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Abstract

Background: Pooling techniques, where multiple sub-samples are mixed in a single sample, are widely used to
take full advantage of high-throughput DNA sequencing. Recently, Ranjard et al. (PLoS ONE 13:0195090, 2018)
proposed a pooling strategy without the use of barcodes. Three sub-samples were mixed in different known
proportions (i.e. 62.5%, 25% and 12.5%), and a method was developed to use these proportions to reconstruct the
three haplotypes effectively.

Results: HaploJuice provides an alternative haplotype reconstruction algorithm for Ranjard et al.’s pooling strategy.
HaploJuice significantly increases the accuracy by first identifying the empirical proportions of the three mixed
sub-samples and then assembling the haplotypes using a dynamic programming approach. HaploJuice was
evaluated against five different assembly algorithms, Hmmfreq (Ranjard et al., PLoS ONE 13:0195090, 2018), ShoRAH
(Zagordi et al., BMC Bioinformatics 12:119, 2011), SAVAGE (Baaijens et al., Genome Res 27:835-848, 2017), PredictHaplo
(Prabhakaran et al., IEEE/ACM Trans Comput Biol Bioinform 11:182-91, 2014) and QuRe (Prosperi and Salemi,
Bioinformatics 28:132-3, 2012). Using simulated and real data sets, HaploJuice reconstructed the true sequences with
the highest coverage and the lowest error rate.

Conclusion: HaploJuice provides high accuracy in haplotype reconstruction, making Ranjard et al.’s pooling strategy
more efficient, feasible, and applicable, with the benefit of reducing the sequencing cost.
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Background
With the rapid advancement of next-generation sequenc-
ing technologies, it is possible to obtain several gigabases
of sequences in a single day. Given the huge volume
of throughput, it is often cost-effective to mix multiple
sub-samples in a single sample for sequencing, a process
called pooling. Several approaches have been developed
to demultiplex the sequencing reads from the mixture, i.e.
assign reads to their respective sub-samples. For exam-
ple, a short unique identifiable sequence tag (i.e. bar-
code) is often appended to each DNA molecule of the
same sub-sample before pooling and sequencing. Bar-
codes allow the reads to be separated into different groups
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according to their unique barcode sequences [1]. Each
group is expected to originate from the same individual
as with unpooled samples. Individual haplotypes can then
be reconstructed by either by de novo assembly or com-
puting the consensus sequence after aligning reads against
one or more reference sequences. This approach cannot
be applied to a mixture of reads without barcodes because
the reads cannot be demultiplexed.
Nonetheless, in some instances, it may be useful to

recover the constituent haplotype sequences from a mix-
ture of haplotypes without using barcodes because the
cost of the library preparation increases linearly with the
number of required barcodes. Therefore, if it is possible to
efficiently reconstruct haplotypes from mixtures of sam-
ples without using barcodes, this may reduce sequencing
costs significantly.
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Several methods have been designed to reconstruct the
haplotypes from a mixture of reads without barcodes.
The simplest of these approaches, developed by [2], aligns
a mixture of reads against several reference sequences,
allowing them to separate the reads to the different ref-
erences. However, their method is only applicable for
samples which are phylogenetically distant enough, e.g.,
for different species.
More sophisticated methods have also been developed

to recover the constituent sequences from mixtures,
when these sequences are genetically quite similar, e.g.,
haplotypes within populations or species. ShoRAH [3]
implements local-window clustering to recover the con-
stituent haplotypes in a mixture. SAVAGE [4] uses
an overlap graph and clique enumeration to recon-
struct multiple haplotypes. PredictHaplo [5] uses Dirich-
let prior mixture model, starts local reconstruction
at the region of maximum coverage and progres-
sively increases the region size until it covers the
entire length of haplotypes. QuRe [6] uses sliding win-
dows and reconstructs the haplotypes based on multi-
nomial distribution matching heuristic algorithm [7].
However, ShoRAH, SAVAGE, PredictHaplo and QuRe
assume that both the number and the proportion of
the constituent haplotypes in the mixture are unknown
and do not make use of these information in their
algorithms.
Recently, Ranjard, et al. [8] proposed another pool-

