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The Effects of Silymarin and Cyclosporine A on the
Proliferation and Cytokine Production of Regulatory T Cells
Niloufar Keyhanmehr a, Hossein Motedayyen b, and Nahid Eskandari c,d

aDepartment of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran,
Iran; bAutoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran;
cDepartment of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran;
dApplied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran

ABSTRACT
Background: Immunosuppressive agents are necessary to enhance
allograft tolerance after transplantation and the treatment of auto-
immune disorders. Regulatory T cells (Tregs) play a pivotal role in
improving allograft tolerance and determining the fate of trans-
planted organs. Therefore, the aim of this study was to investigate
the immunomodulatory effects of cyclosporine A (CsA) and silymarin
on the proliferation and cytokine production of Tregs.
Methods: Peripheral blood mononuclear cells (PBMCs) were obtained
from healthy voluntaries and Tregs were isolated using an immuno-
magnetic separation method. The phenotypic characteristics of Tregs
were determined by flow cytometry. Tregs were expanded and then
cultured with different concentrations of CsA and silymarin. The
effects of CsA and silymarin on the viability, proliferation, and trans-
forming growth factor-beta 1 (TGF-β1) production of Tregs were
determined after 3 and 5 days of culture.
Results: CsA significantly decreased Treg proliferation in a dose-
dependent manner (p < 0.01–0.05). CsA failed to change TGF-β1
production of Tregs. On the contrary, silymarin significantly increased
the proliferation of Tregs (p < 0.01–0.05). A statistically significant
increase was also observed in the TGF-β1 production of Tregs
(p < 0.01–0.05). Our data showed that Treg viability was not compro-
mised by CsA and silymarin.
Conclusion: Overall, the results of this study for the first time indicate
that silymarin, unlike CsA, has the ability to increase the proliferation
and TGF-β1 production of Tregs and may be beneficial in the treat-
ment of autoimmune disorders and improvement of Treg-dependent
allograft tolerance after transplantation.

KEYWORDS
Silymarin; cyclosporine A;
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transforming growth
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Introduction

Regulatory T cells (Tregs) are a subset of T cells, which suppress the cells from both the
innate and adaptive immune systems (Adnani et al., 2018). Tregs comprise 5 to 10% of
CD4 + T cells and are characterized by the expression of some markers such as cytotoxic
T lymphocyte antigen-4 (CTLA-4), CD127, CD25 markers, and Foxp3 transcription factor
(Erfani et al., 2013; Singh et al., 2016). They play a crucial role in the maintenance of
immunologic tolerance and prevention of autoimmune diseases through regulating
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immune responses (Chruscinski et al., 2015; Fanigliulo et al., 2015; Velásquez-Lopera
et al., 2008). The inhibitory functions of Tregs are mediated by cell-cell interaction and the
secretion of immunosuppressive mediators, such as interleukin-10 (IL-10), transforming
growth factor-beta1(TGF-β1), interleukin-35 (IL-35), and galectin-1 (Arandi et al., 2014;
Brusko et al., 2007; Lim et al., 2014; Waldmann et al., 2014; Wang and Vella, 2016). Tregs
are dependent on interleukin-2 (IL-2) for their survival, generation, and suppressive
function. IL-2 induces Foxp3 expression in which is the ‘master switch’ for development
and inhibitory function of Tregs via signal transducer and activator of transcription 5
(Stat5) signaling (Ruppert et al., 2015). Absence or defect in the functions of Treg are
largely associated with various autoimmune disorders and graft rejection (Chruscinski
et al., 2015). It has been proposed that many immunosuppressive drugs used for reducing
the risk of immune-rejection of transplanted organs exert their inhibitory functions via
Tregs (Miroux et al., 2009, 2012a). Thus, a great number of studies have been carried out
on the effects of immunosuppressive agents on these cells (Demirkiran et al., 2008, Miroux
et al., 2012a). However, the effect of some immunosuppressive drugs on Tregs remains
unclear.

