pay 

attention to, because Pt-based catalyst has the irreplaceable advantages, such as the most 

effective pathways (4-electron pathway) in the reaction and the highest electrocatalytic 

activity [12].  

  As explained before, the most effective method is that Pt alloys with other transition metals 

(such as Fe, Co, Ni, Cu, etc.) [13-26]. The main mechanism of the Pt-based alloy is also 

investigated [13-18]. In brief, the alloy changes the Pt-Pt bonds distance to increase the Pt 

active surface and weaken the adsorption of the oxygen-containing species, because of the 

transition metal dissolution, negative shifting or changing the d-band center, and vacancies, 

proved by the calculations and experiments [12-18]. Fe, Co, and Ni are the most investigated 

transition metals, due to their cheap, abundant, and suitable binding energy with oxygen [15-

17, 27-30]. For Pt-based catalysts, several groups confirmed that the catalytic activity relay 

on their morphology and size of the PtM nanoparticles [31-37], suggesting the exposed 

crystal facet and surface area have an effect on the electrocatalytic activity [38-40].  

  Herein, we introduced a facile method to synthesize a serial of 2-D hexagonal nanoplates 

PtM (M: Fe, Co, Ni) catalysts. With the help of XPS, XRD, EDS, and TEM, the PtFe sample 

shows a well-defined homogeneous hexagonal nanoplates structure, and ultra-small particle 
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size (ca. 2.6 nm). After the electrochemical measurements and analyses, such as CV, LSV, 

EIS, K-L equation, and Tafel curves, the PtFe sample displays a superior electrocatalytic 

activity and stability. 

3.2 Experimental  

3.2.1 Synthesis of the PtM (M: Fe, Co, Ni) catalysts 

  The PtM (M: Fe, Co, Ni) catalysts were prepared by the following method: 10 mL of formic 

acid stirred with 0.015 mmol of chloride metal for 1 h to form the core solution. Then, the 

mixed solution of 1.5 mL of 0.2 mmol/L H2PtCl6·6H2O and 13.5 mL of distilled water slowly 

drop into the core solution, corresponding to 0.585 mgPt. At last, in order to reduce the Pt, 

1.22 g formic acid and 0.018g XC-72 were mixed into the solution, acted as the reductant and 

support. After stirring for 24 hours, the filtered products washed with distilled water several 

times, the catalysts were obtained after dried in an open oven at 60oC (see the Scheme 1).  

Scheme 1. Synthesis of the PtFe alloy followed by the soft chemistry method. 

 

 

3.2.2 Physical characterizations 

  The crystalline was confirmed by powder X-ray diffraction (XRD) with the scanning step of 

5° min-1 from 10° to 70°. The transmission electron microscopy (TEM) and TEM-EDS 

(Tecnai G2 F20 S-TWIN) were used to analyze the catalyst’s morphology and 

microstructure. In order to display the surface state of the catalyst, X-ray photoelectron 

spectroscopy (XPS, Thermo Escalab 250Xi) was recorded.   
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3.2.3 Electrochemical measurements 

  A typical three-electrode system with a rotating disk electrode (RDE) setup from Pine 

Instrument Company connected to a CHI 760E electrochemistry workstation was used to 

explain the catalytic activity of the catalysts. As introduced in Chapter 2, 6 mg of the catalyst 

with the mixture solution: Nafion solution (5 wt%, 0.1 mL), distilled water (0.15 mL), and 

IPA (0.25 mL) were ultrasonic for about 0.5 hours to form the catalytic ink. Then 8 µL of the 

ink was then transferred to the GC electrode with a loading amount of 489 µg cm-2 

(corresponding to a 3.48 µgPt/cm2, thus no loss in the experiment process). At the same time, 

the commercial Pt/C was used as a comparison with the loading amount of 20.41 µgPt/cm2 

and 3.48 µgPt/cm2. The N2 or O2–saturated 0.1 M KOH or HClO4 solution was used as the 

electrolyte.  

  The electrochemical impedance spectroscopy (EIS) measurement was recorded to illustrate 

the effect of electrochemical reaction on interface impedance in a frequency range of 100 

kHz to 1 Hz in the alkaline and acidic medium at open circuit voltage. Koutecky–Levich (K–

L) equation was used to analyze the kinetic process of the samples.  For the Tafel plot, the 

kinetic current was calculated from the mass transport correction of the LSV curve by the 

following equation: 

JK= (J×JL)/ (JL-J) 

In the equation, J is the measured current density on the GC disk, and JK and JL are the 

kinetic and diffusion of the limited current densities, respectively. 

3.3 Results and discussion  

3.3.1 XRD results 
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Figure 3.1 The XRD patterns of PtM (M: Fe, Co, Ni) detected from 10 o to 70o. 

 

  Figure 3.1 is the XRD pattern of PtM (M: Fe, Co, Ni) catalysts. There are two broad peaks 

at ca. 25° and 43°, belonged to (002) and (100) crystalline plane of the support XC-72 (ICDD 

No. 00-001-0640). There are three weak and sharp peaks in the XRD pattern, corresponding 

to (111), (200), and (220) planes of the cubic (fcc) polycrystalline Pt (ICDD No. 01-088-

2343). The peaks of pure transition metal and chloride cannot be detected by the X-rays, due 

to the water washing. Compared with the standard Pt pattern (39.27°), about 0.47°, 0.40° and 

0.32° positive shift for PtM (M: Fe, Co, Ni), respectively. It is believed that the crystal 

parameter of Pt is changed, suggesting M atoms were incorporated into the Pt structure to 

become PtM (M: Fe, Co, Ni) bio-metals. In order to explore the exposed crystal plane, we 

calculate the ratio of the two main peaks (111) and (200), which is about 1.19 times larger 

than the normal digital 1.07 from the PDF card [39]. It verifies that the preferential growth 

direction is the (111). In addition, according to the reports, the (111) and (100) facets would 

enclose the final exposed plane of Pt nanocrystal, confirming that the exposed plane is (111) 

and (200) [41]. 
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Figure 3.2 The TEM images of the PtFe alloy (a); The high-resolution TEM micrograph (b) and the 

selected area electron diffraction (c) of the PtFe alloy nanoparticles; The average size analysis of the 

PtFe alloy nanoparticles (d). 

 

3.3.2 TEM and TEM-EDS results 

  Transmission electron microscopic (TEM) was used to illustrate the morphology and 

microstructure of the PtFe alloy catalyst, showing in Figure 3.2 a. The PtFe nanoplates were 

evenly dispersed on the XC-72 support with the particle size between 1.0-5.0 nm, and the 

average size is 2.6 ± 0.5 nm after mathematical statistics (figure 3.2d). Figure 3.2 b is the 

high-resolution TEM micrograph showing the crystal lattice spaces 0.1940 and 0.2233 nm for 

(111) and (100) directions, respectively.  

  However, the lattice space is lower than the standard lattice parameter of Pt (200) (0.1985 

nm) and (111) (0.2292 nm). The selected area electron diffraction (SAED) shows in the 

Figure 3c, the unclear diffraction fringes suggest that the PtFe alloy is polycrystalline, 

corresponding to the {110}, {100} and {111} facet of a platinum crystal. 
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Figure 3.3 TEM-EDS analysis of the PtFe alloy catalyst prepared by the soft chemistry method and 

the detail ratio of Pt and Fe is in the inset. 

 

  Transmission electron microscopic-energy dispersive spectrometer (TEM-EDS) images of 

the PtFe sample was used to explore the atom ratio of platinum and iron, estimated to be 

90.24: 9.76 (Figure 3.3). In the same time, we also estimate the quantities ratio of platinum 

and iron, which is ca. 97: 3. The TEM-EDS results show that the iron is doped into the Pt 

nanoplates. The detected iron content is very different from the starting materials after the 

reduced and filtered, suggesting that partial of Fe ions were reduced or lost in the experiment.  

3.3.3 XPS results 

  The surface states of the sample for different elements were detected by XPS. There are 

three obvious peaks located at 75, 284.3, and 533 eV, belonging to the signals of C 1s, Pt 4f, 

and O 2p, respectively (Figure 3.4). The high-resolution of Pt 4f has two peaks 4f7/2 and 4f5/2, 

which can be further split into four peaks 71.4, 74.8 and 72, 75.7 eV, corresponding to the 

different oxide states of platinum: Pt0 and Pt2+ species. The fraction of each surface oxygen 

groups was obtained by deconvolution of the O 1s peak in three components, double oxygen 

bond in C=O (peak at 531.8 eV), hydroxyl and other groups (533 eV), and the oxygen atoms 

in acid carboxyl groups (534.3 eV). Generally, the elements only less than 20 Å from the 

surface can be detected by the XPS instrument, due to the intensity of X-ray decreased with 

the increasing depth. So in the PtFe alloy sample, only the Fe atoms close to the surface 

(several atomic layers) can be detected [31, 32].  
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 Figure 3.4 The full XPS survey for the as-prepared sample the PtFe alloy (a), Pt 4f (b), O 1s (c) and 

Fe 2p (d). 

 

3.3.4 Electrochemical characterizations and discussion  

  The ORR catalytic activity of catalysts in the alkaline medium is shown in Figure 3.5. The 

cyclic voltammetry (CV) measurement is in the N2 and O2-saturated 0.1 M KOH with the 

scan rate of 10 mV/s. In the low onset potential, one pair of the peak can be observed 

corresponding to desorption and adsorption of hydrogen (Figure 3.5a). Except that, no peak 

in the high potential but a broad weak anode peak at the 0.3 V in the N2-saturated electrolyte, 

which is the hydrogen oxidation peak. What the significant difference, a sharper and higher 

reduction peak was observed in the O2-saturated electrolyte at 0.91 V vs. RHE, indicating a 

superior ORR catalytic activity. The PtCo and PtNi show the same behavior, but the lower 

positive shift than the PtFe sample, indicating the potential catalytic activity.  
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Figure 3.5 CV curves of the PtFe alloy in nitrogen and oxygen–saturated solutions (a). LSV curves in 

oxygen–saturated solutions at 1600 rpm for three samples and commercial Pt/C (b). LSV curves of 

the PtFe alloy at different rotation speeds and with a scan rate of 10mV s-1 (c). The K-L plots for the 

PtFe alloy at different potentials shown inset of (c); Electrochemistry stability of the PtFe alloy 

accessed by CV curves at a scan rate of 50 mV s-1 (d). The entire test is in the 0.1 M KOH medium. 

 

  Linear sweep voltammetry (LSV) was used to illustrate the catalytic properties of PtM (M: 

Fe, Co, Ni) catalysts. Figure 3.5b shows that the PtFe alloy sample has the more positive 

inflection point in the low current density. The highest onset-potential of 0.95 V vs. RHE 

than other two samples, means that the highest onset-potential than other two samples even 

the same as to the commercial Pt/C (20.41 µgPt/cm2). Deeper analysis is made to prove that 

the PtFe alloy is a good electrocatalyst, such as half-wave potentials and limiting current 

density shown in Table 3.1. As we known, the electrocatalytic activity of Pt-based alloy is 

controlled by the transition metals, but there is no consensus about the key point because of 

many reasons, such as morphology, dissolution, and their native properties. Recently, 

theoretical calculation found that the onset-potential of Pt-based alloy relay on the 



Chapter 3 

49 
 

thermodynamic dissolution potential of the transition metals at pH=0 [42], which obey the 

inverse proportion. In the Figure 3.5b, the comparison of PtM (M: Fe, Co, Ni) and the 

commercial Pt/C with the same Pt loading amount is investigated. Clearly, the Pt/C (3.48 

µgPt/cm2) shows the lower onset-potential and the limited current. In detail, the PtFe catalyst 

displays about 11.43 times of the Pt/C (3.48 µgPt/cm2) for onset-potential at 0.9 V, indicating 

the excellent ORR catalytic activity.  

