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Short form  Long form

e.g. exempli gratia (latin for “for example”)

ie. id est (latin for “that is” or “in other words”)

w.r.t. with respect to

w.lo.g. without loss of generality

Lh.s. / r.his.  left-hand side / right-hand side

1D /2D / 3D one-/two-/three-dimensional

CT computed tomography

XPCI (propagation-based) phase contrast imaging

XPCT (propagation-based) phase contrast tomography

GINIX Gottingen Instrument for Nano-Imaging with X-rays (exemplary high-
resolution XPCl-setup, see §1.2)

CTF contrast-transfer-function

FFT fast Fourier transform

FBP filtered back-projection

CG conjugate gradient method

(Gen)SART (generalized) simultaneous algebraic reconstruction technique
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Notation Description

Introduced in

) refractive decrement of the imaged sample (refractive index: §2.1.2
n=1-0+1ip)

I} absorption decrement of the imaged sample §2.1.2

10) phase image §2.1.3.2

1 absorption image §2.1.3.2

I intensity of the measured hologram(s) §2.1.34

Ak X-ray wavelength A and -wavenumber k = 27/
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Introduction and Background



Chapter 1

Introduction

1.1 From Rontgen’s first radiograph to X-ray phase con-
trast imaging

Ever since the CONRAD RONTGEN published the first radiograph of his wife’s hand in 1895
[173], imaging with X-rays has enabled unprecedented non-destructive views into the internal
workings of formerly unknown realms. The principle of classical X-ray radiography is simple:
X-rays emitted by some source are partially absorbed as they traverse matter, such that the
induced profile in the X-ray intensity behind an imaged sample yields a two-dimensional (2D)
projection-image of its three-dimensional (3D) structure. Besides its immediate use in medical
diagnosis of bone fractures for example, the approach permits 3D-imaging via the technique
of computed tomography (CT), as first implemented by CORMACK [44, 45| and HOUNSFIELD
[103] in the 1960s: Radiographs acquired from different perspectives (by either rotating the
imaged object or the X-ray-source and -detector) allow to resolve 3D-variations of the local
X-ray absorption. Via mathematical tools developed by JOHANN RADON already in 1917, such
a 3D-image can be reconstructed from the measured series of conventional 2D X-ray images.

The remarkable ability of classical radiography and CT to “look into things” is physically
based on the high penetration depth of (hard) X-rays in matter compared to other types of
radiation like visible light or electrons: provided a sufficiently high photon-energy, residual
radiation is transmitted even through objects of thickness in the order of centimeters or larger.
While this principal selling-point of X-rays enables imaging of macroscale objects such as entire
human organs, their small wavelengths in the range between 0.01 and 10 nanometers in principle
also allow to resolve structures down to the nanoscale. Yet, when trying to apply X-ray imaging
to small objects of size in the order of micrometers or below, the high penetration depth becomes
problematic: microscale samples that are composed mainly of light chemical elements, such as
single biological cells, are quasi completely transparent to (hard) X-rays so that the induced
absorption contrast in a radiograph may be imperceptibly low. Importantly, however, this does
not mean that such specimens are invisible to X-rays since non-absorbing does not imply non-
interacting: in analogy to glass or water for visible light, even transparent materials may refract
X-rays to a significant degree and thereby become perceptible, see fig. 1.1(a). Although also
refraction of X-rays is much weaker than for visible light, it may still exceed X-ray absorption by
several orders of magnitude especially for biological soft tissue and other light-element materials,
thus promising massively improved contrast.
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Figure 1.1. Phase contrast in everyday life (photos by the author). (a) Refraction of light renders the
pattern in the glass-window visible although it is practically non-absorbing. (b) The hologram formed
on the floor behind the illuminated window encodes the refracting structure as intensity-variations.

While the potential benefits of refraction-based X-ray imaging have been known for a long
time, its practical implementation is hampered by physical details: in the standard model of X-
rays as classical electromagnetic waves, refraction manifests as phase-shifts of the transmitted
X-ray wave-fronts, which is why refraction-sensitive imaging methods are denoted as phase
contrast techniques. Measuring phases, however, brings about fundamental difficulties:

(1) The phase problem: X-ray detectors are sensitive only to the intensity of the incident
radiation, i.e. to the (squared) amplitude of the wave-field, whereas the phase-information
is lost in the measurement process. Hence, phase contrast requires an experimental setup
that establishes phase-sensitivity by encoding phases into measurable intensities.

(2) Coherence requirements: As phases may only be observed indirectly via wave-interference
according to point (1), phase contrast effects typically require sufficiently coherent radi-
ation to be observable, i.e. in particular ideally monochromatic X-rays.

For a long time, the low coherent photon-flux produced by available X-ray sources (after suf-
ficient monochromatization and collimation with optical filters and slits) has indeed ruled out
the possibility of exploiting the high-resolution potential of X-ray imaging via phase contrast
techniques. A prominent exception is given by X-ray crystallography. Already shortly after
the Nobel-Prize-awarded works of VON LAUE [204] and BRAGG [27] in the early 20th century,
the method revealed the positions of atoms in a wide range of crystals and thereby enabled
revolutionary insights in material science and structural biology. The key property of crystals
lies in their periodic structure, providing a large number of copies of the object of interest, the
crystal’s unit cell, which amplifies the induced signal in the measured diffraction patterns by a
huge factor. This effect may compensate a low intensity of the illuminating X-ray beam.

Extending the success of X-ray crystallography to general, non-crystalline specimens re-
quired massive increases in coherent flux. This has only recently been achieved with the de-
velopment of novel X-ray sources during the past few decades. Indeed, as remarked in [158],

3
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coherence had been lacking for so long that the first experimental demonstrations of X-ray
phase contrast [187, 207, 40, 123, 162, 146] in the 1990s initially came as a surprise: the dis-
covery was a consequence of the advent of third-generation synchrotrons, providing sufficiently
coherent X-ray sources for the first time — about 100 years after Rontgen’s first radiograph. To-
day, free-electron laser sources produce so much coherent flux that even single macro-molecules
yield enough contrast to be imaged without being embedded in a crystal [15].

Different phase-sensitive imaging methods have been proposed, see [160, 158] for reviews.
This thesis, however, is exclusively concerned with propagation-based X-ray Phase-Contrast
Imaging (XPCI*), also known as in-line holography or near-field propagation imaging. Inter-
estingly, the method uses essentially the same setup as classical X-ray radiography (see §1.2)
— only coherence and physical lengthscales make the difference. The required phase-sensitivity
is solely established by free-space propagation of the X-rays between sample and detector: af-
ter interaction with the imaged object, diffraction, i.e. self-interference of the X-rays partially
encodes the imprinted phase-shifts in the X-ray wave-field into measurable intensities at the
detector. The analogue of this effect for visible light and glass can be seen in fig. 1.1(b), where
the floor takes the role of the detector visualizing the resulting near-field diffraction pattern,
called hologram. Similarly as CT, XPCI thus involves a non-trivial computational problem:
in order to obtain an interpretable image, the sample-characterizing phase-shifts have to be
numerically reconstructed from the measured hologram via suitable algorithms.

Promoted by ongoing progress in optical control of X-rays [178, 54, 11, 95] and ever brighter
and more coherent sources [4, 189, 55], XPCI has developed into a promising technique over
the past 20 years. Imaging microscale specimens at resolutions of a few tens of nanometers is
now possible [13]. Meanwhile, the required X-ray dose in XPCI is low compared to other X-ray
imaging methods [85], which translates into relatively short acquisition times and low radiation-
damage of the imaged sample. Analogously as classical CT-scanners compute a 3D-image from
a series of 2D-radiographs, XPCI can furthermore be extended to a 3D-imaging technique by
acquiring holograms for different incident directions of the X-rays, as first demonstrated in [42].
The approach, denoted as X-ray Phase-Contrast Tomography (XPCT), has been applied for
example to investigate brain-tissue down to the cellular level in 3D without invasive sample-
preparation requirements [193]. Recently, even time-resolved XPCT) i.e. phase contrast imaging
in four dimensions has been successfully demonstrated [174, 177]. In addition to large-scale
X-ray sources, also state-of-the-art laboratory sources enable phase contrast imaging [120] and
first clinical applications of such setups are in preparation [28]. The present work, however,
focuses on XPCI and XPCT at resolutions below 100 nanometers, which still requires the
brilliance of modern synchrotron sources.

As progress on the experimental side breaches ever new frontiers, deep mathematical under-
standing and tailored algorithms for the involved image reconstruction problem become more
and more important in order not to bottleneck the capabilities of XPCI and XPCT. Promoting
the success of of these emerging imaging techniques by contributions on the mathematical side
is the principal goal of this thesis. The subsequent sections 1.2 to 1.5 give an outline of the
specific problems to be addressed as well as of the applied methodology.

*Both in the abbreviation XPCI and in referring to “phase contrast” we usually omit the specification
“propagation-based” in the following since no other phase contrast techniques are considered.
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1.2 The GINIX: an exemplary XPCI-setup

Figure 1.2 shows the Gottingen Instrument for Nano-Imaging with X-rays (GINIX) — an exem-
plary setup for high-resolution XPCI installed at the third-generation synchrotron PETRA III,
DESY, Hamburg. While the theory and algorithms of this work are not limited to a specific
experimental setup, we will frequently make reference to the GINIX when it comes to identify-
ing practically relevant ranges of physical parameters. Moreover, all of the experimental XPCI-
and XPCT-data considered in this thesis has been acquired at the GINIX.

In the synchrotron-source, the X-rays are generated by an undulator that forces accelerated
electrons onto oscillatory trajectories via alternating magnetic fields, causing photons to be
emitted at a small bandwidth of energies. The GINIX-setup in fig. 1.2 furthermore contains a
cascade of different X-ray optics, that serve to form a highly coherent beam from the generated
X-rays, emanating from the nanometer-sized source spot at the wave-guide exit. As indicated
in fig. 1.2, we will treat this part of the setup as a black-box and simply summarize it as the
“X-ray source” in the following, referring to [111, 178] for experimental details. In this abstract
picture, the XPCl-setup is appealingly simple, merely consisting of an unknown object placed
between source and detector — without requiring any further optical elements.

X-ray source

undulator slits  focussing mirrors detector

e oon on mn e Er e o Em Em En Em en En e Em En Er G S Gm En Em Em Em G Ge Gn G e Gm Em e e e

Figure 1.2. Sketch of an exemplary XPCl-setup at a third-generation synchrotron: the Gottingen
Instrument for Nano-Imaging with X-rays (GINIX) [111, 178]. For details, see text.

For a correct intuition of the GINIX-setup and the involved physical parameters, it is
important to note that the sketch in fig. 1.2 is not to scale but the following relations hold for
the experimental data considered in this work:

e Source(waveguide)-to-detector-distance (fixed): dpo =~ 5 meters.

e Source-to-object-distance (variable): in the order of centimeters.

Object diameter: in the order of 10 to 100 micrometers.

Detector size: =~ 1.33 centimeters (2048 x 2048 square pixels of aspect length 6.54 pm)

e Opening angle of the X-ray beam: in the order of 0.1 degrees.

The divergent-beam geometry of the GINIX-setup gives rise to a geometrical magnification
of the imaged object on the detector by a factor of dyo/dy; ~ 100. Accordingly, the setup
constitutes a lensless X-ray microscope. As indicated in fig. 1.2, the sample may be rotated to
acquire a tomographic series of holograms for XPCT.

For a qualitative impression, fig. 1.3 shows examples of holograms of different samples
recorded at the GINIX (corrected for lateral intensity-variations of the X-ray beam). A general

>
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feature of the near-field diffraction patterns is that they typically contain a mixture of direct
contrast, i.e. undistorted features of the imaged object, and additional wavy fringe-patterns.

Figure 1.3. Examples of XPCI data (holograms) for different specimens, measured at the GINIX:
(a) an ensemble of freeze-dried Deinococcus radiodurans bacteria, (b) a tip-shaped test-structure made
of nanoporous glass, (¢) human brain tissue (cerebellum). The images plot the detected intensity
relative to an empty-beam image, i.e. to the intensity-distribution without an object in the beam. In
(¢), three holograms have been acquired of the same sample at different sample-to-detector-distances
(see fig. 1.2) to increase the information-content of the data.

1.3 Image reconstruction: XPCI and XPCT as inverse
problems

In order to obtain interpretable images in XPCI, the sample-induced phase-shifts (and possible
absorption) have to be numerically reconstructed from measured holograms of the kind shown
in fig. 1.3. In the case of XPCT, tomographic reconstruction as in classical CT is furthermore
required to compute a 3D-image from the tilt-series of 2D-images. Mathematically, XPCI and
XPCT thus fit into the framework of inverse problems. The problems amount to inverting a
mathematical mapping, denoted as the forward map F, that describes the relation between the
sample-parametrization f (the sought 2D- or 3D-image) and the observable hologram-data g:

F : {admissible images} — {possible hologram-data} (1.3.1)

While the forward problem of computing data F(f) = g from a given image f is described
by fundamental physics, well-understood and stably solvable, the associated inverse problem is
that of greater practical interest: after all, f is unknown and only g can be measured directly.
However, reconstructing f from the data ¢ in XPCI is known to be ambiguous and unstable to
perturbations of ¢ in general [108, 157, 32| (mainly because of the missing phase-information
for the measured holograms, compare §1.1), i.e. ill-posed in the sense of HADAMARD [82]:

Definition 1.1 (Well-posedness and Ill-posedness [82]). A problem is called well-posed if

(a) a solution exists,
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(b) the solution is unique,

(c) the solution depends continuously on the data.

Otherwise, it is called ll-posed.

Non-uniqueness in XPCI means that structurally different specimens give rise to identical
hologram-data and are thus indistinguishable, which is clearly undesirable. Although not as
obvious, also condition (c) in definition 1.1 is vital: if the reconstruction does not depend
continuously on the data, then small measurement-inaccuracies, as arising in any real-world
imaging experiment, may lead to arbitrary errors in the recovered images. To enable faithful
image reconstruction in real-world settings, well-posedness thus needs to be (re-)established
either by a careful choice of the imaging-setting, i.e. by acquiring “sufficient” data, or by
suitable regularization, exploiting a priori knowledge on the imaged sample. Analyzing the
ill- or well-posedness of the inverse problems in XPCI and XPCT allows to identify general
potentials and limitations of the imaging-techniques beyond specific example-images.

1.4 Mathematical challenges in XPCI and XPCT

While some mathematical aspects of XPCI and XPCT are relatively well-understood by now,
such as the question of uniqueness [108, 157, 32, 140], several open problems remain, some of
which can be identified in the example-holograms in fig. 1.3. The following (incomplete) list of
mathematical challenges in X-ray phase contrast imaging will be addressed in this thesis:

e Stability: The hologram in fig. 1.3(a) shows pronounced variations of the background-
intensity (caused by imperfect flat-field correction, as will be detailed in §2.1.5.2). In
order to provide images of practical value, reconstruction needs to be robust against such
and other data-errors. To guarantee this, the ill- or well-posedness of the involved inverse
problems needs to be quantified by stability estimates beyond mere uniqueness.

e Required number of holograms: The data in fig. 1.3(c) consists of three holograms acquired
at different sample-to-detector-distances, compared to only a single hologram in the other
examples. To ensure efficient imaging in terms of acquisition times and radiation dose, it
is vital to understand how much data is really needed for faithful image reconstruction.

e FExploitation of a priori constraints: Typically, some basic properties of the imaged sample
are known a priori. The sample in fig. 1.3(a), for example, can be seen to occupy only a
small region in the center of the imaged field-of-view. Similarly, the sample contours in (b)
may be readily identified in the hologram. Imposing such prior knowledge as constraints
reduces the number of admissible images and may thereby facilitate reconstruction.

e Finite field-of-view (FoV): The hologram in fig. 1.3(b) is not fully captured by the square
detector: the fringe-pattern can be seen to reach out further than the imaged FoV. The
situation is even more severe in fig. 1.3(c) where the sample exceeds the FoV in diameter,
so that there are not only fringes leaving the FoV but also some that enter from the
outside. Theory on the impact of these effects on the recovered images is scarce.
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e Nonlinearity: The forward map F' from §1.3, that models the relation between the sought
images and the measured hologram-data, is nonlinear in general. This poses challenges
both in theoretical analysis and in designing practical image reconstruction algorithms.

o Mixed phase- and absorption contrast: Some specimens are not only phase-shifting but
also absorb X-rays to a non-negligible degree. This raises the question whether and how
phase- and absorption contrast in the holograms may be disentangled.

e Large-scale data: Especially in XPCT, the numerical size of the processed 3D-data sets
(typically arrays with ~ 10 floating-point numbers) is so large that computational costs
of image reconstruction remains a significant issue. In particular, the required time to
recover the image should not substantially exceed the experimental acquisition time.

The above aspects will be analyzed mathematically with the goal of improving the quality
of the reconstructed images. To date, the most widely used methods for XPCI (and XPCT) at
synchrotrons are based on a simplified image-formation model in terms of so-called contrast-
transfer-functions (CTF) [42, 194, 124, 96, 122, 121]. While the CTF-model allows computa-
tionally fast image reconstruction and thereby meets the efficiency requirements arising from
large-scale data, it relies on a linearization of contrast that is valid only for weakly interacting
samples. In addition to the resulting inability to account for nonlinearity, it will be seen in
the course of this thesis that standard CTF-based schemes also bear shortcomings in terms of
exploiting a priori knowledge, for example. On the contrary, more flexible classes of algorithms
tend to increase the required computation times by an unacceptably large factor. Tailoring
image reconstruction methods that provide a reasonable compromise between computational
requirements and versatility is a major motivation for this work.

1.5 Outline and structure of the thesis

The overall goal of this thesis is to develop a theoretical understanding of- and algorithmic
solutions for the challenges outlined in §1.4. Its principal structure is that of a cumulative
dissertation, also known as compilation thesis or thesis by publication: the present work is a
compilation of four journal articles [144, 142, 143, 141], that touch on different topics in XPCI
and XPCT but partly also address more general aspects of inverse problems in imaging. This
thesis brings the findings of the articles together in a unified notation, outlining connections
between the different contributions and also drawing joint conclusions beyond the scope of the
individual works. The topics of the considered articles are as follows (cf. §1.4):

e Article 1 [144] analyzes stability of image reconstruction in XPCI and XPCT and high-
lights the significance of a priori constraints for this. The derived quantitative stability
estimates shed a light on the required number of holograms in different settings as well
as on possibilities of disentangling phase- and absorption contrast.

e Article 2 [142] studies the effects of incomplete hologram-data due to a finite field-of-
view on image reconstruction, extending the stability analysis of Article 1 to this setting
and drawing conclusions on the achievable resolution in XPCI.

e Article 3 [143] proposes regularized Newton-type methods as image reconstruction al-
gorithms that account for nonlinearity and flexibly incorporate constraints.
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e Article 4 [141] derives efficient computational schemes for a certain class of reconstruc-
tion algorithms (Kaczmarz methods) for tomographic inverse problems. This helps to
reduce the computational costs of the proposed method for XPCT from Article 3, ren-
dering it applicable also for large-scale data.

Supplements: In addition to reviewing and discussing already published results, this thesis
also contains original, unpublished contributions both on mathematical theory and on algorith-
mic aspects of XPCI and XPCT, extending the findings of the presented articles. For clarity,
the titles of the sections with significant novel results begin with the word “Supplement”.

Structure: This thesis is divided into three parts:

e Part I (chapters 1 and 2) introduces the basic physical and mathematical background
of XPCI and XPCT, outlining general concepts and notation used throughout this work.

e Part IT contains the core chapters of the thesis. Chapters 3 to 6 contains summaries (or
rather reviews') of the articles 1 to 4, respectively, explaining key findings but omitting
technical details and lengthy mathematical proofs where possible. Each summary is
accompanied by a thorough motivation and discussion in the light of the other articles and
optional supplements of the kind explained above. Chapter 7 concludes the monographic
part of this thesis by discussing possible directions of future research.

e Part III (chapters 8 to 11) contains the complete articles 1 to 4 in their published
forms, up to minor corrections and notational adjustments. In particular, it serves as an
appendix for mathematical details that have been omitted in the summaries of part II.

Despite the principal cumulative form, the unpublished, monographic parts I and II are
intended to be self-contained, i.e. readable without reference to the complete articles, hopefully
leaving the reader with new insights and view-points on the fascinating technique of X-ray
phase contrast imaging.

tIndeed, while the presentation of the results is generally briefer than in the complete articles, some aspects
of particular importance to this thesis may even be treated to greater detail.



Chapter 2

Background and Preliminaries

2.1 Physical model of XPCI

The following section introduces the underlying physical model of image-formation in XPCI,
describing the dependence of the measured holograms from the sought images. Firstly, a basic
model is derived for an idealized XPCl-setting in §2.1.1 to §2.1.3. In §2.1.5, it is then discussed
in how far this model is applicable to real-world imaging-setups as sketched in fig. 1.2 and what
adjustments are required. More in-depth treatments of the physical background of XPCI can
be found in the books [160, 3] as well as in several PhD-theses [39, 12, 120, 171].

2.1.1 Basic wave-optical model

Although the underlying quantum-mechanical processes are complicated in principle, it is a well-
known fact that the propagation of X-rays and their interaction with matter is well-described
by classical electrodynamics [3]. On lengthscales larger than the size of atoms, the predominant
microscopic interactions given by Compton- and Thomson-scattering as well as photo-electric
absorption, can be summarized to surprising accuracy by parametrizing materials via a spa-
tially varying refractive index n. Accordingly, X-rays behave like electromagnetic waves in an
optically inhomogeneous medium, analogous to visible light passing through a (slightly opaque)
lens. Moreover, anisotropies in the scattering-interaction are often negligible so that the polar-
ization of the waves is irrelevant.

Within the scope of this work, X-rays may thus be described by a wave-equation governing
the evolution of the scalar wave-field 1(x,y, z,t): (n*/c2)0* — Av = 0 (cp: vacuum speed of
light, 9?: second derivative in time ¢, A: Laplace-operator w.r.t. the spatial coordinates z,y, z).
Furthermore, we restrict to sufficiently coherent, monochromatic* X-rays, that can be described
by a time-harmonic wave-field ¢ (x,t) = exp(iwt)¥(x) of a specific frequency w. The spatial
complex-valued amplitude ¥ of the wave-field is then described by the Helmholtz equation:

AU+ n?k*U =0. (k= w/cy: wave-number) (2.1.1)

*Although this is easily assumed here by a theoretician, the experimental difficulties in generating sufficiently
coherent X-rays have been a major obstacle to imaging methods like XPCI for a long time, see chapter 1.

10
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L & 1 B | B8/
Glucose (density 1.56 g¢/cm?) || 5.48 - 107° | 1.56 - 107° | 0.00285
Gold (density 19.32g/cm?®) || 4.90-107° | 5.16-107° | 0.105

Table 2.1. Exemplary values of the refractive- and absorption-decrements d, 5 at photon-energy
E = 17.9keV according to tabulated values in [92].

2.1.2 The refractive index in the hard X-ray regime

The frequency w of the X-ray wave-field is related to the energy E of the X-ray photons via
Planck’s formula £ = hw. The XPCI experiments considered in this work operate within the
hard X-ray regime with beam energies in the order of F ~ 10keV (keV: kilo electron volts).
In this part of the electromagnetic spectrum, the refractive index n of matter deviates only
slightly from unity. Therefore, it is typically written in the form

n=1-0+1if (i: imaginary unit). (2.1.2)

As will be detailed in §2.1.3.2, the real-valued spatially varying parameters ¢ and 5 govern re-
fraction and absorption of X-rays by the material. Therefore, we call § the refractive decrement
and S the absorption-decrement (or simply absorption). We emphasize the following:

For physical reasons, 6 and 8 are always non-negative in the hard X-ray regime.

Table 2.1 gives exemplary values of ¢ and [ for glucose C¢gH1204 (biological material) and
gold (heavy metal) at photon-energy £ = 7.9keV. We note that

e § and 3 are both very small compared to one, typically < 107%. In particular, this means
that the following standard approximation is practically exact:

n?=(1-8+ip)? ~ 1 — 2§ + 2iB. (2.1.3)

e [ < 0: for glucose, (3 is about 350 times smaller and even for gold one still has 5/ ~ 0.1.
Refraction is thus much stronger than absorption for hard X-rays.

More details on the quantities ¢, § and the underlying physics are e.g. given in [3, 39, 12]. Let
us just note that probing ¢§, as done in XPCI, yields images in natural contrast:

For hard X-rays, the refractive decrement § is proportional to local electron density.

2.1.3 Step-by-step modeling of the image-formation process

Based upon the Helmholtz-model (2.1.1) for the propagation of X-rays, an XPCl-setup as in
fig. 1.2 may be viewed in a simplified and abstract manner as sketched in fig. 2.1: plane waves
are incident along the optical axis, scatter on the sample parametrized by its refractive index
n and then propagate over a distance d to the detector. Accordingly, image-formation may
be divided into three steps: scattering-interaction, free-space wave-propagation and detection.
In the following, we will derive a specific mathematical description for each of these steps and

11
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Figure 2.1. Sketch of the basic physical model of XPCI.

finally combine them to obtain a complete image-formation model. We choose coordinates such
that the optical axis is the z-axis and denote the remaining lateral dimensions by = (z,y).

The principal problem is as follows: given the sample’s refractive index n, what is the wave-
field ¥ in the detector-plane z = d? Describing this relation in terms of the full Helmholtz-
equation (2.1.1) is possible, but would result in a rather abstract description in terms of the
solution to a complicated partial differential equation. Therefore, some additional approxi-
mations to the basic model will be introduced, that are standard and highly accurate for the
considered hard X-ray setting and enable a simpler description.

2.1.3.1 (Free-space) wave-propagation in paraxial approximation

The incident X-rays are modeled by a plane wave V;(x,z) o exp(ikz). For the considered
energies £ ~ 10keV, the wavelength A = 27/k is in the order 0.1 nanometers, which is much
smaller than the lengthscales of variations of n for typical samples in XPCI. Consequently,
the wave-field perturbations induced by the object in fig. 2.1 will be coarse compared to the
oscillations of the incident plane waves. This motivates to write the total, perturbed wave
field in the form W(x, z) = exp(ikz)¥(z, z) with slowly varying envelope ¥. Upon inserting
this ansatz into the Helmholtz-equation (2.1.1), the second derivative 0¥ may be neglected
compared to terms 9,V and k2W. This is the so-called parazial (or Schrodinger- or one-way-)

approximation, yielding the paraxial Helmholtz equation for the envelope W:

2ki0, U + AW + (n® — DE*T = 0.  (A,: Laplacian w.r.t. & = (z,7)) (2.1.4)

Free-space (Fresnel-)propagation: Based on (2.1.4), we may describe the evolution of the
envelope ¥ as the X-rays propagate from the sample-plane z = 0 to the detector at z = d in
fig. 2.1. As the gap in between is free space (air or vacuum in practice), n = 1 holds identically
in this domain so that (2.1.4) reduces to 2kid, ¥+ A, V¥ = 0. Assuming that the space is infinite
in the lateral z- and y-dimensions, the solution to this PDE may be expressed via the Fresnel
propagator D: writing W, : x — V(x, 29) for the wave-field at z = 2y, we have

By(@) =D (W(()-0) (@/h). D)= F (exp ( - 4%) - f<f>> (2.15)

where F(f)(€) = (2m)™™/2 [on f(2) exp(—i&-x) dz denotes the Fourier transform (here: m = 2)
and fg,) = kb?/(2md) is the dimensionless Fresnel number associated with the lengthscale b.

12
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Dimensionless formulation: (2.1.5) implies that free-space propagation in XPCl-setups is
described by only a single parameter § — provided that the wave-field ¥ is expressed in terms
of dimensionless coordinates ' = x/b by identifying an arbitrary physical length b with unity.
From hereon, all quantities of dimension “length” will therefore be assumed to be dimensionless,
implicitly measuring the corresponding physical length in multiples of some reference-scale b.
Details on Fresnel propagation, length-scales and their relation are discussed in §2.2.

2.1.3.2 Scattering interaction in projection-approximation

In fig. 2.1, the interaction of the incident X-rays with the sample takes place between the
entrance-plane at z = —L and exit-plane at z = 0 — everywhere else the refractive index
n equals one. Typically, the sample-thickness L is sufficiently small such that diffraction of
the X-rays may be neglected while they traverse the object, which means that the scattering-
interaction is well-described by ray-optics’. Mathematically, this corresponds to neglecting the
lateral Laplacian in the paraxial Helmholtz equation (2.1.4), which leads to

2ki0, U(x, 2) + (n® — DE*U(x,2) =0 forall xecR?ze[-L;0)
- ik 9 - : 0 -
= Uy = exp (%/ (n2— 1) dz) b, K exp (— k/ (B +10) dz) U_;. (2.1.6)

—L —L

with U, (x) = ¥(x, 2) as in §2.1.3.1. The model (2.1.6) is known as the projection-approzimation
as the sample-induced perturbation of the wave-field ¥ is described in terms of line-integrals
over 0 and  along the incident z-direction, which can be seen as a 2D-projection of the 3D-
sample — the image in fig. 2.1. ¢ and [ determine the phase- and magnitude, respectively, of
the exponential factor in (2.1.6) by which the wave-field ¥ is modulated. Therefore, we call

0 0
¢:w|—>k:/ d(x,z)dz and ,u:a:»—>k:/ Bz, z)dz (2.1.7)
-L

—L

the phase- and absorption-images.

The projection-approximation is valid if § and 6 do not vary on lengthscales finer than
Tproj ~ (2AL)Y2 [166, 39, 46]. This condition can be interpreted as a resolution limit: when
aiming to resolve finer scales than 7., the approximation is no longer sufficiently accurate.
On the contrary, if resolution is limited to scales 2 7,0; by other effects, which is typically the
case in XPCI, it may be applied without a significant loss in accuracy. Rigorous estimates of
the modeling error due to the projection-approximation are given in [108].

2.1.3.3 X-ray detection and the phase-problem

The final stage of image-formation is detection, which is subject to the phase-problem: real-
world X-ray detectors may not measure the full complex-valued wave-field ¥ (or ¥) but only
its intensity that is (up to a scaling constant) given by the squared modulus I = |¥|? = |¥|2.
The physical reason becomes evident upon recalling that the actual X-ray waves ¢(x,t) =
U(x)exp(iwt) oscillate in time at a frequency w = c¢ok. For hard X-rays, phase-differences

tOn the contrary, the model of free-space propagation between object and detector from §2.1.3.1 is wave-
optical and thus incorporates diffraction. This is consistent as typically d > L by several orders of magnitude.
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in ¥(x) thus correspond to time-lapses between the oscillations of ¢ at different positions in
the order of 107! seconds or less, which is not resolvable by any available technology. On the
contrary, the intensity corresponds to transferred energy per time and area and is thus accessible
via time-averaging measurements, i.e. the time-scale of oscillations need not be resolved.

2.1.3.4 Complete model

Combining the different image-formation steps from §2.1.3.1 to §2.1.3.3 yields a description how
the object-parametrizing quantities ¢, 8 are encoded in the intensity of the resulting hologram:

2

1:]%(2@ \D(%)\”@ D(Vp-exp(-p—i0))| = IDlexp(—p—io) (218)

with phase- and absorption-images ¢, i as defined by (2.1.7). The final equality in (2.1.8)
follows from the assumption of incident plane waves W(x,z) = Vi(x,2) = exp(ikz) for all
z < —L, which is equivalent to ¥(a, z) = 1 by definition of the wave-field-envelope W.

2.1.4 Image reconstruction: the inverse problem of XPCI

Throughout this work, we are mainly concerned with image-reconstruction in XPCI, which
corresponds to the inverse problem associated with the derived (forward-)model (2.1.8):

Inverse Problem 2.1 (Image reconstruction in XPCI). For some set A, reconstruct the phase-
and absorption image h = u +1i¢ € A from one or several hologram(s) of the form

I°% & | D (exp (—p — i9))[* . (2.1.9)

The set of admissible images A depends on available a priori knowledge on the images ¢, u.
Moreover, the usage of “~” in the formulation of inverse problem 2.1 emphasizes that real-
world XPCI experiments never provide exact data in terms of the model (2.1.8), due to the
underlying idealizations, noise and other effects discussed in §2.1.5.

As solving inverse problem 2.1 implicitly requires to recover the lost phase-information at
the detector, see §2.1.3.3, it is also referred to as phase retrieval or phase reconstruction.

2.1.5 Model adjustments for real-world XPCI setups

The model of the preceding section §2.1.3 has been derived for the idealized, schematical XPCI-
setup in fig. 2.1. In the following, we discuss different adjustments of this model in order to make
it more applicable to real-world XPCI setups. Many of the discussed problems and conclusions
drawn in this thesis may only be understood within a more realistic picture of XPCI. Therefore,
a brief presentation seems necessary here.

2.1.5.1 Illumination by a point-source and the Fresnel-Scaling-Theorem

Possibly the most obvious difference of the schematical model in fig. 2.1 to the real-world
experimental setup in fig. 1.2 lies in the geometry of the illuminating beam: in experimental
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Figure 2.2. (a) Geometrical sketch of a realistic XPCI setup, characterized by a divergent X-ray beam
as produced by a point-source s. Under certain conditions on the geometrical parameters H, L, Ax,
the setting may be mathematically modeled to good approximation by an effective parallel-beam
geometry as sketched in (b). For details, see text.

realizations, the object is illuminated by a divergent beam (or cone beam), emanating from
a very small, ideally point-shaped source-spot. Even if the point-source was ideal, it would
evidently not produce an X-ray wave-field given by a plane wave, but concentric spherical
waves. In a geometrical optics picture, this means that the corresponding rays are not parallel
but emanate radially from the source spot. The real-world, divergent beam geometry is sketched
in fig. 2.2(a). The modified geometry affects different steps of the XPCI-model:

e [nteraction (§2.1.3.2): The projection-approximation remains valid but the rays traversing
the object are no longer parallel. However, for samples of small thickness L and lateral
size H (see fig. 2.2(a)) the beam-divergence within the object is negligible so that the rays
may be assumed to be approximately parallel. Quantitatively, assuming an approximate
parallel-beam geometry as in fig. 2.2(b) is accurate down to object-features of size 2
LH/(2dy1). As long as the resolution of the imaging-setup is limited to larger scales due
to other effects, the parallel-beam model from §2.1.3.2 thus need not be modified.

e Free-space propagation (§2.1.3.1): By the Fresnel-Scaling-Theorem (see e.g. [160]), propa-
gation from object- to detector-plane in the divergent-beam setting of fig. 2.2(a) is equiv-
alent to propagation in the effective parallel-beam geometry in fig. 2.2(b) if

(1) Object-features are enlarged according to the geometrical magnification M = (dy1 +
di2)/do of the divergent-beam setup, i.e. if f € {u, ¢} is a phase- or absorption
image in the object-plane fig. 2.2(a), its effective analogue in (b) is feg(x) := f(x/M).

(2) An effective propagation-distance deg = dy 2/M is assumed.

All in all, we see that the ideal parallel-beam model from §2.1.3 may be adjusted to real-
world divergent-beam geometries at relative ease. Furthermore, we note that the magnifying
effect of a divergent beam is vital for high-resolution imaging: in a true parallel-beam setup, the
lateral resolution would be limited by the pixel-size Az of the detector, which is typically in
the order of micrometers, compare §1.2. In contrast, object-features down to the effective pizel

size Azl = A /M may be resolved in a divergent beam geometry, as seen from fig. 2.2(a).
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2.1.5.2 Non-plane wave illumination and flat-field correction

Real-world X-ray sources never produce wave-fields given by ideal plane waves (or ideal spherical
waves in divergent-beam geometry). Yet, the assumption may be readily relaxed within the
given model by assigning an initial wave-field envelope P := W_; # 1 in the interaction-model
(2.1.6). The probe-function P describes the lateral profile of the illuminating paraxial X-ray
beam. According to (2.1.8), the image-formation model with non-trivial probe reads

I =|D(P-exp(—u—ip))*. (2.1.10)

Flat-field correction: The underlying complex-valued probe-field P in an XPCI experiment
is typically unknown. While some methods have been demonstrated to enable probe recon-
structions [83, 84, 170, 171], the problem is that P is not static in practice so that it cannot be
measured once and for all. It is therefore standard to apply a heuristic correction, known as
flat-field correction or empty-beam division, in order to obtain holograms that resemble those
under a hypothetical illumination by plane waves. The idea is to use the approximation(!)

D (P - exp(—p —i9))|*
D (P)[?

~ |D (exp(—p — i9))[* (2.1.11)

Both the numerator and the denominator on the Lh.s. of (2.1.11) are accessible by measure-
ments, where the latter corresponds to ¢ = u = 0 in (2.1.10), i.e. to an empty-beam image,
acquired without a sample in the beam.
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Figure 2.3. Demonstration of flat-field-correction for data acquired at the GINIX. Due to minor
changes in the X-ray beam-profile between the acquisition of the hologram (left panel) and empty-
beam image (middle), significant background-variations remain in corrected hologram (right panel).

There are both theoretical and practical issues associated with the flat-field correction:

e Theoretical: For non-plane wave probes P, (2.1.11) is only approximately valid. Ana-
lytical and numerical studies [101, 83] show however that empty-beam division is fairly
accurate for the smooth probing beams produced by the waveguide in the GINIX-setup
fig. 1.2, up to a resolution limit in the order of the source spot size.

e Practical: In experiments, it is difficult to produce a constant probe P over longer time-
scales than minutes due to slight drifts in the setup and/or time-varying processes of the
X-ray source. Hence, the “P” in numerator and denominator in (2.1.11) differ in practice,
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especially in the case of phase contrast tomography, where total acquisition times are in the
order of hours. Importantly, this typically leads to imperfect flat-field correction beyond
the theoretical limitations, as seen in the real-data example shown in fig. 2.3: because
of minor differences of the in the hologram and empty-beam image, spatial variations of
the beam-profile are partly over- and under-compensated by the empty-beam division, so
that significant background-variations remain in the (supposedly) corrected hologram.

In this thesis, we will exclusively consider holograms that have been divided by an empty-
beam image. As seen from fig. 2.3, this gives rise to an important issue:

Flat-field corrected holograms (especially in XPCT) are often corrupted by slowly vary-
ing background variations that may exceed the actual diffraction-signal in magnitude.

2.1.5.3 Partial coherence

The derived XPCI-model, even with the adjustments from §2.1.5.1 and §2.1.5.2, is strictly valid
only for fully coherent X-rays. In practice, one has the following situation:

e Partial spatial coherence: the source-spot (the waveguide-exit for the setup in fig. 1.2)
has a finite extent and photons emitted from different positions do not interact fully
coherently at the detector.

e Partial temporal coherence: the source does not emit photons of a single frequency w (or
energy ' = hw) but stochastically according to some probability-density p(w) of some
characteristic width. Photons of different frequency do not interact coherently.

Effects of partial coherence have been considered already in the first practical demonstrations
of XPCI, see e.g. [166, 41]. Essentially, both spatial- and temporal incoherence manifest by
damping the contrast for object-structures finer than some length r.., depending on the degree
of coherence, whereas features of size 2 7., are represented in the holograms quasi as if the
illumination was fully coherent. Accordingly, partial coherence limits the resolution of XPCI.
For the GINIX, the estimated limiting resolution is r.,, = 20nm according to [12].

2.1.5.4 Real-world detectors and Poisson-noise

So far, it has been assumed that the full intensity I = |¥,4|? in the detector-plane is measured.
In practice, different modifications to this ideal settings occur, as outlined in the following.

Finite field-of-view: Real-world detectors may cover only a bounded sub-domain K C R?
of the infinite detector-plane. The effects of this limitation are studied in detail in chapter 4.

Pixelation: Detecting devices are composed of a finite-number of pizels, that measure scalar
intensity-values I; according to their sensitivities w; : R? — R>q (ideally w;(x) =1 for x € D
and w;(x) = 0 otherwise, where I; C R? is the area covered by the pixel):

Ii:/ I(x)wi(x)de for i=1,2,..., M. (2.1.12)
R2
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Measured holograms thus provide discrete data I = (I;)M, € RM. In particular, this limits the
resolution by which the underlying continuous intensity I is sampled to the pixel-size Azp.
This resolution-limit carries over to reconstructed images ¢, p.

Poisson statistics: X-rays are quantized into discrete photons. As a consequence, ideal
detector-pixels (without dead-times, electronic noise, etc.) measure integer numbers [P €
Ny of incident photons, that are Poisson-distributed random variables I?* ~ Poi(tI;). The
expected value of the I?™ is given by the product of the true intensity I; and the exposure-time
t > 0 (in suitable units), see e.g. [99]. The stochastic nature of the observations I?* constitutes
a natural source of data-errors: even for perfectly calibrated detectors without electronic noise,
the Poisson-statistics of the counted photons gives rise to noisy holograms. These Poisson-
errors are typically the predominant noise-component in XPCI.

2.2 Focus on Fresnel propagation

Mathematically, the basic image-formation model in (2.1.8) is surprisingly simple: up to the
map D, the relation between object-quantities ¢, and the data I only involves pointwise
operations: (¢, ) — exp(—u —i¢) and D(...) — |D(...)]>. As a consequence, quasi all non-
trivial properties of the map (¢, ) +— I relate to the Fresnel propagator D. The following
section is therefore dedicated to gaining a physical and mathematical understanding of Fresnel
propagation.

2.2.1 On Fresnel numbers and imaging-regimes
2.2.1.1 Why propagation?

For a first insight on the significance of Fresnel propagation, it is illustrative to investigate what
would happen if the detector in an XPClI-setup was placed directly behind the sample, i.e. d =0
in fig. 2.1, such that the X-rays do not undergo free-space propagation after interacting with
the sample. This eliminates D from the image-formation model (2.1.8), so that

I =D (exp (—p—1i9))|* = [exp (= — i¢)[* = exp (—2p). (22.1)
Accordingly, the intensities I would only encode the absorption-image i, but are completely

insensitive to the phase-image ¢. In other words, Fresnel propagation enables phase contrast.
Details of contrast-formation are determined by the Fresnel number(s).

2.2.1.2 Meaning of the Fresnel number

The Fresnel number § = b*/(\d) has been introduced as a dimensionless condensation of the
setup parameters in XPCI. Its physical meaning can be seen from the definition of the Fresnel
propagator in (2.1.5): the action of D modulates the Fourier-components F(f)(&) of an image
f by the phase-factor exp(—i&?/(47§)), which implies the following:

e For low spatial frequencies |€| < §/2, it holds that exp(—i&?/(47f)) ~ 1 so that the
modulation is quasi without effect. Accordingly, image-features of size coarser than ~
f_l/ % are practically retained upon Fresnel propagation.
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e For high spatial frequencies |€] > §/%, the assigned phases exp(—i¢?/(4nf)) differ signifi-
cantly from unity and oscillate with the frequency |€|. Hence, image-features finer than
~ f_l/ 2 are significantly affected by Fresnel propagation.

The physical effect modeled by D is coherent (near-field) diffraction, i.e. self-interference of the
propagating X-ray wave-field. The above observations show that wave-field structures smaller
than some specific scale are strongly distorted by diffraction (holographic lengthscales), whereas
coarser, non-holographic scales only exhibit minor diffractive effects. The Fresnel number §
defines the threshold between holographic and non-holographic scales.

2.2.1.3 Scale-dependence of the Fresnel number

It is important to note that the Fresnel number of an imaging-setup does not exist. Instead, a
Fresnel number is always assigned with (implicit) reference to a lateral lengthscale b that defines
unit-length in the underlying dimensionless coordinates, see §2.1.3.1. The Fresnel number is
thus scale-dependent as can be seen from the behavior of the Fresnel propagator under rescaling
of the coordinates: if D) denotes the propagator for some specific § = £,, then it holds for any
function f:R? — C and f,(x) := f(x/0) with ¢ > 0 that

DY(f,)(x) = DV (f)(z/o) (2.2.2)

The interpretation of (2.2.2) is as follows: D = D® acts on features of size o in the same
manner as D%) with §, := 0§ on features of size 1. Accordingly, each length scale o has its
own Fresnel number §,, that governs near-field diffraction on this particular scale.

Assigning a Fresnel number to different scales enables a compact description of the obser-
vations in §2.2.1.2: the identified threshold-scale o = /2 for diffractive effects corresponds to
a Fresnel number f, = 0?f = 1. Thus, a lengthscale o is holographic if and only if §, < 1.

2.2.1.4 Propagation-regimes

The phase- and absorption-images ¢ and p for real-world samples typically involve features on a
wide range of lengthscales: from the coarsest scale, defined by the diameter of the total object,
to the smallest resolvable lengthscale, which may for example be the effective pixel-sizet A:ngifx,
compare 2.1.5.1. The coarsest and finest scales define the largest- and smallest relevant Fresnel
numbers f,.., fuin, respectively. Based on these, imaging-regimes of XPCI may be defined. For

orientation, fig. 2.4 shows exemplary (simulated) holograms for some of the settings:

(1) Contact regime §,,, > 1: There are no holographic scales and thus no detectable effects
of Fresnel propagation. Hence, the model (2.2.1) applies and there is no phase contrast.

(2) Direct contrast regime $,;, ~ 1, finax > 1 Only the smallest scales are holographic, so
that phase contrast is visible only for the sharpest image-features (edges) (fig. 2.4(c),(d)).

(3) Holographic regime f,;, < 1 < f..: There is a wide range of both holographic- and
non-holographic scales (fig. 2.4(e),(f)).

eff

fIndeed, it very common to express the Fresnel number of an XPCl-setup w.r.t. the lengthscale b = Aa:pix.

We denote this pixel-size-based Fresnel number as ;..
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Figure 2.4. Simulated holograms at different Fresnel numbers § for pure phase contrast (u = 0,
top row) and pure absorption contrast (¢ = 0, bottom row). (a),(e) assumed phase- or absorption
image ¢, p. (b)—(d), (f)—(h) resulting hologram-intensities. The scale-bars indicate the length o that
corresponds to a Fresnel number §, = 1. The holograms are characteristic of the propagation-regimes
(2) (images (b),(f)), (3) (images (c),(g)) and (4) (images (d),(h)), respectively, defined in §2.2.1.4.

(4) Deeply holographic regime: Only the coarsest scales are non-holographic (fig. 2.4(g),(h)).
(5) Completely holographic regime §,,,. ~ 1: All relevant scales are holographic.

(6) Far-field regime §,,,, < 1: D can be approximated by the far-field limit, see §2.2.2.2.

In this thesis, we will exclusively consider XPCI-data from the settings (3) and (4), which
are the standard regimes for high-resolution XPCI at synchrotrons. Setting (1) is the regime
of classical X-ray radiography of macroscale objects such as entire human organs, whereas the
regime (2) applies to X-ray imaging down to micrometer resolutions (micro-CT, small-animal-
imaging, ...) as routinely performed with laboratory X-ray sources, see e.g. [120] for details.
Possibilities and potential benefits of imaging in regime (5) will be discussed in §3.6.

From fig. 2.4(e)—(h), it is seen that absorption contrast is strong in holograms for any Fresnel
number § — only the structural similarity between hologram and absorption-image p decreases as
the setting becomes more holographic. For phase contrast (fig. 2.4(a)—(d)), the overall contrast
in the hologram seems to increase as § becomes smaller. However, the true picture is more
subtle, in accordance with the scale-dependence of Fresnel propagation discussed in §2.2.1.3:

Non-holographic scales induce low phase contrast (low-frequency instability of XPCI).

Thus, the perceived contrast-increase is thus due to more and more scales becoming holographic
as f decreases — phase contrast on holographic scales in general does not increase with 1/.
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2.2.1.5 The holographic nature of XPCI and delineation from CDI

Regime (6) in §2.2.1.4 is the setting of coherent diffractive imaging (CDI), see e.g. [146, 147,
182], which can be seen as the far-field limit of the near-field technique XPCI. Yet, a funda-
mental change occurs in the transition from XPCI to CDI as explained in the following.

As seen in the raw holograms in fig. 2.3, both the unscattered X-ray beam and the sample-
induced scattering-signal manifest in XPCI-data. In the notation of §2.1.5.2, we have

I =[D(P-exp(—p —i¢))]> = |W[* + 2Re (T, - Ty) + |T|%, (2.2.3)

where Uy = D(P) and Vg = D(P - (exp(—p — i¢) — 1)) are the transmitted (primary) and
scattered (secondary) wave-fields, respectively, at the detector. Image reconstruction in XPCI
mostly uses the term 2Re (Tt . \Ifs) which models interference between primary- and secondary
wave, exploiting the holographic reference-signal provided by the transmitted beam W, to de-
termine the unknown scattered part W,.

In CDI, on the contrary, the contributions |¥;|* and 2Re (@t . \Ifs) are typically negligible
in the recorded far-field diffraction data for reasons detailed in e.g. [139, §2.5.3], so that (2.2.3)
reduces to I ~ |U,|?, i.e. holographic signal-components do not manifest. As a consequence,
the mathematical structure of image reconstruction in CDI strongly differs from XPCI. Thus:

Theory and algorithms derived in this thesis in general do not generalize to CDI.

2.2.1.6 Modified Fresnel numbers — for notational convenience

It is convention to work with Fresnel numbers ;) = b%(\d), using the wavelength ) as reference-
scale. Yet, it often turns out to be more convenient to instead employ the reciprocal wavenumber
1/k as a lengthscale, which leads to the modified Fresnel number

fo) == kb®/d = 27§ ). (2.2.4)

As indicated by the extra “bar”, the difference in definition between f(;) and f;) is analogous to
Planck’s constants h and h = h/(27). Defining the Fresnel propagator in terms of the modified
Fresnel number tends to eliminate 27-factors from the arising formulas, which simplifies lengthy
expressions. We will mostly use f), but sometimes also f(,) when it seems suitable. For brevity,
we will often omit the prefix “modified” and simply refer to f) as “Fresnel number”.

2.2.2 Mathematical properties of the Fresnel propagator

In the second part of this section, we present some fundamental mathematical properties of the
Fresnel propagator D. Derivations of the stated properties can be found for example in [160].

2.2.2.1 Definition and basic properties on R™

Although D arises naturally in a two-dimensional setting, it will turn out to be useful to
generalize the definition to arbitrary dimensions R™:

D: L*(R™) — L*R™); f— F (mf . F_l(f)) with  m;(€) == exp (—152/(2]‘)) (2.2.5)

defines a bounded linear operator. Moreover, D has the following properties:
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e Unitarity: D preserves the L*norm | f||(z2) := ([ | f(x)|* d)"/? of functions,
1Dz = I fllz forall fe L*(R™). (2.2.6)
Its inverse/adjoint is given by back-propagation: D~*(f) = D*(f) = F ' (m_; - F(f)).

e Translation invariance: as a Fourier-multiplier, i.e. an operator given by a multiplication
in Fourier space, D is translation-invariant, i.e. commutes with coordinate-shifts:

DI, =T,D forall aeR™T,:f— f(-+a) (2.2.7)

e Rotational invariance: as ms(§) only depends on the modulus |§|, D is furthermore
invariant under orthogonal coordinate-transforms (rotations and reflections):

DA=AD forall A:f— f(A()), AER™™: AA* = A*A =idpm.  (2.2.8)

2.2.2.2 Alternate forms

Fourier-multipliers may be expressed as convolution-operators (with a possibly singular kernel).
The convolution-form of the Fresnel propagator D reads (f € L*(R™) N L'(R™))

D(f)(e) = () (@) = | Jie- )i}y forall @ cR”

m

ki = uof? -my, ny(x) = exp (ifz®/2), wuo = exp(—imn/4). (2.2.9)

By manipulating the convolution-integral in (2.2.9), the following alternate form of the Fresnel
propagator may be obtained:

D(f)(x) = wof2 ni(x) - F (ns- f) (Jx) forall xe€R™. (2.2.10)

Far-field limit: An advantage of the alternate form (2.2.10) is that one may readily read-off
the behavior of D in the far-field limit f — 0: if f has compact support, w.l.o.g. f(x) = 0 for
all x € R™ with || > %, and f < 1, then n; - f = f holds true so that

D(f)(x) ~ uof2 ni(x) - F (f) fx) forall x€R™. (2.2.11)

In the far-field limit, D is thus essentially given by a Fourier transform, up to a rescaling of the
coordinates and multiplication with the function wugf= nj, that has constant modulus.

2.3 Tomographic imaging model

According to the physical model derived in §2.1, holograms encode projection-images ¢ =
k [0dz and =k [ Bdz of the sample’s refraction- and absorption-decrements §, 5. Notably,
this implies that the imaging-setup is completely insensitive to variations of 9, 5 along the
incident z-direction. In order to resolve the full 3D object-structure, XPCI has to be combined
with tomographic techniques: by rotating the sample in the setup as suggested in fig. 1.2,
holograms may be acquired for different incident directions @ € S* (S" ! ={x e R™ : |z| = 1})
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of the X-rays relative to the object (in §2.1, @ was assumed to coincide with the z-axis). The
encoded images are then given by projections of ¢, 8 along 0, i.e. g = kP(0) and g = kP(B)
with parallel-beam projector Py defined by

Po(f)(z,y) = / flany +yn, +20)dz  forall =z,yeR, (2.3.1)
R

where n,,n, € S? are chosen such that {6, n,,n,} forms an orthonormal basis of R*. The
considered tomographic geometry and the action of the projector is illustrated in fig. 2.5.

Inverse problem: Projections {(f)}eco for a suitable set of incident directions © C S?
allow to reconstruct the underlying 3D-density f. This is the principle of computed tomography
(CT), which is routinely exploited in medical CT-scanners as well as in several other imaging

modalities. We are concerned with the inverse problem of X-ray phase contrast tomography
(XPCT) which, by the basic XPCI-model (2.1.8) and the argument above, reads as follows:

Inverse Problem 2.2 (Image reconstruction in XPCT). For some set A, reconstruct the
3D-density f := kB + iké € A from a tomographic series of holograms {Ig>}ece, © C S? with

I3 ~ |D (exp (—Po(f)))]>  forall 6cO, (2.3.2)

Inverse problem 2.2 amounts to a combination of the image reconstruction in XPCI (inverse
problem 2.1) and classical tomographic reconstruction as performed by CT-scanners.

Py TA

0

>

tomographic rays

P (0)(fy) ()

Figure 2.5. Geometrical sketch of the tomographic imaging model used to describe XPCT: the
parallel-beam projectors Py integrate a 3D-object density f (= kB +ikd) along the incident direction
0 c S? of the X-rays, yielding 2D-projection images pg = P(f) (which then induce holograms
Ig = |D(exp(—pg))|?). Lines in the image pg provide values of the Radon-transform % of 2D-slices
fy i (z,2) = f(x,y, z) of the 3D-object f. For details, see text.

2.3.1 Relation to the Radon transform

The most common approach to acquire tomographic data sets is to rotate the sample around a
single fixed axis, the so-called tomographic axis or tilt azis (w.l.o.g. the y-axis throughout this
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thesis). The directions 6 are then parametrized by the incident-angle 6 € [0; 2m) enclosed with
the z-axis, as indicated in fig. 2.5, and we write

Py = Popy with  6(0) := (sin(),0,cos(d)) for HeR (2.3.3)

We define by f, : (z,2) — f(x,y,2) two-dimensional slices of a three-dimensional function
f : R* — C in planes perpendicular to the tomographic axis. Moreover, we identify 6 with a
direction in R?, setting w(f) := (— cos(f),sin(#)) € S'. Then it holds that

Powo)([)(@,y) = Ruo)(fy)(2) = Z(f,)(w(0),2) forall a,y0€R, (2.3.4)

where %) denotes the two-dimensional Radon transform (for fixed w € S'), as defined in
standard literature on computed tomography [155, 110]:

Bo(F2) () = (fOD) (w0, 7) 1= /R £OD (s + 2001 ) dz. (2.3.5)

for integrable functions f?4 : R? — C, mutually orthogonal directions w,w, € S* and z € R.
According to (2.3.4), lines Pg)(f)(-,y) of projection images provide Radon-data Z.)(f,) of
the corresponding 2D-slice f,, as visualized in fig. 2.5.

2.3.2 Analytical properties

Based on the identification with a (slice-wise) 2D-Radon transform, a vast amount of theory is
available on parallel-beam tomography. Here, we recall the most important aspects to which
will be referred throughout this thesis. Details and proofs of the given statements can be found
e.g. in the books [155, 110] as well as in the author’s master’s thesis [139].

2.3.2.1 Boundedness and adjoints (backprojections)
For any bounded domains Q € R? and Q@9 ¢ R? and 0 € S?,w € S, the maps
P L*(Q) = LA(R*) and Z:L*(Q%Y) = L*(S' xR) (2.3.6)

define bounded linear operators. The corresponding adjoints are given by

" T, . if Q
Py(p)(x) = p(ng-x,m,-z) ifxc for all x € R3, (2.3.7a)
0 else
z)dw if z € QY
B (g)(x) = {gg 9w w - @) dw o © forall e R (2.3.7h)
else

The operations in (2.3.7) are back-projections, that uniformly smear out projections along the
incident directions associated with 0, w (integrated over all w in the case of Z*).
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2.3.2.2 Fourier-Slice-Theorem

For the theory of tomographic reconstruction, it is essential to quantify what information a
2D-projection provides on the underlying 3D-density. This question was essentially already
answered by JOHANN RADON himself [168] in terms of the following theorem:

Theorem 2.1 (Fourier-Slice-Theorem). For Q C R3 QY < R? bounded, let f € L*(Q),
@D e L2(QC)Y and @ € S?,w € S*. Then it holds that

F (%o (fCY)) (&) = @m)' PF(fCY)(bw)  forall £€R .
F(Pe(f))(&, &) = (27T)1/2]:(f)(fxnx +&mn,)  forall  (&,&) € R2. (2.3.9)

The classical result (2.3.8) states that Radon-data %, (f?%) provides samples of the Fourier
transform F(f?) on lines through the origin {¢éw : ¢ € R} € R2% (2.3.9) generalizes this,
stating that projections of 3D-densities provide Fourier-data on planes through the origin.

2.3.2.3 Range conditions and tomographic consistency

Projections Py, (f), Pg,(f) for 8, # 6, € S? correspond to views of one and the same object
under different perspectives. As a consequence, such images are not arbitrary but correlated
in a characteristic manner. These correlations are exhaustively described by the HELGASON-
LUDWIG consistency conditions for the Radon transform [91, 134]:

Theorem 2.2 (Tomographic consistency conditions [91, 134]). For Q®Y C R? bounded, let
fCD e L2(QCDY. Then the following holds in a Lebesque “almost-everywhere” sense:

(1) Z(f3Y) is an even function: Z(fPV)(~w, —z) = Z(f?V)(w,x) for allw € S',x € R.

(2) For all ¢ € Ny, the (-th order moments of w +— [, 2'Z(f*Y)(w,z)dz are homogeneous
polynomials of order { in w.

Theorem 2.2 shows that tomographic data is highly structured and contains redundancies:
certain image-components of individual projections may be inferred from data at other tomo-
graphic angles via (2). On the other hand, a well-known consequence of (1) is that Radon-data
need not be measured for all w € S!, corresponding to a full rotation of the object in a tomo-
graphic setup, but data for half a rotation is sufficient.

The HELGASON-LUDWIG conditions can be shown to be sufficient in a suitable setting (see
e.g. [155, section I1.4]): data g(w,z) that satisfies (1) and (2) is the Radon-transform of a
function. Moreover, theorem 2.2 may be readily adapted to 3D-projectors Py via (2.3.4).

2.3.3 Full angular sampling

The relation to the Radon-transform and the exhaustive amount of theory available for the
latter motivates to consider the special case of tomographic data with full angular sampling:
projections {Z(f)}eco acquired over a densely sampled range of incident-angles © C R cov-
ering 180 degrees or more, i.e. with © modulo 7 = [0;7), provide complete Radon-data Z(f,)
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for any slice f, of f. By theorem 2.1, this is furthermore equivalent to obtaining complete
representation of the Fourier transform of the object-density F(f), which renders the analysis
of the tomographic reconstruction problem {Z(f)}sco +— f particularly simple. Therefore,
we model this important setting by an individual forward operator:

P - L2(Q) — L*([0;71) x R?); ()0, ) = Py(x). (2.3.10)

Well-definedness, continuity and other properties of &, may be readily adapted from §2.3.2.

In practice, projections may clearly only be acquired for a finite set of incident angles © =
(01,02,...,0N,,,). Provided that the 6; (modulo 7) sample the interval [0;7) in a sufficiently
uniform and dense manner, however, the true tomographic operator Pg : f +— (Py(f))oeco is
typically well-approximated by the idealization Z,;. Notably, this approximation, which is
studied in detail for example in [155, §V.1], provides the basis for tomographic reconstruction
via filtered back-projection methods, see §2.7.3.1.

In this thesis, we will often use P, in the theoretical analysis of XPCT, taking advantage
of its favorable analytical properties induced by the close relation to Z(f,) and F(f). On the
contrary, the proposed practical reconstruction algorithms do not rely on any specific angular
sampling scheme but can be applied for arbitrary tomographic projectors { % }gco, © C S%

2.4 Forward operators

The physical model from §2.1 describes the basic relation between the sought images and the
measurable data in XPCI. For analysis by the tools of inverse problems, it is convenient to
phrase this model in terms of a forward operator F' : X — Y mapping between the space of
admissible objects X and the space of possible data Y. This approach also provides a natural
language to distinguish different settings encountered in XPCI, characterized by different types
of available data and additional a priori knowledge on the imaged sample. Similarly, the
approach may be adapted to describe XPCT by combining the forward maps of XPCI with
the tomographic imaging model from §2.3.

2.4.1 Basic nonlinear forward model

The basic forward operator of XPCI is defined by (2.1.8): if h = u+i¢ denotes the phase- and
absorption-image, the induced contrast in the hologram I is modeled by the map

N i h |D(exp(=h))P —1=1-1. (2.4.1)

Notably, .4 is nonlinear due to the pointwise exponential and the squared modulus operation.
Moreover, the model is non-injective for certain choices of the object-space X > h, i.e. u and
¢ may not be unambiguously recovered from the data I, as will be seen in §2.5.1. For these
reasons, different modifications of the basic forward map .4 are introduced in the following.

2.4.2 Linearized CTF-model

If the interaction of the X-rays with imaged object is sufficiently weak, the resulting image h
will be small in a suitable sense. In such a setting, the induced contrast in the hologram I may
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be linearized to good approximation, leading to a linear forward map 7 :
I—1=4(h)=T(h)+0O(M* with T (h):=—2Re(D(h)). (2.4.2)

The linearization in (2.4.2) is commonly known as CTF-model and widely used in practical
XPCI [42, 194, 124, 96, 122, 121]. The acronym “CTF” refers to the contrast-transfer-functions
s and ¢g, plotted in fig. 2.6, that describe the phase- and absorption contrast in Fourier space:

2f 2f
=:50(&) =:co(€)

T(p+ip) = —2F ! (sin (@) F(¢) + cos (@) ]-“(u)) = S (D) +C(n).  (24.3)
— 22 N

As discussed in [194], the linear CTF-model is valid for images h = p+1i¢ with weak absorption
p < 1 and slowly varying phase, characterized by sufficiently small phase-gradients |V ¢|.

1.00
0.751
0.50
0.251
0.00
—0.25/
—0.50
—0.75/

—1.001
0

T
1€1/(2)2
Figure 2.6. Plot of the (radially symmetric) contrast-transfer-functions (CTFs) so, ¢o from (2.4.3).

According to (2.4.2) and (2.4.3), the Fourier transform of the linearized contrast is given by
a superposition of the Fourier transforms of phase- and absorption-image ¢, u, modulated by
the CTFs sy and ¢y, respectively:

F(I-1)~F(T(h)=—2s0F(¢) —2co- F(p). (2.4.4)

For once, this implies that it is generally hard to clearly attribute a feature in the data to
either ¢ or p, which raises the question of uniqueness of image reconstruction. Moreover, the
zeros of the oscillatory functions sg and ¢g, which are plotted in fig. 2.6, correspond to Fourier-
components F(¢)(&) or F(u)(€) that are underrepresented in the hologram-data I — 1 and are
thus hard to recover. In particular, note that the phase-CTF sy has a second-order zero at & = 0
(whereas ¢9(0) = 1), which means that coarse (non-holographic) features in the phase-image ¢
induce low contrast, in agreement with the observations in section 2.2.1.4.

2.4.3 Homogeneity constraints and pure phase objects

For pure substances with a fixed chemical formula (e.g. C4H1504: glucose), the refractive- and
absorption decrements d and § at a given photon-energy E are mutually proportional /0 =
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cg/s = const. For samples with a sufficiently homogeneous composition (ideally made of a single
material only), the resulting proportionality of phase- and absorption-image may be imposed
as a constraint by fixing ¢ — iy = e ¢ for a real-valued function ¢ and v = arctan(cg/s). This
is known as a homogeneity- or single-material constraint [161] and widely used in practice.

Indeed, note that the definition of homogeneity here includes in particular the special case
v =0, ie ¢ = ¢ and p = 0 identically, corresponding to the assumption of a pure phase- or
non-absorbing object. This model is an excellent approximation for specimens composed of only
light chemical elements according to the discussion in §2.1.2. In general, note that practically
relevant values of v will always be close to zero since 8 < § and thus v ~ cg/s < 1.

The practical benefit of imposing homogeneity is that only a single real-valued image ¢ has
to be recovered from the data instead of both ¢ and p, i.e. the number of unknowns is reduced.
The constraint may be incorporated into the more general forward-models. The nonlinear
forward operator becomes

No(p) = N (ie™p) = |D (exp(—ie ")) ‘2 —1 (2.4.5)

Importantly, the linearized forward model may be expressed via a single modified CTF":

Z(p) = T (ie V) = —2F ! (Cos(y) sin (g) F(p) + sin(v) cos (%) ]-"(<p))

= —2F! <sy : ]-"(<p)) with  5,(£) := sin (% + u) . (246)

The CTF s, exhibits an analogous oscillatory behavior as the functions sg, ¢y in fig. 2.6 and
its zeros, i.e. frequencies €& € R™ with s,(§) = 0, likewise correspond to Fourier-components
F(p)(&) that induce low contrast in the hologram-data .7, (¢), compare §2.4.2.

2.4.4 Multiple holograms

In order to obtain more complete information on the unknown images ¢, u, it is standard to
acquire multiple holograms at different distances between sample and detector [42, 212, 122,
121]. Settings with more than a single hologram may be modeled by stacking any of the above
forward maps to a vector-valued operator in some sense: if I, I, ..., I, denote the holograms at
the considered Fresnel numbers {1, f2, ..., f,and F0) : b [,—1 with F € {4, A, .7 ,.%,} the
associated forward maps (linear or nonlinear, incorporating homogeneity or not), the relation
between the unknown image h and the total data is described by the forward map

FO(h) I —1
Fluafe) s : — : , (2.4.7)
FU(h) I —1

The benefit of acquiring multiple holograms may be most easily seen for the case of a CTF-
model with homogeneity constraint F' = .%, (cf. §2.4.3): Missing Fourier-components F(¢)(§)
in the first hologram yy(h)(go) =I; — 1 due to zeros of the corresponding CTF, s,(,l)(E) ~ 0
may be completed via a second one y,,(h)(gp) = I, — 1 since s” has different zeros from s\" if

f1 # f2 so that |s£2)(£)\ may be sufficiently large. Analogously, frequencies & € R™ for which
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both CTFs are small, 51(,1)(5) ~ (0 and 35,2)(5) ~ 0, may be compensated by a third hologram
Yl,(f?’)(cp) = I3 — 1 with |s,(,3)(£)| large and so on. This idea can be formalized by systematically
choosing fy, fo, ... such that the maxima and minima of the |5,(,'i) optimally compensate each
other [212]. Notably, however, the problem of low phase contrast at low frequencies may
not be resolved via such a compensation since s,(/')(()) = sin(v) < 1 holds independently of f;
(recall from §2.4.3 that v < 1 in practice), so that Fourier-components F(¢)(&) for low spatial
frequencies £ =~ 0 are equally underrepresented in all holograms.

2.4.5 Tomographic models for XPCT

As detailed in §2.3, the phase- and absorption images ¢y = k% (0) and pey = kP(B)
yield projections of the 3D-decrements 6 and S (scaled by the wavenumber k), respectively,

forward model for XPCT is obtained:
Foor: f = (F(26(f)gee = lo — 1)gee  with  f=kB+ikd, © C S (2.4.8)

Iy denotes the predicted hologram(s) (one or several) for the tomographic incident direction 6.
The special case of full angular sampling (compare §2.3.3) is modeled by the operator

FM . f s FOO(0(F)  with  FOD(p)(0,-) == F(p(0,)). (2.4.9)

2.4.6 Domains and constraints

For a complete mathematical description of XPCI and XPCT, it is necessary to specify suitable
object- and data-spaces X and Y for the forward maps F': X D A — Y of §2.4.1 to §2.4.5.
2.4.6.1 General object- and data-spaces

Object space: In general, we will consider objects from the Hilbert-space of square-integrable
functions on R™ with m € {2,3},i.e. p+ip € Aor d +if € A with

ACL*R™):={f:R™" = C:||fll72 = [gn|f(z)]?de < oo} (2.4.10)

Data space: All forward maps F € {4, .4;,.7,.%,} have been defined such that they map
onto the contrast I — 1 with respect to the constant background-intensity 1. Other than the
hologram I itself, the contrast I —1 induced by L?-images is also in L?, as will be seen in §2.4.7.
Hence, the natural data-space for the case of a single hologram is Y := L?(R™).

For forward maps with more than one hologram I, ..., I, as considered in §2.4.4 and §2.4.5,
the natural data-space is given by the Cartesian product Y := L2(R™)* > (I, — 1,...,I, — 1).

2.4.6.2 Homogeneity constraints

Restrictions to homogeneous objects (including the special case of pure phase objects) may
be imposed by considering any of the forward maps F € {4;,.7,} from §2.4.3 on a set of
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real-valued functions:

AcC I*(R™R)={f:R™ = R: f € L*(R™)}. (2.4.11)

2.4.6.3 Support constraints

In practice, the approximate size of the imaged sample will typically be known. Mathematically,
this type of a priori knowledge translates to a bound on the support of the sample-induced
decrements ¢ and f of the refractive index (overbar denotes set-closure):

supp(f) :={x e R?: f(x) #0} C Q (2.4.12)

for f € {9, 8} and some bounded support-domain 2 C R3. This also restricts the support of
the resulting projection-images, supp(¢),supp(p) C Q9 for some bounded Q®% c R2. Such
support constraints may be imposed by restricting the set of admissible objects to

ACLAQ) = {f € L*(R™) : supp(f) C Q. (2.4.13)

2.4.6.4 Non-negativity constraints

As noted in §2.1.2, 8 and § are always non-negative for physical reasons. By definition, the
same also holds true for the phase- and absorption-image ¢ and u. Hence, it makes sense to
restrict to object-functions with non-negative real- and imaginary parts:

Acx, ={f:R" — C:Re(f(x)) >0 and Im(f(x)) >0 for all x € R™}. (2.4.14)

Linear and nonlinear constraints: Non-negativity constraints differ fundamentally from
homogeneity- and support constraints. The latter restrict the object-space to closed (R-)linear
subspaces L*(R™ R) C L*(R™) and L*(Q2) C L*(R™), respectively, retaining the principal
Hilbert-space geometry of L*(R™) (when regarded as a real Hilbert-space). On the contrary,
non-negativity is a nonlinear constraint by nature — the associated sets #, N L*(Q(,R)) are
no vector-spaces but have the geometry of a closed convex cone.

As a consequence, non-negativity constraints are more complicated to analyze theoretically
and also more difficult to enforce in practice. In particular, imposing non-negativity always
requires a nonlinear reconstruction method — even when a linear forward model is assumed.

2.4.7 Well-definedness, continuity and differentiability

In the following, we show that the different forward maps are well-defined and continuous on
the object- and data-spaces from §2.4.6. Moreover, it will be shown that the nonlinear maps
are differentiable in the sense that they admit local linear approximations. These properties
are important to devise and analyze algorithms for the ultimate goal of inverting these maps.

2.4.7.1 Boundedness of the basic linearized forward maps

For the linearized forward maps .7 and ., from §2.4.2 and §2.4.3, continuity as operators on
L*(R™) is easy to show, owing to their close relation to the Fresnel propagator D:
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Theorem 2.3 (Boundedness of the linearized forward-operators).
o 7 : L*(R™) — L*(R™) is a continuous R-linear operator with |7 || = 2

o 7, L*(R™) — L*(R™) is a continuous linear operator with ||.%,|| = 2

Proof. .7 : h — —2Re(D(h)) is R-linear (but not C-linear!) by linearity of D and R-linearity of
the pointwise real part Re(-). For continuity, we note that |Re(z)| < |z| for all z € C. Together
with unitarity of D : L2(R™) — L*(R™) (see §2.2.2), this implies that

17 (W) = [2Re(D()|| < 2[D()Il =2[[A]|  for all  h € L*(R™), (2.4.15)

where the bound is attained for any & of the form h = D~'(h) with h € L*(R™, R) real-valued.
Thus, 7 : L*(R™) — L?*(R™) is bounded, i.e. continuous, with ||.7|| = 2.
Linearity of ., follows from its Fourier-multiplier form, ., : h — F~!(m-F(h)) with

factor m = —2s,,. Moreover, boundedness and continuity of m : R™ — C implies boundedness
of &, : L*(R™) — L*(R™) with ||.%, || = maxgerm [m(€)| = 2 maxgern |5,(€)] = 2. ]

2.4.7.2 Well-definedness and continuity of the nonlinear forward map

By theorem 2.3, it is very natural to study the linearized forward maps .7 and .#, as operators
in L?(R™). As these maps arise as limiting cases of the general nonlinear model A" : h —
|D(exp(—h))|*> — 1, it is logical to aim for proving that also the latter is well-defined and
continuous as a map on suitable L2-spaces. This will be achieved in the present section, followed
by a proof of Fréchet-differentiability of A" in §2.4.7.3. Yet, the analysis turns out to be much
more involved than for the linearized case. Indeed, it seems that a rigorous treatment of
nonlinear XPCI on L%-spaces is to date not available in the literature: in [140], well-definedness
and differentiability of .4 is only shown on L™ and the analysis of .4 in L? in [49] is for once
limited to settings without absorption and moreover contains a wrong proof of differentiability,
as detailed further below. Therefore, a thorough analysis is given in the following.

The nonlinear operations exp and |-|? require some (intermediate) work on general LP-spaces:

LPR™) ={f:R™ = C:||fl[}, == [gml|fIPdz <00} for 1<p< oo,
L®R™) ={f:R™ = C: ||f|lp= := esssup germ|f(x)| < o0} (2.4.16)
where esssup denotes the supremum of a function up to modifications on sets of zero Lebesgue-

measure. We define L?(Q(,R)) for Q C R™ analogously to the L?-case, compare §2.4.6.

For further analysis, we cast the nonlinear forward operator to the form

A (h) = |D(1) + D(exp(—h) — 1)]* = 1 = 2Re (D(exp(—h) — 1)) + |D(exp(—h) — 1)|?
=—7(o(h)) +|D(o(h))]* with o(h) := exp(—h) — 1. (2.4.17)
Studying o instead of exp(—-) has the advantage that o(h)(x) = 0 whenever h(x) = 0 (whereas
exp(0) = 1), which implies that supp(o(h)) C supp(h) for any h. Yet, the problem remains

that the involved nonlinear operations o and |- |? in (2.4.17) — as opposed to the linear maps 7
and D — are not well-defined as maps L?*(R™) — L*(R™) but only on very specific LP-spaces:
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e 0: LP(Q) — L) for @ C R™ may only be well-defined (and continuous) if p = co.
o |-|?: LP(R™) — LY(R™(,R)) is well-defined (and continuous) if and only if p = 2q.

In the following, we outline how these subtleties may be circumvented.

The pointwise exponential: The fact that o is well-defined only as a map L*>* — L7 is due
to the super-algebraic growth of the pointwise exponential h +— exp(—h) for h with negative
real part, which infinitely amplifies singularities of the kind Re(h(x)) — —oo. In the context
of XPCI however, function-values Re(h(x)) < 0 correspond to the hypothetical case of negative
absorption 1 = Re(h) < 0. In other words, the undesirable exponential growth is an artifact
of the mathematical model without physical relevance! This justifies to fix the problem by
adjusting the forward model in either of the following ways:

(1) Restrict to the physically relevant part of the domain of definition:
L2o(2) := {f € LP(Q2) : Re(f(=x)) > 0 for almost all x € R™}. (2.4.18)

(2) Modify the forward operator .4, replacing o by a map ¢ with more favorable analytical
properties that satisfies 6(h) = o(h) for all h € L£(€2).

Both the analytical difficulties induced by pointwise exponentials and the above solutions have
been already noted for related inverse problems in transmission imaging [53].

For now, we pursue idea (1), coming back to approach (2) in §2.4.7.3. On the set C5( :=
{z € C: Re(z) > 0}, we have the properties |1 —exp(—z)| < |z| and | exp(—z1) — exp(—22)| <
|21 — 22| for all z, 21, 20 € Cso. By applying these relations pointwise, we obtain

lo(h)l[z» = 1T = exp(=h)[[z» < [|h]Lr (2.4.19a)
lo(h1) = o(ha)llr = || exp(=hs) — exp(=h1)l[z» < [lh1 = hall s (2.4.19b)

for all h, hy, hy € LXy(R™) and 1 < p < oo. Since supp(o(h)) C supp(h) holds for all h, the
derived bounds show well-definedness (2.4.19a) and (Lipschitz-)continuity (2.4.19b) of

0: L (R™) — LP(R™) forany QCR™ 1<p<oo. (2.4.20)

The squared modulus: The problem concerning the admissible domains for f + |f|? can
be resolved by restricting to compactly supported functions, as explained in the following.

In order for a term of the form |D(f)|* as in (2.4.17) to be in L*(R™), it is necessary and
sufficient that D(f) € L*(R™). While the Fresnel propagator D has so far only been considered
as a unitary map L*(R™) — L*(R™), it may also be shown that D : L'(R™) — L*(R™) is well-
defined and bounded, using its alternate form (2.2.10) and continuity of F : L}(R™) — L*°(R™).
By combining the boundedness on L? and L! via the Riesz-Thorin interpolation theorem, we
find more generally that

D:LPR™) — LYR™) forall 1<p<2 g=p/(p—1) (2.4.21)

is well-defined and bounded. In particular, we have D(f) € L*(R™) and thus |D(f)|> € L*(R™)
for all f € LY3(R™). Now, for f € L?*(Q) supported within a bounded domain Q C R™, it
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may be used that L(2) C LP(2) with continuous embedding for all 1 < p < ¢ < oo, which
implies that f € L*3(R™) and hence |D(f)|> € L>(R™). More generally, the argument shows
well-definedness and continuity of the Fresnel-intensity-operator

Ip: LP(Q) — LYR™); f+— |D(f)? (2.4.22)
for any bounded 2 C R™ and all p < 2, g > %p/(p — 1), i.e. in particular for p = ¢ = 2.

By combining the results for the different sub-operators in (2.4.17), we may finally prove
well-definedness and continuity of .A4":

Theorem 2.4 (Well-definedness and continuity of the nonlinear forward map). For Q@ C R™
bounded, A : L2,(Q) = L*(R™); h— |D(exp(—h))|> — 1 is well-defined and continuous.

Proof. According to (2.4.17), we have A4 = —F oo+ Ip 00, i.e. A is a composition of the
continuous maps o : L2(Q) — L*(Q), 7 : L*(Q) — L*(R™) and Ip : L*(Q) — L*(R™). O

2.4.7.3 Fréchet-differentiability

We aim to prove (Fréchet-)differentiability of 4 amap F': X DU — Y (X,Y: real Banach
spaces, U C X open) is called (Fréchet-)differentiable (at fy € U) if there exists a bounded
linear operator F'[fy] : X — Y — the (Fréchet-)derivative — such that

lim | F'(fo+h) = F(fo) = F'[folhlly
fo+heU,h—0 || x

— 0, (2.4.23)

Intuitively, this means that F' is locally well-described by its first-order Taylor approximation
F(f) = F(fo) + F'[fo](f — fo) for f = fy, i.e. by a local linearization. This property is crucial
as it provides the mathematical basis for nonlinear image reconstruction via gradient-descent-
or Newton-type-methods, see §2.7.1. Details on mathematical properties of Fréchet-derivatives
can be found in standard monographs on functional analysis, see e.g. [213, §4]. Here, we will
only need that the sum- and chain-rule hold as expected: if ,G: X DU - Y and H:V — 7
with F'(U) C V are Fréchet-differentiable, then so are F'4+ G and H o F' with

(F+ Gl =Ffl1+Gf] and  (HoFY[f] = H[F(f)lo F'[f], feU (2424

The forward operator .4 is a composition of the linear map D and the smooth pointwise
nonlinear functions exp and | - |?, so that some form of differentiability is expected to hold.
Indeed, it has been shown in [139] that 4" : L>(Q) — L*(R™) is Fréchet-differentiable for
bounded 2 C R™. Here, we aim extend this result to a favorable pure L-setting A" : L2,(Q2) —
L*(R™), for which continuity has been proven in theorem 2.4. Yet, in addition to the subtleties
dealt with in §2.4.7.2, new technical problems arise:

e Fréchet-differentiability is a local property that is only well-defined for points within open
sets, whereas L2,(Q) C L?(Q) has empty interior, i.e. the only open set U C L2,(Q)
(w.r.t. the topology of L?(Q)) is U = ). A statement like “4 : L2,(Q) — L*(R™) is
differentiable” thus would not make any sense. A work-around is to prove differentiability
for extensions A : L*(Q) — L*(R™) such that A4 (h) = A (h) for all h € L%,(Q). This

work-around follows idea (2) from §2.4.7.2 to fix the pointwise exponential.
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e 0:h+ exp(—h) — 1 may not be extended to a Fréchet-differentiable operator on L?(2):
by [53, Example A.5], there exists no function exp : C — C with exp(—z) = exp(—=z) for
all z € Cx such that the induced extension 6 : L*(Q) — L*(Q);h — exp(—h) — 1 of o
is differentiable. Yet, there do exist such extensions that are continuous from L”(Q2) to
LP(Q2) and differentiable as maps 6 : LP(2) — L?(§2) for all 1 < ¢ < p < oo and 2 C R™,
according to [53, Proposition 3.9].%

Notably, difficulties in proving differentiability of .4 only arise for o, the other operators
entering in (2.4.17) are well-behaved: |2+ h|*—2Re(z-h)—|z|? = |h?| holds true for all z, h € C,
which implies that |- | : L?P(R™) — LP(R™) is differentiable for all 1 < p < co. Likewise, the
linear maps D and .7 are differentiable when bounded. By analogous argument as in proving
continuity (see §2.4.7.2), this implies differentiability of Zp : LP(Q) — LIY(R™); f — |D(f)|?
for any bounded €2 C R™ and all p < 2, ¢ > %p/(p — 1). The derivative is given by

T4 f]h = 2Re <D(f) : D(h)) forall  f,h e LP(Q). (2.4.25)
Combining the differentiability-results for the operators o, Zp, .7 yields the following theorem:

Theorem 2.5 (Fréchet-differentiability of the nonlinear forward map). Let Q@ C R™ be bounded.
Then there exists a continuous operator A : L*(Q) — L*(R™) such that A (h) = A (h) for
all h € L2,(Q). Furthermore, A is Fréchet-differentiable both as a map L*(Q) — LY(R™) and
L1(Q) — L*(R™) for any q > 2. For f € L2,(), the derivative is given by

N'[f]h = —2Re <D(exp(—f)) - D(exp(—f) - h)) forall  he L3(SQ). (2.4.26)

Proof. We take an extension 0 : h — exXp(—h) — 1 of the kind introduced above and set
N = —7 06+1Ipoo. Since 6(h) = o(h) if Re(h) > 0 almost everywhere, A is an extension of
N ie. A (h) = A (h) for all h € L2,(Q2). Moreover, continuity of 6 : L*(Q) — L*(Q) implies
that 4 : L2(Q) — L2(R™) is continuous by an analogous argument as in theorem 2.4.

Now let ¢ > 2. Then 6 : L?(Q) — L*(Q) is differentiable and so are .7 : L*(Q) — L*(R™)
and Zp : L*(Q) — L*(R™), which shows differentiability of 4" : L9(Q) — L*(R™). Likewise, 0
is differentiable as a map L*(Q2) — LP(Q) for p := q/(¢ — 1) < 2 and Zp, 7 are differentiable
from LP(Q2) to LY(R™) (for .7, this follows from boundedness of D : LP(R™) — LI(R™)), which
implies differentiability of 4" : L2(Q) — L4(R™).

The explicit formula (2.4.26) for .4 follows by combining the derivatives for the different
sub-operators via the chain-rule (2.4.24), using (2.4.25) and that ¢'[f]h = exp(—f) - h must
hold true for f € L2,(), since 6 extends o : h — exp(—h) — 1 in a differentiable manner. [

Sadly, theorem 2.5 only shows .4 to be almost Fréchet-differentiable from L? to L?. This
remaining flaw of the result may — once again — be fixed by reducing the nonlinear forward
model to the physically relevant setting: if the operator 4" is modified to incorporate the fact
that experimental hologram-data may not be acquired in the whole space R™, but only within
a bounded domain K C R™ covered by the detector, differentiability is established on L?:

$This is the point where the differentiability-proof in [49] is wrong: the theorems in [53] are incorrectly
cited to conclude that E : L%(2,R) — L>*(Q); u + exp(—iu) is differentiable. Like the extensions 6 of h
exp(—h) — 1 considered here, however, E is only differentiable as a map LP(Q,R) — L(Q2) for 1 < ¢ < p < 0.
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Corollary 2.6 (Fréchet-differentiability on L?). Within the setting of theorem 2.5, let K C R™
be bounded. Then Ny : L*(Q) — L*(K); h— A (h)|k is Fréchet-differentiable.