ing strategy without barcodes that can be applied for
individuals of the same species. Their strategy consists
of pooling in a single sample, individually amplified
sequences in different known proportions. The propor-
tions of these ‘sub-samples’ induce different expected
frequencies of the variants in the mixture, and hence,
different expected sequencing read coverages. These fre-
quencies, in turn, allow the sub-sampled sequences to
be reconstructed accurately. Ranjard et al. applied their
method to mitochondrial sequences from three kangaroo
sub-samples (each sub-sample consisting of an ampli-
fied fragment from a single kangaroo) mixed in pro-
portions 62.5%, 25%, and 12.5%, and showed that the
three haplotypes could be assembled effectively, thus
reducing the cost of sequencing significantly. Hmmfreq
[8], which was developed by Ranjard et al. to recon-
struct the haplotypes under this scenario, is based on a
Dirichlet-multinomial model [9] and a Hidden Markov
Model (HMM).
In this paper, we focus on the pooling strategy [8] pro-

posed by Ranjard et al. but our method, however, does not
assume any prior knowledge on the sample proportions;
only the number of sub-samples in the mixture is known
a priori. We compute the sub-sample proportions directly
from the mixture of reads using a maximum likelihood
method. Based on the estimated sample proportions, we

use a multinomial model and dynamic programming to
reconstruct the multiple haplotypes simultaneously.
HaploJuice, which is an extension of Hmmfreq [8], con-

siders all possible combinations for assigning local sub-
sequences to haplotypes, and selects the combination with
the highest overall likelihood. We evaluate HaploJuice
against five different assembly algorithms, Hmmfreq [8],
ShoRAH [3], SAVAGE [4], PredictHaplo [5] and QuRe
[6], using simulated and real data sets in which three
sequences are mixed in known frequencies. Based on our
results, HaploJuice reconstructs sequences with the high-
est coverage of the true sequences and has the lowest
error rate.

Results
HaploJuice first identifies the underlying sub-sample pro-
portions from a mixture of reads and, second, recon-
structs the haplotypes using these estimated proportions.
As with Hmmfreq it requires an alignment of short-read
sequences against a reference sequence. In our analy-
sis, all reads are aligned to the reference sequence using
Bowtie 2 [10].
Simulated datasets were used to evaluate our meth-

ods. Four hundred data sets were simulated and each
data set was a mixture of three sub-samples. The three
sub-samples were mixed under various proportions: 5:4:1,
5:3:2, 6:3:1, and 7:2:1 (100 data sets each). 150-long pair-
ended reads with total coverage 1500x were simulated by
ART [11] with the default Illumina error model from three
10k-long haplotypes, which were generated by INDELi-
ble [12] using JC [13] model from a 3-tipped tree with
0.05 root-to-tip distance randomly created by Evolver [14]
from PAML [15] package.
After using Bowtie 2 [10] to align the reads against the

root sequence (also reported from INDELible [12]), we
ran HaploJuice to estimate the sub-sample proportions in
the mixture. As shown in Table 1, on average, the esti-
mated sub-sample proportions were the same as the actual
proportions with standard deviation 0.001. The method
of estimation on the sub-sample proportions is, therefore,
found to be effective on these simulated data sets.

Table 1 The results of estimation on the sample proportions by
HaploJuice

Case Actual sample proportion Estimated sample proportion

f1 f2 f3 (Average ± Standard deviation)