Cyclosporine A (CsA) is an immunosuppressive drug that inhibits IL-2 production,
leading to the inhibition of T cell proliferation (Tsuda et al., 2012). Cyclosporine
A reduces the IL-2 production by binding to a cytosolic protein called cyclophilin.
Cyclosporine-cyclophilin complex inhibits calcineurin phosphatase induced upon T cell
activation and thereby block translocation of the nuclear factor of activated T cells
(NFAT) into the nucleus, and IL-2 gene expression is subsequently down-regulated
(Ruppert et al., 2015). CsA reduces Foxp3 expression and then inhibits development
and suppressive functions of Treg (Miroux et al., 2009, 2012a, Wuest et al., 2008).
Although CsA inhibits the induction of immune tolerance, it decreases the risk of allograft
rejection (Miroux et al., 2012a). Previous reports have shown that CsA contributes to the
reduction of liver transplant rejection through decreasing the risk of hepatitis
C reoccurrence (Miroux et al., 2009). In spite of evidence showing CsA decreases the
number of Tregs and reduces the activity of these cells by intervening in IL-2 production,
there are some reports pointing CsA treatment improves Foxp3 expression in Tregs and
leads to the increased number of these cells in treated patients (Fanigliulo et al., 2015;
Knol et al., 2012). However, the molecular mechanisms involved in stimulatory activity of
CsA on the function and development of Tregs are not yet understood.

The use of plants as a great source of products with therapeutic properties in treating
the diseases has been reported since ancient times (Vargas-Mendoza and Madrigal-Santill
án et al., 2014, Gharagozloo et al., 2013a). Silymarin, an active flavonolignan, is
a medicinal plant derived from the seeds of milk thistle (silybum marianum). It is
known as one of the top 10 most popular natural products with antioxidant activities,
hepatoprotective (Vargas-Mendoza and Madrigal-Santillán et al., 2014), anti-carcinogenic
(Mateen et al., 2013), immunosuppressive, and regenerative effects (Vargas-Mendoza and
Madrigal-Santillán et al., 2014), consumed by Western societies (Polyak et al., 2013).
Moreover, there is no report that shows the toxic effects of silymarin (Mateen et al.,
2013; Schönfeld et al., 1997). Although the molecular mechanisms of immunomodulatory
activity of this herbal product has remained unknown, previous studies have revealed that
silymarin treatment strongly inhibits the nuclear translocation of the transcription factor-
κB (NF-κB) in CD4 + T cells, which is known as a regulator of T cell activation and many
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inducible genes, including interleukin-1(IL-1), interleukin-6 (IL-6), tumor necrosis factor-
α (TNF-α), lymphotoxin, and interferon-γ (IFN- γ) (Gharagozloo et al., 2010; Meroni
et al., 1988, Gharagozloo et al., 2013a; Lovelace et al., 2015; Polyak et al., 2007; Kang et al.,
2009). Other studies have provided convincing evidence that silymarin decreases T cell
proliferation, which is accompanied by a reduction in IL-2 and IFN-γ production
(Gharagozloo et al., 2010; McClure et al., 2012). On the other hand, others have indicated
that silymarin inhibits PI3K/AKT/mTOR signaling pathway in human T lymphocytes
(Gharagozloo et al., 2013a). Moreover, it has been reported that silymarin is able to reduce
the activation of ERK1/2 and P38 pathways in T cells following T cell receptor (TCR)
engagement (Gharagozloo et al., 2013a).

Given that frequent use of immunosuppressive drugs leads to debilitating side effects
such as increased development of infectious diseases and various cancers (Kinlen et al.,
1979; Poynard et al., 1997), it is required to select the drug which, with a few number of
side effects, leads to better results. . Considering the fact that silymarin is a plant extract
without identified toxic effects, and its effects on Tregs are not fully recognized so far, we
attempted to identify the effect of silymarin on proliferation and cytokine production of
the purified Tregs through the investigation and comparison of silymarin effects with CsA,
as a well-known immunosuppressive agent, to introduce silymarin as the alternative drug
in the treatment of autoimmune diseases and minimize the risk of immune-rejection of
organ transplantations.

Materials and methods

Peripheral blood mononuclear cells (PBMCs) isolation

Heparinized blood samples (25 ml) were obtained from five healthy volunteers and
peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll-Paque centrifuga-
tion according to the manufacturer’s guideline (Miltenyi Biotec, Germany). The study was
approved by the Ethics Committee of the Isfahan University of Medical Sciences (protocol
number: 394363). All participants gave written informed consent before entering the
study. The isolated cells were washed twice with phosphate buffered saline (PBS, pH
7.3) and centrifuged at 200 × g for 5 min. The pellet of the cells was suspended in 3 ml of
PBS and the viability of the cells was determined using trypan blue dye exclusion. Cell
counts were performed with a haemocytometer.