  The kinetics of the catalysts PtM (M: Fe, Co, Ni) was performed by the Koutecky–Levich 

(K–L) analysis, which is from LSV curves at different rotation speeds with the scan rate of 10 

mV/s. From the inset of Figure 3.5c, the electron transfer number of the PtFe alloy sample is 

from 3.73 to 3.85 at the potential range of 0.3-0.7 V, suggesting the ORR process of the PtFe 

alloy is the four-electron pathway. In addition, the samples of PtCo and PtNi are calculated 

by the K-L equation, which is close to four at different potentials, indicating the ORR process 

is the effective four-electron pathway.  

 

Figure 3.6 The corresponding Tafel plots from LSV curves at 1600 rpm of PtM (M: Fe, Co, Ni) (a); 

The impedance spectra of three samples at open circles potential, and the line is the fitting results (b). 

The entire test is in the 0.1 M KOH medium. 

 

  The superior catalytic activity and good stability are essential for one excellent catalyst. The 

CV curve measurements of the PtFe alloy is from 0.02 to 1.21 V for 700 cycles with the scan 

rate of 50 mV/s to explore their stability, as shown in Figure 3.5d. In the CV curves, there are 

two factors to measure the stability: the electrochemically-active surface area (ECSA) and the 

cathode peak. ECSA was used to prove the active area decreasing with the active sites. The 

cathode peak would negatively shift due to the active sites dissolved or aggregated. There is 
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an obvious negative shift for the cathode peak and decrease of the ECSA before 400 circles, 

due to the dissolution or corrosion of unstable products and the decrease of the surface area. 

None clearly changes were observed after 400 circles (inset of Figure 3.5d), both the surface 

area and the cathode peak, suggesting the high stability.  

  The Tafel slope was used to further explore the kinetic process of the catalysts. In the 

previous paper, the standard Tafel slope of platinum is close to 60 mV per decade, as 

discussed in Chapter 2. However, the measurements of platinum are different from the 

theoretical value, due to the condition and measurement error. In this chapter, we find the 

Tafel slope of the PtFe alloy is 67 mV/dec, and the PtCo and PtNi is about 55 and 61 

mV/dec, which is close to the 65 mV/dec of Pt, indicating that the ORR process is controlled 

by the first transfer electron step (Figure 3.6a).  

Table 3.1． The ORR performance of different catalysts in alkaline medium 

Samples PtFe PtCo PtNi Pt/C 

(20.4µgPt/cm2) 

Pt/C 

(3.48µgPt/cm2) 

Onset potential (V) 0.95 0.94 0.93 0.97 0.90 

Half wave potential (V) 0.88 0.83 0.82 0.86 0.78 

Diffusion limiting current (mA/cm2) 5.83 5.66 4.55 5.67 4.40 

Electron transfer number at 0.5V 3.73 3.59 2.93 4.00 4.00 

 

  The electronic impedance spectroscopy (EIS) was used to calculate the surface resistance in 

the electrochemical reaction. It is known that lower resistance is beneficial to electron 

transfer. Figure 3.6b is the EIS spectra of PtM (M: Fe, Co, Ni), and the schematic illustration 

for the equivalent circuit is shown in the inset of Figure 3.6 b. RS is the same for the three 

samples ca. 15 ohms, suggesting that R1 is the system resistance. We believe R2 represents 

the surface resistance in the electrochemical reaction, which is about 22.48, 27.72 and 29.50 

ohms for PtM (M: Fe, Co, Ni), respectively. As discussed before, the suitable resistance value 

has advantages to improve the reaction, suggesting the excellent electron transfer ability [43, 

44]. In order to make the connection between the resistance and the catalytic activity, we 

input the resistance combined with the half-wave potential (Figure 3.7a), the limited current 

(Figure 3.7b) and the onset potential (Figure 3.7c) from the LSV data on the coordinate map. 
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The inverse line relationship shows that the catalyst for the lower resistance has the higher 

electrochemical activity [17].  

 

Figure 3.7 The correlation of the half-wave potential (a), the limited current (b) and onset potential (c) 

from the LSV data and the resistance, the red line is the simulated line. 

 

  The electrochemical measurements including CV, LSV, EIS, K-L, and Tafel slope indicate 

that the PtFe alloy is an excellent ORR catalyst in the 0.1 M KOH solution. We also explored 

the activity of PtM (M: Fe, Co, Ni) in the acidic solution, as shown in Figure 3.8. The 

rectangular shape of CV curve appeared in the nitrogen-saturated acidic electrolyte. In the 

oxygen-saturated solution, a prominent oxygen reduction peak comes out at 0.72 V vs. RHE 

(Figure 3.8a). Interestingly, for the three samples, the PtFe alloy shows the most positive 

potential and the sharpest peak, suggesting the highest ORR catalytic activity. Linear sweep 

voltammetry (LSV) was used to illustrate the catalytic properties of PtM (M: Fe, Co, Ni) 

catalysts. Figure 3.8b shows that the PtFe alloy sample has the more positive inflection point 

in the low current density. The highest onset-potential of 0.75 V vs. RHE than other two 

samples, meaning that the highest onset-potential than other two samples even the same as to 

the commercial Pt/C (20.41 µgPt/cm2). Deeper analysis is made to prove that the PtFe alloy is 

a good electrocatalyst, such as half-wave potentials and limiting current density shown in 

Table 3.2. As we know, the electrocatalytic activity of Pt-based alloy is controlled by the 

transition metals, which is discussed in the previous. In the Figure 3.7b, the comparison of 

PtM (M: Fe, Co, Ni) and the commercial Pt/C with the same Pt loading amount have been 

investigated. Clearly, the Pt/C (3.48 µgPt/cm2) shows the lower onset-potential and the limited 

current. In detail, the PtFe catalyst displays about 18.53 times of the Pt/C (3.48 µgPt/cm2) for 

the limited current at 0.7 V, indicating the excellent ORR catalytic activity.  
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  At the same time, we founded the K-L simulated to calculate the electron transfer number. 

From the inset of Figure 3.8c, six parallel lines indicate the stable ORR process for different 

potentials, estimated from 3.79 to 4.26, suggesting that four-electron pathway is dominated. 

The other two samples of PtCo and PtNi alloy are calculated ca. 4, the detail shown in Table 

3.2. The K-L simulated line implies all the samples follow the effective electron transfer 

pathway on the electrochemical reaction.  

 

Figure 3.8 CV curves of the PtFe alloy in nitrogen and oxygen–saturated solutions (a). LSV curves in 

oxygen–saturated solutions at 1600 rpm for three samples and commercial Pt/C (b). LSV curves of 

the PtFe alloy at different rotation speeds and with a scan rate of 10mV s-1 (c). The K-L plots for the 

PtFe alloy at different potentials shown inset of (c); Electrochemistry stability of the PtFe alloy 

accessed by CV curves at a scan rate of 50 mV s-1 (d). The entire test is in the 0.1 M HClO4 medium. 

 

  Similar to the investigation in the alkaline solution, the CV curve measurements of the PtFe 

alloy is also from 0.02 and 1.21 V for 700 cycles with the scan rate of 50 mV/s to explore its 

stability, as shown in Figure 3.8d. As introduced in Section 2.3.1, the cathode peak decreased 

by ca. 20 mV and 0.45 mA/cm2 due to the dissolved or aggregate of the PtFe nanoplates. 
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However, no obvious difference can be observed after 400 circles, indicating its high 

stability.  

  The Tafel slope was carried on to further explore the kinetic process of the catalysts. As we 

know, the standard Tafel slope of platinum is about 60 mV per decade. In this part, we 

estimated the Tafel slope of the PtFe alloy is 62 mV/dec. The PtCo and PtNi alloys are about 

71 and 93 mV/dec, indicating that their ORR process is controlled by the first transfer 

electron step (Figure 3.9a). The detailed data is shown in Table 3.2. 

  EIS was carried on calculating the surface resistance in the electrochemical reaction. As 

discussed in the previous, the lower resistance is beneficial to electron transfer. Figure 3.9b is 

the EIS spectra of PtM (M: Fe, Co, Ni) alloys, and the schematic illustration for the 

equivalent circuit is shown in the inset of Figure 3.6. RS shows the same value for the three 

samples, which is about 14 ohms, suggesting that RS is the system or electrolyte resistance. 

Moreover, R2 is about 46.37, 192.2 and 317.2 ohms for PtM (M: Fe, Co, Ni), respectively. It 

is popular that the suitable resistance value has advantages to improve the reaction, due to the 

excellent electron transfer ability. In order to make the connection between the resistance and 

the catalytic activity, we input the resistance combined with the half-wave potential (Figure 

3.10 a), the limited current (Figure 3.10 b) and the onset potential (Figure 3.10c) from the 

LSV data on the coordinate map [43, 44]. The inverse line relationship shows that the catalyst 

with the lower resistance has the higher electrochemical activity [17]. 

 

Figure 3.9 The corresponding Tafel plots from LSV curves at 1600 rpm of PtM (M: Fe, Co, Ni) (a); 

The impedance spectra of three samples at open circles potential, and the line is the fitting results (b). 

The entire test is in the 0.1 M HClO4 medium. 
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Table 3.2． The ORR performance of different catalysts in acidic medium 

Samples PtFe PtCo PtNi Pt/C 

 (20.4µgPt/cm2) 

Pt/C 

(3.48µgPt/cm2) 

Onset potential (V) 0.75 0.74 0.73 0.75 0.69 

Half wave potential (V) 0.70 0.67 0.63 0.67 0.52 

Diffusion limiting current 
(mA/cm2) 

6.06 4.82 4.10 5.15 4.30 

Electron transfer number at 

0.5V 

3.84 3.88 4.61 4.00 4.00 

 

 

Figure 3.10 The correlation of the half-wave potential (a), the limited current (b) and the onset 

potential (c) from the LSV data and the resistance, the red line is the simulated line. 

 

  In short, after the various electrochemical measurements, we believe the PtFe alloy is the 

best ORR catalyst in the samples with the excellent catalytic activity and stability, implying a 

promising candidate to replace the Pt/C. The physical characterize shows Fe atoms doped 

into the Pt nanoparticle. The Pt crystal lattice was confined to promote the electron transfer 

and the weak strain of crystal lattice would prevent the Pt dissolved at the high over-potential. 

In another factor, the raw precursor transition metal salt has effects on the catalytic activity. 

Scientists indicate the chloride iron would form the stable polymeric FeCl(OOCH)2·H2O with 

the formic acid at room temperature, and the Fe3+ would be reduced in the over formic acid. 

At the same time, several groups proved that formic acid would promote the electrochemical 
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activity during the reaction, due to the low over-potential and decrease the accumulation of 

intermediates on the catalyst surface [34-36]. 

  As we know, the transition metals affect the catalytic activity of Pt-based alloy [45]. 

Although, there is no consensus for that range. It is no questioning that Pt-based alloy follows 

the effective 4-electron pathway process with the Griffiths- or Bridged-type adsorptions [31, 

46]. The transition metal doping would increase the vacancies of the Pt surface and shorten 

the Pt-Pt bond distance, due to the electron structure of transition metals. The exposed 

crystalline facet is the effective (111) plane, which is discussed in Chapter 1. At last, the 

average nanoparticles would support more active sites to promote ORR process.  