Proof. By theorem 2.5, A is differentiable as a map L*(Q) — LY(K) for ¢ > 2. Hence, the
claim follows by continuity of the embedding ¢ : LY(K) — L?(K) for bounded K. O

The bottom-line: While quite a few mathematical technicalities had to be addressed in order
to describe the nonlinear forward model of XPCI as a differentiable operator on L?-spaces, we
emphasize that our adjustments of the setting (domain-restrictions, operator-extensions, etc.)
do not affect the modeled physics. In the following, we will therefore omit the involved technical
details and refer to the results in a simplified form:

For all practical purposes, the nonlinear forward map of XPCI A : L*(Q2) — L*(R™)
s well-defined, continuous and Fréchet-differentiable.

2.4.7.4 Extension to homogeneity constraints, multiple holograms and XPCT

The basic results on well-definedness and regularity of the basic forward operators may be
readily extended to the settings considered in §2.4.3 to §2.4.5. Details are given below.

Homogeneity constraints: According to §2.4.3, the transition to homogeneous objects cor-
responds to composing the forward map .4 with the linear-bounded operator ¢, : L*(Q, R) —
L3(Q); ¢ = ie . Thus, well-definedness, continuity and Fréchet-differentiability carry over
to A, =N ou,: L*(Q,R) — L*(R™) with derivative A/[f]h = A"[1,(f)]t.(h).

Multiple holograms: As seen in §2.4.4, settings with multiple holograms are modeled by
forward maps Fv-fe) o f s (FRI(F) . FO(f)) with F € {A, A, 7,5} : L*(Q, (R)) —
L*(R™). If F is linear-bounded or nonlinear, continuous and Fréchet-differentiable, then the

(F 1) (£ = ((FO) [f]h...... (F99)' [£]R). (2.4.27)

composed with parallel-beam projectors Pg. For any 8 € S%, QO C R? bounded, Qg :=
supp(P(1q)) C R? is also bounded and Sy : L*(Q,K) — L?*(Qp,K) is well-defined and
continuous for K € {C,R}. Thus, if F: L?(Qg,K) — L*(R?)* if linear-bounded or continuous
and Fréchet-differentiable, so is F'o Py : L*(Q,K) — L?(R?)" and, by the chain-rule (2.4.24),

(F o P) [fIh = F'[Z(f)]Po(h). (2.4.28)

Analogously as for multiple holograms, this result extends to Fpor : L2(Q, K) — L2(IR?)%Neroi;
= (F(Z(f)))gee, Where Npo; € N the number of elements of © C S2.

Similarly, continuity and differentiability may also be shown for XPCT-models assuming
full angular sampling, i.e. for Fi : L2(Q) — L2([0;7) x R?) as defined by (2.4.9).
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2.5 Inverse problems and ill-posedness

In the preceding section, we have shown that image-formation in XPCI and XPCT may be
described mathematically by forward maps F': X D A — Y (between L%-spaces X,Y’) and that
these maps are analytically well-behaved in the sense that F' is continuous (even differentiable).
Essentially, it has thus been shown that the forward problems of computing holograms from
given images (i, ¢ or §, 5 are well-posed in the sense of HADAMARD [82], see definition 1.1:

(a) A solution exists
(b) The solution is unique

(c¢) The solution depends continuously on the data

Yet, of greater practical interest are the associated inverse problems of image-reconstruction,
i.e. the problem of inverting F'. In the present section, we will see that the inverse problems 2.1
and 2.2 of XPCI and XPCT are indeed ill-posed in general: depending on the specific setting,
the unknown images need not be uniquely determined by the hologram-data so that condition
(b) may be violated, as detailed in §2.5.1. Furthermore, even in settings where uniqueness
holds, criterion (¢) may fail to be satisfied, which implies that image reconstruction may be
arbitrarily susceptible to data-errors in principle, as will be discussed in §2.5.2.

In general, uniqueness and ill-posedness of an inverse problem depend strongly on details
of the associated forward map F : X D A — Y. In particular, the following aspects matter:

(1) Data-richness: the more information is provided by the measurements, the more likely
they permit unique and stable reconstruction. For XPCI, it it is thus highly relevant how
many holograms are acquired at different Fresnel numbers fi, ..., (see §2.4.4) and for
what set of tomographic incident directions © in the XPCT-case.

(2) A priori knowledge: the smaller the constraint-set A, the easier it is to distinguish any
two images hq, hy € A with hy # hse based on the measured data.

Furthermore, it is relevant whether the fully nonlinear XPCI-model F' € {_4", .4,,} is considered
or whether the linearization F' € {,.7,} is assumed: for example, it may happen that
uniqueness holds for the linearized but not for the nonlinear model.

All subsequent results on uniqueness and ill-posedness of XPCI and XPCT that are given
without a reference are considered common knowledge — no claim of originality is made.
2.5.1 Uniqueness

We review the uniqueness theory of XPCI. Extensions to XPCT will be discussed in §2.5.1.4.
Uniqueness of an inverse problem is equivalent to injectivity of the associated forward map F'.

2.5.1.1 Sources of non-uniqueness

The phase-wrapping ambiguity: Upon considering the nonlinear forward map 4 (h) =
|D(exp(—h))|* — 1, an obvious and rather trivial source of non-uniqueness can be seen to be
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the periodicity of the exponential: if hy = p11 + iy and hy = ps + igo differ at each point only
by multiples of 27 in the phase-images ¢1, ¢2, their exponentials are equal,

exp(—hy) = exp(—=hy) < hi(x) — he(x) € 2miZ  for almost all @ € R™.  (2.5.1)

The ambiguity in (2.5.1) describes the well-known effect of phase-wrapping. In XPCI, it implies
that the phase-image ¢ may in general only be recovered up to pointwise increments by multiples
of 2. While one might argue that this is no problem because any phase is only well-defined
modulo 27 anyway, phase-wrapped (i.e. wrongly phased) projections ¢g = kP () translate to
severe systematic distortions in the refractive decrement ¢ in XPCT — while the latter quantity
actually does have a sound physical meaning beyond any 27-periodicity!

In practice, however, the phase-wrapping ambiguity typically has a minor effect on XPCI.
Firstly, the imaged samples are often sufficiently small and weakly interacting such that the
induced phase-images satisfy 0 < ¢9) < 27 (for all incident directions ). Secondly, real-world
images ¢ are typically smooth to a certain degree such that jumps of ¢(x;) by more than +
between adjacent sampling points «; (pixels) can be precluded. If such a smoothness-condition
is known to hold, the ambiguity is resolved up to a global additive constant in 27Z.

The phase-problem: A second and more severe source of non-uniqueness in XPCI is the
phase-problem: the phase of the propagated wave-field oc D(exp(—h)) is lost in the detection-
process as only the squared modulus |D(exp(—h))|* is measured. In the linearized forward
map 7 : h — —2Re(D(h)), the phase-problem manifests as the restriction to the real part
of the Fresnel-data D(h), which likewise destroys half the information in some sense. Image
reconstruction in XPCI implicitly requires to recover the missing phase (or imaginary part).
Uniqueness of such phase retrieval problems has been extensively studied in the literature,
especially for the related problem where D is replaced by a Fourier transform F (the far-field
limit, §2.2.2.2), see [149, 118, 66, 182, 136] for reviews. The uniqueness results presented in the
following are based on the holographic nature of phase retrieval in XPCI, compare §2.2.1.5.

2.5.1.2 Examples of uniqueness and non-uniqueness in XPCI

General non-uniqueness for a single hologram: The most challenging XPCl-setting is
arguably image reconstruction from a single hologram without further constraints, i.e. retrieval
of both phase- and absorption-image ¢ and p without assuming homogeneity. Inverse prob-
lem 2.1 is non-unique in this setting as can be easily seen for the linearized model:

Theorem 2.7 (General non-uniqueness of linearized XPCI). . : L*(R™) — L?*(R™) is not
injective, its null-space being kern(7) := {h € L*(R™) : (h) =0} =iD~! (L*(R™,R)).

Note that the non-uniqueness is severe: kern(.7) contains half of the whole space L?(R™) in
the sense of the orthogonal decomposition L?(R™) = D~ (L3(R™,R)) @ iD~! (L*(R™, R)).

Non-uniqueness for the nonlinear model is technically more challenging to show. Examples
of provably non-unique structures are given by so-called phase-vortices [157].

Theorem 2.8 (General non-uniqueness of nonlinear XPCI (phase-vortex example [157])). Let
hy :R? - C; & — a(|z|) + iv arctany(x), where v € N, a : R5g — R is some smooth function
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and arctany : R*\ {0} — [0;27); (rcos(¢),rsin(p)) — ¢ assigns the angle enclosed by a vector
in R? with the x1-axis. Then

ID(exp(—hy)))* = [D(exp(=h_))]>  but hy#h_  almost everywhere. (2.5.2)

Note that the example does not show non-uniqueness of A" : LQZO(Q) — R™, as the phase-
images ¢+ = Im(h4) from theorem 2.8 are not compactly supported, indeed hy ¢ L*(R™).

Uniqueness under homogeneity constraints and for two holograms: Based on the
insights from theorems 2.7 and 2.8, it is commonly argued that at least two holograms and/or
a homogeneity constraint are necessary for faithful image reconstruction in XPCI, compare
§2.4.3 and §2.4.4. Indeed, uniqueness of the linearized model is established in these settings:

Theorem 2.9 (Uniqueness of linearized XPCI for homogeneity constraints or two holograms).
o 7, L*(R™) — L*(R™) is injective for any v € R (and any Fresnel number f)

o TR) L2(R™) — L2(R™)? is injective for any Fresnel numbers §1 # fa

Proof. Let ¢ € L*(R™) such that .,(p) = 0. Then F (S, (p)) = s, - F(p) = 0. Thus,
F(p)(€) = 0 for almost all & € R™ for which s,(€) # 0. As the CTF s, is non-zero almost
everywhere in R™, this implies that F(¢) = 0 and hence ¢ = 0 in an L*sense. This proves
that kern(.7,) = {O} i.e. that .7, is injective.

To prove injectivity of .7 (172) we write the contrast in Fourier space via a CTF-matriz:

)) 243 (f1.f2) . }"(Im(h)(ﬁ))
£>>) —251 ) (f(Re<h><s>>>

(
(
i) o (SE/(2R)) cos(€/(25)
STIE) = (Sin(£2/(2f2)> cos(€2/(2] >>) (2:53)

According to (2.5.3), having F (.7 012)(h)) (€) = 0 but F(h)(€) # 0 requires the determinant
of SU1f2)(¢) € R?*2 to vanish. As det(SU2)(£)) = sin (€2/(2f1) — €/(2f2)) is non-zero for
almost all £ € R™, injectivity of .72 follows by an analogous argument as for .%,,. m

(f1)
F (g(h,fz)(h)) &) = <§ EZ(L)EZ%

The results in theorem 2.9 have been extended to the nonlinear XPCI-model in [108], yet only
under the additional assumption of compactly supported images. As will be seen in §2.5.1.3,
support constraints indeed guarantee uniqueness already under much weaker assumptions.

2.5.1.3 General uniqueness of XPCI under support constraints

It is illustrative to write the general XPCI forward maps in a form such that the holographic-
and non-holographic components of the contrast may be identified, compare §2.2.1.5:

F(h) = —2Re(h) = —D(0) — () with  0:=h (2.5.4a)
N (h) = =T (0) + |D(o)|” = —D(0o) + |D(0)]> with o0:=1—exp(—h), (2.5.4b)
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As D is invertible, o can thus be uniquely recovered from XPCI-data if the superposition of

D(0), D(0) and |D(0)|* (in the nonlinear case) on the r.h.s. of (2.5.4) may be disentangled.

Now assume that the image h : R™ — C has compact support. Then the same holds true
for o € {h,1 —exp(—h)}. From the alternate form of the Fresnel propagator (2.2.10) and the
Paley-Wiener theorem, it follows that D(o) is an entire (analytic) function, i.e. g; : & — D(0)(&)
has a unique extension to C™ with an everywhere convergent Taylor-series. The same holds
true for go := D(0) and g3 := |D(0)|>. The principal result of [140] is that the entire functions
g1, g2, 93 indeed behave so differently in C™ that they may be distinguished — solely based on
the assumption of a compact support of o (or h). This implies that D(0) and thus o may be
uniquely reconstructed from g € {7 (h), .4 (h)}. In the linear setting, this means that h = o
is uniquely determined. For the nonlinear model g = A4 (h), 0 = 1 — exp(—h) determines h up

to the phase-wrapping ambiguity discussed in §2.5.1.1.

Analyticity of D(0) and hence of the data g for compactly supported images h has another
surprising and counter-intuitive consequence: if the XPCI-data g is known on an arbitrary open
set U C R™, then it may be completed gy — ¢ in a unique manner by analytic continuation.
Together with the insights above, this enables a surprisingly strong uniqueness-result [140]:

Theorem 2.10 (Uniqueness of XPCI under support constraints [140]). Let  C R™ be bounded
and let K C R™ contain an open set. Then the following holds true:

e Uniqueness of linearized XPCIL: Jy : L*(Q) — L*(R™); h — T (h)|x is injective

e Essential uniqueness of nonlinear XPCI: A : L?(Q) — L?*(R™); h — A (h)|x is injective
up to phase-wrapping: if A (hy)|x = A (ha)|x for hy, hy € L*(2), then

hi(x) — ho(x) € 2mZ  for almost all x € R™ (2.5.5)

The general statement in theorem 2.10 trivially carries over to settings with multiple holograms
and/or additional constraints. The possible restriction of the data to XK' C R™ implies that
— theoretically — holograms recorded by an arbitrarily small detector are sufficient for unique
image reconstruction. In chapter 4, this will be seen to be merely a mathematical curiosity.

2.5.1.4 Extension to XPCT

Image reconstruction in XPCT (inverse problem 2.2) amounts to a combination of XPCI and
tomographic inversion. Accordingly, uniqueness holds if both steps are uniquely solvable, i.e. if
the following conditions hold:

(1) For each incident direction € O, the hologram-data I3™ uniquely determines the
projection-image jg + ipg = Po(f).

(2) The projections {Z(f)}eco uniquely determine the 3D-density f.

Uniqueness results for XPCT may thus be readily obtained by combining the well-established
uniqueness-theory for (parallel-beam-) computed tomography (see e.g. [155, §11.3, §VI.2]) with
the results from §2.5.1.2 and §2.5.1.3. In particular, theorem 2.10 implies that the inverse
problem of XPCT is uniquely solvable for compactly supported objects in a very general setting
(hologram-data {I$™|x }eco for any K C R? with non-empty interior and any set © C S? that
contains an open interval of tomographic incident angles), see [140] for details.
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2.5.2 Ill-posedness despite uniqueness
2.5.2.1 Data-errors and their origin

According to the theorems in §2.5.1, in particular theorem 2.10, image reconstruction in XPCI
and XPCT is unique under extremely mild assumptions. However, uniqueness only guarantees
that image reconstruction is feasible in hypothetical settings with ezact data, whereas a large
number of effects give rise to data-errors in real-world imaging:

e Poisson- and other noise €,4e: As discussed in §2.1.5.4, the discrete number of detected
photons gives rise to inevitable noise in the measured holograms. Additionally, noise may
be induced by the detecting devices or by (cosmic) background radiation, for example.

o Model errors €moqe: The image-formation model XPCI is based on several approxima-
tions, so that that the true relation F*"® between the sought images f € {¢,pu,d, 5}
and the data g may differ from the assumed model F': f + g. This gives rise to errors
€model = F™(f)—F(f) in the data g. Assuming a linear forward map (see §2.4.2) instead
of the true nonlinear one induces such model errors. The same is true for all effects from
§2.1.5, where particularly large errors may arise from flat-field correction (§2.1.5.2).

o Discretization errors €gser: Even if exact hologram-data g and a perfect forward model F
was available, the true image f could still not be reconstructed because it lives (according
to our model) in an infinite-dimensional function space. As detailed in §2.6, only a
discretely sampled representation f € RY may be computed by numerical reconstruction
algorithms, based on a discretized model Fyir : f — ¢. The transition to a discretized
model induces additional errors €giser = F'(f) — Fuiser (f)

The total data-error is a superposition of the above contributions (and possibly others):

gobs _ gideal Te with € = €poise T €model T+ Ediser- (256)

In particular, we conclude that data-errors are inevitable in real-world settings.

2.5.2.2 Stability and implications of ill-posedness

By the discussion in §2.5.2.1, stability to data-errors is required in order to yields satisfactory
results in practice: if the data-errors € in (2.5.6) are sufficiently small, the reconstructed images
should ideally be close to the ground truth. Yet, even if a forward map F : X D A — Y is
injective (uniqueness) and thus invertible, its inverse F~! : F(A) — A may be discontinuous. In
this case, there is no guarantee that reconstructions from perturbed data I°* = F(f)+ € come
anywhere close to the sought image f: due to the lack of continuity, the reconstruction-error
|f — F7Y(F(f) + €)||x may be large even for arbitrarily small errors € in the data. Despite
uniqueness, the problem of inverting F' is then ill-posed in the sense of definition 1.1.

On the contrary, if well-posedness holds, i.e. existence and continuity of the inverse F~1,
then at least convergence F~!(F(f) + €) — f for vanishing data-errors € — 0 is guaranteed.
Hence, the impact of data-errors on the reconstruction is limited. Yet, it should be emphasized
that the distinction between well- and ill-posed problems is purely qualitative: well-posedness
alone does not bound the reconstruction-error in terms of €. Obtaining such error-estimates
necessitates a quantitative stability analysis as will be carried out in chapter 3.
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2.5.2.3 Ill-posedness of XPCI beyond non-uniqueness

A thorough analysis of ill-posedness of XPCI, in particular for nonlinear forward maps, is
beyond the scope here. Rather, we restrict to demonstrating that ill-posedness (beyond non-
uniqueness) plays a role in general. We show this for simplest unique setting, given by a linear
reconstruction of a homogeneous object from a single hologram (compare theorem 2.9):

Theorem 2.11 (General ill-posedness of linearized XPCI under homogeneity constraints). For
any Fresnel number f # 0 and v € R, the inverse of %, : L*(R™) — L*(R™) is discontinuous,
1.e. the associated inverse problem is ill-posed.

Proof. By theorem 2.9, ., : L*(R™) — L*(R™) is injective and hence invertible. As .7, (p) =
F1(s, - F(p)) for all p € L*(R™), the inverse is necessarily given by

S SLRT)) - LR g F((1s) - Flg)). (2.5.7)

Due to zeros of the CTF s,, the inverse factor 1/s, (that is well-defined almost everywhere) is
unbounded: for any € > 0, the domains €2, := {£ € R™ : |s,(€)| < €} have non-zero (indeed
infinite) Lebesgue-measure and it holds that |1/s,(&)] > 7! for all £ € (..

Hence, there exist functions 0 # ¢. € L*(R™) whose Fourier transforms are e-concentrated
around the CTF-zeros, i.e. supp(F(p.)) C ., for any € > 0. If we set g. := .7, (), then also
supp(F(g:)) = supp(s, - F(p:)) C Q. and g. € .7, (L*(R™)) \ {0} since .¥, is injective and
. # 0. Moreover, the constructed functions satisfy

))CQe

1 gl = [|F (5 @) | = 11 (1/s) - Fla) | ™ 1((1/s,) - F(g:)) o
ZQQgill/su( >|)~||f<ge>|gg||=s--||g€|| for all > 0. (2.5.8)

The estimate (2.5.8) shows that there does not exist a constant M > 0 such that ||.7,(g)|| <
M]|g|| for all g € .7, (L*(R™)). Hence, ., ! is an unbounded linear map, i.e. discontinuous. [

[ll-posedness despite uniqueness may likewise be shown for XPCI of general, inhomoge-
neous objects from two holograms in the setting of theorem 2.9. According to the proof of
theorem 2.11, the ill-posedness is caused by the zeros of the CTF s,. These define Fourier-
components of the image ¢ that induce low contrast in the hologram-data (see §2.4.2) and thus
have to be amplified strongly upon reconstruction, thereby also amplifying the data-errors in
the associated Fourier-frequencies. This is the reason why practitioners often seek to eliminate
the CTF-zeros by acquiring holograms at several Fresnel numbers, compare §2.4.4.

2.5.2.4 TIll-posedness of tomographic reconstruction

In addition to image reconstruction in XPCI, also the tomographic reconstruction step involved
in XPCT, {ZP(f)}eco — f, is generally ill-posed on L?-spaces, even when uniqueness holds.
By §2.3.2, the ill-posedness may be analyzed via known results for the inversion of the Radon-
transform. Accordingly, it strongly depends on the tomographic incident directions © C S?:
while tomographic reconstruction in the case of full angular sampling (see §2.3.3), which corre-
sponds to inverting the operator Py : L*(2) — L?([0; 1) x R?), is only mildly ill-posed [155,
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§IV.3], severe ill-posedness holds in the case of a missing wedge, i.e. if the tomographic angles
cover a range of less than 180 degrees [155, §VI.2].

In general, tomographic reconstruction is a fairly standard, well-studied inverse problem,
which is why the analysis in this thesis focuses on the image reconstruction problem of XPCI.

2.6 Discretization

2.6.1 General remarks

So far, we have always considered models of XPCI and XPCT where both the sought images
f € {0,8,¢,u} and hologram-intensities I are described as functions in continuous space R™.
Asseen in §2.1.5.4, real-world experiments however provide discrete intensity-measurements I €
RM . Likewise, numerical reconstruction algorithms may only compute discrete, i.e. pizelated,
representations f € RY of the sought images because of finite computer-memory. Yet, there
are still good reasons to consider descriptions in continuous space:

(1) Continuous models are often closer to physical reality. For example, the spatial structure
of real-world specimens is not expected to match any “natural” discretization and hence
may be described more accurately in terms of continuous functions.

(2) Although they require to work in infinite-dimensional function-spaces, continuous models
often have favorable analytical properties that are not necessarily retained upon dis-
cretization. A prime example in XPCI is given by the distinct forms of the Fresnel
propagator D, compare §2.2.2: though equivalent in a continuous setting, standard dis-
cretizations of (2.2.5) and (2.2.10) do not yield identical discretized propagators [203].

In order to avoid complicated notation due to continuous descriptions in the theoretical sec-
tions and discrete ones in the algorithmic parts, discretization is regarded as implicit throughout
this thesis: all inverse problems, results and also the principal reconstruction algorithms are
phrased in terms of continuous quantities. Discretization is only explicitly discussed when it is
not straightforward, i.e. when it deviates from the principal strategy outlined in §2.6.2.

Notably, discretization of inverse problems in LP-spaces, as studied in this work, is indeed
such a standard problem that there even exist software-solutions that do this job in a widely
automated manner: the open-source project OPERATOR DISCRETIZATION LIBRARY (ODL)
[1] for the programming language PYTHON allows to assign algorithms in terms of continuous-
space models, automatically generating a runnable, discretized version of it via a strategy
similar to the one explained below.

2.6.2 Detailed strategy

An image reconstruction algorithm defined in a continuous setting consists of a chain of oper-
ations applied to L2-functions:

obs Ok 1 O recon
g b '% (fl,lv’ . '7f1,n1) % cee 'k_> (fk—l,lv' . '7fk—1,nk,1) '_k> f (261)
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where ¢°™ is the data, f°" € L?(Q) is the final reconstruction and f;; € L*(€;;) denote
intermediate results of the different operations O;. The principal idea of a discretization lies in
identifying (2.6.1) with an algorithm on wvectors g°> € CM, fr* ¢ CV, fi; € CNis:

discr discr discr discr
bs O1 O3 o (0%

go = (fl,lv"'?fl,m) = 'k_;l (fk—l,lw"afk—l,nk,l)

which — other than the continuous-space version (2.6.1) — can be implemented on a computer.

Clearly, the identification between (2.6.1) and (2.6.2) should be such that the discretization-
error is low: if g°™ (approximately) parametrizes g° , then the result 7" from (2.6.2) should
approximate its correspondent fr°" from (2.6.1). To this end, functions g°™, fr*°" f; and
operations O; need to be discretized in a mutually consistent way, as detailed in the following.

fl“GCOIl) (262)

2.6.2.1 Discretization of functions

We identify continuous and discretized functions f € L*(Q) and f € CV based on a disjoint
partitioning of Q = Ui]\ilPi into subdomains P; (of equal volume fp de = v > 0, for sim-
plicity), which can be thought of as pizels of an image (or vozels in a 3D-setting). Discrete
and continuous quantities are mutually related by linear sampling- and interpolation operators
S L*(Q) —» RY and F : RN — L%*(Q). Though there are other possibilities, we consider
sampling via averaging’ over the domains P;, combined with piecewise constant interpolation:

S(f)i = %/ f(x)de forall i=1,...,N (2.6.3)

forall @ eR™ 2.6.4
0 ife¢ T (2.64)

E(f)(x) = {

for f € L*(Q) and f = (f;)Y, € CV. Note that S(E(f)) = f for all f € CV.
The operators S and E identify vectors f € CV with a finite-dimensional subspace E(CY) C
L*(Q2) formed by piecewise constant functions f = E(f), i.e. pixelated images in some sense.

This identification provides the basic relation between the involved objects in the continuous
and discretized algorithms (2.6.1), (2.6.2) — what remains is to relate the operations O;, OFsr,

2.6.2.2 Discretization of operations

We consider general n-ary operations of the form O : L*(Q) x ... x L*(Q,) — L*(Quy1).
Given discretizations of the spaces L*(Q;) in terms of sampling- and interpolation operators
S; + L*(Q;) — CNi and E; : CY7 — L*(Q;), a canonical discretization of O is obtained by
identifying input- and output-functions with vectors in Ci:

Odiscr : (CNl X ... X (CNn — CN7L+1; <f17 ceey fn) — Sn+1 (O(El(f1)7 ceey En(fn))) . (265)

From studying the forward operators in §2.4, it can be seen that the most relevant operations
arising in XPCI and XPCT comprise pointwise operations, L?-norms, parallel-beam projectors
Py, Fourier transforms F and the Fresnel propagator D. Upon discretization O ~» Ogiger, all
of these operations transform in the expected manner:

INote that the sampling operator may not be defined in the possibly expected manner, S : f — (f(z;))X,

for some (x;)i = 1V C Q, since point-evaluations f + f(x;) are not well-defined for L?-functions.
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Pointwise operations on functions, O(f1,..., f,)(x) = o(fi(x),..., fu(x)) for all x € Q2
and some scalar map o : Cx...xC — C (o € {+.—,-,/,(:)7, exp, sin, cos, Re, Im, | - |, .. .}),
exactly correspond to the associated elementwise vector-operations, Ogiser(f1s-- -5 fn)i =

O(flja s >fnj) for f@ = (fl])jvzl € (CN7 since
O(E(-fl)7"'7E(fn)):E(Odiscr(fla"'afn)) for all fla"'afneCN' (266)
Integrals of functions f = E(f) € E(CY) are represented by (weighted) sums:

N
/ BE(f)(@)de "2V S w(A)fi, w(A) = / dz  for  f=(f)Y, eCY. (2.6.7)
A i=1 ANP;
In particular, LP-norms of functions are thus discretized by p-norms of vectors:
N

IEIZ = /Q |E(f) (@) da = z:&(/@lﬁl2 =v-|IfI;, (2.6.8)

i=1
=v

Tomographic projections Pg(f) amount to evaluating line-integrals over f and thus trans-
form to weighted sums over vectors f € CV for discretized functions f = E(f), analo-
gously as seen above. Details on- and specific variants of discretizations of tomographic
projectors can be found for example in [209].

Fourier transforms of functions f = E(f) € E(CY) transform to discrete Fourier trans-
forms (DFTs) of the underlying vectors f:

F(E(F)(E) = (2m) ™2 / exp(—i€ - ) E(f) () dz

~o(2m) ") " exp(—i€ - @) f; o« DFT(£)(€), £ €R™ (2.6.9)
i=1
for suitably chosen points x; € P; (for example the center-of-mass of P;). Quantitative
estimates on the accuracy of the approximation in (2.6.9) are given for instance in [61].

In the standard case where the P; are identical rectangular pixels or voxels uniformly
covering a finite Cartesian grid of size N = Ny -...- N, and for frequencies (&)Y, C R™
arranged on an analogous grid, the map DFT : CN — CV; f s (DFT(f)(£,))Y, may
be evaluated at a computational complexity of O(N log N) via fast Fourier transforms
(FFTs). The same holds for true its inverse DFT .

The Fresnel propagator D may be formulated in different manners, compare §2.2.2:

D(f) = F " (mj- F(f)) = ky = f = uon; - F(ny - /) (§() (2.6.10)
Each expression on the r.h.s. may be discretized via the replacement-rules for functions
and operations derived above, leading to different discrete versions, all with their individ-
ual pros and cons. Indeed, designing accurate and efficient discretizations of D remains
a topic of current research [174, 203]. In this thesis, we exclusively use the most common
form, based on the first variant on the r.h.s. of (2.6.10) (®: element-wise product):

Daiser(f) := DFT™" (m; © DFT(f)) = D(E(f)),  mj:= (my(€))iL,.  (2.6.11)
Analogously to the continuous Fresnel propagator D, this discretization is unitary as a

map Dyiser : C¥ — CVN with inverse Dy : f — DFT ' (m; © DFT(f)).

discr
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2.6.2.3 Periodicity artifacts and padding

The Fourier transform F is defined for functions in infinite space R™, whereas approximations
by DFTs inherently assume periodic functions: finite sampling in Fourier space on a Cartesian
grid with spacing A¢ induces 27/ A-periodicity in real-space (in each dimension). As a con-
sequence, FFT-based numerical Fresnel propagation of images via the discretization Dgjge, in
(2.6.11) implicitly imposes periodic boundary conditions at the edges of the image, which may
lead to artifacts (aliasing). To suppress these, images may be enlarged by adding pixels of
value zero at its boundaries (zero-padding) prior to applying Dgisr, thereby increasing the size
of the computational domain and thus reducing the impact of periodicity. In Fourier space, this
has the effect of refining the sampling-rate A¢. For details on numerical Fresnel propagation,
padding and sampling-requirements, we refer to [75, §3.1.7], [139, §4.4.2] and [203].

2.7 Existing reconstruction methods

After the theoretical introduction and preliminary analysis of the inverse problems 2.1 and 2.2
of XPCI and XPCT, the present, final section of this chapter outlines some existing algorithms
that may be applied to reconstruct images f from measured hologram-data ¢g°™ =~ F(f) in
practice. By the general ill-posedness of image reconstruction (see §2.5), it is typically not
desirable (and neither possible) to achieve this by applying the exact inverse F~! of the for-
ward map F to the data ¢°"®. Instead, practical reconstruction algorithms must necessarily
involve some regularization, i.e. they apply some stabilized inverse F,' which is obtained by
supplementing the inverse problem with additional a priori knowledge on the unknown image,
typically expressed as smallness in some norm. In practice, this may be achieved via various
different algorithmic strategies, as discussed in standard textbooks on inverse problems, see
e.g. [60, 112, 154]. The necessity of regularization thus introduces some arbitrariness to image
reconstruction in XPCI and XPCT, which is why a wide range of algorithms exist for these
tasks, all with their pros and cons. The following overview on reconstruction methods is not
meant to be exhaustive but merely to cover the most relevant approaches for this thesis.

2.7.1 Generic methods

As shown in §2.4, all considered inverse problems in XPCI or XPCT can be phrased as an
equation F(f) ~ ¢°® with a linear-bounded or nonlinear but Fréchet-differentiable operator
F : X — Y on Hilbert-spaces X, Y. For such a setting, a wide range of reconstruction methods
have been proposed in the literature (see e.g. [60, 112, 180, 179]) that are generic in the sense
that they may be applied independently of specific properties of F'. Examples include:

e Quadratic Tikhonov reqularization: A reconstruction f*“°" is computed as a compromise
between closeness to a prior fy € X (||f — fol|x small) and a small residual || F'(fre") —
g°™|ly, where the balance is determined by the regularization parameter o > 0:

o € angnin () - g+ ol - ol @11

o Generalized Tikhonov regqularization (also called variational reconstruction methods): The
squared norms in (2.7.1) are replaced by more general data-fidelity- and penalty-functionals
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S, R, which increases flexibility in terms of exploiting a priori knowledge:

freen e arfgen)}ins (9°% F(f)) + aR(f) (2.7.2)

e Landweber’s method: Perform a finite number of gradient-descent steps on the quadratic
residual ||F(f) — ¢°™||2 (F'[f]*: adjoint of the Fréchet-derivative, compare §2.4.7.3)

fk—i—l = fk — ka/[f]* (F(fk) — gObS) for k= O, 1, ceey kstop — 1, Wk > 0
frecon — fkstop (273)

e Regularized Newton-type methods: Tikhonov-type reconstructions are iteratively com-
puted on the basis of local linearizations F(f) ~ F(fi)+ F'[fx](f — fx) to avoid algorith-
mic problems for nonlinear F'. Such methods will be discussed in detail in chapter 5.

Owing to the abstract operator-formulation of XPCI and XPCT, all of the above methods
(and many more) may be used for image reconstruction. For example, Tikhonov regulariza-
tion has been applied to the nonlinear inverse problem of XPCI in [47, 49]. However, the
generic nature of these basic algorithms has a significant drawback: as no specific mathemati-
cal properties of the inverse problems are exploited, computational costs are typically high. In
particular, note that the minimizers in (2.7.1) and (2.7.2) generally have to be computed by
generic iterative optimization algorithms that may require many steps to converge.

2.7.2 Phase reconstruction in XPCI

In the following, we present some specific algorithms for phase reconstruction, i.e. for solving the
inverse problem 2.1 of XPCI. As the presented methods take advantage of the specific problem-
structure, they may perform better than the generic approaches from §2.7.1. Note that we will
only consider methods that are applicable in the holographic regime as encountered in high-
resolution XPCI at synchrotrons (see §2.2.1.4) — for an overview on algorithms for the direct
contrast regime, which is of minor interest to this work, we refer to [120].

2.7.2.1 Direct CTF-inversion

Probably the most widely used image reconstruction methods for holographic XPCI are still
the direct CTF-inversion schemes that have been proposed already in the first experimental
demonstrations of holographic XPCI and XPCT [40, 39, 42].

Formally, the approach boils down to quadratic Tikhonov regularization applied to the
linearized inverse problem of XPCI for homogeneous objects, as modeled by the CTF-operator
F =M1 (see §2.4.2 and §2.4.3): given hologram-data ¢° = (g, . .. ,gobs) ~ FB0 ()

with g0 = I — 1 acquired at ¢ € N different Fresnel numbers fi,. .., the phase- and
absorption-image p +i¢ = ie ¢ is reconstructed by computing
‘ 2
P € argmin (Z |75 () — gbeHLQ) + w2 - F(p)|[2, (2.7.4)
peLl2(R™R) \ 73
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where the weighting-function w > 0 allows to set the degree of regularization in each Fourier-
frequency individually. Typically, w is chosen such that a different regularization is applied in
holographic and non-holographic spatial frequencies. For the CTF reconstructions considered
in this thesis, we use the weighting proposed in [39] (erfc: complementary error function):

) o) 1) 76 Sl

with g, a0 >0, &t = (Wf)1/2, Ocut = 5—7; (2.7.5)

Thus far, the method is still generic in the sense of §2.7.1. Its XPCl-specific part consists
in computing the minimizer ¢*®* from (2.7.4) in a direct manner via an analytical solution:

owing to the Fourier-multiplier form of the CTF-operators .7 : ¢ s F _1(591') - F(¢)), the
first-order optimality-condition to (2.7.4) is linear and diagonalizes in Fourier space:

y4
(274) & (Z(%ﬁ))* (yﬁﬂwew“)—gs“)) FF T w Fe) =0 (2.7.6)

=1
y4
o (Ll (0 Fn - Fg) ) e FE <0 2o
=1
¢ (f:) A obs
AN SOrecon — f’—l Zizl Sa ‘F(gl ) . (276C)
¢ (fi) |2
w + Zi:l ‘80‘

Importantly, discretized forms of solution-formula (2.7.6¢) may be implemented at computa-
tional costs of ¢ FFTs and a single inverse FF'T, which renders the approach highly efficient.
This is the main selling point of direct CTF-inversion schemes of the kind (2.7.6¢). Similar
inversion-formulas may also be derived in the absence of homogeneity constraints, i.e. for the
general linear XPCI-model F = 7o) Yet, this seems to be rarely done in practice.

Limitations: The computationally efficient direct CTF-inversion formula (2.7.6¢) is funda-
mentally based on linearity and diagonality of the optimality-condition (2.7.6a) in Fourier space.
Importantly, this rules out extensions of the approach to certain relevant settings:

e Nonlinear reconstructions? To account for nonlinearities in XPCI, the CTF-operator .¥,
in (2.7.4) would have to be exchanged by its nonlinear correspondent ./4,. However, the
resulting optimality-condition, i.e. the analogue of (2.7.6a), is then no longer linear nor
diagonal in Fourier space and no closed-form solution is known to hold.

e Non-negativity constraints? If the minimization in (2.7.4) is restricted to non-negative
functions ¢ > 0, then the optimality-condition (2.7.6a) turns into a nonlinear equation
for " that does not have a (known) closed-form solution.

e Support constraints? The diagonality of the formula (2.7.6¢) in Fourier space is related
to translation-invariance in real-space: if we define shift-operators Ty, : f — f(-—a), then
any reconstruction-method of the form @™ = R(go, ..., go%) := S0 F1(\; - F(g2™))
satisfies R(Tog?™, ..., Tags™) = ToR(g8™, ..., g5*) for all @ € R™ and ¢¢™ € L?(R™).
Imposing a support constraint, supp (") C € for some () # Q0 C R™, necessarily breaks
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this translation-invariance as it requires that R(T,g5™, ..., Tagy™)rmq = 0 for arbitrary

data g¢, ..., g2 under all possible shifts a € R™. The associated loss of diagonality in
Fourier space renders an exact solution of the optimality-condition (a non-sparse linear
system) numerically infeasible for discretized problems of practically relevant size.

We conclude that all of the above settings are fundamentally incompatible with direct CTF-
inversion. This constitutes a major motivation to seek alternate reconstruction methods.

2.7.2.2 Alternating projection-type methods

Constrained and/or nonlinear reconstructions in XPCI are to date mostly computed via a class
of algorithms which we refer to as alternating-projection (AP) methods [76, 48, 14, 165, 87].
AP-type algorithms, such as the error-reduction (Gerchberg-Saxton) algorithm [74], the hybrid-
input-algorithm [65] and relaxed averaged alternating reflections (RAAR) [135] are commonly
applied to the classical phase retrieval problem of recovering an image f from the magnitude
of its Fourier transform |F(f)[* [182, 66]. Such problems arise in X-ray coherent diffractive
imaging (CDI), the far-field-imaging analogue of XPCI (compare §2.2.1.5). The algorithmic
approach may be readily adapted to the near-field XPCl-setting.

As detailed in [17], the general mathematical idea behind AP-type methods is to phrase
image reconstruction as a (non-convex) feasibility problem: both measured data and available a
priori on the unknown image f are expressed via constraint-sets C; := {f : f fits the ith data}
fori =1,...,0 and Cpy; := {f : f satisfies the ith constraint} for i = 1,...,k, such that the
reconstruction is cast to finding an element in the intersection, f*<" € ﬂfif C;. In order to find
the solution, AP-algorithms iteratively and alternatingly project onto the sets C;, i.e. compute
an element in C; with minimal (L2-)distance to the current image:

Pe,(f) € argmin || f — g||* (2.7.7)

geC;

The exact usage of projectors FPr, is what makes the difference between the specific AP-type
methods. The RAAR-algorithm for example also makes use of reflectors Re, : f — 2P, (f)—f.
However, the simplest variant is to compute image-iterates fj by cyclically applying the P, in
some fixed order iy, ..., %1, which corresponds to the Gerchberg-Saxton algorithm:

Je+1="Fe

otk

Pcll(fk) for k:zO,l,...,kStOp—l. (278)

AP-methods take advantage of the specific problem-structure of XPCI in that the projectors
Pc, may be evaluated via efficient analytical formulas for all of the constraint-sets C; that
typically arise in reconstruction problems. For example, recovering a pure phase image ¢ from
¢ € N holograms I?™ = ’D(m(exp(—iqb))‘2 (exact data for simplicity) subject to a support

constraint supp(¢) C Q corresponds to finding f := exp(—i¢) € (2 C; with

Coim {f : DUNE =LY = Po(f) =D (™) -sign(D(f)), i<t (27.9)

Con = {f < 11 =1} = Po(f) = sien(f) (2.7.9b)
Crpo:={f:supp(f —1) € Q} = Po,,(f)=1+(f—1la (2.7.9¢)

with sign(z) = z/|z| for complex-numbers z € C\ {0} and sign(0) € {z € C: |z| = 1} arbitrary.
Although the sets C1, ..., Cpyq are non-conver, all Pg, in (2.7.9) are efficiently computable.
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2.7.3 Two-step reconstruction methods for XPCT

Image reconstruction in XPCT does not only require phase retrieval as in XPCI but also
tomographic reconstruction. The standard approach is to solve these two sub-problems inde-
pendently and subsequently: given XPCT-data of the form Ig™ ~ 1+ F(Z(f)) for incident
directions 8 € © and any XPCI-forward map F', the following two steps are performed:

(1) (phase reconstruction) For each incident direction 8 € ©, reconstruct the tomographic
projection pg = Py (f) from the hologram-data Ig™ ~ 1 + F(p).

recon

(2) (tomographic inversion) Recover the 3D-object f from the projection-data (py®")eco ~
(Po(f))eco obtained in step (1).

Step (1) simply corresponds to image reconstruction in XPCI and thus can be implemented
using any of the methods from §2.7.2. The tomographic inversion step (2), on the other hand,
is a standard problem encountered in a wide range of other imaging modalities beyond X-
ray phase contrast, such as medical CT and electron-tomography. As a consequence, a vast
number of algorithms are available to solve this sub-problem, too large to be reviewed here. In
particular, variational schemes of the kind (2.7.2) are an area of active research for tomographic
problems. Similarly as in medical CT [163], however, by far the most commonly used algorithm
in XPCT is still filtered back-projection (FBP) because it is for once well-understood and also
sufficiently computationally efficient to remain applicable for large-scale tomographic data sets
composed of O(10%) images with O(10°) pixels each. Therefore, FBP will be used as a reference
for the methods proposed in this thesis and its principle is outlined in the following.

2.7.3.1 Filtered back-projection (FBP)

In its most basic form, FBP is an implementation of an exact inversion-formula for the 2D-
Radon-transform % (see §2.3.1) that goes back to the pioneering work [168] of JOHANN RADON
himself. As such it guarantees exact reconstruction from fully angularly sampled tomographic
data of the form ppy = Pra(f), compare §2.3.3. In real-world settings with projections
o> &~ Po(f) acquired for finitely many incident directions @ € O, the approach is no longer
theoretically exact but may still yield highly accurate results for appropriate, sufficiently densely
sampled sets ©. FBP amounts to computing a reconstruction via the formula

freen =37 5 (F! (wa - F(5g™))) (2.7.10)
6co

i.e. by back-projecting filtered versions of the measured projections pg>. The weighting-factors

wg depend on © and may also be used to impose regularization. Mathematical details on the
choice of wg and on FBP in general can be found in standard textbooks on CT [155, 110, 33].

As the filtering-step in (2.7.10) may be efficiently implemented based on FFTs, the com-
putational costs of an FBP-reconstruction are relatively low, essentially amounting to that of
one back-projection along all incident directions, (pe)ece — Y _geco P5(Ps). Moreover, FBP-
algorithms are easy to parallelize, which is crucial for high-performance computations that are
required in the case of large-scale data sets. A drawback of FBP is that it is incompatible with
imposing support constraints or non-negativity on the recovered object f°°™ due to the inher-
ent linearity and translation-invariance of the filtering-based approach, analogously as discussed
for direct CTF-inversion in §2.7.2.1.
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2.7.4 All-at-once reconstruction methods for XPCT

Alternatively to the sequential two-step approach presented in §2.7.3, image reconstruction in
XPCT may also be achieved by so-called joint- or all-at-once methods that perform phase
reconstruction of the holograms and tomographic inversion in a combined manner. Different
algorithms implementing this principal concept have been proposed recently [139, 175, 176, 119],
which will be reviewed in §2.7.4.1 to §2.7.4.3.

The general motivation for joint methods is to exploit tomographic consistency to stabilize
the phase reconstruction step: by recovering a 3D-object density f™°" directly from the com-
plete tomographic hologram-series (I3™)gce, it is implicitly imposed that the corresponding
projection-data (py")eco = (Po([*°"))oco is consistent in terms of the Helgason-Ludwig
conditions from theorem 2.2. On the contrary, this is in general not the case if the projec-
tions pg are reconstructed from Ig™ for each @ € © independently without reference to the
underlying 3D-object. Effectively, joint reconstruction thus imposes an additional consistency
constraint in the phase reconstruction step: the set of possible solutions A in the (implicitly)

solved inverse problem ‘“reconstruct (pg)eco € A from (Igbs)gee” is restricted to
A C Ciomo = {(po)eco : po = Po(f) for all @ € O for an admissible f}, (2.7.11)

which is expected to reduce ill-posedness by §2.5 and thereby improve reconstruction-quality.

A further benefit of joint reconstruction methods is that additional constraints, such as
support- and /or non-negativity, may be imposed directly on the 3D-object f rather than on its
projections pg = P(f). As will be further discussed in chapter 3, this often permits a tighter
confinement of the admissible solutions.

2.7.4.1 Joint reconstruction by generic methods

Conceptually the simplest way to construct all-at-once methods is to apply any of the generic
algorithms from §2.7.1 to the full inverse problem of XPCT Fpor(f) = (Ig” — 1)gco. Tomo-
graphic consistency is then fully encoded in the structure of the employed forward operator
Fpcr : f = (F(P6(f)))geo and thus automatically imposed by the reconstruction algorithm.
Such a generic all-at-once approach has been implemented in [139].

In general, while genericity yields flexibility in terms of the choice of the underlying XPCI-
model F' (homogeneous, nonlinear and/or multiple holograms?), the main drawback of the
approach is computational performance: In high-resolution XPCT, the numerical size of the
inverse problem of XPCT (2 10° dimensions of discrete object- and data-spaces) is typically
too large to compute joint reconstructions by generic methods in tolerable runtimes.

2.7.4.2 TIterative reprojection phase retrieval

In [175], a joint reconstruction algorithm termed “iterative reprojection phase retrieval” (IRP)
has been proposed that is based on an adaptation of the alternating-projection (AP) approach
from §2.7.2.2 to the 3D-setting of XPCT. The principal idea is to reconstruct tomographic
projections (pg)ece via standard AP-iterations from the holograms (Ig™)gce for all € and to
enforce tomographic consistency of the projection-iterates (pg )oco by interlacing reprojection

steps: intermediate 3D-objects are reconstructed by (approximate) least-square-minimization
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fr € argmin;, [[(P(f))oco — (Pox)ocoll* and then (pgi)oce is replaced by the reprojected
object (Pg(fr))oco before proceeding to the next sweep of AP-iterations. In the light of the
general AP-scheme from §2.7.2.2; this can be viewed as (approximate) projection-steps of the
iterates (pg.x)oco onto the tomographic consistency constraint-set Ciomo defined in (2.7.11).

The pros and cons of the IRP-algorithm are similar to the generic approach from §2.7.4.1:
while easily adaptable to different XPCT-models and constraints by the flexible AP-structure,
the recurrent tomographic reconstructions to be computed give rise to high computational costs.

2.7.4.3 3D-phase reconstruction

Another approach to joint reconstruction has been proposed independently in [119, 176]. It is
based on the observation that the CTF-based forward operators of linearized XPCI commute
with the parallel-beam projectors Py, i.e. for any well-behaved function f and any 6 € S?

T(Po(f)) = Po (T®V(f)) for Te{T, 7} (2.7.12)

TG . [2(R%) — L?(R®) denotes an analogue of the image-formation operator T acting on
3D-objects instead of 2D-images. The relation (2.7.12) follows from the fact that .7,.7, are
given by isotropic Fourier-multipliers, as will be detailed at a later point in §3.3.3.

For linear XPCT-data of the form (T (Zo(f)))geo ~ (1§™ = 1)peq, (2.7-12) implies that
the order of phase- and tomographic reconstruction may be reversed compared to the standard
two-step procedure from §2.7.3: if tomoRec(+) denotes any tomographic-inversion method such
that tomoRec((pg)oco) =~ f if ps = P(f) for all @ € O (for example FBP, compare §2.7.3.1),
then an application of this algorithm to the tomographic hologram-series yields

(2.7.12)

tomoRec ((lp — 1)peg) ~ tomoRec ((@9 (T(3d)(f)))oe®> ~ TCD(f). (2.7.13)

Accordingly, 3D-hologram data TGV (f) is obtained, from which the object f may be recovered
in a second step by applying a #D-variant of any of the phase reconstruction algorithms from
§2.7.2. As detailed in [176, 174], tomographic consistency is implicitly encoded in the con-
structed 3D-phase retrieval problem and thus automatically exploited by the approach. In this
sense, the method achieves the principal goal of all-at-once algorithms for XPCT even though,
strictly speaking, phase- and tomographic reconstruction are still performed sequentially.

3D-phase retrieval TGV (f) — f may be implemented in a highly efficient manner via direct
CTF-inversion, compare §2.7.2.1. Moreover, even if the step is performed by an iterative method
(to impose additional constraints), the total algorithm may amount to much less computational
effort than those from §2.7.4.1 and §2.7.4.2. The reason is that the parallel-beam projectors
Py are eliminated from the problem via the initial “tomoRec”-step (2.7.13) so that no costly
tomographic (back-)projections have to be computed in the iterations. The downside of the
presented 3D-phase retrieval approach is that it seems to be fundamentally limited to linear
XPCT-models, as the exploited relation (2.7.12) is no longer valid in nonlinear settings.

Designing joint reconstruction algorithms for XPCT that are both efficiently implementable
and based on the nonlinear XPCI-model is a main concern of the algorithmic chapters 5 and 6.
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Chapter 3

Stability estimates for linearized
near-field phase retrieval in X-ray
phase contrast imaging

Article 1 [144] deals with stability of XPCI in the linearized (CTF-)regime. Accordingly, the
theoretical study investigates how robust the required image reconstruction step is to errors in
the measured data. Thereby, it sheds a light on the controversial question how many holograms
have to be acquired to enable accurate imaging in real-world XPCI.

3.1 Motivation

Ever since the pioneering works of Peter Cloetens and co-authors [40, 42, 39] it has been
widely accepted that at least two holograms acquired at different object-to-detector-distances
are necessary for faithful image reconstruction in holographic XPCI [108, 157, 158, 32]. The
typical reasoning is that the zeros of the oscillatory contrast-transfer-functions (CTFs), see
§2.4.2, correspond to Fourier-components of the object that are practically invisible in a single
hologram. As seen in theorem 2.11, this gives rise to ill-posedness. The situation is considered
to be even more severe when phase-shifts and absorption are not coupled by a homogeneity
constraint (compare §2.4.3), but have to be reconstructed as independent images. Indeed, we
have seen in §2.5.1.2 that image reconstruction may be non-unique in this setting. Physically,
this non-uniqueness relates to the well-known twin-image problem of holography [72, 73].

On the other hand, recent works have demonstrated that accurate reconstructions from
a single hologram can be achieved, given a careful treatment of the CTF-zeros [150] or by
imposing support constraints (see §2.4.6) on the unknown image [14, 13], i.e. exploiting a priori
knowledge on the size of the imaged sample. The success of the latter approach is in line with
theorem 2.10, stating that a compact support guarantees uniqueness of image reconstruction in
XPCI. While this uniqueness result seems to strongly contradict some observations by previous
authors, a few aspects should emphasized: for once, it can be shown that support constraints
rule out the existence of phase-vortices [140], which serve as a standard counter-example [157]
to prove non-uniqueness (see theorem 2.8). Likewise, support-knowledge allows to circumvent
the twin-image problem, as will be seen in §3.2.3.2. Moreover, while it is perfectly true that
CTF-zeros correspond to missing information when images of theoretically infinite extent are
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to be reconstructed, support constraints allow to infer the missing Fourier frequencies as will
be detailed in §3.2.3.2. Finally, it is a well-known fact in inverse problems that mere uniqueness
does not guarantee reconstructability in any practical sense, as the reconstruction might still
be arbitrarily ill-posed, i.e. unstable to errors in the data, as discussed in §2.5.2.

To assess in which settings accurate image reconstruction is feasible for real-world, imperfect
data, the uniqueness theorem 2.10 has to be supplemented with stability estimates. This is the
principal goal of the presented article. Due to the analytical difficulties arising from nonlinearity,
the analysis is restricted to the linearized (CTF-) forward maps from §2.4.2. This is justified
by the large regime-of-validity of the CTF-model found in several studies, see e.g. [194, 96].

3.1.1 Teaser: the impact of support constraints in practice

Analogously as uniqueness in theorem 2.10, we will establish stability of image reconstruction
under the assumption of support constraints. In order to get an intuition for such constraints
and how much can be gained from them in practice, we consider numerical reconstructions from
exemplary real XPCl-data given by a single hologram 7° shown in fig. 3.1(a). The underlying
sample is a pure phase object to very good approximation (see §2.4.3) and moderately weak
so that the sought phase-image ¢ can be recovered by linear CTF-inversion schemes (§2.7.2.1)
from the data I°" — 1 ~ .#(¢). Moreover, it can be inferred from the plotted hologram in
fig. 3.1(a) that the sample only fills a small subdomain in the center of the imaged field-of-view,
so that a support constraint supp(¢) C Q (< ¢|gc = 0) holds for a suitable domain 2 C R?.

To assess the effects of support-knowledge, we compute numerical reconstructions ¢™°" via
CTF-inversion schemes with and without support constraints, i.e. (up to discretization):

(1) Standard CTF-inversion without support constraint (a; = 1073, ap = 1072):

P € argmin Jorr a0, (0), (3.1.1)
$EL2(R2,R)

where JoTF .0, denotes the Tikhonov-functional defined by (2.7.4) and (2.7.5).

(2) CTF-inversion supplemented with a support constraint (a; and as as in (1)):

¢§econ - argmin JCTF’al,QQ((ﬁ) (312)
$EL2(QR)

with © C R? given by the circular-region marked in fig. 3.1(a)

(3) CTF-inversion with support and without regularization (o = e = 0 and 2 as in (2)):

recon

3 € argmin JCTF,O,O(QS)- (313)
¢€L2(,R)

Note: While the constrained methods (2) and (3) are easy to write down, solving the associated
discretized optimization problems requires an iterative method and is thus much harder than
for the standard method (1), which may implemented efficiently as a direct inversion in Fourier
space, compare §2.7.2.1. We will get back to this algorithmic problem in §5.1.

The reconstructed phase-images ¢"" from (1) to (3) are plotted in fig. 3.1(b)—(d), re-
spectively. Additionally, subfigures (e)—(g), i.e. the bottom-row of fig. 3.1, show zooms of the
red-dashed square for the corresponding images in the top-row. We observe the following;:
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Figure 3.1. Effect of a support constraint on XPCl-reconstructions of a pure phase object.
(a) Measured hologram I°P® (real data for freeze-dried d. radiodurans bacteria imaged at the GINIX

(see §1.2); 2048 x 2048 pixels of effective size Axffx ~ 13.4nm at Fresnel number f,;, ~ 1.16 - 107%).

The white-dashed circle in marks the assumed support in the reconstructions in (¢) and (d).

(b)—(d) Linear CTF-reconstructions (see §2.7.2.1) of the phase-image ¢: (b) Standard method without
support constraint, regularization parameters a; = 1073, ap = 1072. (¢) a1, as as in (b) but imposing
the white-dashed circle as a support. (d) support as in (¢) but without regularization, a; = ag = 0.
(e)—(g) Zooms of the red-dashed square for the respective images in the top-row.

e Reconstruction (1) (no support) shows pronounced bright- and dark artifacts in the
background. These are due to slight background variations in the hologram in fig. 3.1(a)
arising from imperfect flat-field correction (see §2.1.5.2), which are amplified in the recon-
struction due to low-frequency instability of the CTF, sq(&) =~ 0 for € ~ 0 (see §2.4.2).

e In reconstruction (2) (with support), background-variations may not arise outside the
circular domain ) because ¢™°"|q. = 0 is imposed. Yet, notably, the low-frequency arti-
facts are also suppressed within €0, revealing a stabilizing effect of the support constraint.

e The zooms in fig. 3.1(e),(f) furthermore reveal that also fine structural details come out
much more clearly in (2) than in (1), as noise is suppressed considerably.

e The non-regularized reconstruction (3) is of similar quality as (2). On the contrary, such
a reconstruction completely fails without a support constraint (results not shown). Ac-
cordingly, the support-knowledge seems to make regularization redundant in the example,
indicating that the ill-posedness arising from the CTF-zeros (see §2.5.2) is eliminated.

The stability analysis of the presented article provides a theoretical explanation for the observed
strong stabilizing effect of support constraints in practical image reconstruction.

3.1.2 Lipschitz-stability estimates and their meaning

Although weaker notions of stability are more commonly used in the theory of inverse problems
(known as conditional stability estimates, see e.g. [105]), we find that Lipschitz-stability is a
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suitable concept for the considered linearized XPCI-problems. An inverse problem described
by a forward map F': A C X — Y between normed spaces with a set of admissible solutions
A is said to be Lipschitz-stable if a stability-estimate of the form

IF(f1) = F(f2)lly = Csabllfi = follx ~ forall  fi,foe A (3.1.4)

holds for some stability constant Csg, > 0. Intuitively, the bound (3.1.4) ensures that any
substantial modification of the object from f; to fs results in sufficient contrast ||F(f1)—F(f2)|ly
in the observable data, i.e. that any such change is wvisible in practice.

If (3.1.4) is satisfied, F is injective with Lipschitz-continuous inverse F'~1 : F(A) — A:
1F~Yg1) — F~Yg2)llx < CLLllgr — gally for all g1, go € F(A). Most importantly, this implies
robustness to data-errors: if an object fT € A is to be recovered from perturbed measurements
g = F(f") + € € F(A), then the resulting deviation of the reconstructed object freeon :=
F~1(g°>) from f' is bounded by

1= ol = [ ) — FAEG™)] < Cablelly. (3.15)

According to (3.1.5), the data-errors are at most amplified by a finite factor C;}; upon recon-
struction. In particular, this implies well-posedness of the inverse problem by definition 1.1: if
€ — 0, then frec°n — T Quantitatively, (3.1.5) furthermore reveals the following:

To guarantee truly small object-deviations due to data-errors, i.e. stability in a prac-
tical sense, the stability constant Cga, should be as large as possible.

On the contrary, if Cyp, is very small, the error-amplification predicted by (3.1.5) may be too
large to allow for accurate reconstruction at realistic noise-levels |||y

In the presented article, we exclusively consider linear-bounded forward maps F' and A C X
given by linear subspaces. In this case, Lipschitz-stability (3.1.4) is equivalent to

Cuar = inf  |[F(h)]ly > 0. 3.1.6
wo= b [LE()lly (3.1.6)

Moreover, a linear inverse problem is well-posed if and only if it is Lipschitz-stable.

3.2 Summary of the results

3.2.1 Setting and assumptions

We consider the setting of linearized XPCI, as described by the CTF-based forward models
from sections 2.4.2 to 2.4.4. Note that we study the forward maps in arbitrary dimensions
m € {1,2,3,...} although the physical XPCl-setting corresponds to m = 2 dimensions. The
benefit of this will be seen in §3.3. Continuous and complete measurements 1°% of the hologram-
intensities are assumed, which may be corrupted by noise. It is furthermore assumed that a
bound on the maximal support Q C R™ of the unknown image h € L?*(Q) is available. The
choices of 2 will typically be domains of diameter 1 in some sense. Importantly, this implies
that the (modified) Fresnel numbers § are implicitly defined w.r.t. the support size, see §2.2.1.
Typical experimental values of § in synchrotron-based XPCT are thus very large, 10* < f < 10°.

The principal inverse problem, describing image reconstruction from a single hologram under
a support constraint without additional a priori knowledge, is of the following form:
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Inverse Problem 3.1 (Linearized XPCI of weak general objects). For a given support Q C R™,
recover a complex-valued image h = u + i¢ € L*(Q) from a noisy hologram

I — 1= 7(h).

Solving inverse problem 3.1 is commonly regarded as practically infeasible, in spite of being
uniquely solvable for bounded domains €2 according to theorem 2.10. To improve stability,
practitioners typically assume homogeneity of the imaged object (including in particular the
case of pure phase objects, see §2.4.3), which corresponds to the following setting:

Inverse Problem 3.2 (Linearized XPCI of weak homogeneous objects). For a given support
Q) C R™, recover a real-valued image ¢ € L*(2,R) from a noisy hologram

I — 1~ ,(p).

Alternatively to restricting the images to be recovered, it is also commonly argued that
the acquisition of additional holograms may stabilize image reconstruction. Here, the case of
two holograms acquired at different Fresnel numbers f; # fo is considered, as described by the
following forward operator (compare §2.4.2 and §2.4.4 for notation):

(1) (1) ¢ (f) ) 9/ m
TR (h) = (902)22;) - <5”(f2)gz;i<€(mgzg) for h=p+ipe L*(R™). (3.2.1)

Inverse Problem 3.3 (Linearized XPCI from two holograms). For a given support 2 C R™,
recover a complex-valued image h = p + i¢ € L*(2) from two noisy holograms

Iobs —1
(Iébs — 1) ~ y(f17f2)(h>'

3.2.2 Principal results
3.2.2.1 General objects (inverse problem 3.1)

The principal result of the article is that inverse problems 3.1 to 3.3 are well-posed if the
support-domain €2 is bounded, i.e. Lipschitz-stability holds true in the sense of §3.1.2. It is
most surprising this is even true for the most challenging setting, given by inverse problem 3.1:

Theorem 3.1 (Well-posedness and stability estimate for inverse problem 3.1). Let the support-

domain €2 be given by a stripe of width 1, w.l.o.g. Q = [—5, 5] x R™=Y. Then it holds that

Crp1(92, ) := |7 (h)|| >0 (3.2.2)

heL?(Q ||h|| 1

1.e. inverse problem 3.1 is well-posed. The stability constant satisfies the asymptotic estimate

Cira () <27rf>i(1—8%+0(f ))exp<—f/8> for foeo.  (323)

If Q= [1/2;1/2]™ is a cube, the r.h.s. of (3.2.3) may be improved by a factor of m'/?
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Notably, the asymptotic bound (3.2.3) on the stability constant Cip; decays exponentially
in the modified Fresnel number f. Indeed, numerical eigenvalue-computations in the article
(cf. §8.3.5) indicate that the bound is not overly pessimistic but asymptotically sharp for large
f. Accordingly, Cip; decays dramatically fast in §: while Cipy(£2,10) > 0.77 (neglecting the
O(f?)-terms in (3.2.3)), one only has Cipy (€2, 10%) > 1.8-107° and Cipy (2, 10%) > 4.5-107%4. As
the factor Cjp} governs data-error-amplification in image reconstruction according to §3.1.2, the
estimate thus allows for dramatic instability at Fresnel numbers § > 102, i.e. inverse problem 3.1
may be excessively ill-conditioned despite being well-posed under support constraints.

Beyond the worst-case stability estimate (3.2.2), the article also provides specific bounds
for arbitrary image-modes, based on the singular value decomposition of a related operator,
see §8.3.4: for a cube-shaped support-domain Q = [1/2;1/2]™, it is found that the least stable
modes are given by prolate spheroidal wave-functions of low order, modulated by the Fresnel-
factor exp(ifz?/4). Accordingly, the image-components that are most difficult to reconstruct in
inverse problem 3.1 are low-frequency modes, whereas high-frequency components induce strong
contrast in the hologram-data and may thus be stably recovered.

3.2.2.2 Homogeneous objects (inverse problem 3.2)

The stability results from theorem 3.1 clearly remain valid for inverse problem 3.2 as it differs
from inverse problem 3.1 merely by a restriction of the admissible objects. Notably, the stability
bound Cip; 2 /4 exp(—f/8) may be furthermore improved to an algebraic decay in f:

Theorem 3.2 (Well-posedness and stability estimate for inverse problem 3.2). Let the support-
domain be a ball of diameter 1, Q0 := Bla; %] for any a € R™. Then the stability constant of
inwverse problem 3.2 is bounded by

Crpo (2, f,v) == inf |-7, (@) || > max {min {c1,6f '}, min {031/, c4f*%}} (3.2.4)

PEL2(QR), [lol|=1

for some constants ¢; > 0 that depend only on the dimension m. In particular, Cipa(€2,f,v) >

OF™Y) for v =0 and Crpa(Q,§,v) > OF2) for v >0 as f — co.

The stability estimate in theorem 3.2 is less explicit than in theorem 3.1 as the values of
the constants c; are not given. Indeed, the proof does provide numerical values for these.
However, they are expected to be highly non-optimal and therefore omitted here. On the
contrary, the order of the asymptotic decay of the stability constant, Cipo(Q,f,0) = §! and
Crp2(Q,§,v) = §71/2 for v > 0 as § — oo, is shown to be optimal in the article, see §8.4.5.

Remark. Although the constant Cipy has been defined as an infimum over real-valued p €
L*(©,R) in theorem 3.2, the value is the same for general, complex-valued arguments of .7,
i.e. Crpa(2f,v) = infoer2(q) p)=1 | (h)||. This property will be needed in theorem 3.3 and
can be proven using the fact that ., commutes with the pointwise real-part Re(-).

3.2.2.3 Reconstruction from two holograms (inverse problem 3.3)

A similar improvement of the stability constant as in the homogeneous case is obtained in the
two-holograms-settings of inverse problem 3.3. Indeed, it is found that the stability of the
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latter problem is related to that of inverse problem 3.2 for v = 0. This insight gives rise to the
following theorem:

Theorem 3.3 (Stability estimate for inverse problem 3.3). Let 5”0(‘:’) denote the forward op-
erator of inverse problem 3.2 forv =0 and f =f_ = |[f;* — §5|7'. Then

|70 (n)|| > 272|240 (h) || forall  he LAR™). (3.2.5)
In particular, for any support-domain 2 C R™, the following stability estimate holds true:

Cieg(@.f-) o=, inf [ TEP (W) 2 272Crea(2,-,0) (3.2.6)

Notably, the stability constant in theorem 3.3 depends on the difference between the (re-
ciprocal) Fresnel numbers fy, fo. According to the bounds (3.2.4) and (3.2.6), a favorably large
stability constant Cip3(€2,§_) is thus obtained for pairs f;, f» that differ strongly in value, i.e. if
the two holograms are acquired in significantly distinct XPCI-setups.

3.2.2.4 Algebraic properties of Cip, and adaptation to other geometries

Theorems 3.1 to 3.3 assume very specific geometries of the support-domain €2, which might
seem to restrict their applicability at the first glance. However, basic algebraic properties of
the stability constants provide a simple handle for generalization of the results:

Theorem 3.4 (Algebraic properties of the stability constants). Let Cip.(€2,f) be either of the
stability constants Cip1 (2, f) or Cipa(Q, f,v) for fized v. Then the following properties hold:

(a) Translational- and rotational invariance: Cip.(a + A -, f) > Cip.(Q,f) for all Q C R™,
f >0, a € R™ and orthogonal matrices A € R™*™

(b) Monotonicity in €: Cip«(21,f) > Cip«(Q2, ) for all Q1 C Q3 C R™, §> 0.
(c) Scale invariance: Cip,(r€), ) = Cip.(Q,7%f) for allm >0, Q C R™, § > 0.
(d) Monotonicity in f: Cip.(2, 1) > Cip«(£2, f2) for all 0 < f; < f, @ C R™.

Proof. Let T € {7,.%,}. Then property (a) follows from the fact that 7" commutes with shifts
and orthogonal transformations of the coordinates: T'(h(a + A(:))(x) = T(h)(a + Ax) for any
h € L*(R™) and & € R™. For (b) note that L?(Q;) C L*(,). Hence, it holds that

Crpa(Q,7) = inf T(h)| > inf T(h)|| = Crpa(Qa, ).
w@uf) =it TW) = it (T = Cie (@)

Property (c) follows by a rescaling of the coordinate system «’ = @ /r, which implicitly trans-
forms the Fresnel number to f = r?f by its scale-dependence explained in §2.2.1.3. Finally, (d)
is a consequence of (b) and (c): upon setting Q; := Q and Qs := (f2/f1)*/? - Q D Q1, one has

c (b)
Crps (2, 1) = Crp« (22, 1) © Crp«(1, f2) > Crpi(Q2, f2) = Crps (2, f2). O
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Despite its simplicity, theorem 3.4 bears two important consequences:

(1) If the exact support-domain €2 is geometrically complicated, properties (a)—(c) ensure
that the resulting stability constant may be bounded from below by that for one of the
simple domains treated in theorems 3.1 to 3.3. For example, whenever 2 has a finite
diameter d := sup,, ,cq | — y| < oo, then @ C Bla;d/2] for some ball and thus

Cirn(F) 2 Cipa(Blasd/2),§) 2 Cou (B0 42D < Con (B0 12, %) (3.2.7)

(2) The monotonic decrease in f implies that the function f — Cip.(€2, f) is well-approximated
by a finite number of samples (f;, Cip«(£2, f)) as it limits the variation between subsequent
samples f; < fjr1: Crps(€2,§;) > Cipe(2,§) > Cipu(2, §j41) for all § € [fj; fj+1]. Impor-
tantly, this means that the functional dependence § — Cip. (€2, f) is accessible by numerical
computations, as will be exploited in §3.4.

3.2.3 Ideas of the proofs
3.2.3.1 General objects (inverse problem 3.1)

The stability analysis for inverse problem 3.1 is based on the principle of holographic image
reconstruction, that earned DENNIS GABOR the 1971 Nobel Prize in Physics [72, 71]. The main
observation is that the linearized contrast in a hologram may be written as a superposition of
a propagated image and a back-propagated twin-image, the pointwise complex conjugate h:

—7(h) =2Re (D(h)) = D(h) + D '(h) (3.2.8)

Gabor concluded that an application of the back-propagator D~! to a hologram would thus
recover the focused image h, perturbed by some fringes originating from the twin-image con-
tribution D~2(h), and thereby permit qualitative image reconstruction.

In the present work, Gabor’s principle is exploited in a converse manner: if a support-bound
supp(h) C Q is available, then the perturbing twin-image-contribution can be eliminated by
propagating it into focus and then restricting the data to the complement of the support:

—D(Z(h))loe = D*(h)|ac + hloc = D*(h)
~—

=0

g forall heL*Q). (3.2.9)

According to (3.2.9), the transformation yields incomplete Fresnel-data D?(h)|ge. To obtain a
stability estimate from this, the L*-norm is taken on both sides of (3.2.9) and it is exploited
that ||D(f)|all < ||f]| for all f € L*(R™) and any measurable set A C R™:

|7 ()| = ||D(7(h)) for all h e L*(Q). (3.2.10)

= [[D*(n)

Qe Qe

By noting that D? = D/?) and expressing the propagator D/? via the alternate form (2.2.10),
the right-hand side of (3.2.10) may furthermore be rewritten as the Fourier transform of a
Fresnel-modulated image h := nyj - h with ng/s(z) = exp(ifz?/4): |D*(h)]ac| = IF(R)|¢/20-
Inserting this into expression into (3.2.10) finally gives

Qc

17 ()| > | F()| 200l forall he L*Q), h=ngy,-h (3.2.11)
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Since ||h|| = ||A]|, the bound (3.2.11) can be interpreted as a relative stability estimate: the
reconstruction of an image h from XPCl-data 7 (h) is at least as stable as the reconstruction
of h from its Fourier-data outside the domain /2 - Q. Reconstructing functions h € L?(Q)
from partial Fourier-data in turn constitutes a well-studied class of problems, known under
the keyword of analytic continuation in the literature because of the analyticity of the Fourier
transforms of compactly supported functions. In particular, the considered problem is well-
posed, ||f(ﬁ)](f/2.g)c > Cip1||h| for some Cipy > 0, provided that Q is bounded along at
least one dimension. Quantitative bounds on the Lipschitz-constant Cp; can be obtained for
the special case of rectangular domains €2 by reducing the setting to an analytic-continuation-
problem on 1D-intervals, as analyzed in [185, 186]. By (3.2.11), these results for reconstructions
from incomplete Fourier data directly translate into stability estimates for linearized XPCI.
In particular, the asymptotic expansions for the eigenvalues of some related compact self-
adjoint operator provided in [186] give rise to the asymptotic formula (3.2.3). Furthermore,
the full singular value decomposition of this operator induces a characterization of stability for
individual image-modes in terms of prolate spheroidal wave functions.

3.2.3.2 Homogeneous objects (inverse problem 3.2)

The stability proof for inverse problem 3.2 works completely differently from the above approach
for the case of general, non-homogeneous objects. It exploits that contrast is non-negligible in
all Fourier-frequencies except for the zeros of the CTF s, as seen from

F(A@)©)] = 15,0 - IF(2)(©)] = |sin (5—)' NFE)] (3.2.12)

2f

The reconstruction of L*-images ¢ € L*(R™,R) from .7, (y) is unstable because F(p) may be
arbitrarily concentrated around the zeros of s,, in which case the relative contrast ||.7, ()] /| ¢||
is small according to (3.2.12). This is illustrated in fig. 3.2(a).

In order to understand how support constraints introduce stability in the CTF-model, it
is crucial to note that such an arbitrary concentration of F(p) around the CTF-zeros is not
possible if ¢ is compactly supported. Indeed, there is a well-known class of theorems in Fourier-
analysis, known as uncertainty principles, stating that a spatial confinement of a signal in
real-space — as imposed by a support constraint — induces a minimum width of structures in
Fourier space. Hence, F(¢) may only be finitely peaked at the CTF-zeros so that neighboring
Fourier-frequencies will always give rise to some finitely small total data-contrast, see fig. 3.2(b).

To obtain quantitative estimates from this insight, the Fourier-domain is decomposed into
stable regions and such around the CTF-zeros (U: disjoint union):

R"=D.U| |B; with D.:={£€R":|s,(§)|>sin(e)}, 0<e<m/6, (3213)
j=0
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Figure 3.2. Illustration of the principal argument for stability of inverse problem 3.3: the black-
dashed line plots the radially symmetric CTF s, for v = 0. Blue and red solid lines show examples of
Fourier space signals of objects ¢ and their images under the forward operator ., respectively.
(a) General images ¢ € L?>(R™,R): F(y) may be arbitrarily peaked at the zero-manifolds of s,,.
(b) Support constraint ¢ € L?(2,R),  bounded: F(¢) is smooth and has finitely sharp peaks.

where By is some small disc around the origin and B; are annular neighborhoods around the
jth zero-manifold of s, at |€| = (2§)2 (jmr—v)2, j € N. With (3.2.12), this decomposition yields

@I =l 7 +Z|I s F) I,
|D€||2+Z | Gs. -

where the bound in the second line follows by definition of the stable sub-domain D..

|7 (I = |7 (

Ds

> sin(2)?|| F(y (3.2.14)

Within the domains B, |s,| is not bounded from below but exhibits first- or second order
zero-crossings so that the remaining terms on the r.h.s. of (3.2.14) have to be estimated via a
different approach. It is shown in the article that estimates of the form

(0 - FO)ls, |” = M EIF )] + ns(e) / AIF()(©)]?dg (3.2.15)

B;

with some \;(¢) > 0, n;(¢) > 0 and B; C B; hold true for all j € Ny, where A is the Laplace-
operator. The integral with the Laplacian term is then bounded by exploiting the smoothness
of F(p) induced by the support constraint, as characterized by the following lemma:

Lemma 3.5. Let g € L*(Q) with support in Q = B[0; R] and Fourier transform ¢ := F(g).
Let A be the Laplacian on R™. Then it holds for any measurable set B C R™ that

/ Ag? de < 2R%||g]> (3.2.16)
B

By substituting the bounds (3.2.15) into (3.2.14), applying lemma 3.5 to the arising Lapla-
cian integral over [ J ; B; and carefully choosing the parameter ¢, theorem 3.2 is obtained.
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3.2.3.3 Reconstruction from two holograms (inverse problem 3.3)

To prove stability of the reconstruction from two holograms, it is again useful to consider the
contrast in Fourier space: for h = p + i¢ with p, ¢ € L*(R™, R), it holds that

) — g (SME/R) s €/CR)Y | (F(0)(€)
7Y f)(h))(g)__2\(8111(62/(21‘2)) cos(&z/@fg)))/‘ () 3210

Sf1,f2 3

for (almost) all & € R™, where the Fourier transform is meant component- Wise The minimal
singular value of the matrix Sj, 5,(&) is omin(€)? — |cos (€2/(2f- ))| > 1sin (& /(Qf ))? =
5s0,5_(€)* for all € € R™, where the phase-CTF sq5_ to the Fresnel number § = f_ I
has been identified. By elementary linear algebra, this implies that

[F (70 (1) )(€)]" > 4omin(€)* (F(@)(E)] + [F()(E)I)
> 2505 (8)* (IF(@) )" + | F () (&)[) (3.2.18)
for almost all € € R™. Integrating (3.2.18) over R™ yields the sought L?-estimate

|70 B[ > 2 (505 (€)2 - FG)? + llsog-(€)2- F)2) = 317 W2, (3:219)

which relates stability of inverse problem 3.3 to inverse problem 3.2, leading to theorem 3.3.

3.3 Supplement: stability of phase contrast tomography

A benefit in having proved stability for linearized XPCI independently of the dimension m lies
in enabling an extension of the results from 2D-imaging to X-ray phase contrast tomography,
i.e. to inverse problem 2.2 in the linear regime. This is established in the present supplement.

We consider linearized XPCT data for objects f € L*(2) of compact support Q C R™:
I~ 1+T(P(f)) for OcOCS” (3.3.1)

where the image-formation operator T € {.7,.%,} is any of the forward maps from inverse
problems 3.1 and 3.2. The stability analysis may be readily extended to multiple holograms, in
particular to the setting of inverse problem 3.3, but we omit this case for notational simplicity.

We furthermore widely restrict to the case of full angular sampling where the set of incident
directions © covers a dense range of tomographic angles of 180 degrees, compare §2.3.3. The
reason for this restriction is that stability theory of pure tomographic reconstruction (i.e. no
phase contrast, 7' = id in (3.3.1)) is simple in this setting, as will be explained in §3.3.1. In
principle, however, the presented stability approach is applicable for arbitrary sets of incident
directions ©. According to §2.4.5, fully sampled linear XPCT-data is modeled by

%0, x) ~ 14+ 7% (P (f) (6,2) for 6¢€[0;7), € R™ (3.3.2)
where T (p)(6,-) := T(p(0,-)) applies T along the lateral dimensions and Pgn(f)(d,x) =
P(f)(x) as defined in §2.3.3.

For functions p € L*([0; ) x R?), let ||p|| := (fy [ [p(0, @)|* dxdd)/? denote the standard
L*norm. According to §2.3.2, Py : L2() — L?([0;7) x Rz) is well-defined and continuous
for any bounded domain Q C R*. Moreover, since T : L*(R?*) — L?*(R?) is continuous, so is
T [2([0;7) x R?) — L2([0;7) x R?) with the same operator-norm || 7029 || = ||T|.
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3.3.1 Stability of tomographic reconstruction

By boundedness of 7', it follows from (3.3.2) that linearized XPCT cannot be more stable than a
reconstruction from pure projection-data P (f) (up to a constant) since HT (at) (21 ( H
ITI | Zean(f)]] for all f. As noted in §2.5.2.4 however, already the inversion of nguu alone is
ill-posed in L*-norm: for any object-domain 2 C R3 that contains an open set, there exists no
constant C'»(Q) > 0 such that | Zn(f)|| = C»(Q) || f]| for all f € L*(Q). Hence, Lipschitz-
stability estimates may neither hold for XPCT.

Yet, by the close relation of P to the 2D Radon transform # (see §2.3.1), known results
for Z (see e.g. [155, § I1.5]) imply that stability holds w.r.t. weighted norms in Fourier space:

(|12
2 = I ol = e - PO (0,606 = S (3330)
T)1/2
2l = Uflle. Wl = o PO wal6r,62.60) = s (3330

The identities can be proven via the Fourier-Slice-Theorem 2.1. As the stability estimates
(3.3.3a) and (3.3.3b) are equalities, they can be thought of as to provide full and lossless char-
acterizations of the information content of tomographic data. However, their interpretations
slightly differ: the estimate (3.3.3a) states that data-errors that are bounded not only in L
norm, but even in the stronger norm ||-||,-. that amplifies high Fourier-frequencies, lead to
bounded object-errors in L*norm. On the other hand, (3.3.3b) states that data-errors that are
only bounded in L*-norm give rise to bounded object errors in the weaker norm ||| ,, which
underrepresents high- compared to low frequencies. Accordingly, both estimates express the
well-known property that tomographic reconstruction is susceptible in high spatial frequencies
but very stable in the low-frequency regime, yet from slightly different perspectives.

Remark 3.6. The identities in (3.3.3) are typically cast to Sobolev-space estimates [93, 155]: if
11 = Joo (L + [E17)°|F(F)(E)? A€ and || Iy, = fuu [o (1 +€2)*|FEI (p)(w, §)[* dédw, then
for any bounded Q C R? there exist constants 0 < c(2) < C(2) < oo such that c¢(Q)||flla: <
|\ Z(f)] e < C)|| fllzs for all f € L?(Q) and s > 0. Analogous bounds can be obtained
for (@fuu Whlle such estimates are more commonly used to express stability of tomographic
reconstruction, the equalities in (3.3.3) are more useful for the argument to be made.

3.3.2 Projection-based stability estimates

By the argument in §3.3.1, the best possible stability results for linearized XPCT are given by
analogues of the bounds (3.3.3a) and (3.3.3b), which hold true for pure projection-data. Indeed,
an estimate of the second kind is straightforward to obtain by applying the Lipschitz-stability
bounds for XPCI for each tomographic incident angle individually:

Theorem 3.7 (Stability estimates for linearized XPCT (2D-based)). Let T' € {7,.%,} :

LX(R2) — L2(R2) and let CEP(QCD) be the corresponding stability constant for Q2 C R?2
from theorem 3.1 or 3.2. Furthermore, let Q C R3 be bounded and let Qg = supp(Py(1q)) be
the mazimal support of Py(f) for f € L*(Q) and 0 € [0;7). Then it holds that

1709 ()| (mnqm«m)wm. (3:3.4)
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Proof. We have

70 (@I = [ [ @) @ deao = [CI7 )] des

Since Py(f) € L*(Qy) for all § € [0;7), each of the L:norms in the integral on the r.h.s.
can be estimated via the stability-estimate for T' from theorem 3.1 or 3.2, ||T(Z(f))|| >

Cfﬁi)(ﬁe) | Z(f)||. By combining this estimate with (3.3.3b), the assertion follows:
2 :
7% (Zra(N)I]" = / CRV() | 201 dd > (min CEV() )| P )

2
= (Lmin CE2©0) 1713 -
€[0;m)

3.3.3 3D-based stability estimates

In order to obtain an analogue of (3.3.3a), a different approach is pursued. In [119, 176],
it is pointed out that the linearized XPCT problem can be related to an XPCl-setting in
m = 3 dimensions, which has been used to derive all-at-once reconstruction methods for XPCT,
compare §2.7.4.3. As will be shown in the following, the surprising relation to 3D-XPCI may
also be used as a tool to analyze stability of XPCT. The basic mathematical principle is the
intertwining property of the parallel-beam projector &y for isotropic Fourier-multipliers:

Lemma 3.8. Let m : Ryg — C be a bounded function and let T : L*(R™) — L*(R™) with
F(T(f)(&) = m(|&]) - F(f)(&) for all & € R™ be the associated isotropic Fourier-multiplier.
Then it holds for all @ € S* and f € L*(R3) with compact support that

T(Zo(F)) = Za(T(f): (3:3.5)

Proof. Since f € L?(R3) is compactly supported, it holds that Py(f) € L*(R?) so that the
Lh.s. of (3.3.5) is well-defined. By the Fourier-Slice-Theorem 2.1, it furthermore follows that

F(T(P6(1)) (€. &) =m(l(E. &)) - F(Po(f)) (&1 &)
U2V 2m)im(|(€L, L)) - F () (Ene + Emy)
= 2m)im(|&mn, + &nyl) - F (f) (Eoma + &)
= (212 F(T(f))(Ene + &)
CEVF(Pe(T())(Enng,)  forall &6 €R. (3.3.6)

The claim now follows by inverse Fourier transform. m

As the linearized forward maps of XPCI T" € {.7, .7, } relate to isotropic Fourier-multipliers
(CTF-operators), lemma 3.8 may be applied to the XPCT-problem to interchange 7" and & in
(3.3.1). For the full angular sampling case in (3.3.2), this yields the identity 702 (P (f)) =
(T (f)). By combining this approach with the stability results from theorems 3.1 and 3.2
for m = 3 dimensions, alternative bounds to that in theorem 3.7 are obtained:
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Theorem 3.9 (Stability estimates for linearized XPCT (3D-based)). Let T' € {7 ,.%,} :
LA(R3) — L2(R®) and let C5Y () be the corresponding stability constant from theorem 3.1 or

3.2 for a bounded domain Q@ C R3. Then it holds for all f € L?(Q2) and 6 € S* that
T(P(f)) = Pe(T(f)) (3.3.7)
T (Pan(f) = Pran (T(f)) (3.3.8)
T (Pran(£))]| s = 1T > CEL @I £ (3.3.9)

Proof. It T'= .#,, T is an isotropic Fourier-multiplier and so (3.3.7) holds by lemma 3.8. In
the case T'= 7, we may employ the CTF-formulation .7 (f) = é,(Re(f)) + S (Im(f)) from
(2.4.3) to verify that

T (Pe(f)) = Co(Re(Po(f))) + Fo(Im(P6([))) = Co(Fe(Re([))) + Fo(Po(Im(f)))
= Zo(¢0(Re(f))) + Po(A(Im(f))) = Po(T (f)). (3.3.10)

Here, it has been exploited that 22y acts independently on real- and imaginary parts and
lemma 3.8 has been applied for the isotropic Fourier-multipliers %, .7, from the first to the
second line. Accordingly, (3.3.7) is also true for ' = 7. Thus, T (Ze(f)) = P (T([))
holds in general. Moreover, (3.3.7) yields (3.3.8) since TU*) (P (f)) (0,-) = T (P (f)) =
Pow) (T(f)) = Pran (T(f)) (0,-) for all 6 € [0;7) by definition of P, compare §2.3.3.