1 0.5 0.4 0.1 0.50 ± 0.001 0.40 ± 0.001 0.10 ± 0.001

2 0.5 0.3 0.2 0.50 ± 0.001 0.30 ± 0.001 0.20 ± 0.001

3 0.6 0.3 0.1 0.60 ± 0.001 0.30 ± 0.001 0.10 ± 0.001

4 0.7 0.2 0.1 0.70 ± 0.001 0.20 ± 0.001 0.10 ± 0.001

One hundred data sets were simulated for each case
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HaploJuice was then used to reconstruct the haplo-
type sequences for each data set based on the estimated
sample proportions. HaploJuice was compared to five
different assembly algorithms, including Hmmfreq [8],
ShoRAH [3], SAVAGE [4], PredictHaplo [5] and QuRe
[6]. Note that SAVAGE, PredictHaplo and QuRe do not
have prior assumptions on the number of haplotypes,
whereas HaploJuice and Hmmfreq do. MetaQUAST [16]

was then used with default parameters to evaluate the
contigs, which were resulted by all the software, against
the true sequences. By default, MetaQUAST discards all
the contigs with length smaller than 500. Table 2 shows
the summary of the performance of different methods on
the simulated data sets. On average, HaploJuice recon-
structed contigs over 99.7% haplotype coverage, which
was the highest among all the methods. When checking

Table 2 Comparison of performance of different methods on reconstruction of three haplotypes for simulated data sets

a. Proportion of three samples: 0.5, 0.4, 0.1 (total length of three haplotypes: 30k)

Software # contigs Longest N50 Haplotypes Error rate %

≥ 500 bp contig coverage %

HaploJuice 3.0±0.0 9975±6.8 9971±6.5 99.7±0.0 0.001±0.004

hmmfreq[8] 3.0±0.0 9855 ± 6.8 9850 ± 6.3 98.5 ± 0.0 0.276 ± 0.254

shoRAH[3] 30.8 ± 11.7 9819 ± 124.8 9799 ± 116.7 97.5 ± 3.5 0.646 ± 0.492

SAVAGE[4] 9.8 ± 3.5 9972 ± 11.8 305 ± 300.3 51.3 ± 7.1 0.001 ± 0.004

PredictHaplo[5] 2.0 ± 0.2 9991 ± 4.2 9984 ± 5.6 67.7 ± 5.7 0.102 ± 0.034

QuRe[6] 3.7 ± 1.9 6993 ± 1306.3 7374 ± 686.5 43.8 ± 13.5 0.331 ± 0.318

b. Proportion of three samples: 0.5, 0.3, 0.2 (total length of three haplotypes: 30k)

Software # contigs Longest N50 Haplotypes Error rate %

≥ 500bp contig coverage %

HaploJuice 3.0±0.0 9975±6.3 9971±7.8 99.7±0.0 0.000±0.001

hmmfreq[8] 3.0±0.0 9854 ± 5.8 9850 ± 7.6 98.5 ± 0.0 0.089 ± 0.104

shoRAH[3] 27.9 ± 6.6 9814 ± 118.3 9789 ± 113.9 97.1 ± 4.7 0.591 ± 0.358

SAVAGE[4] 11.4 ± 3.4 9983 ± 8.2 436 ± 281.8 54.7 ± 7.1 0.001 ± 0.005

PredictHaplo[5] 2.0 ± 0.2 9991 ± 3.7 9984 ± 5.8 68.0 ± 6.6 0.087 ± 0.040

QuRe[6] 4.2 ± 2.2 7348 ± 820.8 7436 ± 776.9 44.9 ± 15.9 0.761 ± 0.851

c. Proportion of three samples: 0.6, 0.3, 0.1 (total length of three haplotypes: 30k)

Software # contigs Longest N50 Haplotypes Error rate %

≥ 500bp contig coverage %

HaploJuice 3.0±0.0 9975±7.3 9970±7.7 99.7±0.0 0.000±0.000

hmmfreq[8] 3.0±0.0 9854 ± 5.6 9849 ± 6.2 98.5 ± 0.0 0.210 ± 0.214

shoRAH[3] 25.2 ± 5.9 9837 ± 115.0 9808 ± 113.3 97.4 ± 4.8 0.749 ± 0.516

SAVAGE[4] 11.2 ± 3.0 9971 ± 20.9 419 ± 260.5 53.9 ± 6.3 0.001 ± 0.006

PredictHaplo[5] 2.0 ± 0.0 9991 ± 3.5 9984 ± 4.7 66.7 ± 0.0 0.089 ± 0.025

QuRe[6] 3.9 ± 1.9 7074 ± 1284.4 7300 ± 716.6 39.1 ± 14.5 0.492 ± 0.597

d. Proportion of three samples: 0.7, 0.2, 0.1 (total length of three haplotypes: 30k)