 

3.4 Conclusions  

  In conclusion, PtM (M: Fe, Co, Ni) alloys were prepared by a simple method and used as 

the ORR catalysts. The physical characterization shows that the small particles are evenly 

distributed, which contributes to the catalytic activity. In addition, the Fe atoms doped into 

the Pt crystal would change the distance of Pt-Pt bonds to suitable for adsorption and 

desorption of oxygen. Finally, the PtFe alloy used as the ORR catalyst possesses the best 

electrocatalytic activity in terms of the onset-potential and stability. Advanced 

electrochemistry analyses indicate that the PtFe alloy exhibits the best activity and superior 

electrochemical stability both in acid and base media, which has a great potential for 

replacing the Pt/C as an ORR catalyst for fuel cells. 



5
6 

Doctor thesis of Kyushu Institute of Technology 

56 
  

3.5 References 

[1] Shao, M.; Chang, Q.; Dodelet, J.- P.; Chenitz, R. Recent advances in electrocatalysts for oxygen 

reduction reaction. Chemical Reviews 2016, 116(6), 3594-3657. 

[2] Jalan, V. M.; Landsman, D. A.; Lee, J. M. Electrochemical cell electrodes incorporating noble 

metal-base metal alloy catalysts. U.S. Patent 4,192,907, 1980. 

[3] Stephens, I. E. I.; Bondarenko, A. S.; Gronbjerg, U.; Rossmeisl, J.; Chorkendorff, I.  

Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy & 

Environmental Science 2012, 5, 6744-6762. 

[4] Yang, H. Platinum–based electrocatalysts with core–shell nanostructures. Angewandte Chemie 

International Edition 2011, 50(12), 2674-2676. 

[5] Kim, J. H.; Fang, B.; Kim, M. S.; Yoon, S. B.; Bae, T. S.; Ranade, D. R.;  Yu, J. S. Facile 

synthesis of bimodal porous silica and multimodal porous carbon as an anode catalyst support in 

proton exchange membrane fuel cell. Electrochimica Acta 2010, 55(26), 7628-7633. 

[6] Wang, Y. J.; Wilkinson, D. P.; Guest, A.; Neburchilov, V.; Baker, R.; Nan, F.; Botton, G. A.;   

Zhang, J. Synthesis of Pd and Nb–doped TiO2 composite supports and their corresponding Pt–Pd 

alloy catalysts by a two-step procedure for the oxygen reduction reaction. Journal of Power Sources 

2013, 221(1), 232-241. 

[7] Balgis, R.; Widiyastuti, W.; Ogi, T.; Okuyama, K. Enhanced electrocatalytic activity of Pt/3D 

hierarchical bimodal macroporous carbon nanospheres. ACS Applied Materials &Interfaces 2017, 

9(28), 23792-23799. 

[8] Escudero-Escribano, M.; Malacrida, P.; Hansen, M. H.; Vej-Hansen, U. G.; Velázquez-

Palenzuela, A.; Tripkovic, V.; Schiøtz, J.; Rossmeisl, J.; Stephens, I. E. L.; Chorkendorff, I. Tuning 

the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 2016, 

352(6281), 73-76. 

[9] Fu, T.; Fang, J.; Wang, C.; Zhao, J. Hollow porous nanoparticles with Pt skin on an Ag-Pt alloy 

structure as a highly active electrocatalyst for the oxygen reduction reaction. Journal of Materials 

Chemistry A 2016, 4, 8803-8811. 

[10] Antolini, E. Platinum-based ternary catalysts for low-temperature fuel cells: part I. Preparation 

methods and structural characteristics.  Applied Catalysis B: Environmental 2007, 74, 324-336. 

[11] Coleman, E. J.; Chowdhury, M. H.; Co, A. C. Insights into the oxygen reduction reaction activity 

of Pt/C and PtCu/C catalysts.  ACS Catalysis 2015, 5, 1245-1253. 



Chapter 3 

57 
 

[12] Stephens, I. E.; Bondarenko, A. S.; Grønbjerg, U.; Rossmeisl, J.; Chorkendorff, I. Understanding 

the electrocatalysis of oxygen reduction on platinum and its alloys.  Energy & Environmental Science 

2012, 5, 6744-6762. 

[13] Sahin, N. E.; Napporn, T. W.; Dubau, L.; Kadirgan, F.; Léger, J. M.;  Kokoh, K. B. Temperature-

dependence of oxygen reduction activity on Pt/C and PtCr/C electrocatalysts synthesized from 

microwave-heated diethylene glycol method. Applied Catalysis B: Environmental 2017, 203, 72-84. 

[14] Ammam, M.; Easton, E. B. Oxygen reduction activity of binary PtMn/C, ternary PtMnX/C (X= 

Fe, Co, Ni, Cu, Mo and, Sn) and quaternary PtMnCuX/C (X= Fe, Co, Ni, and Sn) and PtMnMoX/C 

(X= Fe, Co, Ni, Cu and Sn) alloy catalysts.  Journal of Power Sources 2013, 236, 311-320. 

[15] Du, X. X.; He, Y.; Wang, X. X.; Wang, J. N. Fine-grained and fully ordered intermetallic PtFe 

catalysts with largely enhanced catalytic activity and durability.  Energy & Environmental Science 

2016, 9, 2623-2632. 

[16] Lin, S. P.; Wang, K. W.; Liu, C. W.; Chen, H. S.; Wang, J. H. Trends of oxygen reduction 

reaction on platinum alloys: a computational and experimental study.  The Journal of Physical 

Chemistry C 2015, 119, 15224-15231. 

[17] Wang, P.; Yin, S.; Wen, Y.; Tian, Z.; Wang, N.; Key, J.; Shen, P. K. Ternary Pt9RhFex nanoscale 

alloys as highly efficient catalysts with enhanced activity and excellent CO-Poisoning tolerance for 

ethanol oxidation. ACS Applied Materials & Interfaces 2017, 9, 9584-9591. 

[18] El-Deeb, H.; Bron, M. Microwave-assisted polyol synthesis of PtCu/carbon nanotube catalysts 

for electrocatalytic oxygen reduction. Journal of Power Sources 2015, 275, 893-900. 

[19] Hassan, A.; Carreras, A.; Trincavelli, J.; Ticianelli, E. A. Effect of heat treatment on the activity 

and stability of carbon supported PtMo alloy electrocatalysts for hydrogen oxidation in proton 

exchange membrane fuel cells. Journal of Power Sources 2014, 247, 712-720.  

[20] Lim, B.; Jiang, M.; Camargo, P. H.; Cho, E. C.; Tao, J.; Lu, X.; Zhu, Y.;  Xia, Y. Pd-Pt 

bimetallic nanodendrites with high activity for oxygen reduction.  Science 2009, 324, 1302-1305. 

[21] Liang, Y. T.; Lin, S. P.; Liu, C. W.; Chung, S. R.; Chen, T. Y.; Wang, J. H.; Wang, K. W. The 

performance and stability of the oxygen reduction reaction on Pt–M (M= Pd, Ag and Au) nanorods: 

an experimental and computational study.  Chemical Communications 2015, 51, 6605-6608. 

[22] Dorjgotov, A.; Jeon, Y.; Hwang, J.; Ulziidelger, B.; Kim, H. S.; Han, B.; Shul, Y. G. Synthesis of 

durable small-sized bilayer Au@Pt nanoparticles for high performance PEMFC 

catalysts. Electrochimica Acta 2017, 228, 389-397. 



5
8 

Doctor thesis of Kyushu Institute of Technology 

58 
  

[23] Nielsen, J. H.; Hansen, T. W.; Nilsson, A.; Stephens, I. E.; Mass-selected nanoparticles of PtxY as 

model catalysts for oxygen electroreduction. Nature Chemistry 2014, 6, 732-738. 

[24] Johansson, T. P.; Ulrikkeholm, E. T.; Hernandez-Fernandez, P.; Malacrida, P.; Hansen, H. A.; 

Bandarenka, A. S.; Chorkendorff, I. Pt skin versus Pt skeleton structures of Pt3Sc as electrocatalysts 

for oxygen reduction.  Topics in Catalysis 2014, 57, 245-254. 

[25] Stephens, I. E.; Bondarenko, A. S.; Bech, L.; Chorkendorff, I. Oxygen electroreduction activity 

and X‐Ray photoelectron spectroscopy of platinum and early transition metal alloys. ChemCatChem 

2012, 4, 341-349. 

[26] Yoo, S. J.; Hwang, S. J.; Lee, J. G.; Lee, S. C.; Lim, T. H.; Sung, Y. E.; Wieckowski, A.; Kim, S. 

K. Promoting effects of La for improved oxygen reduction activity and high stability of Pt on Pt-La 

alloy electrodes.  Energy & Environmental Science 2012, 5, 7521-7525. 

 [27] Nguyen, M. T.; Wakabayashi, R. H.; Yang, M.; Abruña, H. D.; DiSalvo, F. J. Synthesis of 

carbon supported ordered tetragonal pseudo-ternary Pt2M′M″(M= Fe, Co, Ni) nanoparticles and their 

activity for oxygen reduction reaction. Journal of Power Sources 2015, 280, 459-466. 

[28] Pizzutilo, E.; Knossalla, J.; Geiger, S.; Grote, J. P.; Polymeros, G.; Baldizzone, C.; Mezzavilla, 

S.;  Ledendecker, M.; Mingers, A.; Cherevko, S.; Schü h, F.; Mayrhofer K. J. J. The Space 
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Chapter 4 Temperature-dependence of electrocatalytic 

activity for dual transition metals embedded in P-doped 

porous carbon used as ORR catalyst 

4.1 Introduction  

  The overuse of fossil energy leads to greenhouse gases and acid rain. Therefore, how to 

develop the energy structure with the clean energy is important for environmental protection. 

Fuel cells as the most promising candidate attract more attention. However, it is limited by 

the lower working efficiency, due to the slow ORR kinetics in the cathode. The extra catalyst 

is necessary to improve the ORR process. The most efficient catalyst is platinum particles 

loading on the high conductivity carbon (XC-72). The high price and scarce of platinum 

hinder the Pt-based catalysts for large-scale production [1-5]. In addition, the weaknesses of 

Pt-based catalysts such as poor durability and CO sensitive catalysis in the reaction promote 

scientists to develop the new efficient, durable, and cheap catalysts.  

  In decades, many substitutes are investigated: noble metal (Pd, Au, Ru) [5-6], normal 

transition metal (FeN4, Co2P, Co8S9) [7-8], and heteroatom atom carbon materials [9]. 

Among them, heteroatom atom doping carbon materials draw great attention, due to their 

high catalytic activity and stability. In general, the catalytic reason of heteroatom atoms 

carbon materials is that the heteroatom atom doping changes the asymmetry of the carbon 

atomic spin density to increase the adsorption of oxygen [10-11]. Moreover, the active groups 

are also investigated well, for example, pyridine-like N and graphite-like N show more 

contribution to the catalytic activity than pyrrole-type N for the N-doped carbon materials 

[12-13]. However, we still cannot make sure the mechanism and the active groups in the 

reaction for other heteroatom atoms doped carbon catalysts [14-17]. Recently, Masa’s group 

found that the trace of transition metal doping would improve ORR process [14]. Too many 

transition metals were investigated to promote ORR process. Iron and cobalt are the best two 

because of their natural properties, such as the 3D Fe-N-nanocarbon intercalated graphene 

catalyst [16]. Further investigation shows that the synergetic effect of different metals is 

beneficial for the catalytic activity [17-23]. However, the ratios of different metals are not 

clear even for different heteroatom atoms.  
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  P element is in the same group with nitrogen showing the similar chemical properties [22-

24]. Moreover, it attracts more attention than usual after Fe-P-C and Fe-P-Graphene catalysts 

synthesized [23-24]. Nevertheless, the question is that rare papers about cobalt and iron 

incorporated in P-doped carbon (FCPA) were published, because of the insurmountable 

selectivity of phytic acid (abundant the P and C source).  