By combining (3.3.8) with (3.3.3a) and the Lipschitz stability estimates from theorems 3.1
and 3.2, the assertion follows:

(3.3.3a

1T (Paan( ) llrs = [P0 T “EV T = CED (@)1 £11- O

3.3.4 Interpretation of the results

It is interesting to note that the obtained stability results for XPCT in theorems 3.7 and 3.9,
unlike their pure-projection-data-analogues (3.3.3a) and (3.3.3b), show significant differences:

e The first relation in (3.3.9) is an equality, thus yielding an ezact correspondence between
stability of the XPCT-problem and 3D-XPCI. No such relation holds in theorem 3.7.

e The value of the stability constant in theorem 3.9 depends on the size of the 3D-support
domain 2, whereas, in theorem 3.7, the projected supports 2y enter. A 3D-support allows
for a tighter description of an object geometry, as illustrated by the following example:

Example 3.10 (3D- vs projected support for a spherical shell). For some R > r > 0,
let Q:={x € R®:r < |z|] < R} and let Qy be defined as in theorem 3.7. Then the
projected supports Qy = B[0; R] C R? are given by balls of radius R (independently of r)
for all 6 € [0;7), whereas the 3D-support 2 becomes more and more sparse as the inner
shell-radius r tends to R.

In general, it can be seen that holes in the interior of a 3D-support €2 never manifest in
the associated projections Qy = supp(Pp(1q)) for any incident direction 8 € S2.
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e The XPCl-stability constants Cip, enter for different dimensions m € {2,3}. Even when
3D- and projected supports are equally tight, as is the case for ball-domains Q2 = B[0; R]
(= Qg = BJ0; R]), a slightly larger, i.e. better, value is often obtained for the 3D-constant
Cl(li’il)(Q) than for C’I(si)(ﬁg). This effect can be identified in the bounds from theorem 3.1
for square- and cube-shaped €2 and will also show in the numerical results of §3.4.3.

According to these observations, we conclude that the 3D-based estimate from theorem 3.9
gives the stronger stability statement. Comparing to the purely tomographic estimate (3.3.3a),
the practical meaning of the derived stability bound (3.3.9) can be summarized as follows:

Reconstructions in linearized XPCT are less stable than pure tomographic inversion
by no more than a constant factor Cl(g(i)(Q).

3.4 Supplement: numerical stability computations

As mentioned before, the obtained bound for the stability constant Cyp; of inverse problem 3.1
is found to be quite sharp. On the contrary, the stability result for homogeneous objects
(theorem 3.2) only predicts the asymptotic behavior of the stability constant Cips with the
Fresnel number, Cipy ~ §77 with v € {1, %}, up to numerical constants for which only rough
bounds are obtained. In order to validate stability of image reconstruction in a specific XPCI-
setup, this result is not sufficient but quantitative values of Cips are needed that are as sharp
as possible. The aim of the following supplement is therefore to derive (numerical) strategies
that enables accurate computation of the sought stability constant Cips(€2,§, ) for a given
imaging setting parametrized by €2,f,v. Although the presentation here will be limited to
inverse problem 3.2 for simplicity, note that the approach also enables stability-computations
for inverse problem 3.3 by virtue of theorem 3.3. Moreover, the results presented below may
also be adapted to inverse problem 3.1, enabling stability computations beyond the analytical
bound from theorem 3.1.

As the required theory underlying to the numerical stability computations is technical in
parts, the proofs of the theorems in §3.4.1 and §3.4.2 are postponed to appendix A.
3.4.1 Contrast-minimizing modes

For the computation of the sought stability constant it is a highly relevant and non-trivial
question, whether the stability estimate is actually attained by any image, i.e. whether there
exists a contrast-minimizing mode o € L*(Q,R) with ||¢o|| = 1, satisfying

17 (o)l = inf 170 (D) = Cre2(82, §, v). (3.4.1)

PEL?(QR),[|pl|=1

To prove existence of contrast-minimizing modes, we need to rewrite the contrast ||.7,(¢)|l:

Lemma 3.11. Let 2 C R™ be bounded, { > 0 and v € R. Then it holds that

1Z(@))1* = (0,20 — 2K;,,(¢))  for all ¢ € L*(), (34.2)
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where K5, : L*(Q) — L*(Q) is a selfadjoint and compact linear operator defined by

Ko (p) = fﬁl(iff,u cF())|a = (ki x @) |o = /Qkf,u(' —y)p(y)dy (3.4.3)

i (€) = cos (%my), ki (@) = (5/2)™? cos (f 2" (21/+m7r/4)) (3.4.4)

Lemma 3.11 implies that the stability constant can be obtained by computing the maximal
eigenvalue of the selfadjoint compact operator K;, and that contrast-minimizing modes are
given by the associated eigenfunctions:

Theorem 3.12 (Existence and characterization of contrast-minimizing modes). Let @ C R™
be bounded, f > 0 and v € R and let KC;,, be the operator from lemma 3.11. Then either of the
following cases hold true:

(1) K, has a positive eigenvalue. Then there exist contrast-minimizing modes oo € L*(Q, R)
and these are exactly the eigenfunctions of Kj, to its mazimal eigenvalue X;, > 0, i.e.

Kf,v(sﬁo) = AP0, and
Crea (€, §,v) = (2= 2X5,) "2 (3.4.5)

Moreover, there are finitely many linearly independent contrast-minimizing modes and
any such mode is infinitely smooth in the interior of €.

(2) K, does not have positive eigenvalues. Then Cipa(S2,§,v) = 21/2,

3.4.2 Numerical method
3.4.2.1 General numerical strategy and its limits

Theorem 3.12 implies that stability may be assessed via numerical eigenvalue computations of
the operator Kj,. Since K, is compact, it may be uniformly approximated by a suitable se-
quence of discretizations K;, n € RN Tlimpy e [[ExnK iunEN — K| = 0 for some isometric
embeddings Ey : RY — L?(Q). Hence, Cipa(€2,f,v) = (2 — 2);,)? may be approximated by
computing the maximal eigenvalue \;, n of the matrix K, x for sufficiently large NV, in which
case the associate eigenvectors provide approximations ¢ n of a contrast-minimizing mode
¢p. Since any such g is smooth according to theorem 3.12, the convergence ¢y n — o and
AN — Asy for N — 0o can be expected to be reasonable fast for any standard discretization
schemes that approximate functions from coarse to finer and finer scales as N increases.

Discretizations may be obtained by sampling functions ¢ on points {z;}Y, C €, setting
@ = (p(x;))), and Ky, v = (ks (x; — x;)w;),_; with quadrature-weights w; such that

(Kiune), Zkf 2, )wjol;) ~ / By — )e(y) dy = K, (9)(@)  (3.4.6)
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for all sufficiently smooth ¢ € L*(Q,R) and i = 1,..., N. However, the convolution-kernel k;,
is highly oscillatory: for the unit-ball Q@ = B[0;1/2], the fastest oscillations of k;,(x — y) for
x,y €  correspond to a half-period of 27/f = 1/§. From sampling theory, we thus expect
that the integral operator Kj, needs to be sampled at this resolution at least, which translates
to a dimension N > §" of the discretizing space R™. Recalling that the regime of practical
relevance for XPCI (and XPCT, see §3.3) is 10> < § < 10° and m € {2,3}, we find that
N is thus typically so large that precomputing the matrix Kj, n € RY*Y is computationally
prohibitive. Even matriz-free eigenvalue-algorithms, that require only matrix-vector-products
¢ — Kj;, ne, which can be implemented in O(2N log(2N)) operations via FFTs owing to the
convolutional structure of K, n, become infeasible at Fresnel numbers § > 10%/™.

3.4.2.2 Exploiting symmetries

We seek to eliminate this fatal dependence on the dimensionality m by exploiting spatial sym-
metries of the problem. As the CTF-operator .¥, is isotropic, it is invariant under orthogonal
transformations of the coordinate system such as rotations or reflections & — —x. When also
the domain 2 is invariant under one of these operations the operator K;, will therefore com-
mute with the corresponding symmetry-transformation. In particular, this implies that the
symmetries will manifest in the contrast-minimizing modes ¢y in some manner.

Consequently, one may have the following conjecture (or hope): for a ball-domain 2 =
B[0;1/2], where the problem is rotationally invariant, there exists a contrast-minimizing mode
that is radially-symmetric. As a benefit, finding such a mode — and thus the stability constant
Cipa — would reduce to determining its dependence on the radial coordinate, i.e. to finding a
one-dimensional function. Interestingly, this conjecture turns out to be only almost true and
proving it is by far more involved than one might expect (see appendix A.2):

Theorem 3.13 (Symmetries of contrast-minimizing modes). Let f > 0, v € R and Q@ C R™
bounded. Then the following holds true:

(a) (point-symmetry) If Q = —Q, then there exists either an even or an odd contrast-
minimizing mode, i.e. @y from theorem 3.12 may be chosen such that

wo(—)=¢o or o(—)=—o. (3.4.7)

(b) (radial symmetry) If Q = B[0; 1], then there exists either a radially symmetric or a radi-
ally anti-symmetric contrast-minimizing mode, i.e. @y from theorem 3.12 may be chosen

such that, for some function pF* € L*([0;3]), either of the following applies:

(1) wo(x) = |:1:]*m orad(|z|) for all 2 € R™\ {0}. Then @24 is an eigenfunction of a
selfadjoint compact integral operator ICri‘,dS : L*([0; 2]) — L?([0; 3]) defined by

K;ids Bad / Krads ’I“ p <pgad(p> dp
2 cos(Lrp) (m=1)

K[ (r,p) = (;)Q(Tp) T cos (w—v) o o(rp)  (m=2) (3.4.8)
drsine(Lrp)  (m=3)
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to its mazimal eigenvalue, which is \;,. Then @o: @ — |x|” e gogad(|w|) for any

et e L2([0; 3]) with ICrads( oy = N, ok ds also a contrast-minimizing mode.

(2) po(x) = (6 - |m|)|:c| 2 rad(|:1c|) for all x € R™\ {0} and some 6y € S™"'. Then

analogous statements to (1) hold for a modified integral operator K;id’a with kernel

m s o 2sin(irp) (m=1)

Kb (r, p) = (—) Q(Tp) T sin (W —7) 2 Ji(Erp) (m=2) (3.4.9)
drsincy(irp)  (m=3)

Here, the abbreviation y := 2v — mm /4 is used, J, : @ — * [ cos(nt — xsin(t)) dt denote
nth order Bessel functions of the first kind and sincy : x i (sin(z) — z cos(x))/x?

Note that the complicated part in the proof of theorem 3.13 is the existence of radially (anti)-
symmetric modes. The result is shown in appendix A for general isotropic Fourier-multipliers,
beyond the particular case of the CTF-operator ..

3.4.2.3 Improved numerical method for ball-domains

The gist of theorem 3.13 is that the computation of Cips(£2, f,v) for the special case of ball-
shaped domains 2 = B[0;1/2] C R™ can be reduced to eigenvalue problems for the integral
operators lCrad s ICrad “ on the 1D-interval [0;1/2] — independently of the true spatial dimension
m. Accordlngly, we sample the kernels Kf “L0) on equally spaced radii {ri}ily = {pi}y =
{(1+25)/(4N) : 5 =0,1,...N — 1} C [0;1/2] and compute the maximal eigenvalues of the
resulting matrices K gl), N = (Kfrid O, p;))ii—y € RMVN " This corresponds to approximating
the integrals in (3.4.8) via the midpoint-rule. By the sampling requirements arising from the
oscillatory behavior of the integral kernels, that have been discussed further above, a dimension
N 2 §/2 is required for a good approximation of the continuous problem. We therefore consider

choices N (o) = [omax(100,§/2)] with sampling factors o = 1.

Convergence of the derived numerical algorithm is exemplarily studied for m € {2,3},
v € {0,arctan(0.1)} and § € {103,10*}: approximations C{p)(Q,f,7) = (2 — 2X;,w)"/2 are
computed with N (o) according to sampling factors ¢ = 21,2705 . 2% As the true stability
constant Cipo (€2, f,r) is unknown, we compute the relative deviations from the (supposedly
highly accurate) result for o = 32, ¢(0) := |C’I(1i,v2 ) (Q,f,v)— IP2 (Q f, v )|/|Cl(f],\g(32))(Q,f, v)|.
The results are plotted in fig. 3.3. The plots indicate highly uniform, algebraic convergence,
(o) ~ 1/02, to the true stability constant Cps (2, §, ). Notably, the approximation is typically
already as good as €(o) < 1% for o between 1 and 2, i.e. practically without oversampling.
Recalling that this translates to matrices K" ion of size N(o) x N(o) with N(o) = [of/(4n)]
for large f, the convergence results thus 1mp1y that accurate stability computations are feasible
for modified Fresnel numbers § < 10° on current workstations.

Contrary to the general setting, see §3.4.2.1, this limit may however not be easily overcome
by matrix-free algorithms as the convolutional-structure of the original operator K;, does not
carry over to the radial ones ICrad * and ICrad . as can be seen from (3.4.8) and (3.4.9).
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Figure 3.3. Convergence experiments for numerical stability computations for ball-domains

Q = B[0;1/2]. Plotted are the relative deviations €(o) of the approximated stability constants
CI(IJDVQ(U))(Q, f,v) at various sampling factors o from the value obtained at high oversampling, o = 32,

for different values of m and v at Fresnel numbers (a) f = 10% and (b) § = 10%, respectively.

3.4.3 Numerical stability results

Stability computations for ball-domains 2 = B|0; 1/2] are carried out for the whole parameter-
space of interest: for dimensions m = 1,2, 3, Fresnel numbers f € [1;5-10°] and v € arctan(cgs)
corresponding to fixed ratios pu/¢ = /6 = cgs € {0,1%,2%,5%,10%} between absorption
and phase contrast, compare §2.4.3. The results are obtained for a sampling factor ¢ = 2.
Additionally, the computations are repeated for ¢ = 1, which allows to estimate the error as
|CI(1]3\[2(2))(Q,]°, v) — Cipa(Q, f,v)| =~ %|C’I(1]3\;(2))(Q, f,v) — C’I(P])VQ(D)(Q, f, V)| according to the observed
convergence rates in §3.4.2.3. The maximum estimated error is =~ 1.4 %, where the deviation is
much smaller for most of the investigated parameter-triples (f, v, m).

Let us first discuss the contrast-minimizing modes, obtained as a by-product of the com-
putations. It is found that these come in only two different classes, which are exemplarily
represented by the results for m = 2, f = 10* and v € {0, arctan(0.1)} shown in fig. 3.4(e),(f):
for v = 0 (pure phase contrast) the obtained modes are always unimodal low-frequency “blobs”
as depicted in fig. 3.4(e) and the same holds true for v > 0 (non-vanishing absorption) as long
as f is sufficiently small. For v > 0 and large f on the other hand, the computed modes become
oscillatory as seen in fig. 3.4(f). This is to be expected as the contrast-minimizing modes should
concentrate at the least stable parts in Fourier space, which, for v > 0, is not necessarily around
zero-frequency & = 0 but near the first-order CTF-zero, as seen from the analysis in §3.2.3.2.

The obtained approximations for Cips(€2, f, ) are plotted in fig. 3.4(a)—(d) as solid curves.
For comparison, also the analytical bounds from theorem 3.2 are shown (dashed curves). Quali-
tatively, the numerically determined dependence § — Cipa(€2, f, ), in particular the asymptotic
decay rates Crpa (€2, f,v) ~ §7 for f — oo, turns out as expected from the analytical bound in
theorem 3.1. Quantitatively, however, some interesting observations can be made in addition:

e The numerical values for Cips(€2, f, ) always exceed the analytical bound by factors ~ 10.
This shows that numerical (re-)computations are actually worth the effort.
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Figure 3.4. Numerical results for the stability constant Cipa(£2,f,v) for a ball-shaped support-
domain 2 = B[0;1/2]. Subfigures (a)-(d) show the results for v = arctan(cg/s) corresponding to
cgrs =0 %,1%,3 %, 10% absorption, respectively. The solid lines plot the obtained numerical values
for Cp2(£, §,v) sampled at § = 10°,10%1,10%2, ... 10°. For comparison, the dashed lines of the same
color plot the analytical bound from theorem 3.2. Subfigures (e) and (f) exemplarily show a contrast-
minimizing mode for the setting § = 10*, m = 2 for 0% and 10 % absorption, respectively.
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e For small f, the numerical results stabilize at some value 1 < Cipa(€2,§,v) < 1.5 for all v
and m. By additional analysis, one may indeed show that is in agreement with theory,
predicting that Cips(€, f, ) — 2/2 should hold for § — 0.

e Dependence on m: the stability constants Cipa(€2,f,v) are found to be monotonically
increasing with m, i.e. the higher the dimension the more stability. Yet, the quantitative
differences between the values for m = 1, 2,3 do not exceed a factor of ~ 3.

e For v = 0, i.e. pure phase contrast, there is a smooth transition from Cips (€2, f,v) = O(1)
to decay rates Cipa(Q, f,v) = c1,,f* for § 2 10, where ¢11 ~ 22, ¢15 ~ 40 and ¢; 3 ~ 61.

e For v > 0, i.e. non-vanishing absorption, the following modifications occur:

— Cip2(92, f,v) increases with v, i.e. the more absorption the greater the stability.
— For small §, the functional dependence § — Cipa(€2, f, v) is similar as for v = 0.

— For larger f, the stability constants tend to a plateau, whose value 2sin(r) = 2|s, (0)|
can be identified as the CTF-contrast at Fourier-frequency & = 0.

— For even larger f, the plateau ends with a “kink” beyond which the curves follow
predicted asymptotic scaling Cipa(Q, f, v) ~ c4f /2, where the value of the constant
¢4 ~ 15 is notably quasi independent of m and v. The kink coincides with the tran-
sition from unimodal- to oscillatory contrast-minimizing modes, see fig. 3.4(e),(f).

Although these observations are by far not exhaustive, they demonstrate how numerical
stability computations may supplement the analytical predictions quantitatively. For clarity,
let us emphasize the scope of the derived numerical stability methods:

Numerical Result 3.14 (stability computations). The stability constant Cipa(€2,§,v) from
theorem 3.2 (and analogously Cip; and Cips) may be approximated to high accuracy by nu-
merical eigenvalue computations, which also provide contrast-minimizing modes, i.e. image-
components that are least stable to reconstruct. Numerical methods cover the following regimes:

(1) Arbitrary domains 2 C R™ (of diameter 1) for Fresnel numbers § < 10%™, via §3.4.2.1.
(2) Ball-domains Q = Bla;1/2] C R™ for Fresnel numbers § < 10°, via §3.4.2.3.

(3) Ball-domains Q = Bla;1/2] C R™ at asymptotic Fresnel numbers § — oo, via the fitted
decay rates Cipa(€2,f,0) ~ c1.,mf* (c1m as above) and Cipa (€, f,v) ~ 15§ /2 for v > 0.

It should be noted that Cipa(€2, f, ¥) may usually be computed within seconds in setting (2) if
§ < 10°. Furthermore, let us recall that the stability constants for geometrically complicated
domains €2 may be approximated by such for ball-shaped supports, as discussed in §3.2.2.4.

3.5 Supplement: stability by non-negativity constraints

In the previous sections, stability has been analyzed under the assumption of support constraints
on the unknown image. However, other types of a priori knowledge have been found to improve
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image reconstruction in practical XPCI. In particular, non-negativity of phase- and absorption-
image ¢, are valuable constraints that are justified by the fundamental physics of X-ray
interaction (§2.1.2), i.e. that “come for free”. In this supplement, we show that the obtained
stability results also shed a light on the stabilizing effect of non-negativity constraints.

The analysis of non-negativity constraints is generally more difficult than that of support
constraints due to the nonlinear nature of the former, pointed out in §2.4.6. To gain some in-
sights on the effects, we start from an abstract variational reconstruction method for real-valued
functions, ¢*°" € argminge 2 gy J(¢), with optional support constraint 2 C R™ in analogy
to the CTF-schemes applied in §3.1.1. A reconstruction ¢<3°" with additional non-negativity
constraint corresponds to restricting the minimization to functions that satisfy ¢ > 0 (almost
everywhere). Under suitable assumptions on the functional J (convexity, coercivity and differ-
entiability), the minimizers with and without non-negativity QSEC;(‘)’H are uniquely determined by
the first-order optimality conditions, see e.g. [195, §2.5.1]: if we define Py : ¢ — max{¢p,0}

(pointwise max) and P4 : ¢ — ¢|a (restriction to a measurable set A C R™), it holds that

¢recon c argmin J(¢) = ¢recon _ PQ(¢recon _ J/[¢recon]) =0 (351&)
¢€L?(,R)

1;38011 c argmin J(¢) &= gbrecon P>0PQ( recon Jl[ reconD — 0
- $EL2(QR),$>0

@ recon PQ>O( recon J/[ recon]) — 0 (3%}1&) I‘ECOI’I E aI’gmln J(¢) (351b)

; PEL?(2>0,R)

with Q¢ := {z € Q : ¢55" — J'[¢55°"](x) > 0}. Importantly, the optimization on the r.h.s.
of (3.5.1b) no longer ezplicitly imposes non-negativity but only asserts a (tightened) support
constraint supp(¢55™") C Q0 C Q. Hence, the equivalences in (3.5.1b) show the following:

Non-negativity constraints effectively act as automatic (tightened) support constraints.

The word “automatic” emphasizes that the effective support domain €25, is not manually
set as in the case of normal support constraints, but is implicitly defined by details of J and
typically hard to predict a priori*. In particular, it is not even clear whether a non-negativity
constraint will be active at all: it may certainly happen that Qo = €2 in (3.5.1b), in which
case the constraint is without effect on the computed reconstruction. When active, however,
the impact of imposing non-negativity may be readily understood in terms of the associated
effective support constraint, according to (3.5.1b).

For the considered inverse problems of XPCI (and XPCT), the strong stabilizing effect of
support-knowledge found in the preceding sections thus suggests similar benefits from exploiting
the natural non-negativity of sought images ¢, u (or 9, ). We conclude with some remarks:

o Complex-valued images: While real-valued ¢ have been assumed above for simplicity,
the statements generalize to settings where complex-valued functions h € L*(Q) are
reconstructed with non-negativity constraints in the real- and/or imaginary part. Yet,
different effective supports Q5. QU C Q then arise for Re(h) and Im(h) in general.

e (General box constraints: The results for non-negativity may be furthermore generalized
to analyze the effect of arbitrary box constraints of the form ¢nin < ™" < Gnax.

*Incidentally, the idea of a certain class of reconstruction algorithms, so-called active set methods (see e.g.
[94]), exactly boils down to imposing non-negativity by iteratively determining the effective support Q>¢.

74



PhD thesis: Inverse problems in X-ray phase contrast imaging Simon Maretzke

e 2D- versus 3D-non-negativity in XPCT: In §3.3.4, it has been argued that 3D-support
constraints provide a tighter description of the object-geometry in XPCT than confining
the support its 2D-projections and therefore enable improved stability. Analogously,
imposing non-negativity of a 3D-object is a strictly stronger (and thus more valuable)
constraint than non-negativity of its 2D-projections: f > 0 implies that Py(f) > 0 for
all incident directions @ € S™~1, yet the converse is not true.

3.6 Supplement: the completely holographic regime — a
doubly sweet spot of XPCI

A remarkable common feature of all the derived stability results is that they improve as the
(modified) Fresnel number § decreases, which corresponds to more and more holographic mea-
surements as discussed §2.2.1.4. This makes the regime of low Fresnel numbers § < 10 highly
interesting for applications. In this regime, all object-lengthscales up to the coarsest ones are
holographic, i.e. substantially distorted by Fresnel diffraction, and therefore yield significant
phase contrast. This is the physical explanation for the observed high stability of XPCI in this
completely holographic regime, which is further investigated in the present supplement.

3.6.1 Asymptotic linearity of XPCI for low Fresnel numbers

Despite the apparent benefits of measuring at low Fresnel numbers, we recall that the con-
siderations have so far been restricted to the linearized imaging model, while the behavior of
nonlinear contributions has been neglected. In the following, it is shown that indeed also the
nonlinear terms in the XPCI-forward model behave in a surprisingly favorable manner in the
limit of small Fresnel numbers § — 0. The principal observation is the following:

Theorem 3.15 (Band-limitation of the quadratic nonlinearity in XPCI). Let h € L'(R™) N
L*(R™). Then it holds that

}"(]D(h)|2)(£) = (27)"% ((nf “h) % (ng - h))(—é/f) forall &€ R™, (3.6.1)

where “«x” denotes the correlation-operator, fx g(x) := me flx+vy)g(y)dy. In particular, if
h € L*(Q) is supported in some bounded domain Q C R™, then |D(h)|* is band-limited with

F(ID(h)?)| .-y = 0. (3.6.2)

Proof. By the alternate form of the Fresnel propagator in (2.2.10), it holds that

m

[D(R)[* () = 7" | F (ns - B) (5 - @)[* = (27) "% §"F ((n - h) x (ns - b)) (- )
= (2m)" 2 F (((nj- h) * (nj - h))((-)/§)) (&) forall xeR™ (3.6.3)
Here, the convolution-theorem has been applied to rewrite the squared modulus of the Fourier

transform in terms of an (auto-)correlation and the known behavior of the FT under coordinate-
dilations has been exploited. Using the general identity F(f) = F(f(—-)), we obtain

m

F>IDM)2)(E) = (2m) % ((ns- h) = (g - B))(—€/f)  forall £ € R™ (3.6.4)
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If the support of & is contained in €, then also supp(n;-h) C Q and thus supp((ns-h)*(ns-h)) C
) — Q by standard results on the support of correlations. This implies the assertion. O

According to theorem 3.15, the effects of the quadratic nonlinearity in XPCI are restricted
to Fourier-components from within the sub-domain §- (2 — Q) of Fourier space. The restriction
is typically to low frequencies as illustrated for the important special case of ball supports:

Example 3.16. Let Q := Bla, 5] be given by a ball of diameter one around some a € R™.
Then it holds that §- (2 — Q) = BJ0, f] and hence, by theorem 3.15,

F(ID(h))|ppge =0 forall he L*Q). (3.6.5)

Now let us consider the fully nonlinear XPClI-model A4 (h) = |D(exp(—h))|*—1 from §2.4.1.
As used already in §2.4.7.2, the operator may be cast to the form

N (h) = T(0)+ |D(o)]> with o0:=1—exp(—h). (3.6.6)

Hence, the nonlinear contrast I — 1 = _A47(h) in the hologram-data is linear w.r.t. the incre-
mental object transmission function (1I0TF) o, up to the remaining quadratic term |D(o)|’.
Theorem 3.15 and example 3.16 imply that the latter may be eliminated by restricting to high
frequencies, so that the remaining contrast is completely linear in the iOTF:

Corollary 3.17 (Linearity of XPCI-data in high Fourier-frequencies). Let h € L*(Q) for
bounded @ C R™ with Re(h(x)) > 0 for almost all x € R™. Let A" be the nonlinear for-
ward operator of XPCI. Then it holds that

f(JV(h)) |(f.(Q_Q))c = ./—"(9(0)) |(f.(Q_Q))C with o:=1-— exp(—h) (367)

i.e. nonlinear XPCI-data is linear in the tOTF o for all spatial frequencies outside the bounded
domain § - (Q — Q). Moreover, o is uniquely determined by the data (3.6.7).

Proof. The assumptions h € L?(Q2) and Re(h) > 0 ensure that o € L*(Q) € L'(R™) N L*(R™),
as shown in §2.4.7.2. Hence, theorem 3.15 may be applied to |D(0)|?. By (3.6.6), this yields

F(A ()l @-ape = F(T(0)|g@-ape + F(ID©)1*) [@-ane = F(7(0))|g@-ape  (3.6.8)

The uniqueness statement is a consequence of the principal uniqueness theorem 2.10. O

The observation of linearity at high frequencies is not new but has already been used in a
uniqueness proof for nonlinear XPCI, see for example [108, Theorem 3.3]. What has seemingly
not been realized so far, however, is the strong dependence of the frequency cut-off on f and its
implications on practical imaging. This is discussed in the following.

Corollary 3.17 shows that the nonlinearity of XPCI may theoretically be by-passed, up to
a remaining reconstruction of h from o = 1 — exp(—h), which is a simple pointwise operation
except for possible phase-wrapping ambiguities, see §2.5.1.1. This sounds too good to be true
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and indeed there is a catch: for typical Fresnel numbers f > 10 in experiments, the frequency-
domain f- (2 — ), in which nonlinearity is still present, is typically huge. Indeed, the cut-off
frequency ~ f often exceeds the maximal spatial frequency associated with the finite resolution
of the acquired holograms. In this case corollary 3.17 is thus irrelevant for practical imaging.

Notably however, the situation changes dramatically for low Fresnel numbers § < 10, i.e.
in the completely holographic regime, where the quadratic nonlinearity of XPCI only affects
the coarsest relevant spatial frequencies. Most prominently, corollary 3.17 implies that the
nonlinearity becomes completely trivial in the limit f — 0. Accordingly, imaging at low Fresnel
numbers is not only desirable from the point-of-view of stability for the linearized problem, but
also because it decreases the nonlinearity of the image reconstruction problem.

3.6.2 Practical realization of completely holographic XPCI

The completely holographic setting, where the XPCI-data is holographic even for the coarsest
object-scale, given by the sample-diameter, is not accessed by typical imaging setups. Accord-
ingly, one may ask whether it is possible to do experiments in this regime at all with a typical
synchrotron XPCl-setup like the GINIX from §1.2. The answer is yes but the path is slightly
counter-intuitive: although small Fresnel numbers are typically associated with large geomet-
rical magnifications, i.e. small source-to-sample-distances dy;, one has to make dy; large to
obtain completely holographic measurements, as will be seen in the following.

By the Fresnel-Scaling-Theorem (see §2.1.5.1), the modified Fresnel number associated with
a fized physical length b (e.g. the sample-diameter) in a divergent-beam setup is given by

21h? 27h? dl,zido,z 21h?

M A " Ndo2

foett = (3.6.9)

where A is the wavelength, dys denotes the source-to-detector-distance, dy o = dp2 — do1 the
sample-to-detector-distance and M = dy2/do1 the geometrical magnification. In the GINIX-
setup, the distance dpo is fixed and dy 2 &~ do2 holds true, as assumed in (3.6.9), because the
required magnifications M >> 1 necessitate that dp; < dp2. According to (3.6.9), the Fresnel
number fj 5 is thus essentially proportional to M. Hence, completely holographic XPCI-data
may be acquired by imaging at relatively low magnification, as illustrated by example 3.18:

Example 3.18 (Fresnel number at large and small magnifications). Consider a sample of
diameter b = 10 um imaged in the GINIX-setup (see §1.2) at source-to-detector-distance dy o ~
5m and wavelength A =~ 0.157 nm. Then it holds that

fper =401 for dp; =0.0lm (high magnification M = 500) (3.6.10a)
foef = 20.8 for dp; =02m (low magnification M = 25) (3.6.10b)

We emphasize that XPCI at the lower magnification M = 25 in example 3.18 is extremely
stable — even if phase- and absorption are to be reconstructed independently from a single
hologram, i.e. for the setting of inverse problem 3.1: using the numerical methods from §3.4, we
find that a Fresnel number of f = f, ¢ ~ 20.8 associated with a 2D ball-support 2 = B[0;1/2]
corresponds to a stability-constant Cipy(€2,f) ~ 0.45, which means that even the least stable
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mode induces strong contrast in the data. Moreover, note that the wavelength A and sample-
diameter b in example 3.18 are similar as in the real-world XPCl-settings from fig. 1.3(a),(b).
This shows that the completely holographic regime is indeed experimentally accessible.

Yet, we also see that measuring in this regime comes at a price: the object has to be
moved far away from the source spot so that the magnification M is relatively low. This
limits the achievable resolution: features of size smaller than Az, /M, where Az is the
physical detector-pixel size, cannot be resolved. The GINIX-data considered in this work has
been acquired by a detector of pixel-size 6.5 micrometers so that the resolution at 25-times
magnification would be limited to 260 nanometers, which is rather coarse compared to the total
sample-size of 10 micrometers assumed in example 3.18. This limitation could be circumvented
by using detectors with smaller pixels in principle, but this poses severe technological challenges.

3.7 Conclusions

To conclude this chapter, we discuss the findings of the presented article and corresponding sup-
plements from a broader perspective, outlining conclusions for the design of XPCl-experiments
and practical image reconstruction algorithms.

Significance of (support) constraints: The derived theorems reveal a significant beneficial
effect of support constraints to image reconstruction in XPCI, in accordance with numerical
reconstruction results, see [14, 13] and §3.1.1: inverse problems 3.1 to 3.3, that are ill-posed or
even non-unique in the unconstrained case, become well-posed when the support of the image is
known a priori to lie within a bounded domain 2 C R™. Moreover, the tighter the constraints,
i.e. the smaller the support-domain € (in terms of the associated Fresnel number f), the more
stable image reconstruction becomes to errors in the measured hologram(s). The analysis also
predicts a stabilizing effect of imposing non-negativity of the recovered phase- and absorption
images ¢, i, as such constraints may be interpreted in terms of effective supports, see §3.5.

In order to take advantage of the theoretical predictions on stability, image reconstruc-
tion algorithms need to be capable of imposing support- and non-negativity constraints. This
constitutes a major motivation for the numerical methods proposed in chapter 5.

3D constraints and tomographic consistency in XPCT: The extension of the results
to phase contrast tomography in §3.3 revealed that stability of image reconstruction in XPCT
depends on the 3D-support QY  R3 of the imaged object. As discussed in §3.3.4, this enables
improved stability compared to the associated 2D-XPCI reconstruction problems of retrieving
the projected phase-images (and absorption) from the holograms for each tomographic angle in-
dividually (owing to potentially sparser supports in 3D than in 2D (example 3.10) and generally
larger stability constants in higher dimensions (§3.4.3)). Likewise, non-negativity constraints
are more restrictive and thus more stabilizing when imposed on a 3D-object (§3.5). The origin
of the improved stability lies in tomographic consistency, i.e. in the characteristic redundancies
in tomographic data described by the Helgason-Ludwig-conditions (theorem 2.2).

The stability results for XPCT thus motivate joint- or all-at-once reconstruction methods of
the kind introduced in §2.7.4: the 3D-nature of the stabilizing consistency constraints suggests
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that these may only be fully exploited by algorithms that “bear in mind” the full 3D-geometry
already in the phase reconstruction step by interweaving it with tomographic inversion.

From ill-posed to well-posed — a mathematical Curiosity? In terms of abstract Hilbert
space geometry, the introduced support constraints correspond to a restriction 7’|y of a linear
forward operator T € {.7,.%,, 70} © X — Y to an infinite-dimensional closed linear
subspace V C X with X = L*(R™(,R)) and V = L*(Q(,R)). Tt is quite unusual that such a
“non-invasive” modification establishes well-posedness of a formerly ill-posed inverse problem.

However, there is a sound mathematical reason why this is possible for the XPCI-problem,
unlike other settings: in many standard examples of inverse problems, the associated forward
operator T : X — Y (or its Fréchet-derivative in the nonlinear case) is compact, i.e. maps
bounded subsets of X to relatively compact subsets of Y. Compact linear operators on infinite-
dimensional normed spaces X may never have a continuous inverse, their inversion is necessarily
ill-posed. Importantly, also any restriction T|y : V' — Y to a linear subspace V' C X remains
compact if T is compact and so ill-posedness persists whenever V' C X is infinite-dimensional.
Accordingly, the stability approach of the presented article may not work for any inverse prob-
lem with a compact forward operator.

The somewhat unusual route to establishing well-posedness and stability is thus only pos-
sible because of the non-compactness of the XPCl-forward operators T € {.7,.7,, 7 fuf2)1
on their natural L?-domains. While this does not mean that similar stability results can be
obtained for all inverse problems with a non-compact forward map, the analysis of the present
work might still be adaptable to some problems of this kind.

How many holograms are needed? As noted in the motivation §3.1, typically several (e.g.
four) holograms are measured at different Fresnel numbers to ensure stable image reconstruction
in practical XPCI — even when homogeneity of the object may be assumed. Quantitative
predictions for the governing Lipschitz-stability constant Cip.(...) from theorems 3.1 to 3.3 or
numerical computations via the methods from §3.4 allow to distinguish settings where multiple
measurements are required from those where a single hologram is sufficient: if the available
support constraint (possibly plus homogeneity) is sufficiently tight such that Cip.(...) = 0.1,
then the beneficial effect of acquiring additional holograms might be too weak to justify the
experimental effort. Quantitatively, Cp.(...) = 0.1 translates to the following requirements for
the modified Fresnel number § associated with the support-size (compare fig. 3.4):

o Significantly absorbing homogeneous objects: § < 103
o Weakly absorbing homogeneous objects (including pure phase-objects): f < 102

e (General objects (independent phase- and absorption-image): § < 10

As outlined in §3.6.2, f may be decreased (thus increasing stability) for a fixed specimen
in a divergent-beam setup by increasing the source-to-sample-distance, at the cost of a lower
geometric magnification. Combined with the identified stability-requirement § < 10, this ob-
servation in particular gives a detailed answer to a controversial question in XPCI, raised by
the mismatch between uniqueness-theory and practical experience (compare §3.1):
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Stably retrieving phase- and absorption-image from a single hologram without homo-
geneity constraint is possible — yet, only for small objects or at low geometric magni-
fications.

In how far a reduction of magnification to improve stability is reasonable will be further dis-
cussed in §4.3 in conjunction with the results from Article 2.

Whenever the above stable ranges of Fresnel numbers are not accessible, in particular when
the sample is so large that it does not even fit into the imaged field-of-view (a region-of-interest
imaging setting as in 1.3(c)), acquiring multiple holograms is still advisable from the point-of-
view of the presented stability analysis.

Choice of Fresnel numbers in the case of multiple holograms: For the standard case
of XPCI from multiple holograms under homogeneity constraints, the Fresnel numbers fq, ..., f,
are often chosen such that the zeros of the associated CTFs sl(,h), e ,s,(,f“) mutually cancel out
as much as possible to reduce ill-posedness [212], compare §2.4.4. Interestingly, the derived
stability theorem 3.3 for the reconstruction of general objects (no homogeneity) from two holo-
grams motivates a different setup: for the stability constant Cip3(€2,f1,f2) to be large, the two
Fresnel numbers §1, f, should be chosen such that the difference ' = |f;* — f,!| is as large as

possible, corresponding to maximally distinct acquisition-setups for the two holograms.

Combining completely holographic with high-resolution measurements: Probably,
the most important take-home message is the following:

A small Fresnel number is always desirable in view of stability of XPCI.

In particular, even the most challenging XPCl-setting become fully stable in the completely
holographic regime, as outlined in §3.6. The analysis in §3.6.1 indicates that this even remains
true when the full nonlinear XPCI-model is considered.

According to §3.6.2, only low-resolution images can be obtained from completely holo-
graphic measurements due to the required small geometrical magnifications and finite detector-
resolutions. Notably, however, this is already of considerable value as low-frequency image-
modes have been identified as the least stable ones to reconstruct in standard, less holographic,
high-resolution XPClI-setups. This motivates to reconstruct from data given by one completely
holographic hologram, stabilizing low-frequency components, and one or two additional holo-
grams in the conventional high-magnification setting to circumvent the resolution-limits. In
practice, image reconstruction may then be achieved via a scheme of the following form:

(1) Image reconstruction from the completely holographic, low-magnification data.

(2) Upsampling of the obtained low-resolution image by interpolation to the natural resolution
of the high-magnification hologram(s).

(3) Image reconstruction from the high-magnification data using the upsampled image as a
prior, i.e. penalizing deviations from the latter.

In particular, such a procedure might also enable stable high-resolution imaging of phase and
absorption as independent parameters, according to the presented stability analysis.
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Chapter 4

Locality Estimates for
Fresnel-wave-propagation and stability
of X-ray phase contrast imaging with
finite detectors

The second theoretical study, Article 2 [142], aims to understand XPCI slightly beyond the
scope of the standard idealized models. Namely, the article considers the very practical limi-
tation that real-world detectors have a finite extent and may thus never capture a “complete”
hologram. From a practical point of view, the analysis sheds a light on the fundamental question
of achievable resolution in XPCI. By comparing to real reconstruction examples in chapter 5,
we will indeed see that the resolution limits arising from a finite detector play a significant role
in practical imaging.

4.1 Motivation

The stability results presented in §3, appealingly strong though they are, are based on the linear
CTF-model of XPCI, which involves several idealizations. The assumptions most frequently
discussed (and relaxed) in the literature include ideal plane-wave illumination [83, 101, 170, 84],
linearity (i.e. weak scattering) [194, 47, 87] as well as full coherence [166, 41, 86, 87|, see also
§2.1.5. An issue in real-world XPCI that is only rarely considered, however, is the simple fact
that real-world detectors cover only a finitely large (typically square) area. This implies that
only a restriction of the hologram intensity I°™|x to some bounded detection domain K C R?
is measured. In the following, K is also referred to as the field-of-view (FoV') or simply detector.

It is important to note that, in principle, this experimental restriction is fundamentally
incompatible with standard theory of linearized XPCI: restricting to a sub-domain K C R?
breaks translational invariance, which is essential to formulating the CTF-model via Fourier-
multipliers, i.e. convolutions. As a consequence, direct CTF-inversion (see §2.7.2.1), that cor-
respond to a deconvolution operation, strictly loses its validity for data acquired by finite
detectors. This breakdown of the CTF-model is easily missed as CTF-based reconstruction is
typically implemented via FFTs, that implicitly replace the assumption of an infinite FoV with
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(incorrect) periodic boundary conditions at the detector-edges, compare §2.6.2.3. Likewise, the
stability theory from §3 does not simply carry over to a finite-detector-setting.

Incid//Vb/ea

Figure 4.1. Numerical aperture NA in XPCI: As usual for lensless imaging systems, NA = sin(0yax)
is defined via the maximum angle 6, such that all light scattered under 0p,, from a point x in the
object-plane is still detected. Notably, this implies that NA varies within the field-of-view, indicating
that the same holds for the achievable resolution.

What physics seems to tell us: When discussed in physical literature, the impact of a
finite detector is often argued to be well-understood, see e.g. [158, 127, 126, 171]: for lensless
imaging setups, the area of the FoV covered by the detector determines the numerical aperture
NA = sin(Opax), where 6., is the maximal angle at which scattered light is still collected by
the detector, as sketched in fig. 4.1. By Abbe’s diffraction limit, NA limits the resolution r, i.e.
the size of the smallest object-features that may be faithfully imaged to

A

— : 1 h 4.1.1
20O (X : wavelength) ( )

T'Abbe =
Upon a second glance, however, this perspective on the finite-detector-problem can be argued
to be over-simplifying for different reasons:

e Abbe’s criterion is strictly valid only for far-field optics, while near-field imaging is con-
sidered in the present work. Indeed, certain super-resolution imaging techniques [23, 89|
exploit that the resolution-limit may be overcome in near-field optics.

e Even if a resolution limit arises, it remains unclear whether this is the only effect induced
by a bounded field-of-view on image reconstruction in XPCI.

e How sharp is the resolution limit? For example, is it possible to improve the resolution
by a factor of 1.5 by acquiring very low-noise holograms?

e Abbe’s diffraction limit may be overly optimistic: it is based on asking at what minimal
distance a very specific object composed of two point sources is still faithfully imaged.
On the contrary, to truly guarantee some resolution r, one would like any possible object-
structures of lengthscales greater or equal to r to be accurately reconstructed.

Accordingly, it is necessary to study the effects of a finite FoV in XPCI in a rigorous manner
beyond Abbe’s criterion. This is achieved in the present article, by deriving stability-estimates
for image reconstruction in a finite-detector-setting.
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Why not simply use a larger detector? One possible reason why the finite-detector-
problem has received comparably little attention is that it seems easy to fix: if the current
detector does not capture enough of the hologram, then why not just use a larger one? To
understand this, one should recall from §2.2.1.5 that XPCI is a holographic imaging technique:
the data-contrast mainly™ arises from interference of the scattered wave-field induced by the
imaged sample and the unscattered part of the probing X-ray beam. Importantly, this means
that only data from detector-regions that are sufficiently #lluminated by the primary beam
provide strong contrast. On the contrary, the opening angle of the divergent X-ray beam in
high-resolution XPCl-setups is typically very small (in the order of 0.1 degrees for the GINIX,
see §1.2). As a consequence, the width of the produced beam-profile is typically hardly sufficient
to ensure full illumination of a standard-size detector, as can be seen in fig. 2.3. The finite
beam-divergence thus limits the (illuminated) FoV independently of the detector-size.

In principle, this limitation may be overcome by also using the non-holographic data-
components for image reconstruction, given by intensity of the scattered wave-field alone (|¥,|*
in §2.2.1.5). This approach is known as Fresnel coherent diffractive imaging (FCDI) [208], as
it resembles conventional CDI except that data is measured in the near-field, Fresnel-regime
instead of the far-field regime. Importantly, FCDI also shares the drawbacks of CDI: challenges
in phase reconstruction due to the highly non-linear problem structure and a dramatically worse
fluence-resolution relationship compared to holographic XPCI [85]: much more X-ray photons
are needed in (F)CDI to achieve the same resolution, which translates into higher exposure
times and increased radiation damage. Accordingly, although XPCI-data also contains some
information in the dark “outskirts” of (non-flat-field-corrected) holograms (see fig. 2.3(a)), its
appealing advantages compared to CDI only apply within the illuminated detector-area. In
this sense, we may conclude that a finite field-of-view, limited by the divergence of the probing
X-ray beam, is fundamental to (holographic) XPCI. Understanding the effects of a finite FoV
is thus vital to assess the potential and limits of the imaging technique.

4.2 Summary of the results

4.2.1 Basic setting

Holograms measured by a finite detector K provide data of the form I|x ~ 1 + A (h)|x or
Il ~ 1+ Z(h)|k, where A (h) = |D(exp(—h))|* =1 and 7 (h) = —2Re(D(h)) denote the
principal forward maps of XPCI. The considered inverse problem 4.1 amounts to reconstructing
the image h from such data. Notably, this problem combines difficulties arising from a finite
FoV with those related to the phase-problem in XPCI. Therefore, the simplified setting of
reconstructing h from truncated Fresnel-data D(h)|k is studied in addition:

Inverse Problem 4.1 (Reconstruction of complex-valued images). For 0, K’ C R™, recon-
struct a complex-valued image h € L*(2) from either of the following data:

(a) gty = D(h)x
(b) g5y = T(h)lx

*In fact, all contrast-components in XPCI-data that are linear in the object, being the only(!) contributions
used in CTF-reconstruction for example, are holographic in the above sense.
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(c) gt~ A (h)|x

As inverse problem 4.1(b),(c) correspond to reconstructions from less data (missing phase or
imaginary part of D(...)) compared to variant (a), any instability or ill-posedness in the model-
problem (a) manifests also in the XPCl-problems (b) and (c). As studying (a) is simpler, this
motivates to restrict the analysis to Fresnel-data, as is widely done in the article. Furthermore,
note that we study inverse problem 4.1 in arbitrary dimensions m € {1, 2,3, ...} although XPCI
corresponds to m = 2, for similar reasons as in the stability analysis of chapter 3.

Interestingly, it turns out to be highly relevant for the finite-detector-problem whether gen-
eral complex-valued images are to be recovered or real-valuedness can be assumed. According
to §2.4.3, the latter is true for image reconstruction in XPCI under homogeneity constraints,
which renders the real-valued case highly relevant for practical imaging.

Inverse Problem 4.2 (Reconstruction of real-valued (homogeneous) images). For 2, K C R™
and v € R, reconstruct a real-valued image ¢ € L*(Q,R) from either of the following data:

(a) 9%y = D(@)lx
(b) 98?)5 = S(¢)|x

(©) 93 = (@)K

4.2.2 Preliminary results and goal of the article

For a first assessment of the problem, some preliminary results are shown in the article:

(1) Ewxistence of leakage: For any compactly supported image h # 0, the Fresnel-data D(h)
is always supported in the entire lateral domain, i.e. supp(D(h)) = R™.

(2) Uniqueness: If € is bounded and K contains an open set, all variants of inverse prob-
lems 4.1 and 4.2, are uniquely solvable according to theorem 2.10.

(3) Severe ill-posedness: If K is bounded and €2 contains an open set, all variants of inverse
problems 4.1 and 4.2 are severely ill-posed, i.e. the singular values associated with the
forward operators decay super-algebraically.

Result (1) means that a finite FoV always has an effect on image reconstruction, no matter how
large the detector is. Yet, statement (2) shows that these effects do not manifest in terms of
non-uniqueness. Note that this seems contradictory to an anticipated resolution limit (compare
§4.1), as it implies that any, i.e. also arbitrarily sharp structures may be recovered from finite
detector data — in theory. However, (3) indicates that such reconstructions may still be too
unstable to be feasible in practice: by the arising ill-posedness, there is always an infinite-
dimensional subspace Xustan, C L2(€2, (R)) of image-modes which induce so little contrast in a
finite-detector-setting that they are practically irretrievably lost for noisy data.

In combination, (2) and (3) show that the effects of a finite detector may only be understood
by a stability analysis, elucidating the structure of the unstable modes in X a1, and identifying
subspaces Xgap, C L*(€, (R)) of images that may still be stably reconstructed. This is the
principal aim of the following sections §4.2.3 to §4.2.7.
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4.2.3 Assessment by Gaussian wave-packets:

Stability of inverse problems 4.1 and 4.2 is first assessed by studying Fresnel propagation of
Gaussian wave-packets with width ¢ > 0, frequency-vector € € R™ and center &y € K C R™
1. l]m.

within a square FoV K = [—57 3

r — I
202

he oo (x) = exp (i€ - (& — o)) exp ( ) , xz e R™. (4.2.1)
Such functions constitute a special class of localized oscillatory signals, for which Fresnel prop-
agation may be computed analytically: as visualized in fig. 4.2(a), D(hgg,) < exp(—(x — zo —
£/1)?/(256?)) is again a modulated Gaussian, but with shifted center at xy + £/

2m _ 2r rea T s
(a) | Re(hga,) 7¢ =008 igg =002 |(b) | ngeal 2% =0.08 2 =0.02
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Figure 4.2. Propagation of Gaussian wave-packets within a square FoV K = [—3; 5}2 at § = 103,
(a) Complex-valued wave-packets and their propagated versions D(hg 4,)| i, which are again Gaussian
but with shifted center &y + £/f. (b) Real-valued case: wave-packets split upon Fresnel propagation
into two Gaussians with centers xg+£&/f. By determining the maximal value &, (x) such that all wave-
packets of frequency |&| < &.(x) with center  remain visible within K upon Fresnel propagation, a
local resolution r(x) = 7/, (x) is estimated for each point in the FoV, yielding the plots in fig. 4.3.

The idea of the study is as follows: if image reconstruction is stable down to some resolution
r > 0, then any perturbation of an object h — h+h by signals h varying on lengthscales greater
or equal 7 should be “visible”, i.e. give rise to a significant increment D(h + h)|x — D(h)|x in
the data. By linearity, this means that the induced relative contrast ||D(h)|x]|/||2| should be
reasonably large. In particular, this should hold for all Gaussian wave-packets h = he o, With
frequency |€] < 7/r, as such constitute special perturbations “of resolution” 7/|&| according to
the half-wavelength criterion.

As its frequency || increases, any wave-packet he z, will eventually propagate out of the
FoV K, in which case it switches from being “visible” to “invisible”, see fig. 4.2(a). Accordingly,
whether or not the center xy+&£/f of the propagated wave-packet D(hg 4, )|k lies within K may
serve as an a (approximate) visibility-criterion. If dist(e, 0K) denotes the distance of @ € K
to the detector-boundary, the following holds true:
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(1) For all Gaussian wave-packets hg 5, with frequency |£] < fdist(xo, 0K), the propagated
center xo + &/f lies within the FoV K i.e. all such wave-packets are “visible”.

(2) For all frequencies £ > fdist(xg, 0K ), there exists a wave-packet hg g, with |§] = £ such
that D(hg g,) is centered outside K, i.e. which is “invisible”.

By the stability argument above, the local resolution at a point &y € K based on the wave-
packet analysis is therefore concluded it to be

™

Erak (4.2.2)

r(xo) ~

Accordingly, the best resolution is achieved in the very center of the FoV with maxgz,cx 1/r(xo) =
1/r(0) = §/2m = § and deteriorates towards the detector-edges, as visualized in fig. 4.3(a).

The resolution estimate (4.2.2) can be shown to coincide exactly with Abbe’s diffraction
limit (4.1.1) associated with the spatially varying numerical aperture within the FoV, compare
fig. 4.1. Yet, the Gaussian wave-packet analysis yields additional insights: if the width of
the propagated wave-packet, & = (02 + 1/(fo)?)1/2, is sufficiently small against dist(xg, K),
the contrast ((§, @) := minyg—¢ [|D(he,zo) | k|| /|| Peao || W.r.t. perturbations of frequency & drops
rapidly near the resolution limit: according to mathematical details in the article, one has

1 for & < (1 —e¢)fdist(mg, K)

ith transitio e~ o/dist(xg, K). (4.2.3
0 for & > (14 e)fdist(x, K) W HTARIon o/ dist(@o, K). )

C(gv 33()) ~ {

This implies that the resolution limit (4.2.2) is typically quite sharp — image reconstruction
becomes severely unstable when aiming to resolve scales < 7/((1 + ¢)fdist(xg, K)).

(a)

1500

500

Figure 4.3. (a) Upper bound on the stably reconstructible local resolution 1/r(x) in inverse prob-
lem 4.1 (complex-valued images) for m = 2, K = [—%; %]2, f = 104, based on the study of Gaussian
wave-packets. (b) Same plot for inverse problem 4.2, i.e. for reconstruction of real-valued images.

The real-valued case: If the object to be reconstructed is known to be real-valued as in
inverse problem 4.2, then only perturbations by real-valued wave-packets hgegl(m) = COS (E (x—
a)+ ) exp (( — x9)/(20?)) are admissible. As such can be represented as linear combinations
of two wave-packets of the form (4.2.1) with the same center @y but opposite frequency vectors

+¢, the Fresnel-data D(hga) is formed by two Gaussians centered at xo + £/f, as shown
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fig. 4.2(b). A perturbation h — h+ hia is thus “visible” in the Fresnel-data D(h)|x whenever
either of these propagated centers stlll lles within the FoV, i.e. &g+ £/f € K or g — &/f € K.

Based on this relaxed visibility-criterion for wave-packets compared to the complex-valued
case, improved estimates of the local resolution are obtained, as plotted in fig. 4.3(b). Other
than in fig. 4.3(a), the resolution in (b) is high throughout the FoV except for neighborhoods
of the detector-corners. Note that this resolution-improvement is not predicted by Abbe’s
criterion (4.1.1) and considerations of the numerical aperture. Yet, the resolution in the center
of the FoV is unchanged, r(0) = 27 /f = 1/§ holds both in a real- and complex-valued setting.

4.2.4 General locality theory

In §4.2.3, stability has been studied only w.r.t. a special class of object-perturbations. Hence,
the conclusions on the effect of a finite FoV, in particular the derived resolution limit, may
be overly optimistic. Therefore, the Gaussian wave-packet study is complemented by worst-
case estimates, bounding the leaked Fresnel-wave-field D(h)|g. for arbitrary object-signals h.
While the required mathematical tools are technical in parts, the obtained results essentially
reproduce the intuitive insights from §4.1 and §4.2.3 in a more rigorous form.

The analysis is based on the convolution-form (2.2.9) of the Fresnel propagator, D(h) = kjxh.
Notably, the kernel k;(x) o< exp(ifa/2) is not localized in any sense but has constant modulus
throughout the entire R™. This non-locality means that Fresnel propagation may transport
information over arbitrary lateral distances in principle, i.e. may arbitrarily delocalize object-
structures. The principal idea to resolve this is to decompose the kernel into an “inner” and
“outer” part, kj = kj|p + ki|pe for some P C R™. Then the leaked wave-field outside the
detection-domain K can be written in the form

D(h)

Ke = (k?flp % h)

ke + (K

pc*h) K

(4.2.4)

by linearity. Now, if supp(h) C Q and if P is chosen such that P 4+ Q C K, it follows that
(ki|p * h) |k = 0 by standard results on the support of convolutions and thus

D(h) if P+QCK, (4.2.5)

Kc — (kf

Pc*h) K

i.e. the leaked wave-field can be expressed as a convolution with only the “outer” propagating-
kernel k;|pe. This enables leakage-bounds in terms of the filter-

ID(E) el = (ke )
§ek = (2m)% |7 (k

Aleak JT_' (h)

< ||&;

K¢ pc * h” =

pe)

where the convolution-theorem has been used. After casting the leakage filter-response p'*®* to
a more explicit form, these considerations lead to principal bound for the leaked wave-field:

(4.2.6)

Theorem 4.1 (Principal leakage estimate). Let K, ), Peax C R™ be measurable sets such that
the boundary OK has Lebesque-measure zero and 2+ Peax = {x +y : @ € Q,y € Peax} C K.
Moreover, let D(1pe ) € L®(R™). Then it holds for all h € L*(Q)

1D el < 3% F )| with  p¥(&) = [P JE/M].  (@27)
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For the case of rectangular domains P, D(1pc) can be computed analytically via the known
propagation-formula for the Heaviside-function 0(z) := 1g_,(z) ,

DO)(x) = B(fx) with O(x) ::%erfc<i_21x>, (4.2.8)

and using linearity, isotropy and separability of the Fresnel propagator. Via theorem 4.1, this
enables explicit leakage estimates for the most relevant case of a square detector K:

Theorem 4.2 (Leakage bound for square domains). Let K = [—1; 1]™ and Q = [—3+A; 1 —A]™
for some 0 < A < L. Then it holds for all h € L*(2)

1D (B lxeell < Iy F, - Bfja(€) = <Z\ﬁm (f‘éej-ﬁ)\z)Q (4.2.9)
i (2) == (|60 — ¥ + 0= — 1¥3)])? (4.2.10)

where e; denotes the unit normal vector along the jth dimension and fa := A% is the Fresnel
number associated with the lengthscale A.

Figure 4.4(a) plots the filter-response ﬁ%efi‘ in m = 1 dimensions for fo = 100. The behavior
is that of a high-pass filter, where the cut-off, i.e. the transition from ﬁ}eﬁ‘ < 1 to values
around one, occurs at frequency &y = (f - fa)'/? = Af. Thus, the bound (4.2.9) states that
the fraction of the wave-field leaked outside the FoV is small for low-frequency objects, whereas
variations on lengthscales smaller than 7 /., may lead to a significant signal-loss. Since A =
mingcq dist(a, 0K), this is in perfect agreement with the wave-packet study in §4.2.3.
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Figure 4.4. The principal ingredients of the analysis for the finite-FoV-problem. (a) Plot of the

leakage-filter from theorem 4.2 for fo = 100 in one dimension. (b) 1D-examples of B-splines hj, € By o
for different orders k as defined in §4.2.5, which are used to model objects of finite resolution r.

4.2.5 Stability estimates for spline-objects

The leakage-bound obtained so far guarantees that the information-loss due to a finite detector
is small in some settings, but it is unclear whether it is small enough in the sense that the
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wave-field retained within the FoV K is sufficient for stable image reconstruction. The next
goal is therefore to derive stability estimates from the leakage-bound in theorem 4.2.

To this end, one has to restrict to a class of objects for which the right-hand side of (4.2.9)
is uniformly small. By the high-pass nature of pleak, a canonical choice would be to restrict
to band-limited objects h, whose Fourier transform ]: (h)(&) vanishes at frequencies above the
cut-off of the filter ﬁ%efai‘ However, this choice is not admissible here because, for theorem 4.2
to hold, h also has to be compactly supported (in real space) and thus cannot be bandlimited
at the same time. This is a well-known result from Fourier analysis.

A more suitable class of objects is found in multi-variate (B-)splines:

he By, = {h rxe Y B (a/r—j§—o0): (b) € mzm)} (4.2.11a)
jezm
e BO * Bk,1 for k e N
B™z1,...,xm) = | | Bu(z;), Bip= 4.2.11b
& (331, y L ) H k(ﬂ?j> k {1[_%;%) for k=0 ( )

k € Ny is the order of the splines, determining the smoothness of the interpolation between
nodes that are uniformly arranged on the Cartesian grid o+ rZ"™. The steplength r defines the
smallest lengthscale of variations for elements h € BJ", . Accordingly, splines model objects of
finite resolution r. For illustration, fig. 4.4 shows examples of 1D-splines of different order k.

For the present work, the crucial property of the space 9B}, , is that its elements are quasi-
bandlimited, as is proven in the article (see theorem 9.14): for any k € Ny and v > 1, there
exists a constant Chang(k,v) < 1 such that, for r > 0 and =, := [—7/r; 7 /r], it holds that

| F(h)|we

(k,v) |F(h)||  forall heBy,, (4.2.12)

The bound (4.2.12) states that the fraction of the Fourier transform concentrated outside the
low-frequency band Z, is uniformly bounded for splines of resolution r. For splines of high
order k, the constant Chana(k,v) decreases rapidly for values v > 1. The result may also be
extended to splines in higher dimensions m > 1, compare theorem 9.15.

By combining the quasi-bandlimitation bound (4.2.12) with theorem 4.2, Lipschitz-stability

estimates are proven for spline-objects. The principal idea is to decompose the expression for
the leaked wave-field, pi5s - F(h), into a low- and high-frequency parts:

2 ea, ea, ea,
ID(h)| ke ” < BT - F(h)* = ||p%fAk ]:( =l Hp%ff F(h )|y—;n)c

< C%||h||? by hlgh—pass—form of ﬁlfe?;‘ < C2||n|? accordmg to (4.2.12)

(4.2.13)

The constants are small C,Cy < 1 for suitably chosen v > 1, provided that r > 7 /(Af) and
k large enough, i.e. for sufficiently smooth splines. Since |D(h)|x||* = [|[D(h)|]> = ||D(h)| k|
and |D(h)|| = ||h|| by unitarity of D, the leakage-bound (4.2.13) yields a stability estimate:

Theorem 4.3 (Stabﬂity estimate for spline-objects). Let K = [—3;3]™ and Q = [-1 + A; 1 —
A]™ for 0 < A < L. Let fa := A*f and f, := r*f denote the Fresnel numbers of the scales A
and r > 0. Furthermore letv>1and = :=[— mr/fl/2 mr/fl/Q]. Then it holds that

ID() x| 2 Cutas(Fas oo ko)™ Bl for all € B, , 0 LX(9). (4.2.14)
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With 7;, as defined in theorem 4.2, the constant is given by

Cstab(fA7 f?"a k7 V) = max {1 B 0120W - Cband(k" V)Q (CtQOt B CIZOW) ’0}1/2 (4215)
Clow = I}clea:X ﬁfA (I)7 C'tot = Iileaﬂi( ﬁfA ('1:)

Theorem 4.3 yields the sought positive result: (spline-)objects of finite resolution with
support sufficiently far away from the detector-boundary can be stably recovered from Fresnel-
data acquired in a finite FoV. Examples in the article show that the spline-resolution r, down
to which theorem 4.3 guarantees stability (i.e. Csap > 0 and sufficiently large), can be as close
as by a factor of ~ 1.2 to the resolution-bound (4.2.2) from the wave-packet analysis. Upper
and lower limits on the stably achievable resolution are thus in good agreement.

4.2.6 Improved bounds for real-valued objects

For Gaussian wave-packets, it has been found that real-valuedness induces a certain symmetry of
the delocalizing action of Fresnel propagation. Indeed, this turns out to be a general principle
beyond the considered class of signals, related to the fact that the Fourier transform of a
real-valued function is hermitean, i.e. F(¢)(—) = F(p). As a consequence, it holds for any
filter-response p € L>(R™) that

- F@) = lsym(p) - F)  forall peHR™E) (eabvalued),  (42.16)
where the symmetrized response is defined by sym(p) (&) := 27 V2(|p(&)|? + [p(—€)|*)"/2.

The consequence of the above observations for Fresnel propagation is most prominent when
considering a (hypothetical) setting where the detection domain is given by a half-space, w.l.0.g.
K = Ry x R™7!. Then, for a real-valued signal ¢ € L*(K,R) initially supported in K, the
leaked wave-field D(p)| k- may never exceed a certain fraction of the total intensity:

ID(@)|xell < Copmllll - with  Cigm < max sym(0)(x) ~ 0.837. (4.2.17)

xe
Notably, the bound (4.2.17) holds independently of any assumptions on the smoothness of ¢ or
the distance of its support from the detector-boundary 0K, but ceases to hold if real-valuedness

is dropped. It states that only a limited fraction of a real-valued signal may propagate out of the

FoV along a single direction and therefore denoted as quasi-symmetric propagation principle.
For the more practically relevant case of a square detector K = [—%; %]m, object-information
may leak outside the FoV along multiple directions. Hence, the total leakage along all 2m
detector-edges may still be too large to ensure stability, despite the general bound (4.2.17). As
a remedy, the quasi-symmetric propagation principle is combined with the leakage-estimates
from theorems 4.1 and 4.2 in the complete article, compare §9.6. By this approach, it is proven
that image reconstruction is stable at any point * € K in the FoV that is close to no more
than one detector-edge, where “how close” again depends on the finest object-scale r to be
resolved, see §9.6.3 for details. In the natural 2D-setting m = 2, stability thus holds for objects
of finite resolution with support sufficiently far from the corners of the detector (theorem 9.24).
Accordingly, the stability analysis for real-valued objects qualitatively reproduces the picture
from the wave-packet analysis in §4.2.3, visualized in fig. 4.3(b). Examples in the article also
show quantitative agreement of the resulting resolution-estimates, though the deviations be-
tween upper and lower bounds are larger than in the complex-valued case. The latter indicates

that the derived stability estimates for the real-valued setting are less sharp.

KC
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4.2.7 Extension to linearized XPCI

So far, the stability analysis of the finite-FoV-problem has been restricted to the simplest
variant (a) of inverse problems 4.1 and 4.2, i.e. to image reconstruction from phased Fresnel-
data D(h)|x. However, extending the results to the phaseless XPCl-setting is relatively simple
as the hologram-data in variants (b) and (c) of inverse problems 4.1 and 4.2 differs from the
Fresnel-data only by pointwise operations, | - |? or Re(-), which commute with restrictions
f > f|a to any set A C R™. In particular, for the linearized XPCl-setting in variant (b), this
implies that the following bounds hold for any detection domain K C R™:

3 1.7 (n)

A EA®)

Intuitively, the estimates (4.2.18) express the simple fact that lost hologram-data outside the
FoV may not contain more information than the corresponding fully phased Fresnel-data.

= [[Re(D(h))

(2.4.6

=317 e e)

= [[Re(D(h)

<||D(h)

Ke Ke Ke) kel for heL*R™) (4.2.18a)

(4.2.18a)
< |ID(p) for e L*(R™R).  (4.2.18b)

Kc Ke Ke

By virtue of (4.2.18), all of the derived leakage-estimates for Fresnel-data induce bounds
for linearized XPCI. Stability estimates may also be obtained: for T € {7,.#,}, it holds that

Tl = 1T = 1Tl lP 2 NI = 41D e (4.2.19)

for all f € L?(R™, (R)). The first summand on the r.h.s. of (4.2.19) is the expected contrast
in the hypothetical case of an infinitely large detector K = R™. Accordingly, it may be
bounded from below using the Lipschitz-stability estimates from article 1, see chapter 3, i.e.
T (f)|| > Crps||f|| for some Cip, > 0. The second, subtracted term in turn can be bounded from
above via the previously derived leakage-estimates. In particular, for suitable spline-objects
f e B oNL*HQ, (R)), estimates of the form ||D(f)|xe|| < Crear|| f|| with some Cieac < 1 hold

by theorem 4.3. By combining the bounds, (4.2.19) implies

ITHIx]” = (Clo — 4CRA) IFIIP - forall  f € B, , N LA, (R)). (4.2.20)

k,r,o

Although the estimate (4.2.20) is argued to be highly pessimistic (note in particular that the
constant on the r.h.s. may become negative), it is demonstrated in the article that it indeed
guarantees stability in certain practically relevant imaging regimes.

4.3 Conclusions

Verification of Abbe’s diffraction limit — and beyond: The presented article shows that
a finite field-of-view (FoV) in XPCI limits the stably achievable resolution rg,p, in image recon-
struction, in accordance with Abbe’s diffraction limit associated with the numerical aperture
of the setup (compare fig. 4.1): at some point & € K within the FoV K, the smallest resolv-
able feature-size is rgap(@) ~ 7/(fdist(x, 0K)), where f is the modified Fresnel number and
dist(x, OK) the distance of & to the detector-boundary K. For a square detector K = [—1; 2]™,
the highest possible resolution, attained in the center of the FoV, is thus 32 ~ 27/f = 1/¥.
However, the performed analysis also reveals valuable details beyond reproducing Abbe’s
limit: the wave-packet analysis in §4.2.3 indicates that instability of image reconstruction
will arise suddenly and violently when disregarding the resolution limit rg.p(x): already for
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slightly smaller object-scales 7(x) < (1 — €)rgan(x), there exist image-modes that induce quasi
no contrast within the detection-domain K and which are thus practically irretrievably lost.
Accordingly, the instability associated with the severe ill-posedness of the inverse problem
(compare §4.2.2) is so strong that the resolution-limit is practically independent of the data-
noise-level (recall that this was one of the open questions from §3.1) — even though uniqueness
guarantees full reconstructability in the hypothetical case of exact data.

Another important insight from the analysis is that — at least for the case of phased Fresnel-
data D(h)|x — respecting Abbe’s diffraction limit is not only necessary but also sufficient for
stable image reconstruction: if one restricts to images that comply with the resolution-limit,
Lipschitz-stability is restored in the finite-FoV-setting according to theorem 4.3.

An unexpected benefit of homogeneity constraints: A surprising result of the analysis
is the dependence of the effects of a finite FoV on whether real- or general complex-valued images
are to be recovered: as seen from fig. 4.3, resolution degrades much less severely towards the
edges of the FoV in the real-valued case. As explained in §4.2.3 and §4.2.6, the effect arises from
the (quasi-)symmetric propagation-behavior of real-valued signals upon Fresnel propagation.
For XPCI, the result means that image reconstruction under homogeneity constraints, where
real-valued images are recovered, suffers from less severe resolution-limits than settings where
phase and absorption are reconstructed as real- and imaginary parts of a general complex-
valued image. Notably, this observation adds yet another difficulty to the latter “general-object-
setting”, which is already particularly challenging due to known uniqueness- and stability-issues
in the absence of a finite-detector-problem as detailed in chapter 3.

What about multiple holograms? For completeness, we note that the presented results
may be readily extended to settings with multiple holograms. However, the additional data is
not too useful in view of a finite FoV: from the results in §4.2.3, it can be seen that object-
features, which are leaked outside the FoV in the hologram I;|x corresponding to the largest
Fresnel number §; > f, > ... > f,, are also invisible in all other holograms Is|x, ... Ij| k.

A (quasi) inevitable resolution-limit: All of the derived resolution estimates depend on
the modified Fresnel number f, where the resolution improves as f increases. Accordingly, one
might try to achieve higher resolutions by adapting the distance between sample and detector
in an XPCl-setup. Unfortunately, however, this works only in a parallel-beam geometry. In
real-world, divergent-beam XPCl-setups like the GINIX in fig. 1.2, the sample-to-detector-
distance d; 2 has to be almost as large as the source-to-detector-distance dyps ~ d; 2 in order
to obtain a significant geometrical magnification M = dyo/(dp2 — di12) > 1. As sketched in
fig. 4.5, this implies that the maximum detectable angle 0,,,, of X-rays scattered by the sample
(measured w.r.t. the optical axis, i.e. from the center of the FoV for simplicity) approximately
coincides with the opening angle f,,u.ce Of the source-detector-ensemble, 0.« ~ Osource. Hence,
the numerical aperture of the imaging-system which determines the resolution is practically
fixed, NA = sin(Opax) = sin(fsource). Recalling from §4.1 that Oyouree is not only limited by the
detector-size but also by the finite opening angle of the X-ray beam, we thus conclude:

The resolution of (holographic) XPCI in a strongly magnifying divergent-beam setup
1s fundamentally limited by the opening angle of the probing X-ray beam.
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The fundamental resolution limit is given by rgoy &~ A/(28in(fsource))- For typical GINIX-
parameters (A = 0.157 nm, Oyouree & 0.08 degrees), this translates to rryy & 55 nanometers.

detector

source sample

HSOUI'CG R

Figure 4.5. Numerical aperture of a divergent-beam XPClI-setup: due to the requirement of a large
geometrical magnification M = dy2/dp; > 1, the maximum detectable scattering-angle €. always
satisfies Omax = Osource and is thus practically independent of dy ;. Hence, so is the numerical aperture
NA = sin(fmax) = sin(fsource) and the resulting resolution by Abbe’s diffraction limit.

Optimal source-to-sample-distances — as large as possible, as small as necessary:
By combining the findings of the present article with the stability estimates from chapter 3, we
may identify an optimal source-to-sample-distance dj; in terms of resolution and stability of im-
age reconstruction. Recall from §3.6.2 that choosing a large dj ; results in a smaller Fresnel num-
ber associated with the object-support and thus in improved stability. However, increasing d ;
also decreases the geometrical magnification M and therefore the effective detector-resolution
rof: the pixelation of real-world detectors (see §2.1.5.4) defines some physical resolution rge
(possibly larger than the pixel-size Az, due to a non-ideal point-spread-function) that limits

the achievable object-resolution to 7% = rqe /M, as explained in §2.1.5.1.

The idea is now to choose dy; as the maximal value such that the resolution of the XPCI-
setup is not yet bottlenecked by the lack of geometrical magnification, i.e. such that the res-
olution limit due to a finite FoV rg,y &= A/(2sin(fsource)) and the effective detector resolution

ngt are approximately balanced:

Adp 2

2sin ( esource ) Tdet

(4.3.1)

eff ~
Taet = TFov & do1 &

For the GINIX-setup (see §1.2) with dy 2 = 5m, an estimated detector-resolution of 74t ~ 10 pm
and beam-divergence sin(fsource) ~ 6 mm/dy 2 ~ 0.0012 at photon-energy £ = 7.9keV (= \ ~
0.157nm), (4.3.1) gives dp; ~ 33 mm. Notably, this value exceeds the chosen distances dy; for
the experimental data considered in this thesis by factors between 2 and 4. According to the
present analysis, the XPClI-experiments could thus have been conducted in a more holographic
and thus more stable imaging-regime without deteriorating the resolution.

Open problems: The derived stability estimates for the finite-detector-problem with phased
Fresnel-data D(h)|x are quite sharp. Yet, note that this is not true for the extension to
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the phaseless XPCl-setting in §4.2.7. The issue is that the approach widely disregards the
possibly complicated interactions between instabilities due to a finite FoV on the one hand and
those arising from the phase-problem on the other hand. The obtained stability estimates for
linearized XPCI ((4.2.20) and further estimates in the article) are combinations of worst-case
estimates for both types of instabilities and therefore highly non-optimal, as seen from the
examples 9.27 to 9.29 in the complete article. A deeper analysis of the interaction between
finite-detector-problem and phase-problem in XPCI is needed to rigorously prove that stable
image reconstruction is possible up to Abbe’s resolution limit also in the phaseless case.

A second open problem is an analysis of region-of-interest-XPCI, i.e. of settings where the
imaged sample is too large to fit completely into the field-of-view, as is the case in fig. 1.3(c). In
addition to the problem of information-leakage by the delocalizing action of Fresnel propagation
considered in the present work, fringes from structures outside the FoV may then also propagate
into the captured part of the hologram. The derived locality-estimates for Fresnel propagation
provide a handle to analyze this more complicated problem in future work.
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Chapter 5

Regularized Newton methods for X-ray
phase contrast and general imaging
problems

Bearing in mind the results from the theoretical analysis in Articles 1 and 2, we now pro-
ceed with Article 3 [143] to actual reconstruction algorithms for phase contrast imaging and
-tomography. As a starting point, regularized Newton methods are proposed for image recon-
struction, which may for once take advantage of available a priori constraints and, on the other
hand, overcome the limitations of algorithms that rely on the linearized CTF-model of XPCI.
In general, while the analysis of the preceding chapters 3 and 4 is mostly limited to the linear
forward model, we will drop this restriction in the following algorithmic chapters 5 and 6.

5.1 Motivation

Significance of constraints: A major result of Article 1 (chapter 3) was that support con-
straints greatly improve stability of image reconstruction in XPCI — without such constraints,
the inverse problem may be ill-posed or even non-unique. It has also been argued that imposing
non-negativity may have a similar beneficial effect, see §3.7. Finally, the stability analysis of
chapter 3 has also confirmed the potential gains of using tomographic consistency as a constraint
in XPCT, by applying all-at-once methods in the sense of §2.7.4. In order to take advantage
of these theoretical insights, it is necessary to apply image reconstruction algorithms that may
flexibly incorporate such a priori knowledge.

Necessity of iterative methods: The most commonly used image reconstruction method
in (holographic) XPCI is direct CTF-inversion. As detailed in §2.7.2.1, the approach boils down
to applying quadratic Tikhonov regularization to the linearized XPCI-model, described by the
forward map Fffe) (or 7)) Owing to linearity and translation-invariance of these
maps, i.e. by their convolutional structure, the reconstruction problem diagonalizes in Fourier
space and thus may be implemented in a fast non-iterative manner using FFTs. Unfortunately,
however, direct CTF-inversion is incompatible with the above constraints, compare §2.7.2.1:

95



PhD thesis: Inverse problems in X-ray phase contrast imaging Simon Maretzke

e Support constraints supp(h) C Q to 2 C R™ break the translation-invariance in real-space
and thus the diagonality in Fourier space, which is required for fast implementation.

e Non-negativity is a nonlinear constraint: any algorithm that imposes it necessarily gives
rise to a nonlinear dependence on the data — even for linear inverse problems!

In either case, the linear convolutional structure of the reconstruction problem is thus lost.
Due to the large numerical problem-sizes encountered in XPCI (images with n 2> 10% unknowns
(pixels) to be reconstructed) and XPCT (3D-volumes with n 2> 10° unknowns (voxels)), this
rules out usage of direct inversion methods. In particular, note that that explicitly precom-
puting the (non-sparse!) system-matrices of size n X n is computationally prohibitive — not
to speak of inverting these. However, iterative methods remain applicable since — contrary to
a complete reconstruction — the individual iterations may usually still be implemented in an
efficient matrix-free manner using FFTs. Hence, we arrive at the following conclusion:

Imposing support- and/or non-negativity constraints in XPCI/XPCT necessarily re-
quires iterative reconstruction methods (to date).

Reconstructions beyond the linearized XPCI-model: In addition to the inability of
incorporating certain a priori constraints, it should be emphasized that CTF-inversion is based
on the linearized forward model of XPCI. Hence, the method is limited to the regime of validity
of the underlying assumption of a weakly interacting object and severe artifacts may result
when applied beyond this regime, as demonstrated e.g. in [87]. A major motivation to seek
alternative reconstruction methods is to overcome these limitations by instead using the full
nonlinear XPCI-model .A{,) from §2.4.1 or §2.4.3. While a typical argument against such an
approach is the lack of known direct inversion formulas for .4(,, note that this does not play
a major role in the present context: after all, iterative schemes are already required to obtain
the desired flexibility in imposing constraints according to the previous paragraph. Moreover,
forward evaluations of a nonlinear map .4(, (and of its derivatives), as used in iterative schemes,
can typically be implemented as efficiently as for the linear models .7, .%,. Hence, incorporating
the nonlinearity of XPCI in iterative reconstruction methods comes widely “for free”.

Drawbacks of existing iterative methods: The prevailing class of iterative algorithms
proposed for XPCI (see e.g. [76, 48, 14, 175, 165, 87]) follow the alternating-projection (AP-)
approach detailed in §2.7.2.2: they reconstruct an image f € ﬂfif C; by iteratively projecting
(or reflecting) onto constraint-sets defined by the measured holograms C1, . . ., Cy and additional
a priori knowledge Cyyq,...,Coir. While such algorithms are relatively easy to implement,
readily incorporate nonlinearity of the XPCI-model and offer great flexibility by the choice of the
constraint sets C;, they also have two main drawbacks: Firstly, while real-world measurements
are never exact, the approach lacks a natural handle to account for data-errors. In particular,
note that noise may cause the intersection ﬂf:f C; to be empty, in which case the aim of
finding an element within becomes obsolete and the algorithmic behavior of AP is hard to
predict. Secondly, (semi-)convergence of the algorithms in practice is often observed to be
slow for XPCI, typically requiring O(10%...10%) iterations to (quasi-)stabilize at some solution
[83, 87]. The latter effect can be understood by the simple algorithmic structure of AP-schemes:
instead of considering the whole problem at once, the methods temporarily “forget” all the other
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constraints (homogeneous object, support, non-negativity, ...) and data while projecting (or
reflecting) onto a specific set C;. This promotes inefficient oscillations of the iterates.

Potential benefits of Newton-type methods: The discussion motivates novel reconstruc-
tion methods that retain the flexibility of the AP-type algorithms but eliminate their drawbacks.
The present Article 3 [143] proposes iteratively reqularized Gauss-Newton methods (IRGNM)
as a candidate for this task. The underlying Newton-like idea lies in computing constrained
nonlinear reconstructions in XPCI by iteratively solving local linearizations of the problem.
Thereby, the approach exploits differentiability of the XPCI-model (see §2.4.7.3) and accounts
for the recurrent observation that the inverse problem of XPCI is only weakly nonlinear, as
seen from the relative success of fully linear, CTF-based reconstructions. These properties of
the IRGNM, combined with a partly more natural handling of constraints and data-errors,
promise faster convergence than AP-methods. It will furthermore be seen that a variant of the
IRGNM-approach allows for computationally efficient all-at-once reconstructions in XPCT.

5.2 Summary of the results

The article [143] is divided into three principal parts: the first reviews the general theory and
implementation of IRGNM as well as of a Kaczmarz-type (or block-structured) variant of the
approach. In the second part, the IRGNM is applied to XPCI in the two-dimensional, i.e. non-
tomographic setting, exploring in particular the feasibility of jointly reconstructing phase- and
absorption-image from a single hologram. The last part considers Newton-Kaczmarz-iterations
as an approach to achieve all-at-once reconstructions in phase contrast tomography, i.e. for
direct retrieval of the 3D-object density from the tomographic hologram series.

5.2.1 Iteratively regularized Gauss-Newton Method (IRGNM)

For the first part, a general ill-posed inverse problem of the form ¢°” = F(fT)+ € is considered.
fT denotes the unknown object and ¢g°” is the measured (intensity) data, that is related to f
via a nonlinear forward operator F': X — Y between Hilbert spaces X (object space) and Y
(data space), subject to additional data-errors e.

The iteratively regularized Gauss-Newton method (IRGNM) proposed by BAKUSHINSKII
[9] accounts for both nonlinearity and ill-posedness by performing iterations of the form

Jer1 = arfgg{in | E(fe) + F' LR — fo) — QObSHi +oai ||f = follx (5.2.1a)

= fo+ (F'Lf]" F'[fo] + cuidx) ™" (F'If]" (9° = F(fr) + cawlfo — fr)) (5.2.1b)

for K =0,1,..., ksop — 1 with some initial guess f, and regularization parameters oy, > 0. The
“Newton-like” idea involved in (5.2.1a) lies in replacing the nonlinear forward map F' by its
best local linear approximation F'(f) = F(fx) + F'[fel(f — f&) + o(||f — fxl|), where the linear
operator F'[fy] denotes the Fréchet-derivative (i.e. the Jacobian) of F at fj.

As seen from the formula (5.2.1b), a benefit of this linearization is that the update can be
evaluated relatively easily by a forward-evaluation of the nonlinear operator F', followed by
inverting the selfadjoint positive-definite linear operator F'[fy]* F'[fi] + axidx (F'[fi]*: adjoint
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of F'[fx], idx: identity map on X). The latter task can be achieved by generic iterative solvers
such as conjugate-gradient (CG-) methods. An advantage of CG and related algorithms is that
they can be implemented in a matriz-free manner: no matrix-representation of F'[fi|*F'[fx] +
agidy is required (which would be computationally prohibitive for XPCI- and XPCT-problems),
but only (discretized) implementations of the evaluations h — F'[fi]h and g — F'[fi]*g.

Regularization property: The parameters ay > 0 ensure that the inverse of F'[fi]* F'[ fx] +
aridx is bounded so that the data-errors € enter in the object-iterates fr.1 at most amplified
by a factor 1/cy in each step. Accordingly, the IRGNM scheme is reqularizing. It is indeed a
regularization method in a technical sense if the nonlinearity of F' is sufficiently well-behaved,
locally converging to the true solution for vanishing data-errors € — 0 given a suitable choice
of the ay, and of the stop-index kg0, € N. A detailed convergence analysis of the IRGNM can
be found e.g. in [9, 24, 97, 112]. In the present work, a geometric decrease a1 = %ak is used,
where o and kgop are determined automatically via heuristics detailed in the article.

5.2.1.1 Choice of the norms

Data-space norm — the data-fidelity term: The choice of the norm ||- ||y in (5.2.1) allows
to account for the expected statistics of the data-errors €. Although noise in holograms is
primarily due to Poisson-noise, see §2.1.3.3, the flat-field correction (§2.1.5.2) and systematic
deviations from the ideal model give rise to a total error-statistics in XPCI that is hard to predict

in general. We therefore resort to the standard choice of an L*-norm, i.e. ||g||3 = [ |g(z)|* dz.