Software # contigs Longest N50 Haplotypes Error rate %

≥ 500bp contig coverage %

HaploJuice 3.0±0.0 9976±6.1 9971±6.3 99.7±0.0 0.005±0.048

hmmfreq[8] 3.0±0.0 9855 ± 6.2 9850 ± 6.7 98.5 ± 0.0 0.240 ± 0.220

shoRAH[3] 20.2 ± 4.7 9835 ± 115.0 9812 ± 106.4 93.8 ± 11.2 0.912 ± 0.630

SAVAGE[4] 15.2 ± 3.0 9974 ± 10.6 708 ± 161.7 65.1 ± 7.0 0.001 ± 0.005

PredictHaplo[5] 2.0 ± 0.0 9991 ± 3.8 9984 ± 4.7 66.7 ± 0.0 0.088 ± 0.021

QuRe[6] 3.6 ± 1.8 6787 ± 1333.0 7121 ± 809.6 28.4 ± 11.2 0.319 ± 0.535

One hundred data sets were generated for each of the cases with different sets of sample proportions. Format of the data is: average ± standard deviation. The best value for
each column is highlighted among the software outputting the contigs over 90% haplotype coverage
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the error rates (i.e. the percentage of bases in the con-
tig sequences having mutations or indels when compared
against with the real haplotypes), HaploJuice was less than
0.005% on average. It was the lowest among the software
which reconstructed contigs over 90% haplotype cover-
age. In conclusion, HaploJuice is shown effective from the
simulated data sets.
Apart from the simulated data sets, mixtures of reads

from three kangaroo sub-samples [8] were also used to
evaluate the performance of the methods. These reads [8]
were obtained by short read sequencing of three mito-
chondrial amplicons on an Illumina platform. The sub-
samples were mixed in the proportions: 0.625, 0.25, and
0.125 during the library preparation, and the total cover-
age of reads is 1600x. There is a total of 30 data sets; 10
data sets for each amplicon (three amplicons in total).
All the reads were aligned against the correspond-

ing amplicon regions on the reference mitochondrial
sequence [17] (Genbank accession number NC_027424)
by Bowtie 2 [10]. The alignment file is the input of Haplo-
Juice and the estimated sub-sample proportions are listed
in Table 3. Although the sub-samples were intentionally
mixed in the proportions 0.625, 0.25 and 0.125, variations
on the estimated proportions were noticed. For example,
for the data sets of amplicon 3, the estimated proportions
were 0.646, 0.251, and 0.103 on average. The variation
between the estimated proportions and the expected pro-
portions was 6.2% on average, ranging from 0.3% to 17.9%.
This revealed the fact that the actual sub-sample propor-
tions in the mixture may be differ from expectation, when
the sub-samples are mixed manually during the library
preparation.
HaploJuice as well as the other five methods, includ-

ing Hmmfreq [8], ShoRAH [3], SAVAGE [4], Predic-
tHaplo [5] and QuRe [6], were used to reconstruct the
three haplotypes for each amplicon region from the mix-
ture of kangaroo reads. MetaQUAST [16] with default
parameters was used to evaluate the resulting contigs

Table 3 Estimated frequencies of three kangaroo sub-samples
among the mixture of reads [8] for three amplicons resulted from
our method

Amplicon Target proportions Average estimated proportions
(average variation in %)

f1 f2 f3 f1 f2 f3

Amplicon 1 0.625 0.250 0.125 0.656 0.229 0.115

(4.9%) (8.3%) (8.0%)

Amplicon 2 0.625 0.250 0.125 0.640 0.246 0.114

(2.4%) (1.6%) (8.7%)

Amplicon 3 0.625 0.250 0.125 0.646 0.251 0.103

(3.4%) (0.3%) (17.9%)