  Herein, we synthesized the cobalt and iron incorporated in P-doped porous carbon materials 

with the traditional solid-state reaction method. We first investigated the synergetic effect of 

Fe and Co in P-doped porous carbon, confirming the correlation between the catalytic activity 

and the ratios of transition metals. With different physic measurements such as EDS, XRD, 

TEM, XPS, and ICP, we confirmed that the ORR activities relied on the metal type, the ratio, 

and the carbonization temperature. Electrochemical measurements indicated that the sample 

of FCPA-900 shows the best ORR catalytic performance. Therefore, we believe that FCPA-

900 is a promising candidate to substitute the commercial Pt/C catalyst.  

4.2 Experimental  

4.2.1 Catalysts preparation  

All the raw materials (AR >99.5%) were purchased from the Wako Company. In detailed, 

10 g of the phytic acid solution was adjusted the pH to 6.2 with Sodium hydroxide. Then the 

3:1 ratio of FeCl3·6H2O and CoCl2·6H2O were added into the solution with 10 mL distilled 

water, stirring for more than 30 min to ensure the full polymerization. Transferred the thick 

pink solution in an open oven at 160oC for 12 h. At last, the obtained brown powder was 

carbonization at the different temperatures of 800, 900 and 1000oC for 3 h in Ar atmosphere. 

The black powder was stirred with 80 mL 3 M HCl to keep 10 h at 90oC, and then filtered 

with more than 200 mL of distilled water to remove the impurities and unstable compounds. 

After the experiment process, FCPA-800, FCPA-900 and FCPA-1000 samples were 

obtained. F2CPA-900 (2:1 of FeCl3·6H2O and CoCl2·6H2O) and F4CPA-900 (4:1 of 

FeCl3·6H2O and CoCl2·6H2O) samples were prepared by the same experiment process with 

the carbonization at 900oC, except for the different ratios of FeCl3·6H2O and CoCl2·6H2O.  

  The same amount of FeCl3·6H2O or CoCl2·6H2O with the FCPA sample stirred with the PA 

solution (pH = 6.2) for 30 min, then dried and carbonized with the same process with the 

FCPA sample to obtain the sample of FPA-800, FPA-900, and FPA-1000 or CPA-800, CPA-

900, and CPA-1000, respectively.  
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  The single PA solution dried at 160oC for 12 h after adjusting the pH to 6.2, and then 

carbonized at 900oC before leaching with 3 M HCl and washing with 200 mL of distilled 

water. At last, the sample of PA-900 was obtained.  

Scheme 1. Synthesis of dual transition metals embedded in P-doped porous carbon by the in-situ 

solid-state reaction method. 

 

 

4.2.2 Physical characterizations 

    The crystalline was confirmed by powder X-ray diffraction (XRD) with the scanning step 

of 5° min-1 from 10° to 70°. The transmission electron microscopy (TEM, Tecnai G2 F20 S-

TWIN) were used to analyze the catalyst’s morphology and microstructure. In order to 

display the surface state of the catalyst, X-ray photoelectron spectroscopy (XPS, Thermo 

Escalab 250Xi) was recorded. The specific surface area is calculated by the Brunauer-

Emmett-Teller (BET) method. In addition, the quenched solid density functional theory 

(QSDFT) was used to estimate the pore size distribution with the help of the N2 adsorption. 

The trace amount of transition metals were confirmed by the inductively coupled plasma-

atomic emission spectrometry (ICP-AES, SPS1700HVR).  

4.2.3 Electrochemical measurements 

  A typical three-electrode system with a rotating disk electrode (RDE) setup from Pine 

Instrument Company connected to a CHI 760E electrochemistry workstation was used to 

explain the catalytic activity of the catalysts. As introduced in Chapter 2, 4 mg of the catalyst 

and the mixture solution: Nafion solution (5 wt. %, 0.1 mL), distilled water (0.15 mL), and 

IPA (isopropanol, 0.25 mL) are ultrasonic for about 0.5 hour to form the catalytic ink. Then 

https://www.baidu.com/s?wd=ICP-AES&tn=44039180_cpr&fenlei=mv6quAkxTZn0IZRqIHckPjm4nH00T1Y4PHu9nj6kPW6zuHRYujm40ZwV5Hcvrjm3rH6sPfKWUMw85HfYnjn4nH6sgvPsT6KdThsqpZwYTjCEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-TLwGUv3En101PWnvn1bsrjb4P1R4PjfY
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10 µL of the ink was transferred onto the GC electrode with a loading amount of 408 µg cm-

2. At the same time, the commercial Pt/C used as a comparison with the loading amount of 

204 µg cm-2. The N2 and O2-saturated 0.1 M KOH solution were used as the electrolyte. The 

electrochemical impedance spectroscopy (EIS) and Tafel curve were recorded to illustrate the 

effect of electrochemical reaction on interface impedance and the dynamic process of 

electrochemical reaction. 

 

Figure 4.1 X-ray diffractograms for the three samples: FCPA-1000, FCPA-900 and FCPA- 800. The 

inset is the XRD detail pattern of FCPA-1000 from 38 to 53 degree. The bottom is the standard 

patterns of Fe2P and Co2P. 

 

4.3 Results and discussion   

4.3.1 XRD results 

  Figure 4.1 is the XRD pattern of FCPA catalyst. For all the samples, two broad peaks were 

found at ca. 25° and 43°, which belong to (002) and (100) crystalline plane of graphene. 

There is no any peaks in the FCPA-800 and FCPA-900 samples except for the two broad 

peaks of graphene, which means no impurity in the samples. However, some impurities are 

observed in the FCPA-1000 sample such as Co2P (PDF# 32-0306) and Fe2P (PDF# 65-1990), 
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suggesting the over carbonization temperature. In the FPA samples, FPA-800 showed clearly 

Fe2P4O12 peaks, and disappeared in the FPA-900, indicating the decomposing of Fe2P4O12 in 

the high temperature. The weak and sharp Fe2P peak would be confirmed in the FPA-1000, 

suggesting the over temperature. In the CPA-800 sample, very weak P peak was observed, 

getting stronger in the CPA-900. Similar to FPA sample, there is a Co2P4O12 impurity in the 

CPA-900. In the sample of CPA-1000, the peaks of Co2P was discovered, suggesting the 

same reason with FCPA and FPA samples. Comparison of these nine samples, we can obtain 

the reasons that the impurities rely on the carbonization temperature. That is due to that the 

carbon skeleton is broken to free amorphous carbon or phosphide with the temperature 

increasing [23]. However, there is a consensus that FCPA samples have fewer impurities than 

FPA and CPA samples due to the synergistic effect. 

 

Figure 4.2 N2 adsorption-desorption isotherms at 77 K (solid symbols are adsorption and open 

symbols are desorption) and pore size distributions of FCPA (a). The QSDFT model calculates the 

pore size distributions, the pink shade (0-2 nm) represents microspores and the blue shade (2-25 nm) 

represents mesoporous (b). 

  

4.3.2 BET results 

  The nitrogen adsorption-desorption isotherms were carried out to illustrate the surface area 

of FCPA samples, which is a typical type- IV isotherm. A marked uptake is in Figure 4.2a 

close to zero, meaning the micropores structure in the sample. With the increasing the 

pressure, a hysteresis loop is appearing, corresponding to the mesopores structure. From the 

isotherms, the specific surface area of the FCPA-800, FCPA-900 and FCPA-1000 is about 

1099 m2 g-1, 1646 m2 g-1 and 1170 m2 g-1, respectively. The surface area relied on the 
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temperature, the positive relationship is in the lower temperature, but converse in the higher 

temperature because of the over carbonization. The quenched solid density functional theory 

(QSDFT) was used to estimate the pore size distribution. All the samples show the 

micropores (1-5 nm) and mesopores (5-25 nm) in the structure. FCPA-900 implies the 

uniform dispersion due to the sharp and multiple peaks between the ranges of 5-25 nm. The 

micropores are increasing with the decreasing of mesopores, maybe due to the collapse of the 

carbon skeleton. It is believed that the hierarchical structures of support would supply more 

active sites and facilitate mass transport of ions to improve the catalytic activity. 

Figure 4.3 The TEM images of FCPA-900 at different magnifications 200 nm (a), 100 nm (b), 

and 10 nm (c). 

 

4.3.3 TEM and EDS results  

  Transmission electron microscopic (TEM) was used to illustrate the morphology and 

microstructure of FCPA-900 catalyst, showing in Figure 4.3. The TEM shows that FCPA-900 

mainly has the amorphous carbon structure [31]. Energy dispersive spectrometer (EDS) layer 

images of the FCPA-900 sample were used to explore the distribution of different elements 

(Figure 4.4). The Fe, Co, and P elements homogeneously distributed over the whole vision, 

which indicates that Fe, Co and P tri-doping material is successfully synthesized.   
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Figure 4.4 Energy dispersive X-ray spectroscopy (EDS) mapping of elements C, P, Co and Fe with 

corresponding to SEM (a) image. 

 

4.3.4 XPS results 

  The surface states of the sample for different elements were detected by XPS. There are four 

obvious peaks at 533, 284.7, and 228 and 171 eV, which belong to the signals of O 1s, C 1s, 

and P 2p, respectively (Figure 4.5a) [25-26]. It should be noted that the peaks of the P 

element are higher than the standard location, which belongs to the energy loss line due to the 

machine limitation. The high-resolution C 1s can be further split into four synthetic peaks: 

284.2 eV (C-C), 285.2 eV (C-O/C-P), 286.2 eV (C=O), and 290 eV (O-C=O), corresponding 

to the different states of carbon (Figure 4.5b). The O 1s spectra were split into six peaks to 

analyze the different oxygen-containing functional groups: 530.5, 531, 531.5, 532.3, 533.2, 

and 534.3 eV corresponding to Fe-O, Co-O, C=O /P=O, O-C/P-O-C, C-OH/P-OH, and O-

C=O groups, respectively (Figure 4.5c) [28]. 
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Figure 4.5 The full XPS spectra of FCPA-900 sample (a), C 1s (b), O 1s (c), and P2p (d). 

 

  In the FCPA-900, FPA-900, and CPA-900 samples, the P 1s signal was confirmed in the 

high-resolution, corresponding to P-C, P-O, P-O-Fe and/or P-O-Co, and metaphosphate (such 

as PO3
- empirical formula) (Figure 4.5d). In the earlier report [23], only P-C and P-O signals 

can be observed in the high-resolution P 1s peak for PA-900 sample. In this thesis, the 

significant shift can be confirmed in the phosphorus binding energy due to the Fe and/or Co 

doping. Two relatively independent groups discovered the deeper reason, the metals doping 

lead to the hydration of the phosphates HPO4
2- group [27-28]. Here, we give an example to 

analyze the FCPA-900 sample. P-C bonds are domination in the sample. P-O-Fe and P-O-Co 

bonds are in the sample, but the area of P-O-Co is larger than P-O-Fe, due to the acid 

washing and/or the natural properties of iron and cobalt. The weak and broad peak (the blue 

line) belongs to the trace phosphates P-O bond. Metaphosphate groups are too few to be 

observed in all the three samples, due to lacking the reaction condition at the high 

temperature. The similar results can be obtained from the FPA-900 sample. CPA-900 shows 

the different results: the domination is P-O and P-O-Co bonds due to the too much impurity 

Co2(P4O12).  
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  However, we cannot detect the signals of Fe 2p and Co 2p in three samples. Generally, the 

XPS instruments can detect the elements less than 20 Å from the surface, which is due to the 

intensity of X-ray decreased with the increasing depth. Therefore, in the FCPA-900, FPA-

900, and CPA-900 sample, only the Fe and/or Co atoms close to the surface (several atomic 

layers) can be detected [29-30].  