For completeness, we note that a quadratic data-fidelity term |lg — ¢°™||%, as employed

in (5.2.1a), is not always the best choice to measure the proximity between the fitted data
g = F(f) and the observations ¢g°**. For example in the presence of large outliers in the data or
for € given by pure Poisson-noise, probabilistic models suggest that better reconstructions can
be achieved if ||g — ¢°®||2 in (5.2.1a) is replaced by certain non-quadratic data-fidelity terms
S(g°*; g). Such generalizations of the IRGNM have been proposed e.g. in [98, 100, 99]. In a
non-quadratic setting, however, the minimization problem in (5.2.1a) typically becomes harder
to solve, leading to increased computational costs of the IRGNM-iterations. For this reason
and due to the lack of an obvious statistical error model for XPCI, refinements of the chosen
L?-data-fidelity are not considered here. Yet, the idea will be taken up again in chapter 6,
where methods are presented that widely avoid a loss in computational performance.

Object-space norm — the regularization term: By the choice of the norm || || x, desirable
properties of the object-iterates fr may be imposed via the regularization term ay || f — f0||_2><
in (5.2.1a) that penalizes deviations from the initial guess fy (typically: fo = 0). In the article,
Sobolev-norms are considered, || f||x := ||(1+ [&[*)*/2- F(f)]|, i.e. weighted L?-norms in Fourier
space. The larger the parameter s > 0, the stronger the penalization in high spatial frequencies
compared to low ones, which increases the smoothness of the reconstructed object fy,. . (or
more generally of fi. — fo). The case s = 0 corresponds to the standard L?-norm.

Similarly as for the data-fidelity, the squared norm || f — fy||% in (5.2.1a) may be replaced
by more general penalty functionals R(f), increasing flexibility in imposing object-properties
at the cost of a more complicated regularization-theory and often higher computational costs.
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5.2.1.2 Incorporating constraints

Linear constraints: A major advantage of the IRGNM over the alternating-projection-type
methods discussed in §5.1 is that it provides a very natural handle to incorporate linear con-
straints on the reconstructed object: provided that theset C = {f € X : f satisfies constraints}
is a closed linear subspace of the object-space X, the constraints are imposed automati-
cally by the IRGNM-iterations (5.2.1a) if the full object-space X is replaced by C (which
is again a Hilbert space) and the restriction F|c : C' — Y is employed as a forward operator.
Implementation-wise, this does not change the computation of F(fy) or F'[fi], yet that of the
adjoint F'[f]*: it holds that F|c(f) = F(f) and (F|c)'[f]h = F'[f]h but ((F|c))" [flg =
PcF'[f]*g, where P : X — (' is the orthogonal projection onto C.

As seen in §2.4.6, both support- and homogeneity constraints constitute linear constraints
in XPCI in the above sense, so that these may be readily incorporated in the IRGNM.

Non-negativity constraints: In order to also impose non-negativity of the recovered object
(in real- and/or imaginary part in the complex-valued case), which is a nonlinear constraint,
a penalty-method is proposed in the article. For real-valued f, it amounts to appending the
term Ro(f, fx) := 7| max(0, — sign(fx)) - fI|2. (v > 0) to the objective functional on the r.h.s.
of (5.2.1a). This corresponds to an additional L?-penalty that selectively damps values of the
next iterate fy1(x) on those points & where the current one is negative, fp(x) < 0. Thereby,
negative values of the fj are either corrected in the course of the IRGNM-iterations or damped
to values close to zero, so that the final iterate fy . is approximately non-negative.

While the proposed penalty-method is somewhat heuristic, it is found to perform well
for image reconstruction in XPCI and XPCT and it is favorable in terms of computational
costs: contrary to more sophisticated approaches to imposing non-negativity such as semi-
smooth Newton-methods [94], primal-dual- [36] or other splitting methods [70, 18], adding
the penalty R>o(f, fr) retains the simple quadratic structure of the optimization problem in
(5.2.1a). Hence, the IRGNM-iterates remain efficiently computable via CG-methods.

5.2.2 TRGNM applied to XPCI

The general IRGNM-scheme is applied to the setting of XPCI by employing the principal
forward map F := A4 : f + |D(exp(—f)]> — 1 from §2.4.1, where f = y + i¢ gives the sought
phase- ¢ and absorption-images ;. The data ¢°™ is then given by the contrast in the measured
hologram, ¢°® = I°* — 1, and the Fréchet-derivative of I can be evaluated via the formula

F'[f]h = —2Re(D (exp(— ) - D (exp(—f)h)). (5.2.2)

as seen in §2.4.7.3. For the regularization-term in (5.2.1a), a Sobolev-norm with s = 1 is
used (see §5.2.1.1), as this is found to yield a reasonable compromise between noise-level and
sharpness of the reconstructed images. The resulting IRGNM is discretized according to the
general approach from §2.6.2, where the expression in (5.2.2) for the derivative carries over
to the discrete setting. IRGNM for XPCl-reconstructions from multiple holograms and/or
under homogeneity constraints may be constructed completely analogously by employing the

associated forward operators from §2.4.3 and §2.4.4, setting F € {4 (F170) ,/%(fl""’fe)}.
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The IRGNM-scheme is applied to experimental XPCI data, given by a single hologram of
size 1920 x 1080 pixels (fig. 5.1(a)) acquired in the GINIX-setup from §1.2 at Fresnel number
Forx & L.77 - 10~%. The object is a logo-shaped grating milled into a 200 nm-thick gold layer.
Being composed of a single material, it is homogeneous with absorption-refraction-ratio 5/§ =
p/d = cgys = 0.105 (gold at photon-energy 7.9keV). The test case is named “Logo-XPCI”.

For validation, the images ¢, it are first reconstructed imposing homogeneity 1/¢ = cg/s (but
no other constraints) with the IRGNM-algorithm and with direct CTF-inversion, see §2.7.2.1.
Both methods yield widely identical results in this setting. This is to be expected as the imaged
object is rather weak and so the nonlinear capabilities of the IRGNM do not play a major role.
Indeed, in the weak-object regime and without support- and non-negativity constraints, the
action of IRGNM should reduce to CTF-inversion, which is confirmed by the results.

To challenge the capabilities of the IRGNM, a second reconstruction is computed without
imposing a homogeneity constraint, so that phase-image ¢ and absorption-image p have to
recovered as independent variables. As discussed in §2.5.1.2 and §3.1, such a reconstruction
is severely non-unique in general and commonly considered as totally infeasible. However, the
results from Article 1, notably theorem 3.1, show that support constraints enable stable image
recovery — at least theoretically. Other than in direct CTF-inversion, such constraints may be
readily incorporated in the IRGNM, as detailed in §5.2.1.2. The imposed circular support is
marked by the blue-dashed lines in the plots of reconstructed images ¢, i1 in fig. 5.1(b),(c).

Despite the challenging setting, the structure of the logo-shaped grating is found to be well-
recovered both in the recovered phase ¢ and in the absorption y up to some low-frequency mode
that causes distortions of the quantitative values especially in u: the insets in fig. 5.1(b),(c)
show artificial bright and dark spot in the center. Notably, these artifacts violate the physically
motivated non-positivity™ of ¢ and u for the considered sample. As a consequence, it is found
that the low-frequency artifacts may be suppressed by imposing this as a constraint via the
proposed penalty-approach, as revealed by the non-inset parts of fig. 5.1(b),(c).

Due to the homogeneity of the object, the real-data example is arguably not ideal to assess
the capability of reconstructing phase and absorption independently. In the article, the recon-
struction has therefore been repeated for simulated data in the same setting, except that the
logo-structure is only present in the absorption-image j, whereas the phase-image ¢ is just a
homogeneous disc. It is found that the IRGNM-algorithm is indeed capable of correctly recov-
ering the logo in u, while keeping the phase-image free of traces of this structure, i.e. achieves
truly independent reconstructions of ¢ and p.

5.2.3 Regularizing Newton-Kaczmarz for XPCT

The IRGNM-scheme could be readily adapted also to phase contrast tomography (XPCT) by
employing the associated forward map from §2.4.5, G : f — (F(Pe,(f)),.-., F(Pa\(f))).
Here, f = kB + ikd is the scaled contrast in refractive index, 0,,...,0y € S? denote the
tomographic incident directions and F € { (--f0) g1} ig underlying XPCI-model (one
or multiple holograms, with or without homogeneity constraint). However, evaluations of the

*Here, the contrast in ¢ and p is negative as the logo-structure corresponds to removed material in a
gold-layer of uniform thickness. Imposing non-positivity as a constraint works completely analogously as non-
negativity.
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Figure 5.1. IRGNM reconstruction of the “Logo-XPCI” data set. Phase ¢ and absorption u are
recovered as independent images. Scale bars: 1 pm.

(a) Hologram data. (b) Reconstructed phase-image ¢. (c¢) Reconstructed absorption-image pu.

The red-dashed box in (a) marks the region shown in (b) and (c). A circular support (blue-dashed
region in (b) and (c)) and values ¢, u < 0 have been imposed as constraints. Insets in the top-right
corners of (b) and (c) show the respective parts for reconstructions without imposing ¢, u < 0.

map G and of its derivative are computationally expensive, which is why a Kaczmarz-type

variant of the IRGNM, termed (regularizing) Newton-Kaczmarz [30], is proposed for XPCT.
Analogously to classical Kaczmarz-iterations for linear systems [109], the idea is to decom-

pose the problem into smaller sub-problems and to update the iterates f; by fitting a single sub-

data at a time. For XPCT, it is natural to decompose the hologram-data I8%, = (1™, ..., I)
into blocks corresponding to the different incident directions 6;. If the forward map is decom-
posed accordingly, G = (G, ...,Gy), Newton-Kaczmarz iterations are of the form

fror = arfgg(inHij(fk) + G LA = 1) = I+ cna If = Aullx + anallf = folk (5.2.3)

with g9 := I?"*—1. The updates are thus given by IRGNM-steps on the sub-problems G}, (f) ~
g;?fs with an additional regularization term oy ;|| f — fx||% that penalizes deviations from the
previous iterate fi. The latter is vital because otherwise the algorithm could completely “forget”
all the data fitted before, just to fit the current block as well as possible. Note that we employ
a simple L?-norm for || - || x, for the simple reason that H*-norms with s > 0 would require that
FFTs and inverse FFTs of large 3D-arrays are computed in each iteration, which would severely
increase the computational costs of the algorithm. The indices ji, j2,... in (5.2.3) determine

the processing-order of the data-blocks. In the present work, a randomized order is chosen.
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The Newton-Kaczmarz approach is applied to experimental XPCT data for a nano-crystal
formed by polystyrene-colloids of diameter 400 nm. The data set is composed of a tomographic
series of 249 holograms of size 1024 x 1024 pixels each, acquired for incident angles between 0 and
173° at a single Fresnel number §;, ~ 2.41- 10~* (i.e. one hologram per incident angle). We term
this test case “Colloid-XPCT” . Negligible absorption § = 0 and non-negativity of the refractive
decrement § > 0 are imposed as constraints as well as a cube-shaped support of size 256 voxels,
motivated by the small object-size inferred from the hologram-data in fig. 5.2(a). The Newton-
Kaczmarz reconstruction is run with constant regularization-parameters a@ = a1 = 1030%72
(where «v is chosen according to a heuristic detailed in the article) over two cycles, i.e. such
that each hologram 9™ is fitted exactly twice by iterations of the form (5.2.3).

Figure 5.2. Newton-Kaczmarz reconstruction of the “Colloid-XPCT” data set. Scale bars: 1 um.
(a) Orthoslices through the 3D tomographic data set (249 holograms of size 1024 x 1024 pixels).

(b) Central orthoslice (perpendicular to the tomographic axis) through the reconstructed 3D-volume.
(c) 3D-Rendering of the colloidal crystal based on the reconstructed refractive decrement 4.

A 2D-slice of the recovered 3D-structure of the refractive decrement § is shown in fig. 5.2(b).
The reconstruction is found to be in good agreement with the expectations for the imaged sam-
ple, essentially showing a binary object (constant value 6 > 0 within the polystyrene-colloids,
d = 0 outside) up to noise and a slight blur. By computing the Fourier-shell-correlation [201],
the resolution of the reconstruction is estimated as ~ 95nm, compared to ~ 105nm for a
second reconstruction without non-negativity constraint (not shown). Thus, non-negativity
slightly enhances the resolution, presumably because the constraint suppresses noise in the ob-
ject owing to its stabilizing effect (compare §3.5) and promotes a sharper and cleaner separation
of the colloids from the background. In the article, it is furthermore demonstrated that the
achieved reconstruction-quality is sufficient to accurately determine the colloid-sites, i.e. the
crystal-structure, the result of which is shown as a 3D-rendering in fig. 5.2(c).

5.3 Supplement: comparison to theoretical predictions

The stability results from chapters 3 and 4 permit theoretical predictions on the achievable
image quality that can be related to the practical reconstructions obtained in the presented
article. This is done in the following supplement.
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5.3.1 Comparison to stability theory from Article 1

As both the logo-structure and the colloidal crystal are weak objects to good approximation,
the stability theory for linearized XPCI from chapter 3 applies to the considered settings.

Logo-XPCI: In the 2D test case, a circular support of diameter 280 pixels has been imposed.
The modified Fresnel number associated with this lengthscale is foup, = 27 - 280%f,;, ~ 87. As
phase-shifts and absorption are reconstructed as independent images from a single hologram,
the test case corresponds to the most challenging XPClI-setting, stated as inverse problem 3.1.
Accordingly, the stability constant C,y, &~ Cipy (B]0; %], fsupp) May be estimated via the stability
bound (3.2.3) from theorem 3.1 (approximating the circular support by an enclosing square).
This yields that the least stable image-mode hy induces a relative contrast of

1.7 (ho)ll/[[ ol = Citar > 1.26- 1071 + O(107). (5.3.1)

This contrast is on the threshold of being detectable but arguably not sufficient to enable
a stable reconstruction in practice. However, the more in-depth modal stability theory from
Article 1, see §8.3.4, also predicts that only a single mode exhibits such a low contrast whereas
the two next-to-least-stable modes induce a relative contrast of at least > 7-107%. Accordingly,
the contrast increases quite fast with the order of the modes so that only very few are unstable
to reconstruct. Moreover, it is known from the stability analysis that these are low-frequency
modes. The obtained numerical results are in agreement with this theoretical picture: in the
reconstruction with support constraint only, shown in the insets in fig. 5.1(b),(c), low-frequency
instability manifest as slowly varying perturbations of the background, whereas high-frequency
structures such as edges are accurately recovered. By imposing the correct sign of the images ¢
and p as an additional constraint, which effectively tightens the support constraint and thereby
improves stability according to §3.5, the remaining low-frequency artifacts are suppressed.

Colloid-XPCT: For the XPCT test case, the recovered object has been restricted to a cube of
size 256% voxels. This corresponds to a modified Fresnel number fq,p,, & 272562 Fpix = 99 of the
cubic support. Moreover, a pure phase object (8 = 0) has been assumed in the reconstruction.
According to §3.3, the XPCT-setting thus corresponds to inverse problem 3.2 with v = 0 and
m = 3 (neglecting the finite sampling in the tomographic angles). Using the numerical methods
from §3.4, the corresponding stability constant is computed to be

C’s.tab = CIPQ([_%; %]37 fsupp) ~ 0.32. (532)

As the mazimal relative contrast of an image in linearized XPCI is 2 (by theorem 2.3), this
result means that even the least stable mode yields strong contrast in the XPCT-data. Ac-
cording to the stability theory from §3.3, the imaging-problem is thus practically as stable as
a reconstruction from pure tomographic projection-data — no additional instability arises from
the phase contrast setting. In particular, this means that only little gain was to be expected if
holograms had been acquired at more than one Fresnel number for the considered data set.

The predicted high stability explains the achieved high reconstruction quality in fig. 5.2 (no
low-frequency halos or residual fringe-artifacts can be identified in the plotted slice) despite the
relatively high noise-level in the data.
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5.3.2 Comparison to resolution estimates from Article 2

As seen in chapter 4, the limited field-of-view (FoV), for which the considered hologram-data has
been recorded, gives rise to a fundamental resolution limit: if fp.y denotes the Fresnel number
associated with the detector’s aspect length w (effective length in divergent-beam geometries,
compare §2.1.5.1), image-features of size < w/fp,y cannot be resolved. The reconstruction
results allow to compare the practically achieved resolution to this theoretical limit.

Logo-XPCI: In the logo-experiment, the detector was rectangular with 1920 pixels of effec-
tive size Angfx ~ 22nm horizontally and 1080 pixels along the vertical direction. This corre-
sponds to effective aspect lengths of w, = 1920-22nm ~ 42 um (horizontally) and w, ~ 24 ym
(vertically) and Fresnel numbers g,y , = 1920° - f;, & 652, fr,y, = 1080* - f,;, ~ 206. This
anisotropic setting may be confusing: which aspect length or Fresnel number is now the one
that determines the theoretical resolution? According to the analysis in Article 2, the answer
is both: it is seen from the Gaussian-wave-packet study in §4.2.3 the that aspect length along
an axis determines the resolution w.r.t. features varying exactly along this specific direction!
Consequently, a significantly anisotropic resolution is to be expected, where the minimal re-
solvable feature sizes are r, = w,/fp,v, ~ 65nm horizontally and r, = w,/fg,v, ~ 116 nm
vertically. Indeed, this anisotropy can be identified in the obtained reconstructions: upon a
closer look, the logo-edges in fig. 5.1(b) turn out to be slightly more smeared out vertically than
horizontally. Moreover, the overall empirical resolution of ~ 100 nm estimated via line-scans

(not shown) is in good quantitative agreement with the theoretical predictions.

Colloid-XPCT: In the tomographic test case, the field-of-view is square with 1024 pixels
of effective size Axffx ~ 29nm along each axis, resulting in an effective aspect length of w ~
30 um with associated Fresnel number fp, = 10242 - foix & 253. The predicted resolution
is thus r = w/fp,y & 119nm. Again, this is in good agreement with the empirical estimate
~ 95 nm obtained via the FSC-method. The surprising observation that the achieved resolution
in practice is slightly better than the theoretical limit may be explained by the nonlinear
sharpening effect of the non-negativity constraint, compare §5.2.3, and again by anisotropy:
while the theoretical prediction r = w/fp,y from Article 2 limits the worst-case resolution
along all possible orientations of object-features, the FSC-estimate can be seen to provide a

directionally averaged resolution in some sense.

5.4 Conclusions

As usual, we conclude the chapter by considering the findings of the presented article from a
broader perspective, outlining benefits, drawbacks and possible improvements of the proposed
Newton-type image reconstruction algorithms.

XPCI pushed to its theoretical limits — by exploiting a priori constraints: In the
presented article, image reconstruction has been successfully demonstrated for both simulated
and experimental data in what is considered one of the most challenging setting of XPCI:
retrieving phase ¢ and absorption u as two independent images from one hologram. According
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to the analysis in chapter 3 and the discussion in §5.3.1, such a reconstruction is ambiguous
in general — only the ability of the proposed IRGNM-algorithm to impose support constraints
and non-negativity allows to stably disentangle ¢ and p. In particular, this means that the
obtained results are beyond reach for direct CTF-inversion methods as introduced in §2.7.2.1
(notably, the current standard in holographic XPCI!), due to their aforementioned inability of
incorporating such a priori constraints, compare §5.1.

The comparison to the theoretical results from chapters 3 and 4 drawn in the supplement
§5.3 indeed shows that the achieved reconstructions attain the theoretical limits of XPCI:
the empirically found resolution reaches the predicted diffraction-limit arising from the finite
detector-size in both the Logo-XPCI and the Colloid-XPCT test cases. Moreover, it is found
that the independent reconstruction of ¢ and u for the Logo-XPCI data set is at the threshold of
what is feasible according to stability theory. This demonstrates the potential of the proposed
regularized Newton-methods in making the most out of available hologram-data.

Newton-Kaczmarz for XPCT imposes tomographic consistency: We emphasize that
the proposed Newton-Kaczmarz method for XPCT is a joint or all-at-once approach in the
sense of §2.7.4: the 3D-object is directly recovered from the tomographic hologram series so
that tomographic consistency is implicitly exploited as a constraint in the phase reconstruction
of the holograms. In particular, note that the algorithm allows to set 3D-support constraints,
which promotes stability of image reconstruction according to the discussion in §3.7.

Flexibility w.r.t. model-refinements: Both IRGNM and Newton-Kaczmarz are generic
reconstruction methods in the sense that they do not rely on details of the forward operator
(except for differentiability). Consequently, the schemes may be readily adapted to modi-
fied XPCI-models, for instance accounting for a non-trivial profile of the probing X-ray beam
(§2.1.5.2) or partial coherence (§2.1.5.3). Additionally, we recall from 5.2.1.1 that the proposed
algorithms may be adapted to the expected statistics of the data-errors. In the long run, the
flexibility of regularized Newton methods may thus enable improvements of the reconstruction-
quality in XPCI and XPCT by incorporating such refined models of image-formation.

Nonlinear capabilities remain to be validated: While the versatility of the Newton-type
approach in imposing constraints has been thoroughly exploited in the considered examples,
this is not true for its ability to account for nonlinearity: though the proposed algorithms are
based on the nonlinear XPCI-model in principle (as opposed to CTF-based methods, which are
inherently linear), the objects in the two test cases are too weakly scattering for nonlinearities
to have a significant impact. However, real-data XPCl-examples where IRGNM produce good
results, whereas linear image reconstruction completely fails, do exist [87]. Moreover, an XPCT-
data set that truly requires the nonlinear capabilities of the Newton-Kaczmarz approach will
be reconstructed at the end of next chapter in §6.4.

Computational performance issues: Although efficiency-considerations have been taken
into account in the design of the proposed algorithms, computational costs remain a significant
downside of the IRGNM: typically, five to ten Newton-iterations of the form (5.2.1a) have to
be computed, each of which involves an iterative solution of a quadratic minimization problem,
which usually requires O(10) conjugate-gradient (CG-) iterations. Notably, each of the latter
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inner iterations amounts to about as much computational effort as a complete reconstruction
by direct CTF-inversion. Accordingly, typical computation times for an IRGNM-reconstruction
(minutes for holograms with O(10°) pixels on a single CPU) are in the order of 100-times longer
than for standard CTF-methods (usually in the order of one second). Though the required
number of iterations in IRGNM is typically smaller than for alternating-projection-type schemes
(see §5.1), it thus needs to be further reduced to make the approach suitable for high-throughput
imaging at synchrotrons. For example, this might be achievable by suitable preconditioning,
e.g. based on multi-grid methods [29] as in solvers for partial differential equations.

Concerning the required number of iterations, the situation is better for the proposed
Newton-Kaczmarz method for XPCT: as demonstrated in §5.2.3, already two cycles over the
hologram series, i.e. effectively two Newton-steps on the total problem, may be sufficient to
achieve a high-quality reconstruction. Moreover, the strong regularization w.r.t. the preceding
iterate fr in the Newton-Kaczmarz updates (5.2.3) renders the computation well-conditioned,
so that only few (typically < 5) CG-iterations have to be performed per Kaczmarz-step. This
makes the algorithm computationally more efficient than a simple adaptation of the (bulk,
non-Kaczmarz-type) IRGNM to the XPCT-setting as implemented in [139].

However, the Newton-Kaczmarz iterations in XPCT are much more expensive to compute
than the IRGNM-steps in XPCI as the former operate on 3D-objects instead of 2D-images
and involve costly evaluations of the tomographic projectors &.. This raises performance
issues that widely rule out application of the proposed method in its present form to large-scale
XPCT-problems (note that the numerical problem size for the reconstruction in §5.2.3 with
2563 dimensions in discrete object-space and 249 - 10242 in data-space was still comparably
small). In the subsequent chapter 6, a general algorithmic scheme for the computation of
(Newton-)Kaczmarz iterations will be presented that helps to overcome these limitations.
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Chapter 6

Generalized SART-Methods for
Tomographic Imaging

In Article 3, Newton-Kaczmarz iterations have been proposed and successfully tested as a re-
construction method for XPCT. Article 4 [141] takes this idea up by deriving efficient formulas,
termed generalized SART (or GenSART-) schemes, for the computation of such- and much
more general Kaczmarz-iterations. As the required theory will become technical in parts, it is
important to bear in mind that the principal goal is a purely practical, computational one: re-
duce the computational costs of (Newton-)Kaczmarz methods in order to make them applicable
for large-scale tomographic reconstruction problems as encountered in XPCT.

6.1 Motivation

6.1.1 The problem of complexity in tomographic reconstruction

A recurrent practical problem in reconstruction algorithms for XPCT and other tomographic
imaging modalities lies in the high dimensionality: as the unknown object needs to be sampled
in three spatial dimensions, the number of degrees-of-freedom in the discretized problems to be
solved typically scales like N3 with the number of sampling points N along each dimension. In
a high-resolution imaging setting with N = 2048, this third-power-dependence implies that one
real-valued object already occupies 32 or 64 Gigabytes of memory in single or double floating-
point-precision, respectively. This makes efficient memory-management a highly relevant issue
for tomographic reconstruction algorithms — even when run on current workstations.

For large-scale XPCT problems, it is standard to reconstruct via a two-step approach:
firstly, 2D-projections are reconstructed from the acquired holograms for each tomographic
incident angle individually (by CTF-inversion, §2.7.2.1), followed by filtered back-projection
(FBP, §2.7.3.1) applied to the recovered projections. Note that both steps only need to process
2D-data as the FBP-step can be performed slice-by-slice. This is highly efficient in terms of
memory-requirements. On the contrary, any all-at-once reconstruction approach (see §2.7.4),
like the Newton-Kaczmarz scheme from Article 3, combines these two steps and thereby estab-
lishes a fully three-dimensional object-data-dependence. Indeed, the whole idea of such methods
is to exploit three-dimensionality as a constraint to stabilize phase reconstruction. Therefore,
it cannot be avoided that they manipulate large 3D-arrays in some non-trivial manner.
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In addition to memory-issues, the large data-dimensions bring about considerable computa-
tional costs, in particular for the evaluation of the tomographic (back-)projectors Py, P, see
§2.3: for standard discretizations®, numerically computing P(f) or &4 (p) for one incident an-
gle @ amounts to O(N?) floating point operations (FLOPs). Hence, a total (back-)projection
Lot = (Poyy- -y Poy 0‘) or Z;, for all angles requires O(Npo;N?) FLOPs. As typically
Nproj ~ N holds true, this means that > O(10'?) operations have to be performed for problem-
sizes N ~ 1000, which amounts to computation times in the order of hours on a single CPU.
A large number of evaluations of %, and/or &7, are thus computationally prohibitive.

In view of computational costs and memory-requirements, we see that efficient tomographic
reconstruction algorithms should meet the following criteria:

(1) Minimize the number of evaluations of tomographic (back-)projectors Py, 5 .
(2) Work as little as possible on 3D-arrays and store as few as possible copies of these.

(3) Parallelizability: allow subdivision into small tasks that can be performed in parallel by
multiple processors without requiring too much communication between these.

It can be readily seen that standard two-step CTF+FBP-reconstructions in XPCT satisfy all
of these performance-criteria almost perfectly. Yet, this approach does not bring the same ca-
pabilities as the Newton-Kaczmarz method from Article 3 in terms of nonlinearity, constraints,
etc, as discussed in §5.4. On the other hand, the generalized SART-schemes proposed in the
present work will enable Kaczmarz-type methods to also meet the performance-requirements.
Special emphasis will be laid on criterion (1). However, we note that GenSART-methods also
satisfy the criteria (2) and (3), as will be detailed in §6.3.

6.1.2 Classical Kaczmarz-iterations and SART

As a motivating example, we consider the simplest case of classical Kaczmarz-iterations for
reconstructing an object f from pure projection-data p°* ~ Pt (f) = (P1(f), -, Pny; (),
where the &2; := P are parallel-beam projectors as defined in §2.3. The idea is to cyclically
fit the object-iterates fi to the tomographic data for one incident direction 6; € S? at a time:

frs1 = argmin || f — ka2 with By := argmin | Z}, (f) —p?ESHZ (6.1.1)
feBy, FEL2(Q)

Importantly, although the optimization problem in (6.1.1) looks complicated, it has a relatively
simple analytic solution, as can be seen e.g. from the analysis in [155, §V.4.3]:
35 (@)= 25, (fi) () £ 0
ferr = fo + 2 (Apr)  with  App(z) = ujy, (@) if uy, (@) # , (6.1.2)
0 else

*There exist methods for the evaluation @é;g in O(N?3log N) + O(NprojN?) operations, based on FFTs and
interpolations in Fourier space, see e.g. [69, 113, 8]. In practice, however, we find that these approaches cannot
compete with high-performance implementations of standard discretizations (as provided by the ASTRA-toolbox
[199, 198], for example), which is why they are not further discussed.
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where u;, := 2;,(1q) is the projected indicator function of the object-domain Q2 C R? (unit-
projection). By replacing &, , fi, p‘]?):s, uj, with suitable discretizations P; € R™*", f, € R"
and pé’:’s, uj, € R™, the update (6.1.2) can be implemented as a numerical scheme:

Scheme 6.1 (Classical SART (essentially)).

(1) Forward-project the current iterate: p, = P, (f;)

(2) Compute increment in projection space: Ap, = (p;’,'fs — Di) Do W,

(3) Back-project and increment: f; ., = f; + P (Apy)

The operator @ assigns the element-wise quotient of vectors whenever the divisor is non-
zero and 0 otherwise. It is shown in the article that scheme 6.1 essentially coincides with
iterations of the Simultaneous Algebraic Reconstruction Technique (SART), which has been
proposed in [6] following a completely different reasoning.

Notably, the SART-scheme 6.1 computes the Kaczmarz-iterations from (6.1.1) in a highly
efficient manner: it requires only a single forward- and back-projection (steps (1) and (3)),
whereas the actual update is computed in step (2) purely by manipulating 2D-projections
instead of 3D-objects. Step (2) thus involves only arrays of size m = O(N?) (instead of
n = O(N?)), which makes it computationally cheap. Indeed, scheme 6.1 meets the performance-
requirements from §6.1.1: it performs as few as possible operations on 3D-data and involves
only one evaluation of P;, and Pj_each, resulting in O(N?) computational costs of the total
SART-update. A drawback is that it only computes minimizers up to discretization-errors:

Remark 6.2 (Inexactness in the discrete setting). While (6.1.2) constitutes an exact solution
to the Kaczmarz-update (6.1.1), the discretized SART-update typically does not exactly solve
the associated discrete problem, i.e. if f,_; is defined by scheme 6.1, then in general

Foo € argmin [ £ — £, with By = argmin||Py, (F) — ™3 (6.13)
feBy FeERrRn

In agreement with the Newton-Kaczmarz results in §5.2.3, it is a recurrent observation
that Kaczmarz methods exhibit fast semi-convergence [57]: while not necessarily converging
for £ — oo, the iterates f; typically provide a reasonable reconstruction already after one or
two fitting-cycles over the data, i.e. after k ~ Np,.; iterations. Hence, a complete Kaczmarz-
reconstruction via SART amounts to similar O(N,,,;N?) computational costs as FBP.

6.1.3 The idea of generalizing SART

According to §6.1.2, the seemingly complicated Kaczmarz-updates in (6.1.1) can be computed
non-iteratively by an efficient SART-scheme. The Newton-Kaczmarz algorithm from Article 3
constitutes a generalization and adaptation of the classical Kaczmarz method to the XPCT-
setting. As will be seen in §6.2.5.2, the corresponding updates implemented in §5.2.3 can be
cast to the generic form of generalized Kaczmarz-iterations:

fr+1 € argmin S, (25, (f)) + Ri(f) (6.1.4)
ferr(Q)
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for suitably defined functionals Sy and Ry. Several other recent algorithms give rise to updates
of the form (6.1.4) when applied to tomographic reconstruction problems, among those so-
called Tikhonov-Kaczmarz iterations [50, 115], incremental proximal methods [21, 22, 7] and
stochastic primal-dual methods [35]. Consequently, efficient solution-formulas for (6.1.4) are of
interest beyond the specific setting of XPCT.

Analogously as classical SART provides an efficient computational scheme for classical
Kaczmarz-iterations (the case Ri(f) = 0, Sp(p) = Ilp — p5*|7. in (6.1.4)), the principal aim
of the presented article is to derive generalized SART-formulas for the computation of the

generalized Kaczmarz-update (6.1.4).

6.2 Summary of the results

6.2.1 General setting

The article considers general inverse problems in transmission tomography, where the acquired
data is given by a finite number of tomographic projections mapped under additional image-
formation operators F;, that may for example model phase contrast:

9 Fy(24(f))
Jtot = : = : = Fiot(Pioi(f)) (6.2.1)
ngroj FNproj ('@Nproj (f))

Here and in the following, g:o; is the total data composed of the individual blocks g; that give
the data acquired under the jth tomographic incident direction. The &?; are the corresponding
tomographic projectors, that generate the jth tomographic projection for a given 3D-density
[ € L*(Q) with support in 2 C R? bounded. The aim is to reconstruct f from the data gios.

In the complete article (chapter 11), both the cases of parallel-beam- and cone-beam
(divergent-beam) projectors are considered. As the geometry in holographic XPCI is typically
well-approximated by the simpler parallel-beam setting (compare §2.1.5.1), however, this sum-
mary restricts to the parallel-beam case for simplicity. Accordingly, the projectors &; := Py,
are defined by (2.3.1). Notably, absolutely no assumption is made on the angular sampling,
i.e. the incident directions 6; € S? are completely arbitrary throughout this chapter.

The article considers Kaczmarz-iterations for the setting (6.2.1) of general variational form:

forn € angminSe (62" By (25, () + Rell)s o € (Lo Noih (622
62

Analogously as for the IRGNM in §5.2.1, the data-fidelity functionals Sy allow to adapt the
scheme to the expected statistics of the data-errors, whereas the penalty functionals R, enforce
desirable object-properties and bound the increments fy,1 — fi, i.e. control the stepsize.
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Notational simplifications: We note that the operators F; may be absorbed into the func-
tionals S by a suitable redefinition. Likewise, we omit the dependence of S on the measured
data-chunks g;’bs for brevity. Moreover, as we will only analyze a single iteration of the form

(6.2.2), all the indices k and j; are suppressed in the following. Hence, we simplify (6.2.2) to

Joew € argmin S (Z(f)) + R(f). (6.2.3)
feL?(Q)

Finally, it can be assumed w.l.o.g. that the incident direction 8 € S? coincides with the z-axis,
by the freedom in choosing the coordinate system. Hence, we may restrict to & given by

(@) = Pe.(f)(x)) = /Rf(:cbz) dz forall x, = (z,y) € R (6.2.4)

6.2.2 Properties of tomographic projectors and notation

In order to devise efficient solution-schemes for (6.2.3), the presented article takes advantage
of characteristic properties of tomographic projectors.

We recall from §2.3.2 that & : L?(Q) — L*(R?) is a bounded linear operator. For the
present study, it is important that this statement can be sharpened: if we define the projection-
domain Dy := supp(uy) C R? as the support of the unit-projection uz = P (1q), it holds that
supp(Z2(f)) C Dy for all f € L*(Q). Hence, & : L*(Q) — L*(Dy») C L*(R?) is a well-defined,
bounded linear operator. Its adjoint is given by a back-projection operator:

6.2.5
0 else ( )

if ,2) € Q)

P 1 (Dy) = Q) P, 2) = {p(‘”) t(@,,2) €2

According to (6.2.5), &7*(p) is always constant along the tomographic ray-direction (w.l.o.g.
the z-direction here), along which the operator & integrates. This implies that

P (w-P(p)) = P(w) p (6.2.6)

for any p and weight-function w for which the expression is well-defined. In particular, the
following relation holds true:

PP (p) =P (1g- P*(p)) =uzp-p forall pec L*(Dy). (6.2.7)

The formulas in (6.2.6) and (6.2.7) are highly valuable from a computational perspective:
while & and Z2* alone map between 3D-objects and 2D-projections and thus typically re-
quire O(N?) floating point operations to evaluate numerically, compositions of these maps,
PP* and p— P (w - P*(p)), are simply multiplication operators on 2D-projections. Hence,
the latter maps can be implemented numerically at a favorable computational complexity of
O(N?). One promising approach for an efficient computation of the Kaczmarz-iterations in
(6.2.3) is therefore to rewrite the optimization problem in terms of & 27* as far as possible.

In order to make sense of the results of the subsequent sections, it is furthermore important
to note that we adopt the following notational convention:
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Convention 6.3. All local operations (+,—,-, /, ()7, V, ...) on functions f € L*(Q?) C L*(R?)
and p € L*(Dyp) C L*(R?) are implicitly understood to be evaluated only in the interior of
and Dy (int(A) := Upc 4 gpen U)- For example, a quotient of py, py € L?*(Dy) is to be read as
if € int(Dy
(p1/p2)(x1) = {;gl(ilu)/pz@ﬂ lle int(Dy) forall =z, € R (6.2.8)
else

6.2.3 The Generalized SART-principle

Casting the optimization to projection-space: We aim to generalize the classical SART-
scheme 6.1 from §6.1.2 to compute Kaczmarz-iterations of the form (6.2.3). One important
property of the classical update-formula (6.1.2) is that the increments frp,1 — fr are always
back-projections 2;, (Apy) of some projection-increment Apy. If a similar property is known
to hold in (6.2.3), i.e. if foow — fret = P*(Ap) for Ap € L?*(Dy) and some reference-object
fret € L2(2), then it would follow that

(@*(Ap) = fnew - fref S argmin S (g(fref"i_ Af)) + R(fref + Af)

AfEL2(Q)
= Ap € argmin S (P (frer) + P P*(Ap)) + R fret + P (Ap)) (6.2.9)

peL?(Dap)

According to (6.2.9), Ap (and hence fhew = fret + Z*(Ap)) can be computed by optimizing
in projection-space. In a discretized setting, this reduces the dimension of the optimization
problem to O(N?) compared to O(N?) for the original problem in object-space, potentially
enabling massive gains in computational performance. Moreover, note that the operator & &7*
arises here, which can be implemented at low computational costs, as argued in §6.2.2.

When are Kaczmarz-updates back-projections? For (6.2.9) to apply, we need to ensure
that the Kaczmarz-increment Af := fiew — fret € L*(R2) is a back-projection. By standard
Hilbert-space geometry, any Af € L*() can be (uniquely and orthogonally) decomposed as
Af = Afp- + Afy, where Afzp- is an element of (the closure of) range(22*) := Z*(L?(Dy))
and Afy € kern(2) := {f € L*(Q) : Z(f) = 0} is in the null-space of &?. Hence, Af is a
back-projection if and only if its component in kern(Z?) vanishes. Importantly, it holds that

S (P (fr+ AF) = S(P(fur) + DD+ PAS) ) = S (P + A ), (62:10)
——

=0

i.e. the data-fidelity term in (6.2.3) does not “see” the null-space component A fy. Accordingly,
this part of the update A f must be solely determined by the penalty functional R. As long as
R does not actively promote that non-zero null-space components emerge, there will always be
a minimizer of (6.2.3) such that fyew — fref is a back-projection for some fif € L2(£2). Imposing
this property of R is the idea underlying to the following assumption:

Assumption 6.4. Let P: XY be a bounded linear operator on Hilbert spaces X, Y with
null-space kern(P) such that range(P) = P(X) C Y is closed and let R : X — R U {co} be a
functional. Assume that there exists an f.s € X such that

R(feet + P*(0) + fo) > R(fret + P*(p)) forall peY, fy€ kern(P) (A)
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Assumption 6.4 is stated in terms of an abstract map P because & : L*(Q) — L*(Dy) does
not have a closed range so that, strictly, it may not satisfy the assumption. However, it is shown
in the article (see theorem 11.4) that a slightly modified projector, &, : L*(2) — L?*(Dy) with

Piso(f) == u;]l/Q - P(f) (well-defined by convention 6.3), is bounded and has closed range. As
a consequence, the non-closed range of & only renders the proofs of subsequent results more
technical, but does not cause any substantial difficulties.

The general principle: The crucial part of assumption 6.4 is the inequality (A), that ensures
that R uniformly penalizes deviations from f,.¢ by null-space elements. If this is satisfied, the
arguments from (6.2.9) and (6.2.10) lead to the principal theorem of the article:

Theorem 6.5 (Generalized SART-principle). Let assumption 6.4 be satisfied and let SV —
R U {oo} be any functional. Assume that there exists a minimizer

foew € argmin S(P(f)) + R(f). (6.2.11)

fex

Then there is a (possibly distinct) minimizer fuew € X of (6.2.11) given by

Pref = P(fref) (6212&)
Ap € argmying(pref + PP*(p)) + R(fret + P*(p)) (6.2.12b)
fnew = fref + ﬁ*(Ap) (62120)

Conversely, any foew given by (6.2.12) minimizes (6.2.11). Furthermore, if strict inequality
holds in (A) whenever fo # 0, then all minimizers of (6.2.11) are of the form (6.2.12).

Although formulated in an abstract setting, the result in theorem 6.5 is particularly well-
suited for the tomographic Kaczmarz-iterations in (6.2.3) for the following reasons:

e The optimization problem in (6.2.11) is cast from the object-space X to the image-space Y’
(projection-space) in (6.2.12b). In the Kaczmarz-setting, Y is much smaller than X.

e For P = Pis0), the operator PP*in (6.2.12b) is easy to evaluate, compare §6.2.2.

When theorem 6.5 is applied to Kaczmarz-iterations of the form (6.2.2) (or (6.2.3)), we re-
fer to the resulting solution-formulas (6.2.12) as generalized SART (or GenSART-) schemes,
emphasizing their similarity to classical SART-updates (compare scheme 6.1):

Scheme 6.6 (Generalized SART (GenSART)).
(1) Forward-project the current iterate: py, = 2, (fx)
(2) Optimize in projection-space: Apy, = argmin, J(p, pr, uj,, - - -)

(3) Back-project and increment: fri1 = fi + 25 (Aps)

113



PhD thesis: Inverse problems in X-ray phase contrast imaging Simon Maretzke

Scheme 6.6 coincides with the classical SART-scheme 6.1, except that step (2) is replaced by
an abstract optimization problem that depends on details of the Kaczmarz-iterations (6.2.2) to
be computed. As will be seen in §6.2.4, the (back-)projectors &2, , &5 may typically be com-
pletely eliminated from the optimization step (2) in scheme 6.6. In combination with the low
dimension O(N?) of the projection-space in discretized settings (see above), this renders step
(2) of GenSART computationally inexpensive compared to the forward- and back-projection

steps (1) and (3) even if the minimizer has to be computed iteratively. Hence:

Generalized SART permits the computation of general tomographic Kaczmarz-iterations
essentially at the computational costs of classical SART-updates.

6.2.4 Admissible penalty-functionals

In order to apply theorem 6.5 to the Kaczmarz-iterations (6.2.3), inequality (A) has to be
verified for the chosen penalty functional R. The null-space of a tomographic projector kern(Z)
contains all elements of L?(Q) that integrate to zero along all tomographic rays and thus
correspond to additional oscillations along the ray-direction compared to an increment f oo —
fret = P*(p) that is a pure back-projection. Intuitively, this means that any penalties R
which tend to damp out oscillatory deviations from the reference object f.of, i.e. such that are
smoothing, are promising candidates to satisfy assumption 6.4.

6.2.4.1 L’-penalties and generalizations

L?*-penalties R(f) « ||f — fret||72 have a smoothing effect. Indeed, such penalties are found to
satisfy assumption 6.4 in a more general setting:

Lemma 6.7 (Quadratic norm penalties). Let X,Y be Hilbert spaces, P: X =Y linear and
bounded with closed range and let R(f) := || f — feetl|% for some fref € X. Then assumption 6./
is satisfied with strict inequality in (A) for all fo # 0 and it holds that

R( fret + P*(p)) = (p, pp*(p))y forall peY. (6.2.13)

Via theorem 6.5, lemma 6.7 yields generalized SART-schemes for L?-penalized Kaczmarz-
iterations. By simplifying terms involving &2 Z7* via (6.2.6), the following result is obtained:

Theorem 6.8 (Generalized SART with L2-penalty). Let fiof € L*(Q), a > 0 and let S :
L*(Dyp) — RU {0} be any functional. Then the minimizers of

foew € argmin S(2(f)) + allf — feetl|%2 (6.2.14)
fel?(Q)

are uniquely determined by the GenSART-scheme

Dref = ‘gz<fref) (62153)

Ap € argmin S (pret + uy -p) + ap||7- (6.2.15Db)
pEL?(Dg)

fnew = fref + 7 (u;zl/Q : Ap) (6215C)
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Recall that the multiplication by u;;/ % in (6.2.15) is defined in the spirit of convention 6.3.
Importantly, theorem 6.8 holds whenever the penalty R is given by a squared L?-norm —
completely independently of the choice of the data-functional S! Furthermore, generalizations
of theorem 6.8 are proven in the complete article for different settings, compare §11.4.

(1) Weighted projectors (theorem 11.11): frey € argminS(Z(A- f)) + | f — frel|72 for some
bounded function A with A(x) # 0 for almost all & € .

(2) Weighted L*-penalties (corollary 11.12): R(f) = allw™2- (f — fuer)||2 for some bounded
weight-function w with w(x) > 0 for almost all x € Q.

(3) Le-penalties (theorem 11.17): R(f) o< || f — fretllTe = [, |f — fret]?de for 1 < ¢ < oo.

For all of these choices, the principal structure of the GenSART-scheme (6.2.15) is retained, en-
abling computations of the Kaczmarz-iterates at the efficiency of classical SART. For cases (1)
and (2), the proof again uses lemma 6.7, yet taking P as a suitably weighted projector, whereas
the non-quadratic penalty in (3) requires a different approach based on Jensen’s inequality.

6.2.4.2 Gradient penalties

As smoothing has been identified as an decisive property, it is natural to guess that assump-
tion 6.4 is also satisfied for gradient-L?-penalties of the form

R(f) = [V — fuet)ll 12 = / V(f — fug)? d. (6.2.16)

Importantly, gradients in this section are meant to be computed only in the interiors of €2 and

D» — not across boundaries, see convention 6.3. We analyze R on the Sobolev space of weakly

differentiable functions in Q with gradient in L W'2(Q) := {f € L*(Q) : |V f| € L*(Q)}.
With R asin (6.2.16), we have for all sufficiently smooth &7*(p) € range(Z7*), fy € kern(&?)

R+ 2(0) + o) = VP Wl + [V holfs +2Re [ V() Vhode,  (6:217)

From (6.2.17), it can be seen that R(f) + 22*(p) + fo) > R(fD + 22*(p)) (inequality (A))
holds in general if and only if [, VZ2*(p) -V fy de = 0 for any admissible &7*(p) and fo. As
detailed in the article, this turns out to be only almost the case, up to some boundary-terms
that arise in manipulations of the integral due to thickness-variations of the domain §2.

As a consequence, assumption 6.4 is only satisfied in slightly restricted settings. Two valid
scenarios are identified in the article:

(1) Qis a cuboid aligned with the z-axis or, more generally, Q = Q, x Q for some Q, C R?
and QH C R.

(2) fo is additionally assumed to vanish on the boundary of Q, i.e. fy € kern(2) N W, (Q),
where VVO1 2(Q) € WH2(Q) denotes the usual Sobolev space of trace-zero functions.
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While setting (1) is geometrically restrictive, following the idea of (2) ultimately implies that
generalized SART-schemes only hold for gradient-penalized Kaczmarz-iterations if the opti-
mization in (6.2.3) is restricted to a slightly smaller search set:

faow — frot € W52(Q) := (range(2*) N WH(Q)) @ (kern(2) N Wy*(R2)). (6.2.18)

It is furthermore shown in the article that the gradient-penalty can be simplified for argu-
ments given by back-projections: it holds that

R(F™0 + 2°(0) = [V2 D)l = [ulf- VD)2 forall - () € WH(Q). (6:219)

Using (6.2.19) and the restriction (6.2.18), generalized SART-schemes are obtained for arbitrary
convex combinations of L?- and gradient-L?-penalties, i.e. for general Sobolev-W12-penalties:

Theorem 6.9 (Generalized SART with Sobolev-W!'2-penalties). Let fof € L*(Q), a > 0,
0<~y<1andletS:L*Dy)— RU{oc} be any functional. Then the minimizers of

fow € argmin S(2()+a((1=DIf = futlls 471V = flZ). (6:2:20)

FEFret+W 57 ()

are uniquely determined by the GenSART-scheme

P = P(fret) (6.2.21a)

Ap € argmin S (pre + u;f -p) +a(l —)|pl7: + cwHu}/? : V(u;/2 - p) HiQ (6.2.21Db)
pEL?(Dy)

fnew = fref + P (u;1/2 ' Ap) (6221C)

Admittedly, theorem 6.9 is flawed by the required restriction of the natural search set
W12(Q) (all functions for which the gradient-penalty is finite) in the optimization-problem
(6.2.20) to increments fuew — fror € W52(). Yet, while WJ*(Q) € W'2(Q), the “missing
space” V such that ngf(ﬂ) ®V = WH3(Q) is relatively small, as discussed in the article.
Moreover, by (6.2.18), W4*(Q) is much larger than the set range(22*) N W2(Q), over which
the scheme (6.2.21) trivially provides the optimum (by (6.2.9) and (6.2.19)). In this sense,
theorem 6.9 is mathematically non-trivial and also valuable in practice: as W}Q(Q) contains
almost all admissible increments, the GenSART-scheme (6.2.21) is expected to yield almost
optimal Kaczmarz-iterates in terms of an optimization of (6.2.20) over the total space L*((2).

6.2.5 Applications: XPCT and beyond

The most appealing feature of the generalized SART principle is that the data-functional S
in (6.2.11) may be completely arbitrary. Recalling that we have set S(p) := Sk(g;?bs; F;(p)) in
§6.2.1 for notational brevity, incorporating both the image-formation maps F; and the depen-
dence on the observed data g;?bs, we see that the freedom of choosing S paves the way for various

interesting applications, including the Newton-Kaczmarz method for XPCT from §5.2.3.
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6.2.5.1 Noise-model-adapted GenSART

Analogously as discussed for the IRGNM in §5.2.1.1, generalized Kaczmarz-iterations (6.2.2)

may be adapted to the expected data-error statistics via the choice of the data-fidelities S. A

standard approach to achieve this is to choose S as the negative log-likelihood, Si(g3™; g;) =
—1In P(g?bﬂ gj), where P(g;’bs| g;) is the conditional probability(-density) of measuring g;?bs given

that the true data is g;. In particular, the following examples are of interest:|

e Gaussian noise models lead to (weighted) L*-penalties, Sp(99"; g;) = [/(g; — 95*) /0|3,

where o; is the (possibly spatially varying) standard deviation of the data-errors.

o Heavy-tailed distributions (robust fitting): Gaussian error models do not account for the
possibility of large outliers in the data and are therefore prone to over-fitting. In or-
der to achieve more robust reconstructions, it is standard to assume more heavy-tailed
probability-distributions for the data-errors such as (smoothed) Laplace- or Student’s
t-distributions, which lead to functionals of the form (v > 0: robustness-parameter)

Sl 9;) = / s (gi(@) — 6™(@)) dz, s € {5y seanh (6.2.22a)
2 if |y <
s ()= QW0 IS ) ) (6.2.220)
w 2uly| —v*  else

e Poisson moise: Data-errors that arise due to the discreteness of the detected photons
(or electrons or other quantum-mechanical particles) in an imaging-experiment follow
a Poisson-distribution, as discussed in §2.1.5.4 for XPCI. If this is the only source of
obs.

noise, the log-likelihood approach yields a data-fidelity Sk(gj : g;) given by the Kullback-
Leibler-divergence, as detailed in the article and other works (see e.g. [99, 206]):

a—b—bln(%) a,b>0

(6.2.23)
00 else

Sk (957 95) = / Kl (tgo™;tg;) dp,  Kl(bya) := {

with a suitable integral-measure p and an exposure-time parameter ¢ > 0.

For any of these choices of Sy, Kaczmarz-iterations of the general form (6.2.2) may be computed
for arbitrary image-formation models F; and any of the penalty functionals from §6.2.4.

Efficient closed-form optimization for simple models: In general, the optimization in
projection-space, step (2) in the principal GenSART-scheme 6.6, has to be performed itera-
tively, which may be computationally demanding. An exception is given by standard tomo-
graphic reconstruction problems with pure projection-data g}’bs ~ Z;(f) (i.e. no phase contrast
or other non-trivial image-formation maps Fj involved), as arising in classical CT and many
other imaging modalities: as detailed in the article, the optimization-step may then be evalu-
ated analytically for any of the above noise-model-adapted data-fidelities Sy, owing to the fact
that the total data-functional S in the general Kaczmarz-step (6.2.3) assumes an integral-form:

S0) = S (¢ F(») :/st(w,p(m))dm (+ const) (6.2.24)

tAs often done, we restrict to models that assume stochastic independence of errors at different points.
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for some function s : R? x C — R U {oo} that depends on the specific setting. For the L?-
regularized GenSART-schemes from theorem 6.8 (as well as for the outlined generalizations),
the optimization in projection-space then decouples into a family of scalar problems:

Ap € argmin S <pref + u}f -p) + al|p|3z
peL?(Dg)
& Ap(x) € argmin s(x, prer() + usp(x)*py) + a(pe — pres(x))?, = € R2 (6.2.25)
peER

The scalar optimizations in (6.2.25) can be performed to machine-precision in O(1) arithmetic
operations per point « for all of the data-fidelities S presented above. In a discretized setting
with N samples per spatial dimension, this translates to an total complexity of O(N?) of
the optimization step (2) in the GenSART-scheme 6.6, which is negligible compared to the
O(N?)-evaluations of #; and 7 required in steps (1) and (3). Consequently, L*-regularized
noise-level-adapted GenSART-iterations may be implemented at exactly the same runtime as
classical SART (scheme 6.1) — while offering greatly increased flexibility.

6.2.5.2 Newton-Kaczmarz-GenSART for XPCT

The Newton-Kaczmarz method for XPCT from Article 3 (§5.2.3) lead to iterations of the form

frer = argmin || F(2;,(f) + F'[25,(f) 25 (f — Fo) — 623

feL2(Q)
+ap | f = fillx + ana |l f = follx (6.2.26)

multiple holograms acquired per tomographic incident direction). Upon defining

p,(cref) = gzjk( ,gref)) With ]zef = (C\Jk71f0 + Oékafk)/ak, ap = Oék71 + Oék;,z
Te 2 : obDs e
Sp) = ||F'pallp — ") — mel|. with 7y = g5 — Flpr) — F'[pe) (0 — pr)
re 2
R(f) = ||f — kai +aga || f — fOH?X = aka - f fHX + const, (6.2.27)

the iterations (6.2.26) are found to match the general Kaczmarz-setting in (6.2.3). For Sobolev-
Wh2norms || f|% == (1 =N fI7: + ¥IVf]3: (including L?-norms as the special case vy = 0),
they may thus be computed via the GenSART-scheme from theorem 6.9 (u; = £2;(1q): unit-
projection):

fon = 5+ 7, (/ argmin || F'[pe] (uj/ - p) =7},
pEL? (D)

+ o ((1 —DIpl2e + A |ul? v (w7 p) H;) ) (6.2.28)

W

where the “x<” refers to the involved slight approximation discussed in §6.2.4.2.

The optimization in (6.2.28) does not admit an analytical solution but has to be solved
iteratively, e.g. by a CG-method. Yet, contrary to the method initially proposed in Article 3,
the optimization no longer involves any costly O(N?) forward- or back-projections Z;, P
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6.2.5.3 Newton-Kaczmarz-GenSART for polychromatic CT

The generalized SART-approach may also be applied to a nonlinear model of classical com-
puted tomography (CT) from [51, 104]. This model incorporates effects due to polychromaticity
of X-ray sources in clinical applications and may thereby avoid so-called beam-hardening arti-
facts. Despite the nonlinearity, it is shown in the article that L?-regularized Newton-Kaczmarz-
iterations for the corresponding forward model may be computed via GenSART-schemes in
a non-iterative manner at the optimal O(N?) computational complexity of classical SART-
updates, compare §6.1.2. The result makes use of the mentioned generalization of theorem 6.8
for weighted projectors f +— Z(\- f).

6.2.5.4 Extensions

The scope of the presented generalized SART-schemes may be extended in several ways:

e DBox constraints (e.g. non-negativity): As is standard in Kaczmarz methods, constraints
on the object-values, fimin < f < fmax, may be imposed by interlacing the iterations with
projection-steps fry1 < max { min{ fr41, fmax fmin} onto the admissible range.

o Multiple quadratic reqularizers: As used in (6.2.27), penalties R that impose quadratic
regularization w.r.t. multiple priors, R(f) = cu||f — fret1||* + 2| f — fret2|* + . . ., may be
simplified to R(f) = (a1 +az+...)||f — fretl* (+ constant). This permits an implemen-
tation of Kaczmarz-iterations with such penalties via the derived GenSART-schemes.

o Kaczmarz-type splitting methods: To incorporate penalties R that do not satisfy assump-
tion 6.4, one may combine Kaczmarz-iterations with a splitting approach, see e.g. [43, 164]:
the idea is to alternate (forward) (sub-)gradient-descent- or (backward) proximal steps on
the data-fidelity- and the penalty functionals (OR: subdifferential, 7, 0: stepsizes):

, 1
fipy = argmin S (25,(1) + 5 —IIf = fillz: (6.2.292)
feL2(Q) Tk

argming,-ra.oy X + L f— 1|2 backward-backward
et = { g FeL2(Q) (f) ngHf fk—}—éHL? ( ) (6.2.29b)

fk+% — UkGR(fH%) (backward-forward)

Such Kaczmarz-type splitting methods have been proposed recently in [21, 22, 7, 35]. By
theorem 6.8, GenSART-schemes may be used to efficiently compute the proximal step in
the tomographic data-term, (6.2.29a).

6.2.6 Remarks on discretization

While the abstract setting of the principal theorem 6.5 equally applies to continuous and dis-
cretized tomographic inverse problems, the specific GenSART-schemes of §6.2.4 are strictly
valid only in continuous settings. The main reason is that the diagonality of the operator
P P* for a tomographic projector & (compare (6.2.7)) in general does not carry over to dis-
cretizations P € R™ " of &: the matrix PP* € R™ will typically not be diagonal, i.e.
not simply an element-wise multiplication with some discrete unit-projection w € R™. This
peculiarity makes the discretization of GenSART less straightforward than one might hope. In
principle, there are two possible strategies:
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e Post-discretization: Devise Kaczmarz-iterations and corresponding GenSART-formulas
in a continuous setting, then exchange the continuous quantities &, f, S, R, u» by dis-
cretizations P € R™*" f € R", S, R,u € R™. Ezample: (®: element-wise product)

foew € argmin S(2(f)) + allf — feetl|32 (6.2.30)
feL?(Q)
GenSAR _ .
(GenSART) foew € fret + P* (u;/g . arg2m1n S(@(fref) + u%Q -p) + oz||p||%2> (6.2.31)
pEL?(Dp)

discretize .
(discretize) Frow € Frt + P (u—1/2 ® argmin S(P(f.) + u'* @ p) + a||p||§) (6.2.32)

peR™

Analogously to classical SART, see remark 6.2, a drawback of this approach is that the
discretized GenSART-update (6.2.32) in general does not solve the discrete optimization
problem associated with (6.2.30), i.e. f,.,, & argmingcp. S(P(f)) + al|f — frull3-

o Pre-discretization: Start from Kaczmarz-iterations in a discretized setting and restrict to
increments f .. — f.¢ € range(P*) as motivated by the theory of GenSART. Ezample:

new

(discretize) )
" Froew € argmin S(P(f)) +allf = frl3 (6.2.33)

E n

(GenSART) .
= faew € argmin  S(P(f)) +allf - frullz (6.2.34)
FES estrange(P™*)
— Frr+ P*(argmin S(P(£.) + PP(p)) + ol P'PI3)  (6:2:35)
peER™

The benefit of the approach is that the iterates f, ., now solve the discrete optimization
problem, though in general only within a smaller search set.

The pre-discretization approach is expected to be numerically more stable because the reg-
ularization by the L2-penalty is applied in discrete space and may thus also suppress discretiza-
tion errors. In the post-discretization approach, on the contrary, the regularizing iterations
are derived without reference to the final, discretized setting so that inaccuracies due to finite
sampling are not controlled by the regularization. In practice, it is found that both methods
typically yield results that are almost indistinguishable, whereas the second approach often
amounts to more computational effort: for once, the (sparse) matrix PP* has to be assembled,
which may be costly. Secondly, in settings where the optimization in (6.2.31) factorizes into
scalar problems (compare §6.2.5), this carries over to (6.2.32), yet typically not to (6.2.35) due
to the non-diagonal structure of P P*. Therefore, post-discretization is usually preferable.

6.2.7 Numerical examples

6.2.7.1 Robust tomographic reconstruction

In the first numerical example, GenSART-schemes are considered for the setting of robust
tomography, i.e. tomographic reconstruction from data with large outliers. The principal idea
is to test the data-fidelity terms for “robust-fitting” proposed in §6.2.5.1.
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Figure 6.1. Robust tomography test case: (a) True simulated 2D-object. (b) Simulated projection-
data: sinogram-plot showing the stripe-artifacts. (c)-(h) Reconstructions from the data in (b) using
different methods: (g) filtered back-projection. (c),(e) Tikhonov-reconstruction with L2- and L!-Huber
data-fidelity (6.2.36). (d),(f),(h) GenSART-reconstruction with L2- and L!-Huber- and Student’s-t-
data fidelity (6.2.37). The linear color scale is the same in all subfigures except (b).

The study considers projection-data (g*)1%) &~ (2;(f));2 for tomographic incident angles

6 =0°,1°,...,179°, simulated for the 2D-object f shown in fig. 6.1(a). In addition to noise, the
tomographic data is corrupted by isolated stripe-artifacts, as visualized by the sinogram-plot
in fig. 6.1(b). Figure 6.1(c)-(h) shows reconstructions computed by different methods, using
data-fidelities of the form S(g9"%; g;) = [ s_(g;(z) — g9">(z)) dz as defined in (6.2.22):

e Figure 6.1(g): Standard filtered back-projection (FBP, see §2.7.3.1)
e Figure 6.1(c),(e): Tikhonov regularization with (c¢) L*- and (e) L'-Huber-data-fidelity:

N,

proj

lekh—argmm(zs @j(f)))Jrallina, soe{l Pyt (6230

feL(Q

e Figure 6.1(d),(f),(h): Kaczmarz-iterations with (d) L?-, (f) L'-Huber- and (h) Student’s-t
data-fidelity over one symmetric Kaczmarz-cycle (i.e. kgop = 2Nproj a0 Jiyrop—k = Ji—1),
computed via GenSART-schemes (post-discretization strategy):

fer1 = ?rng(lsiz?S (957 25.() + 20l f = fill 7o, s—€dl- 1% sp 500} (6.2.37)
€

It is found that the reconstructions with the L!'-Huber and Student-t data-fidelities perform
well up to slight ring-artifacts, whereas the L2-results and especially the FBP-reconstruction

fAlthough the presented analysis has been carried out for a fully 8D tomographic setting, note that all
results trivially generalize to the limiting case of 2D-objects and 1D-tomographic projections.
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are strongly corrupted. Moreover, by comparing fig. 6.1(c),(d) and fig. 6.1(e),(f), respectively,
it can be seen that the Tikhonov- and Kaczmarz methods with the same data-fidelities perform
almost identically, in accordance with theoretical predictions detailed in the complete article.
Notably, all of the GenSART-methods (including the one with the non-conver Student’s-t-
term!) require the same computational effort, which is essentially that of two evaluations of
the full forward- and back-projectors Pyt = (21, ..., Pn,,.;) and Z; . On the contrary, the
minimization of the Tikhonov-functional in (6.2.37) has to be carried out iteratively, which
requires several costly evaluations of P, and &7} to ensure convergence (more than 50 in the

case of the L'-Huber-penalty). Hence, the numerical study shows the following:

Kaczmarz-type methods implemented via GenSART-schemes may serve as a compu-
tationally efficient surrogate for Tikhonov regularization.

6.2.7.2 Colloid-XPCT revisited

In the second numerical example, GenSART is applied to the XPCT-problem by implementing
the Newton-Kaczmarz-update in (6.2.28) via the post-discretization approach and supplement-
ing it with optional non-negativity constraints (see §6.2.5.4). This leads to algorithm 6.1, which
is not limited to XPCT but is valid for arbitrary differentiable image-formation maps F'.

The quadratic optimization problems in projection-space are solved by a conjugate-gradient
(CG-) method applied to the associated normal equations, which are positive-definite linear
systems and thus uniquely solvable. Importantly, the discrete gradient V as well as the element-
wise divisions by powers of the unit-projections, Uj_kl/ % and uj_kl/ 2@, must be implemented in
accordance with convention 6.3: the operations have to be evaluated only on those vector-entries
that belong to the discrete analogue of the projection-domain Dy, , defined by the indices of
the non-zero entries of u;, — for all vector-entries outside this discrete support, the value 0 must
be assigned. Details are discussed in the complete article, see §11.6.3.

Algorithm 6.1 Newton-Kaczmarz-GenSART (for XPCT)

Input: initial guess f, € C", discretized forward map F': C"»i — R™data discrete gradient
V € R™aradxeroj (finite differences), regularization parameters {oy;} C Rso, 0 <y <1
Input: (for j = 1,..., Nyy;) data g?bs € R™Mdaata projectors P; € R™»ei*" unit-projections
u; € R, U; = diag(u;), Uy,; € R Marsd: discretization of V(p) — u; - V(p).
for k=0,...,kyop — 1 do
a =g+ oo, f};ef = (g1 fr +arafy)/a % trivial step if ago =0
ref ref obs re
ng ) — ijf;(C Ty = Flpy], 7 = g5 — F (p) — Ti(py — py)
% Optimize in projection-space by solving the normal equation with a CG-method:
1/2 o 1/2 —1/2xs 1\ (12 "
Ap, = (Ujlf TiT U + a(l — NI + ay(U;*V* Uy, VU )) (ujk/ @Tk(rk))
re * —1/2
Fri = kf+ij(ujk/ © Apy)
[f11 = max{0,Re(f,1) }+imax{0,Im(f;_)}] % optional non-negativity constraint
end for
Output: final object iterate f,

For validation of the algorithm, it is applied to the “Colloid XPCT” data set from Article 3
(using the same constraints: support, non-negativity and pure phase object) and the results are
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4e-06

1e-06

0

Figure 6.2. Plots of the central slice of the reconstructed object for the “Colloid XPCT” data set
from Article 3 (see §5.2.3), obtained by different methods using the same support-, negativity- and
pure-phase-object constraints. Scale bars are 1 ym.

(a) L%-regularized Newton-Kaczmarz reconstruction from §5.2.3 without GenSART.

(b) Newton-Kaczmarz-GenSART (algorithm 6.1) with v = 0 (pure L2-penalty).

(c) Newton-Kaczmarz-GenSART (algorithm 6.1) with v = 0.8 (smoothing W 2-penalty).

compared to previous ones from §5.2.3. In order to assess the achievable reconstruction quality
at minimum possible computational costs, algorithm 6.1 is run for only a single Kaczmarz-cycle,
i.e. Ksiop = Nproj, at relatively weak regularization, ay; = o = 500, a2 = 0. Figure 6.2 plots
central slices (zoomed to the relevant region) of the reconstructed objects from (a) Article 3
(L?-regularized Newton-Kaczmarz without GenSART, compare §5.2.3), (b) algorithm 6.1 with
v = 0 (pure L?*-penalty) and (c) algorithm 6.1 with v = 0.8 (smoothing Sobolev W 2-penalty).

For the L2-regularized reconstructions, the results from Article 3 (fig. 6.2(a)) are less noisy
but also exhibit weaker contrast and stronger blur than the results from algorithm 6.1 in
fig. 6.2(b). Overall, the achieved image-quality is thus comparable, yet the level of regulariza-
tion is different. On the contrary, the W!?-regularized reconstruction in fig. 6.2(c) combines
the contrast and edge-sharpness in (b) with the low noise-level in (a) and thus arguably out-
performs both reconstructions with pure L2-penalty. An explanation is that WW12-penalties
enforce a strong damping of high spatial frequencies, where the impact of noise is typically
most pronounced, whereas coarser, low-frequency object-structures are only negligibly affected.
This selective high-frequency penalization is apparently more “to the point” for the present
data set than L2-regularization, which uniformly penalizes in all Fourier-frequencies.

Sobolev-penalties could in principle also be applied within the original Newton-Kaczmarz
scheme from Article 3. However, this would involve evaluations of a discrete gradient in the high-
dimensional object-space, each amounting to at least O(N?) floating-point operations, and thus
greatly increase the computational costs®. On the contrary, in the GenSART-algorithm 6.1, only
the low-dimensional linear system (corresponding to the optimization in projection-space in the
general scheme 6.6) is affected when modifying the penalty-term, so that the computational
costs increase only slightly. In a nutshell, this demonstrates the following:

GenSART renders advanced reqularization in XPCT computationally affordable.

§Notably, not only would the computation of each CG-iteration become more expensive but gradient-
penalties typically also deteriorate the condition of the problem, so that more iterations are needed for conver-
gence.
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6.3 Supplement: High-performance implementation

The main motivation for the generalized SART-schemes was to render the computation of
(Newton-)Kaczmarz iterations efficient in terms of computational complexity, i.e. to minimize
the number of required floating-point operations (FLOPs). This has been achieved. However,
FLOP-efficiency of an algorithm alone does not guarantee that it also permits an efficient im-
plementation in terms of actual runtimes on computers. This supplement therefore outlines
implementational details that permit to translate the theoretical efficiency of GenSART to com-
petitive computation times in practice. While the presentation will sometimes refer to XPCT in
order to identify relevant numerical problem-dimensions, the outlined implementational issues
and -solutions apply to GenSART-schemes for arbitrary tomographic reconstruction problems.
Moreover, although the discussion of computational topics evidently only makes sense for dis-
cretized settings, note that we will nevertheless use continuous quantities fi, &;, pi, u; etc. as
notation for easier reference to the GenSART-theory from §6.2.

6.3.1 General considerations
6.3.1.1 Computational- and data-complexity

For an overview of the possible bottlenecks in implementing GenSART it is illustrative to recall
the general structure of scheme 6.6 and to assign for each sub-step: (a) the amount of data that
needs to be accessed (data-complexity) and (b) the required number of FLOPs (computational
complexity), both in O(N*)-notation, where N is the number of sampling points (pixels, voxels)
along each dimension. Note that we also consider optional box constraints on the iterates fy1,
compare §6.2.5.4. The identified complexities are summarized in table 6.1.

H FLOP-complexity ‘ Data-complexity

(1) Forward-project: py = &, (fx) O(N?) 3D-volume: O(N?)
(2) Optimize: ApkNZ argmin,, J(p,pk,ujk,g})fs) > O(N?) 2D-images: O(N?)
(3) Back-project: fit1 = fi + & (Aps) O(N?) 3D-volume(s): O(N?)
((3b) frs1 = max(min(frr1, fmax)s fmin)) O(N?) 3D-volume(s): O(N?)

Table 6.1. Complexity of the steps in the GenSART-scheme 6.6 (with box constraints) in terms of
arithmetic operations (FLOP-complexity) and memory-requirements due to the amount of involved
data (data-complexity). N is the number of sampling points (pixels, voxels) along each dimension.

Computational bottlenecks: For the XPCT-problem, all sub-steps typically involve a com-
parable number of computations as the optimization in projection-space (2) has to be per-
formed iteratively, compare algorithm 6.1, and each iteration involves 2D-FFTs amounting to
O(N?*log N) FLOPs. Notably, this means that all rows in table 6.1 have to be implemented
at a similar efficiency-level in order for none of the sub-steps (1) to (3b) to bottleneck the
whole algorithm. In other words: all sub-steps are performance-critical. On the contrary, in
the settings identified in §6.2.5.1 where the optimization-step (2) admits an analytical solution
in O(N?) operations, its efficiency has a negligible impact on the total computation time.
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Memory bottlenecks: For typical problem sizes N ~ 1000, arrays of size O(N?) in single- or
double-floating point precision occupy (tens or hundreds of) Megabytes in main memory (RAM),
whereas storing a 3D-object volume of size O(N?) requires (tens or hundreds of) Gigabytes of
RAM. As current PCs and workstations typically come with a few to a few hundred Gigabytes
main-memory, this means that operations (1), (3) and (3b) in table 6.1 are memory-critical,
whereas physical memory-limits are practically irrelevant for the optimization-step (2).

6.3.1.2 Minimizing memory-requirements

In-place arithmetics: Clearly, the current iterate f; has to be stored in RAM while running
a GenSART-algorithm. When naively implementing step (3) in table 6.1, one or more addi-
tional arrays of the same O(N?) size will be created temporarily. In view of memory-limits,
this should be avoided, which is possible by implementing the update f1 = fi + P5 (Apy)
as an in-place operation: the computed samples of the back-projection @;fk(Apk) are directly
added to the array storing fi. After the execution, the array will then be overwritten (by a
discretization of) the sought update ka. Analogously, the optional box constraints in step
(3b) can be implemented in-place, by element-wise overwriting ka with fri1.

Minimal memory-requirements of GenSART-schemes: If the outlined in-place ap-
proach is pursued, GenSART-algorithms thus require only one 3D-object-array of size O(N?)
to be stored in RAM throughout the whole execution. From table 6.1 it is seen that all other
data accessed in GenSART-iterations are of size O(N?) and thus negligible. Two restrictions
to these general observations might come to the reader’s mind:

o What about the measured data? The total size of the tomographic data (g, ..., g% )

is typically also O(N?3) and may occupy even more memory than the object-iterates f; ijn
absolute terms. However, only small data-chunks gg?:’s of size O(N?) are processed in one
iteration. As a benefit, the total data may be stored in external memory, from which the
required data-chunks are loaded into RAM on demand, at the cost of negligibly increased

runtimes. Note that this idea may well be put into the extreme, see remark 6.10 below.

e Support constraints: Complicated geometries of the support-domain € O supp(fx), i.e.
others than standard choices like cuboids, cylinders, balls etc., may require to retain an
explicit description of it in RAM. This amounts to storing an additional 3D-array, whose
O(N?) boolean entries (true or false) tell whether or not a given voxel in the computational
domain belongs to 2. As boolean values occupy one Byte of memory, compared to four
Bytes for each entry of the fj, complicated support constraints thus induce additional
memory-requirements of 1/4 the size of the object-iterate f.

All in all, the discussion shows that GenSART-algorithms may be implemented at appeal-
ingly low memory-requirements: typically, available RAM of 1.5-times the size of the object-
iterate fj in single-precision is sufficient without limiting computational performance.

Remark 6.10 (Online capabilities of GenSART). In GenSART-algorithms (and other Kaczmarz-
type methods), newly acquired tomographic views g;?]f’s may be directly used to update the
object-iterates fi, without requiring a complete tomographic series to be available at any time.
This makes the approach well-suited for online or time-resolved tomography.
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6.3.2 Parallelization

As the clock rate of processors has practically reached its physical limits, high-performance-
computations necessarily rely on parallelization: tasks and data are distributed to different
processors, that perform the computations in parallel as far as possible. The significance of
parallelization can be seen from a simple comparison: single cores of the main processor (CPU)
on current computers perform O(10?) FLOPs per second, whereas a mid-price GPU (graphi-
cal processing unit) can easily achieve O(10'?) FLOPs per second via massive parallelization.
Notably, this means that algorithmic tasks of computational complexity O(N?) (such as eval-
uation of &2; for one tomographic angle) may in practice take as long to execute as others
requiring O(N*) FLOPs (e.g. an evaluation of Py = (21, ..., Pn,,,,) for all angles) even for
large problems of size N ~ 103.

The example shows that parallelization is crucial to obtain practically efficient GenSART-
algorithms. Issues and solutions in parallelizing GenSART are discussed in the following.

6.3.2.1 Parallelization of the optimization in projection-space

As discussed in §6.3.1.1, the optimization step (2) in table 6.1 typically requires amounts of
RAM much smaller than one Gigabyte since only 2D-arrays (images) are processed. Owing
to this, the step may be parallelized at relative ease, by simply executing the optimization
algorithm of choice completely on a GPU. Thereby, optimized off-the-shelf parallelizations of
the involved operations are used, as provided by available packages in Matlab or Python, for
example. Notably, as both the input-data py, g}’fs, uj, and the output increment Apy, are of size
O(N?), the required memory-transfers from- and to the GPU are typically negligible.

6.3.2.2 Parallelization of forward- and back-projections

At the first glance, off-the-shelf parallelizations seem available also for the required forward-
and back-projections &;, &77. The ASTRA-toolbox (199, 198], for example, is a software-
package that provides CPU- and GPU-based implementations of tomographic projectors and
-back-projectors as well as of FBP and other basic reconstruction algorithms. Notably, the
massively parallel GPU-algorithms can be blazingly fast: on a Nvidia GeForce GTX TITAN,
it computes a full forward- or back-projections for a (real-valued) object of size 1000% voxels
under 1000 incident angles (O(N*) operations with N = 10%) in about 15 seconds¥. Appealing
though these results are, the timed operations are not quite what is needed in implementations
of GenSART-schemes: here, forward- and back-projections &2;, £ need to be computed for
only a single tomographic incident angle at a time. So how does ASTRA perform on this task?
Runtime tests yield about 2 seconds for 2; and = 3 seconds for a 275 (1000°-sized volume,
1000%-sized projection). Note that this is only 5- to 8-times faster than evaluations of &, and
Py, although the latter amount to 1000-times more computations to be performed!

So what is going wrong here? Is it that ASTRA’s parallelization of (back-)projection-
algorithm is less efficient if it is run for only one tomographic angle at a time? Partly so,
but a closer look reveals this not to be the main issue here. Instead, the main computational
bottleneck turns out to be the necessary transfers between main-memory (RAM) and dedicated

TAll runtimes have been obtained by calling ASTRA from within Matlab R2017b on a workstation with
current hardware. However, the identified tendencies in runtime are independent of the specific system.
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| RAM-to-GPU | GPU-work | GPU-to-RAM | Runtime (N =10°)

Full projection P, O(N?) O(N*) O(N?) ~15s
Full back-projection &, O(N?) O(N*) O(N?) ~ 158
Single projection &, O(N?) O(N?) O(N?) ~2s
Single back-projection &} O(N?) O(N?) O(N?) ~ 3s

Table 6.2. Complexity (in terms of the resolution N along each spatial dimension) and runtimes
of GPU-based tomographic (back-)projection algorithms provided by the ASTRA-toolbox [199, 198],
for a full set of N tomographic angles (Pot, Pp;) and for a single angle (2, Z7), respectively.
Complexity is analyzed w.r.t. FLOPs to be performed on the GPU (“GPU-work”) and w.r.t. required
transfers between main- and GPU-memory (“RAM-to-GPU” and “GPU-to-RAM”). Runtimes have
been tested on a current workstation with a Nvidia GeForce GTX TITAN GPU.

GPU-memory: evaluations of &2;, 7 always require a full 3D object-volume to be transferred
to or from the GPU. As seen from a detailed comparison of the operations in table 6.2, this
amounts to the same O(N?) of data-transfers as in the case of Py, 2, (up to a factor of 2) —
only the GPU-work increases in the latter case (O(N?) instead of O(N?)). As RAM-to-GPU-
and especially GPU-to-RAM-transfers are typically much slower than GPU-computations, the
former constitute a severe bottleneck for evaluations of &2; and ;.

Avoiding memory-transfers: Besides ASTRA’s default behavior where object-volume and
projections are copied to and from the GPU-memory prior to and after each (back-)projector-
evaluation, the package also provides (experimental) support of persistent GPU-memory. Ac-
cordingly, the object-volume can be retained in dedicated GPU-RAM, avoiding the bottle-
necking O(N?) memory-transfers. Upon inserting typical problem-sizes, however, this option
is seen to be a purely theoretical one for high-resolution XPCT-reconstructions: storing one
20483-sized real-valued object volume in single-precision already requires 32 Gigabytes, whereas
current commercially available GPUs come with at most 16 Gigabytes of dedicated memory.

6.3.3 Efficient implementation by distributed design

According to the preceding section, we have the following computational deadlock-situation:

e Massively parallel GPU-based computations promise massive performance gains
e Memory-transfers between RAM and GPU in each GenSART-iteration are prohibitive

e Typical object-sizes in XPCT do not fit the dedicated memory of a single GPU

As suggested by the final point, the deadlock may be resolved by a distributed algorithmic
design: the object-iterates f; are stored and managed as separate chunks by multiple GPUsl
and each of these GPUs computes the forward and back-projections from- and onto its dedicated
object-chunk. Implementing GenSART-algorithms in a distributed manner is quite simple as
only projections and back-projections (up to optional pointwise operations) are performed on

INote that the approach is equally applicable for multiple CPU-cores or any other machines.
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the 3D-object, whereas the complicated part of the algorithm works completely in projection-
space and is thus unchanged. All of the operations on 3D-objects turn out to be well-suited
for distributed implementation as they require quasi no communication between the machines
and thus induce practically no computational overhead. This is detailed in the following.

6.3.3.1 Distributed operations

The principal idea for distributed GenSART lies in a disjoint decomposition of the object-

domain ) = U?;“l““k Q;, where each of the GPUs manages the object-iterates f; restricted to

a specific subdomain ;, i.e. (a discretized version of) fr; := fx|q,. The objects may then be
T chunk

reassembled by summation, fi = > ' fi,. Importantly, however, none of the steps in the
GenSART-scheme 6.6 requires explicit assembly of the object-chunks, as argued below.

Distributed forward-projections: By linearity, forward-projections may be rewritten as
T chunk T chunk
Pi(fi) = @j( > fk:,i) =Y Pi(fri) (6.3.1)
i=1 i=1

According to (6.3.1), the complete object fr may be forward-projected by summing projections
P;(fri) of the individual chunks, which can be computed completely independently by the
different GPUs. The computational costs of the final summation are at most O(neuunkN?).

Distributed back-projections: The back-projection step in GenSART may be rewritten as

T chunk M chunk
Y fei = feor = fo+ Z5(Ap) = > i+ P (Api)a,
i=1 i=1
lé’)’ ferri = fei + Z;(Apr)lo,  forall  i=1,... Nehunk- (6.3.2)

Hence, the update is performed implicitly if each GPU adds &5 (Apy)|q, to its object-chunk, i.e.
computes an in-place back-projection onto its subdomain €2;. This requires that the (relevant
part of the) increment Apy is copied to each GPU, i.e. < O(NauunN?) memory-transfers.

Distributed pointwise manipulations: For completeness, let us also note that pointwise
operations on the object-iterates of the form fy(x) = r(x, fr(x)), as required when imposing
box constraints for example, are fully compatible with the distributed design:

fr(x) =7( ,fk(w)) forall xe€
& fra(®) =r(x, fri(x) forall xeQi=1,... Nk (6.3.3)

Slice-wise distribution — the ideal setting: The general approach to distributed Gen-
SART works for arbitrary object- and tomographic acquisition-geometries (including cone-
beam!). The standard setting in XPCT and in many other imaging modalities, however, are
parallel-beam projections acquired for rotations around a fixed tomographic axis. In such a
setting, the most straightforward and also the most efficient distributed design lies in choosing
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the sub-volumes €; as slabs (i.e. stacks of multiple slices) of the object-volume perpendicular
to the tomographic axis, i.e. if the latter is along the y-dimension, then

Q={(z,y,2) € Q:yi1 <y <y} forsome Yo <y <...<Yngp- (6.3.4)

One benefit is that the assembly of the forward-projections in (6.3.1) reduces to a mere con-
catenation of the segments computed by the distinct GPUs: for all (z,y) € R? it holds that

Tchunk ) A i o
Pi(fr)(z,y) = Z Pi(fri)(2,y) = {E)@J(fk,zy)(x,y) 1elsye€ [Yi,—15 Vi, )

i=1

: (6.3.5)

which reduces the costs of the step to O(N?) memory-transfers. An analogous reduction occurs
in the back-projection step, as only the segment Apy gy, , <y<y:} has to be copied to the ith GPU.

6.3.3.2 Complete distributed tomographic reconstruction

§6.3.3.1 shows that GenSART-iterations may be implemented in a distributed manner at rel-
ative ease and at the expense of a computational overhead of at most O(neuN?) — which
is negligible compared to the O(N?) computational costs (provided that ngu = O(1)). In a
nutshell, the underlying idea is to carry out the required communication between the individual
GPUs completely in the (low-dimensional) projection-space — very much in the spirit of the
basic principle of GenSART. For a complete tomographic reconstruction, this means that the
individual object-chunks may be stored in the dedicated memory of the managing GPUs (or
CPUs) over all GenSART-iterations. Only upon initializing and finalizing, the initial guess fo
needs to be copied as chunks fy; = fo|o, to the GPUs and the final iterate needs to be assem-
bled in RAM, fi.0o = i fruopi» Tespectively. Both steps amount to O(N?) of additional
communication, but notably need to be performed only once.

All in all, we thus find that a total distributed GenSART-reconstruction requires at most
O(N?*)+O(nehunikstop N?) of memory-transfers compared to > O(ksiop N?) FLOPs of parallelized
(GPU-)computations. Hence, contrary to a naive ASTRA-based implementation, see §6.3.2.2,
communication no longer bottlenecks the overall computational performance.

6.3.3.3 Realization on current hardware

Finally, we bring the ideas of this section together to argue that an efficient, parallelized version
of GenSART can actually be implemented on current hardware. From §6.3.1.2, we know that
about 1.5-32 = 48 Gigabytes of total RAM suffice to reconstruct real-valued object-volumes of
the typical XPCT-size 20483. Within the distributed design, each machine thus needs 48 /Mechunk
Gigabytes of dedicated RAM, which permits the following implementations:

(1) Fully GPU-based (4(+1) GPUs): The operations on the 3D-volume (&7;, &’F and point-
wise manipulations) are handled by four GPUs, each with > 12 Gigabytes of dedicated
RAM. One of these GPUs (or an extra one) performs the optimization in projection-space.