Isolation of CD4+ CD25+ Tregs from peripheral blood

CD4+ CD25 + T cell isolation was carried out using a CD4+ CD25+ regulatory T cell
isolation kit following the manufacturer’s protocol (Miltenyi Biotec, Germany). A two-
step procedure was used to isolate Tregs. Briefly, in the first place, the isolated PBMCs
from each healthy donor were labeled with 10 µl of biotin-conjugated monoclonal anti-
bodies cocktail (includes monoclonal antibodies against CD8, CD14, CD15, CD16, CD19,
CD36, CD56, CD235a (Glycophorin A), CD123, and TCRγ/δ) and 20 µl of microbeads
conjugated to monoclonal anti-biotin antibody per 107 cells and then incubated for
15 min at 4–8ᵒC. Afterwards, the cell suspension was diluted with 2 ml PBS buffer
(containing 0.5% bovine serum albumin, and 2 mM EDTA) and magnetic separation of
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the cells was performed using a negative selection column (LS). The flow-throughs
containing CD4+ cell were collected and subjected to the next step of Tregs isolation.
Secondly, 10 µl of microbeads conjugated to monoclonal anti-CD25 antibody per 107 cells
were added to the pre-enriched CD4+ cell suspension and incubated for 15 min at 4–8 ᵒC.
Subsequently, by adding 1 ml PBS buffer, the dilution of the cell suspension was
performed and then passed through a positive column (MS). The columns were removed
from the magnetic separator and washed with 1 ml PBS buffer, in order to magnetically
labelled cells to be collected. Cell viability was determined using trypan blue dye exclusion
and cell count was performed using a haemocytometer.

Assessment of the purity of Tregs by flow cytometry

To determine the purity of Tregs, the cells isolated from PBMCs were stained using
a human regulatory T cell staining kit according to the manufacturer’s instructions
(eBioscience, USA). Accordingly, the isolated cells (3 × 105) in 100 μl PBS/1% bovine
serum albumin (BSA) were stained with fluorescein isothiocyanate (FITC) anti-human
CD4, Phycoerythrin (PE) anti-human CD25, and the matched-isotype control antibodies
for 25 min at 4ᵒC. The matched-isotype control antibodies were used as negative controls.
Afterwards, fixation and permebilization of the cells were performed for Foxp3 staining as
an interacellular marker according to the manufacturer’s guidline (eBiosciences, USA).
The fixed and permebilized cells were stained with Phycoerythrin/Cyanine5 (PE-cyn5)
anti-human Foxp3 antibody for 25 min at 4ᵒC. The cells were washed twice with 1 ml PBS
and centrifuged at 300 × g for 5 min at room temperature. The percentage of the stained
cells was measured by a FACSCalibur flow cytometer (Becton Dickinson, San Jose, CA)
and analyzed using FlowJo software (v10.1, FlowJo, Ashland, OR, USA). The CD4+, CD25
+, and Foxp3+ cells were considered as Tregs. Cell samples with the purity of >92% were
used in the following experiments.

Culture and expansion of CD4+ CD25+ Foxp3+ Tregs

Tregs were cultured in 96-well round-bottom plates at a density of 1 × 105 cells per
well in Roswell Park Memorial Institute (RPMI) medium (Gibco, USA) containing 10%
fetal bovine serum (FBS, Gibco, USA), 1% penicillin/streptomycin (Sigma-Aldrich,
USA), and 500 U/ml IL-2 (Miltenyi Biotec, Germany). The cells were stimulated
with CD3/CD28 MACSiBead particles (20 µl/well, Miltenyi Biotec, Germany) and
incubated at 37°C with 5% CO2. After 5–8 days of culture, the expanded cells were
counted using a heamocytometer and cell viability was determined by trypan blue dye
exclusion.