  The ICP-AES was used to calculate the quantity of Fe and Co in the sample of FCPA-900. 

We obtained the content of Fe, Co, and P are 0.16 wt%, 1.2 wt%, and 0.9 wt%, respectively. 

It is clear that the contents are not in agreement with the starting ratio, due to the acidic 

washing and the intrinsic characteristics of the transition metal. Connected with the EDS, 

XRD, XPS, ICP, and TEM, we believed that the Fe, Co incorporated in P-doped porous 

carbon catalysts were successfully synthesized. 

 
Figure 4.6 The CV curves of FCPA samples in N2 or O2 saturated electrolyte with a scan rate of 

10mV s-1 (a). The LSV curves of FCPA samples and 20% Pt/C at 1600 rpm in O2 saturated electrolyte 

(b). LSV curves of FCPA-900 at different rotation speeds and the K-L plots for FCPA-900 at different 

potentials (c). The electrochemical stability accessed by chronoamperometric curves of FCPA in O2-

saturated at a rotation speed of 300 rpm for 30000s (d). The entire test is in the 0.1 M KOH media. 
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4.3.5 Electrochemistry results and discussion 

   The ORR catalytic activity of catalysts FCPA-800, FCPA-900, and FCPA-1000 in the 

alkaline medium is shown in Figure 4.6a. The cyclic voltammetry (CV) measurement is in 

the N2 and O2-saturated 0.1 M KOH with the scan rate of 50 mV/s. It is clear that there are no 

peaks in the N2-saturated electrolyte. The big difference is that a sharp reduction peak was 

observed in the O2-saturated electrolyte. In addition, FCPA-900 shows the higher positive 

and sharper peak than other two sample, indicating the potential catalytic activity. The linear 

sweep voltammetry (LSV) was used to illustrate the catalytic properties of FCPA-800, 

FCPA-900, and FCPA-1000 catalysts with commercial Pt/C. Figure 4.6b shows that FCPA-

900 sample has the more positive inflection point in the low current density. The highest 

onset-potential of 0.87 V vs. RHE than the other two samples, which means that the highest 

catalytic activities. The onset-potential is only 50 mV negative shift than the commercial Pt/C 

catalyst, but 15 mV positive shift for the half-wave potential, showing a promising catalytic 

activity (Table 4.1). In order to the comparison, we also investigated the FPA and CPA 

samples, obtained the similar results with the FCPA samples, indicating 900oC is the best 

carbonization temperature.   

 

Figure 4.7 The impedance spectra fitting results of FCPA samples at open circles potential (a) and the 

equivalent circuit in the EIS of the sample (inset of a); The corresponding Tafel plots from LSV 

curves at 1600r (b). All the tests are in the 0.1 M KOH media. 

 

   The kinetics of the catalyst FCPA-900 was performed by the Koutecky–Levich (K–L) 

analysis, according to the LSV curves at the different rotation speeds with the scan rate of 10 
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mV/s. From Figure 4.6c, the electron transfer number of FCPA-900 sample is from 3.91-3.98 

at the potential range of 0.3-0.7 V, suggesting the ORR process of FCPA-900 is the four-

electron pathway. We also calculated FCPA-800 and FCPA-1000 samples electron transfer 

number shown in Table 4.1. FCPA-800 is same with FCPA-900 closer to 4 with the four-

electron pathway; However, FCPA-1000 is estimated 3 to the electron transfer number, 

indicating that it is the mixture of 2 and 4-electron-transfer pathway in the reaction due to the 

phosphide purities.   

   The electronic impedance spectroscopy (EIS) was used to calculate the surface resistance in 

the electrochemical reaction. It is well known that a lower resistance is beneficial to electron 

transfer. Figure 4.7a is the EIS spectra of FCPA-800, FCPA-900, and FCPA-1000, the 

schematic illustration for the equivalent circuit is shown in the inset of Figure 4.7a, where Rs 

is the electrolyte resistance; R1 is the electrons resistance of transferring in the P-doped 

porous carbon. We believe R2 represents the surface resistance in the electrochemical 

reaction, which is about 5 ohms for FCPA-900, suggesting the excellent conductivity. In 

order to make the connection between the resistance and the catalytic activity, we input the 

resistance combined with the onset potential, the half-wave potential, and the limited current 

from the LSV data of 1600 rpm. The inverse line relationship shows that the catalyst with the 

lower resistance has the higher electrochemical activity [32].  

   Further exploring the kinetic process of the catalysts, the Tafel slope was used. As we 

know, the standard Tafel slope is close to 60 mV per decade for the effective reaction [33]. In 

fact, the measurements of platinum are different from the theoretical value, due to the 

condition and measurement error. In this chapter, we find the Tafel slope of FCPA-900 is 78 

mV/dec, which is close to the 75 mV/dec of Pt. In addition, the FCPA-800 and FCPA-1000 

are about 95 and 97 mV/dec, indicating that the ORR process is controlled by the first 

transfer electron step (Figure 4.7b). The CPA and FPA samples were also calculated to be 

from 90 to 100 mV/dec higher than Pt, showing the weak ORR process.  

   The superior catalytic activity and good stability are both essential for one excellent 

catalyst. The chronoamperometry measurement for all the samples is in 0.1 M KOH solution 

for 30,000 seconds with the rotation speed of 300 rpm to explore their stability, shown in 

Figure 4.6d. After scanning, only 5% attenuation for FCPA-900 compared to 50% for the 

commercial Pt/C catalyst under the same condition, indicating the higher stability. We also 

estimated all samples and proved that they are more stable than the commercial Pt/C.  
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Figure 4.8 CV curves of four samples at a scan rate of 50 mV s-1 (a); LSV curves of 4 samples and 

20% Pt/C at a scan rate of 10 mV s-1 (b). All the tests are in the 0.1 M KOH media. 

 

All the electrochemical measurements show that FCPA-900 has the better catalytic activity 

than other two samples. We believe that the highest surface area, the lowest resistance, the 

most effective ORR process, and the suitable carbonization temperature are beneficial to 

promote oxygen reduction reaction.  

   In order to investigate the effect of a synergistic effect in the ORR process, PA-900, FPA-

900, CPA-900, and FCPA-900 are explored, shown in Figure 4.8. The cyclic voltammetry 

(CV) data shows that there are no peaks in the N2-saturated electrolyte with a scan rate of 50 

mV/s. The catalytic activity of FPA-900 is higher than CPA-900, showing the higher onset-

potential, and the limited current. FCPA-900 shows the highest onset-potential and the 

limited current in the CV and LSV data (Figure 4.8b), indicating that the synergistic effect is 

important to improve the ORR process. The synergistic effect whether relying on the ratios of 

two different metals is another question in this part. We explored that the different ratios of 

iron and cobalt in the experiment, the LSV and CV data show that the best ratio is 3:1 of Fe 

and Co. The more details showed in Table 4.1.  

  The kinetics of the catalysts PA-900, FPA-900, CPA-900, and FCPA-900 were performed 

by the Koutecky–Levich (K–L) analysis, which is come from LSV curves at different rotation 

speeds with the scan rate of 10 mV/s. After calculation, the electron transfer number of PA-

900, FPA-900, and CPA-900 samples are close to 3.0 at the potential range of 0.3-0.7 V, 

suggesting that the 2-electron transfer pathway also occurred in the ORR process.  
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Figure 4.9 The impedance spectra fitting results of 900 samples at open circles potential (a), the 

equivalent circuit in the EIS of the sample and the enlarge images (inset of a); The corresponding 

Tafel plots from LSV curves at 1600 rpm (b). All the tests are in the 0.1 M KOH media. 

 

   The electronic impedance spectroscopy (EIS) was used to calculate the surface resistance in 

the electrochemical reaction (Figure 4.9a). The Zview program was used to estimate the 

electronic resistances of PA-900, FPA-900, CPA-900, and FCPA-900 samples, the schematic 

illustration for the equivalent circuit is shown in the inset of Figure 4.9a. We know that R1 

and RS are the P-doped porous carbon or electrolyte resistance, due to their same resistance in 

all the samples. We believe that R2 represents the surface resistance in the electrochemical 

reaction. FCPA-900 shows the lowest surface resistance, suggesting the highest conductivity. 

As discussed before, the low resistance value has advantages to improve the reaction, 

indicating the excellent electron transfer ability. We input the resistance combined with the 

onset potential, the half-wave potential and the limited current from the LSV data at 1600 

rpm. The inverse line relationship shows that the catalyst with the lower resistance has the 

higher electrochemical activity.  

   In order to explore the kinetic process of the catalysts, the Tafel slope was introduced. The 

Tafel slopes of PA-900, FPA-900, and CPA-900 samples are close to 95 mV/dec. It is larger 

than the standard measurements 75 mV per decade of the commercial Pt/C catalyst and 78 

mV per decade of FCPA-900, indicating the complicated ORR process (Figure 4.9b). The 

similar results can be obtained in the synergistic effect investigation.  

a b 
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Figure 4.10 Electrochemistry stability accessed by chronoamperometric curves of all the 

samples in O2-saturated 0.1 M KOH media at a rotation speed of 300 rpm for 30000s (a-f). 

 

  The superior catalytic activity and good stability are essential for one excellent catalyst. The 

chronoamperometry measurements for PA-900, FPA-900, CPA-900, and FCPA-900 samples 

is in 0.1 M KOH solution for 30,000 seconds with the rotation speed of 300 rpm to explore 

their stability, shown in Figure 4.10. After scanning, less attenuation for PA-900, FPA-900, 

and CPA-900 than 50% for the commercial Pt/C under the same condition, indicating the 

excellent stability. We also estimated all samples, and proved that they are stabler than the 

commercial Pt/C catalyst.  