(2) Mized CPU-GPU-based (X CPU-kernels + 1 GPU): The distributed design is instead
implemented on CPU-kernels, which perform all required operations on 3D-volumes in
parallel. The optimization problem in projection-space is solved by a single GPU.
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Both options can be realized on commercially available hardware. (1) is potentially faster, but
also (financially) more expensive due to the high costs of dedicated GPU-RAM. On the other
hand, the hardware-requirements of (2) are typically met by standard workstations.

6.4 Supplement: Application to a large-scale data set

Although the Newton-Kaczmarz-GenSART algorithm 6.1 has already been successfully applied
to the “colloid-XPCT” data set in §6.2.7.2, it could be argued that this example corresponds
to an artificially simple XPCT-setting for the following reasons:

o Small problem size: With only 249 holograms of size 10242 pixels, the data set is unusually
small. Owing to the small support of the imaged object, the reconstructed object-volume
could furthermore be restricted to a computational domain of only 256® voxels.

e Weak object: As the imaged colloidal crystal induces phase-shifts |¢| < 0.4, it can be
treated as a weak object to good approximation. Consequently, accurate reconstructions
can also be achieved with linear CTF-based methods instead of a Newton-type scheme.

The aim of the following supplement is therefore two-fold: for once, we demonstrate that
GenSART-reconstructions may be computed in acceptable runtimes for typical large-scale syn-
chrotron XPCT data via the high-performance implementation from §6.3. On the other hand,
we will consider a data set where linear CTF-based reconstruction truly reaches its limits and
show how our nonlinear Newton-Kaczmarz approach helps to overcome these.

6.4.1 Description of the data set

We consider XPCT-data of a catalyst-particle, as used in fluid-catalytic cracking in petroleum-
refineries, see e.g. [202]. The data has been acquired in the GINIX setup at a photon-energy of
E =13.8keV. According to the researchers involved in the experiment, the main constituents
of the particle are clay, zeolith Y and amorphous alumina silica. Additionally, it is expected to
contain the heavy metals iron, nickel and vanadium as contaminants.

The data set consists of 4000 holograms of image-size 2048 x 2048, acquired under 1000 in-
cident angles 6 that uniformly sample the interval 6 € [0; 27]. For each view-angle, holograms
have been measured under four different source-to-sample-distances, corresponding to Fresnel
numbers f,;, € {9.22-107%,9.04-107*,8.53-107*,7.68- 10"} associated with the effective pixel
size Az¢l = 64.4nm of the divergent-beam setup (compare §2.1.5.1). The considered hologram-
data has been flat-field-corrected, see §2.1.5.2. The four holograms for each tomographic angle
have furthermore been rescaled to account for the different geometric magnifications and mu-
tually aligned to correct for undesired motions in the imaging-setup during acquisition. An
exemplary set of (pre-processed) holograms for a single view angle is shown in fig. 6.3.

6.4.2 Reconstruction methods

The main constituents of the sample are different ceramic materials, which all have roughly the
same absorption-refraction-ratio 0.003 < #/§ < 0.004 at the considered photon-energy E =
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|

Figure 6.3. Exemplary set of (flat-field-corrected) holograms of the imaged catalyst-particle for one
tomographic angle acquired under four different source-to-sample-distances (i.e. Fresnel numbers).
The total XPCT-data set consists of four holograms for all 1000 incident angles. Scale bars: 10 ym.
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13.8keV, according to literature values [92]. Therefore, the catalyst-particle is reconstructed as
a homogeneous object with constant cg/s = 0.0035 and v = arctan(cg/s), compare §2.4.3. From
the holograms in fig. 6.3, it can furthermore be seen that the particle is only about half of the
field-of-view in diameter, which may be exploited by imposing a support constraint. However,
this constraint only holds approzimately as the sample-holder induces some signal (bright and
dark vertical lines on the r.h.s. of the holograms in fig. 6.3) that is not consistent with it.

For comparison, the XPCT-data is reconstructed using different methods:

(1) (CTF+FBP) Direct CTF-inversion (parameters: a; = 10~* and oy = 1072), followed by
filtered back-projection of the recovered projection-data, see §2.7.2.1 and §2.7.3.1.

(2) (Newton-Kaczmarz) Reconstruction via algorithm 6.1 with F' = A T1) imposing non-

negativity as well as a relatively tight support constraint. Further parameters are oy ; =
a =500, age =0, 7= 0.9 and ksiop = Nproj = 1000 (single Kaczmarz-cycle).

(3) (Linear Kaczmarz) Same as (2), except that the nonlinear XPCl-forward map Ay i)

is replaced by the corresponding linear CTF-forward model, setting F' = i),

The Kaczmarz-reconstructions are computed via GenSART-schemes, using the parallel imple-
mentation proposed in §6.3 in the “Mixed CPU-GPU-based” variant (see §6.3.3.3) on six cores
of an Intel Xeon E5-2609 CPU and a Nvidia GeForce GTX TITAN GPU. The CTF+FBP-
reconstruction is computed on the same machine via FFT-based CTF-inversion on a single
CPU, followed by GPU-based filtered back-projection using the implementation in the ASTRA-
toolbox [199, 198] with default parameters. Total computation times are about 30 minutes for
CTF+FBP (1) and about five hours for the GenSART-reconstructions (2) and (3).

6.4.3 Results

The 3D-structures of the refractive decrement 0 obtained via the different methods are plotted
in fig. 6.4(a)—(i) as central orthoslices along the different coordinate-planes ((a)—(c): CTF+FBP,
(d)—(f): linear Kaczmarz, (g)—(i): Newton-Kaczmarz). For a detailed comparison of the
achieved image-quality, fig. 6.4(j)—(1) additionally plot zooms of the regions marked by the
dashed boxes in subfigures (b), (e) and (h), respectively.
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Figure 6.4. XPCT-reconstructions of the catalyst-particle. Subfigures (a)—(i) plot central orthoslices
of the recovered 3D-volumes of the refractive decrement §, where columns correspond to slices along
different coordinate planes and rows to different reconstruction methods described in §6.4.2:

(a)—(c) CTF+FBP. (d)—(f) Linear Kaczmarz. (g)—(i) Newton-Kaczmarz.

Subfigures (j)—(1) show zooms of red-dashed regions in the images in (b), (e) and (h), respectively.
Scale bars are 10 um in (a)—(i) and 1 gm in subfigures (j)—(1).
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By comparing subfigures (a)—(c) and (d)—(f), it can be seen that the linear methods yield
similar results for the considered XPCT-data. The main difference between those two is that the
CTF+FBP results show some low-frequency variations, both in the background and within the
object: for example, the bottom-side of the object in fig. 6.4(b) is overall darker than the upside,
but not so in fig. 6.4(e). This difference can be understood by the stability analysis for linearized
XPCI (and XPCT) from Article 1: as holograms for multiple Fresnel numbers fy, f2, f3, f4 are
used in the reconstructions, zeros of the individual CTF's s,(jj ) at larger Fourier-frequencies are
eliminated as explained in §2.4.4. Yet, the characteristic instability at low Fourier-frequencies
& ~ 0 persists. As seen in chapter 3, the 3D-support constraint and non-negativity of §, which
are imposed by the Kaczmarz method, stabilize especially this low-frequency regime. Since
this stabilization is missing for the CTF+FBP reconstruction, quantitative perturbations of the
recovered d-values arise from flat-field-correction-related low-frequency errors in the holograms
(compare §2.1.5.2 and fig. 6.3). On the contrary, qualitative, high-frequency image-structures
such as edges come out widely identically as by the linear Kaczmarz method.

In comparison to the nonlinear Newton-Kaczmarz reconstruction in fig. 6.4(g)—(i), the most
prominent feature of the linear results in fig. 6.4(a)—(f) is given by an additional concentric
fringe-pattern in the images. The latter structures constitute a severe artifact that can be clearly
attributed to nonlinearity: after all, the only difference between the reconstructions in subfigures
(d)—(f) and (g)—(i) is that the former are based on the linear (CTF-) forward model, whereas
the latter also models nonlinear parts of the contrast in the measured holograms. Notably, the
nonlinearity-artifacts are found to distort the linear reconstructions in a qualitative, structural
manner, whereas the quantitative values of § are (on average) almost identical in fig. 6.4(d)—(f)
and (g)-(i). Indeed, although the fringe-artifacts are most pronounced near the edges, the
zooms in fig. 6.4(j)—(1) reveal that nonlinearity corrupts the linear reconstructions even in the
very center of the object: the images in (j) and (k) have a more “washed-out” appearance, with
lower contrast than the Newton-Kaczmarz result in (1). In particular, note that the bright,
vertically elongated structure in the center of the zoom-images, that is characterized by an
almost uniform density in the nonlinear reconstruction, shows strong local variations of the
d-values for the linear results in (j) and (k). This example demonstrates that the nonlinearity-
artifacts in the recovered images might lead to wrong physical interpretations, emphasizing the
necessity of a nonlinear reconstruction method for the considered data set.

While there is no proof that the Newton-Kaczmarz result yields the “true” image of the
catalyst-particle, the reconstructed 3D-structure of J is arguably the one that is most consistent
with physical expectation and free of clearly identifiable artifacts. In particular, it is interesting
to note that the recovered object shows no traces of phase-wrapping ambiguities (see §2.5.1.1),
even though the object induces phase-shifts ¢ of magnitude up to & 47. Allin all, the considered
reconstructions from real-data thus reveal the following:

Nonlinearity may cause severe artifacts in real-world XPCT if a linear CTF-model
is assumed in image reconstruction. Newton-Kaczmarz-GenSART methods can avoid
these artifacts and remain computationally feasible even for large-scale data sets.

Further remarks: Interestingly, the artifact-causing nonlinearity of the imaged catalyst-
particle was originally overcome not by adjustments on the algorithmic- but rather on the
experimental side: the particle was embedded in wax in order to reduce the jump of the

133



PhD thesis: Inverse problems in X-ray phase contrast imaging Simon Maretzke

refractive decrement § between the medium (formerly air, 6 = 0, then wax with 6 > 0) and
the object. New holograms were acquired for the embedded sample, from which, finally, the
particle was reconstructed using CTF+FBP. In other words, contrast was artificially reduced
in order to permit linear reconstructions. In view of the present results, we see that the usage
of nonlinear reconstruction algorithms may help to avoid such “experimental detours”, which
are for once time-consuming and, on the other hand, need not always be applicable.

6.5 Conclusions

To conclude this chapter, we highlight the scope of the findings from the presented article and
its supplements, outlining some future prospects for applications in XPCT and beyond.

GenSART enables Kaczmarz-reconstructions at minimal complexity: Let us clarify
once again that the goal of the presented article was not to design novel image reconstruction
methods, but to devise efficient schemes for the implementation of existing ones — namely for
the large and well-established class of (regularized) Kaczmarz methods, including the Newton-
Kaczmarz algorithm for XPCT from chapter 5. Notably, this has been achieved to a maximum
possible degree in some sense: in most settings, the proposed generalized SART-scheme 6.6
computes Kaczmarz-iterations (of a very general form!) essentially at the costs of one forward-
and back-projection, fi = Z;(f) and Apy — Z5(Apy). Both amount to O(N?) arithmetic
operations (see §6.1) that are quasi inevitable: the forward-projection is required for comparing
the current iterate to the measured tomographic data and the back-projection simply applies the
computed update to the 3D-object. By minimizing the number of (back-)projector-evaluations,
GenSART enables Kaczmarz-reconstructions at an overall computational complexity of O(N?),
analogously as classical SART (see §6.1.2). In principle, GenSART-schemes thus reduce the
computational costs of Kaczmarz methods to an amount comparable to filtered back-projection
(FBP). Yet, we also recall from §6.3 that translating their favorable theoretical complexity to
low algorithmic runtimes in practice is more challenging than for FBP.

Efficiency-gains by exploiting the tomographic problem-structure: Importantly, the
proposed GenSART-approach makes explicit use of the specific problem-structure of Kaczmarz-
iterations for tomographic reconstruction problems. In a nutshell, GenSART exploits the simple
projection-geometry that defines the principal relation between the unknown 3D-object and
the measured 2D-tomographic images. The reduction of computational costs compared to
generic implementations of Kaczmarz methods, as considered in §5.2.3 for the XPCT-problem,
is thus enabled by adopting a more specific perspective on the problem: while the Newton-
Kaczmarz method from §5.2.3 is applicable for arbitrary block-structured inverse problems
(G1(f)s -, Grpos () = (957, - .. ,g?vbpsmj), computation of the iterates via GenSART-schemes,
as implemented in algorithm 6.1, explicitly requires the operator-blocks G; to be of the form
G,(f) = F;(Z;(f)) with a tomographic projector &;. This explicit restriction to tomographic
problems is what buys the efficiency-gains achieved in the present work.

Constrained nonlinear all-at-once XPCT-reconstructions at tolerable runtimes:
GenSART-methods allow for highly efficient parallelized implementations, compare §6.3. As
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demonstrated in §6.4, the Newton-Kaczmarz-GenSART algorithm 6.1 may thereby achieve
XPCT-reconstructions of large-scale data sets within a few hours on available hardware. While
this is still significantly slower than direct CTF-inversion combined with filtered back-projection
(CTF+FBP), such a computation-time is nevertheless arguably tolerable as it is comparable
to the experimental acquisition-time of the tomographic data set. Hence, image reconstruction
would at least not bottleneck the overall throughput of the XPCT imaging-workflow. At the
same time, Newton-Kaczmarz methods bring more capabilities in terms of accounting for non-
linearity and additional constraints (3D-supports, non-negativity and tomographic consistency,
compare §5.4), which have been shown to be vital in §6.4 and in the previous chapters. In
view of these benefits, the remaining disadvantage of Newton-Kaczmarz-GenSART compared
to CTF+FBP in terms of runtimes may be regarded as a reasonable price to pay.

Ready for refined imaging-models: We recall that literally nothing has to be assumed
on the data-fidelity S in the considered general Kaczmarz-iterations (6.2.3) for the GenSART-
principle to be applicable. In XPCT-reconstructions, the freedom in choosing S allows to adapt
the Newton-Kaczmarz-GenSART-algorithm 6.1 by incorporating model-refinements:

e Image-formation: The operator F' in algorithm 6.1 (that was absorbed in S for the theo-
retical analysis) is not limited to any specific XPCI-forward map but may be completely
arbitrary. Hence, it may be adapted to account for finite coherence or other possible
real-world imperfections of the imaging system, compare §2.1.5.

e Data-errors: As discussed in §6.2.5.1, § may be additionally tuned to account for the
expected statistics of the errors in the data. In particular, this allows to adapt the
Newton-Kaczmarz method to Poisson-noise or to increase its robustness to large outliers.
The potential benefit of such adaptations has been demonstrated in §6.2.7.1.

Importantly, the principal GenSART-scheme 6.6 remains unchanged under these modifications,
only the optimization step in projection-space is affected. As a consequence, their impact on
the algorithmic runtime is expected to be relatively small, even if the number of required
iterations in the numerical optimization increases. This is in strong contrast to the original
Newton-Kaczmarz method from chapter 5, for which more iterations per Kaczmarz-step directly
translate to an increase in the number of costly evaluations of &; and &}, compare §5.4.

In addition to the flexibility associated with the choice of S, we note that the GenSART-
theory remains valid for cone-beam tomography, as is shown in the complete version of the
article (chapter 11). If required, this permits for example a more accurate treatment of the
natural divergent-beam geometry of real-world XPCT-setups, compare §2.1.5.1.

Flexible in the data-model — restrictive in the penalty-term: Contrary to the freedom
in adapting the data-functional S to a specific imaging modality (XPCT or practically any
other transmission-tomography setting for which the projection-approximation from §2.1.3.2 is
satisfied), the choice of the penalty-functional R in the Kaczmarz-iterations (6.2.3) is strongly
restricted by assumption 6.4, which is needed for the principal theorem 6.5 to apply. As a
consequence, GenSART-schemes are only known to hold for the classes of penalties treated in
§6.2.4, limiting the possibilities to impose prior knowledge on the object-iterates beyond support
constraints and basic smoothness. This is probably the main drawback of the approach.
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However, the considered choices of R, for which the GenSART-principle was shown to apply,
are probably not exhaustive. GenSART-schemes for other penalties might be proven to hold in
future work (possibly in an approximate manner, similarly as in 6.2.4.2). Additionally, usage of
GenSART in conjunction with proximal splitting-strategies (see §6.2.5.4) may greatly extend
the range of imposable object-priors, including total variation- or other sparsity-promoting
penalties for example. The potential of such Kaczmarz-type splitting methods for tomographic
problems has been demonstrated e.g. in [35]. GenSART-schemes might help to further reduce
their computational costs and thereby contribute to making reconstructions with advanced
priors feasible also for large-scale 3D tomographic data sets — in XPCT and beyond.
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Chapter 7

Discussion and Outlook

Rapid progress in experimental control of X-rays continues to erode former frontiers of co-
herent imaging techniques like (propagation-based) X-ray phase contrast imaging (XPCI) and
-tomography (XPCT). The overall goal of this thesis was to catch up with the experimental ca-
pabilities by developing mathematical theory and algorithms for image-reconstruction in XPCI
and XPCT beyond the well-established but limited realm of direct CTF-inversion. Contribu-
tions have been made in a number of different directions, as detailed in the conclusion-sections
to chapters 3 to 6. Probably the most significant one on the theoretical side lies in quantify-
ing the surprisingly strong stabilizing effect of support constraints on the inverse problems of
XPCI and XPCT, ensuring well-posedness of the involved, generally ill-posed and non-unique
phase retrieval step: provided a sufficiently small Fresnel number of the support, i.e. a suffi-
ciently holographic setting, already a single hologram may be sufficient to stably retrieve both
phase- and absorption-image, which was considered impossible prior to this work. The princi-
pal achievement on the algorithmic side lies in devising numerical reconstruction methods that
outperform direct CTF-inversion by incorporating a priori constraints and nonlinearity but still
remain computationally feasible even for “big-data”-problems in XPCT.

At the same time, the mathematical treatment in this work is far from exhaustive. Most
importantly, it should be emphasized that the derived theoretical results are widely limited to
the scope of the linearized forward models of XPCI and XPCT. Hence, the achieved numerical
reconstructions in §6.4, based on the full nonlinear model, are so far — highly promising though
they seem — not backed by any deeper theoretical understanding. A thorough analysis of fully
nonlinear XPCI in future research is required to put the proposed Newton-type reconstruction
methods on solid grounds and may help to further improve these. Beyond linearity, the obtained
results also based on other idealizing assumptions, such as full coherence of the X-ray beam and
an ideal plane-wave profile of its wavefronts, which might be relaxed in future studies. Notably,
refined XPCI-models that account for such non-idealities may be flexibly incorporated in the
regularized Newton(-Kaczmarz) algorithms of this work, owing to their generic nature.

On the other hand, many of the results in this thesis may be of interest in a far more general
scope than the specific imaging modalities of XPCI and XPCT. From a broader perspective,
the stability theorems from chapters 3 and 4 can be interpreted as general statements on the
reconstructability of a local perturbation (the image in the specific case of XPCI) to a known
wave-field (the wave-fronts of the illuminating X-ray beam) from phaseless measurements of
the propagated total wave-field. Consequently, the findings may be relevant to a wide range of
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related settings, for example including wavefront-sensing and the large class of inverse scattering
problems where an object is to be recovered from the induced perturbation to a monochromatic
wave. On the contrary, it should be emphasized once again that the principal results of this
work do not simply carry over to coherent diffractive imaging (CDI) [146, 147], even though this
technique can be interpreted as the far-field limit of XPCI and thus seems highly related. The
reason is that the developed mathematical theory and algorithms heavily rely on holographic
contrast, arising from interference of the known incident wave with the secondary wave induced
by scattering on the unknown object, whereas such contrast is not natively present in CDI-data.
Recently however, variants of CDI, where holographic contrast is established by introducing
additional reference-signals, have been discussed in the literature [169, 128, 19, 182]. The phase
retrieval problems arising in such settings are structurally similar to that of XPCI so that
the methodology of the present work might be adaptable. Furthermore, the reconstruction
algorithms proposed in chapters 5 and 6, in particular the Newton-Kaczmarz method for XPCT
and its efficient implementation via generalized SART schemes, may be adapted to many other
inverse problems in transmission-tomography.

An immediate and fruitful application of this thesis’ findings beyond X-ray imaging might
be found in the emerging technique of near-field holography with electrons [67, 132]: owing to
progress in sample-preparation and -fixation, it is now possible to record holograms of single
proteins illuminated by a highly coherent, divergent beam of low-energy electrons. The acquisi-
tion geometry is thus identical as in XPCI — only a different form of radiation is used. Moreover,
also the principal image-formation model essentially carries over from X-rays to electrons (see
e.g. [159] for details), so that the theory and algorithms of the present work are applicable.
Judging from the electron-holograms in [132], it indeed seems that the insights gained in this
thesis may be highly relevant for the novel imaging technique for the following reasons:

1. Both phase- and absorption contrast may be induced by the specimens and no trivial
coupling between the two contrast-forms is expected to hold.

2. Due to the targeted subnanometer-resolutions, acquiring holograms at more than one
source-to-sample-distance seems undesirable in view of mechanical stability requirements.

3. The imaged protein-molecules are small compared to the captured field-of-view so that
strong support constraints hold true.

4. The Fresnel number associated with the molecule-diameter is low, i.e. the hologram-data
is deeply- or even completely holographic (see §3.6), so that image-reconstruction (with
support constraints!) is expected to be highly stable — despite the points 1. and 2.

In the original study [132], however, the images are recovered by simple Fresnel-back-propagation
of the hologram, a simple, merely qualitative image-reconstruction method that already dates
back to the pioneering work on holography by DENNIS GABOR [72]. Significant improvements
in image-quality might be achievable with the algorithms proposed in the present work.

The example shows that the field of coherent (near-field) imaging methods continues to
evolve dynamically, where novel experimental possibilities necessitate mathematics beyond es-
tablished standards to be fully exploited. The theoretical insights and practical algorithms
of this thesis may contribute to meeting current and future challenges in XPCI and related
imaging modalities, thereby helping to push these fascinating techniques to their full potential.
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Complete Article 1: Stability estimates
for linearized near-field phase retrieval
in X-ray phase contrast imaging

Reproduced from the published* article [144]:

Maretzke S, Hohage T. SIAM Journal on Applied Mathematics, 77(2):384-408, 2017.
DOI: 10.1137/16M1086170

(subject to slight adjustments of the notation and minor corrections)

Abstract: Propagation-based X-ray phase contrast enables nanoscale imaging of biological
tissue by probing not only the attenuation, but also the real part of the refractive index of
the sample. Since only intensities of diffracted waves can be measured, the main mathematical
challenge consists in a phase-retrieval problem in the near-field regime. We treat an often used
linearized version of this problem known as contract transfer function model. Surprisingly, this
inverse problem turns out to be well-posed assuming only a compact support of the imaged
object. Moreover, we establish bounds on the Lipschitz stability constant. In general this
constant grows exponentially with the Fresnel number of the imaging setup. However, both for
homogeneous objects, characterized by a fixed ratio of the induced refractive phase shifts and
attenuation, and in the case of measurements at two distances, a much more favorable algebraic
dependence on the Fresnel number can be shown. In some cases we establish order optimality
of our estimates.

8.1 Introduction

Over the past two decades, the dramatic increase in coherence and brightness of large-scale X-
ray sources, such as third generation synchrotrons and free-electron-lasers, has paved the way
for X-ray phase contrast imaging [158]. Classical X-ray radiography is limited to measuring the
attenuation experienced by radiation traversing the probed object. Writing the refractive index
in the X-ray physics notation n = 1 — ¢ + i with 0 < 5,0 < 1, this amounts to imaging 5.

*Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Phase contrast techniques additionally probe the real-valued decrement 6 of n, which induces
phase shifts in the transmitted X-ray wave field. This enables imaging of biological cells and
other micro-scale light-element specimen, for which § < ¢ holds in the hard X-ray regime
[207, 162, 42, 145]. Owing to the small wavelength of X-rays, nano-scale spatial resolutions can
be achieved as has been demonstrated down to 20 nanometers [13]. Moreover, phase contrast
imaging can be combined with tomography, capable of resolving the refractive index of an
unknown object in 3D [108, 14, 119, 122, 176, 143].

Unfortunately, the refractive phase shifts of the X-ray field cannot be observed directly by
common CCD detectors due to their physical limitation to measuring wave intensities, i.e. the
squared modulus of the wave field. In propagation-based phase contrast imaging, also known as
wnline holography, the required phase-sensitivity is achieved simply by free-space propagation
without any optical elements: if the detector is placed in some finite distance down-stream
of the sample, the imprinted phase shifts in the object’s exit plane (z = 0 in fig. 8.1(b)) are
partially encoded into measurable intensities by diffraction, i.e. self-interference of the wave
field. We assume that the diffraction pattern or hologram is recorded in the optical near-field of
the sample so that propagation is described by the Fresnel propagator [160]. In particular, we do
not consider the corresponding far-field setup (coherent diffactive imaging, see e.g. [167, 147]),
where the data is given by Fourier magnitudes.

In this work, we are thus concerned with the reconstruction of the (generally complex-
valued) wave-field perturbation h induced by the object from measured near-field intensities I.
As this implicitly amounts to recovering the lost phase information in the data, i.e. to solving a
phase retrieval problem, the question immediately arises whether the image recovery is actually
unique and stable. Indeed, it is commonly argued [108, 157, 32] that diffraction patterns from
at least two different sample-detector distances are required for a unique reconstruction of the
imprinted phase shifts and attenuation. Assuming a support constraint, however, i.e. under the
often physically reasonable assumption that the image h is non-zero only in compact subdomain
of the field of view, we could show uniqueness of the reconstruction from a single hologram
in [140] — even if h is complex-valued (see also [117] for a uniqueness result for the Helmholtz
equation with real-valued n from phaseless near-field data in an interval of frequencies). In [143],
such a reconstruction of a compactly supported complex image is demonstrated for simulated
and experimental data, which turns out to be feasible, yet susceptible to low-frequency artifacts.
Support constraints have also been found to stabilize image reconstruction in simpler settings
where the probed object can be assumed to be completely non-absorbing [76, 14].

These observations call for a better understanding of the stability of the considered near-field
phase retrieval problem, which is the goal of this paper. We do so within a linearization of the
relation between image h and the resulting intensity data I, valid for sufficiently “small” h, i.e.
for weakly interacting objects similarly as in a recent stability analysis of domain reconstructions
in phaseless inverse scattering [5]. The linearization is known as contrast transfer function
model [79, 194] and frequently applied in X-ray phase contrast imaging [42, 81, 96, 125, 122].
In this work, we analyze the arising linear forward operator .7 under the assumption that h has
compact support. We prove that the associated inverse problem is not only unique but even
well-posed in the sense that the recovered image h depends continuously on the measured data
T (h), i.e. finite data errors lead to bounded deviations in the recovered h. This result, which
is quite surprising for an inverse problem with remote measurements, is achieved by relating
the setting to a reconstruction from incomplete Fourier data. By the same technique we also

141



PhD thesis: Inverse problems in X-ray phase contrast imaging Simon Maretzke

derive explicit stability estimates, bounding the reconstruction error that results from a given
data noise level in terms of the dimensionless Fresnel number.

In general, we find that the stability constant decays exponentially with the Fresnel number
f and thus hardly gives any useful stability bounds for many experimental X-ray phase contrast
setups. However, we establish much more favorable O(f~!)- and even O(§~/?)-decay rates in
two relevant situations: The first assumes proportionality of the real and the imaginary part
of the image h, which occurs e.g. for single-material and non-absorbing samples. The second
situation concerns general objects, but two measurements at different distances. It is well-
known that the forward operators in these cases are Fourier multipliers with so-called contrast
transfer functions (CTF), and the zeros of the CTFs are responsible for general ill-posedness
of the inverse problem. Our analysis exploits the regularizing effect on these zeros of the
smoothness in Fourier space that results from the assumed support constraints.

The remainder of this paper is organized as follows: in §8.2, the mathematical model of X-
ray phase contrast imaging is introduced and the considered inverse reconstruction problems,
corresponding to different constraints and measurement setups, are motivated. Our principal
stability results are stated in §8.2.4. §8.3, §8.4 and §8.5 contain the analysis for each of the
inverse problems, including the proofs of the main results. In §8.6, we discuss implications of
our findings and possible extensions.

8.2 Imaging problems and main results

8.2.1 Physical model

An exemplary experimental setup for X-ray phase contrast imaging on a third generation syn-
chrotron source (GINIX setup [178] at P10-beamline, DESY) is shown in fig. 8.1(a). We
describe this imaging system by a standard wave-optical model as schematically visualized in
fig. 8.1(b) [166, 39]: an unknown sample is illuminated by an incident plane electromagnetic
wave Ui(x,z2) = exp(ikz), where £ € R? and z € R denote the lateral- and axial coordi-
nates, respectively. By scattering interaction, object information is encoded as a perturbation
of the wave field ¥ = ¥; + U, within the exit plane z = 0 of the probed sample. A detec-
tor measures the resulting near-field diffraction pattern (or hologram), given by the intensity
I(z) = |¥(x,d)* of the propagated wave fronts in some plane at finite distance d > 0 behind
the object. The phase of the complex-valued field ¥ cannot be observed directly, yet diffraction
partially encodes phase variations in the exit plane z = 0 into measurable intensities I at the
detector.

In general, the above physical model is governed by the Helmholtz equation AW +n2k?¥ = 0
in R3, where the object gives rise to a spatially varying refractive index n = 1 — § +i3. In
the hard X-ray regime of very large wavenumbers k, typical samples such as biological cells
are often sufficiently thin and weakly interacting for the scattering to be well-approximated by
geometrical optics [160, 108]. Within this approximation, the wave fronts ¥, := U(-, ) in the
exit plane are given by

Uy =exp(—h) with h=ip+pu= ik/ (6 —iB)d= (8.2.1)
R
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(a) waveguide 7
RO S e

5
undulator slits  focussing mirrors focus object detector

diffractig

incid/t/vxﬁave object

OI

Figure 8.1. Setup of propagation-based X-ray phase contrast imaging (inline holography).

(a) Sketch of an experimental realization [143] (GINIX [178] at P10-beamline, DESY)

(b) Physical model [140]: incident plane waves are scattered by an unknown sample, imprinting a
phase- and absorption image h = —i¢ — pu upon the transmitted wave fronts ¥(-,0). The resulting
near-field diffraction pattern (hologram) I = |¥(-,d)|? is recorded at some distance z = d behind the
object. (plotted experimental data: hologram I and reconstructed image h of d. radiodurans bacteria).

Accordingly, the perturbed wave yields line integrals over § and § along the incident z-direction,
corresponding to a projection image of the sample in the form of phase shifts ¢ and attenuation
p. In particular, (8.2.1) implies that the imprinted image h satisfies a support constraint
supp(h) C Q whenever the object is laterally finite, i.e. if 6(x,2) = f(x,2) = 0 for all z €
R, = € Q outside some bounded domain Q C R2.

If €] < k for all relevant spatial frequencies £ of h, the total wave field will be of the form
U(x, z) = € W(x, z) with a slowly varying envelope ¥ such that e™**(9? + k*)¥ = 2ik0.¥ by
neglecting 9>W. This yields the one-way-, Schrodinger- or paraxial approximation

2ki0, U + Ay U ~ 0

to the Helmholtz equation. Within this commonly used model, the free-space propagation of
the wave fronts to the detector is described by the Fresnel propagator [160]:

D(V,) = exp(—ikd)Vy= F* (ms - F(Wy)) m;(§) := exp <—

Here, F is the Fourier transform and

kb?

f g or fi=— (8.2.3)

denote the dimensionless Fresnel number of the setup. b is a physical length that corresponds
to length 1 in dimensionless coordinates and will be chosen as the support diameter of the
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image h, see fig. 8.1(b). Usually f is referred to as Fresnel number, but this convention would
lead to an abundance of 27 factors in our computations. Therefore, we will mostly use § with
the notation (8.2.3) chosen in analogy to Planck’s constant. f governs the impact of diffraction
in the imaging setup, where smaller values correspond to stronger diffractive distortion of the
propagating wave field. Typical values in experimental X-ray phase contrast setups are in the
range 10 < § < 10%.

By combination of (8.2.1) and (8.2.2), we find that the unknown object image h is related
to the observable intensity data I = |¥4|?> by the nonlinear forward operator

[=F(h):=|D(exp(=h))[* with h=i¢+pu (8.2.4)

We note that similar models apply to imaging with electrons [62, 205, 129] owing to the mathe-
matical equivalence of the time-independent Schrodinger equation and the Helmholtz equation.

8.2.2 Weak object limit and principal inverse problem

By (8.2.4), the image h is in general complex-valued, whereas the intensity data I is real-
valued. This suggests that the data is insufficient for unique and stable recovery of h [157, 32].
We analyze this question of ill-posedness within the commonly used weak-object-approximation
[166, 42, 161, 81]: in the case of weak absorption p < 1 and slowly varying phase shifts ¢,
nonlinear terms in A can be neglected in (8.2.4) [194], giving

F(h)=1+ Z(h)+O(h*) with Z(h) :=—2Re(D(h)). (8.2.5)

Here, Re denotes the pointwise real-part and we have used that D(1) = 1. Note that D is
unitary on L?*(R™), so 7 defines a bounded R-linear operator on L*(R™). Rather than by
(8.2.5), 7 is more commonly written in terms of the phase shifts ¢ and absorption p via
sinusoidal contrast transfer functions (CTF) [79]:

T (ip + p) = —2F (Sin (%) F(¢) + cos (%) f(u)) . (8.2.6)

Although the physical model of §8.2.1 leads to two-dimensional images h and holograms I,
we will study the operator .7 in a more general R™-setting. This might allow application of our
results to situations described by (quasi-) 1D-models and to phase contrast tomography, which
can be interpreted as a 3D-imaging modality [119, 176]. As physically motivated in §8.2.1, we
impose support constraints by assuming

he L*(Q) := {h € L*(R™) : hlgmq =0} for some QCR™ (8.2.7)

Moreover, we denote by ||A|| := ([g. |h[* d)'/? the standard L?norm in R™. The principal
image reconstruction problem of this work then reads as follows:

Inverse Problem 8.1 (Phase contrast imaging of weak objects). For a given support Q@ C R™,
recover a complex-valued image h € L*(€) from noisy intensity data

I*=14+9(h)+€e with || <e.
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8.2.3 Homogeneous and non-absorbing objects

It is often legitimate to assume that the object is homogeneous in the sense that phase shifts ¢
and attenuation p are proportional, i.e.

h=p+ip=ie "y (8.2.8)

for some v € [0;7) and a real-valued function ¢ € L?*(R™). Note that this includes the special
case ¥ = 0 which corresponds to 4 = 0 and thus to a purely phase shifting, i.e. non-absorbing
object, providing an excellent model for hard X-ray imaging of light-element samples. By
plugging (8.2.8) into (8.2.6) and rearranging by trigonometric identities, we obtain a forward
operator incorporating the homogeneity constraint:

Ty L(R™) = LX(R™); ¢ = 2F (s, - F(9)),  8,(€) :=sin (|£2_|f ! V)

T (ie™"p) = ., () for all real-valued ¢ € L*(R™). (8.2.9)

Accordingly, the forward model reduces to a multiplication with the contrast transfer function
s, (CTF) in Fourier space [79, 194]. This makes the inversion of ., significantly easier than
that of .7, which is why we state it as a second inverse problem:

Inverse Problem 8.2 (Phase contrast imaging of weak homogeneous objects). For given
Q) C R™, recover a real-valued image ¢ € L*({2) from noisy intensity data

IF=14+%,(p) +€ with €] <e.

8.2.4 Stability estimates

The statement of inverse problems 8.1 and 8.2 immediately raises the question whether these
are uniquely solvable and whether the solution is stable with respect to noise €. In order to
illustrate the significance of this problem, we first recall some well-known facts on the derived
inverse problems without assuming a support constraint, i.e. for {2 = R™: as the null-space
kern(.7) = {iD!(f) : f € L*(R™) real-valued} of the forward map 7 : L*(R™) — L*(R™)
is huge, inverse problem 8.1 is heavily non-unique in this setting. The operator ., on the
other hand, is indeed injective so that inverse problem 8.2 is uniquely solvable. However, the
inversion of .¥, is ill-posed since noise in Fourier-frequencies near the zeros of the CTF s, is
amplified by arbitrary factors in the reconstruction.

To our great surprise, imposing a support constraint with bounded {2 does not only rule
out non-uniqueness (as proven in [140]), but even turns inverse problem 8.1 into a well-posed
problem: every admissible image h € L?*(2) gives rise to finite contrast |7 (h)|| > Cip1||h]| in
the observable data with some lower bound Cip; > 0:

Theorem 8.1 (Well-posedness and stability estimate for inverse problem 8.1). Let the support-
domain Q be given by a stripe of width 1, without loss of generality Q :=[—1/2;1/2] x R™~1.
Then there ezists a constant Cip1(€2,§) > 0 such that

|7(0)] = Coo(UPIIA] - forall b€ L2(), (8.2.10)
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i.e. inverse problem 8.1 is well-posed. The stability constant satisfies the estimate

Cip1(82, ) > (27Tf)i (1 — 8% + O<f2)> exp (—f/8). (8.2.11)

theorem 8.1 is proven in §8.3 along with a characterization of the least stable modes,
i.e. of the images h that induce least contrast under 7. Notably, (8.2.10) implies ||h| <
Cip1(Q, )77 (h)]|, ensuring finite amplification of data errors < Cip1(Q, f)~!|/€|| upon inver-
sion of .7 and thus stability of the reconstruction of h from I€. By (8.2.11), however, the
constant Cipy (€2, f) decays (nearly) exponentially with increasing f so that theorem 8.1 hardly
guarantees stability in any practical sense for Fresnel numbers § > 100. Fortunately, the sta-
bility estimate can be improved to algebraic decay with § in the case of inverse problem 8.2, as
shown in §8.4:

Theorem 8.2 (Well-posedness and stability estimate for inverse problem 8.2). Let the support-
domain Q = {x € R™ : || < 3} be a ball of diameter 1. Then the stability constant
Crp2 (0, ,v) == inf e r2(q) p=1 |0 (@) || of inverse problem 8.2 is bounded by

Cip2 (9, f,v) > max {min {cl, CQf_l} , min {031/, c4f_% }} (8.2.12)

for some constants c¢; > 0 that depend only on the dimension m. In particular, Cipa(Q, f,v) =
O(F™Y) forv =0 and Cipo(Q, f,v) = O(F V%) for v >0 as f — oo.

We recall that the physical lengthscale b underlying to the Fresnel number § in theorems 8.1
and 8.2 is the diameter of the support-domain €2 as the latter is taken to be unit length.
Accordingly, the resulting stability constants Cipy, Cips are much smaller than 1 for typical
values 10 < § < 10%. Moreover, we emphasize that the stated results for inverse problems 8.1
and 8.2 are both for reconstructions from a single diffraction pattern. Image recovery from
two holograms recorded at different distances is treated in §8.5 as a corollary of the stability
analysis of inverse problem 8.2.

8.3 Stability analysis of inverse problem 8.1

8.3.1 Principal approach

We start our analysis with inverse problem 8.1, corresponding to the recovery of general
complex-valued images from a single hologram without homogeneity constraint. In order to
understand its mathematical structure, it is instructive to rewrite the forward operator .7 in
the form

—7(h) = 2Re(D(h)) = D(h) + D(h) = D(h) + F ' (m; " - F(h))
=D(h) +D(h) for he L*R™).

Here, the overbar denotes complex conjugation and we have used that the Fresnel propagation
factor m; is unitary. By (8.3.1), the linearized contrast 7 (h) in the intensity data is given by a
superposition of the propagated image D(h) and the back-propagated twin-image D~1(h). Since

(8.3.1)
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Figure 8.2. Illustration of the principal idea for the stability analysis of inverse problem 8.1. By
applying the Fresnel propagator D to data .7 (h), the twin-image h becomes sharp (Gabor holography,
see logo in central panel). By restricting to the complement Q¢ of the support-domain Q O supp(h), h
is eliminated and incomplete Fresnel data D?(h)|qc is obtained (right panel). Images show real parts
of numerically computed fields from a hologram (left panel) recorded at GINIX [178], P10-beamline,
DESY.

D is unitary, reconstructing h from one of these components alone would be straightforward.
Solving inverse problem 8.1 thus amounts to disentangling image and twin-image.

In order to separate these components, we propagate the near-field hologram .7 (h) by
application of D. By (8.3.1), this yields

— DI (h) = D*(h) + h. (8.3.2)

Accordingly, we recover the sharp twin-image h up to perturbations originating from the doubly
propagated image D?(h). This is the principle of Gabor holography [72], which can be used as
a qualitative image reconstruction technique [160] as illustrated in fig. 8.2. Here, we follow this
approach in a converse manner: rather than contenting ourselves with the perturbed twin-image
E, we exploit a support constraint

supp(h) ={x € R™ : h(x) # 0} C Q (8.3.3)
by restricting (8.3.2) to the complement of 2. This yields

“DI(W)|ac = D*(W)|ae + hloe = D*(W)ae for any  h € L2(Q). (8.3.4)

By the proposed propagation-and-restriction procedure, the twin-image is thus completely
eliminated from the data as sketched in fig. 8.2. Note that the map 7 (h) — —D(7 (h))|qc =
D?(h)|qe is norm-decreasing in L?(R™). Hence, (8.3.4) implies that the solution of inverse
problem 8.1 is at most as ill-posed as the reconstruction from incomplete Fresnel data D?(h)|qe.
This reduction to a data completion problem is the principal idea of our stability analysis for
inverse problem 8.1.

8.3.2 Reduction to Fourier completion problem

In order to gain a simpler expression for the reduced data D?(h)|qec obtained in §8.3.1, we use
an alternate form of the Fresnel propagator D. By application of the convolution theorem to
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(8.2.2), the following representation can be obtained (see e.g. [160]):

D) @) = e nsa) - Fo- 1)), @)= e (ilef) (539

for all x € R™. (8.3.5) reveals that - up to pointwise multiplications with the unitary factor n;
and rescaling - D may be written as a Fourier transform. Combined with the approach outlined
in §8.3.1, this allows to identify stability of inverse problem 8.1 with the reconstruction of a
function from incomplete Fourier data:

Theorem 8.3 (Reduction to Fourier data completion problem). Within the setting of inverse
problem 8.1, let Qs .= {(j/2)x : © € Q} for arbitrary Q C R™. Then

17 ()| > [|F(ng"? - Blae||  for all b e LHQ) (8.3.6)

where nfl/Q(a:) = exp (if|x|?/4). In particular, we have the relative stability estimate

O, f) = inf h)|| > inf h
Crp1 (€2, ) heLQ(gi”h”:lHy( )= heLz(ls?),Hhuzl”J:( e

(8.3.7)

Proof. D is unitary and the restriction to Q¢ C R™ defines an orthogonal projection in L*(R™).
Hence, (8.3.4) implies the estimate

1.7 =IPT (W) = DF(h)
By (8.2.2), D? is again a Fresnel propagator, yet to the Fresnel number f/2. Accordingly,

= | D*(h)

Qe for any h € L*(9). (8.3.8)

Qc

employing the alternative form (8.3.5) and exploiting that |e=™"/ 4nf1 / ’| =1 gives

ID2()oell = (35)  I1F (- 1) (55 )l - (8.3.9)

Introducing new coordinates § := (f/2)x and using that Qf = (f/2) - Q° holds by definition, this
expression can be simplified to

ID* (1)l

/‘]—“ 2. )(35z)|* do
(8.3.10)
/ o W) g = 17l ol

Combining (8.3.8) and (8.3.10) yields the first assertion (8.3.6). The second estimate (8.3.7)
then follows from the fact that the map A +— nfl/ ?. b is isometric and bijective on L2(€). [

theorem 8.3 states that the solution of inverse problem 8.1 is at least as stable as the recon-
struction of an L2-function f with support in  C R™ from incomplete Fourier measurements
F(f) qg. For compact Q, the latter Fourier completion problem can be shown to be unique and
even well-posed by employing an uncertainty principle for the 1D-Fourier transform derived by
Nazarov [156] (see [90] for an English proof and [106] for its multidimensional generalization).
Rather than following this approach for general support shapes, however, we will restrict to the
special case of rectangular support-domains §2. This will enable a more explicit characterization
of the dependence of Ctp; on the Fresnel number § via theorem 8.3 as well as additional insights
concerning the nature of the least stable modes of the forward operator .7 .
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8.3.3 Stability result for stripe-shaped supports

In the following, we restrict to the simple case of a stripe-shaped support-domain 2 C R™ as
considered in theorem 8.1. Note that the forward operator .7 is rotationally- and translationally
invariant as is the Fresnel propagator D. Hence, it is sufficient to consider domains of the form

Q= [-b/2;b/2] x R™ 1. Moreover, b can be set to 1 which means that we define the Fresnel
number § with respect to the support diameter. Accordingly, we may indeed restrict to the
special case Q := [—1/2;1/2] x R™! as done in theorem 8.1 without loss of generality.

Now we can employ the characterization of the stability constant in theorem 8.3 for this
special domain. We define [ := [-1/2;1/2] and I; := [—f/4;§/4] for notational convenience.
Recall that the m-dimensional Fourier transform F™ is a tensor product of one-dimensional
Fourier transforms F) applied along the different coordinate dimensions, i.e. F™ = F)
- ®FWD . Owing to the cartesian product structure of Q = I x R™! and Qf = If x R™1 the
restricted Fourier transforms

Foor + Lo = Lagi s (F™R)os, Frie o L = Lis b (FOR)e,  (83.11)
are likewise related by fé’f}% =F I(lf)f RFV®-..@ F1. Applying this relation to the stability

estimate in (8.3.7) and exploiting unitarity of the Fourier transform yields

Cip1(Q4,f) = hep(l(%ﬁ‘h”:l ”]:Q,Qgh | = heLghfl;H:l HFI’IfCh ‘
1/2
_ (1 — sup H]:(l)(h)|ffH2) . (8.3.12)
heL?,|n]|=1

We thus need to estimate the norm of the 1D-operator F; : L7 — Li; h— FO(R)|y,. This
is achieved by explicit computation of the operator FF; (]—}* adjoint of Fj), which turns
out to be part of a well-studied family of compact and self-adjoint integral operators. Their
eigenfunctions are known as prolate spheroidal wave functions, and the eigenpairs have been
studied for example in [185, 186]. By applying these known results we obtain the following
theorem:

Theorem 8.4 (Spectral characterization of F7'F;). Let Fy defined by (8.3.11). Then

FR) (g) :/11 Wf (%) dy with c:=7/8. (8.3.13)

for all h € L? and x € [-1;1], and F{Fj is compact. The eigenvalues {).;}jen, C Ry and
associated eigenfunctions {e;}jen, C L7 of F{Fj thus coincide with those in [185, 186]. In
particular, all eigenvalues Acp > Ac1 > ... have multiplicity one, and the .; may be chosen
to form an orthonormal basis of L*. Moreover, A\.o < 1 holds true and, for fized j € Ny and
f — 00, Ac; has the asymptotic expansion

o7 )2fits 652 — 2j + 3 1
1— X, = % (1 - % +0 (?)) exp(—f/4). (8.3.14)
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Proof. The restriction to the interval I; = [—f/4;f/4] can be written in the form of a multi-
plication with its indicator function 1. By the convolution theorem, we thus obtain for all
helL? zel[-1;1]

(5) -0tz 4 ()

)
1 [y QSinS(g y))f(y> dy_/1 sm(C(x y)y)) <2> dy.

21 J 10 m(x —

FF®m) (5) = F (- FR)

The spectral characterization of the resulting integral operators in [185, 186] directly yields the
claimed properties of the eigensystem {(A.;,%c;)}jen, of Fi'Fj. In particular, the asymptotic
expansion (8.3.14) is an analogue of the formula [185, eq. (2)].

Since Fj is a restriction of the Fourier transform, we have | F|| < ||F|| = 1. Hence, the
principal eigenvalue of F{F; must satisfy Ao < 1. If Aco =1 then

H}-(wc,o)’l;Hz = ”F<wc,0)”2 - H]:Wc,o)thQ = ch,OH2 - >‘C,0Hw0,0|’2 =

i.e. F(1)e0) would have to vanish outside the interval I;. However, as 1. is compactly sup-
ported, F(¢co) is an entire function and thus vanishes identically if F(¢co)|re = 0. This is
impossible since 9. is an eigenfunction. Hence, A,y < 1 must hold true. ]

We emphasize the nontrivial dependence of both the eigenvalues A.; and the eigenfunctions
1.; on the parameter ¢ = §/8. For convenience, however, we will suppress the subscript ¢ in
the following. theorem 8.4 constitutes the final ingredient which is needed to prove the sought
stability result for inverse problem 8.1:

Proof of theorem 8.1. According to the characterization of the stability constant in (8.3.12),
Cip1(€2,§) can be expressed in terms of the operator norm of F;. Since FiF; is compact
with principal eigenvalue A\g < 1 and orthonormal eigenfunctions {1;};en, as characterized
in theorem 8.4, we have

1F511* = | F7 Fill = sup [|F; Fipyll = sup Aj = Ao
j€Ng J€Ng

By (8.3.12), this implies Cip1(Q, )2 = 1 — X\g > 0, i.e. well-posedness of inverse problem 8.1.
Setting 7 = 0 in (8.3.14) yields the asymptotic characterization (8.2.11). O

8.3.4 Characterization of the least stable modes

So far, we have not exploited the full potential of the reduction to a Fourier data completion
problem in theorem 8.3 yet: only the characterization of the stability constant (8.3.7), i.e. of
the worst-case-stability, has been used in the proof of theorem 8.1. Notably however, the more
general estimate (8.3.6) even bounds the contrast |7 (h)| attained by individual images h
with respect to the corresponding incomplete Fourier data F (nf1 /2, h)‘Q?. This enables a precise
prediction of the reconstruction stability for different image modes in inverse problem 8.1 beyond

the universal lower bound proven in theorem 8.1.
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In order to avoid notational difficulties in the argument, we do the analysis for a box-shaped
support-domain Q := [—1/2;1/2]™ = I"™. Owing to the simple Cartesian geometry, the results
obtained for a stripe support are easily generalized to this case, including a characterization of
the stability of individual modes. We define m-dimensional prolate spheroidal wave functions
as the tensor product

i(®) = (), @ ..., )(x ij z;)  for = (ji,...,jm) € NI (8.3.15)

Moreover, let (f, g) fQ da: for hy, hy € L*(Q) denote usual L-inner product. With
this notation, we obtaln the followmg modal stability estimates:

Theorem 8.5 (Stability of individual modes in inverse problem 8.1). Let Q@ = I™ and let
{(Nj,¥5)}jen, denote the eigenvalue decomposition of F{Fy in theorem 8.4. Moreover, define

¢j = nf_l/2 “1bj for all multi-indices 3 € Ni*. Then {¢;}jenm is an orthonormal basis of L?(Q),

and with cpy j = (1 — [, \j,)Y? we have

IF WP > D cforjl(h g forany  h="Y (h,¢;)¢; € L*(Q). (8.3.16)

jenm jenm

Proof. As {1;}en, is an orthonormal basis of L7, the tensor products ¢; = ¥;, ® ... ® ¥,

form an orthonormal basis of L?(2) with Q = I™. Since ngl/ ? is unitary, the same is true for

{¢;}jenp so that any h € L*(Q) can be written as h = > jeng 0595 With a; := (h, ¢;). By the

tensor product structure of v; and F (m)we further have
F) (ng V2600, = F @) = (FOU)|p @@ (FU,)|,
= Fii, © ... @ Fyiy,,

forall j = (j1,...,Jm) € Ng. As the 1), are eigenfunctions of the 1D-map JFi Fi to the eigenvalues
A (see theorem 8.4), the above relation implies

<f(n1/2 <97 lays Fln)* ¢k)|gf> (8.3.17)
H (FF Fi(w)s tm) = H N (Wi ) = 65 [ [ A = 65k = cfor )
=1

=1

for all j,k € Ni where 6, € {0,1} is the multidimensional Kronecker-symbol. Using the
principal bound (8.3.6) from theorem 8.3, unitarity of F and (8.3.17) finally gives

|7 WP = [F " - h)lag]” = I\h|\2—|!f(”f1/2'h)\ﬂfl\2

= Z |a;]* — Z a’ja_k<‘F(nf1/2'¢j)|Qf7 ( Cbk |Qf> Z CIP1g|aJ|2

jeNy 4,keNg jEN
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In theorem 8.5 we obtain individual stability constants cipi; such that each of the con-
structed orthonormal basis modes ¢; attains data contrast |7 (¢;)|| > cip1,5. As the sequence
of eigenvalues {\;}ren, in theorem 8.4 is strictly decreasing, it is readily seen that stability
increases with the multi-index 7, i.e.

CIP1,k > CIP1,j if k 7£ j, k’l > jl for all [l = 1,... , M. (8318)

According to theorem 8.5, the least stable modes are thus exactly the basis functions ¢; of
(componentwise) small multi-index j, which are given by prolate spheroidal wave functions
Y =Y ® ... X1, modulated by the Fresnel factor n)fl/Q. Details on the shape of the 1;
in turn are readily available, see e.g. [185]. In particular, the index j can be interpreted as a
frequency since v; is smooth and real-valued with exactly j zeros and j + 1 extrema within the
interval (—1/2;1/2). By extending this observation to the ¢; we deduce the nature of the least
stable modes in inverse problem 8.1:

Corollary 8.6 (Least stable modes in inverse problem 8.1). The least stable modes in in-
verse problem 8.1 for Q = [—1/2;1/2]™ are low-frequency prolate spheroidal wave functions

modulated by the Fresnel-factor n;1/2(w) = exp(—if|z|?/4).

8.3.5 Numerical Validation

We return to the starting point of our stability analysis, namely the reduction to a Fourier data
completion problem via the principal estimate (8.3.6). The question whether or not the derived
stability bounds in theorem 8.1 and theorem 8.5 are optimal (or at least close to) crucially
depends on the sharpness of this inequality. In the following we investigate this remaining issue
numerically.

To this end, we approximate the stability bound Cipy (€2, f) by computing the smallest sin-
gular value of a discretized forward operator .7 in m = 1 dimensions. The Fresnel propagator
is approximated by fast Fourier transforms on a 1D-grid of 5122 equidistant points, where the
central 512 grid points form the supporting interval Q = [—1/2;1/2]. We compute the smallest
singular value of .7 via a power method for Fresnel numbers § € [1; 10]. These numerical results
for the complete, yet discretized forward operator, are compared to the asymptotic stability
bound (8.2.11) in theorem 8.1, neglecting the O(f2)-contributions. The different predictions
for the stability constant Cipy (€2, f) are plotted in fig. 8.3(a).

The semilogarithmic plot shows excellent agreement between the analytical bound (8.2.11)
and the numerical approximation in the asymptotic limit f — oo. This indicates that our
stability analysis, based on the potentially lossy estimate (8.3.6), is surprisingly sharp. Accord-
ingly, one might expect that also the corresponding least stable modes ¢; are well-characterized
by theorem 8.5. This is supported by the simulation results: fig. 8.3(b) exemplarily plots the
numerically computed mode ¢y to the minimum singular value of 7 for § = §/(27) = 10.
According to theorem 8.1, the plotted product with the factor nfl/ % should yield the zeroth
order prolate spheroidal wave function 9. This is confirmed by the smooth unimodal profiles
obtained in fig. 8.3(b).
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Figure 8.3. Numerical validation of the stability analysis for inverse problem 8.1.

(a) Comparison of the analytical bound (8.2.11) for the stability constant Cip; (red-dashed line) to
numerical computations of the smallest singular value of .7 (blue-solid).

(b) Numerically computed least stable singular mode ¢q for § = §/(27) = 10. The plotted modulation

with nfl/ ? reveals a unimodal structure as predicted by theorem 8.5.

8.4 Stability analysis of inverse problem 8.2

The aim of this section is to prove theorem 8.2, establishing algebraic rates of the stability
constant Cipa(€2, f) = 7 under a homogeneity constraint for the imaged object.

8.4.1 Preparations and Fourier domain splitting

Throughout this section, let ¢ € L?(R™) and let ¢ := F () denote its Fourier transform. Recall
from definition (8.2.9) that the operator ., multiplies with —2s,(€) = —2sin (|€|?/(2f) + v) in
the Fourier domain, and hence

|7 ()| = IFZo (@)l = 2|, - ¢l (8.4.1)
According to (8.4.1), the images ¢ attaining low contrast, i.e. small ||.7,(¢)]|, are exactly those
for which ¢ is concentrated about the zero-manifolds of the CTF s,. As signals ¢ € L*(R™)
may be arbitrarily sharply peaked about these manifolds of zero contrast, inverse problem 8.2
is ill-posed for general images ¢ € L?(R™).

Now, we additionally assume a support constraint ¢ € L*(Q2) for Q := B[0; R]. Why
does this constraint ensure well-posedness in the light of the problematic CTF-zeros? The
explanation lies in the well-known fact that a compact support in real-space implies % *°-
smoothness (indeed analyticity) of the Fourier transform with norm-bounds on the derivatives
in terms of the support size R. Owing to this regularity, ¢ may not be arbitrarily concentrated
about the zero-manifolds of s,, which enables stability as illustrated in fig. 8.4. The following
lemma quantifies the smoothness of ¢ in a suitable form for the subsequent analysis:
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Figure 8.4. Illustration of the principal argument for stability of inverse problem 8.2: the black-
dashed line plots the radially symmetric contrast transfer function s, for v = 0. Blue and red solid
lines show examples of Fourier space signals of objects ¢ and their images under the forward operator
<, respectively.

(a) General images ¢ € L*(R™): F(p) may be arbitrarily peaked at the zeros of s,.

(b) Support constraint ¢ € L?(2): F(¢) is smooth and has finitely sharp peaks, which ensures that
the total contrast is bounded from below: || F (7, (¢))| > Cip2||F ()|

Lemma 8.7. Let g € L*(Q) with support in Q = B[0; R] and Fourier transform g := F(g).
Let A be the Laplacian on R™. Then we have for any measurable set B C R™

| 2P g < 22 (8.4.2)
B

Proof. The compact support of g implies infinite smoothness of § = F(g). Using the identity
—AF(g9) = F(|x|*g9) and Cauchy-Schwarz’s inequality we obtain

[~ ae = 2 [ (93P + Re(G-80)) ag <2| [ 3 Flolg) ag
B B B
< 2alsllIF(ela)lsl < 2031 F(2l0)] < 2allzg].

As g vanishes outside B[0; R], we further have |||z|?g|| < R?||g]|. O

Note that lemma 8.7 can be interpreted as an uncertainty principle: a bound for the derivative
—A|F(g)?, limiting the sharpness of features in Fourier space, arises from the confinement
supp(g) C BJ0; R] of the corresponding real-space signal g.

For a quantitative analyis, we decompose the norm on the right-hand side of (8.4.1) into
stable bulk integrals and potentially unstable parts about the CTF-zeros by cutting out the
subdomain D, := {€ € R™ : |s,(&)| > sin(e)} for some 0 < € < 7/6:

v’ b2 = v 2|3 2d N v 215 2d 4.
s - &l \/DES(E)VW)’ “;ﬂf<€) e (8.4.3)
=:Je :;]
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Here, the B; denote the annular connected components of R™\ D, about the j-th zero-manifold
of s, at radius ¢; := (2f)2 (jm — V)2, ie.

Bj={€ e R™:[¢] € (bj_; b)), bje:=(££2f): for jeN

1 1 (8.4.4)
By={£ €R™: £ < by}, bo := (2f)2 max(e — v, 0)2.

Note that the constructed Fourier domain splitting is disjoint, i.e. R™ = (U;io B;)u D.. From
the definition of the domain D., it immediately follows that

J. > sin(e)||&|p.||- (8.4.5)

Hence, what remains to be done is to derive bounds for the sub-integrals J; around the zero-
manifolds of s, and to choose ¢ to balance the contributions in (8.4.3) .

8.4.2 Estimate for the central CTF-minimum

We first consider the ball-shaped domain By, i.e. the low frequency part of the Fourier domain
splitting. Note that By does not contain a zero of s, if ¥ > 0 but still a (possibly small) local
minimum of s2 at & = 0. Since By = 0 for v > €, we may restrict to the case v < .

By (8.4.4) and the assumption € < 7/6, we have |£|?/(2f) +v € [0;7/6) and hence s, (£)? >
Co(|€|2/(2f) + v)? for all & € By with Cy := sin(7/6)?/(7/6)?. This implies

Jo = /B s,(€)*|p(€)[* dg > CO/B (% + ”’f‘ + 1/2) (&) de (8.4.6)

From (8.4.6), it can be seen that Jy is bounded from below by v2||4|, ||* and thus indeed stable
if v # 0. However, since v is typically (almost) zero in hard X-ray imaging, we have to resort to
the integral summands that involve powers of |€|? in order to achieve robust estimates. These
integrands have a zero at € = 0 € By, which is why smoothness of |$|?* has to be exploited to
obtain reasonable estimates. This is achieved by the following lemma:

Lemma 8.8. Let D := {& € R™ : |x| < a} be a closed concentric ball of radius a in R™.
Let g,w € €*(D) where w is radially symmetric, i.e. w(x) = wo(|z|) for all x € D and some
function wy : [0;a] — R. Then

/DAw-gdm _ M/Dg dm+/D(%&“)(&—W)—(wo(a)—w)) Ag da.

a

Proof. By Green’s second identity we have

/Aw-gdaz:/w-Agdm+/ (ga—w—w@) dS(z)
D D ap \_ On on

_ /Dw - Ag dz + w)(a) / g dS(x) — wo(a) /M 52 as(a) S
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Here, 0/(0n) denotes the derivative along the unit normal vector pointing to the outside of
0D. The boundary terms can be eliminated via the relations

/apg’idS() = /DAgdzc
/angsm Y 1

2a Jop” On

_ 1 20y 2
- 2@(/ 22 ds(a) —|—2m/nga: /D|a:| Ag da
- i(Zm/gd:z:—k/(aQ—|alc|2)Ag dm),

2a D D

which again follow from Green’s second identity. Plugging this into (8.4.7) yields the claimed
identity. O

As the functions € — [€|? and € — |€|* are radially symmetric and since By is a concentric
ball of radius by, we find that lemma 8.8 can be applied to the integrals in (8.4.6). This yields
the following estimate for the considered low-frequency subdomain:

Lemma 8.9. Let v < e < 7/6 and By := {&€ € By : A|p|*(€) < 0}. Then
Jo 2 Co (e = v + 2gvie = v) + 1) 1l

+f< S D) (e — ,/)3_i_m;+2y(8_y>2>/ Alg[? d£> (8.4.8)

Proof. For the functions wy (&) := |€]%/(6(m +4)) and wo(€) := |€|*/(4(m + 2)), we have that
Aw;(€) = |€]* and Awq(€) = [€|* for all € € R™. Accordingly, the integral in (8.4.6) matches
the setting of lemma 8.8. An application gives

; €M@ dE = | Awi(€)|p(&) dg

Bo

mby 1 by R
- b [ e ae = [ (Fei-1eP) - 508 - 16) Aot ag
mb

>

b6
(6 dE + ——— / Alp(g))*. d
it [ e g g [ Al dg
Here, the integral over A|@|? has been bounded from below by the integral within the sub-
domain By = {x € By : A|$|*(x) < 0} multiplied by the maximum of the non-negative factor
(b6/2) (b3 — €]*) — £(b§ — |€]°). Analogously we obtain

/B €RIeO12 de = [ Auwn(©)6(e)]? de

Bo

mbg 1 b )
- [ eoraer = [ (2< ~IEP) - 363~ 1€P)) Alg() ag
mb?

>

- 2 bé ~ 2
. [P(&)]” d€ + m/BO_ Alp(8)|" dg

m+ 2
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Inserting these relations into (8.4.6) yields

&1 vIgP .
Jo = Co/ (4f2 + ; +V2) [2(&)]* g

mbj, mvb3 A
“ (4f2(m n D flm +02) * ”2) . [B(&)I° g

bg by X
"o (12f2(m 0 T Iy 2)) /BO Alp(&)* dg.

Re-substituting by = (2f)

v

(¢ — v)2 into this estimate gives the assertion. O

=

8.4.3 Estimate for the first order CTF-zeros

Before we can derive a global stability estimate from (8.4.8), we have to consider the remaining
integrals J;, 7 > 1 in the Fourier domain splitting (8.4.3). The integration domains B; are
annular shells around the first order zero-manifolds Z; = {£& € R™ : [£]| = &}, j € N of the
CTF s,. According to (8.4.4), we have |€|?/(2f) + v — jm € (—¢;¢) for all £ € B; and thus

2 2 . 2 2 <%
5,(€)? = sin (%+u+g ) > Sl (%wm) S (er-g)’. a9
Using that (|€[* — &7)* = (€] + &) (1€] — &) > (b= +&;)*(|€] — &;)?, this yields

Co(b; ~ = 2 a2
5= [ sderis@rae > QLS [ (g-gPlp@rde (3410

J
for 5 € N. Accordingly, we have to estimate polynomially weighted integrals, similar to the
preceding section, yet within the shell-shaped domains B; instead of a concentric ball. We
achieve this by introducing polar coordinates and applying lemma 8.8 to the resulting one-
dimensional radial integrals:

Lemma 8.10 (Stability estimate for the first order CTF-zeros). Let 0 <e < /6 and j € N .
Then there exists a measurable subset By C Bj and a constant 0 < Cy < 1/4, which depends
only on m, such that

T > Co [ G141, 2 E4f Al2(€) d 8411
2 O il g [ Alelte ae ) (s.4.11)

Proof. Let j € N arbitrary. In order to make lemma 8.8 applicable to the present setting, we
rewrite the integral J; in (8.4.10) by introducing polar coordinates & = €0, £ > 0, 8 € S™!
(S™~!: unit sphere in R™). With the notation in (8.4.4), this yields

bj+
Jj = / (€= &)°€"  praal§) A€, praa(€) = / 15(€0) ] d6. (8.4.12)
b S

j—
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Setting a; :=bjy — &, =& =&, p;(€ — &) = MY 2p4(€), we obtain the bound

Jj = / e gren e [ 2gm-1 d
= e are T e gt [ 6 6 o) a6
7 b (8.4.13)

1 a; §i—aj
> (& — ay) "7 / os(n) dy + a2 /b 7 praa(€) dE.

—a; -

The first integral on the right hand side of (8.4.13) matches the setting of lemma 8.8 in m = 1
dimensions with weight function w(n) :=n*/12. This yields

a; a? a5 2(q2_n2 4_ 4
a%(a5—n*) a’—
/ nes(n) dn = 2 d77+/ ( L — )so}’(n) dn
—a; —a;

y (8.4.14)
n)dn+ == [ ¢j(n) dn,

w |§’N w

vx;here we hjwe set [j’.:: {1776 [—aj; a;]  ¢f(n) < (1} and used that 0 < (a?'/(i)(a? —n?) —A(;z;* —
n*)/12 < aj/12. Setting By := {§ € B; : €] € I; +&;} and re-substituting ¢;.q and [p|* for
©;, we estimate the second integral in (8.4.14) by

G R URIE /W €0 (7 () de (8415)

<gm=1)/2 for EEI; +¢; ! <0

_ m—1 (m — 1)(m—3)) R )
B /Ij-|-§j£ /Sm 1 (85 § 85 + 42 [p(£6)|° do d€

A 4|£r2 =) ete

J

/B_AII )dg g / R

Here we have identified the radial part of the Laplacian in polar coordinates and implicitly
added the angular part, which does not contribute to the S™ !-integrals. The inequality in
the last line follows from the fact that (m — 1)(m — 3)/(4|€|*) is negative only for m = 2, in
which case it is bounded by the given term (8;;: Kronecker-Delta). Re-substituting |$|* in the
remaining integrals in (8.4.13) and (8.4.14) gives

2

j &§i—aj
G- [t [ e o a (5.4.16)

a;j bj_

> (452) 7 4 /j+£ !Praa(€) d + a2 /Ms ra(€) d€
2

s m—=1 i+ m i—a; a; ~
()7 [ o - () o

Combining the estimates (8.4.13), (8.4.14), (8.4.15) and (8.4.16), we thus obtain for all j € N

(g —a\T  a o2, 9 L2
T2 2 ((552) T - ) Ial 33 [ agF@aE s
R J J J— P \/ ]
=:\
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What remains to be done is to derive uniform bounds for the constants in (8.4.17) within the
assumed parameter range j € N, v < 7/2 and 0 < ¢ < 7/6. First, we have £ = 2f(7j —v) > «f
and hence by Taylor-expansion of the square-root

1 ef ef ef £ ef |11
(5 + 2fe)2 — ¢ egj- [1 2%2,1] Cg [1—%,1} ng {E,l}. (8.4.18)

& >nf

Using (8.4.18) along with b7 = & — 2f5 > 52 —7f/3 > 2wf/3 furthermore gives

a?  (8.4.18) 2¢2 2 1
< . ‘gj 3 1 (8.4.19a)
1652 16€2(€2 — 2fz) — 327 ~ 384
a0\ 2 . (8.4.18)
(59—“3) 1o BtV g 250 (8.4.19D)
&+ aj & & ™6

Combining (8.4.18) and (8.4.19) gives A > (4/3)C1e*?/€} with Cy := (121/576)((5/6)™ " —
Oma2/384) and p < e*f*/(12€]). Substituting these bounds into (8.4.17), we obtain

e P GG (5.420)

j = 362 1||¥ 1652 . A
Now the assertion follows by inserting (8.4.17) into (8.4.10), using that f/&} = 1/(2(jm — v))
and (& 4 b;—)* > 37 according to the estimate b5 > 2£7/3. O

8.4.4 Global stability results

With the bounds for different subdomains of the Fourier space obtained in lemmas 8.9 and 8.10,
we are now in a position to prove a global stability result for inverse problem 8.2. For ¢ > v,
an application of the estimates (8.4.5), (8.4.8) and (8.4.11) to the sub-integrals in (8.4.3) and
lemma 8.7 with Q = B[0;1/2] yields

s, 21 2 o (clenllol? + Fale) [ algl de)

> Co (C(ev) = dnle,v)) oll?

Here, we have used that [|@|p, [|* + =72 [|2]5; > = [|21I* = [|¢[l by the disjoint Fourier domain
splitting in §8.4.1 and defined B~ := |J72, B; as well as

(8.4.21)

((e,v) == min {2 (e —v)* + 2v(e —v) + 12, Cie?},
g for e>w (8.4.22a)
) }

2
n(e,v) = max{g( vy (e—v)’+ m—+2V(5 V) 732(7:—11

Note that the bounding constant sin(e) for the integral J. does not appear in ((e,v) as sin(g) >
C1e? holds true within the entire parameter range 0 < ¢ < 7/6.
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In the case ¢ < v, the subdomains By C By = () are empty so that contributions from the
sub-integral Jy can be suppressed in the estimate (8.4.21). Hence, we may set

54

((e,v) == Che?, n(e,v) = 320 =) for e <w. (8.4.22Db)

Since n(e,v) is of higher-order in € than ((e,v) according to (8.4.22a) and (8.4.22b), it is
possible to find an optimal value € = e, (v, f) such that the constant on the right-hand side of
(8.4.21) is maximal and in particular positive. This idea leads to the sought estimates for the
stability constant Crps (€2, f, ) in theorem 8.2:

Proof of theorem §.2. We first study the regime € > v, as is necessary in particular if v = 0.
Since

Mo —v)? 4+ 2y(e —v) 4 1P

m-+4 m-+2
= st GE - RvE -+ Gl - R D 2 e
(8.4.22a) yields the bound
((e,v) > Ge®, G = min{C}, 25}, (8.4.23)

To bound 7 in (8.4.22a) we observe that v (¢ — v)* < 4¢3/27 for 0 < v < ¢ to obtain

2 3 1 2 2 4 3 2 4 3 1.3
s E— V) +anv(E—v) < Gamm T rmm)e < (§ta)e” <ze

As m < % for 0 < v < e < % this implies by (8.4.22a)

n(e,v) < i’ (8.4.24)

A comparison with (8.4.22b) shows that the estimates (8.4.23) and (8.4.24) remain valid for
e < v and thus hold for all 0 < e < 7/6.

Now we apply the derived bounds on ((e, ) and (e, v) in (8.4.21) to estimate the stability
constant of inverse problem 8.2:

. (8.4.1) . A2
Cip2(,§,0)* = inf Sopll> = inf 4|s, -
)= g 1991 R L
> 4Coe® (o — 1gfe) S itf 2 (8.4.25)
= sup 0" (o — =5€) = ) ” 4.
0<e<n/6 v (G — &) iff < e

> min {cf, cgf_Q}

The supremum is attained at ¢ = eop = min{m/6, 20¢o/(3f)}, and we have defined ¢; :=
(m2Co¢o/27)Y? and ¢, := (1600Co¢3 /27)' /2.

It remains to show improved bounds for v > 0 and large f. Here we choose 0 < ¢ < v/3
to satisfy ¢ < /6 for all v € (0,7/2]. Moreover, we make use of the simplified expressions for
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¢ and 7 in (8.4.22b), that apply in this parameter range. Inserting (8.4.22b) into (8.4.21) and
using that = — v > /2 gives

s, - @12 > sup 4Coe? (O - grtosie?) = sup 4Coe? (€ — ghife?)

0<e<v/3 0<e<v/3
327 CyC? .
R if § > 14454 (8.4.26)
) 4 . 144
COV (Ch — 2887r) if f < V7501

> mm{c V2 i }

for all ¢ € L% with ||¢|| = 1 Here, the constants are chosen as cz = (2C,C;/9)Y? and
¢y = (32mCp)/2Cy and the supremum is attained at g,y = min{r/3, (16xC} /§)/?}. Combining
(8.4.25) and (8.4.26) yields the claimed stability estimate (8.2.12). O

8.4.5 Optimality

As opposed to the analysis of inverse problem 8.1, the bounds on the stability constant Cips
derived in this section can be expected to be highly non-optimal: the principal derivative-bound
(8.4.2) is clearly not sharp and various additional estimates have been made in lemma 8.9,
lemma 8.10 and in the proof of theorem 8.2 just to simplify the arising terms. Accordingly,
the obtained numerical values for the constants ¢; in (8.2.12) can be expected to be overly
pessimistic. Sharper characterizations may be achieved by numerically computing the minimal
singular value of the forward operator S by a similar approach as in §8.3.5.

Independently of such numerical refinements, it is of interest whether the achieved analytical
bounds Crp2(2, f,v) 2§77 are at least of optimal order v in the Fresnel number f for § — oo.
A positive answer is given by the following theorem:

Theorem 8.11 (Order-optimality of the stability bounds for inverse problem 8.2). Within the
setting of theorem 8.2, let ¢y, cy,v > 0 be constants such that

Cip2(,§,0) > min {c},&f '} forall > 0. (8.4.27)

Then v > 1, i.e. the bound (8.2.12) is of optimal asymptotic order in § for v = 0.

Proof. Assume v < 1. Let v =0 and ¢ € L*(Q) N€*(R™) with ||¢|| = 1. Then we have by the
definition of the forward operator in (8.2.9)

2 1/2
176l = 2l Fal =2 ([ s () 1F©PR )
sin(z)2<x? 1/2
< ([ erForag) =iiag, (8.4.29

Note that || Ay|| # 0 by the maximum principle since € is bounded. Now let § > max{(c, /c,) /¥,

(2rcy /|| Ap|)/A=)}. Then (8.4.27) and (8.4.28) imply

(8:428) 2myfi—
lAe]

C/f7V<C/ _y
CIP2<Qafa O) =" C/2f =

2mchfi v

P Al
el !

1<o¢ll > |70l
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Since ||| = 1, this contradicts the definition of the stability constant Cips. Hence, v > 1 must
hold by contradiction. O]

Intuitively, the upper bound —r < —1 for the achievable order in theorem 8.11 is related
to the second order zero of the CTF s, at & = 0 for v = 0, which allows to bound [s,| by a
quadratic function. In the case v > 0, this zero no longer exists which enables higher order
behavior Cips > §~/2 as shown in theorem 8.2. As the CTF still has first order zero manifolds,
we conjecture that this rate is likewise of optimal order. However, simple arguments as in the
proof of theorem 8.11 suffer from technical difficulties arising from the spherical geometry and
the j-dependence of the first order zero-manifolds. A treatment of the case v > 0 is therefore
omitted here.

8.5 Image reconstruction from two measurements

By axial translation of the object in fig. 8.1(a), holograms I, I, may be recorded for different
sample-detector distances and thus at different Fresnel numbers §; # fo. It is often stated
[42, 108, 32, 122] that the acquired additional data permits a more stable phase retrieval in this
setting - in particular if phase shifts ¢ and attenuation p are to be recovered as independent
parameters. Within the weak object approximation (see §8.2.2), this setting amounts to recon-
structing h = p+i¢ from measurements (.7 M) (h), 7 02)(h)), where .77) denotes the linearized
forward operator in (8.2.5) to the Fresnel number §f = §;,. Adopting the CTF-formulation in
(8.2.6), the two-hologram setting is modeled by the following forward map:

sin & CcoS &
2 m\2 2 m\2 —1 2f1 2f1
SO RN - PR () - 2F (S F(2), S@ = o :
sin % CcoS %
<7(f1)( _|_i¢)
(f17f2) ¢ — M _ 2 m
S (u) <<7(f2)(/¢ i) for all real-valued  p, ¢ € L*(R™). (8.5.1)

Here, the matrix-vector-product is to be understood as a point-wise product of the vector-
and matrix-valued function values and the (inverse) Fourier transforms JF, F~! are meant
component-wise. Furthermore, we denote by || f| = (||fil> + [|f2l|*)Y? for f = (fi, f2) €
L*(R™)? the usual norm on L?*(R™)?. With the forward model defined in (8.5.1), image recov-
ery from two diffraction patterns may then be stated as:

Inverse Problem 8.3 (Phase contrast imaging from two measurements). For given support
Q) C R™, recover the images ¢, u € L*(2) from two noisy holograms

<]1€ - 1) = S f2) (¢) +e with ||| <e.

As the same amount of object information is to be recovered from a larger data set, it
is evident that inverse problem 8.3 cannot be more ill-posed or ill-conditioned than inverse
problem 8.1. In order to gain deeper insight, it is illustrative to write down an explicit inverse
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of the forward operator S{f2) defined in (8.5.1) by point-wise inversion of the contrast-transfer-
matrix S as done in [81]: setting §_ := (f;* — ')~ this yields for any (¢, u) € L*(R™)

COS £l — COS ‘5'1
(i) =F! <2Sln1(|£2) - Sm(( 2€f2>> o <<£2f)> FSf2) (i) ) (8.5.2)

All of the operations on the right-hand side of in (8.5.2) are bounded except for the point-wise
division by the factor 2sin (|€]?/(2f-)). According to (8.2.9), we find that the latter operation
exactly corresponds to solving inverse problem 8.2 for a pure phase object (i.e. v = 0) at an
effective Fresnel number of f = f_. In particular, this implies that the solution of inverse
problem 8.3 is unique but ill-posed without a support constraint, i.e. for general ¢, u € L*(R™).
By a more rigorous analysis of the analogy to inverse problem 8.2, we obtain stability estimates:

Theorem 8.12 (Stability estimate for inverse problem 8.3). Let yo(f_) denote the forward
operator of inverse problem 8.2 forv =0 and f =f_ = (f;' — ;)" . Then

HS(fl’h) ()] = 2_%||45”0(f’) (¢ +ipn) || for all real-valued &, € L*(R™) (8.5.3)

In particular, for any support-domain 2 C R™, we have the relative stability estimate

||S(f1’f2) (4) ] = 2_%C’Ip2(§2,f_,0)|\ (2)1 for all real-valued ¢, € L*(Q). (8.5.4)

Proof. Let ¢, 1 € L2(R™) be real-valued. Setting h := (F(¢), F(1)) and exploiting that F is
unitary, we obtain by (8.5.1)

505 (3) | = SRl =1 [ Ist@hie) e
o

The integrand |S(€)h(£)[? is bounded from below by ¢2(&)|h(€)[? with the smallest singular
value 0¢(€) of the 2-by-2 matrix S(&). Direct computation shows

2 1 2\ 2
o2 (&) =1- ’cos (%)‘ > 5 sin (%) for all & € R™.

By inserting this result into the previous equation and comparing to (8.2.9), we obtain
505 (222 [ sin (§5)" o) ag
: 1 _ .
—2 [ sin () 1FO)©) + F @ dg = 1A 6+ i)l

This proves (8.5.3). The second inequality (8.5.4) follows by bounding the right-hand side of
(8.5.3) with the stability constant of inverse problem 8.2. O

We emphasize that theorem 8.12 does not only relate the worst case stability of inverse
problems 8.2 and 8.3 but (8.5.3) identifies the contrast attained by individual modes under

the forward operators yo(f’) and SUv72) Specifically, whenever ||5”0(f’)(¢ +ip)|| is large, the
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mode (¢, )T also attains high contrast under the forward map S(72) of inverse problem 8.3. It
should furthermore be noted that the derived stability estimates are in terms of the difference
Fresnel number §—' = §;* — ;. Hence, if the two holograms are recorded at similar Fresnel
numbers §; & fo, i.e. for only slightly varied setup parameters, f_ is very large so that the
stability bounds in theorem 8.12 will hardly be better than for the single measurement case.
This is quite intuitive as the second measurement provides only little additional information in
such a setting.

8.6 Discussion and conclusions

In this paper we have studied the stability of phase retrieval in propagation-based phase contrast
imaging within the linear contrast-transfer-function model (CTF) [79, 194], valid for weakly
interacting objects. While the image reconstruction problem is generally ill-posed and even
severely non-unique if both phase-shifts ¢ and attenuation p are to be recovered from a single
(phaseless) intensity measurement (inverse problem 8.1), we could show well-posedness under
a support constraint: if the image h = —u —i¢ is known to be supported in a bounded domain
2 C R™, then the attained contrast |7 (h)|| > Cip1(€2,f)||k| is bounded from below by a
positive stability constant Crp1(€2, ) > 0 according to theorem 8.1.

Numerical simulations (see §8.3.5) suggest that the derived bound Cipy (2, f) > /4 exp(—f/8)
is quite sharp. Accordingly, Cip; unfortunately decays nearly exponentially with the Fresnel
number § of the imaging setup (computed w.r.t. the support diameter!), which translates into
partly ridiculously small values within the typical range 10 < § < 10* in X-ray phase contrast
experiments. For instance, the estimate (8.2.11) gives Cipy(Q, 27 - 100) < 10733 at a Fresnel
number § = 100. In other words: although well-posed, the inversion of the forward operator
T is typically heavily ill-conditioned, admitting amplification of data errors by bounded, yet
huge factors Cpp) in the image reconstruction. It is thus not surprising that the independent
recovery of both ¢ and p from a single hologram is typically severely corrupted by artifacts in
practice, see e.g. [175, 139], and commonly considered as not feasible [108, 157, 32].

On the other hand, such a reconstruction has been successfully demonstrated in [143] up to
slight low-frequency artifacts. In view of the present work, the key ingredient to this demon-
stration can be identified as the comparably small Fresnel number § ~ 14 of the support in
the considered setup. By the characterization of the least stable modes in theorem 8.5, this
corresponds to a minimum contrast

1.7 (¢0,0)| =107 |Pooll  and [T (¢ = 7107 |d,)l] (8.6.1)

for the least and second least stable image modes ¢(o,0) and ¢(1). The reconstruction of these
low-frequency image components is thus feasible in principle, yet numerically cumbersome,
which explains the residual artifacts in the reconstruction. Higher-order image modes attain
contrast in the order of the data noise level or above and may thus be recovered with reasonable
accuracy. Our stability estimates thus predict that the joint recovery of phase shifts ¢ and
absorption p is feasible if and only if § < 10, i.e. in the deeply holographic regime - in excellent
agreement with numerical reconstructions.

According to the improved stability estimate for the settings of inverse problems 8.2 and 8.3
(see theorems 8.2 and 8.12) image recovery can be performed without additional regularization
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provided a sufficiently strong support constraint. This is consistent with the observed high
performance of iterative projection algorithms in phase retrieval (see [17, 138, 66] and references
therein, mostly for the far-field case and e.g. [76, 14] for near-field phase contrast), which make
use of support constraints.

Let us discuss some possible extensions of our results. First of all we have assumed that
diffraction patterns can be measured in a whole detector plane, whereas real-world X-ray de-
tectors necessarily cover only a finite area. If intensities are measured only in a bounded
subdomain, the singular values of the forward operator .7 will eventually decay exponentially
since .7 can be written as an integral operator with an analytic (though highly oscillitory)
kernel. On the other hand, Fresnel propagation is mathematically equivalent to time-evolution
within the free Schrédinger equation (if the z-coordinate in fig. 8.1(b) is identified with time).
Localization properties of the latter model suggest that the finiteness of the detection domain
has little influence if it is chosen sufficiently large — in agreement with experimental and numer-
ical experience. A better understanding and analysis of the impact of a finite field of view will
be an interesting goal for future research. Further possible extensions include a treatment of the
nonlinear imaging model (8.2.4), non-plane wave illumination and partial coherence. Moreover,
in region-of-interest imaging of extended objects, support constraints do not hold true so that
stability needs to be established by other means.