Silymarin and CsA preparation

Silymarin (0.024 mg) and CsA (1 mg) were dissolved in 1 ml dimethyl sulphoxide
(DMSO) and further diluted 1000 times with complete RPMI to yield stock concentrations
of 50 mM and 1 µg, respectively. The stocks were stored at −20°C for further use.
Silymarin (Cat no: S0292) and CsA (Cat no: 30024) were purchased from Sigma-
Aldrich (USA).
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Assessment of the effects of silymarin and CsA on Tregs

To evaluate the effects of silymarin and CsA on Treg proliferation, Tregs were labeled with
carboxyfluorescein succinimidyl ester dye (CFSE) according to the manufacturer’s protocol
(Abcam, UK). Briefly, Tregs (2 × 106) were re-suspended in 1 ml PBS. CFSE was dissolved in
DMSO to yield a stock concentration of 10 mM. Thereafter, 1 µl of a 10 mM stock was added
to Treg suspension (2 × 106 cells/ml) at a final concentration of 10 µM. After 20 min of
incubation at room temperature in the dark, the staining was quenched by the addition of
5 ml of ice-cold complete RPMImedium. The stained cells were washed twice with complete
RPMI medium. The CFSE-labeled Tregs (1 × 105 cells/ml) were cultured in 24-well plates
and treated with various concentrations of silymarin (50, 100, and 150 µM/ml) and CsA
(100, 200, and 400 ng/ml). All cultures were performed in duplicate. The cells were then
stimulated with CD3/CD28 MACSiBead particles (30 µl/well) and incubated at 37ᵒC with
5% CO2, one set for 3 and another for 5 days. Tregs which were cultured in the percense or
absence of DMSO and stimulated with CD3/CD28MACSiBead particles were considered as
negetive controls for silymarin and CsA concentrations. DMSO was added to negative
controls with equal volumes of the highest doses of CsA and silymarin. The percentage of
cell proliferation was assessed through fluorecent intensity measurement of CSFE dye using
a FACSCalibur system and the data were analyzed using FlowJo software.

MTT assay

To test the possible effects of silymarin and CSA on Treg viability, MTT assay was preformed.
Tregs (2 × 103 cells/well) were treated with 50, 100, and 150 µM/ml of silymarin and 100, 200,
and 400 ng/ml of CsA in 96-well, flat-bottomed microtiter plates (BioFil, Canada) and
stimulated with CD3/CD28 MACSiBead particles (30 µl/well). The cells which were treated
with DMSO or RPMI and stimulated with CD3/CD28 MACSiBead particles (30 µl/well)
served as negative controls. The final concentration of DMSO in control wells was equal to
the highest doses of CsA and silymarin in test wells. All assays were performed in duplicate
according to the manufacturer’s guideline (Abcam, UK). After 3 and 5 days, the media of the
cultured cells were removed from the wells and then 50 μl of serum-free media and 50 μl of
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagent (5 mg/ml)
were added into each well. The cultures were incubated at 37°C for 3 hrs. Afterwards,
150 μl of MTT solvent was added into each well. After 15-minute incubation in the dark
at room temperature, the absorbance of each well was measured by spectrophotometry at
590 nm on a microplate reader (Bio-Rad Microplate Reader 550). The cell viability index was
calculated according to the following formula:

Viability index %ð Þ ¼ OD of treated cells� OD of background control
OD of corresponding control � OD of background

� 100

Cytokine assay

To investigate silymarin and CsA effects on cytokine production of Tregs, the cells
(1 × 105 cells/ml) were cultured in 24-well plates and stimulated with CD3/CD28
MACSiBead particles (20 µl/well). Then, the cells were treated with different doses of
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silymarin (50, 100, and 150 µM/ml) and CsA (100, 200, and 400 ng/ml) and incubated at
37°C with 5% CO2 for 3 and 5 days. Tregs which were stimulated with CD3/CD28
MACSiBead particles and cultured in the presence or absence of DMSO served as negetive
controls for silymarin and CsA concentrations. The culture supernatant of Tregs was
collected after 3 and 5 days and quantitative analysis of TGF-β1 was performed using an
Enzyme-linked immunoasorbent assay (ELISA) kit (Mabtech, Sweden) based on the
manufacturer’s guideline.

Statistical analysis

Data are expressed as the mean ± standard error of the mean (SEM) and mean ±
standard deviation (SD). The results were analyzed using GraphPad Prism 6
(GraphPad software, San Diego, CA). Normal distribution of data was determined by
Kolmogrov-Smirnov test. The groups with normal distribution were compared using
One-way ANOVA and unpaired t-tests. Mann-Whitney and Kruskal-Wallis tests were
used to compare the groups with non-normal distribution. p value <0.05 was considered
statistically significant.