After the different electrochemical measurements, such as CV, LSV, EIS, Tafel curve, and 

K-L calculation, we confirmed that FCPA-900 has better catalytic activities than other 

samples. The high surface area of porous carbon and evenly distributed pore size mean more 

active sites and fast electrons transport. The P doping would change the symmetry of the 

carbon atomic spin density to increase the adsorption ability of O atoms, and the metals 

doping strengthen the asymmetry to promote the ORR process [11-12, 34]. At the same time, 

we also believe that the synergistic effect of the transition metals is beneficial for the reactant 

adsorption and reduction on the catalyst surface [35]. 
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Table 4.1. The ORR performance of different catalysts in alkaline media 

Sample  Onset-
potential  
(V) 

Half- -wave 
potential  
(V) 

Diffusion 
Limiting 
current 
(mA/cm2) 

Electron 
transfer 
number at 
0.5V 

Tafel plot 
value 
(mV/dec) 

Resistance 
value 
(ohm) 

PA-900  0.83 0.76 4.10 2.09 87 18.67 

CPA-800 
0.81 0.75 3.89 3.12 87 24.11 

CPA-900 
0.84 0.77 4.30 2.88 89 14.32 

CPA-1000 
0.77 0.69 1.65 1.62 93 56.28 

FPA-800 
0.84 0.75 4.80 3.26 98 11.53 

FPA-900 
0.87 0.76 5.68 3.72 90 3.35 

FPA-1000 
0.85 0.69 3.65 2.32 99 16.25 

FCPA-800 
0.83 0.76 4.92 3.64 95 9.30 

FCPA-900 
0.91 0.84 5.92 4.28 78 5.03 

FCPA-
1000 0.88 0.77 4.34 3.04 97 11.44 

F4CPA-
900 0.84 0.77 5.03 4.36 97 9.27 

F2CPA-
900 0.85 0.78 4.97 4.37 99 11.89 

20% Pt/C 
0.96 0.84 5.25 4.00 75  

 

4.4 Conclusions 

In this part, we successfully prepared a series of ORR catalysts Fe, Co, P tri-doping porous 

carbon by the in-situ solid-state carbonization method. The effect of the carbonization 

temperatures, the components, and the ratios between the transition metals was investigated 

in terms of the ORR performance. In the study, we established the correlation between the 
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carbonization temperature and the dual transition metals co-doping. The sample of FCPA-900 

shows the best ORR catalytic activities because of the higher specific surface area and better-

defined amorphous carbon structure. At the same time, we found that the synergistic effect of 

the transition metals would improve the electrocatalytic activity. In short, we developed a 

new excellent ORR catalyst FCPA-900, displaying a comparable electrocatalytic activity 

with the commercial Pt/C catalyst. The FCPA-900 sample has a great potential to substitute 

the Pt/C catalyst.    
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Chapter 5   2-D material MXene Nb2C synthesized by the 

traditional molten salt assisted solid-state reaction method 

at the low temperature as the ORR catalyst support  

5.1 Introduction  

  The new 2-D materials MAX compounds attract great attention due to their electrical 

conductivity, high surface area, and corrosion resistance since it was first discovered in 2011. 

2-D materials MAX show an extensive application in the different fields, such as ions battery, 

solar cell, supercapacitor, and electrocatalyst [1-5]. However, the sintering temperature is too 

high to hinder their application. MXene, which is etching from the corresponding MAX 

compounds, is a new family of transition metal carbide, carbonitride, or nitride [6, 7]. Among 

the different MXene compounds, metal carbides were investigated a lot, such as Ti2C, Ti3C2, 

and Nb2C, displaying the excellent electronic, mechanical, and optical properties [8-10]. 

However, in decades, almost no paper reports focus on the synthesized method under the 

mild condition.  

  Proton exchange membrane fuel cell (PEMFC) is important to change the energy structure 

because of the high-energy transfer efficiency with the increasing energy demands [11-14]. 

However, the ORR Pt-based catalyst limited its wide application of PEMFC due to 

expensive, corrosion, and the rare metal. It is believed that the corrosion has a strong 

correlation with the supporter [15]. It is a knowledge that a high electrical conductivity, high 

surface area, and corrosion resistance are necessary for a good catalyst support. Due to these 

factors, 2D materials are becoming the best choice. Carbon materials, especially for Vulcan 

XC-72, are the widely used as support in the world due to their high surface area and 

conductivity [16-19]. Nevertheless, many papers prove that the lower corrosion resistance of 

carbon support is the main reason of low durability of PEMFC [18]. In the cycle of potential 

for zero to the onset potential, some carbon oxide occurred to separate noble particles from 

carbon support, even poison the active noble particles. Therefore, it is urgent to explore stable 

alternatives to substitute the carbon materials as catalyst support [20-24].  

  Recently, 2-D materials MXene as support are reported, such as Ti3C2 support Pt 

nanoparticles [20] or MnO2 nanowires [22], displaying excellent ORR catalytic activities. 

However, the over-high sintering temperature conditions limit their deep investigation. 
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  Herein, we reported a new idea to synthesize the MAX Nb2AlC compound with the 

traditional molten salt assisted solid-state reaction method at low temperature. In the reaction, 

we successfully decreased the synthesized temperature by 600oC. Among them, we choose 

one sample as an example to load Pt nanoparticle to obtain its electrochemical performance, 

such as CV, LSV, EIS, K-L equation, and Tafel curves. Clearly, the Pt-loading sample shows 

good electrocatalytic properties. We believe that 2-D material Nb2C is a promising candidate 

as the support to substitute the usual carbon.  

5.2 Experimental  

5.2.1 Synthesis of the MAX compound Nb2AlC  

  The synthesized method is investigated for four parts: the choosing of molten salt or flux, 

the temperature of controlling, the heating time, and the amount of molten salt or flux. The 

samples name are listed in Table 5.1. 

1. The exploration of different molten salts or fluxes 

  The Nb2AlC (NAC) powder was obtained by the conventional solid-state reaction method. 

The starting materials of Al (0.18 g), Nb (1.1 g), C (0.07 g), and NaCl (5 g) were ground 

carefully in an agate mortar, and then transferred into an alumina boat. The mixture 

compound was heated in furnace tube under the Ar atmosphere for 12 hours at 1000oC. Then 

the gray particle was washed with 9 M HCl solution, centrifuged, and then dried in a vacuum 

oven at 60oC to obtain the black powder, named as NAC-1. At the same time, NAC-2 was 

prepared using KCl as the molten salt by the same process with NAC-1. NAC-3 was 

synthesized with 1.8 g Al as the flux. NAC-4 is using the mixture compounds (KCl, KF, and 

LiCl) as the molten salt, and heated for 48 hours. As the comparison, the starting materials Al 

(0.18 g), Nb (1.1 g) and C (0.07 g) without any molten salt or flux were heated for 72 hours 

to obtain the NAC-5 sample.  

2. The temperatures of controlling 

  The starting materials Al (0.18 g), Nb (1.1 g), C (0.07 g), and NaCl (5 g) were ground 

carefully in an agate mortar, and then transferred into an alumina boat. The mixture 

compound was heated in furnace tube under the Ar atmosphere for 12 hours at 850oC and 

1000oC. Then followed experiment process is the same with NAC-1, named as NAC-6 and 

NAC-1 samples, respectively. 
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3. The investigation of heating time  

  Similar to the NAC-1 sample experiment process, the same amount of starting materials was 

heated for the different time, such as 12h (NAC-1), 24h (NAC-7), 36h (NAC-8), 48h (NAC-

9). The followed experiment process is the same as the NAC-1.  

4. The investigation of the amount of molten salt  

  The starting materials Al (0.18 g), Nb (1.1 g), C (0.07 g), and NaCl (5/10 g) were ground 

carefully in an agate mortar, and then transferred into an alumina boat. The mixture 

compound was heated in furnace tube under the Ar atmosphere for 24/36/48 hours at 1000oC. 

The followed experiment process is the same as the NAC-1. In this case, we named the 

samples one by one: 5 g + 24 h as NAC-7; 10 g + 24 h as NAC-10; 5 g + 36 h as NAC-8; 10 

g + 36 h as NAC-11; 5 g + 48 h as NAC-9; 10 g + 48 h as NAC-12. 

5. The investigation of the etching method  

  In order to obtain the layered structure sample, we set the NAC-9 and NAC-12 as the 

example. About 0.5 g NAC-9 or NAC-12 sample was transferred into a plastic bottle stirred 

with 10 mL HF for 72 h at 60oC. Then the solution was centrifuged at 10000 rpm for 10 min, 

and dried at 60oC in a vacuum oven for 24 hours. The samples were obtained named as NAC-

91 and NAC-121 to make more measurements.  

6. The loading method of Pt nanoparticles 

  The NAC-9/Pt and NAC-91/Pt catalysts were prepared by the following method. The mixed 

solution of 20 mL of 2 mmol/L H2PtCl6·6H2O and 13.5 mL of distilled water was slowly 

dropped into the core solution for 1 hour, corresponding to 0.078 mgPt. Then, 0.078g of NAC-

9 or NAC-91 were mixed into the solution, acted as the support. After stirring for 24 hours, 

the filtered products washed with distilled water several times were obtained after dried in an 

open oven at 60oC, named as NAC-9/Pt and NAC-91/Pt. 

5.2.2 Physical characterizations 

  The crystalline was confirmed by the powder X-ray diffraction (XRD) with the scanning 

speed of 5° min-1 from 5° to 80°. The scanning electron microscope (SEM, JEOL-6900) was 

used to analyze the catalyst’s morphology and microstructure. In order to display the surface 

state of the catalyst, X-ray photoelectron spectroscopy (XPS, Thermo Escalab 250Xi) and 

energy dispersive spectroscopy (EDS) were introduced.   



8
4 

Doctor thesis of Kyushu Institute of Technology 

84 
  

Table 5.1 the sample name of different temperature process with the impurities results 

 Time 

(h)  

Degree 

(oC)  

The 
quality of 
flux (g) 

Flux Phase compositions in the samples 

NAC-1 12 1000 5 NaCl NbC, Al3Nb, NbAl2,  Nb2AlC 

NAC-2 12 1000 5 KCl NbC, Al3Nb, Nb, NaAlCl4 

NAC-3 12 1000 5 Al NbC,Al3Nb 

NAC-4 48 1000 5 KF, LiF, 
KCl 

NbC, Al3Nb 

NAC-5 72 1000 0 None NbC, Al3Nb, Nb 

NAC-6 12 850 5 NaCl NbC, Nb 

NAC-7 24 1000 5 NaCl NbC, Al3Nb, Nb Al2,  Nb2AlC, C 

NAC-8 36 1000 5 NaCl NbC, NbAl2,  Nb2AlC, C 

NAC-9 48 1000 5 NaCl NbC, NbAl2,  Nb2AlC, C 

NAC-10 24 1000 10 NaCl NbC, NbAl2,  Nb2AlC, Al3Nb 

NAC-11 36 1000 10 NaCl NbC, NbAl2,  Nb2AlC, Al3Nb 

NAC-12 48 1000 10 NaCl NbC, NbAl2,  Nb2AlC, Al3Nb 

 

5.2.3 Electrochemical measurements 

A typical three-electrode system with a rotating disk electrode (RDE) setup from Pine 

Instrument Company connected to a CHI 760E electrochemistry workstation was used to 

explain the catalytic activity of the catalysts. As introduced in Chapter 2, 6 mg of the catalyst 

with the mixture solution: Nafion solution (5 wt. %, 0.1 mL), distilled water (0.15 mL), and 

IPA (0.25 mL) are ultrasonic for about 0.5 hours to form the catalytic ink. Then 10 µL of the 

ink was transferred onto the GC electrode with a loading amount of 489 µg cm-2 

(corresponding to a 48.9 µgPt/cm2, thus no loss in the experiment process). At the same time, 

the commercial Pt/C used as a comparison with the loading amount 48.9 µgPt/cm2. The N2 

and O2–saturated 0.1 M KOH solution was used as the electrolyte. The electrochemical 

impedance spectroscopy (EIS) and the Tafel curve were recorded to illustrate the effect of 

electrochemical reaction on interface impedance and the dynamic process of electrochemical 

reaction. 
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Figure 5.1 XRD patterns of different samples for the diverse molten salts of fluxes. 