Finally, we emphasize that — although seemingly specific to the considered imaging setup
— our analysis treats a fairly general physical problem: the reconstruction of a (compactly
supported) perturbation to a plane wave from intensities of the propagated field under the
paraxial Helmholtz equation or — equivalently — within time-dependent Schrodinger dynamics.
The results may thus be relevant for several related wave-optical and quantum-mechanical
inverse problems.
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Chapter 9

Complete Article 2: Locality estimates
for Fresnel-wave-propagation and
stability of X-ray phase contrast
imaging with finite detectors

Reproduced from the published* article [144]:
Maretzke S. Inverse Problems, 34(12):124004, 2018. DOI: 10.1088/1361-6420/aae78f

(subject to slight adjustments of the notation and minor corrections)

Abstract: Coherent wave-propagation in the near-field Fresnel-regime is the underlying con-
trast-mechanism to (propagation-based) X-ray phase contrast imaging (XPCI), an emerging
lensless technique that enables 2D- and 3D-imaging of biological soft tissues and other light-
element samples down to nanometer-resolutions. Mathematically, propagation is described
by the Fresnel-propagator, a convolution with an arbitrarily non-local kernel. As real-world
detectors may only capture a finite field-of-view, this non-locality implies that the recorded
diffraction-patterns are necessarily incomplete. This raises the question of stability of image
reconstruction from the truncated data — even if the complex-valued wave-field, and not just its
modulus, could be measured. Contrary to the latter restriction of the acquisition, known as the
phase-problem, the finite-detector-problem has not received much attention in literature. The
present work therefore analyzes locality of Fresnel-propagation in order to establish stability
of XPCI with finite detectors. Image reconstruction is shown to be severely ill-posed in this
setting — even without a phase-problem. However, quantitative estimates of the leaked wave-
field reveal that Lipschitz-stability holds down to a sharp resolution limit that depends on the
detector-size and varies within the field-of-view. The smallest resolvable lengthscale is found
to be ~ 1/f times the detector’s aspect length, where § is the Fresnel number associated with
the latter scale. The stability results are extended to phaseless imaging in the linear contrast-
transfer-function regime.

*Copyright © 2018 IOP Publishing Ltd
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9.1 Introduction

State-of-the-art high-resolution imaging techniques are a driving force behind current biomedical-
and material science. Among such, (propagation-based) X-ray phase contrast imaging (XPCI),
also known as near-field holography, stands out as it yields two- or three-dimensional images
down to nanometer-resolutions with high penetration-depths at relatively low radiation-dose
and sample-preparation requirements [207, 166, 162, 42, 13, 143, 121, 85].

waveguide
- noaooe B Vi R @.%5 S Y
undulator slits  focussing mirrors focus object detector

Figure 9.1. Exemplary experimental setup for (propagation-based) X-ray phase contrast imaging
(XPCI) at synchrotrons (sketch of the GINIX-experiment [178] at P10-beamline, DESY).

The setup of XPCI is appealingly simple, see the example sketched in fig. 9.1: essentially,
it boils down to a coherent X-ray beam illuminating an unknown object and a detector that
records the resulting near-field diffraction pattern, also termed hologram, at a finite distance
behind the sample. The coherent wave-propagation from the sample to the detector, described
by the Helmholtz equation in the parazial- of Fresnel-approximation [108, 160], is essential
as it enables phase contrast: it partially encodes phase-shifts in the complex-valued X-ray
wave-field ¥ induced by refraction within the sample into measurable wave intensities oc |¥|?,
thereby circumventing the well-known phase problem, i.e. the inability to measure the phase of
U directly. This permits imaging of biological soft tissues and other light-element samples, for
which the absorption of X-rays — but not refraction — is negligible [166].

To obtain an interpretable image of the sample, the induced phase-shifts (and absorption)
have to be reconstructed from the measured hologram(s), i.e. an inverse problem has to be
solved. By the limitation of the data to the squared modulus |¥|?) this requires to recover
the missing phase-information. For the present setting, however, this task is comparably well-
understood by now and routinely solved using data from multiple sample-detector-distances
along with a linearization of the contrast known as the contrast-transfer-function (CTF) model
[42, 194, 122, 121] and/or additional a priori knowledge on the recovered images [14, 13, 165,
143]. Indeed, it is shown in previous work that the mild assumption of a known compact
support of the image ensures well-posedness of the reconstruction in the linear CTF-regime
[144].

What is typically tacitly ignored, however, is the data-incompleteness arising from the finite-
ness of the field-of-view captured by the detector due to the de-localizing action of (Fresnel-
Ywave-propagation: existing theory mostly assumes data within the complete infinite detector-
plane and most reconstruction methods implicitly assume periodic detector-boundaries, possi-
bly combined with artificial extension of the data by padding. While this produces reasonable
results in practice, theoretical understanding for the effects of a finite detector and of the
associated heuristic corrections is lacking.

This work aims to close this gap of theory by deriving rigorous estimates on the locality
of information-transport by wave-propagation in the Fresnel-regime with the ultimate goal of
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extending existing stability estimates for XPCI to settings with finite detectors. In particular,
the focus is on the question of resolution:

Given an XPCI setup, what is the size of the smallest sample-features that can be
stably reconstructed from the measured data?

In physics literature [158, 127], a finite detector in XPCI is typically argued to limit the numer-
ical aperture of the imaging setup, which translates to a quantitative bound on the achievable
resolution according to Abbe’s diffraction limit, see e.g. [26, 131]. However, the underlying rea-
soning is strictly valid only for far-field optics, whereas XPCI is a near-field imaging technique.
Rigorous theory is thus necessary to supplement physical intuition.

The manuscript is organized as follows: §9.2 introduces the mathematical setting and no-
tation as well as some preliminary insights on the finite-detector problem. In §9.3, the relation
between resolution and detector-size is assessed by the study of Gaussian wave-packets, yield-
ing best-case estimates in some sense. These are then complemented by worst-case estimates
on stability of image reconstruction derived in §9.4, §9.5 and §9.6 under different a priori as-
sumptions on the unknown objects. Having derived all of these results under the simplifying
assumption that also the phase of the data is measured, the obtained locality- and stability
estimates are then extended to the phaseless case of linearized XPCI in §9.7. §9.8 concludes
this work.

Despite the focus on XPCI, note that the derived estimates may be extended to a wide
range of wave-propagation problems from classical physics and quantum-mechanics.

9.2 Background

9.2.1 Basic setting
9.2.1.1 Fresnel-propagation

We consider the problem of reconstructing a function A : R™ — C from partial knowledge of
Fresnel-data:

D(h):=F (m;- F'(h)) with  my(€) :=exp (—1&%/(2f)), §>0,€€R™  (9.2.1)

F(f)(&) = (2m)™™/2 [, exp(—i€ - @) f(x) de denotes the m-dimensional Fourier transform.
The Fresnel-propagator D models the free-space propagation of time-harmonic wave-fields
U(x,z) = U(x,z)exp(ifz) with slowly varying envelope ¥ within the regime of the parax-
ial Helmholtz-equation (see e.g. [160] for details):

{(Qifaz +A)U(x,2) =0 (x,2) € R™ x (0;1)

U(x,0) = h(x) r e R™ = U(,1)=D (\P(-,O)) (9.2.2)

9.2.1.2 Forward models

As detailed in [166, 108, 160, 144], Fresnel-diffraction data arises in X-ray phase contrast
imaging (XPCI): if the incident beam in fig. 9.1 is modeled by a plane wave as sketched in
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incident‘Wave object

Figure 9.2. Schematic model of propagation-based XPCI: incident plane waves are scattered by a
sample, imprinting phase-shifts and absorption h = —i¢ — p upon the transmitted wave-field ¥(-,0)
within the object-domain 2. The intensity of the resulting near-field diffraction pattern I = |¥(-,d)|?
is recorded within the detection-domain K at some distance behind the object.

fig. 9.2, the wave-field in the object’s exit-plane z = 0 is

U(-,0) =exp(—h) with h=ip+pu= ik/ (6 —iB)dz, (9.2.3)
R

(within some standard approximations of X-ray optics [108]), where n(x,z) = 1 — d(x, 2) +
if(x, z) is the spatially varying refractive index of the sample. The complex-valued image
h is thus a projection of the sample-characterizing quantities o, 5. As the wave-field in the
detector-plane relates to \if(‘, 0) via Fresnel-propagation, the detected intensities are given by

2

I(z) = [D(¥(-,0)) ()" = |[D(exp(—h)) (). (9.2.4)

Under the additional assumption that the object is sufficiently weakly scattering for the
image to be “small” in a suitable sense, (9.2.4) may be linearized:

I=1+7(h)+0O(h?) with F(h)=—2Re(D(h)), (9.2.5)

where Re is the pointwise real part. In Fourier-space, the contrast in the phase-shifts ¢ and
attenuation p is then described by oscillatory contrast-transfer-functions (CTF):

F(Z(6+ m)(€) = —2sin (1€12/(25) F(6)(€) — 2cos (IE/(20) Fu)(€)  (9.2.6)
for all & € R™. Therefore, the linearized XPCI-model is also termed CTF-model.

Furthermore, it is often assumed [161, 194] that the object is homogeneous, in the sense
that refraction and absorption are proportional: h = p + i¢ = ie™"¢ for some v € [0;7) and a
real-valued function ¢. In the linearized case, this yields a modified CTF-model:

Sp) = T(h) = —2F (s, - F(p)),  s,(6) =sin (|€/2D) +v)  (0.27)

The case v = 0 corresponds to pure phase objects which induce negligible absorption p ~ 0.
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9.2.1.3 Object- and detection-domains

We assume that the approximate size of the imaged object is known a priori. Then there
exists a bounded object-domain 2 C R™ such that the unknown image h satisfies supp(h) =
{z € R™ : h(x) # 0} C Q, where the overbar denotes set-closure. We consider the L*-functions
satisfying this support constraint:

he L*Q):={h:R™ — C:supp(h) C Q, [, |h]*dz < co}. (9.2.8)

Throughout this work, = fam f( Y*da and ||h|| := (h,h)'/? refer to the inner-
product and norm in the space of square- 1ntegrable functions L*(R™).

Contrary to most previous work, we account for the fact that real-world detectors may
only record data within a bounded detection-domain K C R™, also referred to as field-of-view
(FoV') or simply detector. Thus, only restrictions I|x of the intensity-data in (9.2.3), defined by
I|g(x) = I(x) for * € K and I|x(x) = 0 otherwise, are available. By considering continuous

measurements, however, we neglect that detectors are composed of discrete pixels.

For the XPCl-setting, a two-dimensional square detector K = [—5, %] is certainly of highest
practical relevance. By the analysis in [119, 176], however, also the case m = 3 is of interest
as it arises in a linearized model of tomographic imaging. Moreover, m = 3 is also the natural

dimension for an alternate application from quantum-mechanics:

Remark 9.1 (Application in quantum mechanics). The paraxial Helmholtz equation in (9.2.2)
is equivalent to the time-dependent Schrodinger-equation for a free electron if z is identified
with the time-dimension. Accordingly, all results of this work can be interpreted in view of the
question how much probability-mass of a quantum-mechanical wave-function, initially localized
in 2 C R™, leaks out of some domain K C R™ upon time-propagation.

Therefore, the analysis is carried out independently of the dimension m as far as possible.

9.2.1.4 Fresnel number(s)

The dimensionless parameter f in (9.2.1) is the (modified) Fresnel number of the imaging setup
(related to the classically defined Fresnel number § by a convenient 27-factor: f = 27f). It is
defined as f = kb*/d, where k is the wavenumber of the incident plane-wave in fig. 9.2, d is the
distance between object- and detector-plane and b is the physical length that corresponds to
unity in the dimensionless coordinates . The value of § determines how strongly structures
of lengthscale 1 in an object h are distorted upon Fresnel-propagation h — D(h): for § > 1,
structures are essentially preserved whereas f < 1 corresponds to full far-field diffraction.

The FoV will typically be taken as the unit-square, K = [—5; %]m Thereby, the Fresnel
number § is implicitly defined with b as the detector’s physical aspect length. Typical values are
then in the range 10 < § < 10° for high-resolution XPCl-experiments at synchrotrons. By the
freedom in choosing b, however, one can also associate a Fresnel number with any other lateral
scale: if o is a dimensionless length, f, := ¢%f is the Fresnel number that describes diffraction

on the physical scale corresponding to o.
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9.2.1.5 Inverse problems

In order to study XPCI with a finite FoV, we consider image reconstruction problems both
with complex- and phaseless Fresnel-data (e: data-errors):

Inverse Problem 9.1 (Reconstruction of complex-valued images). For 0, K’ C R™, recon-
struct a complez-valued h € L*(Q) from either of the following data:

(a) gy =D(h)lx + €
(b) gty = T (M)x + €

(c) g2 = |Dlexp(h))|’|x + €

Inverse Problem 9.2 (Reconstruction of real-valued (homogeneous) images). For Q, K C R™
and v € [0; ), reconstruct a real-valued ¢ € L*(Q,R) from either of the following data:

(a) gty =D(p)lx +€
(b) gty = Zu(9)lx + €

. iy 2
(c) gpy = |Dlexp(—ie ™)) |k +€

It should be emphasized that reconstructions in the setting of inverse problem 9.2(b),(c), are
currently standard in XPCI, whereas solving inverse problem 9.1(b),(c) is typically considered
too unstable due to the larger number of unknowns to be recovered. Yet, it is not at all obvious
that inverse problem 9.1 and inverse problem 9.2 also exhibit different effects due to a finite
FoV, i.e. that real-valuedness! is relevant for the present study. Surprisingly, however, this
indeed turns out to be the case.

To identify the effects of a finite FoV, we will mostly consider the non-phaseless problems
inverse problem 9.1(a) and inverse problem 9.2(a). By the richness of measured data, however,
the problems (b) and (c) are clearly harder to solve than the variants (a) and inverse prob-
lem 9.2(a) is easier to solve than any of the others. In particular, this “hierarchy-of-difficulties”
means that any instabilities in inverse problem 9.1(a) and inverse problem 9.2(a) will necessarily
also be present in the phaseless problems.

9.2.2 Properties of the Fresnel propagator

As a preparation for the subsequent analysis, we summarize some basic properties of the Fresnel
propagator, see also [160, 130, 100]:

! Although we will refer to “real-valued” signals throughout the work, note that all the results obtained for
such trivially extend to signals given by real-functions multiplied by a global complex phase.
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(P1) Unitary operator: The map D : L*(R™) — L*(R™) defines a linear isometry:
DO =1f forall fe L*R™). (P1)
This also implies that 7 ,.%,: L*(R™) — L?*(R™) are bounded with || 7|, |-~ || < 2.

(P2) Convolution form: As a Fourier-multiplier, D can be alternatively written as a convolu-
tion: for all f € L'(R™) N L*(R™), it holds that

D)) = (< f) (@) = [ Ko -y)fpldy forall o cR”

m

k; = ug (F/(2m)) % - n;, ni(z) =exp (iffx®/2), up = exp (—imm/4) (P2)

(P3) Alternate form: By rearranging the convolution-formulation (P2), the following alternate
form of the Fresnel propagator can be obtained:

D(f)(x) = uof 2 ni(x) - F (n; - f) (jx) forall xeR™ (P3)

(P4) Separability: m; factorizes into a product of functions of a single coordinate:

m m

my(€) = exp (—2%) —ewp (- Q—fis) “TJew (—2—f) [ mste).

j=1 j=1
ms (&) :=my(§;)  forall &£=(&,....6n) € R™.

Consequently, D factorizes into a commuting product of quasi-1D Fresnel-propagators
acting along the different dimensions:

D(f) = Dy ... Dy(f) = Do Di(f) (P4)
Di(f) = F " (myy - F(f)) = FjH (mg - Fi(f)) -
Fj: L*(R™) — L*(R™) is the 1D-Fourier transform along the jth dimension.

(P5) Isotropy and translation invariance: As a convolution operator, D is translation invariant,
i.e. commutes with coordinate-shifts. Asm; is invariant under orthogonal transformations,
ie. mj(AE) = my(€) for all £ € R™, A € O(m), D also commutes with orthogonal
coordinate transforms, i.e. acts isotropically along all dimensions:

DA=AD forall A:L*R™)— L*(R™); A(f)(z) = f(Ax + a) (P5)
AeO(m),a € R™.

(P6) Extension to distributions: D can be extended to tempered distributions ./(R™)’, i.e. to
the dual space of smooth and rapidly decaying Schwartz-functions .%(R™):

(D(T))(u) == T(D(w)) forall T e.ZR™ ue.?R™). (P6)

In particular, one has D(1) = 1 for the constant 1-function. Moreover, by continuity of
D, F: R™) — ZL(R™), (P3) remains valid in a distributional sense.
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9.2.3 Preliminary results

We aim to characterize the ill-posedness of inverse problems inverse problem 9.1 and inverse
problem 9.2. Let us first note that Fresnel-propagation is, in principle, arbitrarily non-local:

Theorem 9.2 (Arbitrary non-locality of Fresnel-propagation). Let 0 # h € L?*(R™) have
compact support. Then D(h) is supported within the whole R™, supp(D(h)) = R™.

Proof. By (P3) and the Paley-Wiener-Schwartz-theorem, D(h) is an entire analytic function.
Thus, D(h) is non-zero almost everywhere in R™. O

Accordingly, measuring diffraction-data only within a finite FoV will always result in some
information-leakage. One might think that this ultimately introduces non-uniqueness of the
reconstruction. This is however not the case, as has been shown in previous work:

Theorem 9.3 (Uniqueness [140]). Let Q C R™ bounded and let K C R™ contain an open set.
Then inverse problem 9.1 and inverse problem 9.2 are uniquely solvable (up to periodicity of
the exponential in (c)).

Theorem 9.3 means that the question, whether a small detection-domain K raises issues,
admits no simple yes-no-answer. Indeed, it implies that the effects of the size of K can only
be understood by studying stability. We recall that — for infinite detectors — the linear inverse
problems inverse problem 9.1(a),(b) and inverse problem 9.2(a),(b) are Lipschitz-stable, i.e.
well-posed:

Theorem 9.4 (Well-posedness for infinite detectors and compact supports [144]). Let Q@ C R™
be bounded and let K = R™. Then inverse problem 9.1(a),(b) and inverse problem 9.2(a),(b)
are well-posed, i.e. if T : L*(Q) — L*(R™) denotes the corresponding forward operator, then

there exist constants CIE% > 0, depending on f,m, ) (and v), such that

IT(R)|| > CIP% IRl for all  h e L2(Q). (9.2.9)

S

Proof. For inverse problem 9.1(a) and inverse problem 9.2(a), the result is due to the unitarity

of the Fresnel propagator (P1) and one has C, " = C,,,;” = 1. For inverse problem 9.1(b)

and inverse problem 9.2(b), the general statement along with estimates of the constants CI0%
is proven in [144]. O

The point of Lipschitz-stability estimates of the form (9.2.9) is that they are necessary and
sufficient for the operator T' to have a bounded (pseudo-)inverse 77 and thereby ensure that
data-errors € induce only bounded deviations < (CI£%)~!||e|| in the reconstructions. Clearly,
one would like to have similar results for finite detectors K C R™. However, the following

theorem shows that stability may deteriorate dramatically due to a finite FoV:

Theorem 9.5 (Severe ill-posedness for bounded detectors). Let 0, K C R™ be bounded with
non-empty interior. Then inverse problem 9.1 and inverse problem 9.2 are severely ill-posed.
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Proof. By the hierarchy-of-difficulty discussed in §9.2.1, it is sufficient to prove the claim for
inverse problem 9.2(a). Accordingly, we have to consider the singular values of the forward
operator T': L*(Q,R) — L*(K); h +— D(h)|x. Thus, we compute T*T. Using the convolution-
form (P2), it can be shown that, for arbitrary h € L?(Q2,R),

T"T(x) = /Q (/KRe <l<:f(a: - vy) m> dy)h(y’) dy’  forall xe€Q.

-~

k(z,y")

Accordingly, 7T is given by an integral-operator with kernel k. Since k; is bounded and
infinitely smooth, so is k and k € L?(Q x ) by boundedness of Q. In total, this implies that
T*T is an infinitely smoothing compact integral-operator so that its eigenvalues, the squared
singular values of T', decay super-algebraically. This shows that inverse problem 9.2(a) and
hence all considered inverse problems are severely ill-posed. O

Importantly, the severe ill-posedness arises independently of the phase-problem, i.e. also for
reconstructions from seemingly complete Fresnel-data D(h)|x. In practice, the result means
that there will always be a large number of image-modes that cannot be recovered from finite
detector data at any realistically achievable noise-levels. This prediction is in contradiction to
the stable reconstructions achieved in practical XPCI and thus necessitates a deeper analysis
of the nature of the found ill-posedness.

9.3 Assessment by Gaussian wave-packets

In the following, we aim to assess stability of inverse problem 9.1 and inverse problem 9.2
by considering Gaussian wave-packets as a special class of object-signals h, for which Fresnel-
propagation may be computed analytically. The theory is completely analogous to the textbook-
example of wave-packets for the time-dependent Schrédinger-equation.

9.3.1 The Gaussian-beam solution

We consider centered Gaussians of width o > 0:

2

po(x) = (27”72)4;1/2 exp (—%) forall xe€R™ (9.3.1)
o

Owing to the Gaussian form, D(p,) can be computed explicitly. It constitutes an exact solution
to the paraxial Helmholtz equation (9.2.2) known as the Gaussian beam, see e.g. [190, Sec. 3.1].
With a certain unitary factor c¢g, it can be written in the form

5™ 2¢q ix? 1+ otf? n?
D(p, = — — | ps P 1 5.=L 3.2
@) = e () m@, p=ETE 2 s

Accordingly, D(p,) is again of Gaussian shape, yet modulated by a unitary oscillatory factor.
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Consider the limit ¢ — 0 of a more and more localized peak. Then the propagated width &
tends to infinity according to (9.3.2), i.e. the propagated Gaussian D(p,) becomes arbitrarily
delocalized. Indeed, it holds that

Lim [ D(po) x| /[l ]| = 0 (9.3.3)

for any bounded detection-domain K C R™. The example indicates that, asymptotically, the
sharper a feature in the object the less contrast it induces in the diffraction data on a finite
detector K. Accordingly, a finite FoV limits the achievable resolution.

9.3.2 Gaussian wave-packets

In order to further investigate the relation between the detection-domain K and resolution, we
study the propagation of Gaussian wave-packets, given by a Gaussian peak that is modulated
by a sinusoidal oscillation:

heo(z) :=exp (i€ - ( — a))ps(x —a), & acR™. (9.3.4)

Analytical propagation of such signals is enabled by the following lemma:

Lemma 9.6 (Fresnel propagation under frequency shifts). For £, b € R™, eg(x) := exp(i€ - x)
denote the Fourier mode to the frequency & and Ty : f — f((-) + b) the translation by b. Then
it holds for all f € L*(R™) that

Deg - f) = my(§) - e - T_¢s; (D(f)) (9.3.5)
where my is the Fresnel factor from (9.2.1).
Lemma 9.6 is proven in appendix 9.A. It states that the Fresnel propagator partly translates

frequency-shifts into spatial shifts. By applying (9.3.5) to the Gaussian-beam (9.3.2), we obtain
an analytical formula for the propagation of Gaussian wave-packets:

D(h¢a)(x) = ve (x —a—&/f) ps(x —a - €/f) (9.3.6a)
5.m/200 . 332 2

The oscillatory factor v¢ has constant modulus. Hence, the envelope |D (ke q)| o ps((-)—a—&/f)
is again a Gaussian of width &, whose center is shifted by & /f with respect to that of the original
wave-packet hg o. Accordingly, wave-packets propagate laterally within the field-of-view upon
action of the Fresnel-propagator.

9.3.3 Resolution estimates via (Gaussian wave-packets

We aim to use the analytical propagation formula (9.3.6) for Gaussian wave-packets to derive
upper bounds the achievable resolution in the reconstruction for inverse problem 9.1 and inverse
problem 9.2. Since uniqueness always holds, see theorem 9.3, the only reasonable way to define
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resolution is via stability: if we claim that the reconstruction has a resolution 1/r, i.e. that
features of the object down to a size r > 0 are faithfully recovered, then the reconstruction
should be stable to perturbations of the object h by any function h that varies on lengthscales
r, i.e. the induced contrast in the data should be sufficiently large compared to ||k||. By
the hierarchy-of-difficulty of the considered inverse problems and linearity of D, a necessary
condition for this to hold is that |D(h+h)|x —D(h)|x||/|I1A]l = [|D(R)| k|| /||k] is non-negligible.

Gaussian wave-packets h = he z, of frequency |€| < m/r constitute special perturbations
varying on lengthscales 2 r. Thus, we can derive upper, i.e. possibly optimistic bounds on the
achievable resolution 1/r by identifying parameter-regimes, for which || D(hg zo)| x|/ ]| Pe,zo|| 1S
negligibly small.

9.3.3.1 Resolution for complex-valued images

We study inverse problem 9.1(a) for a square detection-domain K := [—%; %]m, Q C K. In this
setting, the unknown image h € L?(Q) is complex-valued so that Gaussian wave-packets h =
he z, of the form (9.3.4) centered at some point &y € 2 constitute admissible perturbations®. As
seen from (9.3.6), the center of the Gaussian is then shifted to the point @p.p = o+ &/f upon
Fresnel-propagation. Accordingly, if we consider wave-packets of larger and larger frequency
|€], then the propagated wave-packet will eventually leave the detection domain, as visualized
in fig. 9.3. More quantitatively, upon defining the path-length from a point @ to the detector-
boundary 0K along a direction n,

distp(z,0K) =inf{y >0:x+yn ¢ K} for x,neR":|n|=1, (9.3.7)

the propagated center @y is inside K if and only if diste¢(x0, 0K) < |€|/f. If Tpop € K,
then the induced data-contrast is non-negligible:

ID(he o) i = 2™ Iheall i @prop € K. (9.3.8)

On the contrary, if @, ¢ K with distance dist(@pop, ) 2 0 greater than the propagated

width & of the wave-packet, then the contrast may be quite small:
1 dist (2 prop, K) ) 2
L e A (989

As the complementary error function erfc(z) decays very fast for x 2 1, (9.3.9) shows that the
perturbation h — h+ hg 4, is practically invisible in the data D(h+ he z,)|x if €] is sufficiently
large. In other words, oscillations at &y above a certain cutoff-frequency cannot be resolved.

The construction reveals that the local resolution 1/r(xg) at a point @ is closely related to
the distance to the detector-boundary dist(x, 0K) = min,—; dist, (x, 0K):

1 For all Gaussian wave-packets hg o, with |§| < fdist(xo, 0K), the propagated center pqp
lies within the detection-domain K

ZWe ignore that the Gaussian wave-packet is technically not compactly supported and thus h+hg o, ¢ L?(£2).
Note, however, that he z,|o ~ he z, up to a very small L?-error given that x is sufficiently far from the boundary
of  in units of the Gaussian’s width o.
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Figure 9.3. Propagation of a Gaussian wave-packet hg z, for m = 2, K = [—%; %]2, f = 103,
o = 0.08. Plotted are the real-parts of the complex-valued wave-packet (top row) and its propagated
version D(h¢ 4,)|x (bottom row) computed via (9.3.6) for different frequencies |£|. As |€| increases
from left to right, the propagated wave-packet D(hg »,) is more and more shifted with respect to hg ,
until it leaves the field of view K (right-most column) and is thus practically invisible to the considered

imaging setup. The linear colorscale is identical in all images.

2 For all frequencies £ > fdist(z,0K), there exists a wave-packet he, with || = &, such
that the propagated center @, lies outside K

As wave-packets leaving the field-of-view K correspond to non-resolvable lengthscales, these
observations translate into a resolution estimate:

Result 9.7 (Resolution limit for complex-valued image reconstruction). For K convex and
2 C K, stable reconstruction in inverse problem 9.1 can only be achieved down to a local
resolution limit
dist(x, 0K
V() < L@ IK) o zeql (9.3.10)

™

where r(x) denotes the smallest resolvable feature-size of the image h at position x.
1 l]m

In particular, for K = [—3; 5]™, the global maximum resolution is bounded by the classical

Fresnel number of the imaging setup (see §9.2.1.4): maxgex 1/r(x) S §/(27) =¥

The resolution limit stated in result 9.7 is isotropic — the resolution for features along a
specific direction may be higher. Figure 9.4(a) shows the spatially varying resolution according
to the estimate (9.3.10) for the exemplary setting m = 2, K = [—3; 3], f = 10%. Note that the
maximum resolution maxgex 1/7(x) = § coincides with predictions according to Abbe’s diffrac-

tion limit if the detector-size defines the numerical aperture, compare [158, 127]. Interestingly,

177



PhD thesis: Inverse problems in X-ray phase contrast imaging Simon Maretzke

however, the resolution only attains this optimum in the very center of the FoV as it decreases
towards the detector-edges.

1500
1000
1
r(x)
500

Figure 9.4. (a) Upper bound on the stably reconstructible local resolution 1/r(x) in inverse prob-
lem 9.1 (complex—valued images) for m = 2, K = [~1; 1]2, f = 10? according to the estimate (9.3.10).
(b) Same plot for inverse problem 9.2, i.e. for real-valued image reconstruction, according to the
estimate (9.3.15).

1500

500

9.3.3.2 Resolution for real-valued images

In the case of inverse problem 9.2(a), real-valued images are to be reconstructed so that complex-
valued Gaussian wave-packets are no longer admissible perturbations. Accordingly, we study
real-valued wave-packets. Such signals are given by a superposition of two Gaussian wave-
packets with wavevectors & and —§&:

heal () == cos (€ (x — a) + B)ps(z — a)
=Re (Phea(x)) = 3 (Phea(x) + P h_ga(x)) (9.3.11)

for x, &, a € R™, € [0;27). Using (9.3.6) and linearity of the Fresnel-propagator, an analytical
propagation formula is obtained for hreal

e o—if
D(hga) (@) = 5D (hea) (2) + 5D (h-ea) (@)
ol o—if
= Svelw—a—g/Npa@—a-gM+ ve@—ate/Npslz—até/

(9.3.12)

The analytical solution (9.3.12) reveals surprising features of the propagated signal: upon
propagation, the wave-packet splits up into two packets propagating into opposite directions
+£ as visualized in fig. 9.5. This has important consequences in terms of stability: if an object
h € L*(Q,R) is perturbed by a real-valued wave-packet hg‘fj} at some point € K, then this
perturbation manifests non-negligibly in the data D(h + hge;1)| k as long as either of the two
wave-packets remains within the field-of-view K. For a point € K and a direction n, we
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Figure 9.5. Analogue of fig. 9.3 for a real-valued wave-packet hg‘?glo. Upon Fresnel-propagation, such
split up into two wave-packets that laterally propagate along opposite directions +£. Consequently, the
induced data contrast D(hgf;lo) | is non-negligible under milder conditions than in the complex-valued
case. For details, see text.

therefore introduce the following distance-measure:

distg,, (x,0K) =inf{y >0:x+yn ¢ K andx —yn ¢ K} (9.3.13)
disteym(z, 0K) = |ir‘17f1 disty ,(z, 0K). (9.3.14)

distl , (z, 0K) gives the larger length of the two line-segments {x +yn : y > 0} N K, which
connect & with the boundary of 0K along n. In view of wave-packets, the interpretation is

simple: for , & € R™, the centers of both propagating wave-packets forming D(hg‘fgl) lie outside
K if and only if dist¥\§ (z, 0K) < |€|/f. Hence, the following relations hold true:

1 For all wave-packets hg;l with |€] < fdistsym(a, OK), the center of one of the propagating
wave-packets lies within K.

2 For all frequencies £ > fdistsym (2, 0K), there exists a wave-packet hg‘fgl with [€] = &, such
that the center of both wave-packets lie outside of K.

Accordingly, the quantity distsym (2, 0K) yields an upper bound for the local resolution in the
real-valued setting:

Result 9.8 (Resolution limit for real-valued image reconstruction). For K convex and Q C K,
stable reconstruction in inverse problem 9.2 can only be achieved down to a local resolution
limit

< f distsym (2, OK)
~ T

1/r(x) forall x€Q, (9.3.15)
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where r(x) denotes the smallest resolvable feature-size of the image ¢ at position .

For m =2, K = [—1;1]?, distgm can be evaluated analytically:

disteym (21, 22),0K) = mm{((% - |x1|)2 + (3 - |x2|)2> ‘) H{l}%} miaxé + xj} (9.3.16)
Jerl,

The resulting spatially varying resolution for f = 10% is plotted in fig. 9.4(b). Notably, the
maximum resolution is attained slightly off-center and is higher than in complex-valued case,
compare fig. 9.4(a). Moreover, a high resolution 1/r > 1000 is obtained within a much larger
subdomain of the field of view K. Most prominently, the resolution in fig. 9.4(b) even remains
large near the detector boundary — except for the corners of K. Yet, the maximum resolution
remains essentially bounded by maxgcx 1/7(x) < f

9.4 Locality estimates for complex-valued objects

The goal of the subsequent sections is to complement the (potentially) optimistic resolution
estimates from §9.3 with worst-case bounds. Accordingly, we aim to prove that stable image
reconstruction can indeed be achieved down to a certain resolution. Note that this is necessarily
more involved than the preceding analysis because stability has to be proven with respect to
general perturbations instead of considering just a special class like Gaussian wave-packets.

9.4.1 Basic idea and preliminaries

The principal difficulty in proving stability-estimates for bounded detection domains K C R™
lies in the pronounced non-locality of the Fresnel-propagator: according to (P2), it is given
by a convolution with a kernel kj(x) o exp(ifx/2) that shows no spatial decay whatsoever!
Hence, Fresnel-propagation may transport object-information over arbitrary lateral distances
in principle, i.e. features of the imaged object h € L*(Q2) with Q C K may manifest far outside
the field-of-view K in the diffraction data D(h). In addition to this non-locality in real-space,
any restriction to K C R™ breaks the translational invariance of D and thus its diagonality,
i.e. locality, in Fourier-space.

On the other hand, it has been seen in §9.3 that the distance, by which object-information
is transported laterally, depends on the spatial frequencies of the signal. Accordingly, locality
might be established by restricting to lower frequencies, i.e. to sufficiently smooth objects.

The principal idea of the subsequent analysis is to decompose the convolution kernel ks into
an inner, local part, and an outer non-local part:

kf = /{f|P+k’f

pe for some P CR™. (9.4.1)

For an object h € L*(2) supported in Q C K C R™ and a suitably chosen P, the wave-field
leaked outside K depends only on the outer part: D(h)|xe = (kj* h)|ge = (Kj|pe * h)|ke. This
implies estimates of the form | D(h)|ke|| < ||k;|pe * k||, which are diagonal in Fourier-space and
thus simple to interpret as the norm of a filtered object.
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Notation: indicator functions Foraset A C R™, let 14 :R”™ — R bedefined by 14(x) =1
if x € A and 14(x) = 0 otherwise.

9.4.2 Principal leakage estimates

Our principal leakage estimate is based on the insight that the frequency response of a restricted
Fresnel-kernel k;|p is readily computable:

Lemma 9.9 (Frequency response of a restricted Fresnel-kernels). Let P C R™ be a measurable
set such that D(1p) € L®(R™) is well-defined and bounded. Let k; denote the convolution-kernel
of the Fresnel-propagator. Then it holds for all h € L*(R™) that

F (bl ) (€) = my(€) - DLp)E/N) - F(h) (€)  for almost all € € R™  (9.4.2)

and in particular for any measurable set A C R™:

[(kslp  B)[all < IP(LR)(/F) - F (R (9.4.3)

Proof. By the assumption D(1p) € L*(R™), both sides of the equation (9.4.2) are continuous
in h with respect to the L2-norm. Hence, it is sufficient to prove the claim for Schwartz-functions
h € #(R™) by denseness of these in L*(R™).

For h € .Z(R™), the convolution k;|p * h is well-defined in a pointwise sense but can also
be regarded as convolution between a Schwartz-function and a tempered distribution ks|p €
S (R™)". Accordingly, the convolution theorem holds, i.e.

F((Ap k) xh) = 2n) ™2 F(1p k) - F(h) (9.4.4)

in a distributional sense. Recalling that the alternate form of the Fresnel-propagator (P3)
remains valid for tempered distributions, we get

F(1p - k) = uof 2 F(1p - n5) = m (Uof%”f /) - F@p-m) (F(-/9)))

=) g D(1p) (/) (9.4.5)

Inserting (9.4.5) into (9.4.4) yields (9.4.2). The inequality (9.4.3) now follows by using unitarity
of the Fourier transform along with the observations that m has constant modulus 1 and that
the restriction-operation f ~ f|4 is non-increasing in the L*-norm:

(9.4.2)

[(Kslpx B)[all < [[slp bl = [F(Kslp x B)|| =" lmz - D(Ap)(-/F) - F (h)]
= [[PAp)(/F) - F (W) (9.4.6)

]

A surprising feature of lemma 9.9 is that D(...) occurs as a factor in Fourier-space. Sim-
ilar as lemma 9.6, this reveals an interesting real-space-Fourier-space-duality of the Fresnel-
propagator. Using lemma 9.9, we may derive leakage estimates as outlined in §9.4.1:

181



PhD thesis: Inverse problems in X-ray phase contrast imaging Simon Maretzke

Theorem 9.10 (Principal leakage estimate). Let K, €, Peax C R™ be measurable sets such that
the boundary OK has Lebesque-measure zero and Q4 Peax = {x +y : @ € Q,y € Pear} C K.
Moreover, let D(1pe ) € L®(R™). Then it holds for all h € L*(Q)

1D (h) [kell <

P F ([, P = [D(pg, (/D] (9.4.7)

Proof. By a similar continuity argument as in lemma 9.9 it is sufficient to prove the claim
for Schwartz-functions h € L*(Q) N . (R™). Then the convolution-form (P2) of the Fresnel-
propagator may be used. Hence, we have

D (h) Kec = (kjf % h) Ke = <<1Pleak . k’f) k h) K¢ + ((1]31(;81( . kf) k h) K¢ (948)
According to standard results on the support of convolutions, it holds that
Supp ((1Pleak : kf) * h) C Supp <1jjleak ' kf) + Supp (h) C Pleak + Q C K (949)

(9.4.9) implies that ((1p,,, - kj) * h) |ke vanishes except for possibly the boundary 0K. As 0K
is a set of measure zero, ((1p,,, - k) * h) |xe = 0 holds in an L*-sense. Thus, (9.4.8) yields

= [[((g,, - Ky) % 1)

Applying the bound (9.4.3) to the right-hand side of (9.4.10) now yields the assertion. O

ID (h)

Ke Ke (9.4.10)

Theorem 9.10 bounds the leaked wave-field D(h)|ke in terms of a filtering-operation. In
order to predict in which cases leakage is small or large, we need to understand the nature of
the filter-response p'°** that weights the Fourier-components of h in (9.4.7). If Q ¢ K C R™,
then the largest admissible set P in theorem 9.10 is some bounded domain containing 0, where
the exact size of P depends on the distance between €2 and 0K . Let us assume that the size of P
is much larger than 1/ f% as will be the typical case in the following. Then the indicator-function
1p. is essentially preserved upon Fresnel-propagation, i.e. D(1pc) &~ 1pc = 1 — 1p up to some
oscillations near the boundary of P. Accordingly, p'®¢ = D(1p:)(-/f) acts as a high-pass filter,
essentially damping out all Fourier-frequencies within the domain f- 1p. Thus, the right-hand
side of (9.4.7) is small for sufficiently smooth objects h.

9.4.3 Explicit leakage bounds for rectangular domains

For general sets Pleak, P from theorem 9.10 cannot be computed explicitly. An exception is
given by rectangular domains owing to the known Fresnel-transform of the Heaviside-function
0 = 1g., in terms of Fresnel-integrals [130]:

Lod—if (—fre e\ s
15 () (1) -

v 7 v T
C(x ::/ cos (=t*) dt, S(z ::/ sin(=t*) dt forall zeR 9.4.11
(@)= | cos (5t7) dt S() = | sin (57 (9.4.11)

S

=

S
I

Note that § is an entire analytic function and bounded with max,ep [6(z)| < 1.171.
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By the separability- and isotropy-properties of the Fresnel-propagator, (P4) and (P5), the
explicit solution generalizes to half-spaces H, ,, := {& € R™ : n-x > a} in arbitrary dimensions
witha ERandn e S" ! ={z e R™: |n|=1}:

D(1y,,.)(x) = é(f%(n cw—a)) forall meR™ (9.4.12)
Using linearity of D, (9.4.11) furthermore yields the Fresnel-transform of intervals:
D1 aa)) () = D(Liane) () = D1 aoe) (@) = 0 (Fz = A)) = 6(f (@ + )
=0(Fx — 1) —0(f2z +13) = i (F22) (9.4.13)

Here, we introduced the Fresnel number associated with the lateral lengthscale A > 0, fa =
A?%f, compare §9.2.1.4. Again by the separability of the Fresnel-propagator, this generalizes to
stripe-shaped domains Sa , = {x € R™ : —A < n-x < A} and squares:

D(San)(@) = fta (F(n @) = Tian(@),  Fiai = Frae, (9.4.14)
m m R )
D(1_napm) HD 1 a)) (7)) H (f22;) = [ [ 10(F) (9.4.15)
7j=1 7j=1 7j=1
for all x = (21,...,2,,) € R™, where e; € R™ denotes the j-th unit normal vector. Finally,

indicator functions of complements are simple to propagate using linearity and D(1) = 1:
D(lAc) = D(l — 1A) = D(l) — D(].A) =1- D(].A) for ACR™ (9416)

Using the formulas derived above, we can explicitly write down the filter from theorem 9.10 for
the important special case of square domains:

Corollary 9.11 (Leakage bound for square domains). Let K = [—3;3]™ and Q = [+ A; 5 —
A]™ for some 0 < A < L. Then it holds for all h € L*(2)

ID () lxel) < 25, - F)l, Al (€) o= ‘ s, e o)
Proof. 1f we set Peak := [—A; A]™, the assumptions of theorem 9.10 are satisfied. The expres-
sion for the filter in (9.4.17) follows by using (9.4.15) along with (9.4.16). O

The filter-response plé’afkf from corollary 9.11 is plotted in fig. 9.6(a) for an exemplary 1D-

setting. It can be seen to be a high-pass filter of width ~ 2(f - fa)'/? = 2fA in Fourier-space.
Note that this width is in perfect agreement with the expected cut-off frequency from the
Gaussian wave-packet analysis in §9.3.3.1 for the considered distance dist(£2, 0K) = A between
object-domain and detector-boundary. However, plgafkf is heavily oscillatory on fine scales and
is not everywhere < 1, although this would be reasonable by unitarity of the Fresnel-propagator.
Another drawback of the filter-response in (9.4.17) is that it varies in a non-trivial manner in

higher dimensions.

Both the oscillatory behavior and the complicated high-dimensional structure can be re-
solved by exploiting the simple rectangular geometry to obtain an alternative filter:
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Figure 9.6. Plot of the leakage-filters for square-domains from (a) corollary 9.11 and (b) theorem 9.12
for m = 1 dimensions and fa = 100.

Theorem 9.12 (Leakage bound for square domains with simplified filter). Within the setting
of corollary 9.11, it holds for all h € L*(Q)

RO ROE O )N (SR

i (2) = (|0 — F2)[* + [(—2 — F2)[*)? (9.4.19)

N |—=

1D (h) [kl <

2) (9.4.18)

where e; denotes the unit normal vector along the j-th dimension.

Proof. Let h € L*(Q). If we define the half-spaces H; 1 := R/~ x £[—3;00) x R™77, then it
holds that K¢ = Ji_, . Hf . Thus,

ID () |ke” < ZHD Wi, ||” (9.4.20)
+,7=1

Upon setting K := Hj 1 and Py := R x £[—A;00) x R™77 | theorem 9.10 is applicable so
that each of the squared norms on the right-hand side (9.4.20) can be bounded via (9.4.7):

D), || < (F ). I 2 F ()
lea (9-4.12) _1 1
ek, (€)= D(p (/7)) “ET (£ vy £ TR). (9.4.21)
Substituting (9.4.21) into (9.4.20) and using sesqui-linearity yields the assertion. O
Figure 9.6(b) plots the alternate filter-response pif for the same 1D-setting as in fig. 9.6(a).
The plot reveals that the filter-profiles are almost identical except that the oscillations are

eliminated from the low-frequency regime. This makes it easier to derive bounds for | pleak| in a

given frequency-interval compared to the original filter 535, .
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9.4.4 Stability estimates

By unitarity of the Fresnel-propagator D, upper bounds on the wave-field leaked into K¢ in-
duce lower bounds on the contrast within the field-of-view K, i.e. stability estimates for the
reconstruction of A from data D(h)|k:

™ and Q = [-1 +

Corollary 9.13 (Stability estimates for square domains). Let K = [—3; 5

A, % — A]™ for some 0 < A < % Then it holds for all h € L*(Q)

1
2

1D (h) |k |)* > (F(R), (1= |§*|%) - F(h)) (9.4.22)

with peak € {ﬁ}fﬁ‘,ﬁg?ﬁ} as defined in theorem 9.12 and corollary 9.11.

Proof. The claim follows from theorem 9.12 and corollary 9.11 as ||D () |x||* = | D (h)||* —
D (h) >and | D (h)||> = (F (h),F (k) as D and F are unitary. O

Kc

Corollary 9.13 gives lower- and upper bounds on the contrast on a square detector in terms
of filtering operations with explicitly known profile in Fourier-space. It is tempting to interpret
the bound as the norm of a low-pass-filtered version of h:

L) - Fw) = (-

However, this is technically not correct because [p'°*(&)| typically attains values greater than
1 at frequencies above the cut-off |£| > fA, see fig. 9.6. This means that the bound (9.4.22)
indeed permits negative contrast in certain Fourier-frequencies. While this is certainly counter-
intuitive from a physical point-of-view, one has to cope with this peculiarity in order to make
sense of the stability estimates.

2

(F(h), (1- Pk E - F )|

(9.4.23)

Since [p'°¥| is typically much smaller than 1 for low frequencies (compare fig. 9.6), the right-
hand side of (9.4.22) will be positive for objects h whose Fourier-transform F(h) is sufficiently
localized at low frequencies. Accordingly, a natural candidate for a class of functions that can
be stably recovered from D (h) |k would be band-limited ones, such that F(h) vanishes above
a certain maximum frequency, including all parts of the Fourier domain where 1 — [p'®|? is
negative. Importantly, however, corollary 9.13 also assumes h to have compact support in real-
space so that F(h) is an entire function and thus cannot vanish in any open set U C R™ unless
F(h), and hence h, is identically zero.

In general, we see that determining a stable class of objects naturally involves the classical
problem of finding functions that are well-localized in real-space and Fourier-space at the same
time, governed by so-called uncertainty principles. See e.g. [185, 68] for reviews on this topic.
As a solution, we will restrict to objects given by B-splines, which may have a compact support
and will be shown to be essentially band-limited in a suitable quantitative manner.

9.5 Stability estimates for spline objects

In the following, we derive stability results for objects given by multi-variate B-splines, which
can be regarded as images of finite resolution. Such a restriction also makes sense from an
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experimentalist’s point-of-view as the finite number of detector-pixels introduce a natural dis-
cretization in any real-world XPCI setup.

9.5.1 Multi-variate B-splines

As a model for discretized, i.e. pizelated images, we consider spaces of j-th order multi-variate
B-splines: for a fixed resolution 1/r with r > 0 and origin o € [0;1)™, we arrange nodes on
a uniform Cartesian grid in G}, ;= {o+rj : j € Z™} C R™: Now we define objects as linear
combinations of basis-splines centered at these nodes:

o = {h txT Z bjBl'(x/r —j —o0):(b;) € KQ(Zm)} (9.5.1a)

j GZ’"L

e By*Bj_; forkeN
BMw1, ..., wm) = [ [ Brlzy), Bk:{ 07 Tk
j=1

9.5.1b
1[71.1) for k' — 0 ( )
272

For details and explicit formulas of B-splines, see for example [197, 196]. For our purposes here

it is sufficient to note that supp(By") = [—&EL; EHm and By € €% 1(R™) for k > 1.

9.5.1.1 Approximation properties

Splines interpolate values assigned on the grid nodes: for any sequence (y;) € (*(Z™) and
k € Ny, there exists a unique spline h € B}, , such that h(rj + o) = y; for all j € Z™ and the
map (y;) — h is continuous from ¢*(Z™) to L*(R™). This is related to the fact that B-splines
form a Riesz sequence [38]:

P20 103 iz < IR0 < ™2 (5 | (9.5.2)

iesz,k

for some constants Cries,x > 0 and all h = ZjeZm bjB'(-/r — 3 — o) € B The Riesz-

k,r,o°
sequence-property ensures stability of the approximation of functions by B-splines.

9.5.1.2 Separability

According to their definition in (9.5.1), B-splines exhibit a separable structure: for any h €
Mo 1 < j < mand ey € RN x; € R fixed, it holds that h_ e,y @ 2; —
h(x<j,xj, ;) € ‘B}mo. In other words, multi-variate B-splines are one-dimensional B-splines

along each coordinate dimension.

9.5.2 Quasi-band-limitation of B-splines

Our interest in B-splines is mainly due to their property of being quasi band-limited. As the
following estimate of this quasi-band-limitation is slightly off-topic and lengthy to derive, its
proof is given in appendix 9.B.
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Theorem 9.14 (Quasi-band-limitation of univariate B-splines). Let k € Ny, r > 0, =, :=
(=% %] and v > 1. Then it holds that

r)

|7 (h) (k,v) |F(R)||  forall k€ By,,, (9.5.3)
where the constant Cypana(k,v) < 1 is given by
Cband(k V) > 2
Crana(k,v)? = —2C——— " cana(k, V) = canao(k, v) + — ST
) ) X ) (k+1)
1+ cband(k; V) n=[(v—1)/2] (271, + 1)
max{7, 0}2*+)  max{p, 0}2*+1 1
Chand,0(k, V) = maX{ (v + 20) 20D 20e41) ~ Sz Y (9.5.4)
where [-] is the “round up”-operation, v :=1+2[(v —1)/2] and v :=v —v — 1.

Conversely, for any v < 1, there exists an h € By, , such that F(h |(,,5T = F(h), i.e. no
estimate of the form (9.5.3) can hold true for any constant Cyana(k,v) <

1e+0

—k=0

1e-3; k=1

k=3

---- k=5

te-4t—k=7
0

Figure 9.7. Semi-logarithmic plot of the quasi-band-limitation constant Chanq(k,v) from theo-
rem 9.14 for different spline-orders k.

The constant Chana(k, v) in (9.5.3) may be readily evaluated by computing the infinite series
in (9.5.4) via known analytical formulas. In fig. 9.7, Cpana(k, v) is plotted against v for different
spline-orders k = 0,1,3,5,7. It can be seen that the bound Chanq(k, V) drops discontinuously
from 1 to ~ 272 at v = 1 and then decreases exponentially until v ~ 1.5, where the decrease
is sharper for higher spline-orders k. For v € [1.5;3], the value of Cyana(k, ) stagnates before
it continues to decrease within the interval [3;3.5] and so on.

By exploiting the separable structure of B-splines discussed in §9.5.1.2, the 1D-result in
theorem 9.14 may be easily generalized to higher dimensions:

Theorem 9.15 (Quasi-band-limitation of multivariate B-splines). Let k € Ny, r > 0, v > 1,

=[5 I" and 2, = RITN x [=Z Z] x R™ . Then it holds that
|F (M) wz, || < Coana(k,v) | F(R)]| forall 1<j<m, (9.5.5)
1
IF ozl < (1= (1= Comalk, ™) IF(B)| forall he®Bp,,  (956)
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9.5.3 Stability estimates

In the language of regularization theory, the transition to finitely sampled B-spline objects
corresponds to imposing a (very strong) source condition. Similarly as proven in [2, 20] for
other severely ill-posed problems, such a “finite-resolution” source condition enables Lipschitz-
stability estimates for image reconstruction from truncated Fresnel-data. This is seen by com-
bining the quasi-band-limitation results from §9.5.2 with the leakage estimates from §9.4.3:

Theorem 9.16 (Stability estimate for spline-objects). Let K = [—1;1]™ and Q = [-1 +

AL — A]™ for 0 < A < 3. Let fa := A% and f, := r?f denote the Fresnel numbers associated
with the length-scales A and r, respectively (compare §9.2.1.4). Furthermore, let v > 1 and

== [—vr /5% vn /5%, Then it holds that
1D k|| > Cutan(Fas Frs ks )™ |[BN - for all  h € B N LX(Q). (9.5.7)

With 7, as defined in theorem 9.12, the constant is given by

Ostab(an frv k; V)Q =1- CIQOW - Obaﬂd(k? V)2 (Ct20t - CIQOW) (958)
Clow 1= max iy, (), Cio 1= maxij, (z)

Proof. We first prove the claim for m = 1, ie. let h € B}, , N L*(Q) for K = [—3;3] and
Q=[5+ A;5 — A]. By theorem 9.12, it then holds that

1D (B) |iell® < (F(h), [Pk - F(h)),  Pioi(e) = ma(€/52), €€R (9.5.9)

Let 2, := (f%/y) -Z = [-m/r;7/r]. Then we have by definition of the constants Cloy, Ciot
ama [PEA(E)] = max iy (6/7%) = maxiis (¢) = Ciow (9510
max [Py (6)] = maxjps (v) = Cior (9.5.11)

By combining these bounds with the estimate (9.5.9), we obtain

ID(h)|xe||” = CRNF MNP < (Fh), (102517 — C2,,) -F(h))
<0 Elrya
< {F()]wzes (P2 = C2,) - F(W)wzye) < (C2, — C2) | F )|z ||
(9.5.12)

Since h € B, and v > 1, H]—" |(v=,)¢|| can be bounded via the quasi-band-limitation
theorem 9.14: H}" Nozoe || < Coana(k,v)||F(R)||. Inserting this bound into (9.5.12) yields

2

1D x]l* = IDR)I” — [P0 e ||” = IF(BW)* ~ HD(h) K
= |FW)IP = C I FWIP = ([DW)ke]|” = C I F R)]?)

> (1= Ciy = Chana(k, v)* (Cioy — Clow)) IF(R)* = Ctan(Fas s ks v)? [0 |
(9.5.13
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Extension to m > 1: The result may be generalized to higher dimensions by exploiting the
separability of the Fresnel-propagator (P4), of multi-variate B-splines and of the domains
and K: if we set K; ;=R x [ 4] x R™ 7 and Q; :=R/"! x [~ + A;2 — A] x R™ 7 and
factorize the Fresnel propagator D = D, ... Dy, then we have K = (", K, @ = ('L, Q; and

the restriction to K; commutes with D; for any ¢ # j. Thus,

D)k = (- (D . Di(W)|&) s+ ) K = Do (- Do(Dr(M)iy) 11 - - - ) |
= Dm (hm) Km with hj = Dj_1< e DQ (Dl(h)|K1>|K2 Ce ) |Kj71' (9514)

Moreover, as the operators 7T} : f +— D;(f)|x, act only along the j-th coordinate dimension and
since h € B, with supp(h) C €2, it holds that supp(h;) C ; for all 1 < j < m and h; is a
1D B-spline when restricted to the j-th coordinate dimension (compare §9.5.1.2). This implies
that we may bound expressions of the form D; (hj) . using the bound for m = 1 dimensions
derived above. By recursive application of this argurn]ent, we arrive at

||D(h)|K|| - HDm(hm) Km Z Cstab(anfTakvy) ||hm||
= stab(fA» fT’? k» V)HDm—l(hm—lﬂKm,l H > 2 Cstab(an f7‘7 kv V)m ”h” : (9515)

]

9.5.4 Application: resolution estimates

The stability estimate in theorem 9.16 can be used to verify that an imaging setup allows
for a certain resolution at a realistic noise level within the setting of inverse problem inverse
problem 9.1(a). We can address to types of questions:

1 For a fixed (spline-)resolution 1/7, how stable is the reconstruction within a square object-
domain €2 depending on its distance A to the detector boundary 0K?

2 If we require a stability estimate |[|D(h)|k]|| > C||h| with some minimal contrast C' €
(0; 1), what resolution 1/r can be achieved depending on d?

We illustrate this for an exemplary setting in m = 2 dimensions with square detector K =
[—2; 3%, Fresnel number § = 10* and splines of order k = 7.

For setting 1, let us examine how stably features of size r = 1/500 can be reconstructed.
We compute values of the stability-constant Cyiap(fa, fr, k, ) for different 0 < A < %, fa = A%
and a suitable v (here, we choose v = 1.2 fixed but note that, in principle, one could optimize
over this parameter as the bound (9.5.7) holds for all ¥ > 1). For any point @ € K, we can

then express the local stability of the reconstruction at a point x as

Cstabr () 1= sup {Cstab(fA, r*f, k) x € [—% + A; % — A]m}
= Csap (dist(z, 0K)*f, r*f, k, v) (OK: detector-boundary) (9.5.16)

The resulting values of csan () are plotted in fig. 9.8(a). It can be seen that csan, () = 0,
indicating instability, holds true up to dist(x, 0K) 2 7/(fr) and then increases very quickly to
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Figure 9.8. (a) Local stability of the reconstruction in inverse problem 9.1(a) for a square FoV
K =[-21;1]? and § = 10%, according to (9.5.16) and theorem 9.16 for k = 7, v = 1.2. The dashed line
bounds the region that is expected to be stable according to the wave-packet-analysis in §9.3.3.1. (b)
Plot of the stably achievable local resolution computed via (9.5.17) for C' = 1/4.

a value close 1 for larger distances to the detector-boundary. These results are in very good
agreement with the resolution estimates from the analysis of Gaussian wave-packets in §9.3.

For problems of the type 2, we can use (9.5.16) to express the stably achievable resolution:
Tstab,C(m) = inf {T >0: Cstab,r(w) 2 C} (9517)

Numerically computed values of 1/7sap.c(x) for C = 1/4 are plotted in fig. 9.8(b). The plot
turns out to be practically identical to 9.4(a), up to slightly lower resolutions by a global factor
of about 1.2. In other words, the worst-case resolution estimates of the present section are very
close to the possibly optimistic bounds derived in §9.3.3.1.

9.6 Improved estimates for real-valued objects

9.6.1 Quasi-symmetric propagation principle

In the preceding sections, we have derived locality- and stability estimates for Fresnel-propagation
in terms of essentially two ingredients: smoothness, i.e. a finite resolution, and distance to the
detector-boundary. Moreover, as both best-case- and worst-case-stability has been considered,
these ingredients have been shown to be both necessary and sufficient! In §9.3.3.2, however,
it has been found that the reconstruction of real-valued images is subject to much less severe
resolution limits, based on the observation that real-valued Gaussian wave-packets propagate
symmetrically upon Fresnel propagation.

Clearly, the observed behavior of wave-packets could be just a peculiarity of the considered,
very special class of functions. Yet, quasi-symmetric propagation of real-valued signals turns
out to be a general principle, that is closely related to the characteristic symmetry-properties
of their Fourier transforms: for any ¢ : R™ — R, F(p) is a Hermitian function, i.e. it holds
that F(¢)(—&) = F(¢)(&) for all £ € R™. We use this property via the following lemma:
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Lemma 9.17. Let o € L*(R™ R) be real-valued and p € L>=(R™). Then it holds that

19 Flo)ll = llsym(p) - F(&)l, (9.6.1)

where sym (p) is defined by sym(p)(&) = 27Y2(|p(&)|? + |p(—€&)|*)Y/? for all & € R™.

Proof. As ¢ is real-valued, |F(¢)(—€)| = |F(¢)(&)| = |F(¢)(€)| for all £ € R™. Thus,

2l - F(o)lI* = 2/ PEOPIF) G dg = [ 6 (IF ()@ + |F () (=€) d€

R™ R™

- [ berF@@rE s [ periFe-era
— [ (5@ +15-OPIF@F =2 [ lsvm@@FIF)OF e

m

= 2|lsym(p) - F()|*. (9.6.2)

]

Despite its simplicity, lemma 9.17 enables us to prove a surprisingly general result on the
propagation of real-valued signals:

Theorem 9.18 (Quasi-symmetric propagation of real-valued signals). For a € R and n €
St et K:={x € R":n-x >a} CR™ be a half-space. Then it holds that

D)

with a universal constant Csym < 1, independent of §, m, a, n and @, that is bounded by

KC

< Cymllell  for all real-valued ¢ € L*(K,R) (9.6.3)

Coym < max sym(0)(x) < 0.837. (9.6.4)

On the contrary, for general, complex-valued signals p € L*(K,C), no bound of the form
(9.6.3) may hold true for any Csym < 1.

Proof. Let ¢ € L*(K,R) be real-valued. If we set Pk := {x € R™ : m - x > 0}, theorem 9.10
is applicable and we obtain by (9.4.7)

ID (@) |xeell <

P F (o) || (9.6.5)

where the filter is given by p'**¢(¢) = D(1pe )(£/f) = 0(—n-€/f/?) by the analytical propagation-
formula (9.4.12) for half-spaces. By lemma 9.17, it follows that

5k F ()| = [svm) - F ()| < (max ym@(©)) 17 (2)] (0.66)
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~leak

The result can be further simplified by using that p'*®*¢ varies only along the axis n:

max [sym(p*)(€)] = 27% max (|0(—n - &/7/) + |0(n - €/7))*

EeR™ EeR™
_ o max ({B(—a) 2 + [i()2)} = ;
= 27 max ([0(—2)> +10(2)[?) = max sym(@)(z). (9.6.7)

Combining (9.6.5), (9.6.6) and (9.6.7) yields the first assertion.

Now let us drop the assumption of real-valuedness, i.e. let 0 # h € L*(K(,C)) be arbitrary.
By lemma 9.6, the propagated intensity |D(h)|?> may be shifted in arbitrary directions and
arbitrarily far by replacing i with h: @~ exp(i& - x)h(x) for a suitable & € R™, while one
still has h € L*(K) with |A|| = ||h||. By this shifting-mechanism, one may thus construct h for
which |D(h)|? is arbitrarily concentrated in K¢, i.e. |D(h)|x<||/||k|| may be arbitrarily close to
1. Hence, no non-trivial bound of the form (9.6.3) may hold for complex-valued signals. H

Theorem 9.18 states that — independent of any smoothness constraints (!) — only a limited
fraction of a real-valued signal may propagate out of its support in a single direction. As is
also stated in the theorem, this situation is unique to the real-valued case. We note that the
analytical estimate for the constant Cgyy, is not optimal:

Remark 9.19 (Optimal value of Cyyy,). Numerical eigenvalue computations (not shown) indi-
cate that the optimal value of the symmetric-propagation constant is given by Cgym ~ 0.721.
Accordingly, at most a fraction of 0.7212 ~ 0.52 of the intensity of a real-valued signal may
leak out of the field-of-view along a single direction.

9.6.2 Construction of improved leakage bounds

Next, we extend the quasi-symmetric propagation bound in theorem 9.18 from half-spaces to
the more practically relevant case of square FoVs. In such a setting, the propagated signal may
always leak out of the detection domain along two opposite directions so that (quasi-)symmetric
propagation alone may not guarantee finite leakage. Instead, we have to combine the latter
principle with the detector-distance-based leakage estimates of the preceding sections. The idea
is simple: along each direction, we can decompose an object-signal into a part with support
close to the detector-boundary 0K, to be bounded by exploiting quasi-symmetric propagation,
and another part that is concentrated far away from 0K and which thus can be bounded using
the theory from §9.4. We first prove such a bound for half-spaces:

Lemma 9.20. Forn e S™ ', a e R and A >0, let K :={x e R":n-x >a}, Q=K and
Qea =QnN{zx eR™:n-x <a+ A}. Then it holds that

D)

ﬁ;e;j( () - F@)|| + Csyma ||elacsl]  forall ¢ € L*(Q,R) (9.6.8)

with fa = A% and pleak as in theorem 9.12 and the constant Cayn 5, 15 given by

Cogma += max sym(Bi,)(2), by, (2) i= 0lr) — B - 7)), (9.6.9)
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Proof. By separability (P4) and isotropy (P5), it is sufficient to prove the claim for the 1D-
settingm=1,n=1,a=0, K =Q=1[0;00) and Q<a = [0; A].

Thus, let ¢ € L?(K,R) be arbitrary. We follow a similar approach as in theorem 9.10: using
the convolution-form of the Fresnel-propagator (P2), we obtain

D(p)le = (Ky = @) e = (Bl (—oi-a) + Kil-aio) + Kilx) * 0) e
= (kf|(—oo;—A) * QO) ’Kc + (k:fl[—A;O} * (p)|Kc + (/{Zf|K * QO) |Kc (9610)

Now we decompose ¢ into left-hand- and right-hand parts, ¢ = @, + ¢, with ¢, == ¢la_,,
¢r := plae - By standard results on the support of convolutions, we then have

supp(kj|k * ¢) C supp(kj|k) +supp(¢p) C K+ K =K
supp (kf|[-as0) * #x) C supp(ks|-aw)) +supp(er) C [=A;0] +[A;00) = K

Together with (9.6.10), this implies that D(p)|xe = (l{;f\(_oo;_A) * gp) | rce + (k;][_A;O] * w) |Kce. An
application of the triangle inequality and lemma 9.9 thus yields

D) el < | (il —oci-a) * 0) e | + [} (Kl - avop * pe) e
< PAsea) (/D - F@)| + DA aa) (/D - Fleo)| (9.6.11)

Using the exact propagation-formulas from §9.4.3, we get

0~ /i~ 4)

D(1(—o00))(§/F) = D(L(—o0s—)) (&/T)

= 0(—&/f2) —0(—&/f2 —f2) = O (=€/2) (9.6.12)

Moreover, since ¢ and thus ¢, are real-valued, lemma 9.17 is applicable. Thus,

DL€/
D(1_a0)(E/T)

DL (oci—a)) (/) ( )| = lsym(8((=)/5 — 1)) - F)|| “E 278 || . 7o)
1D a0)(/5) - Fleo)ll = 1814 (= - /72) - Fleo)l| = lsym(@r,) (-/52) - Flo)|
< (maxsym(@,)(@)) loell = Copms ] (9.6.13)
Substituting (9.6.13) into (9.6.11) now yields the assertion. =

Note that the constant Cyym s, in (9.6.8) attains almost the same values as Cyyy, within the
relevant regime fa > 1. Next, we extend lemma 9.20 to square detectors K = [—3; 5]™ by
decomposing K€ into half-spaces. By far the strongest result is obtained for a 1D-case:

Theorem 9.21 (Leakage estimate for real-valued objects in 1D-intervals). Let m = 1, and
Q=K =[-1;L]. Then it holds that

272

ID(@) kel <

B F@)+ Comppallell  forall ¢ € L*(Q,R). (9.6.14)
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Proof. Let ¢ € L*(Q,R) be arbitrary. We decompose K° into a left-hand and a right-hand
part: K= LU R with L = (—oc; —%), R = —L. Then it holds that

2= I’ + |P(0)g) (9.6.15)

ID(¢)]x

Ifweseta=—3,d= %, n=1 K=L%and Qca = [—%; 0], it can be seen that the assumptions

of lemma 9.20 are satisfied. Thus, we obtain

ID(p)l| <272

ﬁ%ef%i ' f(@” + Csym,f/4H<Pe }, (9.6.16)

where ¢y 1= ¢[_14 denotes the left-hand part of . If we define ¢, := |, 1), an analogous
estimate can be obtained for the right-hand domain R:

Do) ||| < 273 Prs(—) - F(@)|| + Ceymijyal o
=272 ||pltk - F ()| + Coymysal ]| (9.6.17)

where it has been exploited that ﬁfg:lif /4 Is an even function by definition.

Now we apply the estimates (9.6.16) and (9.6.17) to (9.6.15) and exploit that p, and ¢, are
L?-orthogonal so that [Jge|* + [l¢:|* = [l¢]|* and [lgell + lleell < 2V ll:
Jea 2 2 2
Bigs - FO| + Comp (HWH +| )

+ 22 Cagmnyiyal |85 - F(@)|| (| el + [leox]])
< (st - F )| + Copmpyall]))*-

2 <

|D(e)

KC

Pr

O

As seen in §9.4.3, ﬁ}efa/ljl acts as high-pass filter with cutoff-frequency [£| ~ §/2. Provided
that Cyymsa < 1 is small enough, (9.6.14) thus guarantees positive contrast ||D(¢)|x| >
(1= C2,5a — €)@l for some small & > 0 if F(p) is concentrated within the interval
[—f/2;/2]. This indicates that image reconstruction is stable down to features of size r 2 27 /f,
which is already the upper limit for the achievable resolution by §9.3.3.1. Moreover, as the

object-domain is 2 = K in theorem 9.21, this optimal resolution can be obtained in the entire
FoV!

However, the surprisingly strong 1D-result does not carry over to higher dimensions because
square detectors K = [—%; %]m for m > 1 have corners, close to which image reconstruction is
unstable down to low spatial frequencies as found in §9.3.3.2. We have to exclude the considered
objects from having support in these unstable regions:

Theorem 9.22 (Leakage estimate for real-valued objects in square domains). Let K = [—%; %]m
and Q := JJL, Sa; with Saj =R/~ x [—2+A;1 = A xR™7 for 0 < A < . Then it holds
that

D)k

where Qep = Q\ (=3 + A; 3 — A)™ denotes the part of Q with distance less than A to OK.

<

P Flo)|| + Coyma lelacsll  forall ¢ € L*(QR), (9.6.18)
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Proof. Let ¢ € L*(Q,R). If we define the half-spaces K; 1 := RI™! x +[—1;00) x R™7, then
it holds that K¢ = Ji_, , K.. Thus, we have

? < 2 D)

By construction, each of the squared norms on the right-hand side can be estimated via

lemma 9.20 (with parameters a = —3, n = +e;), yielding

| 2

ID(e) (9.6.19)

e Kia

<27

1D(#)| ke, P F ()| + Copma |54 ) (9.6.20)

where we have defined pc (§) = ﬁ}efaAk(e] &) = pi(—e; - €) and @; 1 = plg,, with Q1 =
QN (R x £[—1;—1 + A] x R™ 7). Inserting (9.6.20) into (9.6.19) yields

1 m len m
Pl < 5 3 s FOI + Cnsa (3 el
j=1,% j=1,+
+ 22 D 0 F @)l (9.6.21)
j=1,%£

The last summand on the right-hand side of (9.6.21) can be regarded as a euclidean in-
ner product in R*™. By applying Cauchy-Schwarz’ inequality to this term and using that
S 1B - F(@)I? = 2055 - F(g)? by (9.4.18), (9.6.21) becomes

QS(

Now the choice of € ensures that the sub-domains {€;,} are mutually disjoint (up to
intersections of measure zero). Hence, the {¢; 4} are mutually L*-orthogonal, which implies

1

m i\ 2
P F ()| + Coma ( 3 H%HQ) ) (06.22)

j=1,%

ID(0) ke

m 3
( > Hsoj,iIIQ) =I5 o] = llelu, . o0l = [lelasll (9.6.23)

j=1,+

]

9.6.3 Stability estimates for spline objects

The leakage estimates from the preceding section may be used to derive stability estimates for
spline objects analogously as in §9.5.3.

Theorem 9.23 (Stability estimate for real-valued splines in intervals). Let Q = K = [—1; 1],
keNy, r>0,v>1,f =r*%and Z := [—wr/fqln/Q; Vw/fim]. Then it holds that
1Dl =2 CEEV G ko) el for all o € By, 0N L(QR) (9.624)
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real, (

where the constant Cstab V5,5, k,v) is given by

1\ 2
C;f:li (f fru k V) =1- (Csym /4 + (Cl%)w + Cband(k7 V>2 (Ct20t - CIQOW)) : ) (9625)

Ciow := maxijy/a(x) = max pii(¢),  Ciow := maxijya(z) = rgaxp%ef}i(ﬁ)

e 1/2%

Proof. The proof is similar to that of theorem 9.16: the setting matches the assumptions of
theorem 9.21. With Z, := (f/2/v) - 2 = [~7/r;7/r], the leakage bound (9.6.14) yields

(1D(@) k<]l = Coymyallel)” = C2u llel* < {F (@), (IBF251? — C2,,) - F())
< (F(@)|rr2mye, (IDFFe? — Cl2ow) - F ()| jrr22e )
< (C2, = C2 ) |1 F @)zl < Cranalk,)? (C2, = C2) lell> (9.6.26)

for any ¢ € By ., N L*(Q,R), where the quasi-band-limitation theorem 9.14 has been applied
in the final step. Rearranging (9.6.26) yields

ID(p) kel = Copmgallll + (IP(@) kel = Coym grallll)
< (Csym,f/4 + (Cl2ow + Cband(k7 V) (Ot20t - Cfow))§> ”QDH

1
= (1 -G, k1)) 2 [l (9.6.27)

Since | D(9)|x | = (el = I1P(@)|x<]|*)/?, (9.6.27) proves the assertion. O

Once more, the remarkable aspect of the 1D stability result in theorem 9.23 is that does
not require any distance between the object-domain 2 and the boundary of K. Analogously,
we can obtain a stability estimate for the higher-dimensional case:

Theorem 9.24 (Stability estimate for real-valued splines in square domains). Within the set-
ting of theorem 9.22, let fa = A%, §, = rf and = = [—vr /f/ % v /§¥/%]. Then it holds that

1Dkl = Cim™ Gas b ks v) el forall o € By, , N LP(Q,R) (9.6.28)

stab

where the constant Cgf;‘é’m(fm fr, k,v) is given by

[SIES

2
sl,rf:ll)m(fA7 fry ks V) I (Csym fo T M2 (Clow + C(band(]'€ V) (Cgot - Cl%)w)) ) (9'6'29)

C’lovv = r?EaEX an (I)v Ctot = I?SRX ﬁfA ($)

Proof. Let ¢ € By, , N L*(Q,R). Since |l¢la_, [l < [l¢]|*, we then have by theorem 9.22:

it F ol = (L)

NI

bkl f(w)>) (9.6.30)

D) kel = Copmpa llell <
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with quasi-1D functions pi,(§) = piic(e; - 5) as defined in the proof of theorem 9.22. Let

IDINY
=R Ex R and Z,; := (F/2/v) - Z; = RI~t x [—7/r; 7r/r] X R™ for 1 < j < m.
Then it holds that maxec(,z, ) ‘pfe&ka( )| = C’IOW and maxgcgm |pf T ]( )| = Clot and hence, by

a derivation completely analogously as in (9.6.26),

~ 2
(Fle). 1P

2. ‘F((P)> 0W||(10H2 (Ot20t low HF Vur,j)c
S Cband(k7 V) (CtZot - (Jlow)“SD”2 (9631)

for all 1 < j < m, where theorem 9.15 has been applied. Bounding the right-hand side of
(9.6.30) via (9.6.31) and rearranging as in the proof of theorem 9.23 yields the assertion. [

(b)
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Figure 9.9. Same plot as fig. 9.8, yet for the real-valued setting of inverse problem 9.2(a). Local
stability constant (a) and -resolution (b) have been computed according to theorem 9.24 via (9.6.32)
and (9.6.33).

9.6.4 Application: resolution estimates

Analogously as for the complex-valued case in §9.5.4, we can use theorem 9.24 to assess the
resolution within the real-valued setting of inverse problem 9.2(a).

For illustration, we consider exactly the same setting as in §9.5.4, but express the local
stability constant and resolution via the improved bound (9.6.24), exploiting real-valuedness:

Cstabr (T) = sup {Csf;}im (fa, fr b, v) 1 € U.;nZISd’j} (9.6.32)
Tstab,c (@) = inf {r > 0 : ¢yanr(z) > C} (9.6.33)

with Sy ; as defined in theorem 9.22. cgpap, and 1/7gab ¢ are plotted in fig. 9.9(a),(b).

According to fig. 9.9(a), stable reconstruction is guaranteed within the entire FoV except
for square-shaped neighborhoods around the corners of K. The width of the unstable region is
about 1.5 times 7/(fr) — the value that is to be expected from the analysis §9.3.3.2. Likewise,
the local resolutions in fig. 9.9(b) are qualitatively in good agreement with the results from the
wave-packet-analysis in §9.3.3.2, compare fig. 9.4(b).
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9.7 Extension to the phaseless case: application to lin-
earized XPCI

So far, the analysis has been limited to the case where the full complex-valued propagated
wave field D(h)(x) — including the phase — is measured at each point & € K of the FoV. In the
following, we outline how the results can be extended to the case of phaseless data. We consider
the inverse problems inverse problem 9.1(b) and inverse problem 9.2(b) that model image
reconstruction in XPCI within the linear CTF-regime. On the contrary, analyzing the nonlinear
problems inverse problem 9.1(c) and inverse problem 9.2(c) is beyond reach as stability is an
open problem for these even in the case of a full FoV K = R™.

9.7.1 Leakage estimates

As a first step, we aim to bound the amount of data that is leaked outside a square field-of-view
within the setting of inverse problem 9.1(b) and inverse problem 9.2(b). This is fairly simple
as the measured data, ~ 2Re(D(h)), relates to Fresnel-propagation simply by the pointwise
real-part and |Re(z)| < |z| for all z € C. This yields the following bound:

Theorem 9.25 (Leakage bound for linearized XPCI data). Let K C R™ be measurable and
T, S, be the forward maps from inverse problem 9.1(b) and inverse problem 9.2(b). Then it
holds that

|7 (h)
|7, (¢)

for all h € L*(R™),
forall € L*(R™R).

<2[D(h)
<2|D(p)

Kc Kc

Kc Kc

The gist of theorem 9.25 is simple: it states that the leaked part of XPCI data, 7 (h)|k-,
cannot contain more information than the corresponding phased Fresnel-data D(h)|g.. Despite

its simplicity, however, this result has important consequences: by theorem 9.25, literally any
of the leakage estimate of the preceding sections induces a bound for the phaseless case.

9.7.2 Stability estimates

Using the simple insight from theorem 9.25, we may derive stability estimates for phase contrast
imaging with finite detectors. To this end, we combine leakage estimates with the stability
results for XPCI with infinite FoVs from theorem 9.4:

Theorem 9.26 (Stability estimate for linearized XPCI with square detector). Let K = [—3; 3]™

and Q C [—5 + A;1 — A]™ for some 0 < A < L. Let T € {7,5,} and h € L*(Q), where
h is assumed to be real-valued if T = .%,. Furthermore, let CI¥% (Q,f,(v)) denote the stability

constant of T for a full FoV from theorem 9.4. Then it holds that

IT(h)[x]> = | T(R)|)? — 4|piees - F(h)|? (9.7.3)
> CIL(Q,F, )R] — 4| - F ()| (9.7.4)

S
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If h € B, , is moreover a B-spline and v > 1, then (9.7.4) further implies that

T[> (CERLT, (1)) = 4(1 = Cagan(Fas T by )*™) ) || (9.7.5)

where the notation is as in theorem 9.16.

Proof. The first inequality, (9.7.3), is obtained by bounding ||7T'(h)|k<| via theorems 9.12
and 9.25 and using that |T(h)|x||* = [|T(R)||* = | T(h)|k||*. (9.7.4) then follows from (9.7.3) by
estimating ||7°(h)]|| via theorem 9.4. The bound (9.7.5) is obtained analogously if ||D(h)|x
|R]]? = [|D(h)|k||? is estimated via theorem 9.16 instead of theorem 9.12. O

While the right-hand side of (9.7.5) is clearly the simplest of all bounds in theorem 9.26, it is
also the most pessimistic. The reason is that both the full-FoV-contrast ||T'(h)| and the leaked
part [|T'(h)|ke|| are bounded via worst-case estimates. Hence, the bound (9.7.5) is likely to be
far from sharp since, otherwise, some h € B}, , N L*(€2) would have to both minimize ||T'(h)]|
and maximize ||T'(h ) «<||. However, as shown in [144], ||T(h)|| is minimized by low-frequency
modes, whereas the leakage estimates are in terms of high-pass filters.

c

Despite its lossiness, we demonstrate that the bound (9.7.5) may indeed guarantee stabil-
ity in practically relevant settings. To this end, the required stability constant for an infi-
nite FoV CIP* is approximated numerically, which can be done to high accuracy for ball- or
square-domains 2. Let us first consider inverse problem 9.1(b). This problem is excessively
ill-conditioned [144] even for a full FoV, except for settings with very small object-domains.
For such a case, we show that stability also holds with finite detectors:

Example 9.27 (Stability estimate for XPCI of weak objects (inverse problem 9.1(b))). Let

f=2-10° and K = [—3;3]% Let h € B}, , N L*(Q) with support Q = [—5; 55]%, resolution

1/r =190 and spline order k = 7. Then the bound (9.7.5) guarantees stability with

17 (W)|k| = 0.2 (CTIXP/(Q, ) > 0.328, Cuan(fa, fr, k, 1.2) > 0.988). (9.7.6)

stab

By result 9.7, an upper bound for the resolution is given by 1/r < 0.45f/m ~ 290.

Unfortunately, as C’:f;o(b (Q,f) decays exponentially with the Fresnel number associated with
the size of Q [144], stability cannot be guaranteed for larger object-domains 2 or f.

The situation is better for inverse problem 9.2(b), i.e. for the reconstruction of homogeneous
objects as introduced in §9.2.1.2. Of particular relevance are non-absorbing, pure phase objects:

Example 9.28 (Stability estimate for XPCI of weak phase objects (inverse problem 9.2(b):
v=0)). Let f=5-10% and K = [-2;1]%. Let ¢ € B N L*Q,R) with Q = {z € R?: |z| <

272 k,r,o
1}, resolution 1/r = 350 and k = 7. Then the bound (9 7.5) guarantees stability with

1-%0(D) x|l = 0.05]@]  (CRAV(€2,5,0) > 0.151, Cuan(Fa, §r b, 1.25) > 0.997).  (9.7.7)

By result 9.8, an upper bound for the resolution is given by 1/r < 0.5f/7 =~ 800.
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Yet, the full-FoV stability constant Cslii(b)(ﬂ, f,0) decays like f~! for § — oo, which is still

too fast for (9.7.5) to guarantee stability at larger Fresnel numbers. This is different when the
imaged sample is also known to be slightly absorbing, in which case the asymptotics improve
to C'T2")(Q,§,v) > §Y/2 [144]). This enables stability guarantees for reconstructions at optical
resolutions as fine as the native resolution of typical detectors. In such a setting, the finite
FoV is no longer a limiting factor for the performance of the imaging setup. We consider an

example for a sample satisfying p = 0.1¢, i.e. for 10 % absorption (see §9.2.1.2):

Example 9.29 (Stability estimate for XPCI of homogeneous objects (inverse problem 9.2(b):
v = arctan(g;))). Let f = 4-10% and K = [—4;5]*. Let ¢ € By, . N L*(Q,R) with Q = {z €
R?: |z| < %}, resolution 1/r = 2000 and k& = 7. Then the bound (9.7.5) guarantees stability

with
17,(0) |kl = 0.08]|0]l  (CE2PN(,F, ) > 0.147, Caap(fa, fr, b, 1.25) > 0.998). (9.7.8)

By result 9.8, an upper bound for the resolution is given by 1/r < 2_3/2f/77 ~ 4500.

9.7.3 Improved estimates for real-valued objects

In principle, the improved leakage bounds for the real-valued setting from §9.6 apply to the
CTF-based reconstruction of homogeneous objects, inverse problem 9.2(b). Unfortunately, the
derived bounds are too pessimistic in this setting to enable stability estimates for practically
relevant Fresnel numbers. However, note that numerical simulations (not shown) indicate that
the larger stability regions for the real-valued case, shown in figs. 9.4 and 9.9, indeed seem to
carry over to the phaseless XPCl-setting.

9.8 Conclusions

We have studied locality of wave-propagation in the Fresnel- (or paraxial) regime in order
to quantify the effects of a finite detector on the stability of X-ray phase contrast imaging
(XPCI). The analysis shows that locality depends on spatial frequencies, i.e. the finer the
features of some object h the more delocalized it is upon Fresnel-propagation h +— D(h). As
a consequence, truncated diffraction-data, as measured by any real-world detector, introduces
a spatially varying resolution limit within the field-of-view: features of the imaged object
finer than some limiting length-scale rg,, may induce a signal in the diffraction-pattern that
essentially leaks out the detection-domain K upon propagation and thus cannot be stably
reconstructed from the data. On the contrary, Lipschitz-stability estimates hold for images that
comply with the resolution limit, as has been proven for multi-variate B-splines. The decisive
property of B-splines for this result is that they are quasi band-limited functions. Notably, the
obtained estimates on their concentration in Fourier-space (theorems 9.14 and 9.15) may be of
interest beyond the specific inverse problems considered this work.

The stability results do not only hold for the (hypothetical) case where full complex-valued
Fresnel-data D(h)|x is measured, but have also been extended to the phaseless setting of

200



PhD thesis: Inverse problems in X-ray phase contrast imaging Simon Maretzke

XPCI in the linear CTF-regime. However, as the (possibly complicated) interplay between the
instabilities due to a finite FoV and those due to the missing phase is not taken into account,
the derived estimates for the phaseless case are expected to be highly non-optimal.

The maximum resolution for a square detector is found to be 1/rgap, = §, in accordance with
the numerical aperture of the lensless imaging setup [158, 127], where § = b%/(\d) is the Fresnel
number associated with the detector’s aspect-length b (A: wavelength, d: propagation-distance).
Hence, if § is smaller than the number of detector-pixels along one dimension, the finite FoV
bottlenecks the achievable resolution. For complex-valued images to be reconstructed, the
optimal resolution is moreover attained only in the very center of the FoV. Interestingly, this
situation is much worse than for the standard XPCI case of homogeneous objects, that boils
down to reconstructing a real-valued image. In the latter case, maximum resolution ~§ can be
achieved in large parts of the FoV, except for the detector-corners.