Results

The purity of CD4+CD25+ Foxp3+ Tregs

To assess the purity of Tregs, the percentage of the cells which were positive for CD4,
CD25, and Foxp3 was measured by flow cytometry. Our data revealed that more than 99%
of the gated lymphocytes expressed CD4 (Figure 1(a,b)). As shown in Figure 1(c), more
than 92% of the CD4+ cells were positive for CD25 and Foxp3 markers.

CsA suppresses the proliferation of CD4+CD25+ Foxp3+ Tregs

Since CsA is a common drug used to suppress immune responses, this drug was
considered to compare the effect of CsA and silymarin on the proliferation of Tregs

Figure 1. The percentage of CD4+ CD25+ Foxp3+ Tregs isolated from PBMCs. Tregs were isolated from
PBMCs using an immunomagnetic separation method and then stained with anti-CD4, anti-CD25, and
anti-Foxp3 antibodies. The percentage of the stained cells were analyzed by flow cytometry. Each plot
(a, b, and c) are representative of 3 independent experiments.
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in vitro. Our flow cytometry results showed that CsA, at the highest concentration
(400 ng/ml), had the ability to abrogate Treg generation on day 3 of incubation
(p < 0.01, Figure 2(a,c)). After 5 days of incubation, all concentrations of CsA exerted
inhibitory activity on the proliferation of Tregs, compared to negative controls (sti-
mulated Tregs which were stimulated with CD3/CD28 MACSiBead particles and
cultured in the persence or absence of DMSO) (p ˂ 0.01–0.05, Figure 2(b,d)). As
shown in Figure 2(b,d), the inhibitory effect of CsA on Treg proliferation was in
a dose-dependent manner (p ˂ 0.001–0.01).

Figure 2. The effects of Cyclosporin A(CsA) on the proliferation of Tregs. Tregs were isolated from
PBMCs and stianed with CSFE. The CSFE-labeled cells were cultured in 24-wall plates and treated with
different concentrations (100, 200, and 400 ng/ml) of CsA. The CSFE-labeled cells which were cultured
in the presence or absence of DMSO and stimulated with CD3/CD28 MACSiBead particles served as
negative controls. The cells were collected from 24-wall plates and the proliferation of the CSFE-labeled
Tregs was monitored by flow cytometry after 3 (a) and 5 (b) days and then analyzed (c and d). The flow
cytometry plots (a and b) are representative of five independent experiments. All data show mean
± SEM. *p < 0.05, **p < 0.01.
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Treg viability does not affect by CsA

To investigate the viability of Tregs after treatment with different concentrations of CsA,
the cell viability was assessed by MTT assay. As shown in Figure 3(a,b), Treg viability was
not compromised by various doses of CsA after 3 and 5 days of culture.

CsA does not influence TGF-β1 production of Tregs

As shown in Figure 4(a,b), the results of this study indicated that there was no statistically
significant change in the level of TGF-β1 in the culture supernatant of Tregs treated with
different doses of CsA compared to negative controls after 3 and 5 days of culture.

Silymarin enhances the proliferation of CD4+CD25+ Foxp3+ Tregs

To evaluate silymarin effect on activated Tregs, the proliferative response of Tregs
stimulated with CD3/CD28 MACSiBead particles in the presence or absence of silymarin
was measured by a CFSE labeling assay. After 3 days of incubation, with the exception of
150 µM/ml concentration of silymarin, the proliferation of activated Tregs was signifi-
cantly induced by silymarin compared to negative controls (p ˂ 0.01, Figure 5(a,c)).
Interestingly, we observed that lower doses (50 and 100 µM/ml) of silymarin had more
stimulatory effect on Treg proliferation than high-dose silymarin (p ˂ 0.001, Figure 5(a,c)).
The same trend was also observed for 5-day culture except that the proliferation of Tregs
stimulated with 150 µM/ml of silymarin was also increased (p ˂ 0.01–0.05, Figure 5(b,d)).