It revealed the existence of variations on the ratios of the sub-samples when mixing
them during the library preparation. Ten data sets were for each amplicon

against the true haplotypes inferred by deep sequenc-
ing [8]. Table 4 shows the summary on the performance
of different methods. On average, HaploJuice resulted in
contigs with the highest haplotype coverage for all ampli-
cons (97% for amplicon 2 and over 99% for amplicon
1 and 3) among all the methods, and with the lowest
(or one of the lowest) error rate among the methods
with contigs over 90% haplotype coverage (on average,
0.05% for amplicon 1, 0.02% for amplicon 2, and 0.01%
for amplicon 3). Thus, HaploJuice is shown to be effec-
tive at recovering the constituent haplotypes from the real
data sets, even though the read coverage in the data sets
fluctuates considerably along the mitochondrial genome
(as shown in [8]).
To understand how the performance of HaploJuice

varies with different genetic distances between the sub-
samples, another one hundred data sets were simulated.
Each data set was a mixture of three sub-samples under
the proportions 1:2:5. For each triplet, the root-to-tip
genetic distance of the tree was fixed at 0.05, and the
genetic distance of the ancestor of the two most closely
related sequences was a uniform random variable between
0.001 and 0.05. Similar to the previous simulated data sets,
150-long pair-ended reads with total coverage 1500x were
simulated and they were aligned to the root sequence.
The haplotype sequences were reconstructed using Hap-
loJuice from the read alignments. Figure 1 shows that
the resulting haplotype coverage of the contigs is higher
than 99.55% in all data sets, and the resulting error rates
of the contigs are less than 0.001% with the exception
of in one data set, where the error rate was 0.1% (data
not shown). The results indicates that HaploJuice per-
forms consistently with different distances between the
haplotypes.
The performance of HaploJuice was also evaluated

under different sub-sample proportions. A total of 833
datasets were simulated to cover all possible unique com-
binations of three sub-sample proportions with range
between 1% and 98%, with a step size of 1%. As
before, the 150-long pair-ended reads with total cover-
age 1500x were simulated and they were aligned to the
root sequence. HaploJuice was used to reconstruct the
haplotype sequences from the read alignments. Figure 2
shows the performance of HaploJuice with different com-
binations of sub-sample proportions (i.e. x%, y%, z%).
Figure 2a indicates that the haplotype coverage is close
to 100%, but decreases when either x, y, or z are too
small (i.e. less than 5%). The haplotype coverage also
decreases when x ≈ y ≈ z (e.g., when sub-sample pro-
portions are 33%, 33%, 34%). Similarly, Fig. 2b shows that
the error rates are generally very low, except when two
of the sub-sample proportions are close (e.g., x ≈ y,
y ≈ z, x ≈ z or x ≈ y ≈ z). This result is in line with
our expectations, because the algorithm uses proportions
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Table 4 Comparison of performance of different methods on reconstruction of three haplotypes for real kangaroo data sets from the
mixture of reads [8] for (a) amplicon 1, (b) amplicon 2, and (c) amplicon 3

a. Amplicon 1 (total length of three haplotypes: 13921)

Software # contigs Longest N50 Haplotypes Error rate %

≥ 500bp contig coverage %

HaploJuice 3.0±0.0 4613±2.1 4612±2.0 99.4±0.0 0.05±0.07

hmmfreq[8] 3.0±0.0 4485 ± 0.6 4484 ± 0.6 96.6 ± 0.0 0.26 ± 0.10

shoRAH[3] 24.0 ± 2.6 4592 ± 7.0 4592 ± 6.0 95.6 ± 10.4 1.05 ± 0.32

SAVAGE[4] 13.2 ± 2.1 903 ± 132.3 482 ± 169.6 47.3 ± 5.2 0.02 ± 0.04

PredictHaplo[5] 1.1 ± 0.3 4630 ± 2.0 462 ± 1461.3 36.5 ± 10.5 0.01 ± 0.01

QuRe[6] 4.0 ± 1.9 4343 ± 9.9 3909 ± 1373.7 74.9 ± 21.8 0.42 ± 0.32

b. Amplicon 2 (total length of three haplotypes: 12694)