 

5.3 Results and discussion   

5.3.1 XRD and SEM results 

  Figure 5.1 is the XRD pattern of NAC 1-5 sample. In the NAC-1 pattern, it is clear that a 

weak peak at ca. 10° can be observed, which is the typical peak of Nb2AlC. Except for the 

typical peak, the other peaks of Nb2AlC can also be observed in the NAC-1 XRD pattern, 

suggesting little target compound in the samples. Generally, the impurities come from the 

starting material, such as NbC, and Nb2Al. For the NAC 1-5 samples, four sharp and strong 

peaks were found at ca. 35°, 40°, 60°, and 70°, belonging to the different crystalline planes of 

NbC (ICDD No. 03-065-7964). Except for the NbC impurities, we also confirmed the Al3Nb 

and NaNbO3, due to the strong oxidation in the high temperature. In the NAC-2, too many 

impurities in the sample, NbC is the main phase and K6Nb10.8O30 as the new impurity appears 

due to the incompletely sealed tube furnace. However, there is no typical peak of Nb2AlC in 

the XRD pattern, indicating no target products in the sample. The starting material as the 

molten salt or flux is good for the reaction, because it cannot bring in the new atoms. NAC-3, 

using the Al as the flux to decrease the whole reaction temperature, shows the XRD pattern in 

Figure 5.1. Only two different products peaks can be observed, Al3Nb and CNb, which is 
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very different from the former two XRD pattern. The reason is that the starting material is 

surrounding by the NaCl or KCl ions liquid at the high temperature, but the molten Al would 

lead to the starting materials dispersion on the surface of the metal liquid due to the high 

surface tension. According to the phase diagram, the lower melting point of the flux, the more 

decreasing the whole reaction temperature. At last, we choose the traditional mixture (KCl, 

KF, and LiCl) as the molten salt, which the melting point is only 300oC lower than that of 

NaCl 800oC, shown in Figure 5.1. NbC is the main phase in the sample with other impurities. 

Unfortunately, there are no peaks of Nb2AlC in the XRD pattern. By now, we investigated 

the effect of different molten salts or fluxes in the reaction. However, we have no idea 

whether the Nb2AlC can be synthesized without any molten salt or flux or not. In NAC-5, the 

reaction only heated at the 1000oC for 72 h. Clearly, no peaks of Nb2AlC in the XRD pattern, 

except for the NbC and Al2O3 peaks, suggesting that the molten salt is important for the 

reaction.  

 

Figure 5.2 XRD patterns of different samples for diverse reaction temperature. 

 

  As we know, the traditional synthesized method to obtain Nb2AlC is at the over-higher 

temperature [25-26]. In this paragraph, we confirmed the suitable temperature. Firstly, we set 

the heated temperature lower than 1100oC, due to the scientific value. Secondly, we need to 

obtain the typical product at the as low as the heating temperature. Figure 5.2 shows the two 
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samples heated at the different heating temperatures at the same time. They show the similar 

XRD pattern. However, the incomplete reaction is in the lower temperature, such as the 

obvious peaks of Nb. NAC-1 shows the clear but weak typical peak of Nb2AlC, displaying 

the suitable reaction temperature. More interestingly, there are no peaks of Al, indicating that 

Al is completely reacted [25]. In other words, the reaction equation is:  

3Al + Nb = Al3Nb              (5.1) 

  Figure 5.3 shows the XRD patterns of NAC-1 and NAC-7⁓9. NAC-1 is heated for 12 hours 

showing a weak typical peak of Nb2AlC. NAC-7 shows the similar XRD pattern with the 

sample of NAC-1, but a stronger typical peak. Al3Nb still occupy the main phase and get 

stronger. Except for these, the tiny impurities peaks disappear, suggesting that increasing the 

heating time is beneficial to decrease the tiny peaks [27]. Continuing to increase the heating 

time (NAC-8), Al3Nb is disappeared with the stronger peaks of Nb2AlC. Nb2Al as the 

impurity come out, suggesting the Nb2Al is an intermediate product after Al3Nb [25]. 

Therefore, the reaction equation can be given as:  

Al3Nb + 5Nb = 3Nb2Al             (5.2) 

 

Figure 5.3 XRD patterns of different samples for diverse reaction time. 
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 Compared to the NAC-8, NAC-9 shows few tiny peaks in the XRD pattern, and the 

dominated phase are Nb2AlC and NbC. The Nb2Al peak is getting weak with the stronger 

Nb2AlC, indicating that partial Nb2Al reacted with C or NbC to synthesize Nb2AlC. The 

results of the heating time investigation show that increasing the heating time is good for 

obtaining the pure target product.  

             Al3Nb + 2Nb2Al + 5NbC = 5Nb2AlC or Nb2Al + C = Nb2AlC    (5.3) 

  Scanning electron microscope (SEM) was used to illustrate the morphology and 

microstructure of different samples. Figure 5.4 shows the morphology of NAC-8 (a and b) 

and NAC-9 (c and d). In Figure 5.4 a and b, the smooth and large bulk can be observed with 

the tiny impurities. In the Figure 5.4 c and d, the morphology of NAC-9 is very different with 

NAC-8, showing the clearer and smoother layer structure with many microspheres. The 

microsphere may be the impurities NbC according to the XRD patterns. 

 

Figure 5.4 The SEM images of NAC-8 and NAC-9 with the different reaction time. 
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  The last investigation is to explore the effect of the different amount of molten salt. In 

Figure 5.5, the big difference between the two samples indicates the diverse reaction process. 

It is obvious that NAC-10, NAC-11, and NAC-12 show stronger impurities peak than NAC-

7, NAC-8, and NAC-9, indicating adsorption of more oxygen in the reaction. The intensity of 

the NaNbO3 peaks is a volcano-like shape with the reaction time, indicating that prolong the 

reaction time is beneficial to decrease impurities due to the carbonization. In Figure 5.4a, 

NAC-10 shows none peaks of Al3Nb, but very strong peaks of Nb2Al, indicating that arise 

the amount of flux may be good for the reaction. However, the trace of Nb2AlC can be 

detected by the XRD at this moment, showing the weak effect on the reaction. The peaks of 

Nb2AlC are getting stronger with the increasing time, indicating the increased target product 

(NAC-8 and NAC-11). Figure 5.4c is the comparison of the sample of NAC-9 and NAC-12, 

they show the similar XRD pattern except for the different intensity of impurities, confirming 

that increasing the molten salt has the weak effect on the reaction.   

 

Figure 5.5  The comparison of samples with the different amount molten salts at the same reaction 

time.  
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Figure 5.6 The SEM images of the sample NAC-10 at the different magnification. 

  Figure 5.6 is the morphology of the NAC-10 sample, showing that the large bulk and 

microplates coexist in the sample. The irregular and thin flakes intersperse and accumulate 

with each other to form a cluster, which is the intermediate product Nb2Al. Figure 5.7 shows 

the different morphology of the NAC-11 sample. At low magnification, bulk and flake 

coexist in the sample. The standard hexagon and thin flakes intersperse in all the vision, and 

partial flakes accumulate with each other to form layer structure dispersed in the vision, 

suggesting the layer structure is formed. The morphology of the NAC-12 sample shows in 

Figure 5.8, a large and obvious layer structure bulk can be observed with the dispersed 

deformed hexagon flakes in the vision at low magnification, indicating that the Nb2AlC is 

synthesized. The layer bulk shows the clear gap about the decade’s nanometer with the 

thickness only nanometers, which is beneficial for deeper investigation.  

 

Figure 5.7 The SEM images of the sample NAC-11 at the different magnification. 
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Figure 5.8 The SEM images of the sample NAC-12 at the different magnification. 

 

  As previously discussed, we choose NaCl as the flux to decrease the synthesized 

temperature of Nb2AlC. In the investigation, we founded the reaction process of Nb2AlC, 

indicating that synthesis Nb2AlC at low temperature is feasible. In the experiment, we 

explored the effect of reaction time and the amount of flux. The reaction time is the key 

factor, and increasing reaction time is beneficial to obtain the pure product. The different 

amount of flux would improve the reaction with less time, but lead to the more impurities. In 

order to further investigation, we choose two best samples to etch to explore their 

electrocatalytic activity. Considering the reaction time and the amount of flux, NAC-12 and 

NAC-9 are the representatives to take more measurements. 
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Figure 5.9 The comparison of the samples NAC-91 and NAC-121 after etching from NAC-9 and 

NAC-12 by the HF solution.  

 

  In Figure 5.9, NAC-91 shows a more obvious and broader layer peak about at 8°, indicating 

that the layer structure is synthesized [10, 28]. As we know, Nb2Al and Al3Nb are the 

intermediate products in the solid-state reaction, and Nb2Al is produced in the late reaction, 

so they can be acted as the instruction in the reaction. In Figure 5.9, NAC-91 only shows the 

peaks of Nb2Al, indicating NAC-91 reacted deeper than NAC-121. More interestingly, NAC-

91 shows fewer impurities than NAC-121. They show the completely different impurities, 

proving that the different amount of flux leads to arising the diverse impurities. It should be 

noted that the two samples show fewer impurities, except for the NbC and Nb2Al or Al3Nb 

than the original materials (NAC-12 and NAC-9) because of the HF washing. 

The XRD pattern is corresponding to the morphology, SEM was used to obtain the 

morphology and microstructure of samples. In the XRD, we previously showed that the 

MXene Nb2C is obtained, as evidenced herein in Figure 5.10. The compact restacking of 

MXene flakes can be observed in the vision, showing the multilayered counterparts structure. 

Figure 5.10 a and b are the NAC-121, showing the smaller layer gap than NAC-91 (Figure 

5.10 c and d), indicating NAC-91 is beneficial for electrons transfer. 
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Figure 5.10 The SEM images of the sample NAC-121(a and b) and NAC-91 (c and d) at the different 

magnification. 

 

5.3.2 EDS results  

  The types of element and their stoichiometric ratios were determined by energy dispersive 

X-ray spectrometry (EDS, Genesis XM2). Figure 5.11 is the full pattern of different 

elements, the analysis of the sample revealed that C, Al, and Nb are the significant elements, 

the ratio analysis shows that they are not stoichiometric ratio with Nb2AlC, due to the acid 

washing and the impurities (inset of Figure 5. 11). As previously discussed, the NAC-91 

shows the larger layer gap, acting as the sample to loading Pt nanoparticles. It is clear that the 

trace of Pt signal was detected, which is about 4 wt. % less than the starting materials. 

However, the EDS proved that the Pt-loading on NAC-91 sample is synthesized.  
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Figure 5.11 The EDS analysis of NAC-91 catalyst prepared after Pt-loading, and the detail ratio of 

the different elements is in the inset. 

 

5.3.3 XPS results 

  The surface states of the NAC-91/Pt sample for different elements were detected by XPS. In 

the survey region, the signals from elements C, Nb, O, F, and Pt were obviously detected. 

Interestingly, Na signal was observed at around 1070 eV, maybe due to that partial Na ions 

inset into the layer at the high temperature. The Al signals mostly come from the intermediate 

products Nb2Al or Al3Nb. In the survey region, several unusual peaks come out, such as Nb 

3p, Pt 4d, and Nb 4p. We choose the Pt 4f, Nb 3d, and C 1s as the represents for high-

resolution due to accurate analysis. The high-resolution double C 1s peak can be further split 

into three synthetic peaks: 284.4 eV (C-C/C-H), 281.7 eV (C-Nb), and 282.2 eV (C-Nb-O), 

corresponding to the different source [29, 30]. It is known that C-C or C-H comes from the 

element carbon. The main compositions of C-Nb and C-Nb-O indicate the main NbC phase, 

and the different ratios of the two bonds proved the completely etching of Nb2AlC. Tri-peaks 

are in the Nb high-resolution pattern, the lower bind energy around at 201 eV is the elemental 

Nb 3d5/2. The remaining two peaks can be split into four double peaks belonging to the 

different composites, which is a doublet with a 2.6 eV split into Nb 3d5/2 and Nb 3d3/2. There 

are no obvious split peaks of Nb2O5, indicating a few phases in the sample. The components 

centered at 204.6, 204.9, and 204.4 eV were assigned as the Nb 3d5/2 of NbC, C-Nb-O/F, and 

NbOx, respectively [31, 32].  
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Figure 5.12 The full XPS survey of the sample of NAC-91/Pt (a). The different elements region: Pt 4f 

(b), Nb 3d (c), and C 1s (d). 