Figure 3. CsA effects on Treg viability. The isolated Tregs were cultured in the presence or absence of
diferent concentrations (100, 200, and 400 ng/ml) of CsA and stimulated with CD3/CD28 MACSiBead
particles. The cells were incubated under standard culture conditions (37°C, 95% humidified air and 5%
CO2). Negative control cells were stimulated with CD3/CD28 MACSiBead particles and treated with
DMSO and RPMI. After 3 and 5 days of incubation, the viability of the cells was measured by MTT assay.
Each bar in A and B is representative of 5 independent experiments. All data show mean ± SD.
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Silymarin has not the ability to change the viability of Tregs

To study the possible effect of silymarin on Treg viability, the cells were cultured in the
presence or absence of this drug. Similar to the results obtained from the cells treated with
CsA, our data demonstrated that different doses of silymarin had not considerable activity
on the cell viability after 3 and 5 days of culture, although a numerical increase was
observed in the viability of the treated-cells on day 5 (Figure 6(a,b)).

Silymarin induces TGF-β1 production of Tregs

To determine the effect of silymarin on cytokine production of Tregs, the level of TGF-β1
in the culture supernatant of Tregs treated with the different doses of silymarin was
measured. As shown in Figure 7(a), a statistically significant increase in the level of
TGF-β1 was observed for all concentrations of silymarin after 3 days of culture
(p < 0.01). In agreement with the effect of silymarin on Treg proliferation, the results
revealed that 50 µM/ml of silymarin had the highest stimulatory activity on TGF-β1
production of Tregs (p < 0.05, Figure 7(a)). Similar results were obtained from 5-day
cultures except that the level of TGF-β1 in the culture supernatant of Tregs treated with
150 µM/ml of silymarin was no change compared to negative controls (p < 0.01–0.05,
Figure 7(b)).

Discussion

Organ transplantation is an applicable treatment method for the replacement of mal-
functioning organs and tissues. However, the immune response of the host to transplanted
organ is a major problem commonly occurred in organ transplantations. Therefore,
immunosuppressive drugs are essential to prevent graft rejection (Joffre et al., 2008).

Figure 4. The effects of CsA on TGF-β1 production of Tregs. The expanded Tregs were cultured in
24-wall plates and treated with different concentrations (100, 200, and 400 ng/ml) of CsA. Tregs which
were stimulated with CD3/CD28 MACSibead particles and cultured in the presence or absence of DMSO
were considerd as negative controls. Culture supernatants of Tregs were collected after 3(a) and 5 days
(b) and the level of TGF-β1 was measured by ELISA. The depicted results are representative of 5
individual experiments. All data show mean ± SD.
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Regarding that Tregs possess indispensible role in promoting immunologic tolerance to
grafted organs; many studies have been carried out on the effects of immunosuppressive
drugs on Tregs (Demirkiran et al., 2008; Joffre et al., 2008). In the current study, we
investigated in vitro immunosuppressive effects of silymarin and CsA on the proliferation
and cytokine production of Treg.

There is a noticeable inconsistency in literature regarding the activity of CsA on Tregs.
Extensive data from the literature have shown that CsA has the ability to inhibit the
development of Tregs and reduces the expression of their co-receptors and production of
cytokines (Demirkiran et al., 2008; Heidt et al., 2010, Miroux et al., 2012a). It has been
revealed that treatment of Tregs with different concentrations of CsA leads to a significant
decrease in the number of these cells (Miroux et al., 2009, 2012a). On the contrary, other

Figure 5. The effects of silymarin on the proliferation of Tregs. The expanded Tregs were labeled with
CSFE and then cultured in the presence of different doses (50, 100, and 150 µM/ml) of silymarin for 3
(a) and 5 (b) days. Tregs which were cultured in the presecne or absence of DMSO and stimulated with
with CD3/CD28 MACSibead particles were used as negative controls. The cells were harvested from 24-
wall plates. The proliferation of Tregs was determined by flow cytometry and then analyzed (c and d).
The depicted results are representative of five independent experiments. Each bar in C and D shows
mean ± SEM. *p < 0.05, **p < 0.01.
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reports have provided evidence regard to the stimulatory effects of CsA on Treg prolifera-
tion and function (Knol et al., 2012; Ruppert et al., 2015). Several studies have shown that
CsA treatment increases the number of Tregs which is accompanied with the enhanced
activity of Tregs and expression of Foxp3 (Meloni et al., 2006; Ruppert et al., 2015).
Moreover, in vitro studies have demonstrated that CsA and rapamycin (RAPA) increase
the suppressive activity of Tregs to the same extent (Fanigliulo et al., 2015). The observed