Software # contigs Longest N50 Haplotypes Error rate %

≥ 500bp contig coverage %

HaploJuice 3.0±0.0 4120±1.5 4120±1.5 97.4±0.0 0.02±0.03

hmmfreq[8] 3.0±0.0 3998 ± 4.0 3998 ± 4.0 94.5 ± 0.1 0.02±0.01

shoRAH[3] 24.2 ± 5.7 4119 ± 14.5 4118 ± 12.1 90.8 ± 13.5 0.41 ± 0.48

SAVAGE[4] 8.8 ± 3.8 1806 ± 761.5 572 ± 81.7 50.2 ± 4.7 0.00 ± 0.00

PredictHaplo[5] 2.0 ± 0.0 4140 ± 2.6 4136 ± 0.0 65.2 ± 0.0 0.00 ± 0.00

QuRe[6] 2.4 ± 0.7 3746 ± 4.7 3373 ± 1185.0 38.4 ± 14.3 0.22 ± 0.28

c. Amplicon 3 (total length of three haplotypes: 15391)

Software # contigs Longest N50 Haplotypes Error rate %

≥ 500bp contig coverage %

HaploJuice 3.0±0.0 5116 ± 9.1 5111±7.7 99.6±0.1 0.01±0.00

hmmfreq[8] 3.0±0.0 5029 ± 3.1 5027 ± 3.6 98.0 ± 0.1 0.23 ± 0.11

shoRAH[3] 27.6 ± 3.0 5132±7.1 5111 ± 7.4 96.3 ± 10.5 1.91 ± 0.44

SAVAGE[4] 11.8 ± 2.3 2510 ± 672 550 ± 40.4 55.6 ± 4.3 0.01 ± 0.01

PredictHaplo[5] 1.6 ± 0.5 5170 ± 3.9 3070 ± 2642.4 53.3 ± 17.2 0.14 ± 0.09

QuRe[6] 3.0 ± 1.1 4567 ± 2.1 4106 ± 1442.7 35.6 ± 12.5 0.25 ± 0.28

There are 10 data sets for each amplicon with total coverage of the reads 1600x. For each data set, the sub-samples were mixed in the proportions: 0.125, 0.25, 0.625. The
format of data is: average ± standard deviation. The best value for each column is highlighted among the methods with contigs over 90% coverage on three haplotypes

to reconstruct haplotypes, and haplotypes having simi-
lar proportions will naturally confound the process. From
Fig. 2a and b, we found that the haplotype proportions
have to be at least 5% different for HaploJuice to perform
effectively.
When comparing the running time between different

methods on the Kangaroo data sets, HaploJuice was the
fastest, averaging 0.14 min for each data set, while other
software took from 4 to 139 min. The summary is shown
in Table 5.

Discussion
In order to decrease the cost of sequencing, Ranjard et al. [8]
proposed a pooling strategy tomix sub-samples in specific

known proportions thus simplifying library preparation
by removing the need for barcode sequences. According
to their experiments on mitochondrial amplicons from
three kangaroo sub-samples mixed in proportions 0.625,
0.25, and 0.125, they found that the three haplotypes could
be reconstructed effectively using these known frequen-
cies. However, they found that variation of the ratios of
sub-samples when mixing due to stochastic experimental
effects can decrease the accuracy of haplotype recon-
struction. Our research provides an alternative haplotype
reconstruction algorithm for Ranjard et al.’s pooling strat-
egy. We show that estimating the empirical proportions
of the mixed sub-samples, prior to the reconstruction the
haplotype sequences, significantly increases the accuracy
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Fig. 1 Coverage of HaploJuice contigs as a function of haplotype
genetic distances. The figure shows how the performance of
HaploJuice varies with different genetic distances between the
sub-samples

of the approach. As shown from the simulated data sets
and the real data sets, our method can, first, accurately
identify the underlying sub-sample proportions from a
mixture of reads and, second, reconstruct the haplotypes
according to these estimated proportions.
The pooling strategy can be applied on a greater num-

ber of sequences. Consider a total of n sub-samples. A
group of three sub-samples of the same species can be
mixed in the specific known proportions and applied the
same barcode. Thus only n