The analysis of this work may be readily extended. For once, all results can be adjusted
to non-square object- and detection-domains at the cost of a more involved notation. More-
over, it is straightforward to extend the derived locality-bounds to multiple diffraction-patterns
acquired at different Fresnel numbers fi, o, ..., which is a typical setting in XPCI. However,
the larger amount of data is not too useful in view of a finite detector because, according to
this work’s analysis, features that leak outside the FoV for the largest Fresnel number are lost
in all diffraction patterns. Finally, the estimates obtained within the Fresnel-regime may be
generalized to propagation within the full Helmholtz equation, by combining them with bounds
on the deviation from the paraxial limit. Thereby, the results might be applied to a large range
of scattering experiments that give rise to approximately paraxial wave-fields.
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Appendix

9.A Fresnel-propagation and frequency shifts

Proof of lemma 9.6. By the alternate form of the Fresnel propagator (P3), we have
"D eq  f) =mnp F(ng- €a f)(F(): (9-A.1)

Moreover, it holds for all & € R™

sl (5 202)) o ) (252
T

= my(a) - ny(z + a/f) = my(a) - Tuys(ny) (@), (9.A.2)
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Since (T3) ™' = T_; and F(Ty(g)) = e¢ - F(g) for any t € R™, g € L*(R™), we thus have

ni - F(n-eq- f)(F() = mi(a) - ny- F (Tays(ng) - £) (7))
a)-ng-F (Ta/f (nf : T—a/f(f))) (F(-))
)
)

n

—h

-ni - eqsi(f() - F (s - Toays(f)) ()
ceq (i F (ng-Toas(f)) (F(-)))

a) eq "D (T g (f)) (9.A.3)

—h

By comparing to (9.A.1) and exploiting that D commutes with translations as a convolution
operator, we finally obtain

D(eq- f) =mji(a) - eq D (Tas(f)) =mj(a) - eq- T as; (D(f)). O

9.B Quasi-band-limitation of B-splines
Proof of theorem 9.14. We prove the estimate (9.5.3) for h =", ., b;Bi(-/r — j — 0) € By,
with coefficients that vanish for all but finitely many entries, i.e. (b;) € (°(Z) := {(¢j);jez C C :
3J C Z finite s.t. ¢, = 0 for [ € Z\ J. This is sufficient since such splines form an L?-dense
subspace of B} ., (by denseness of £°(Z) in *(Z) and the Riesz-sequence property (9.5.2)) and
both sides of (9.5.3) are L?*-continuous in h.

For the considered h, all sums of the form ., b;(...) are finite. By linearity and the
behavior of the Fourier-transform under translations and dilations, this implies that

Fh)(E) = f(ijBk«/r - o>) (©) = S bF Bulfr— i —0)(€)

jez jez
= (exp (—iréo) ij exp (—irfj)) rF(Bg)(r§) forall ¢eR. (9.B.1)
jez
e r9)

From (9.B.1), it can be readily seen that the function ﬁper is 2m-periodic, i.e. fzper(é’ + 27l) =
hper(€) for all € € R, [ € Z.

In order to prove the estimate (9.5.3), we decompose the Fourier-domain: with v := 1+
2[(v — 1)/2] as defined in the assumptions, it holds that

(vE,)° = ((7E,) \ (VE,)) U G (E + 277%) U (E - 2—%) : (9.B.2)

r
n=1+[(v—1)/2]

where the union is mutually disjoint except for intersections of Lebesgue-measure zero. Ac-
cordingly, the squared L*-norm over (vZ,)¢ can be written as a sum

0 (IF®e e+ IFO, )
n=1+[(v—1)/2]

[FW oz | = | F B eznwz

(9.B.3)
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We first consider the squared norms in the second summand on the right-hand-side of
(9.B.3). By the 2m-periodicity of hper, we have

L O Sy
=,y 2n 2rl-1)7

~ [ [t 1706 + 2700 ag 9.B.4)

2ri+1)7

o7 1F(BO) e = e ©)] 17(B1) (€) de

for all [ € Z. Hence, we obtain for all n € N

2 _ 7a/7r
"5 2 2 2
< e [ @] FBIEF a6 = e |FO) 2 (05)

Cr.n = Sup w w — | F(B) (€ + 277”)|2 + | F(Bi)(§ — 27m)|2
e i b hnlEh wka(D): F(B)(©) '

—r

hper(©)] (IF(BL)(E + 2mm)+| F(Bi) (€ — 2mm)?) dg

H‘F(h)’(ETJr%Tn)U(: 2mn )

T

We aim to explicitly compute the coefficients ¢ ,. To this end, we use the known Fourier
transform of By, F(By)(€) = (2m) /2 sinc(£/2)**! for all € € R where sinc(x) := sin(z)/z. As
the function sin? is m-periodic, it holds that

F(B(E +27D _ sin(6/2+ ml)?+) (/220 g+
S er = T e ~ OB
for all £ € [—m; 7|, | € Z. Accordingly, the weight-function wy, is given by
2(k+1) 2(k+1)
Wi (§) = (€ +€27rn)2(k+1) + G —527m)2(k+1)
= Cpp = 565[117]%] Wi (§) = Wi p(E£T) = on = 1)2(“1) + ot 1)2(“1), (9.B.7)
for all n € N, where the second line follows from the fact that wy,, : [-m; 7] — R is even and

attains its maximum at the boundary as a convex function.

Now it remains to bound the first term on the right-hand side of (9.B.3). By definition, it
holds that 7 > v, where equality holds if and only if » € 2N — 1, in which case the considered
term vanishes. Hence, we restrict to 7 > v. By transforming the integration variable and
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exploiting periodicity analogously as in (9.B.4), we obtain

P EDem sl = ([ [ (B a
:/ (€ = (7= \ F(B)(E) de
+ ﬁper(é) (Bo)(&+ (7 —1)m))* dé
<cror | FM) N, ko = s[up ]wk,o(é“) (9.B.8)
fe[—mym
(|FBRE=-1)m)L -
F e )5 D IFE 1) or =
k)E—(r—1)m k) (E+(P—Dm o~ ~
wko(€) = § e M
’ k) (E+H@—-1)7 -
FBR @ for & > ||m
0 else

where 7 = v—v—1 € (—1; 1) has been inserted. Since (¥— 1) is necessarily an integer-multiple
of 27, we may again use the relation (9.B.6) to simplify wy :

2(k+1) B
ECEEGoy for { < —|p|m
52(k+1) + 52(k+1) for _ ﬁ < 5 < D
wkol€) 1= { EOZRT T G SE<T gy
T for { > [D|m
0 else

The function wyo can be readily seen to be smooth and convex on each of the intervals
[—m; —|P|7), (—om;om) and (|@|m; 7). Consequently, the supremum over [—m;7] is attained
at one of the six boundary points of these intervals. By the symmetry wy o(—¢) = wy(£), it is
furthermore sufficient to consider non-negative values of &.

We first consider the case v € (—1;0]. Then the interval (—vm;vm) is empty and the
definition of wy, ¢ simplifies accordingly so that ¢ can be computed as

171 17 204D ]
Cko = max {ggmﬂwk 0(£), U}k70(ﬂ')} = max { (CENFIEL ;} = 307D (9.B.10)

for all 7 € 2N—1. On the other hand, if 7 € (0; 1), then also the interior domain-part (—om; o)
has to be considered in the computation of the supremum:

Cho = max{ lim wy,o(€), gh\ryw wy0(€), wk;,O(ﬂ-)}

£/ om
_ 2(k+1) 72(k+1) 52(k+1) ]
= max (7 — 1) + 0)?*+Y) + (7 —1) = )2 (5= 1) 4 p)20 0 72040
poroten) 1 Pmaxdp 0P max{p, 0P 1 -
72(k+1) (v + Qﬁ)Q(k—H) 2(k+1) 20 1) . .B.

J/

~~
Cband,O(kvl’)
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By comparing to (9.B.10), it can be seen that equality between the left-hand side and the
bottom line of (9.B.11) remains valid for 7 € (—1;0], i.e. holds true in general.

By inserting (9.B.5), (9.B.7), (9.B.8) and (9.B.11) into (9.B.3), we finally arrive at

[ee]

2 1 2
< (Cband,O(ka v) + Sa(ki) + Z Ck,n) | F ()=, |l
)/2]

n=1+[(v—1

| F(h)|we.e

o0

2 2
— (coman(k,v) + —) IF )=, |
( n:((yznm (2n + 1)***Y
=rCVE,
— couna (b, ) [F W P T Z puna (b, 02 | F () oz P (9.B.12)

The assertion now follows by exploiting that || F(h)||* = |7 (R)|wz,)e g | F ()|, |

2
Chana (b, )? | F(W)|1? = Crana (k, ) | F (1) oz, II” + Chana (k)2 || F (1) 0z,

(9.B.12)

1
> Chana(k 1) [ ———— 41 )|z e
2" b0 (s 41) [F 0l

2

Y= [|F W)z,

(9.B.13)

Negative result for v < 1: Now let ¥ < 1. Then, by the theory of Fourier series, there
exists a sequence (b;);ez such that

b, (&) := exp (—ir€o) Z bjexp (—irlj) =

jez

{1 ifﬁeEr\(VEr), cel-mna  (9.B.14)

0 ifé&ervz,

in an L2-sense. If we define h := ZjeZ bjBy(-/r — j — 0) as the corresponding B-spline, then
the periodic part of F(h) in (9.4.7) is given by ﬁper = b,. Hence, it follows that supp(F(h)) N

[—m; m] = supp(b,) C (VE,)¢, i.e. F(h) = F(h)|wz,)e- The constructed example shows that no
non-trivial bound of the form (9.5.3) may hold true for v < 1. O
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Chapter 10

Complete Article 3: Regularized
Newton methods for X-ray phase
contrast and general imaging problems

Reproduced from the published* article [143]:

Maretzke S, Bartels M, Krenkel M, Salditt T, Hohage T. Optics Ezpress, 24(6):6490-6506, 2016.
DOLI: 10.1364/0E.24.006490

(subject to slight adjustments of the notation and minor corrections)

Abstract: Like many other advanced imaging methods, x-ray phase contrast imaging and
tomography require mathematical inversion of the observed data to obtain real-space informa-
tion. While an accurate forward model describing the generally nonlinear image formation from
a given object to the observations is often available, explicit inversion formulas are typically
not known. Moreover, the measured data might be insufficient for stable image reconstruc-
tion, in which case it has to be complemented by suitable a priori information. In this work,
regularized Newton methods are presented as a general framework for the solution of such
ill-posed nonlinear imaging problems. For a proof of principle, the approach is applied to x-
ray phase contrast imaging in the near-field propagation regime. Simultaneous recovery of the
phase- and amplitude from a single near-field diffraction pattern without homogeneity con-
straints is demonstrated for the first time. The presented methods further permit all-at-once
phase contrast tomography, i.e. simultaneous phase retrieval and tomographic inversion. We
demonstrate the potential of this approach by three-dimensional imaging of a colloidal crystal
at 95 nm isotropic resolution.

*Copyright (© 2016 Optical Society of America. One print or electronic copy may be made for personal
use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for
commercial purposes, or modifications of the content of this paper are prohibited.
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10.1 Introduction

Lensless coherent diffractive x-ray imaging (CDI) has opened up a new field of high resolution
structure analysis beyond the ensemble averaging of conventional x-ray diffraction [158, 167,
147]. Typically, lensless x-ray imaging setups are closer to diffraction experiments than to a
classical microscope setup with lenses, except that they require a sufficiently coherent probing
wavefront or beam as well as sufficient sampling of the diffraction pattern. In other words, the
imaging systems is essentially based on free space propagation between object and detector.
Depending on whether the data is recorded in the optical near-field or far-field, the propagation
is modeled by the Fresnel propagator or a Fourier transform (Fraunhofer far-field regime),
respectively. As in conventional diffraction, each detector pixel carries information about all
object pixels. Therefore, if the data is modeled in the detector plane, high spatial resolution
can only be achieved in terms of the average structure. Contrarily, if the data is inverted to
reconstruct the object, the individual real space configuration is depicted, beyond an ensemble
average (or more precisely an average over the entire illuminated volume). Importantly, the
image formation is still very similar to a plain diffraction experiment, while the data analysis
is not. Data Modeling for example by least-square fitting is replaced by image reconstruction.
Model formulation is replaced by the formulation of a priori knowledge (constraints), which
are required to compensate for the missing information on the phase of the diffraction field, and
hence to achieve a unique solution. Accordingly, the difference is brought about by the inversion
of the diffraction process: by solving the inverse problem of (non-crystallographic) diffraction,
we obtain access to the individual configuration instead of the average sizes and correlation
lengths in the object. It is for this reason that iterative algorithms [146, 17, 59, 160, 138], being
to date the engine of CDI, have received so much attention. Iteratively cycling between the
detector and object planes, they feed in both measured data and additional a priori information
on the solution.

CDI uses a priori knowledge, for example related to the object support or its optical
constants (positivity, pure phase contrast). Diversity in the data generated by illuminating
the same object pixels by different wavefronts may be exploited by ptychographic algorithms
(63, 172, 191, 137, 192]. In general, however, one is interested in finding experimental settings
allowing for robust phase retrieval with least invasive constraints, dose and accumulation times.
In many applications for example, one is interested in reconstructing from single recordings,
without scanning or multiple exposures. At the same time, the object may be composed of
several materials, both with phase and amplitude contrast. It is therefore often of advantage
to perform the imaging in the optical near-field rather than far-field. Here, phase informa-
tion is much more directly encoded in the diffraction pattern, by ways of interference between
diffracted and reference waves. Recently, improved uniqueness results have been presented for
near-field imaging using the theory of entire functions [140]. In fact, contrary to a common
belief, see e.g. [108, 32], measurements at only one distance are sufficient to determine both the
real and the imaginary part of any compactly supported refractive index distribution. These
results are much stronger than those for the Fraunhofer regime, as obtained e.g. by [116].
Loosly speaking, the near-field case can thus be expected to require less information to comple-
ment the measurements than the far-field case. In practice, however, many iterative algorithms
which have been adapted to the near-field case [76, 188, 170] require similar data diversity or
constraints.
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Notwithstanding the merits of many highly performing iterative algorithms, it is therefore
necessary to broaden the perspective of the phase retrieval field. Here, we present iteratively
regularized Gauss-Newton methods (IRGNM) [9] as an alternative approach to phase retrieval
and other imaging problems. In this method, each iterate is computed to provide an optimal
compromise between agreement with the measured data and additional constraints on the
basis of a local linearization of contrast formation, as we discuss further below. The approach
is related to the regularized gradient descent methods for phase reconstruction proposed in [47],
but promises improved convergence owing to the Newton-like solution of linearized subproblems.
We apply the general IRGNM framework to near-field phase contrast with x-rays, for the
reasons mentioned above, and since recent progress in propagation imaging has narrowed the
gap in resolution compared to CDI. In fact, using highly divergent and coherent quasi-spherical
wavefronts, x-ray imaging in the optical near-field has been recently demonstrated down to 20
nm resolution [13].

The scope of the present work is two-fold. Firstly, we give a concise overview of iteratively
regularized Gauss-Newton methods in view of x-ray imaging, summarizing and explaining re-
cent mathematical literature in this field for an applied audience. Secondly, we demonstrate
the performance of this approach in solving the phase problem on the level of real state-of-
the-art experimental data. In particular, we apply an IRGNM approach to three-dimensional
(3d) imaging, i.e. we show how the method can be used to perform phase retrieval and to-
mographic reconstruction simultaneously. This strategy has been argued to enable improved
accuracy compared to splitting the reconstruction into phase retrieval problems for each angle
to recover the fields in the object plane and a subsequent inversion of the Radon transform
[37, 16, 175, 139]. We show that IRGNM approaches offer significant flexibility in treating
various experimental setups and different a priori information. In the long run, we also expect
advantages owing to the fact that the noise characteristics of the data can be suitably accounted
for in this framework. For the important example of Poisson data, Newton-type regularization
methods with Kullback-Leibler-type data fidelity terms have already been proposed [98].

The manuscript is organized as follows: §10.2 introduces IRGNM in view of image recon-
structions problems from the principal idea to practical implementation. In §10.3, the frame-
work is applied to (2d) near-field phase contrast with hard x-rays, imaging the phase shifts and
absorption induced by a nano-structured test pattern. A Kaczmarz-type IRGNM suitable for
tomographic imaging is presented in §10.4 and applied to resolve the structure of a colloidal
micro-crystal.

10.2 Regularized Newton methods for imaging

10.2.1 Basic approach
We consider an abstract imaging system of the form
I° = F(fN) + e (10.2.1)

Here I°®* € Y denotes some observable intensity data, given by the image of the unknown
object fT € X (e.g. a spatially varying refractive index or scatterer positions) under a known
forward operator F' and superimposed measurement errors €. Note that € may depend on F'(fT)
as is the case for Poisson data. For many models, an explicit inversion formula for F' is not
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known. Moreover, even if the inverse F'~! is available, it is often not continuous and would thus
amplify errors € by large magnitudes if applied directly to the data I°™. Such ill-posedness of
the reconstruction despite uniqueness is well-established e.g. for computed tomography [155].
We seek a method to stably recover fT from an ill-posed problem of the form (10.2.1).

Notably, the operator F' : X — Y modeling the imaging system is nonlinear in general,
for example whenever a phase retrieval problem described by a squared modulus operation is
involved. Nevertheless, reasonable results can often be achieved using a linearization of contrast
formation, as given for instance by the contrast transfer function in electron microscopy or
coherent x-ray imaging [62, 205, 79, 42].

Mathematically, such first order approximations are justified by the Fréchet differentiability
of the forward operator F, i.e. for any f there exists a bounded linear map F’[f] such that
lim,o(F(f 4+ h)— F(f)— F'[f]h)/]|h|| = 0. A natural approach to solve (10.2.1) is then given
by Newton-type iterations

frrr = fi + F'I[H] 7 (I = F(fr)) - (10.2.2)

As opposed to methods based on a static linearization of contrast formation, the lineariza-
tions in (10.2.2) are computed about the current iterate f; and thereby account for moderate
nonlinearity.

However, iterations of the form (10.2.2) are often neither feasible nor desirable for imaging
because the linearized problems - just like the nonlinear equation (10.2.1) - are typically ill-
posed. Hence, the solution of (10.2.2) is unstable and may not even exist. Again, one may think
of ambiguities in phase retrieval problems. A remedy is given by iteratively regularized Gauss-
Newton methods (IRGNM) as first proposed by [9], corresponding to Tikhonov regularization
of the Newton steps:

Jrr1 = arjg;er?(in IF(f) + F'LAIF = fi) = 1[5

+ag || f = follx (10.2.3)

Here, || - ||y and || - ||x denote the norms in Hilbert spaces X and Y, f, € X is the initial guess
and oy > 0 is a regularization parameter. In this setting, it can be shown that (10.2.3) always
has a unique solution given by [60]

Jeor = fi+ (FUF U+ o) ( FULI = F(f)
+ax(fo— i) ) (10.2.4)
F'[fi]* denotes the adjoint of the linear map F'[fx] : X — Y. In (10.2.4), only the inverse

of the selfadjoint positive-definite operator F'[fy]*F’'[fix] + ax has to be computed, which is
bounded according to the estimate

| F LA P + ) < aik (102.5)

Accordingly, the iterate fz,1 depends continuously on I°%, i.e. the impact of data errors on the
reconstruction is reqularized.

As the IRGNM is based on linearizations of the imaging operator, yet iteratively updated,
the approach is best suited for weakly or moderately nonlinear problems. Formally, convergence
of the method to fT for € — 0 can indeed be shown given bounds on the nonlinearity of F'
along with suitably chosen «y and fy [24, 112].

209



PhD thesis: Inverse problems in X-ray phase contrast imaging Simon Maretzke

10.2.2 Parameter choice and constraints

The first term on the right hand side of (10.2.3) measures the agreement of the object with the
observed data I°P based on the current linearization. To achieve competitive results, the choice
of the norm || - ||y should reflect the statistical properties of the data errors €, e.g. by taking
the negative log-likelihood of the measured signal 7°™. For additive Gaussian white noise, this
consideration leads to the choice of the standard L?-norm, i.e.

11— I°™|ly :_/|I—I0b8\2 da. (10.2.6)

For Poisson noise, the resulting data fidelity term is the Kullback-Leibler-divergence. This
distance measure can be implemented in the framework of generalized Newton methods as
demonstrated by [98]. Within the IRGNM, a quadratic approximation about its minimum may
be used as a norm

J— [obs

S (10.2.7)
max(ly, [°P3)2

17— 1]y = H

L2
where Iy > 0 is a regularizing parameter.

On the right hand side of (10.2.3), the data residual is balanced with the regularization term
ag || f — f0||§( bounding the deviation from the initial guess f,. The regularization parameter
weights the different contributions: if «y is very small, there is essentially no regularization and
the norm bound (10.2.5) diverges, allowing for large amplifications of the data error. If ay is
chosen too large on the other hand, the Newton iterate computed via (10.2.4) need not have
much to do with the actual image to be reconstructed. A good choice of o must thus balance
data- and approximation errors. One possible strategy is the following:

e Choose ag to approximately balance the norms in (10.2.3), for example by setting ag ~
[F'Lfo F'Lfo* (1P I /11" [fol*(1°%) 1%

e Reduce oy, by a constant factor, e.g. agi1/ag = %
e Stop at the first k s.t. s, == || F(fi) — I°®||y < 7]|€|ly, i.e. when the residual attains 7 > 1
times the noise level.

The stopping criterion, known as Morozov’s discrepancy principle [153], requires good knowl-
edge of the magnitude of data errors. When this is not available, noise level-free stopping rules
need to be applied, see e.g. [60, 83, 114]. Here, the principal idea is to make s; as small as
possible while limiting heuristic measures for the impact of data errors such as the object norm
| fe — follx or the inverse regularization parameter i

By the choice of the norm || - || x, we may define desirable properties of the object f to be
reconstructed. Choosing the standard L?-norm here prevents isolated spikes, promoting more
evenly distributed values. Typical images are expected to be of higher regularity, for example
being composed of smoothly varying areas bounded by sharp edges. This may be exploited to
obtain higher robustness to high-frequency errors by regularizing with Sobolev norms

1Fllx = (L + &2 F(F)(€)]] 22 (10.2.8)
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where F denotes the Fourier transform and & the frequency coordinates. The exponent s > 0
tunes the degree of smoothness.

Beyond smoothness it is often desirable to impose additional constraints, which corresponds
to restricting the set of admissible solutions f, € C' C X. Prominent examples are real-
valuedness, support constraints or positivity. Geometrically, the former two types are repre-
sented by linear subspaces C' C X. Imposing these constraints in the IRGNM simply amounts
to substituting F'[fi|* with PF'[fx]* in (10.2.4), where P : X — C'is the orthogonal projection
onto C'. Positivity, on the other hand, is a nonlinear convex constraint. It may be included
within a generalized Newton framework via a nonsmooth regularization term. In practice, this
amounts to solving the minimization problem (10.2.3) restricted to f € C, as can be done using
semismooth Newton methods [94]. One approach to approximate sign constraints within the
IRGNM framework of the present work lies in supplementing (10.2.3) with the penalty term

|l min(0, fi) — min(0, sign(fi))(f — fo)llz2, (10.2.9)

which tends to correct negative values of fi in the subsequent iterate. The coefficient v > 0
determines the weight of the constraint and should be comparable to ag. To achieve strict
positivity, one may let v — oo at constant 4 in the final iterates.

For numerical implementation of the IRGNM, all that needs to be done is to exchange the
imaging operator F' and its derivative F’ in (10.2.3) by suitable discrete approximations. The
norms || - ||x,. and || - ||y, in the discretized object- and image spaces Xgs = RV¥ | Yy, = RYY
are characterized by their Gramians Gy, Gy with respect to the Euclidean norm, i.e.

1%, = FTGxf, M3, =T'GyI (10.2.10)

where £ denotes the transpose. The adjoint of the Fréchet derivative F/ [f] : Xais — Yais can
be implemented via

FilfT = GY Fi[ 1T Gy (10.2.11)

The Hermitean positive-definite linear problem in the Newton step (10.2.3) can be solved effi-
ciently by a conjugate gradients (CG) method. A major advantage of this IRGNM-CG scheme
is that only the forward maps Fy, Fi [f] and Fj [f]T need to be evaluated, which are often
easy to implement. Moreover, note that the matrices ). [f] usually need not (and should not)
be set up explicitly to compute the matrix-vector products h — FJ [ f](T)h.

10.2.3 Newton-Kaczmarz methods

The Newton-type method presented so far is an all-at-once approach to image reconstruction:
linearizations of the problem (10.2.1) are solved in each iteration, incorporating all constraints
and the complete measured data I°?. In view of 3d or even 4d tomographic or time-resolved
imaging data, this results in computations with huge arrays, posing numerical challenges. For
linear problems,; a well-known remedy is given by Kazcmarz-type methods [109] such as the
Algebraic Reconstruction technique in computed tomography [77, 155], which cyclically solve
small under-determined subproblems. Indeed, many nonlinear imaging problems also lend
themselves to a natural separation into different subproblems so that (10.2.1) becomes

(I3, %) = (F1,...,F,)(f) + e (10.2.12)
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For problems of this form, [30] proposed regularized Newton-Kaczmarz methods, where in each
iteration only one of the linearized subproblems Fj, (f)+ F, [fe|(fes1— fi) = I3 is considered.
A Kaczmarz-type equivalent of the IRGNM-update (10.2.3) takes the form

. obs |2
firs = angmin| £, () + FL L) = ) = 5,
c J

+an(Bellf = follx + (=B If = fill ) (10.2.13)

The additional regularization term bounds the deviations from the preceding iterate f; ac-
cording to the weights [y € [0; 1], ensuring that the reconstruction does not change too much
within one Newton iteration. The sequence (ji) determines the processing order of the different
subproblems which may be adjusted to the requirements of the particular imaging problem.

10.3 Application to propagation-based phase contrast

Next, we apply the regularized Newton framework presented in section 10.2 to propagation-
based phase contrast x-ray imaging. An exemplary experimental setup is sketched in fig. 10.1:
quasi-monochromatic undulator radiation is focused by a pair of elliptical mirrors onto an
x-ray waveguide. The exit of the waveguide serves as a quasi point source illuminating an
object, which is placed at a distance of several mm behind the waveguide. The resulting
diffraction patterns (holograms) are recorded by a detector at about 5m distance behind the
focal plane, capturing the entire cone beam emanating from the waveguide with the sample
induced interference pattern. The imaging data presented in this work has been recorded at
the GINIX endstation at P10 beamline, DESY, Hamburg, described in [111, 178]. For details
on the waveguide system and comparable high-resolution imaging results, see also [13].

For the imaging model, a fully coherent illumination of the sample by a plane wave is
assumed. Note that we consider an effective parallel beam geometry equivalent to the ex-
perimental cone-beam setup. As in previous studies of cone beam x-ray propagation imaging
[166, 145], we make use of the simple variable transformation, accounting for the geometric
magnification, mapping the spherical beam illumination to an effective plane wave case. For
the present imaging system, the data treatment is detailed by [13]. Moreover, we assume the
object to be sufficiently thin and weak for the wave field to remain spherical and for the trans-
mission to be well described by geometrical optics (projection approximation). This is typically
well-satisfied for hard x-ray imaging [145, 160]. Under these assumptions, the intensity at the
detector can be modeled as

[ = F(f) =D (exp(=/))I", (10.3.1)
where f = p + i¢ parametrizes the phase shifts ¢ and attenuation p induced by the specimen,

i.e. its image. D denotes the Fresnel propagator, implementing free-space propagation of the
transmitted parabolic wave field from sample onto the detector:

D) = (e (1) F00)) (1032

po

§ = b?k/(27d) is the Fresnel number of the setup, where b is the size of a feature corresponding
to unit length in the frequency vector & (typically the size of a pixel), d is the defocus distance
and k is the x-ray wavenumber.
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Figure 10.1. Schematic setup for propagation-based phase contrast imaging with hard x-rays: GINIX
at P10 beamline, DESY [122, 178]. Quasi-monocromatic x-rays are focused onto a waveguide, illu-
minating a downstream object by a cone beam emanating from this coherent quasi-point source.
Rotation of the sample allows for tomographic measurements.

From (10.3.1), we see that phase contrast imaging is nonlinear in general. Nevertheless,
the model can be linearized for weak phase shifts and attenuation ¢, u, yielding the contrast
transfer function (CTF) [79, 194]

2 2

F(F(f)—1)~ —2sin (4%%) F(p)(&) — 2cos (46_7#) F()(€) (10.3.3)

Assuming vanishing attenuation p ~ 0 or single-material objects p o< ¢, this formula can be
directly inverted for image reconstruction. This approach yields satisfactory reconstructions
especially if data from multiple defocus distances is available [42, 122].

From the CTF solution (10.3.3), it can be seen that regularized Newton methods are well-
suited for phase contrast imaging in two respects: firstly, the zeros of the oscillatory prefactors
make the image reconstruction problem ill-posed even in the simplest case of a weak non-
absorbing object so that regularization is required. Secondly, the relative success of linear
CTF-based methods indicate that the nonlinearity of the imaging method is sufficiently weak
in a large regime of experimental setups.

For suitable spaces X,Y, the imaging operator F' : X — Y defined by (10.3.1) can be
shown to be Fréchet differentiable. Using linearity of D and the expansions exp(z + h) =
exp(x)(1+h)+ O(h?) and |z + h|* = |z|? + 2Re(T - h) + O(h?), we obtain the first-order Taylor
approximation

F(f +h) = F(f) + —2Re (D (exp(—f)) - D (exp<_f)h)) +O®h). (10.3.4)
This allows to read off the Fréchet derivative given by the linear term in h:

F'[f]h = —2Re (D (exp(—f)) - D (exp(—f)h)> . (10.3.5)

Here the overbar denotes complex conjugation and Re the pointwise real part. The special case
f =01n (10.3.5) reproduces the CTF. Implementing (10.3.1) and (10.3.5) for discrete images
in the spaces X := CMx*Nx and Y := RMy*Nv  ysing suitably padded fast Fourier transforms
for the discrete Fresnel propagator, the reconstruction problem of propagation-based phase
contrast imaging can be solved by the IRGNM of section 10.2.

As a proof of concept, we consider the diffraction pattern of an IRP logo, engraved into a
thin gold film. The data has been recorded on the aforementioned GINIX setup at an energy
of £ =7.9keV is shown in fig. 10.2(a). The plotted intensity data has been normalized by the
corresponding flat-field, i.e. the image of the empty beam, in order to meet the assumption of
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plane wave illumination as justified by the analysis of [101]. The Fresnel number is § = 1.77-10~*
at an effective pixel size of b = 21.7nm of the 1080 x 1920-sized images and a maximum flux
per pixel of &~ 3400 photons.

For the Newton reconstruction, we choose the Sobolev norm in (10.2.8) with an exponent
s = 0.5 as a regularization term and an L?norm for the data residual. The regularization
parameters «y are chosen according to the procedure outlined in section 10.2.2. The algorithm
is stopped as soon as the reduction of the residual s, — s,_1 achieved in the k-th iteration falls
below 1% of the maximum decrease max;.j s; — s;_1. For the initial guess, we simply take
fo = 0. We exploit that the specimen is made of gold by prescribing its characteristic between
absorption y and phase shifts ¢ of ¢,/4 ~ 0.105 [92]. The constraint is imposed by substituting
[ = (i+ cu/s)¢ and reconstructing the real-valued ¢. Apart from this, neither positivity nor a
support constraint is assumed. The latter means that the phase shifts ¢ are computed within
the entire field of view of 1080 x 1920 pixels without any oversampling.

o —_ —_
© a

o
©

phase shifts )

-0.25

Figure 10.2. X-ray phase contrast imaging of a nano-structured object using the IRGNM reconstruc-
tion algorithm. The test pattern (institute logo) was defined in a thin gold film by focused ion beam
milling. (a) Diffraction pattern recorded at GINIX endstation, P10 beamline, DESY [178] (flat-field
corrected, maximum photon flux per pixel & 3400). (b) Reconstructed phase image of the entire field
of view, assuming a fixed ratio of 0.105 between absorption p and phase shifts ¢. (¢) Magnification
of (b) in the framed region around the logo. For comparison, the dashed inset shows the correspond-
ing part of the phase map reconstructed by direct inversion of the CTF (10.3.3) via the methods of
[122]. Scale bars: 2 pum in the effective geometry. Fringe artifacts on the upside of the logo are due
to diffraction fringes leaving the field of view in (a). The phase shifts ¢ ~ 0.20 induced by the object
correspond to a thickness of the gold layer of about 100 nm.

Convergence of the IRGNM is reached after 12 Newton steps, corresponding to a total
of 242 CG-iterations. The resulting phase map is plotted in fig. 10.2(b). Despite the lack
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of oversampling, it can be seen that both the object and the background come out quite
clean except for some stripes near the boundary due to the applied smooth replicate padding.
Occasional white spots and the smooth background variations, on the other hand, may be
attributed to some dirt in the imaging optics and physical variations of the thickness of the
gold layer, respectively. The magnification of the reconstruction in a region around the TRP-
logo depicted in fig. 10.2(c) confirms the high uniformity of the recovered phase shifts in the
regions within and without the logo, reproducing the binary test pattern. Slight fringe artifacts
can be identified in the vertical direction, especially on the upper edge of the logo. These may
be explained by incompleteness of the data. Indeed, it can be seen from fig. 10.2(a) that parts
of the diffraction pattern lie outside of the recorded field of view. The reconstruction of the
missing object information is based on a priori constraints only, which naturally gives rise to
artifacts.

It should be noted that the imaging setting considered so far still lies well within the
regime of applicability of reconstruction method based on the CTF (10.3.3): for once, the
phase shifts within the logo of ~ 0.20 rad, induced by the 100 nm-thick gold layer of refractivity
kd ~ 1.96 um~' [92], are sufficiently weak for a global linearization of contrast formation to be
reasonably accurate. Secondly, the assumption of a single material, i.e. of proportional fields ¢
and p, allows for a direct inversion of (10.3.3). In the considered example, the latter approach
indeed yields results of comparable quality as shown by the dashed inset in fig. 10.2(c). If ¢
and p are considered as independent variables and only a single diffraction pattern is available,
directly inverting (10.3.3) is impossible. This suggests that the imaging problem is non-unique
in this case. On the contrary, theoretical investigation has recently shown that a unique recovery
is indeed feasible if u and ¢ are compactly supported [140]. The mathematical reason is that
compactness of the support translates into correlations in Fourier space, which can be used to
disentangle ¢ and p in (10.3.3). By its ability to incorporate a priori constraints, the IRGNM
approach may thus enable reconstructions beyond the limitations of direct inversion methods.
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Figure 10.3. Simultaneous IRGNM reconstruction of phase shifts ¢ and absorption p from the data
in fig. 10.2(a) without assuming a fixed ratio u/¢. Negative values of p and ¢ indicate missing mate-
rial in the gold film. The circular support visible in the phase- and absorption maps and negativity
of ;1 and ¢ has been imposed as a constraint. All other parameters are retained as in the compu-
tation of fig. 10.2(b). The dashed inset in the absorption image shows the reconstruction without
negativity constraint in the IRGNM and demonstrates that simultaneous recovery tends to introduce
low-frequency artifacts. These are effectively suppressed by exploiting physical a priori knowledge on
the sign of phase shifts and absorption. Scale bar: 2 um.
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For a first experimental verification of a simultaneous recovery of both phase and absorption
from a single hologram, we repeat the IRGNM reconstruction using the same parameters but
without imposing a coupling of ¢ and p. Following the uniqueness analysis, we impose a loose
circular support constraint around the logo. Note that this induces a strong oversampling in
the data by a factor of &~ 17, owing to the considerably reduced number of object pixels on
which ¢ and p have to be reconstructed. Moreover, negativity of p and ¢ (the test pattern
represents missing material, so that the contrast is inverted!) is imposed in the IRGNM via the
penalty term approach outlined in section 10.2.2. The recovered phase and absorption obtained
after 10 Newton steps (199 CG-iterations) is plotted in fig. 10.3. For comparison, dashed insets
show the corresponding image parts obtained from a second reconstruction without negativity
constraints.

Both the phase shifts ¢ in 10.3(a) and the attenuation coefficient p plotted in 10.3(b) clearly
represent the object shape, where the magnitudes roughly reproduce the material-specific ratio
of /¢ =~ 0.1. The only visible artifacts are those attributed to the missing fringes, which
have been observed previously. In the IRGNM-reconstruction without negativity constraints,
additional low-frequency errors appear especially in the recovered attenuation, as can be seen
from the central dark spot surrounded by a bright halo in the inset of fig. 10.3(b). Simulations
as well as preliminary analytical studies indicate that the susceptibility to these halo artifacts
is characteristic of simultaneous retrieval of phase and absorption. As observed in the present
reconstruction, however, they seem to be suppressed very effectively by imposing suitable sign
constraints. Owing to the flexibility of exploiting physical a prior: knowledge in the IRGNM, we
thus indeed achieve an almost perfect simultaneous recovery of 1 and ¢ from a single hologram
- which has to date been considered impossible [157, 32].

Although proportionality of ;1 and ¢ is not imposed in the reconstruction in Fig. 10.3, the
surprising quality might still be owing to some implicit preference of the IRGNM for homo-
geneous objects. We test this by repeating the reconstruction for a simulated object that is
composed of two different materials. To this end, a binarized version of the recovered IRP
logo with constant ¢ = 0.2 and p = 0.02 is embedded into a purely phase-shifting disc with
¢ = 0.2 and p = 0. All setup- and reconstruction parameters are chosen exactly as in Fig. 10.3.
A single synthetic hologram (not shown) is simulated by mapping the exact object with the
forward operator and superimposing Gaussian white noise with standard deviation o = 0.02.
The IRGNM reconstruction of ¢ and p from this data is shown in Fig. 10.4 along with the
exact solutions.

Good agreement with the exact object is found both in phase and absorption. The different
object features are correctly attributed to the ¢- and p-components in Figs. 10.4(c) and (d) and
no artifacts except for the known slight halo and fringe structures are visible. In particular,
the absorption contrast enabled by the simultaneous recovery clearly reveals the logo structure
despite the low signal-to-noise-ratio in . The logo is not represented in the phase image and
thus likely invisible to any reconstruction method that assumes proportionality of p and ¢.

10.4 Phase contrast tomography of a colloidal crystal
By rotating the specimen within the incident beam in the imaging setup of fig. 10.1, propagation-

based phase contrast can be extended to a tomographic imaging method, capable of resolving
three-dimensional variations of the complex refractive index n = 1 — § +i5. Within the geo-
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Figure 10.4. Supplementary IRGNM reconstruction of a non-homogeneous object from a simulated
near-field hologram with 2 % Gaussian white noise. Constraints, reconstruction- and setup parameters
are chosen as for the experimental data in fig. 10.3. (a) and (b): Exact object composed of an absorbing
logo structure with ¢ = 0.2, u = 0.02 (gold) embedded into a non-absorbing disc that induces the same
phase shifts ¢ = 0.2 but with ¢ = 0. (¢) and (d): Recovered phase and absorption images. Except for
a slight halo, features in ¢ and p are correctly identified, revealing the hidden logo structure by the
enabled absorption contrast.

metrical optics approximation of section 10.3, the imprinted phase- and absorption images ¢
and p are proportional to the projection of ¢ and [, respectively, along the optical axis. For a
tomographic incident angle 6, we have

Lo + 1Py = k/(ﬁ@ + i(59) dz = /{3@9(69 + 1(59) (10.4.1)

where 0y and [y denote the fields § and § in a rotated coordinate system and #y is the parallel-
beam projector (X-ray transform) mapping onto the line integrals along . Combining (10.3.1)
and (10.4.1), we obtain a forward operator F' mapping the object function f = kS + ikd onto
the corresponding intensity data I under all of the NV € N different incident angles 6;:

[=F(f) == D (exp(— P D)), Proy = (P, Py, Py.) (10.4.2)

Since ;. is linear and bounded on suitable function-spaces, F is Fréchet differentiable with a
derivative of similar form as (10.3.5).
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Implementing (10.4.2) in a regularized Newton-type framework corresponds to an all-at-
once approach to phase contrast tomography, as phase- and tomographic reconstruction are not
carried out in subsequent steps but simultaneously. In particular, this implies that tomographic
correlations between images under different incident angles are incorporated already in the
phase retrieval step. Similarly as in coherent diffractive imaging [37, 16], this has been shown
to improve stability and accuracy of the reconstruction [175, 139]. Unfortunately, a numerical
inversion of F'by an IRGNM is not viable for high resolution data sets due to memory constraints
and high computational costs of the evaluation of the Radon transform.

As a remedy, we propose to solve the reconstruction problem of phase contrast tomography
by a regularized Newton-Kaczmarz methods as presented in section 10.2.3. The tomographic
setting suggests a decomposition of the forward operator F' = (F},..., F,), corresponding to
small sub-data sets of diffraction patterns from only very few incident angles. Each Newton step
(10.2.13) then only requires evaluations of comparably small Radon transforms and processing
of feasible chunks of data. At the same time, tomographic consistency is exploited by directly
reconstructing a three-dimensional object instead of single projections. Furthermore, the Fj
may be chosen such that the most strongly correlated images for only slightly differing incident
angles are processed simultaneously.

We implement the Newton-Kaczmarz step (10.2.13) for the imaging operator (10.4.2), using
the simple parameter choice ay = oy and 8, = [y < 1, where g is estimated according to
section 10.2.2. Firstly, this regularization imposes the current reconstruction as a strong prior
for the next iteration. Secondly, it also yields a favorable condition number for the linear
Newton steps so that CG-methods typically converge after 3-5 iterations.

For a proof of concept, we consider phase contrast images of a colloidal crystal composed of
415 nm-sized polystyrene beads, imaged at an energy £ = 7.9keV in the experimental setup of
fig. 10.1. The tomographic data set is composed of 249 diffraction patterns of size 1024 x 1024
acquired at a maximum photon flux of 770 per pixel under incident angles # between 0 and
173°. The raw data correction included an alignment of the tomographic projections to the
common center of mass and iterative reprojections, following the approach of [210]. The photon
flux corresponds to an upper bound of 110 kGy for the absorbed dose over the total tomographic
data acquisition. The flat-field corrected intensities are visualized in fig. 10.5(a). In the effective
geometry, the Fresnel number is § = 2.41 - 10~* at an effective pixel size of 29.3 nm.

From the fringes in the data set in fig. 10.5(a) as well as preliminary reconstructions, one can
infer the object location in the center of the field of view. This is exploited by restricting the
reconstruction to a central 256% voxel cube, imposing a loose 3d-support constraint. Moreover,
the hydrocarbon composition of the polystyrene spheres and the photon energy allow using
f = 0 as a constraint (non-absorbing object), i.e. to reconstruct only the refractive increment
d. Unfortunately, a Sobolev-type regularization term (10.2.8) would bottleneck the proposed
Newton-Kaczmarz-scheme as the required FFTs in the Gramian would constitute the only
O(N31log N) operations in the Newton updates. We therefore recur to simple L*-regularization
and L?-data fidelity terms, corresponding to identity Gramians Gy, Gy in (10.2.10). However,
positivity of ¢ is imposed by supplementing the Kaczmarz-Newton step (10.2.13) with the
penalty term in (10.2.9). The weights of the penalty terms are set to v = o and [, = 0.001.
For the initial guess, we simply choose f; = 0. The forward operator F' is decomposed such
that angular “wedges” of six adjacent diffraction patterns are processed simultaneously in
each Newton step. The number of iterations is determined such that each hologram is visited
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Figure 10.5. X-ray phase contrast tomography of a colloidal micro-crystal composed of 415 nm-size
polystyrene beads, reconstructed by a regularized Newton-Kaczmarz method. The maximum photon
flux is 770 per pixel corresponding to an absorbed dose < 110kGy. (a) Slice visualization of the
tomographic data given by 1024 x 1024 flat-field corrected holograms measured under 249 incident
angles between 0 and 173° at GINIX endstation, P10 beamline, DESY [178]. (b) Central slice of the
reconstructed 2563 voxel volume, plotting the increment § of the refractive index n = 1 — § + i3 which
is proportional to electron density. A priori constraints were positivity 4 > 0 and vanishing absorption
B = 0. The scale bar is 1 um. (c¢) Fourier shell correlation (FSC) computed for reconstructions from
complementary data sets of 125 and 124 incident angles (green curve). For comparison, the blue curve
shows the result without positivity constraint and the red dashed one plots the 1/2-bit threshold curve
[201]. The intersection between the green- and the red curve indicates an achieved resolution of 95 nm.
(d) Binary representation of the slice in (b), determined by deconvolving the reconstructed ¢ with the
form factor of a 415 nm-sized homogeneous sphere after Gaussian filtering.

twice where the processing order of the wedges is random to minimize directional bias in the
reconstructed object.

The reconstruction runs on a simple laptop with Intel i7 CPU and 8 Gigabytes of RAM,
computing for about 20 minutes. Each of the Newton steps takes four CG-iterations, which
means that the total solution - processing every incident angle twice - requires only 10 forward
and adjoint operations of the full imaging operator F. Figure 10.5(b) shows the central slice
of the reconstructed o perpendicular to the tomographic axis. It can be seen that the binary
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character of the specimen and the spherical shapes of the beads are well-resolved, being clearly
distinguishable both from one another and from the background. Notably, no artifacts caused
by angular undersampling or due to the missing wedge of 6° can be identified.

We estimate the resolution by computing the Fourier shell correlation (FSC) [200] of two
auxillary reconstructions from complementary sets of 125 and 124 incident angles, respectively.
In fig. 10.5(c), the resulting correlation is compared to the 1/2-bit threshold curve as proposed
by [201]. For comparison, the FSC is also computed for a reconstruction without positivity
constraint. The beneficial effect of the latter can be seen from the gap between the blue and
green curves in fig. 10.5(c), showing a significantly higher correlation especially in the resolution-
critical part around the intersections with the threshold curve. The intersections indicate a
resolution of about 95nm and 105nm (half of the corresponding Fourier wavelengths) for the
reconstructions with and without positivity constraint, respectively. Notably, the local minima
of the FSC curves at [£| &~ 0.022nm™! are no artifacts but neatly coincide with the first order
zero of the form factor of 415 nm-sized spheres. This emphasizes the sensitivity of the imaging
method to structural features.

According to the slice plotted in fig. 10.5(b), the positions of the polystyrene spheres and thus
the crystal structure could be determined in principle by visual inspection of the reconstructed
0. In order to determine the colloid locations numerically and independent of an operator,
we smoothen the recovered object by a Gaussian of 95nm FWHM to reduce the impact of
noise before deconvolving with the form factor of a homogeneous 415 nm-sized sphere (with
regularization around the zeros in Fourier space). This procedure results in Gaussian peaks
centered at the positions of polystyrene beads. By computing the maxima of this field using
quadratic interpolation about the peaks, we thus obtain a representation of the crystal structure.

Figure 10.6. 3d-rendering of a colloidal crystal of polystyrene nano-beads reconstructed by Newton-
based phase contrast tomography. The underlying binary object, a slice of which is shown in
fig. 10.5(d), has been determined by deconvolving the smoothened reconstruction of the refraction
parameter & with the form factor of a homogeneous sphere of diameter 415nm. The coordinates of
the colloid sites are provided in Data File 1. Scale bar: 1 ym.
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By the simple deconvolution procedure outlined above, 448 colloid positions are identified.
Convolving the obtained Dirac delta-array of bead locations with the ideal 415 nm-sized sphere
yields a binary representation of the colloidal crystal. A slice of this binarization correspond-
ing to fig. 10.5(b) is plotted in 10.5(d). Figure 10.6 shows a 3d-rendering of the determined
colloidal crystal. The corresponding site coordinates of the colloids, i.e. the centers of the
spherical beads, are provided in Data File 1. The imaged micro-crystal contains regions of
(approximately) hexagonal close-packing as well as cubic and amorphous regions, induced by
an interplay of bulk- and surface effects.

10.5 Conclusions

In this work, we have presented iteratively regularized Gauss-Newton methods (IRGNM) as
a generic approach to solve nonlinear ill-posed image reconstruction problems. The principal
idea is to reconstruct an unknown object by iteratively inverting linearizations of a known
imaging model, which describes contrast formation from object to observable data. In order to
compensate for missing information, the iterates are computed to provide an optimal compro-
mise between the measurements and additional a prior: information on the unknown object.
The IRGNM approach differs from well-known alternating-projection-type algorithms typically
used in CDI in that it exploits differentiability and simultaneously processes constraints and
observed data. This promises improved convergence.

By applying regularized Newton methods to near-field phase constrast imaging, both in 2d
and in a tomographic 3d setting, we have demonstrated their flexibility in treating different
experimental setups. The reconstruction of a nano-structured test pattern shows that IRGNM
constitute a reasonable generalization of direct inversion methods based on a global linearization
of contrast formation. Owing to its potential to incorporate moderate nonlinearity and a prior:
knowledge, e.g. on support or positivity, the approach permits faithful reconstructions beyond
the scope of such direct methods. This has been demonstrated by the simultaneous recovery
of magnitude and phase of the test object from a single diffraction pattern without assuming
proportionality of phase shifts and absorption. The validity of the reconstruction is supported
by results for a simulated object composed of two materials, which are correctly identified by the
algorithm. However, numerical simulations also indicate that the stability of the simultaneous
recovery deteriorates significantly with increasing Fresnel number. Thus, it is possibly only
feasible for deeply holographic near field data as considered in this work.

A further benefit of the presented regularized Newton framework is that it requires only
a forward model for the imaging setup and no explicit knowledge of (approximate) inverses.
This enables IRGNM reconstructions also for complicated multi-staged imaging setups, pos-
sibly including the influence of various experimental parameters. In the considered example
of phase contrast tomography this flexibility permits to directly recover a probed 3d-object
from the complete tomogram of diffraction patterns instead of subsequently performing (2d)
phase retrieval and tomographic backprojection. We have demonstrated the potential of this
approach by imaging a colloidal crystal composed of 415 nm-sized polystyrene beads at 95 nm
resolution, reconstructed by an efficient regularized Newton-Kaczmarz method.

X-ray imaging techniques currently reach out for novel frontiers, ranging from new con-
trast modalities in material science and dose reduction in biomedical analysis to in-operando
studies and investigations of highest spatial and temporal resolution by FEL pulses. To enable
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these goals, the mathematical modeling underlying image reconstruction has to become increas-
ingly accurate in order not to bottleneck the achievable contrast and resolution: apart from
nonlinearity of image formation and Poissonian noise statistics, future imaging models may
need to better account for partial coherence, non-uniform illumination, mechanical vibrations
and movements, misalignment or geometrical aberrations, just to name a few. Owing to their
flexibility, we are convinced that regularized Newton methods, as presented in this work, may
greatly foster such developments and thus contribute to a bring lensless x-ray techniques as well
as other cutting-edge imaging methods to the level of quantitative structural measurements.
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Abstract: Nowadays, the field computed tomography (CT) encompasses a large variety of
settings, ranging from nanoscale to meter-sized objects imaged by different kinds of radiation in
various acquisition modes. This experimental diversity challenges the flexibility of tomographic
reconstruction methods. Kaczmarz-type methods, which exploit the natural block-structure of
tomographic inverse problems, are a promising candidate to provide the required versatility in
a computationally efficient manner. In the present work, it is shown that indeed a surprisingly
general class of tomographic Kaczmarz-iterations may be efficiently evaluated via computational
schemes of a similar structure as updates of the so-called simultaneous algebraic reconstruction
technique (SART). This enables regularized reconstructions with non-trivial image-formation
models as well as non-quadratic or even non-convex data-fidelity terms at low computational
costs. Moreover, the proposed generalized SART schemes are equally applicable in parallel-
and cone-beam settings and regardless of the choice of tomographic incident directions. Their
potential is illustrated by outlining applications in several non-standard tomographic settings,
including polychromatic CT and X-ray phase contrast tomography.

11.1 Introduction

Since the pioneering works of Cormack [44, 45] and Hounsfield [103], the field of computed
tomography (CT) has broadened considerably. While classical CT based on the partial at-
tenuation of X-rays by matter continues to be a principal workhorse of medical diagnosis,
several other applications have emerged over the past decades: for instance, state-of-the-art
transmission-electron-microscopes (TEM) may resolve unknown structures in three dimensions
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down to sub-nanometer resolutions by acquiring a series TEM-images under different incident
directions of the electron-beam [148, 159]. Moreover, the advent of coherent X-ray sources
has enabled phase contrast techniques and thereby extended the scope of X-ray tomography
to quasi nonabsorbing micro- and nanoscale objects such as single biological cells or viruses
[42, 122, 80, 56, 13]. Other CT applications rely on gamma-rays or even cosmic myons to
image strongly attenuating objects such as oil pipelines [107] or ancient pyramids [152].

All of the above settings come with their own peculiarities: In electron tomography for
instance, tomographic views may be typically only acquired for a few incident directions in a
limited range due to radiation damage and geometrical restrictions. In phase contrast tomog-
raphy, the acquired data is given by diffraction patterns, that relate to the actual projections of
the object’s refractivity in a highly non-trivial manner. Moreover, even the seemingly standard
application of medical CT involves a generally nonlinear inverse problem. Disregarding this
nonlinearity may lead to severe artifacts associated with so-called beam-hardening or photon-
starvation effects [10, 151].

To address this variety of different settings, there exist for once a large number of different
preprocessing methods that aim to make the data “ready” for reconstruction by standard
algorithms such as filtered backprojection (FBP) or its approximate analogue for cone-beam
tomography, the FDK-algorithm [64]. While this enables fast reconstruction, the applied pre-
corrections are often heuristic and limited in their effectivity. For this reason, variational
reconstruction methods have received increased attention recently, see e.g. [184, 18, 211, 181,
183, 119, 31]. These start from an image-formation model for the considered setting, supplement
it with additional a priori knowledge on the unknown object and expected data-errors and
reconstruct by minimizing a cost functional that incorporates all of this information. While
this approach is much more flexible in accounting for the peculiarities of a specific imaging
modality, it suffers from computational complexity: typically, the optimization has to be carried
out iteratively where each of the many iterations requires O(N*) arithmetic operations — as
much as a full FBP- or FDK-reconstruction. In current high-resolution CT applications with
N > 10? sampling-points along each dimension, this constitutes a major bottleneck.

Kaczmarz-type- or block-iterative methods like the (simultaneous) algebraic reconstruction
technique (S)ART [77, 6] may provide a compromise between the flexibility of variational meth-
ods and the favorable complexity of FBP. By fitting only small data-blocks in each iteration,
Kaczmarz-updates can be computed at lower computational costs than bulk-iterations on the
complete data. SART, for example, updates the reconstructed object by matching its pro-
jection to the measured data under one tomographic incident direction per step. Moreover,
Kaczmarz-methods are often observed to exhibit fast semi-convergence [155, 57], arriving at
accurate reconstructions already after O(1) fitting-cycles over the tomographic data set. If the
iterations are sufficiently cheap to compute, this enables image recovery at overall computa-
tional costs comparable to FBP or FDK. Recent variants of Kaczmarz-type schemes may also
incorporate advanced priors such as total-variation-penalties via interlacing gradient-descent-
or proximal iterations [21, 7, 52] or block-structured primal-dual-methods [35].

In the present work, it is shown that a very general class of regularized Kaczmarz-iterations
(also called “Tikhonov-Kaczmarz” [50, 115] or “incremental proximal” iterations [22, 7] by other
authors) for tomographic problems may be evaluated via efficient computational schemes of a
similar structure as classical SART-steps. The approach is therefore named generalized SART
(GenSART). The underlying idea is that — as long as the object is fitted to exactly one tomo-
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graphic view per iteration — the computed updates will typically be uniform along the direction
of the tomographic rays, i.e. a back-projection of some increment in the lower-dimensional
projection-space. This reasoning holds true for both parallel- and cone-beam settings, a large
variety of data-fidelity functionals, complicated image-formation models such as diffraction
operators and different regularization terms. The potential of GenSART is demonstrated by
outlining applications in Poisson-noise-adapted and outlier-robust tomographic reconstruction,
X-ray phase contrast tomography as well as for a polychromatic CT model.

This manuscript is organized as follows: §11.2 introduces the basic tomographic imaging
model and gives some background on Kaczmarz-type reconstruction methods. In §11.3, the
generalized SART principle is presented in an abstract setting, which is shown to be applica-
ble to the considered Kaczmarz-iterations in §11.4. §11.5 outlines several applications of the
proposed GenSART-schemes, for some of which numerical examples are presented in §11.6.

11.2 Background

11.2.1 Tomographic imaging model

We consider general tomographic inverse problems, for which the dependence of the data g
from the sought object f can be modeled as

9 Fi(P(f))
Jtot = : = : = Fiot(Prot(f)) (11.2.1)
ngroj FNproj (PNprOj (f))

P; are parallel-beam- or cone-beam projectors acting on a 3D-object density f € L*(Q)
(L2(Q) == {f : R* = R : [|f]lz2 < oo, supp(f) C Q}, [|h]]32 := [|h(x)|*dz) with support
supp(f) in a bounded open domain  C R3. The setting is sketched in fig. 11.1. Note that
(11.2.1) constitutes a semi-continuous tomography model in that f and the gi,...,gn,,,, are
modeled as continuous images, but the number of tomographic views Np,0; € N is finite.

In a parallel-beam tomography setup, each P; = ﬁgm maps f onto its line integrals along
a certain incident direction 8 € §? ;= {x € R? : |z| = 1}:

Po(f)(xy) = /Rf(xnx +yn, +20)dz  forall =z, = (z,y) € R? (11.2.2)

where n,,n, € S? are chosen such that {6, n,,n,} forms an orthonormal basis of R

In a cone-beam tomography setup modeled by P; = %, , a single projection is given by

line integrals along rays emanating from a point-source s € R3\ 2 along all directions:
24(F)() ;:/ f(s+te)dt forall cS2. (11.2.3)
0

The maps Fj in (11.2.1) denote (possibly nonlinear) image-formation operators, modeling
the relation between the raw projections p; = P;(f) and the data g; that is actually detected.
For instance, the choice Fj(p;) = Iy-exp(—p;) models absorption-based X-ray tomography with
monochromatic illumination of known intensity distribution Iy. More complicated operators
can be derived to model polychromatic CT or phase contrast tomography, for example.
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tomographic rays

ic rays
S. tom%’ raphic

Figure 11.1. Sketch of the considered tomographic model: the measured data g; is given by a finite
number of tomographic projections p; = P;(f) of an unknown 3D-object f, mapped under additional
image-formation operators F;. Top: parallel-beam example with diffractive image-formation (phase
contrast). Bottom: cone-beam setup with absorption-contrast as in conventional CT.

11.2.2 Inverse problem and a priori constraints

This work is concerned with reconstructing the an unknown object f from tomographic data
grot modeled by (11.2.1), i.e. in solving the following inverse problem:

Inverse Problem 11.1 (Tomographic reconstruction). For a given domain 2 C R?, parallel- or

cone-beam projectors Py, ..., Py, . and image-formation operators Fi, ..., Fy, ., reconstruct
an object f € L*(Q) from noisy data
9 =Fi(Pi(f) +€ for  j=1,... Ny (11.2.4)

As Inverse Problem 11.1 is typically ill-posed even in the trivial case where the Fj are just
given by the identity, one typically aims to exploit available a priori knowledge on the unknown
density f to be reconstructed. Common a priori constraints include:

e Support constraints: f is known to be identically zero outside 2 C R3. Note that such
constraints are already incorporated in the tomographic imaging model from §11.2.1.

e Boz constraints: the admissible values of f may be bounded from below and/or above.
For example, it is often physically justified to assume non-negativity, f > 0.

e Regularity constraints: A certain smoothness of f is assumed in the reconstruction, for
example by imposing that the total variation seminorm [, |V f| dz is small.

In addition to incorporating such constraints, one often seeks to account for an (approximately)
known statistics of the data errors €.
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11.2.3 Reconstruction methods

Variational methods: The widely used filtered back-projection- (FBP) and Feldkamp-Davis-
Kress (FDK) reconstruction algorithms often lack flexibility to accurately account for specific
tomographic settings and available a priori knowledge. As a remedy, variational methods have
been proposed. The idea is to minimize a generalized Tikhonov functional:

J° € argmin S (gﬁfi; Fiot (Ptotf)) + Rtot(f)' (11~2~5)

feL?(Q)

The data-fidelity functional Siot (gtot; -) may account for the expected data-error-statistics,
while the penalty functional R, allows to impose a priori knowledge on the object.

The main drawback of variational methods lies in their computational costs. If the minimizer
in (11.2.5) is computed by generic (convex) optimization methods, such as primal-dual methods
[36, 183], fast iterative soft shrinkage [18] or the alternating direction method of multipliers
[70, 181], many iterations are typically needed for convergence. Moreover, each iteration usually
involves an evaluation of the full tomographic projector P, and its adjoint P, and thus

amounts to similar computational costs as a complete reconstruction by FBP or FDK.

Kaczmarz-type methods: One approach to decrease the number of expensive evaluations of
P,y and P, compared to (bulk) variational methods is to exploit the block-structure of Inverse
Problem 11.1 by performing cyclic iterations on the sub-problems g;?bs = F;(P;(f)) + €. We
consider such Kaczmarz- or block-iterative-methods in a general variational form

frr1 € ?I%Ig(l{izl)lsk (g;-’]los; Fj (P () + Re(f), Jr €{1,..., Npwoj}- (11.2.6)
S

The processing order {ji} is typically chosen as an integer number of cycles over the whole
data, given by permutations of the indices {1,..., Ny;}. Provided that the functionals S, Ry
in (11.2.6) relate to Sior, Rioy in (11.2.5) in a suitable manner, Kaczmarz-schemes may yield
similar reconstructions as the associated bulk variational methods, as will be seen in §11.2.4.

The formulation (11.2.6) generalizes classical Kaczmarz-iterations, see e.g. [155, §V.3]:

frer = argmin | f — fillf.  with By := argmin | P, (f) — g;,[I7-

f€By fEL2(Q)
— tin (‘angmin 17,(1) — [ + allf =l (1127
a—0 fELQ(Q)

The well-known algebraic reconstruction technique (ART) [109, 77] is an analogue of this ap-
proach applied to a fully forward model, where the projectors Pj, are replaced by single rows
of a projector matrix. On the other hand, simultancous ART (SART), proposed in [6] as a
heuristic approach to stabilize ART by simultaneously updating all matrix-rows corresponding
to a single tomographic projection, can be interpreted as the discretization of an analytical
formula for the Kaczmarz-iterate in (11.2.7). This will be seen in §11.3.2.

11.2.4 Convergence of Kaczmarz-iterations and relation to Tikhonov
regularization

Classical Kaczmarz-iterations of the form (11.2.7) are known to exhibit fast semi-convergence,
typically yielding a regularized reconstruction within O(1) cycles while increasingly amplifying
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data-noise if more iterations are preformed, see [57| and references therein. Recently, Kin-
dermann and Leitao [115] obtained a much more concise characterization of convergence for
reqularized (Tikhonov-)Kaczmarz-iterations, based on previous work by Elfving and Nikazad
[58]. One of their principal results (cf. [115, Theorem 3]) can be cast to the following form:

Theorem 11.1 (Kindermann & Leitao [115]). Let X,Y7,..., YN be Hilbert spaces, fo € X
and g° = (7™, ..., 9%°) € Yir = [1;Y;. Moreover, let A; : X — Y; linear-bounded and

Aot = (A1,..., AN)T : X — Yios. Then, after a symmetric Kaczmarz-cycle,
Foay = argminfeX | Agsrf — 913331”% +al f - fk”?x Jork <N (11.2.8)
+1 = . obs 2.
argmin ey [|[Aon—rf — 58 4ll3, +allf = fll X fork >N
fork=0,1,...,2N — 1, the final iterate minimizes a bulk Tikhonov-functional:
. obs\ (12 | 2
fon = argmin |[W - (A f — ™) ||, + §Hf — Jollx (11.2.9)
fex
id —L1A,45 0 —laAy \ T
id + LA, A 0 2 i ot
0 id+ LAy AY 0 g _EA{\(;—lAN
i

Theorem 11.1 is applicable to the considered Kaczmarz-iterations in (11.2.6) if the data-
fidelities Sy, are quadratic, the maps F} are linear and Ry (f) = | f — fil|% for some Hilbert-
space-norm ||-||x. For this case, it states that already one symmetric Kaczmarz-cycle essentially
yields a minimizer of the associated bulk Tikhonov functional, up to a slight modification of the
data-fidelity term by the operator W in (11.2.9). Notably, W deviates from the identity only by
contributions of order a~!. This implies that the result is not applicable to the limit o — 0 of
the classical Kaczmarz-method (11.2.7). On the contrary, for sufficiently large a, theorem 11.1
shows that regularized Kaczmarz-iterations may be used to approximate Tikhonov-minimizers,
i.e. to emulate bulk variational methods — at least in the considered quadratic setting. Other
convergence results pointing in a similar direction are given in [21, 22, 7).

11.2.5 Contribution

In order for Kaczmarz-methods to provide a truly efficient alternative to bulk variational ap-
proaches, essentially two conditions have to be satisfied:

1. The iterates f; arrive at a reasonable reconstruction after few cycles (ideally one).

2. The individual Kaczmarz-iterations may be evaluated at low computational costs.

The convergence theory reviewed in §11.2.4 indicates that condition 1 is often fulfilled, in
agreement with empirical observations for Kaczmarz-reconstructions in practice. The present
article, on the other hand, does not focus on convergence but contributes to meeting condition 2
by proposing computationally efficient solution-formulas, termed generalized SART-schemes,
for Kaczmarz-iterations of the general variational form (11.2.6).
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11.3 The Generalized SART-Principle

11.3.1 Preparations: notation and analysis of the projectors

In order to analyze the Kaczmarz-iterations (11.2.6), we need some properties of the projection
operators P € {Pg, s} for a single incident direction @ or source position s, see §11.2.1.
First of all, we note that different values of @ and s merely correspond to a rotation and shift
of the coordinate system, respectively. We may therefore restrict our analysis without loss of
generality to the cases @ = (0,0,1)T and s = 0, i.e. to the operators

P(f)(xy) = flxl,2)dz, 2(f)(p) = fltp)dt for =z, eR* pe$S® (11.3.1)

LY, LZ
where we have defined the ray-segments intersecting €2 in the parallel- or cone-beam setting:

L7 ={2€R:(x1,2)€Q}, Dyp:={zx  eR*: L] #0} (11.3.2a)
9 ._ . . . 2. 7179
Ly = {t €[0;00) : typ € Q}, Dy = {p €S*: L] # 0} (11.3.2b)
By definition, Z(f) and 2(f) vanish outside the projection-domains Dy C R* Dy, C S? for
any f € L*(Q). Moreover, as Q is open, so are the sets Lfl,Lg C R and Dy C R%2, Dy, C S%
To enable a unified treatment of parallel- and cone-beam settings, we set D := R? if P = &
and D :=S?if P = 9.

We define the ray-density functions wp and (weighted) unit-projections up, Up:

1 for P= &

, = P(lg), dp:=2P 11.3.3
2|2 frpog 0T PUe) de=Plor) o (1139)

wp:Q—>R>0;:vr—>{

where 1o € L?(2) is the constant 1-function in Q. Note that ap = up for P = £, whereas
up # up for P =2, and that Dp = {x € D : up(z) > 0} = {z € D : up(x) > 0}.

Back-projections: We introduce the back-projections corresponding to & and Z:

p(x/|lx|) ifxeQ

11.3.4
0 else ( )

QZB@)(mbz) — {p(wj_) if (£,,2) €0

0 else

. ZP(p)(x) = {

PP(p) and Z°(p) are constant along all rays L7 or L7, which are exactly the integration-
domains in the definition (11.3.1) of & and 2, respectlvely In particular, this implies that

P(w-PP@p)) =Pw)-p for Pe{P 9} (11.3.5)

and all w, p for which this expression makes sense.

Spaces: We study the maps &2, Z as operators between spaces of square-integrable functions
L*(Q) :={f € L*(R?) : supp(f) C Q} and L*(Dp) := {p € LQ(ID) supp( ) C Dp} (Dp C D as
defined in (11.3.2)), Wlth the usual inner product (f,g)r2 = [, f( x) dx and corresponding
norm || fl|z2 := (f, f) /2 - For simplicity, we restrict to real—valued functlons throughout this
work, although all results naturally carry over to the complex-valued case. To avoid confusion,
it is crucial to note that our notation will follow convention 11.2:
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Convention 11.2. All local operations (+,—,-, /, (-)7, V, ...) on functions f € L*(Q) C
L*(R®) or p € L*(Dp) C L*(D) are implicitly understood to be performed only within the open
domains Q or Dp. For example, a quotient of py, py € L*(Dp) is to be read as

(pr1/p2) () = {gl(w)/mx) f?r velr pal zeD. (11.3.6)

Adjoints: For P € {2, 2}, it can be shown that P : L*(Q2) — L?(Dp) is a bounded linear
operator. The adjoints are given by (weighted) back-projections (see e.g. [155, 133]):

P*: L*(Dp) — L*(Q); P*(p) =wp-PB(p) for Pe{P P} (11.3.7)
Notably, the relation (11.3.5) applied to (11.3.7) yields
PP*(p) =P (wp-P(p)) =ap-p forall pe L*Dp). (11.3.8)

Remark 11.3. The formula (11.3.8) is of high computational value: it states that, while
evaluations of the operators P and P* alone may be complicated and costly to compute, the
composition PP* can be implemented as a simple pointwise multiplication of projections. This
observation is a key ingredient to an efficient computation of Kaczmarz-iterates.

Geometric characterization: In the analysis, we will need to consider weighted projectors:
Puo: [ = @p? - P(f) for Pe{P 9} (11.3.9)

Note that the expression is well-defined by convention 11.2 since @p(x) > 0 for all x € Dp.
At the first glance, the definition of P, may still seem artificial. Yet, it enables a compact
geometric characterization of the projectors, which is probably common knowledge at least for
P =2, see e.g. [155, § V.4.3]. The proof of the following result is given in appendix 11.A:

Theorem 11.4 (Geometry of the projectors). For P € {Z, 9}, Py : L*(Q) — L*(Dp) is
bounded with norm 1 and the adjoint P, : L*(Dp) — L*(Q); p — wp - PB(ﬂ;1/2 - p) is isomet-
ric. In particular, Ps, and Py, have closed range, P} P, is the orthogonal projection onto
range(P},) and Py P%, = id2m,) is the identity on L?(Dp).

iso
iso iso

11.3.2 L2-SART: a promising example

As a motivation for the general result presented in the subsequent section, we consider an
example of Kaczmarz-iterations, that turn out to be computable via a simple analytical formula.
Let the iterates be defined by

fisr € argmin || Py, (f) — g5 |2 + | f — fill3 (11.3.10)
FeL?(Q)

with regularization parameter a > 0 and g;?fs € L*(Dp). The unique minimizer of this varia-
tional problem is given by the solution to the corresponding normal equation:

fosr = fo = (PLPy, + ) Pr(gS™ = P (fi)
= Py (PP, + ) (g5 = Py (f)). (11.3.11)

Jk™ Jk
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The second equality in (11.3.11) uses an identity from functional calculus, see e.g. [60]. Ac-
cording to (11.3.8), (P, P, + a)‘l is a division by 1, + o (with @, = dp, ) so that (11.3.11)
yields

(11.3.12)

QbS—P-
Jerr = fe + P, (gjk—”’“(fk)> 7

ajk +
where all arithmetic operations are understood to be pointwise.
Relation to SART: By exchanging the continuous object density f;, projection data g;?:S,

projector P;, and unit-projection @;, in (11.3.12) with suitable discretizations P, € R™*", f, €
R™, ﬂjk,ggfjs € R™, a numerically implementable update-formula is obtained:

Frn =T+ P (957 — Pify) © (@, + @) (11.3.13)

where @ denotes element-wise division of vectors. Notably, the iterate f,,; from (11.3.13) is
in general not a solution to the discrete analogue of (11.3.10), i.e. typically

Frn ¢ al;g{élin 1P f —g5° 15+ allf — Fill3, (11.3.14)
e n

because Pj Pj — unlike P;, P’ — is not diagonal for standard discretizations. Interestingly
however, the update (11.3.13) is closely related to SART, that was originally derived without
reference to the continuous model. The classical SART-update [6] can be written as

Feo=Fr+ P (92— Py fr) o P;, (1) @ P (1), (11.3.15)

where 1 = (1,1,...,1)T denotes one-vectors of suitable length. In the parallel-beam case
Pj, = &, one has i, = P (lq) and P} (1p,) = 1o by (11.3.3) and (11.3.4). The term
P; (1) in (11.3.15) can thus be identified with 4;, in (11.3.13) and the division by P} (1) is
just redundant from the perspective of the continuous model. Accordingly, the SART-update
(11.3.15) essentially corresponds to the limit @« — 0 of (11.3.13). Since (11.3.13) has been
derived as a discretization of (11.3.10), SART (11.3.15) may thus be interpreted as a formula
to compute the classical Kaczmarz-iterations in (11.2.7). Conversely, (11.3.13) can be seen as
an L%-reqularized SART-variant.

The SART-Scheme: Analogously to classical SART, the update-formula (11.3.13) computes
the Kaczmarz-iterate in (11.3.10) via a highly efficient non-iterative scheme, that requires only
a single evaluation of Pj, and P} each:

Scheme 11.5 (L*regularized SART).

(1) Forward-project the current iterate: p, = P, (f;)
(2) Compute increment in projection space: Ap, = (g;, — p;,) @ (@, + a)

(3) Back-project and increment: f, ., = f, + Pj (Ap;)
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Notably, the actual data-fitting step (2) works exclusively on 2D-projections g, , py,, @j, €
R™, which are typically discretized by m = O(N?) pixels and thus low-dimensional compared
to the discrete $D-objects f, € R™ with n = O(N?) (/N sampling-points per spatial dimension).
This renders step (2) cheap to compute, so that the total computational costs of scheme 11.5
are essentially that of the evaluations of P; and P} in steps (1) and (3). Combined with
the fast (semi-)convergence of Kaczmarz-methods in O(1) cycles (see §11.2.4), this implies that
L?-SART-schemes allow to compute reconstructions at a favorable computational complexity
of O(1) evaluations of the full projector Py, = (P1,..., Py, . .) and P;,,, compare §11.2.3.

proj

11.3.3 Generalized SART framework

In §11.3.2, it has been shown that L2-Kaczmarz-iterations (11.3.10) can be evaluated in a simple
and efficient manner although they involve a seemingly complicated optimization problem. Mo-
tivated by this result, we explore in how far more general Kaczmarz-iterations permit an efficient
computation analogous to the SART-like scheme 11.5. For notational convenience, we drop the
subscripts in (11.2.6) at this point and abbreviate the data-fidelity as S (p) := Sk (g;?:S; F;, (p) ),
absorbing the maps F}, into the functional. Thereby, the considered Kaczmarz-iterations are
cast to the generic form

faow € argminS (P(f)) + R(f) = argmin S(P(f)) + R(f). (11.3.16)
rerz(©) fer2(9)

On the right-hand side of (11.3.16), it has been used that (P,S) may be replaced by any
pair (P, S) of modified projectors and data-fidelities, provided that S(P(f)) = S(P(f)) for all
f € L*(Q). We have to exploit this freedom since our mathematical framework will require P to
have closed range, which is not satisfied for P = P € {22, 2} : L*(Q) — L*(Dp), but only for
suitably weighted versions like P = Py, compare theorem 11.4. We consider the optimization
problem in (11.3.16) for a general bounded linear operator P : X — Y on Hilbert spaces X, Y.
In this setting, we find that the key ingredient to computing (11.3.16) via a SART-like scheme
is the following assumption on the geometrical compatibility of P and R:

Assumption 11.6. Let P : X — Y be a bounded linear operator on Hilbert spaces X,Y with

null-space kern(P) = {f € X : P(f) = 0} such that range(P) = P(X) C Y is closed and let
R : X — RU{oo} be a functional. Assume that there exists an fiof € X such that

7?'(fref + P*(p> + fO) Z 7—\)/(fref + P*(p)) for all p € Y7 fO € kern(P)' (A)

Assumption 11.6 ensures that the penalty functional R uniformly penalizes deviations from
a certain reference element f.o by elements from the null-space of P. If this condition is
satisfied, (11.3.16) can be evaluated according to our principal theorem:

Theorem 11.7 (Generalized SART-principle). Let assumption 11.6 be satisfied and let S :
Y — RU{oo} be any functional. Assume that there exists a minimizer

foew € arfgen;ing(p(f)) +R(f). (11.3.17)
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Then there is a (possibly distinct) minimizer foew € X of (11.3.17) given by

Dret = P(fref) (11318&)

Ap € argmin S (pret + PP*(p)) + R(fret + P*(p)) (11.3.18b)
peY

fnew = fref + ﬁ*(Ap) (11318C)

Conversely, any foew given by (11.3.18) minimizes (11.3.17). Furthermore, if strict inequality
holds in (A) whenever fo # 0, then all minimizers of (11.3.17) are of the form (11.3.18).

Proof. Let Af := foew — feor. Since P has closed range, the same holds true for the adjoint P*
by the closed-range-theorem. Hence, there is an orthogonal decomposition X = nge(l1~j ) D1
kern(P) so that, in particular, there exist f; € kern(P) and Ap € Y such that Af = P*(Ap) +
fo. Now define foew := feof + P*(Ap) Then (A) implies that

R(faew) = R fret + P*(D)) < R(fret + P*(0) + fo) = R(few)- (11.3.19)
Moreover, it holds that S (P( fnew)) =8 (ﬁ’( fnew)) since fnew — frew € kern(ﬁ). Thus,
S(ﬁ)<fnew)) + R(fnew) < g(p(fnew)) + 7-\)f(fmew) (11.3.20)

where the left-hand side is strictly smaller if fnew % foew uncler~ the additional assumption
that strict inequality holds in (A) for fo # 0. This proves that fiey is a minimizer and that
froew = faoew must hold in the case of strict inequality. Moreover, Ap satisfies

PH(Ap) € aigfming(p(fref +Af)) + R(fret + AF)
ex

= Ape€ argerging(p(fref) + PP*(p)) + Rl fret + P*(p)), (11.3.21)

which proves (11.3.18). For the converse statement, let faew be given by (11.3.18). Then Foew
minimizes the cost-functional C(f) := S(P(f)) +R( f Joverall f e A:= fref—l—range(P*) Since
assumption 11.6 implies that C(fpew + fo) > C (fnew) for all fy € kern(P), fuew also minimizes
C over X = A + kern(P) and hence solves (11.3.17). O

We aim to apply theorem 11.7 to the tomographic Kaczmarz-iterations in (11.3.16). Al-
though stated in an abstract manner, the result is particularly well-suited for this application:

(a) The optimization problem (11.3.18b) is on the image-space Y of P (projection-space),
which is much lower-dimensional than the object-space X in the considered setting.

(b) The operator PP* appearing in (11.3.18b) is trivial to evaluate for tomographic projectors
P € { Py, Diso}, contrary to P or P* alone (see remark 11.3 and theorem 11.4).

To apply theorem 11.7, literally nothing has to be assumed on the functional S, so that the
result offers complete freedom in the choice of the data-fidelity S in (11.3.16). What remains
is to verify assumption 11.6 for P € {Pis0, Piso} (or related choices) and suitable penalties
R. This is established in §11.4. We refer to the resulting formulas of the kind (11.3.18) as
generalized SART- or GenSART-schemes, aluding to their structural similarity to scheme 11.5.
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11.4 Admissible penalty functionals

The aim of this section is to identify penalty functionals R = R, that satisfy assumption 11.6,
in which case the Kaczmarz-iterations in (11.2.6) can be computed via GenSART-schemes by
virtue of theorem 11.7.

11.4.1 Preliminary insights

In order to gain an intuition for the admissible penalties, let us first discuss the meaning of the
condition (A). Tt asserts that — relative to a certain reference object frf — any deviation by an

element from the null-space kern(P) is penalized or at least does not decrease the value of R. For
(weighted) parallel-beam projectors P = P, elements in kern(ﬁ) = kern(Pis,) = kern(2)
are exactly functions that have zero mean along each tomographic ray, whereas an element
f € L*(Q) is in range(P*) = range(#*) if and only if f is constant in Q along the ray-
direction, see §11.3.1. The gist of theorem 11.7 for parallel-beam geometries can thus be stated
as follows: if R uniformly penalizes oscillations along the rays, the increment computed in
(11.2.6) is constant in ray-direction and thus fpew — fref € range(2?*). In cone-beam settings
P = Yo, the characterization of kern(]—:’) is identical as in the parallel-beam case. However,
elements in range(P*) = range(2*) are only constant along the rays up to a scaling with the

ray-density, see (11.3.7).

In a nutshell, the above indicates that smoothing penalties, that tend to damp out variations
of foew — fref Wherever possible, are promising candidates to satisfy assumption 11.6. Indeed,
it will be verified for (weighted) L?-, quadratic gradient- and general L9¢-penalties in the fol-
lowing sections. Before proceeding to the analysis of these settings, let us observe that convex
combinations of admissible penalty functionals still satisfy assumption 11.6. This enables an
application of theorem 11.7 to Kaczmarz-iterations with mixed penalties:

Lemma 11.8. Let ay, a0 > 0 and let Ry, Ro : X — RU{oo} be functionals satisfying (A) for
the same fiof € X and P: X — Y. Then R := anyRq + auRy satisfies (A).

Proof. This follows by summing scaled versions of (A) for R; and R.. O

11.4.2 (Weighted) L*-penalties

As a simple candidate for admissible penalty functionals R within the framework of theo-
rem 11.7, we consider quadratic penalties of the form

R(f) = IIf = feetl%, (11.4.1)

where || - ||x denotes the norm of the Hilbert space X. Owing to the geometric nature of the
condition (A), it is straightforward to show that such a choice satisfies assumption 11.6. Note
that the result is not limited to tomographic projectors P € {2, Z}, but holds within the
general abstract setting of assumption 11.6:
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Lemma 11.9 (Quadratic norm penalties). Let X,Y be Hilbert spaces, P : X — Y linear-
bounded with closed range and let R(f) := ||f — fretll% for fret € X. Then assumption 11.6 is
satisfied with strict inequality in (A) for all fo # 0 and it holds that

R(fret + P*(p)) = (p, PP*(p))y forall peY. ((-,-)y: inner product in Y)  (11.4.2)

Proof. In the considered setting, the condition (A) follows simply by the orthogonality kern(P) L
range(P*): for all p € range(P*), fo € kern(P), it holds that

D* D* f)*( )-Lf D*
Rlfret + P*(0) + fo) = |1P*(0) + fol 5k~ = " 1P )% + I follx
> |[P* (D)% = R(fret + P*(p))
= (P(p), P*(p))x = (p, PP*(p))y (11.4.3)
Moreover, since || fol|% > 0 whenever fy # 0, strict inequality holds in this case. The equality
in the third line simply follows by the defining property of the adjoint. O]

The abstract result from lemma 11.9 can be applied to establish GenSART-schemes for
general Kaczmarz-iterations with L?-penalty:

Theorem 11.10 (Generalized SART with L2-penalty). Let P € {2, 2} : L*(Q)) — L*(Dp),
Jret € L2(Q), a > 0 and let S : L?*(Dp) — R U {oo} be any functional. Then the minimizers of

foew € argmin S (P(f)) + || f — feet|| 32 (11.4.4)
fel?(Q)

are uniquely determined by the GenSART-scheme

Preft = P(fref) (1145&)

Ap € argmin S (pref + ﬂllD/2 ~p> + allp|l72 (11.4.5Db)
pELQ(Dp)

fnew = fref + P (711:.1/2 . Ap) (11450)

The result (11.4.5) constitutes a generalization of the L?>-SART-scheme derived in §11.3.2
for arbitrary data-fidelities S. Indeed, the choice S(p) = ||p — ¢°*||2, in (11.4.5) reproduces
the formula (11.3.12). Importantly, the optimization problem (11.4.5b) in projection-space no
longer contains evaluations or P or P* and is thus easy to solve given that S is sufficiently
simple. We omit the proof of theorem 11.10 as it is just a special case of the following result:

Theorem 11.11 (Generalized SART with L?-penalty and weighted projector). Let P € {2, 7} :
L*(Q) — L*(Dp), fret € L2(), a > 0 and let S : L*(Dp) — RU{oo} be any functional. More-
over, let A : Q — R with Apin < [M@)] < Amax for almost all € € Q and some constants
0 < Ain < Aax < 00. Then the minimizers of

fnew € argminS (P()\ ’ f)) T Hf - frein2 . (1146)
fer?(Q)
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are uniquely determined by the GenSART-scheme

Dret = P(A : fref) (11473)

Ap € argmin S(pref—i-)\p-il})/ . ) —|—a}|/\1/2 ]DHi2 (11.4.7b)
pEL?(Dp)

faew = fret + A P*(ip"% - Ap) (11.4.7c)

with Ap = P(wp - |\|?)/up, wp denoting the ray-density introduced in §11.3.1.

Proof. The bounds for A ensure that M, : L?(Q) — L*(Q); f — X - f is an isomorphism.
We set X := L2(Q), Y 1= L2(Dp) and P := Py 0o My : X = Y with Peo(p) = "> - P(p) as
defined in (11.3.9). Then P has closed range by theorem 11.4 and M, being an isomorphism.
By setting S(p) := S(ﬂ}g/2 -p) and R(f) := a||f — frefl|32, (11.4.6) is cast to the form (11.3.17).

According to lemmas 11.8 and 11.9, assumption 11.6 is satisfied in the strict-inequality-
version so that the GenSART-theorem 11.7 is applicable. Hence, the minimizers fye,, of (11.4.6)

can be computed via (11.3.18). Substituting the expressions for S, P, R and exploiting that
R(fret + P*(p)) = (p, PP*(p))y according to (11.4.2) yields

ﬁref - P(fref) - UJ_DI/Z (>\ : fref) (1148&)

Ap € argmin S(up * Dret + ﬂ};ﬂ PP (p)) + ap, PP*(p)) 2 (11.4.8b)
peL?(Dp)

Foow = fret + A - P*(ip"? - p). (11.4.8¢)

From this expression, the formula (11.4.7) is obtained by setting pyer := 1’1}/2 - Pret and using
that, according to (11.3.5) and (11.3.7),

PP ()= PN - P (%)) = i - P((wp - ) PP )
= up 'f“U¢“|AF)'P=:Ap-p for all Z)EIP(DP), =

Note that, once again, the optimization problem (11.4.7b) does not involve P or P* except
in the form of the precomputable functions Ap. Theorem 11.10 is obtained from theorem 11.11
by choosing X := 1. Moreover, the theorem enables GenSART for weighted L*-penalties:

Corollary 11.12 (Generalized SART with weighted L-penalties). Let P € {2, 2} : L*(Q) —
L*(Dp), frer € L*(Q), a > 0 and let S : L*(Dp) — R U {oo} be any functional. Moreover, let
w: Q= Rog with Wy, < w(x) < Whpax for almost all € € Q and some constants 0 < Wy, <
Wiax < 00. Then the minimizers of

fnew € argmin S (P(f)) + osz_l/2 (f = fref) HL2 (11.4.9)
feL?(Q)

are uniquely determined by the GenSART-scheme

DPret = P(frer) (11.4.10a)

Ap € argmin S (pref + vp - 11;/2 -p) + oz||vllg/2 'pHLQ (11.4.10b)
pEL?(Dp)

fnew - fref_'_ w - P*( o Ap) (11410C)

where vp = P (w - wp) /tp, wp denoting the ray-density introduced in §11.3.1.
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Proof. fuew is a minimizer of (11.4.9) if and only if fnew = w Y2 f . solves the optimization

problem (11.4.6) for A := w'? and f.ef replaced by fuer := w2 fier. The resulting GenSART-
scheme (11.4.7) for fnew yields (11.4.10). O

The more general, weighted GenSART-schemes from theorem 11.11 and corollary 11.12
enable interesting applications, as will be seen in §11.5.2.2. Moreover, note that the assumption
that A\ or w are bounded from below can be dropped at the cost of a more technical proof.
Indeed, the formulas (11.4.7), (11.4.10) still make sense if A or w vanishes in parts of 2.