Figure 6. The effects of silymarin on Treg viability. Tregs were isolated from PBMCs and cultured in the
presence or absence diferent doses (50, 100, and 150 µM/ml) of silymarin. The cells were stimulated
with with CD3/CD28 MACSibead particles and incubated at 37°C with 5% CO2 for 3 and 5 days. The
cells which were treated with RPMI and DMSO and stimulated with with CD3/CD28 MACSibead
particles served as negative controls. After incubation, MTT assy was used to determine Treg viability.
The depicted data are representative of 5 independent experiments. All data are shown as mean ± SD.

Figure 7. The effects of silymarin on TGF-β1 production of Tregs. The isolated Treg were cultured,
stimulated with CD3/CD28 MACSiBead particles and incubated at 37°C with 5% CO2 for 5–8 days. The
expanded Tregs were treated with different doses (50, 100, and 150 µM/ml) of silymarin. Stimulated
Tregs which were cultured alone or in the presence of DMSO were used as negative controls. The
culture supernatants of Treg cultured in the presence or absence of different doses of sylimarin were
collected after 3 (a) and 5 (b) days. The measurement of TGF-β1 level was performed by ELISA. The
depicted results are representative of 5 independent experiments. All data show mean ± SD. *p < 0.05,
**p < 0.01.

IMMUNOLOGICAL INVESTIGATIONS 11



significant differences in the activities of CsA on Tregs may be explained by its concen-
tration and/or treatment procedure. For instance, the proliferation of Tregs is inhibited by
all concentrations (40 and 400 ng/ml) of CsA, while impaired suppressive activity of these
cells is only mediated by low dose (40 ng/ml) of this drug (Miroux et al., 2009).
Furthermore, in a study conducted by Kawai et al on rat cardiac allograft model has
been revealed that administration of high-dose CsA (50 mg/kg) with pretransplant donor-
specific blood transfusion (DSBT) inhibits Tregs proliferation. In contrast, low dose
(10 mg/kg) of CsA enhances the generation of Tregs either in synergy with perioperative
DSBT or by its own effect (Kawai et al., 2005). In line with this notion, we also observed
that only 400 ng/ml dose of CsA significantly abrogated Treg proliferation after 3 days in
a dose-dependent manner, but not low doses (100 and 200 ng/ml) of CsA. However, the
results of 5-day cultures demonstrated that all concentrations of CsA had a significant
suppressive activity on Tregs development, which may be due to longer incubation time.
Another cause of discrepancy in CsA effects on Tregs may be associated with the
administration of CsA with other drugs. In an in vitro study conducted by Miroux
et al., it has been demonstrated that the combination of CsA with mycophenolic acid
results in the maintenance of Treg activity. However, while used solely, it weakens the
functions of Tregs (Miroux et al., 2012b).

In the next step, we investigated whether the reduced proliferation of Tregs was
madiated by CsA-induced cell death in these cells. We observed that CsA failed to affect
Treg viability, consistent with previous reports (Gao et al., 2007; Ruppert et al., 2015).
Ruppert et al. indicated that Treg resists CsA-induced cell death via CD44-mediated
signaling pathways which is an important receptor for Foxp3 expression and cell survival
(Ruppert et al., 2015). These data suggest that inhibitory effect of CsA on Treg prolifera-
tion is not due to compromising cell viability.

Given that TGF-β1 is a key inhibitory cytokine of Tregs and plays a critical role in the
suppressive functions of Tregs, including the inhibition of the proliferation and differ-
entiation of the cells and induction of apoptosis (Liu et al., 2014). We assessed the level of
TGF-β1 in the culture supernatant of Tregs treated with different concentrations of CsA.
Similar to the activity of CsA on Treg viability, we found that CsA did not exert inhibitory
effect on the TGF-β1 production of Tregs compared to control groups after 3 and 5 days.
This result is consistent with other reports that indicate low doses (20 and 40 ng/ml) of
CsA inhibit the functions of Tregs, while the suppressive activity of these cells are
conserved when they are treated with high doses (100 and 400 ng/ml) of the drug
(Miroux et al., 2009, 2012a). These observations provide evidence to reveal that CsA
had not the ability to influence cytokine production of Treg, but it can restrain the
generation of the cells in a dose-dependent manner. Therefore, although CsA is routinely
used to prevent acute graft rejection and improve allograft survival (Hariharan et al.,
2002), this immunosuppressive agent, especially at high doses, may block the potential
induction of immune tolerance through the abrogation of Tregs generation.