3 barcodes are required and
the cost of the library preparation can be greatly reduced.
After sequencing, HaploJuice can be used to assemble the
reads associated with the same barcode and reconstruct
the three haplotypes for each group of the sub-samples. As
shown from the simulated data sets and the real data sets,
the high accuracy of assembled haplotypes makes the sug-
gested pooling strategy [8] becomemore realistic, feasible,
and applicable.
Our method relies on aligning reads against a reference

sequence. The accuracy of the read alignments affects the
effectiveness of our method. In our evaluations, we only
used alignments reported by Bowtie 2 [10] with map-
ping quality of at least 20. Whereas we understand that
coverage varies along the haplotype, but we assume that
ratios of the read coverage for each haplotype at each loca-
tion follows the same multinomial distribution. If a region
on some haplotypes is very different from the reference
sequence, reads from this region may not align to the
reference, and the induced read coverage for those haplo-
types may decrease substantially. The bias in the induced
read coverage ratio can cause misleading results, because
of its deviation from the commonmultinomial distribution.
Therefore, this method is designed for the pooling strat-
egy applied on the sub-samples that align well with the
reference sequence.

HaploJuice assumes that the number of haplotypes is
known in advance. There is no equivalent assumption
with ShoRAH [3], SAVAGE [4], PredictHaplo [5] and
QuRe [6]. Nonetheless, these are the only available soft-
ware for haplotype reconstruction from a pool of reads
originating from a mixture of different sub-samples. We
expect that the effectiveness of haplotype reconstruction
using these methods are also likely to be improved if the
number of haplotypes is known in advance. One reason-
able approach to assemble the reads from a sample with
unknown number of haplotypes is therefore to develop
a statistical method to estimate the number of haplo-
types from a mixture of reads, and then reconstruct the
haplotypes using our method according to this estimated
number of haplotypes.

Conclusions
HaploJuice is designed for the reconstruction of three
pooled haplotypes from a mixture of short sequencing
reads obtained under the strategy proposed by Ranjard et al.
[8]. As shown from the simulated data sets and the real
data sets, HaploJuice provides high accuracy in haplotype
reconstruction, thus increasing the estimation efficiency
of Ranjard et al.’s pooling strategy.

Methods
HaploJuice is designed for the pooling strategy [8] pro-
posed by Ranjard et al., assuming the number of sub-
samples is known and the sub-samples have different
proportions. Figure 3 shows the work flow in Haplo-
Juice. HaploJuice first estimates the sub-sample propor-
tions from a mixture of reads using maximum likelihood
method. The algorithm then reconstructs the haplo-
type sequences using a dynamic programming method.
The following subsections describes the details of the
algorithm.

Estimation of sample proportions
HaploJuice requires an alignment of short-read sequences
against a reference sequence. All reads are aligned to the
reference sequence using Bowtie 2 [10]. Only the reads
which are aligned at unique positions on the reference
are considered. The alignment of each read has a starting
and an ending position on the reference. A sliding window
approach is used.
Let W be the set of overlapping windows. For each

window w ∈ W , we collect the reads that are aligned
across the whole window. We extract the correspond-
ing sub-sequences according to the window’s bounds, and
obtain the set of unique sub-sequences Tw = {tw1, tw2, ...}
and the frequencies Gw = {gw1, gw2, ...} where gwi is
the number of reads with subsequence twi. The sub-
sequences inside Tw are sorted in decreasing order of
frequencies.
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a

b

Fig. 2 Performance of HaploJuice with different sample frequencies. The figures (a) and (b) show the haplotype coverages and the error rates of the
contigs under different sub-sample proportions, respectively
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Table 5 The average running time (in min) of different methods
to reconstruct haplotypes for each Kangaroo data set

HaploJuice hmmfreq ShoRah SAVAGE PredictHaplo QuRe

[8] [3] [4] [5] [6]