11.4.3 Gradient-penalties

In order to enforce a certain smoothness of the reconstructed object, variational methods of-
ten use penalties that involve derivatives. Similarly, we seek to extend the above results to
Kaczmarz-iterations (11.2.6) with quadratic gradient penalties:

R:I2(Q) = RU{oo}: R(f) = IV(f — fred)Po = / V(- fe)Pde  (11411)

with the convention that ||Vh| = oo for any h € L*(U) \ W'2(U), where W'2(U) is the usual
Sobolev-space Wh2(U) := {f € L*(U) : f weakly differentiable in U with |V f| € L*(2)} on
an open domain U C R™, with norm || f||Z1.. := || f|32 + ||V f]|72. Moreover, we recall that
gradients of functions f € L%*(Q), p € L?(Dp) are understood to be computed only within
Q CR? and Dp C D, i.e. in particular not across boundaries (convention 11.2).

By §11.4.1, one might hope that the gradient penalty in (11.4.11) satisfies assumption 11.6
owing to its smoothing effect. Indeed, this turns out to be almost true, up to some complications
arising from thickness-variations of the domain €2. This is explained in the following.

For simplicity, we study the parallel-beam case, 15~ = P, and continuously differentiable
functions fy € €*(2) Nkern(P) and p € L?*(Dp) s.t. P*(p) € €(Q). Then we have that

Rfur + P*(p) + fo) = / V(P2(p) + fo)l da
VP ()2 + [V fol2e + 2 / VP (D) Vhodw,  (11.412)

By (11.4.12), the inequality (A) holds true if and only if the mixed integral on the right-hand
side vanishes for all admissible p and f;.

Now let us assume that  is convex with €!-boundary. Then we may write it in the form
Q={(xy,2) e R®:a(x.) < 2 < b(x,)} for continuous functions a,b : R? = R, a < b, that
give the entrance- and exit points of the tomographic rays into §2. Hence, it holds that

b(z 1)
[vorw aae= [ ([T vrLm@ Vi) a:) de
Q R2

a(z.)

:/RQV(p/ulg/,Q)(a;J_). (/b(mmfo(m,z) dz) de..  (11.4.13)

a(zy)

1so<p)(wi7 Z) - gZB(p/u,lQ{Q)(wL, Z) = p(ZBL) is constant
in z so that the z-component of the gradient V = (V,0,) vanishes and V& (p)(xL,z) =

In the second step, we exploited that
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Vi(p/ uif)(m 1) can be pulled out of the inner integral. Since a and b are continuously differen-
tiable within the open set U := {x; € R? : a(x,) < b(x1)} by the assumptions on , we can
apply Leibniz’ rule to the inner integrals in (11.4.13):

b(zy) b(zy)
/ Vifolx,,2) dz:VL/ fo(xy,2) dz

(1) a(x )

— (folxr,b(xy))Vb(xy) — fo(xr,a(xy))Va(xy)) forall x; €U.  (11.4.14)

The first integral on the right-hand side of (11.4.14) can be identified as VZ(fy)(x,) and
vanishes since fy € kern(Pi,) = kern(Z?). The second term, arising from variations of the
domain-boundary-functions a and b, does not vanish in general. Yet, it vanishes if either

® a,b are constant within U. This is only the case for domains of the form Q = 2, x
for some Q; C R? and ) C R, such as cuboids aligned with the ray-direction.

e fo vanishes on the boundary of (.

(11.4.14), (11.4.13) and (11.4.12) indicate that either of the above restrictions may ensure
that the inequality (A) is satisfied. We focus on the second one in order to retain geometrical
flexibility of the object-domain €). In order to verify assumption 11.6 in a Sobolev-space setting,
we consider the subspace of functions with trace zero, W, ?(Q) := €=(Q) ¢ W2(Q), defined
as the closure of the smooth and compactly supported functions () in the W2-topology.
Firstly, we need to analyze the mutual behavior of the projectors and the gradient operator, as
established by the following lemma, which is proven in appendix 11.B:

Lemma 11.13. Let P € {2, 2}, f € Wy*(Q) and p € L*(Dp). Denote by Vy the gradient

on the detection domain D € {R?,S?} and by Vp the component of gradient in R perpendicular
to the local ray-direction of the projector P. Then it holds that

P(wp'? - Vpf) = Vo P(f) (11.4.15)

lip'? - VoP(f)llx < lwp'? - Vof ez, (11.4.16)

where wp is the ray-density defined in §11.3.1. Moreover, PB(p) € WH2(Q) holds true if and
only if u}D/Q -Vpp € L*(Dp) and in this case

IVPP)|12 = ||up® - Vool (11.4.17)
(VPP(p), V)2 = (up? - Vop,up'? - VoP(f)) .. (11.4.18)

It should be emphasized that the occurrence of both up and up in lemma 11.13 is not a
typo, but is indeed necessary to correctly cover the cone-beam case P = Z. In a parallel-beam
setting P = &2, on the other hand, one has up = up and wp = 1, so that the expressions can
be simplified. Lemma 11.13 permits to prove the admissibility of gradient-penalties, yet in a
slightly restricted setting due to the “geometrical complications” explained above:
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Lemma 11.14 (Admissibility of L?-gradient-penalties). Let P € {22, D}, fir € L*(Q) and
let R be defined by (11.4.11). Let X := (L*(Q),(-,-)p) be equipped with the inner product
(fi, f2)p == (wp - f1, fo)12. and define P : X — L*(Dp); f — uP1/2 P (f). Then assump-
tion 11.6 is satisfied if we restrict to elements fo € kern(P)NWy () in (A) and strict inequality
holds for all fo # 0. Moreover,

R(feot + P*(p)) = luy® - Vo (up? - p) |7, (11.4.19)

for all p € L*(Dp) where possibly both sides may attain the value oo.

Proof. By definition, it holds that P=DMo Py, 0tx, where Py, denotes the weighted projector
from theorem 11.4, M : L?*(Dp) — L?>(Dp); p — (tp/up)/?-pand 1x : X — L*(Q); f— f
is the canonical embedding. The norms of X and L?*(2) are equivalent since ¢ < wp < C'is
bounded from below and above by constants 0 < ¢ < C'. The bounds also imply that 2 <
(ip/up)/? < CY2 by (11.3.3). Hence, tx and M are isomorphisms so that P = M o Py, 0 tx
has closed range by theorem 11.4. Moreover, it holds that /% (f) = wp' - f for all f € L3(Q).
Hence, we have for all p € L*(Dp)

P*(p) = v (P (up? - p)) = wp' - P*(up? - p) "ET PP(up2 . p). (11.4.20)

Now let p € L2(Dp) and fy € kern(P) N W, () be arbitrary. If P*(p) ¢ W'2(Q), then also
P*(p)+ fo ¢ W*(Q) and so R(fref+P (p ) 0) = 0o by (11.4.11), in which case (A) is trivially
satisfied. Hence, we assume that P*(p) € W'2(Q) in the following. Then it holds that
R(fret + P*(0) + fo) = IV (P*(p) + fo) |22
= [VP*(p)l[72 + 2(VP*(0), V fo)r2 + IV follZ:
> IVP (P72 + 2(V P (p), Vo)1
= R(fret + P*(p)) + 2(VP*(p), V fo) 2. (11.4.21)

We need to show that the mixed term on the right-hand side of (11.4.21) vanishes. However,
this is a simple consequence of lemma 11.13: since P*(p) € W'?(Q) and

P*(p) =t} o Pyo M*(p )—w; wp - PP (ip"? - (iip fup)'/? - p) = PP(up"? - p), (11.4.22)

180

it follows that u} P VD( p) € L*(Dp) and we obtain by application of (11.4.18)

(VP*(p), Vfo)rz = (VPP(up ™™ - p), V fo) 12

fo Ekern(la_):kern(P)

<u11D/2 Vo - p),uzt? . VoP(fo)) 1z 0. (11.4.23)

Inserting this result into (11.4.21) shows that the inequality (A) is satisfied for all f, € kern(P)N
Wy (). Moreover, if fo # 0, then fy is necessarily non-constrant in Q so that ||V fo||z2 > 0.
By the second line in (11.4.21), this implies that strict inequality holds in (A) if fy # 0. Finally,
combining (11.4.20) and (11.4.17) yields

R fret + P*(0)) = ||V (PP (up - ) |70 = [|ur® - Vo (up - p) || (11.4.24)

which, by lemma 11.13, remains valid if the expressions attain the value oo. O]
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Lemma 11.14 enables GenSART-schemes for Kaczmarz-iterations of the form (11.3.17) with
R(f) = IV(f — fret)||72 — if the optimization is restricted to a slightly smaller choice set:

f = fret € Wp*() := (range(PB) N W3(Q)) @ (kern(P) N Wy*(Q)) € WHA(Q)  (11.4.25)
By lemmas 11.8 and 11.9, this remains true for more general Sobolev-W12-like penalties,

R(f) = allf = frtllfra  with (|l = (=) wp® Al +7 (VR (11.4.26)

for some 0 < v < 1. Note that h — Hw]la/2 -h||z2 is the Hilbert-space-norm of X in lemma 11.14,

which is identical to the L?-norm in the parallel-beam case P = £ but not in a cone-beam
setting P = 2, since wg = 1o but wy # 1g. The general result reads as follows:

Theorem 11.15 (Generalized SART with W'%penalties). Let P € {£,9} : L*(Q) —
L*(Dp), fret € L*(Q), a > 0 and let S : L*(Dp) — R U {oo} be any functional. Then the
minimizers of

foew € argmin - S (P(f)) + allf = fretll? 2 - (11.4.27)
FEfeett W (D) "

are uniquely determined by the GenSART-scheme

DPref = P(fref) (11428&)
. — 2
Ap € srgmin S(pret + up?  p) + a(l =) Ipl72 + oy|[uy® - Vo(ups"? - p)|,,  (11.4.28b)
peE P
fnew = fref + PB(u;1/2 : Ap) (11428C)

Proof. Let X = (L*(Q),(-,-)p) and P : X — L*(Dp) be defined as in lemma 11.14 and
S(p) == S(u}ﬁ -p). Then the optimization problem (11.4.27) can be written in the form

foow € ar}gg(ing (P(f)) +a(l —9)Ri(f) + avRa(f). (11.4.29)

where the functionals Ry, Ry : X — R U {oo} are given by
Rl(f) = ||f - fref”%{v RQ(f) = ||V(f - fref)HiQ + Xf((f - fref)- (11430)

Xz : X = RU{oo} is the indicator functional of X := Wp*(Q), defined by x(h) = 0if h € X
and y(h) = oo otherwise. As range(PB) = range(P*) and kern(P) = kern(P), it holds that
X = (range(P)NW'2(Q)) @ (kern(P) "W,y *(Q)). By lemmas 11.9 and 11.14, assumption 11.6
is thus satisfied for P : X — L?*(Dp) and R = R; for j = 1,2. According lemma 11.8, the
same is true for R := a(1 —v)R1 + ayR,. Hence, the GenSART-theorem 11.7 is applicable to

(11.4.29) so that a minimizers f,ey can be found via the scheme (11.3.18):

ﬁref = p(fref) — U;1/2 . P(fref) (11431&)

Ap € argmin S(ﬁref + PP () + R(fret + P*(p)) (11.4.31b)
peL?(Dp)

fnew = fref + P*(Ap) (11431C)
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By lemmas 11.9 and 11.14, the penalty term can be rewritten to

R(fret + P*(p)) = a(1 = 7)Ry(fret + P*(p)) + avRa( frot + P*(p))

D D* - 2
a(1 =) (p, PP*(p)) 12 + ay|luil® - Vin(up? - )| (11.4.32)

Moreover, as seen in the proof of lemma 11.14, it holds that P*(p) = PB(ul_Dl/ . p) and thus
PP*(p) = u;l/Q : PPB(U;/2 -p) = p for all p € L*(Dp) by (11.3.5). Substituting these expres-

sions into (11.4.31) along with pef = u}J/Q - Pret and S(p) = S(u;l/2 - p) yields (11.4.28). O
To conclude this section, we make a few remarks on peculiarities of theorem 11.15:

e The derived SART formula (11.4.28) only involves the unweighted unit-projection up
and back-projector P and not the L%-adjoint P* : p — wp - PB(p). Accordingly, the
ray-density-weighting of the back-projection in the cone-beam case is omitted. This is
quite intuitive since back-projecting uniformly along the rays results in smaller values of
the gradient-penalty functional (11.4.11) and thus a non-weighted back-projection can be
regarded as the natural one in the considered setting.

e In (11.4.27), the increment Af := fuew — frer 18 N0t optimized over the whole feasible
set W2(Q), but only within the closed subspace W5*(Q) € W2(Q). This may seem
like a fundamental flaw of the result. Notably, however, WPLQ(Q) is much larger than the
mere space of back-projections range(PB) N W12(Q) C Wﬁ’z(Q), over which the scheme
(11.4.28) trivially computes the optimal increment Af = PB(uIZl/ . Ap). In this sense,
theorem 11.15 still provides a non-trivial simplification of the optimization problem in
(11.4.27). Indeed, Wp?(Q) is arguably almost as large as W'2(Q): range(PB) N Wh2(Q)
contains all functions that are constant along the rays and kern(P) N W, *(Q) all those,
which have zero mean along these and vanish on the boundary of Q2. Accordingly, the
“missing subspace”, i.e. the orthogonal complement of W;’Q(Q) within W12(Q), must
be composed solely of functions in kern(P) that are linear along all ray-segments. In
practice, the GenSART-iterates defined by (11.4.28) are thus expected to provide almost
the optimum of the objective in (11.4.27) over all f € W12(Q) (or f € L*()).

11.4.4 Li-penalties

The aim of this section is to demonstrate that assumption 11.6 does not restrict the choice of
penalty functionals R to quadratic ones. We consider Li-penalties

RU) = If = frilll  with  [[hlJ%, == / h(@)|de € RU{s}, 1<q<oo (11.433)

and define LI(Q) := {f : || fllr« < oo} as usual. We prove the admissibility of such penalties
only for a parallel-beam setting P = &?. An extension to the cone-beam case may be possible.
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Lemma 11.16 (Admissibility of Li-penalties). Let P = Py, : L*(Q) — L*(Dp) and let
R : L*(Q)) » RU{oo} be defined by (11.4.33). Then assumption 11.6 is satisfied and

1/q—1/2 q e T q
R(foet + P*(p)) = {‘“@ . i P(p) € LYQ) forall pe L*Dp). (11.4.34)

00 else

The proof of lemma 11.16 is given in appendix 11.C. For completeness, we state the
GenSART-scheme that is obtained by applying theorem 11.7 to the setting in lemma 11.16:

Theorem 11.17 (Generalized SART with L%penalties). Let f.of € L*(Q), a > 0 and let
S: L*(Dp) - RU{oo} be any functional. Assume that there exists a minimizer

Joew € argminS (Z(f)) + allf — fretl| L4 (11.4.35)
feL2(Q)

Then any foew determined by the GenSART-scheme

Pret = y(fref) (11436&)

Ap € argmin S (prer + ull)? -p) + aHu}g]{q_l/Q 2|7 (11.4.36b)
pEL?(Dp)

Foew = fret + 2 (u? - Ap) (11.4.36¢)

also minimizes (11.4.35). If ¢ > 1, then any minimizer fueyw of (11.4.35) is of the form
(11.4.36).

11.5 Applications

In the preceding sections, it has been analyzed in which abstract situations Kaczmarz-iterations
of the form (11.2.6) can be computed via a generalized SART-scheme. In the following, the prin-
cipal theory is applied to design tailored methods for various settings of tomographic imaging.
Specifically, the aim is to exploit the extraordinary freedom that the GenSART-theorem 11.7
offers in choosing the data-fidelity functionals S, and image-formation operators Fj. Despite
differences between the specific applications, it should be emphasized that all of the proposed
methods are applicable for both parallel- and cone-beam acquisition-geometries, without any
requirements on the incident directions or source positions.

11.5.1 Noise-model-adapted GenSART

As outlined in §11.2.3, variational- and Kaczmarz-type reconstruction methods may account
for the expected statistics of the data errors € in Inverse Problem 11.1 by suitably choosing the
data-fidelity functionals S in (11.2.6). We illustrate this for Kaczmarz-iterations with a simple
L?-penalty and fixed S, = S:

frr € irgrr(lgi)r)lS (9575 Fy (P (1)) +allf = fill 22 (11.5.1)
cL?
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By theorem 11.10, the minimizer can be computed via the SART-like scheme

By (fr) (11.5.2a)
Apy € argmin S (g}fs, F; (pk + 1 12 p)) + allp|l72 (11.5.2b)
PGLZ(Djk)
Jeri=fe + P (u ( 2 Apy ) (11.5.2¢)

where I and u; denote the projection-domain and weighted unit-projection of the projector
P; respectlvely7 see §11.3.1. According to Bayesian theory, the Kaczmarz-iterations in (11.5.1)
can be tailored for a specific (probabilistic) model of the data errors € by choosing S as the
negative log-likelihood of the fitted data g;, = F}, (P;,(f)) given the observations g5’:

S(955 ;) = — InP(g5™]gy), (11.5.3)

obs

where P(g OIDS| g;) denotes the probability of measuring g$ given that the true data is g;. By
inserting (11 5.3) into (11.5.2), generic noise-model- adapted GenSART-schemes are obtained.

Efficient closed-form optimization in projection-space: For general noise-models and
image-formation operators F}, the optimization problem in (11.5.2b) could still be hard to solve,
in spite of being cast to the low-dimensional projection-space via the GenSART-approach. In
the following, we therefore outline practically relevant settings where the optimization-step in
the GenSART-scheme (11.5.2) may be performed at negligible computational costs.

Often, the data-errors € at different spatial positions can be assumed to be stochastically
independent. If the F; are pointwise operators, i.e. “Fj, (p)(z) = Fj, (p(z))” for all p and = (in
particular if F; = id), the data-fidelity obtained via (11.5.3) is then of integral-form:

S(g;?bs; Fj(p)) = /D sj(z,p(x))der +c¢ for some s;:D xR —RU{oo} (11.5.4)

J

with some additive constant ¢ € R that does not affect the minimizer in (11.5.1). By substi-
tuting (11.5.4) into the the objective-functional to be minimized in (11.5.2), we obtain

obs, ~1/2
S (6% (e + ) + allpls

— [ (salomnle) + 12 2p(@) + alpla)?) do (11.5.5)

Ik
The integrand in (11.5.5) depends only on point-evaluations of p, i.e. only on the local function

value. As a consequence, the optimization in (11.5.2b) is equivalent to a family of scalar
problems:

/2

Apy € argmin S(gC’bs F; (pk + ul p)) + a|p||32

Jk
pELQ(]D)jk)

= Apk(x) € argmin Sy, ($,pk (.1') + ﬂjk (‘7:)1/23/) + QyQ
yeR

= ﬁjk(l’)ilm : <prOX (S]k( )) (pk( ) Qﬁjk(x)lﬂ/a) _pk(x)> (11-5-6)
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for almost all z € ID;,. Here, the usual prozimal map of a functional has been introduced:

prox(s)(y, 1) := arggéin s(x) + (JC;—TZAQ (11.5.7)

The prox in (11.5.6) can be typically evaluated numerically in O(1) floating-point operations.
Hence, a discretized form of the optimization problem in (11.5.2) can be solved in O(mypy0;),
where mp; is the number of degrees-of-freedom of a discretized projection. This enables
evaluations of (11.5.2) at literally the same computational costs as classical SART-iterations,
compare §11.3.2 — even for highly non-trivial choices of §, as demonstrated by the subsequent
examples.

11.5.1.1 (Weighted) L2-fidelities

For completeness, we mention the case of (weighted) L?-data fidelities S(g;?bs; Fj(p)) = |[(F;(p)—
99*%) /0|32, which are adapted to data errors caused by Gaussian white noise of possibly
spatially varying variance ¢2. For F; = id, this choice of S is of the integral form (11.5.4)
with s;(z,y) == (y — ¢9"(x))?/0;(x)* and a simple proximal map, prox (s;(z,-)) (y,7) =
(205(2)%y + 762(2))/ (205(2) + 7).

11.5.1.2 Robust GenSART

As a first non-standard application, we consider the problem of robust tomographic reconstruc-
tion: systematic errors in the acquisition geometry or modeling-inaccuracies due to nonlinear
effects, as arising from metal-inclusions in soft tissue for example [10], tend to produce large
outliers in the data, i.e. errors with highly non-Gaussian statistics. In such a setting, an L*-
data-fidelity is far too greedy in fitting the data.

The problem has been addressed by employing a more robust (Huber-) L'-term, see e.g. [7],
or even non-convex data-fidelity functionals such as the negative log-likelihood of the Student’s
t-distribution, as proposed in [25]. For trivial image-formation maps F; = id, these choices
correspond to a data-term S(g¢™%; Fj(p)) of the integral-form (11.5.4) with

si(x,y) =s_(y— g}’bs), S— € {010 Sstw} (11.5.8a)
2 .
(0 if |y| <v
syl = W TS ) = m s pat) (15sh)
2uly| —v*  else

Both functions in (11.5.8b) show the same quadratic growth behavior as y > |y|? for
ly| < v whereas, for |y| > v, the growth is only linear in the L'-Huber- and logarithmic in the
Student’s-t-case. Accordingly, the resulting data fidelities S defined by (11.5.8a) and (11.5.4)
behave like an L?-term for small deviations between the measured and fitted data, but penalize
much less strongly when the deviations are larger, thereby yielding an increased robustness
towards outliers. The proximal maps of s Liws Sstp are given by

2uTy
max{|y|, 2vT + 1}
prox(sst,)(y, 7) = argmin{ s, (z0) : 20 € R, (2§ + v*)(z0 — y) + 270°29 = 0} (11.5.9D)

(11.5.9a)

prox(spy ) (Y, 7) =y
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The cubic equation in (11.5.9b) has one or three real roots xy, which can be computed analyti-
cally in O(1). In the case of three solutions, argmin {ss+, (7o)} may be determined among these
by simple trial-and-error. Consequently, the GenSART-scheme (11.5.2) can be evaluated effi-
ciently via (11.5.6) for the considered robust data-fidelity terms. Notably, the simplicity of the
L'-Huber-prox has already been exploited in [7] to construct efficient robust A RT-iterations.

11.5.1.3 Poisson-noise-adapted GenSART

In many practical applications of X-ray- or electron tomography, the data errors are primarily
due to the Poisson-statistics of the detection process: detector pixels actually count a discrete
number of incident photons or electrons over some exposure time ¢ > (0, where the counts
follow a Poisson-distribution. Disregarding this effect may lead to severe anisotropic noise in
the reconstruction, for example when a sample in CT is so strongly absorbing along certain
incident directions that only very few counts are detected (photon starvation, see e.g. [151]).

If the detector is composed of mp,,; € N pixels with spatially varying detection sensitivities
w; : D — Ry, the measured data is given by a vector

g5 = (g5 )i € R™s - g% ~ Poi (tg;:),  gji = Mi(g;) = /Wigj dz (11.5.10)
D

where g; denotes the exact continuous data and X ~ Poi(A) means that X is a Poisson-

distributed random variable of intensity A > 0. In this setting, the log-likelihood in (11.5.3)

leads to the discrete Kullback-Leibler-divergence, see [99] for details:

Mprol —b—bIn(2) ab>0
SPOI obs,g] . Z KL bS tM ( )))7 KL(b’ a) = {CL n (b) @0 = (11511)
%) else

with the conventions that In(0) = —oo and 0 - In(a/0) = 0 for all a > 0.

Under the assumption that variations of the true data g; are negligible within the support
of w; (i.e. within a single pixel!), ST can be approximated in the form

SPoi ( ObS, g]) ~ /DKL (g;’l;(smt( ); tgj(x)) cw(x)de + ¢ =: S(g;bs, ) (11.5.12)

where w = Y"1 w;, g9 () = (Do gorwi(x)/ [ wi dar) fw(z) (with the convention that

0/0 =0) and c is independent of g;. The derivation is given in appendix 11.D.
So far, we have not specified the image-formation operators Fj, relating the data g; to the
tomographic projections P;(f). We consider two different acquisition modes:

o Dark-field imaging: The exact data is directly proportional to the projections, i.e. Fj(p;) =
I; - p; where I; is the illumination intensity. This applies for example to HAADF-STEM,
a state-of-the-art electron tomography technique, see e.g. [148, 159].

e DBright-field 1maging: The tomographic data gives the relative attenuation experienced

by the illuminating beam, i.e. F;(p;) = I; - exp(—p;). This is the model for classical
(monochromatic) X-ray computed tomography.
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Inserting these models into (11.5.12), it can be seen that the resulting data-term S(g3*; F;(p))
is of the integral-form (11.5.4) with

T tI(x) exp(—y) + 5o () -y (bright-field)

In the dark-field case, prox(s;(z,-)) has a well-known closed form, see e.g. [99]. In the bright-
field case, prox(s;(x,-)) may be evaluated numerically by a few iterations of Newton’s method.
This admits an efficient implementation of Poisson-noise-adapted GenSART-schemes.

11.5.2 Regularized Newton-Kaczmarz-GenSART

Regularized Newton-Kaczmarz methods have been proposed in [30] for the solution of general
block-structured inverse problems G(f) = (G1(f),...,Gn(f)) = (g™, ..., g¥®) with nonlinear
forward operators G; : X — Y between Hilbert spaces X,Y;,...,Yy. In its simplest form,
the approach boils down to performing Levenberg-Marquardt iterations on the different sub-
problems G;(f) = g5

fin = angmin| G, () + G LRI = i) = 271, + ol = felf (11.5.14)

where G[ fi] : X — Y} denotes the Fréchet-derivative of the operator at fi. In the following, two
nonlinear tomographic reconstruction problems are presented for which the iterations (11.5.14)
can be computed efficiently via generalized SART-schemes.

11.5.2.1 Propagation-based X-ray phase contrast tomography

We consider the setting of (propagation-based) X-ray phase contrast tomography (XPCT), see
e.g. [42, 13, 122, 176, 143]. In this experimental setup, the recorded data is given by near-field
diffraction patterns, that relate to tomographic projections of the object density via a highly
non-trivial image-formation operator F; = F": under the standard assumptions of an ideal, fully
coherent X-ray beam and negligible absorption (often a very good approximation at high X-ray
energies), the measured parallel-beam(!) data under the jth tomographic incident direction is
modeled by

g; = F(Z,(f)) with F(p):=|D(exp(—ip))|* — 1. (11.5.15)

Here, |-|? denotes the pointwise squared modulus of a complex-valued field and D is the Fresnel
propagator, which is given by a unitary Fourier-multiplier (F: Fourier transform):

D) :==F ' (mi- F(¥)), my(€) :=exp (—i&?/(4nf)) for €€R™,  (11.5.16)

where § is the Fresnel number of the imaging setup. The example matches the Newton-Kaczmarz
setting if we define G;(f) := F' (22;(f)). The Fréchet-derivative is given by

Gylfh = FL25(f)25(h), Flplhy, = 20m (D {exp (7p) - D (exp (=ip) - ) - (115.17)
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where the overbar denotes complex conjugation and Im the pointwise imaginary part. Newton-
Kaczmarz iterations for this problem with L?-data-fidelity and Sobolev-W2-penalty, as first
proposed in [143], are of the form

frar = argmin ||F (2, (f) + F'[2;,(f)] (25, (f = 1) — 657

feL(Q)
+a ((L=f = fulZe ANV = Fo)lli2) - (11.5.18)

If we take S(p) := [|F (2, (fx)) + F'[ 2, (fi)] (0 — P, (fx)) — 95°]|7 2, (11.5.18) matches the
setting of theorem 11.15. Hence, within the minor approximation discussed in the end of
§11.4.3, the minimizer may be computed via the GenSART-scheme

fr1 = fro + P (Uj_kl/z - argmin ||F'[2;, (f)] (w)? - p) — 7|7

peL2(Dy, )
+ar(1 = Y)Ipl2z + axy||[ul? - Vo (u; /2 - p) HZ) (11.5.19)

obs

with residual rj, = g3 — F (2, (fi)). The quadratic optimization problem in (11.5.19) can
be solved for example by a conjugate-gradient method applied to the normal equation.

11.5.2.2 Polychromatic CT

If the polychromatic nature of the X-rays in conventional CT-scanners is neglected, so called
beam-hardening artifacts may arise [10]. In [51, 104], a simplified model for polychromatic
CT has been proposed, which partially accounts for the arising nonlinear effects. Within this
model, the detected intensity data g; for the jth tomographic projection is predicted as

5= [ 1) exp (= )R (9() - BEB(0()) de = Gy, (11.5.20)

S

Here, Iy(¢) is the emitted intensity of the X-ray source at photon-energy ¢ and f is the spatially
varying attenuation at some reference-energy co. ®()o(f) and O(e)0(f) model the attenua-
tion’s photo-electric- and Compton-scattering-components, respectively. The main approxima-
tion is that these functions are assumed to be representable as a function of f multiplied by
energy-dependent scaling factors:

3
_ %o

_ fxx(e)
frn(eo)’

Note that the expressions ¢(f) and 0(f) are to be understood pointwise, i.e. ¢(f)(z) = ¢(f(z))
and 6(f)(x) = 0(f(z)) (with a slight abuse of notation). The scalar functions ¢, 0 : R>g — R>q
interpolate known value-pairs {(f, ¢m)} and {(fm, 0n)} for different materials m = 1,2,... in
the imaged object, such as water, fat and bone, see [51, 104] for details. We assume that ¢ and
0 are continuously differentiable.

() and  O(e) fx~: Klein-Nishina function (11.5.21)

e3

Notably, the nonlinearity in (11.5.20) cannot be described by a nonlinear map acting on the
projections, i.e. G;(f) # F;(P;(f)), so that the setting does not seem to match our tomographic
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model (11.2.1). However, we may still compute the Fréchet-derivative:
G,y = =GE(7) - By (0(4) - hy) = G2(1) - By (0() - ) (11.5.220)
G = [2eGD kG = [BEIG.()de (11.5:220)
By (11.3.5), it holds that G (f) - P; (¢/(f) - hy) = P;(¢/(f) - hy - PP(GT(f))), which yields

Gilflhy = Pi(N(f) - hy), X(F) =&/ (f) - PP (GT(H) +0'(f) - PP (GF(f))  (11.5.23a)

Using (11.5.23), Newton-Kaczmarz iterations (11.5.14) for the considered problem with an
L?-penalty can be written in the form

frer1 = argmin 1P (N (f) - (F = fo)) = m3ell72 + o ILf = fulla (11.5.24)

FeL?(Q)

with residual r;, = ¢5 — G}, (fr). (11.5.24) matches the setting of theorem 11.11. By rear-
ranging the resulting GenSART-scheme (11.4.7) for (11.5.24), we obtain the update-formula

* "jx
Jirr = fe + N (fw) - Py, (ij (o o () + ak) (11.5.25)

where w;, denotes the ray-density to the projector P;, . Including the necessary computations
of G, (fx) and \j, (fi), evaluating (11.5.25) requires three evaluations of the forward- and back-

projectors P, and P}, plus computationally inexpensive pointwise operations.

Similarly efficient formulas may be obtained if the L2-data-fidelity in (11.5.24) is replaced
by the Poisson-noise-adapted Kullback-Leibler term from §11.5.1.3.

11.5.3 Extensions

The following section outlines different ideas on how to extend the generalized SART-approach
to an even more versatile tool for devising efficient Kaczmarz-type reconstruction methods.

11.5.3.1 Box constraints

Analogously as in other Kaczmarz-methods, box constraints fuim, < f < fmax On the admissible
values of the object f may be incorporated in GenSART-schemes simply by setting

fk—i-l < maX{min{fk+1;fmax}7fmin}- (].].526)

after each iteration. This approach can be interpreted as interlacing projections onto the
convex set {f € L2(Q) : fuin < f < fmax} and is standard in Kaczmarz-type tomographic
reconstructions ever since the introduction of ART [77].

11.5.3.2 Additional quadratic regularizer

So far, the penalization in the considered Kaczmarz-iterations was always with respect to the
preceding iterate f. In addition, it might be desirable to impose a static regularizer such that
the total penalty is given by

Ri(f) = anlIT(f = fo)llZ + aallT(f = fret) 2, (11.5.27)
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for ay, as > 0, Hilbert spaces X, Z and a bounded linear operator 7' : X — Z. By writing the
squared norms as inner products, the expression can be cast to the form

Ri(f) = (o1 + a2)IT(f = fuaet)llZ + (11.5.28)

where firef == (a1 fi + @2 fref) /(02 + 1) and the constant ¢ € R is independent of f and thus
irrelevant for the computation of the minimizer. Hence, the resulting Kaczmarz-iterations are
of the same form as before, up to a modified reference solution f; — firef and regularization
parameter & — a3 + ay. This means that also the derived GenSART-formulas only have to be
modified by exchanging these parameters.

11.5.3.3 Kaczmarz-type splitting and primal-dual methods

Variational reconstruction methods seek to minimize terms of the form Syt (Piot(f))+R(f) with
Stot (P15 -+ -y PNproy) = Z;y:pi"j S(p;), compare §11.2.3. Often, this is achieved by some splitting
method, alternating (sub-)gradient-descent- (“forward-") or proximal (“backward-") iterations
with respect to the data-fidelity Sior and the penalty functional R (or their duals), see e.g. [43].
It is straightforward to combine such an approach with a Kaczmarz-type strategy that exploits
the block-structure of Si; to reduce computational costs of the individual iterations. Examples
of (primal) Kaczmarz-type splitting methods are given by iterations (OR: subdifferential)

) 1
fep1 € argminS; (P (f)) + 2—Hf — fill7> (11.5.29a)
feL2(Q) Tk

i R(f)+ =|f — 1|2, (backward-backward
e {argmmfeLz(Q) (f) 2O_ka fk+§HL (backward-backward) (11.5.290)

Sers = 0kOR(fri1) (backward-forward)

with stepsize-parameters 7, 05. Algorithms of this kind have been proposed and analyzed in
[21, 22, 7]. Importantly, the proximal iteration for the data-fidelity, (11.5.29a), can be computed
efficiently via the GenSART-scheme from theorem 11.10. Similarly, GenSART-formulas may
be used to compute proximal steps in block-primal-dual methods as considered in [35].

11.6 Numerical examples

All of the GenSART-schemes from §11.5 have been successfully implemented as numerical
algorithms. In the following, exemplary results are presented.

11.6.1 Implementation

In previous studies, Kaczmarz-type reconstruction methods have usually been derived for a
discretized tomographic model. On the contrary, the theory in this work relies on properties of
the parallel- or cone-beam projectors P € {7, Z} that are valid only in continuous space. In
particular, while the generalized SART theorem 11.7 is equally valid in finite dimensions, the
tentative simplicity of PP* does typically not carry over to discretizations of these operators.
Moreover, discrete analogues of the penalty functionals considered in §11.4 will in general no
longer satisfy assumption 11.6.

249



PhD thesis: Inverse problems in X-ray phase contrast imaging Simon Maretzke

For this reason, we pursue a post-discretization strategy: we propose Kaczmarz-iterations
within a continuous tomographic model, then devise GenSART-schemes for their computation
using the results from the preceding sections and finally discretize these schemes to obtain
numerically implementable SART-like iterations. If P € R™*" f € R", S, u € R™ are suitable
discretizations of P, f, S, up, then this would look as follows for L2-penalized Kaczmarz:

frew € argmin S(P(f)) + allf — fretll72 (11.6.1)
fEL(Q)
GenSART —— . ~
(D e € frat P (1572 argmin S(Pfur) + 2 - p) + a3 (11.6.2)
peL?(Dp)

discretize -~ . ~
(Wil ¢ e f 4 P (u 12 @ argmin S(P(f,) + @/ @ p) + aupug) (11.6.3)

peR™

A drawback of the approach is that the discrete GenSART-update (11.6.3) in general does not
exactly solve a discretized version of (11.6.1), i.e. f,.,, & argmingcp. S(P(f)) 4+ allf — F.ull3,
but only up to discretization errors. While this inexactness might lead to numerical instabilities
in principle, no such effects are observed for the examples in §11.6.2 and §11.6.3.

As usual, we assume discrete objects f € R™ and data g; € R™»i to provide samples of the
continuous quantities f € L?(Q2) and g; on equidistant Cartesian grids. Pointwise operations on
functions are then represented by element-wise operations of vectors. Integrals in continuous
space can be approximated by summation over the entries of the corresponding vectors in
the discretized model and derivatives can be implemented via finite differences. For example,
Li-norms are then identified with g-norms in R", i.e.

/Q |f(x)|Tdx = || fl|T, ~ [ FIIZ = Z \f:¢ it f=(f,), discretizes f. (11.6.4)
i—1

Discrete and continuous quantities can be related via sampling operators,
So : L*(2) = R™;, f s (f\h fdz),_| (11.6.5)

for voxels V; C Q disjointly covering the object-domain €2, and an analogous map Sp : L*(D) —
R™»ri in the projection-domain. Projectors P; € {#y, Z,s} may then be naturally discretized
via P; := SpP;S§. See also [209] for alternative discretizations.

Unit-projections and precomputations: Recall that all of the generalized SART formulas
in §11.4 and §11.5 involve (weighted) unit-projections u; or u;. Clearly, discrete approximations
u;,u; of these are needed for numerical computations. For general object-domains €2, these
may be precomputed via u; = P;(1gn) and u; = P;(w;), where w; is a suitable discretization
of the ray-density. In this case, GenSART-methods thus require one additional evaluation of
the full projector (Py,..., Py, ;) prior to the actual iterations. However, for geometrically

simple domains € such as boxes, cylinders and balls, u; = P;(1q), 4; = Pj(w;) can also be
computed analytically. Thereby, costly precomputations may be avoided.

Furthermore, discretized GenSART-schemes typically involve element-wise divisions by
powers of u; or ;. In accordance with convention 11.2 for the underlying continuous-space
model, such operations should only be performed for non-vanishing entries of w;,w;. For all
other entries, the result of expressions of the form p © u? may simply be taken to be zero.
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11.6.2 Robust tomography test case

As a first numerical example, we consider the application of robust reconstrution from tomo-
graphic projection data, as introduced in 11.5.1.2. To this end, we compare L2-regularized
Tikhonov-regularization and Kaczmarz-iterations

frik = ?r%r(l;zl)l Siot (9575 Prot(f)) + cvrixl| f1I72 (11.6.62)
€
ferr = argmin S (¢97%: Py, (f)) + allf — full3a
feL2(Q)
x [ ~—1/2 : obs. ~1/2 2
= fet 1, (ujk - ar%m)s (gjk s Py (fi) + 1) ~p) + aHpHLa)- (11.6.6b)
pe "

with data-fidelities given by Sot (90555 Peot(f)) = Z;V:pi"j (95" P;(f)) where

S (g™ p) = / s(p(x) — g7 (z)) de, s € {812, SL1 s Sst ) (11.6.7)
Dy
The L'-Huber- and Student’s t-functions sp and sgq, are defined in (11.5.8) and sr2(y) := |ly|?
simply corresponds to an L?-data-fidelity. sz, s v and Sy, are plotted in fig. 11.2(c).

As numerical reconstruction methods, we consider for once a discretized version of the
Tikhonov regularization in (11.6.6a), stated as algorithm 11.1. On the other hand, we design a
generalized SART-analogue, algorithm 11.2, by discretizing the update-formula (11.6.6b). Note
that the discrete analogue of the optimization problem in (11.6.6b) factorizes into a family of
scalar problems just like in the continuous setting, see §11.5.1. This enables a highly efficient
implementation of this step regardless of the choice s € {sy2, s Liws Sstw -

Algorithm 11.1 Robust Tikhonov reconstruction

Input: Data g2 € R™ril¥eroi projector Py, € RmproilNero) X yegularization parameter
MprojNproj

arye > 0, data-fidelity s € {szz, SLyw Sstw}s Stot(gs P) = D s(pi — 9i)
Output: f1x e argmin ¢cgn Stot (gggg; Ptotf) + aticl| Fl13

Algorithm 11.2 Robust SART reconstruction

Input: Data g;?bs € R™ei| projectors P; € R™vri*" regularization parameter o > 0, initial
guess f, € R", data-fidelity s € {sr2, 8.1 ., 58500}, S(g; P) = Sl s(p; — gs), weighted
unit-projections u;.
for k=0,...,k4op — 1 do

3 obs ~1/2
Ap;, € argming,cgmpro; S(gj,'f ; P + '“’j;{ @p) + al|p||3
« _1/2
Jrp1 = fk+ij<Apk@uj,{ )
end for

Output: final object-iterate f
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— Si(x—Y)
—_— SL;{,I/(X - ,V) /
— Ssu(x—Yy)

Figure 11.2. Numerical robust tomography test case: (a) 512 x 512-sized object phantom. (b) Sim-
ulated parallel-beam data. (c) Plot of the different data-fidelity functions. (f) FBP-reconstruction.
(d),(e) Tikhonov-reconstruction (algorithm 11.1) with L2- and L!-Huber-data-fidelity. (g)-(i) SART-
reconstruction (algorithm 11.2) with L2 and L!-Huber- and Student’s-t data-fidelity. The linear color
scale in all object-plots (subfigures (a) and (d)—(i)) is identical. See text for details.

We test the different tomographic reconstruction algorithms for a 2D-phantom f&** of

image-size 512 x 512 pixels composed of random ellipses, shown in fig. 11.2(a). Note that
such a 2D-setting can be treated as a limiting case of the 3D-geometries studied in this work.
Parallel-beam data is simulated from the phantom under tomographic incident angles § =
0°,1°,...,179°. To avoid “inverse crime”, different discretizations of the tomographic projectors
are used in the data-simulation and the reconstruction. The simulated exact data is corrupted
by Gaussian white noise of relative magnitude 2 % in 2-norm and additionally by systematic
outliers: following [25], we simulate 2% randomly chosen dead detector pixels that measure
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a constant incorrect value in all projections. Such measurement errors manifest as horizontal
stripes in the sinogram-plot of the tomographic data shown in fig. 11.2(b).

The data is reconstructed with algorithms 11.1 and 11.2 using the data-fidelities sz2, sz .,
Sst,, With regularization parameters ary = 300 and o = 2arpy, the latter choice being motivated
by §11.2.4. The robustness-parameter v (compare §11.5.1.2) is taken as 20 % of the standard-
deviation of the data. Algorithm 11.2 is run for one symmetric Kaczmarz-cycle, i.e. kgop =
2Nproj and Jx = Jrye,—1-% for all k. The processing order jo,. .., jn,.;—1 of the tomographic
projections is chosen according to a multi-level-scheme from [78§].

The Tikhonov results for the data-fidelities s € {syz,s L ) (computed by a conjugate-
gradient method and a linearly convergent primal-dual algorithm from [36], respectively) are
plotted in fig. 11.2(d) and (e). It is not clear how to reliably minimize the Tikhonov-functional
for the non-convex Student’s-t functional s = sy, so that this case is omitted here. The
GenSART-results for all(!) data-fidelities are plotted in fig. 11.2(f)-(h). For comparison,
fig. 11.2(c) also shows a reconstruction by filtered back-projection (FBP), computed using
an implementation from the ASTRA-toolbox [199, 198] with default-parameters.

As expected, the results for L:-data fidelities (fig. 11.2(d),(f)) show pronounced ring- and
pattern-artifacts arising from the dead pixels — not to speak of the FBP-solution in fig. 11.2(c).
The artifacts are significantly reduced for the L'-Huber-reconstructions (fig. 11.2(e),(g)). Fi-
nally, the reconstruction with the non-convex and even more robust Student’s-t data-fidelity in
fig. 11.2(h) is almost completely free of artifacts.

Notably, for both the L2 and the non-quadratic(!) L!-Huber-term, the Tikhonov- and
GenSART-reconstructions turn out to be qualitatively indistinguishable. This suggests that
variational methods can indeed be emulated by Kaczmarz-iterations — even in settings where
this is not predicted by the convergence theory from §11.2.4. At the same time, it should
be emphasized that the computational costs are practically identical for all three GenSART-
methods, essentially amounting to two evaluations of the full projector Py and its adjoint
Py, which is significantly less than for the Tikhonov-reconstructions: for the non-quadratic
L'-Huber-case the primal-dual algorithm requires 73 iterations, and thus 73(!) evaluations of
P, P, to converge to a prescribed accuracy of 1% according to a criterion from [36].

11.6.3 Newton-Kaczmarz-GenSART for experimental XPCT-data

For a second and somewhat more involved numerical test case, we implement the Newton-
Kaczmarz-iterations for X-ray phase contrast tomography (XPCT) from §11.5.2.1. To this end,
the obtained GenSART-formula (11.5.19) is discretized, where the gradients V are replaced by
finite-difference operators V € RMerad Xmproj (V((pi)?l"f”))m = Pk,, —Di,, for index pairs (i,,, k)
of neighboring pixels. Importantly, as implied by the treatment of the continuous-space setting
in §11.4.3, the set Ny = {(im, km)}2Y, must be restricted to such neighbor-index-pairs, for
which the unit-projection u; = (u;;); -5 does not vanish for either of the indices, i.e. uj;,, # 0
and u,i,, # 0. In a nutshell, this means that the discrete gradient V must only be computed
within the support of the unit-projection in accordance with convention 11.2. Upon discretizing

(11.5.19), the optimization problem in projection-space assumes the form

Ap, = argmin
pER™Proj

2 2
Ty(u)* ©p) — rkHz +a(l —9)|lpls + oy HUlv/?jkV(p % ul/Z)H2 (11.6.8)

k Jk
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where 7y, is the residual and T, = F'[P;,(f;)] € R™Mdaax"wroj s the Fréchet-derivative of the
discretized image-formation map F : R™rroi — R™Mdata, The Uy ; € RMeraaXMerad gre diagonal,
positive-semidefinite matrices that implement a discrete analogue V(p) — Uy ;V(p) of the
multiplication V(p) + u; - V(p) for gradients of continuous projections p.
With U; := diag(u;) € R™prei*™rroi and I € R™eroi*™eroi denoting the identity, (11.6.8) then
amounts to solving the associated normal equation:
-1
Ap, = (U;f:r;:rku}f +a(l— I+ mUjjj/Qv*UMVU;/Q) T;(u)? ©ry) (11.6.9)
The map F' as well as its derivative F”[p| can be implemented using only fast Fourier transforms
and pointwise operations, leading to a computational complexity of O(mgata 10g(Mdata)). Ac-
cordingly, the above symmetric positive-definite problem can be solved efficiently by a matrix-
free conjugate-gradient (CG) method. The obtained Newton-Kaczmarz-GenSART method is

summarized in algorithm 11.3, which is notably not limited to XPCT but may be adapted for
a wide range of other image-formation operators F'.

Algorithm 11.3 Newton-Kaczmarz-GenSART (for X-ray phase contrast tomography)

Input: Data g‘]?bS € R™a=a parallel-beam projectors P; € R™vri initial guess f, € R,
regularization a >0, v € [0; 1], unit-projections u;, U, := diag(u;) and Uy ; € R"arad*Marad
image-formation operator F' : R™prei — R™data  Fréchet-derivative F”.
for k=0,...,k4op — 1 do

Py =Pj [, re = g?,lfs — F(py), Tr = F'[p,]
—1
Ap, E (U TTUL + a1 = NI+ 00U, PV U, VU ) Ty (w)? o)

J
i = Fr+ P (“j_l/z © Apy)
[ [ = max{0, f, +1}] % optional non-negativity constraint
end for

Output: final object-iterate f

We apply algorithm 11.3 to experimental XPCT-data go> € RNeroimaata from [143], com-
posed of Np,; = 249 near-field diffraction patterns of size Mg, = 10247 pixels each, acquired
in an (effective) parallel-beam setting under tomographic incident angles between 0° and 173°.
The 3D tomographic data, measured at the synchrotron light-source PETRAIII (see [178] for
experimental details), is visualized by orthoslices in fig. 11.3(a).

It is known that the object f — a colloidal nano-crystal — is contained in a centered cube of
size 2563 voxels, which we take as the reconstruction volume € (support constraint). Moreover,
the true values of f are known to be non-negative for physical reasons. We compute reconstruc-
tions using algorithm 11.3 with f, = 0 and regularization parameter o = 500 in four different
setups: with v = 0 (i.e. pure L*-penalty) and v = 0.8 (primarily gradient-penalization), with
and without a non-negativity constraint, respectively. For each of these settings, one (non-
symmetric) Kaczmarz-cycle is run, again following the MLS-scheme from [78] for the process-
ing order of the data. Figure 11.3(c)-(f) plots the central slices of the reconstructed 2563-voxel
volumes perpendicular to the tomographic axis. For comparison, fig. 11.3(b) shows the same
view for the reconstruction from [143], obtained by a similar L*-regularized Newton-Kaczmarz
method, but without using a GenSART-scheme.
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Figure 11.3. X-ray phase contrast tomography test case: (a) Orthoslice-plot of the 3D tomographic
data g°P = (g9, ... ,g(j\,bpsmj), composed of 1024 x 1024-sized diffraction patterns for 249 incident
angles. (b) Reconstruction from [143]: central slice of the 2563-voxel volume perpendicular to the
tomographic axis (zoomed to the object-containing region). (c)—(f) Same slice of the reconstructed
object after one cycle of algorithm 11.3: (c) v = 0, no non-negativity constraint. (d) v = 0, with
non-negativity. (e) v = 0.8, no non-negativity. (f) v = 0.8, with non-negativity. The color scale in
(b)—(f) is identical.

By nature of the imaged sample, the slices should show circular cross-sections of the colloids
of constant density within a zero background, i.e. a binary image. It can be seen that all methods
perform widely similarly in terms of contrast and resolution where the four reconstructions
with algorithm 11.3 (fig. 11.3(c)-(f)) seem to yield somewhat less blurry colloids with a higher
contrast to the background than the reference-result in fig. 11.3(b). Moreover, comparing
fig. 11.3(c),(d) to (e),(f) respectively, reveals the anticipated noise-suppressing effect of the
gradient-penalty compared to pure L?-regularization, at essentially the same sharpness and
contrast. Indeed, the reconstruction in fig. 11.3(f) using both a gradient-penalty and non-
negativity constraint seems closest to the expected ideal binary object and is arguably best
suited for further image-segmentation and -analysis — despite the slight approximation involved
in the computation via GenSART-schemes (compare §11.4.3).
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11.7 Conclusions

In this work, efficient solution formulas have been proposed for the computation of regular-
ized Kaczmarz-iterations (also known as “Tikhonov-Kaczmarz” or “incremental proximal iter-
ations”) for tomographic reconstruction. By their structural analogy and similar computational
efficiency to classical SART-iterations [6], the derived schemes are termed generalized SART
(GenSART). Notably, the approach strongly exploits mathematical structures specific to to-
mographic inverse problems, namely the well-known fact that the acquired data for a single
tomographic view only contains information on the projection of the three-dimensional ob-
ject to a 2D-manifold. As a consequence, Kaczmarz-updates may often be computed in the
lower-dimensional projection-space, reducing the computational costs.

As demonstrated in the manuscript, this enables efficient Kaczmarz-methods for various
non-standard tomographic settings such as robust reconstruction in the presence of large outliers
(§11.5.1.2, §11.6.2), photon-starvation- (§11.5.1.3) and beam-hardening-resistant tomography
(§11.5.2.2) or phase contrast tomography (§11.5.2.1, §11.6.3). The key feature of the GenSART-
approach here lies in its flexibility in the choice of the data-fidelity and image-formation model
(including even non-convex choices) — essentially without effect on the computational costs!
Note that this constitutes a crucial difference to (bulk-) variational reconstruction methods,
where the number of required iterations typically grows dramatically as soon as non-quadratic
functionals are to be minimized. The proposed methods are furthermore applicable to both
parallel-beam- and cone-beam-tomography, absolutely regardless of the sampling in the to-
mographic incident directions and naturally incorporate support constraints on the unknown
object, thus retaining the geometrical flexibility of SART.

In addition to (weighted) L?-penalties and Sobolev-W'2-regularizers that can be directly
incorporated into GenSART-schemes (yet, the latter with the flaw of a slight approximation,
see §11.4.3), the approach may be combined with interlacing proximal- or gradient-descent
iterations to enable advanced regularizers, as outlined in §11.5.3. Likewise, GenSART-formulas
might serve to efficiently evaluate proximal maps in Kaczmarz-type primal-dual methods of the
kind proposed in [35]. Such applications constitute promising prospects for future work.

Importantly, this work is not concerned with convergence of Kaczmarz-methods beyond
known results (e.g. [115]) but focusses on an efficient computation of the iterates. Yet, it clearly
motivates a further analysis of Kaczmarz-convergence with non-quadratic data-fidelities.

Another important goal is parallelization: while GenSART-iterations are efficient in terms
of computational complexity, Kaczmarz-methods are more sequential in nature than bulk-
variational methods (though, by far not as sequential as ART). This complicates accelerating
the approach by parallel computing, which for bulk methods can be readily achieved by using
massively parallelized implementations of tomographic (back-)projections from the ASTRA-
toolbox [199, 198] for example. If the issue of parallelization is resolved, the results of this work
show that Kaczmarz-methods computed via GenSART-schemes may provide a highly efficient
alternative to variational reconstruction methods — at almost the same flexibility.
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Appendix

11.A Geometry of the Projectors

Proof of Theorem 11.4: We show that By, : L*(Dp) — L*(Q); p — wp - pB(ﬂ;/Q - p) is
well-defined and isometric. Let p € L?*(Dp) be arbitrary. For P = &2, we have

2

L 2 11.3.4) ~—
1B = [ [P pi@) a0 [ | ([ 102) des
Q Do q/_/
=P(1g)(x)=up(x)
:/Q (UP<.’BJ_)/€LP(:CL))'|p<wJ->’2de- up=up HPH%Q(]D@)' (11.A.1)
P

By introducing polar coordinates, we obtain the same for the cone-beam case P = Z:

HBiSO(p)H%2 = /Q ’w@ . _@B(@;m - p)(x)

2
dw:/ I(@l-p)(so)P/ lwe (te)| 2% dt dep
Dg LZ

we (tp)=t—2 - _ —
MO ) @ - (Jigt ) de= bl (11A2)
Qo -7

Z2(wa)(p)=tgp(P)

Accordingly, By, : L?*(Dp) — L?*() is well-defined and isometric for P € {Z?, Z2}. Since
Biwo(p) = P*(iip""* - p), its adjoint is given by B: (f) = ap"? - P(f) = Puo(f). Hence, Py, =
B, : L*(Q) — L*(Dp) is bounded with norm ||Py| = || Biso|| = 1. By the isometry-property,
P} = Bis has closed range. According to the closed range theorem, the same thus holds true
for Py,. As P7, is isometric, P}, : L*(Dp) — range(P},) defines a unitary operator, which
implies the characterizations of P P, and P, Py, = idr2m,). O

iso

11.B Projectors and Gradients

Proof of Lemma 11.13: Let f € €>°(Q2) be smooth and compactly supported. Then f can be
identified with a function in €>(R3) by simply extending it with 0 outside 2 (notably, this
would not be true if we only assumed f € €>(Q)).

We decompose the gradient into mutually orthogonal components along- and perpendicular
to the rays: in the parallel-beam case P = &, the ray-direction is constant and points along the
z-axis (without loss of generality). Accordingly, Vp is simply the gradient with respect to the
remaining Cartesian coordinates x|, i.e. Vp = V. Since () is bounded, there exist constants
ap < bp such that € is contained in the stripe R? x (ap; bp) D Q. Accordingly, we obtain by
Leibniz’ integral rule

Pluwp™ 2 - Vpf)(@y) = P(Vef)(xr) = | Vofas,2)ds
— Ve [ f@r,2)ds = Ve P(f) (@) = VoP(f)(zy)  (1LB.1)
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for all £; € R?. Here, it was used that the ray-density is constant in the considered parallel-
beam case, wp = 1 for P = &. For the cone-beam case P = &, the gradient can be expressed
in polar coordinates: if f® is defined by f®(¢p,t) := f(tp), then

VIte) =tV [P, 1) + 00 f P (0.1)
= wy(tp) *V,fP (@, 1) + 0, fP(p,t)  forall t>0,¢¢cS2 (11.B.2)

where the ray-density wg(x) = |x|™2 has been inserted. The gradient-component Vpf per-
pendicular to the ray-direction ¢ is given by the first term on the right-hand side. Since ) is
bounded and 0 ¢ Q, the domain is contained in some annulus, Q2 C {t@ : @ € S?, ay <t < by}
for 0 < ay < by. By another application of Leibniz’ rule, this implies

by

by
P(wpfl/Z . VPf)(SD) _ / (wpfl/Q . VPf) (tQO) dt = V(pf(]@)((‘p7 f;) dt

ag ag

— Ve [ fO(pt)dt = Ve2(f)(@) = VoP(f)(@)  (11B3)

ag

for all ¢ € S%. Equations (11.B.1) and (11.B.3) show that (11.4.15) holds for all f € €>°(Q2) and
P e {2, 9}. Since Py, : L*(Q) — L*(Dp); p+— tp 12 - P(p) is bounded with norm 1 according
to Theorem 11.4, this furthermore implies that

H i’ - VpP(f = H i Pwp? va)HLZ < HwP_l/Z ' va”L2

AR N

Pl

for all f € €>(Q) and ¢ := mingeqwp(x) > 0. AS €>(Q) is dense in W,?(Q) with re-
spect to the W'2norm, (11.B.4) shows that p — uP ?. VpP(p) defines a bounded linear map
Wy?(Q) — L*(Dp). Hence, (11.4.15) and (11.4.16) remain valid for all f € W,*(Q).

Now let PB(p) € W12(Q). According to (11.3.4), PB(p) is constant within Q along the
ray-direction. Hence, the corresponding gradient-components vanish in an L?-sense so that
V(PB(p)) = Vp(PB(p)). By inserting the expressions for Vp in the parallel- and cone-beam
geometry, this yields for almost all (xz,, z),tp € Q

(11.3.4)

V(Z8(p)(x1,2) = Ve(2° () (@1, 2) Virz(p)(x1) (11.B.5)
11.3.4)

V(2°0)) (te) = Vp(2°(0)) (te) "2 £V (p) (0). (11.B.6)

By decomposing the norm-integral into integrals perpendicular and along the ray-direction,
respectively, we may now compute the L?norm of V (P(p)):

B 2 f]DJa fL@ |V (p) («M)F dzdx, for P= <
V(P ) P Hwy )
IVl Joy Juz 11V (0) ()] #dtdep for P=2
ngz. |V: (p) (wJ_)|2 <foi dz) de, for P=2
fo, 1V5: @) (@)F ([1zdt) de for P=2

= |Jul? - V()|

HLQ, (11.B.7)

258



PhD thesis: Inverse problems in X-ray phase contrast imaging Simon Maretzke

which proves (11.4.17). The equality (11.B.7) furthermore shows the equivalences
PB(p) e W(Q) & V (PB(p)) € LA(Q) < ul®-Vn(p) € L*(Dp). (11.B.8)

By continuity of V : W'3(Q) — L?(Q) and VpP, it is sufficient to show (11.4.18) for
[ € €°(Q). Using the expressions for V(PB(p)) derived above, we obtain
(V(PP(P), V)2 = (Ve (PP(0) . V). = (VP (PP(P) . VPF)
B fD@ VR2 (p) (mi)'ng’ VLf<CBL, )dZdCBL for P= 2%
Jo, Ve (0) () [1g 2V fP (@ ) dtdp for P =2

(11.B.1), (11.B.3)

(Vo (p). P(wp™2 - Ve(f))) s

(11.4.15) <u}12~vD(p),u; 2.VpP(f)),, foral feE>(Q). (11.B.9)

11.C Admissibility of L?-Penalties

Proof of Lemma 11.16: Let p € L?*(Dp) and fy € kern(Zy,) be arbitrary. If R( fret + P, (p) +

fo) = |25, (p) + follte = oo, then (A) trivially holds true. Hence, we may assume that
f = 2%, (p) + fo € LU(R). With the rays L7 defined as in (11.3.2), we then have

R(fus+ P75 (0) + o) :/Q|f\qu: /R (/m F(zL, )] dz) dz, (11.C.1)

where the inner integrals are finite for almost all £, € R%. An application of Jensen’s inequality
to the convex function R — R; z + |z|? in these shows that, for almost all ; € R?

/Lg [f(@L,2)|" dz > </ng 1d2)1_q

T

q

flxy,z)dz| .

(11.C.2)

=ug(xy )19

Comparing to (11.2.2), we find that the integral within the modulus exactly corresponds to an
evaluation of &2 = uif,z - Piso. Since f = Z% (p) + fo with fy € kern( P, ), this implies

/m (@1, 2)|" dz > up (1)~ |2 ())(@L)|" = up (1) 7| 2 P (p)(21)["

(L) |

for almost all ; € R?. Substituting the estimate (11.C.3) into (11.C.1) proves (A):

:/L P () @L,2)Md: (11.C.3)

1so ml? ) z

constant in z

Rt t 2+ 102 [ ( [ 1260w 20 0:) da =Rt 200 (1.0
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In particular, (11.C.4) shows that || 2% (p)||7. = R(fret + Pio(p)) < 00, ie. F (p) € LI(Q).
Since 2% (p) = ulo){z Piso P () = ué, - p by Theorem 11.4, (11.C.3) furthermore yields
(fTEf + '@180 / / |’@150 wl—? Z) |q dZ
R2 JLZ

w2 || (11.C.5)

:/ UgZ(CBL)l_Q/2 Ip(x,)]?
RQ

Now let ¢ > 1 and fy # 0. Then z + |z|? is strictly convex so that strict inequality holds
in (11.C.2) whenever the integrand z — |f(xy, )| with f = 2% (p) + fo is non-constant. The
latter is clearly the case for some x; € R? as elements in kern(Z,) are, on each ray Lfi,
either non-constant or identically zero. Hence, strict inquality holds in (11.C.4) if fo #0. O

11.D Poisson-noise-adapted data fidelity

In the following, it is shown that the log-likelihood for Poisson-noisy data given in (11.5.11)
can be approximated by the functional in (11.5.12) if variations of the true data g; within
the supports of the w; are negligible. Specifically, we assume that g; is “constant enough” in
supp(w;) such that it may be pulled in and out of the integrals, i.e. for some z;; € D

In (tM;(g;)) = In </D twig; dl’) ~ In (gj(l’jz')/mtwi dl’) = In (g;(xji)) + &

~ Jp In (g;) tw; da

11.D.1
Jp tw; dz i ( )

where the ¢; are independent of g;. Inserting this approximation into (11.5.11) yields

1 . iy JoIn(gj) tw;da
SPo ob ’gj Z /tg](,uZ dx — g;)ZbS ( D J —+ Cij) — ;’lbs ln(g;bs)

le) twi dx
:/D <(§J wi> tg; — <§J fg;;iczllg;) (tgj)> dr +¢
:/DKL (0252, (2): g5 (2)) - w(a) dz + (11.D.2)

with w(z) = Y0 wix), g (@) == (D g9 wi(x)/ [, wi dz) /w(z) and some ¢ that is
independent of g;.
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Appendix A

Supplementary proofs for numerical
stability computations

The following appendix contains the proofs of the theorems in §3.4, that have been used to
derive a numerical method for stability computations in linearized XPCI. For convenience, the
proven theorems are also restated here.

A.1 Characterization of contrast-minimizing modes

The first section contains the left-out proofs from §3.4.1, concerning existence and properties
of image-modes ¢y € L*(€2) that attain minimal contrast |7, (o)l /|l%oll-

Lemma (3.11). Let Q C R™ be bounded, f > 0 and « € [0;7). Then it holds that

I ()* = (@, 20 — 2Ksa(p))  forall o € LK), (A.1.1)

where K; o : L*(Q) — L*(Q) is a selfadjoint and compact linear operator defined by

Kialp) = F~ <7%f,a ‘ -7:(90)) lo = (kjax¢) o = /Qkf,a(' —y)o(y)dy (A.1.2)

2 f$2

ki o(€) = cos (% + 2a) . Kia(x) = (§/2)™ cos < (20 +m7r/4)) (A.1.3)

Proof. Let Sq : L*(Q) — L*(R™); ¢ + %,(p) denote the CTF-operator restricted to functions
in L?(Q). By definition of the adjoint, it then holds for all ¢ € L*(2) that

-7, (0)|I* = (Sa(e), Sa(v)) = (¢, S§Sa(p)) ((-,-): L? inner product) (A.1.4)

S, is the adjoint of ., composed with a restriction f — f|q. As ., : L*(R™) — L*(R™); ¢
F 1 (sa - F(p)) is a self-adjoint Fourier multiplier, it thus follows that

SeSa(e) = (FHe) la= (F'(s2 - Fp)) la forall ¢e L*(Q) (A.1.5)

«
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By trigonometric identities, the squared CTF-factor s can be cast to the form

B . €2 B 52 B 52
52 (&) = 4sin? (Q_f + a) =4 — 4 cos® (2_]“ + a) =2 —2cos (T + 2a>

BLD9 9k (€) forall €eR™ (A.1.6)

Substituting the r.h.s. of (A.1.6) into (A.1.5) yields S3Sa(p) = (F (2 — 2l%f,a) cF(0)]e =
2¢ — 2K (¢) and thus (A.1.1) according to (A.1.4)

As Ko 0 L2(Q2) — L?(9) is essentially a Fourier-multiplier with a bounded real-valued factor
l%fyoé, it is linear-bounded and selfadjoint. By the convolution theorem, the Fourier-multiplication
may be rewritten as a convolution. Again by trigonometric identities, it follows that

7 1 2ia i€2 1, —2ix _i€2 1 2ia -1 1, —2ix
kja(§) = 567 exp (T) + 3¢ eXP( ; ) = 37 mya(§) 7 + g0 my(§). (ALT)

The identified factor m; is the Fourier-multiplier of D?. Accordingly, (A.1.7) implies that
2Ko(p) = eQio‘Df_/g(so)IQ + &% D2 ()| = ( (GMK/Q + e_2iak5f/2) * <P) lo = (kf,a * 4,0) o, (A.1.8)

where the convolution-form of the Fresnel propagator (2.2.9) has been inserted to obtain the

second equality. By employing the known representation of kj/,, it follows that the convolution
kernel k;, on the r.h.s. of (A.1.8) is of the claimed form (A.1.3).

Finally, the convolution-form of K, can be written as an integral operator with kernel
k(x,y) := kjo(x—y), see right-most equality in (A.1.2). As Q and k;, are bounded, the kernel
is square-integrable, k € L*(Q x ), which implies that K, is a compact operator. O

Theorem (3.12). Let Q@ C R™ be bounded, f > 0 and o € R and let K, be the operator from
lemma 3.11. Then either of the following cases hold true:

1) K, has a positive eigenvalue. Then there exist contrast-minimizing modes oo € L*(, R
f, 2
and these are exactly the eigenfunctions of K to its mazimal eigenvalue \;o > 0, i.e.

Ks.a(®0) = Ajato, and
Cipa(,F,0) = (2 — 20) /2. (A.1.9)

Moreover, there are finitely many linearly independent contrast-minimizing modes and
any such mode is infinitely smooth in the interior of €.

(2) Kjo does not have positive eigenvalues, Then Crpa(Q, f, o) = 21/2.

Proof. Let ¢o € L*(2,R) such that ||¢g]| = 1. Then, by lemma 3.11, it holds that

17 (20)I* = (o, 200 — 2K;.0(0)) = 2 = 2{p0, Ksalpo)) (A.1.10)

Accordingly, ||-%,(¢0)]]? is minimal exactly for those ¢, that maximize the quadratic functional
Jia i@ = (0, Kialp)). Since K, is a self-adjoint compact operator on a complex Hilbert-space
L3(Q), either of the following alternatives hold according to spectral theory:
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(1) The spectrum o(K;,) of K, contains positive numbers. Then all of these numbers are
discrete eigenvalues of ks, of finite multiplicity and ¢, maximizes J;o(po) if and only
if ¢y is an eigenfunction to the maximal eigenvalue );,, in which case Jjo(v0) = A
holds true. Since the operator Kj, preserves real-valuedness, the ¢y can be chosen to
be real-valued. By (A.1.10), this implies existence and finite multiplicity of contrast-
minimizing modes in the sense of (3.4.1) as well as the optimal value Cipy(Q, f, o) = 21/2
of the stability constant. As eigenfunctions of an integral operator with infinitely smooth
kernel, contrast-minimizing modes are furthermore infinitely smooth: for any indices
li,..., 1, € Ny, the derivative Gij ... 0y exists at any point @ in the interior of

(3.4.3)

) . 1 .
0 dan(a) = 0 0l 5 Kago@) L [ (3 dphiae - v) elw)dy

(2) 0(Kja) C Reg. Then J;o(po) < 0 for any choice of ¢y, where the value may be arbitrarily
close to zero (even if 0 is not an eigenvalue of K;,). By (A.1.10), this implies that

|7 (o) || = Crp2(2,f,«)  forall ¢, € LZ(Q) s.t. ||lol| =1

for Crpa(€2,f,a) = 2/2 and for no larger value. O

A.2 Symmetries of contrast-minimizing modes

The next topic to be addressed are the symmetries of contrast-minimizing modes for reflection-
ally or rotationally symmetric domains 2 C R™, that have been exploited in 3.4.2 to construct
efficient numerical schemes for stability computations in higher dimensions. As the principal
mathematical results in theorem 3.13 are not restricted to the specific forward maps of XPCI,
we prove them for general Fourier-multipliers:

Theorem A.1 (Contrast-minimizing modes under geometrical symmetries). Let Q@ C R™ be
measurable, Myq : Rsg — C a bounded function and let T : L*(R™) — L*(R™); ¢ — F*(m -
F(p)) with m(€) := myaq(|€]) denote the associated isotropic Fourier-multiplier. Assume that
there exists a contrast-minimizing mode

0o € argmin || T()|*. (A.2.1)
e L2(9):lpll=1

Then ¢y can be chosen to be real-valued and in this case, the following holds true:

(a) (reflectional symmetry) If Q = —€, then there exists either an even or an odd contrast-
minimizing mode, i.e. @o can be chosen such that

wo(—)=wo or (=)= —wo. (A.2.2)

(b) (radial symmetry) If Q = B[0;r] for r > 0, then there exists either a radially symmetric
or radially anti-symmetric contrast-minimizing mode, i.e. @y can be chosen such that for
some function @ aa € L*([0;7],R), 8y € S™ ! and parity-parameter v € {0,1}

wo(x) = (09 - %)”m*(m*l)%g@‘d(m) for almost all x € R™. (A.2.3)

263



PhD thesis: Inverse problems in X-ray phase contrast imaging Simon Maretzke

Proof. Real-valuedness: Since 7T : ¢ — F~ (|m| F(p)(€)) is a Fourier-multiplier with a

Hermitean factor (|m(—¢)> = [m(€)]* = (|m(£)|*)), it preserves real- and imaginary parts, i.e.
Re(T*T(p)) = T*T'(Re(y)) and Im(T*T(p)) = T*T'(Im(p)) for all ¢ € R™. Thus,

IT(eo)lI* = (T(0), T(¢0)) = {120, T"T(00))

= (Re(o), Re(T"T'(p0))) + (Im (o), Im(T"T(p0)))

= (Re(o), T"T(Re(yo))) + (Im (o), T"T (Im(gp0)))

= [T (Re(o))l|* + |7 (Im(s20)) | * (A.2.4)

Combined with the general identity ||¢ol|> = [|[Re(po)|]* + ||Im(wo)||?, (A.2.4) implies that
P(po)/||P(po)| for P € {Re,Im} must also be minimizer of (A.2.1) whenever P(yq) # 0.
Since 0 # ¢y = Re(po) + ilm(yp), there exists such a P € {Re,Im}. The replacement ¢q
P(¢0)/||P(®0)|| provides the sought real-valued contrast-minimizing mode.

(a) Reflectional symmetry: As m(—¢&) = m(§) for all £ € R™, the reflection R : ¢
©(—-) commutes with 7', TR = RT (and likewise 7 and T*T). The condition = —Q
guarantees that R maps L?(2) onto L?*(€2). Hence, the same two properties hold for the (anti-)
symmetrization operators S : ¢ — (¢ + R(p)) and A : ¢ — 3(p — R(y)). Using that the
decomposition ¢ = S(p) + A(p) is orthogonal for all real-valued ¢ € L*(R™ R) and that T*T

preserves the real-valuedness of ¢y, we thus have

loll* = 115 (w)lI” + | Alwo) 12
IT(20)lI* = (00, T*T(00)) = (S(sp0) + Alo), T*T(S(0) + A(0)))
= (S(o) + A(0), S(T"T'(p0)) + A(T™T (0)))
= (S(¢0), S(T™T (0))) + (Alpo), A(T"T(0)))
= [IT(S(eo)) I + 1T (A(0))II” (A.2.5)

By an analogous argument as for the real-valuedness, (A.2.5) implies that P(pq)/||P(vo)] for
P e {S, A} provides the sought (anti-)symmetric (even or odd) contrast-minimizing mode.

(b) Existence of radially (anti-)symmetric modes: We prove existence of radially (anti-)
symmetric modes ¢q by explicit construction. Since 2 = —Q for 2 = B[0;1/2], there exists a
real-valued contrast-minimizing mode ¢ € L?(£2) that either even or odd. We set v := 0 if ¢ is
even and v := 1 if  is odd and consider the (scaled) Fourier transform ¢ :=1"F(p). ¢ is then
real-valued and even/odd depending on whether ¢ is even/odd. Since supp(p) C Q2 = B[0;7] is
compact, ¢ is an entire function by the Paley-Wiener theorem, i.e. has a globally and absolutely
convergent Taylor-series (extendable to C™): with multi-index notation, £* := & - ... - &4

and |af :==>" a; for € = (&,...,&,) € C™ a = (ay,...,qn) € N,

= N co&® forall £eR™ (A.2.6)
> X

k=0 aeNj":|a|=2k+v

for some coefficients {c,} C R (since ¢ is real-valued). The restriction to exponents o € Ny
with |a] € 2Ny + v follows from the even or odd parity of ¢.

We write ¢ in polar coordinates, (6,¢&) — $(£60), for £ € R,0 € S™ ! and express the
dependence on @ by expansion in real-valued m-dimensional spherical harmonics {Y;}en C
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L*(S™ 1 R), which is possible by the orthonormal-basis-property of {Y;}en:
p(E0) = 2T Pa,(€)Yi(0)  forall OeS™EER (A.2.7)

lel

for some nonempty set ) # I C N and non-vanishing functions {a;}c; C L*(R,R) \ {0}. The
expansion (A.2.7). As ¢ is infinitely smooth, the expansion in (A.2.7) converges absolutely,
both pointwise and in an L*sense [34], which justifies the manipulations made below. The
factor 21/2|¢|~(m=1)/2 accounts for the weighting of integrals in polar coordinates, see (A.2.8).

Now we express the L?-norms of ¢ and T'(¢) in terms of this expansion. Using unitarity
of F, isotropy of the Fourier-multiplier m = my,q(| - |) of 7" and orthonormality of the Y,
Jom—1 Yi(0)Y(0) dO = &y, (Kronecker-delta), we obtain

2 _ a2 1 . 2| ¢ym—1
el = 1elE =5 [ [ 1eeo)pie g

= ([ oo ao) ([ a@aidc) = X al? (A23)

kel lel

1
T =l ¢l =5 [ maal€DP [ [SEOFIE 4606 = 3 - il (A29)

lel

Here, we have extended m,,q to an even function on R by setting m;,q(§) := mpq(—¢) for £ < 0.
As can be seen from elementary algebra, there must exists an ¢ € I such that

vl < (3 v arl?) /(X ) (A.2.10)

lel lel

Let ¢ € I such that (A.2.10) is satisfied and define a,(¢) := 2'/2|¢|~(m=1/2¢,(¢). By or-
thonormality of the Y}, it then holds for almost all £ € R that

o= [ V@aeow=> 3 o [

k=0 aeNj":|a|=2k+v

W&ade) g2y (A.2.11)

m—1

J/

-~

::d2k‘+u

Global convergence of the Taylor-series on the r.h.s. of (A.2.11) follows from that in (A.2.6).
Hence, (A.2.11) shows that a, is an entire function, which is even/odd if ¢ is even/odd. By the
same argument, the following Taylor-series are globally convergent (8, € S™! arbitrary):

. Y dok(€ - €)F if v =0 (even case) .
Fol&) = {(90 CE) > o dopn (€ €)F if v =1 (odd case) forall €cR (A.2.12)

and show that g := i7" F1(Pg) is a radially (anti-)symmetric contrast-minimizing mode:

e Square-integrability: By comparing (A.2.12) and (A.2.11), we find that ¢o(£0) = (6, -
6)"a,(&) almost everywhere. With ¢, := (f5,._1(8o - 6)* d0)"/2, it thus holds that

~ 1 ~ m— 012/ ~ m—
oot =5 [ [ Iaa(eoPletdsas = 2 [ fado)Pien g = o (1213
2 Jr Jsm—1 2 Jr
Since ||as|| < oo, this proves that ¢y € L*(R™) and hence ¢ =i "F 1(pg) € L*(R™).
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e Support in Q: Since the original contrast-minimizing mode ¢ is in L*(Q2) for Q = BJ0; ],
a detailed version of the Paley-Wiener theorem given in [102, p. 181] implies that ¢ (as
an entire function in C™) satisfies

|0(&)] < Cexp(r|lm(€)]) forall &eC™. (A.2.14)

By definition, @y is also an entire function by (A.2.12) and in L?*(R™). According to the
converse statement in the Paley-Wiener theorem from [102, p. 181], it is thus sufficient to
prove that the bound (A.2.14) also holds for ¢y with a possibly modified constant Cy > 0
in order to verify that p, € L*(Q).

The argument to be made is widely analogous as for classical support-theorems for the
m-dimensional Radon-transform® [134, Theorem 2.2]. Let &€ = n +i¢ € C™\ {0} with
1,¢ € R™ and £ € C such that €2 = £ - €. Then explicit computation shows that

m(€)* = r(I¢P = [n* + ((nl* = <2 + 4(n - )*)'"?)
<r(IC)” = ml + ((m2 = 1€ + 4Im?¢1?) ) = [¢)? = Im()]>  (A.2.15)
By (A.2.11) and (A.2.12), it holds that ¢o(&) = (8¢ - &)Y ae(§)/& and thus |po(€)] <

00| (|1n1? + |C2)"/21€]7" |ae(€)] < |ae(€)| (the bound remains true for £ = 0 < & = 0).
Letting Cp := C' [5,._ |Y2(6)] d@, we obtain the sought analogue of (A.2.14) for ¢y:

(A.2.11)

w@l<la@] < [ m@llgeolds < Cooxplriim(éo))
— Coexp(r|m(@)]) £ Coexp(r[im(€)]). (A.2.16)

e Contrast-minimizing property: Analogously to (A.2.13), it follows that
2

IT ()P = 2

/R sl D) e (€) PIEI™ € = ¢ [y - ae]]® (A2.17)

By (A.2.9) and (A.2.10), this implies || T'(wo)l|/[[oll = [[Maa - acll/llacll < [IT(0)II/ll]-
As ¢ is a minimizer of (A.2.1), the same must thus hold for ¢q/||¢o]|.

e Radial (anti-)symmetry: First consider the even case v = 0. Then ¢y is radially symmetric
by (A.2.12), i.e. o(AE) = ¢o(€) for all £ € R™ and arbitrary orthogonal matrices A €
O(m) := {B € R™™ : BBT = BTB = id}. As the F~! commutes with orthogonal
transforms of the coordinate system, this implies radial symmetry of ¢, as well:

po(Az) = F~H(¢o)(Am) = F 1 (o(A())) (@) = F~(Go) () = po() (A.2.18)

for all z € R™, A € O(m). Thus, go(x) = |x|~ ™ V/2pd(|z|) for some function @i
[0;7] — R and almost all € B[0;r]. By writing the L-integral in polar coordinates, it
follows that |5 = (g1 dO)?[lo|| < o0, i.e. g € L2([0;7],R).

"Tndeed, there is a strong relation between the m-d Radon-transform 2 (£)(0,z) := Joro0—0 /() dx and

the construction of @g: By the Fourier-Slice-Theorem F(Z™Y(£))(0,€) « F(f)(£0) (up to 2n-factors), one
has 2™ (¢0)(0,z) o (8o - 0)* F~1(ag)(x) and F~1(ae)(x) o [ Ye(0)Z ™D (0)(6, ) dO by (A.2.11).
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For the odd case v = 1, note that, by (A.2.12), ¢y is of the form ¢o(&) = (0¢-&)Po(&) with
a radially symmetric ¢y. By differentiation-rules for the Fourier transform, this implies

po = —iF H(po) = FH(~i(60 - €)@0) = —(80 - V)F (o). (A.2.19)

By the argument made above, F () is radially symmetric as well, i.e. F~(@o)(x) =
orad(|x|) for all € R™ and some function @¢5d : [0;7] — R. Hence, (A.2.19) yields

o() = —(60 - V)5 () = (B0 - )|z | "~V 25 (| (A.2.20)
for almost all & € B[0; 7] with ¢4 (z) := —|z|m"D/2Lztd Hence, ¢y is of the claimed
radially anti-symmetric form. Square-integrability of @rad follows analogously as in the
radially symmetric case. O]

The proof of theorem 3.13 from §3.4.2 essentially amounts to applying the general result
from theorem A.1 to the specific Fourier-multiplier .7,.

Theorem (3.13). Let § > 0, o € R and Q@ C R™ bounded. Then the following holds true:

(a) (point-symmetry) If @ = —Q, then there ezists either an even or an odd contrast-
minimizing mode of ., i.e. @y from theorem 3.12 may be chosen such that
po(—) =wo or wo(—)=—%0. (A.2.21)

(b) (radial symmetry) If Q = B[0; 1], then there exists either a radially symmetric or a radi-
ally anti-symmetric contrast-minimizing mode, i.e. o from theorem 3.12 may be chosen
such that, for some function 5 € L*([0; %]), either of the following applies:

m—1
(1) go(x) = |z|” 2 @id4(|z|) for all z € R™\ {0}. Then i is an eigenfunction of a
selfadjoint compact integral operator IC;ff’s : L2([0; ]) — L*([0; ]) defined by
3
K0 = [ ) ) o
0

= (1) oo on (W2 il

2
drsine(Lrp) (m=3)
(A.2.22)
to its mazimal eigenvalue, which is A;,. Then @ : @ — ||~ e gogad(|a:|) for any

et e L2([0; 3]) with ICradS( oy = N, ohd ds also a contrast-minimizing mode.

(2) ¢o(x) = (0 - |w|)]w\ N ord(|z|) for all 2 € R™\ {0} and some 6y € S™ L. Then

analogous statements to (1) hold for a modified integral operator ICmda with kernel

e (_)’?W)m; an (M2 ) gji(éz?) -

drsines(irp)  (m :)

(A.2.23)
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Here, the abbreviation v := 2a — mm /4 is used, J, :

— =~ [y cos(nt — xsin(t)) dt denote
nth order Bessel functions of the first kind and sincy : x +— (si

t))
n(x )—l’COS( )/

Proof. Part (a) and existence of radially (anti-)symmetric contrast-minimizing modes follows
from theorem A.1. Hence, what remains to be shown is the characterization in terms of the
operators ICrad ® and lCrad *. We consider the case (1) where ¢y is radially symmetric. By writing
the integral operator ICW in polar coordinates, we have for all € Q\ {0} (2 = B[0; 3])

Nt (2]) = |27 Nao(@) = |7 Ky apo(@ /!w\ T kpa(@ —y)lyl T o (lyl) d

—lel" ([ 1kfa(w—p9)d9)ﬂ2 G (p) dp = P () ). (A2.24)

fK”*d S (|z],p)

The fact that the underbraced expression only depends on the euclidean norm |x| is a conse-
quence of the radial symmetry of the kernel k;,. Explicit computations of the integral over
the unit sphere S™! show that the kernel K; 14 of the radially integrated operator is form in
(3.4.8). Accordingly, (A.2.24) shows that gprad is an eigenfunction of ICrads to the eigenvalue
M-

By writing the L?-norm in polar coordinates, it can be seen that the embedding

m—1

brads © L2([0;4]) = L2(Q); 0™ = |- 772 0™4(] - ]) (A.2.25)

is well-defined, linear and bounded (in fact isometric). Moreover, it can be readily seen that
ICrads = UaasKhatrads: As Kjo 0 L*(Q) = L*(Q) is bounded, compact and selfadjoint, the same

must thus hold for K% : L2([0; 4]) — L*([0; 3]).

By readmg (A.2. 24) in a reverse manner, it is furthermore seen that any eigenpair A € R,
et e L*([0;4]) (lCrads has only real eigenvalues by selfadjointness) s.t. lCradS rad — )\cprad
induces a radially symmetric eigenfunction ) = Lrads((pg\ad) of Kso to the same elgenvalue.
rads

This also implies that A;, has to be the maximal eigenvalue of K

The proof for the case of radially anti-symmetric modes Works completely analogously. [
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