Silymarin, a multicomponent extract from sylibum marianum, is well known for its
immunosuppressive, hepatoprotective and anti-tumor properties (Zholobenko and
Modriansky, 2014). A great number of in vivo and in vitro studies have indicated the effects
of silymarin on CD4 + T cells (Gharagozloo et al., 2013a, Gharagozloo et al., 2013b).
However, these effects on Tregs have not been reported yet. The results of this study for
the first time revealed that silymarin increased the proliferation of Tregs after 3 and 5 days,
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with the exception of 150 µM/ml dose on day 3. Interstingly, we observed that silymarin at
low doses exreted more potently effects on Treg proliferation than higher doses. This
observation may explain why 150 µM/ml dose of silymarin had not significant activity on
Treg proliferation after 3 days. Although there is no evidence regard to silymarin effects on
Tregs, our results were agreed with other reports showing the immunomodulatory effects of
silymarin on CD4 + T cells in vivo (Gharagozloo et al., 2013b). However, our findings were
in contrast with the mechanisms proposed for silymarin activities, including the prevention
of the nuclear translocation of NF-κβ and reduction of PI3K/AKT/mTOR signaling pathway
activation, which are the important roles on the activation and proliferation of T cells
through inducing IL-2 production (Gharagozloo et al., 2013b). Regarding suppressive effects
of silymarin on T cells (Gharagozloo et al., 2013b), the critical question regard to the results
of this study is how silymarin induces the proliferation of Treg. It is thought that additional
studies and more information are required to address this question and determine the
mechanisms involved in silymarin effects on Tregs.

In the current study, we also evaluated the effect of silymarin on Treg viability. The
results demonstrated that silymarin enhanced Treg development without affecting cell
death. Our data were additional confirmation for other studies indicating silymarin did
not induce apoptosis in activated T lymphocytes (Gharagozloo et al., 2013a, Gharagozloo
et al., 2013b). To support this notion, Gharagozloo et al. showed that the viability of
T cells was not influenced by various concentrations of silymarin (10, 50, and 100 µM)
after 72 hr incubation (Gharagozloo et al., 2013a). Therefore, although there was a numer-
ical increase in the viability of the silymarin-treated Tregs after 5 days of incubation, the
results of the present study suggest that silymarin effect on Treg generation may be
mediated by the mechanisms which are not involved in the cell viability.

In an attempt to discover the effect of silymarin on TGF-β1 production of Tregs, we
found that the level of TGF-β1 in culture supernatant of all concentrations of silymarin
was significantly higher than control groups, with the exception of 150 µM/ml of silymarin
on day 5. In agreement with silymarin effect on Treg proliferation, these results revealed
that silymarin at low doses had more efficient effects on cytokine production of Tregs.
Thus, it is likely that disability of high-dose silymarin (150 µM/ml) in affecting the TGF-
β1 level in 5-day culture supernatant of Treg was associated with different effects of
silymarin in various doses and the instability and quick degradation of TGF-β1 due to
longer incubation time. Other results of the current study showed a direct association
between the Treg proliferation and TGF-β1 level in the cultures with silymarin, while this
relationship was not observed in CsA cultures, perhaps due to the suppressive effects of
CsA on Treg proliferation. This finding suggests that silymarin effect on the increased
level of TGF-β1 in culture supernatants might be associated with the induction of
silymarin-treated Tregs proliferation. Nevertheless, it is worthy that future studies will
be designed to clarify whether silymarin effect on TGF-β1 production of Tregs is mediated
by the induction of Treg proliferation or this herbal product has a direct effect on cytokine
production.

In conclusion, the results of this study for the first time provide evidence to show that
silymarin, unlike CsA, has useful effects on the proliferation and cytokine production of
Tregs and may be a valuable drug in the treatment of various diseases, such as diseases
with immune pathophysiology, and the reduction of the risk of immune-rejection of
grafted organs. However, it should be noted that further studies are required to explain
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the molecular mechanism involved in the immunomodulatory effects of silymarin on
Tregs and how silymarin influences the functions of these cells.
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