  At last, the high-resolution double Pt 4f peak showed in Figure 5.12b. The high-resolution 

Pt 4f has two peaks 4f7/2 and 4f5/2. The two peaks can be further split into four peaks 68.3, 

71.7 and 69, 72.4 eV, corresponding to the different oxide states of platinum: Pt0 and Pt2+ 

species. However, it should be noted that the binding energy of Pt 4f is lower than the normal 

due to the complicated conditions [33, 34]. As we know, Al atoms would be removed by the 

etching, and the Nb layer would adsorb the active groups, such as the O2-, F- or OH-, due to 

lack of electrons. The Pt-loading changes the balanced conditions, and the reduced Pt atoms 

capture electrons and fix at the Nb layer to enhance the ORR catalytic activity.  
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Figure 5.13 The CV curves of NAC samples in O2 saturated 0.1 M KOH media with a scan rate of 50 

mV s-1 (a). The LSV curves of NAC samples and 20% Pt/C at 1600 rpm in O2 saturated electrolyte 

(b).  

 

5.3.4 Electrochemistry results and discussion 

  The ORR catalytic activity of the catalysts NAC-9, NAC-91, NAC-9/Pt, and NAC-91/Pt in 

the alkaline medium is shown in Figure 5.13a. The cyclic voltammetry (CV) measurement is 

in the O2-saturated 0.1 M KOH with the scan rate of 50 mV/s. It is clear that all the samples 

show the obviously reduced peak around at 0.7 V vs. RHE, indicating they are the potential 

ORR catalysts. NAC-9 shows a tilt up in the high onset-potential, due to the excellent 

adsorption and desorption ability. More importantly, the CV curves of all samples show a 

sink than usual in the low potential, resulting from too many oxides. NAC-91/Pt shows a 

higher positive but broader peak than the other two samples, indicating the potential catalytic 

activity. Linear sweep voltammetry (LSV) was used to illustrate the catalytic properties of 

NAC-9, NAC-91, NAC-9/Pt, and NAC-91/Pt catalysts with commercial Pt/C. The LSV 

curves show that etching is good for improving the ORR process, because of the increased 

surface area and active sites. However, they show lower activity than Pt-loading samples. In 

detail, Pt-loading samples show a significant improvement for ORR activity compared to the 

original samples. Figure 5.13b shows that NAC-91/Pt sample has the more positive inflection 

point in the low current density. The highest onset-potential of 0.84 V vs. RHE and the 

highest limited current density than other samples, indicating the excellent electrochemical 

performance. The onset-potential is only 10 mV negative shift than the commercial Pt/C, 

showing the promising catalytic activity.  
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  The kinetics of the catalysts NAC-91/Pt was performed by the Koutecky–Levich (K–L) 

analysis, which comes from the LSV curves at different rotation speeds with the scan rate of 

10 mV/s. From Figure 5.14a, the electron transfer number of NAC-91/Pt sample is from 3.56 

to 3.87 at the potential range of 0.1-0.5 V, suggesting the ORR process of NAC-91/Pt is the 

four-electron pathway. The superior catalytic activity and stability are essential for one 

excellent catalyst. The chronoamperometry measurements for the sample of NAC-91/Pt is in 

0.1 M KOH solution for 30,000 seconds with the rotation speed of 300 rpm to explore their 

stability, as shown in Figure 5.14b. After scanning, only 3% attenuation for NAC-91/Pt 

compared to 50% for the commercial Pt/C under the same condition, indicating the higher 

stability.  

 

Figure 5.14 LSV curves of the NAC-91/Pt sample at different rotation speeds and the K-L plots for 

the NAC-91/Pt sample at different potentials (a). The electrochemical stability of the NAC-91/Pt 

sample accessed by chronoamperometric curves in O2-saturated at a rotation speed of 300 rpm for 

30000s (b).  

 

  Further exploring the kinetic process of the catalysts, the Tafel slope was introduced. As we 

know, the standard Tafel slope is close to 60 mV per decade for the effective reaction. In fact, 

the measurements of platinum are different from the theoretical value, due to the condition 

and measurement error. In this chapter, we find the Tafel slope of NAC-91/Pt is 78 mV per 

decade, close to the 70 mV per decade of Pt/C catalyst (Figure 15a). 

   As we know, the low resistance value has advantages to improve the reaction, suggesting 

the excellent electron transfer ability [35, 36]. The electronic impedance spectroscopy (EIS) 

NAC-91/Pt 
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was used to calculate the surface resistance in the electrochemical reaction. It is known that 

lower resistance is beneficial to electron transfer. Figure 5.15b is the EIS spectra of NAC-

91/Pt, and the schematic illustration for the equivalent circuit is shown in the inset of Figure 

5.15b. RS is the Pt-loading support or electrolyte resistance ca. 22 ohms. R1 represents the 

surface resistance in the electrochemical reaction ca. 65 ohms for NAC-91/Pt, suggesting the 

excellent conductivity.  

 

Figure 5.15 The corresponding Tafel plots from LSV curves at 1600 rpm of the NAC-91/Pt sample 

(a); The impedance spectra of three samples at open circles potential, and the line is the fitting results 

(b). The entire tests are in the 0.1 M KOH media. 

 

  All the electrochemical measurements show that NAC-91/Pt has the excellent catalytic 

activity. We believe that the layer structure, low resistance, and the effective ORR process 

are beneficial to promoting oxygen reduction reaction.  

5.4 Conclusions  

  In this chapter, we successfully decreased the synthesized temperature of the MAX Nb2AlC 

from 1600oC to 1000oC by the molten salt assisted solid-state reaction. We studied the effect 

of the flux type, the flux amount, the reaction temperature, and the heating time on the crystal 

phase and morphology of the obtained materials. Moreover, we put forward the reaction 

mechanism, showing that the flux has a great effect on the second reaction step - the process 

of NbAl2. We also point out that much more flux may improve the reaction process, but 

leading to more impurities. Then, two samples as the representatives were etched by the HF 

solution to obtain the multilayer material 2D MXene Nb2C. Finally, the ORR catalytic 
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activity of the four samples of Pt-loading or not of before and after HF etching was 

compared. NAC-91/Pt shows the highest ORR catalytic activity, which is only 10 mV 

negative shift than the commercial Pt/C catalyst. The electrochemical performance indicates 

that 2D MXene Nb2C is an excellent support to promote the ORR process, and shows the 

higher electrochemical stability than the traditional carbon materials.   
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General conclusions  

This thesis focused on the development of oxygen reduction reaction (ORR) catalysts for 

the proton exchange membrane fuel cells (PEMFCs).  

In chapter 1, we introduced the recent progress in the field of research for the ultra-low Pt-

loading amount catalyst of ORR. In addition, the Pt-free electrochemical catalysts of ORR 

were also introduced. Although the development of ORR catalyst is rapid, several issues still 

need to be overcome, such as the low conversion efficiency, the poor stability, and the 

corrosion of the support material. Facing these challenges, we developed 3 kinds of 

nanostructured materials as catalysts or supports to promote the ORR process.  

In chapter 2, we briefly summarized the equipment and the reagents used in the 

experiments. In addition, the principles of the electrochemical tests were introduced relating 

to the cyclic voltammetry (CV), the linear sweep voltammetry (LSV), and the electronic 

impedance spectroscopy (EIS). 

In chapter 3, we synthesized a serial of  Pt-based alloys PtM (M: Fe, Co, Ni) used as the 

ORR catalyst by a simple method. The method significantly decreased the Pt-loading amount. 

The physical characterizations demonstrate that the PtFe alloy has well-defined, 

homogeneous, and ultra-small particle size morphology. Finally, the PtM (M: Fe, Co, Ni) 

alloys were used as the ORR catalysts. Among them, the PtFe alloy exhibits the best activity 

and superior electrochemical stability both in the acidic as well as the alkaline media. 

Therefore, the PtFe alloy catalyst shows a great potential to replace the commercial Pt/C 

catalyst for ORR. 

In chapter 4, we designed and prepared 3 kinds of Fe, Co incorporated in P-doped porous 

carbon materials using a metal-organic framework (MOF) as the precursor. The Pt-free 

materials were synthesized by in-situ carbonization method at 800, 900 and 1000oC. In this 

chapter, we found that the suitable carbonization temperature is 900oC and the ratio of dual 

transition metals is 3:1. In the electrochemical measurements, FCPA-900 shows the best 

ORR catalytic activities because of the higher specific surface area, the synergistic effect, and 

the better-defined amorphous carbon structure.  

In chapter 5, we synthesized a new 2-D MXene material Nb2C as the catalyst support, 

using solid-state reaction by the molten salt as flux. Moreover, the synthesis temperature of 
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Nb2AlC was successfully decreased from 1600 to 1000oC. We investigated the reaction 

parameters to obtain Nb2AlC with the simplest synthesis conditions, such as the effect of the 

molten salt, the heating temperature, the reaction time, and the amount of flux. In addition, 

we found that more flux amount can improve the reaction process, but can introduce more 

impurities. Then, the multilayer 2-D MXene Nb2C was obtained by etching the Nb2AlC with 

the HF solution. Finally, we compared the ORR catalytic activities of the 4 samples with and 

without Pt-loading, and before and after HF etching. The multilayer 2-D MXene Nb2C with 

Pt-loading shows a comparable catalytic activity with the commercial Pt/C catalyst. All the 

electrochemical measurements show that the 2-D MXene Nb2C displays an excellent stability 

compared with the conventional carbon support.  
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Future Prospects 

Developing highly efficient Pt or Pt-free catalysts for the oxygen reduction reaction 

(ORR) is key to the proton exchange membrane fuel cells (PEMFCs). Our work developed 

several kinds of ORR catalysts and support materials to promote the ORR process. However, 

the more effective catalysts and the more stable supports need to be prepared to improve the 

ORR catalytic activity. 

The future prospects of ORR catalyst should focus on the following parts: the low Pt-

loading amount, the new Pt-free catalyst, the high stability, and the high conversion 

efficiency. The current research showed that the catalytic activities of Pt-based catalysts are 

greatly affected by the alloying method, the exposed surface, the particle size, and the 

morphology. The alloying method and the exposed surface influence the aggregation of the 

active sites. The suitable size and morphology are beneficial to improve the corrosion 

resistance. Therefore, the optimizations of the Pt-based catalysts can improve their catalytic 

performance. However, the high price of Pt seriously hindered the application of the Pt-based 

catalysts. Several kinds of Pt-free catalysts were developed, showing the high electrocatalytic 

activities. However, they cannot meet the demand for commercialization, such as the stability 

and the activity. Consequently, it is vital to develop the new, cheap, stable, and efficient ORR 

catalysts to substitute the Pt-based catalysts. The stability of fuel cell relies on the stable ORR 

catalyst and the stable proton exchange membrane. Developing the stable catalyst and the 

proton exchange membrane is imperative to improve the stability of fuel cell. In addition, the 

investigation of developing the new and efficient ORR catalyst for PEMFCs will be a big 

challenge, especially for the Pt-free catalyst.  

Finally, the ORR catalysts gained a great progress in the past decades, but they cannot 

meet the requirement of the application. Therefore, the exploration and improvement in the 

design and synthesis of the new ORR catalysts are still important for ORR and the catalytic 

reaction.   
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