0.14 13.53 7.81 11.21 4.30 139.93

Say n sub-samples are pooled with unknown propor-
tions f1, f2, ..., fn where f1 > f2 > ... > fn. When there is no
sequencing error and each sub-sample is from a unique
haploid sequence, each sub-sample should produce only
one subsequence in Tw. In those regions where two or
more sub-samples are identical, the sub-sequences origi-
nating from these sub-samples will be the same. For each
sliding window, the number of possible combinations of n
samples producing sub-sequences, i.e. the number of pos-
sible partitions of a set with n different elements (where
each element represents a sub-sample, and the elements
in the same partition are regarded as the sub-samples pro-
ducing the same sub-sequences), is the Bell number Bn
[18]. Each case will lead to different expected frequencies
of the sub-sequences.
However, under real sequencing conditions, the num-

ber of sub-sequences in each window may be greater than
n, because some erroneous sub-sequences are created by
sequencing errors. We assume that the frequencies of
erroneous sub-sequences are always lower than that of
real sub-sequences. For each window, we only consider
the top-n most frequent sub-sequences. Table 6 lists the

Fig. 3Work flow in HaploJuice. HaploJuice first estimates the
sub-sample proportions from a mixture of reads using maximum
likelihood method. The algorithm then reconstructs the haplotype
sequences using a dynamic programming method

Table 6 The expected frequencies of top-nmost frequent
sub-sequences for a mixture from 3 samples

Case Expected frequencies of sub-sequences

1 f1 f2 f3

2 f1 + f2 f3 fe

3 f1 + f3 f2 fe

4 f2 + f3 f1 fe

5 f1 + f2 + f3 fe fe′

This is a total of B3 = 5 cases. fe and fe′ are the proportions of erroneous sequences

expected frequencies of the sub-sequences for all cases
when n = 3.
Let pki be the i-th expected frequency for case k. Assume

the observed frequencies of the sub-sequences in a win-
dow w ∈ W follow a multinomial distribution. The
likelihood value for the window w, (L(w)), is computed as
follows:
L(w)

=
∑

k
prob(top n observed frequencies in window w|case k)prob(case k)

=
∑

k
mult(gw1, gw2, ..., gwn; n, pk1, pk2, ..., pkn)prob(case k)

∝
∑

k

( n∏

i=1
(pki)gwi

)
prob(case k)

The probability of the case k (i.e. prob(case k)) is esti-
mated by the following equation:

prob(case k) ≈ 1
|W |

∑

w∈W
Prob(case k|window w)

≈ 1
|W |

∑

w∈W

∏n
i=1 (pki)gwi∑

k
(∏n

i=1 (pki)gwi
)

And the overall log-likelihood value (logL) for all the
windows w ∈ W is:

logL =
∑

w∈W
log(L(w))

The optimal values of f1, f2, ..., fn, fe, fe′ are computed
such that the overall log-likelihood value (logL) is maxi-
mum. In practice, the following constraints are used: f1 ≥
f2 ≥ · · · fn ≥ fe ≥ fe′ and fe ≤ b, where b is an upper
limit for the frequency of an erroneous subsequence. The
estimated sample proportions are the optimal values of
f1, f2, ..., fn. The time complexity is: O(Bn ∗ n ∗ |W |), where
Bn is the n-th Bell number, n is the number of haplotypes,
and |W | is the number of windows.

Reconstruction of haplotype sequences
The next step is to reconstruct the haplotype sequences
according to the sub-sample proportions estimated in the
previous step. We assume that each sub-sample is gen-
erated from a unique haploid sequence (i.e. haplotype).
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If we can identify the corresponding sub-sequence of
each haplotype for every sliding window, then the hap-
lotype sequences can be reconstructed by combining the
sub-sequences from all the windows. However, in prac-
tice, it is not obvious, because the real sub-sequences
are usually mixed with erroneous sub-sequences caused
by sequencing errors. Moreover, multiple haplotypes may
share the same sub-sequence and the observed frequen-
cies of the sub-sequences may deviate from expectation at
some positions.
A dynamic programming approach was used to recon-

struct multiple haplotype sequences simultaneously, by
considering all the cases for each window, and choos-
ing the best arrangement with the maximum likelihood
value.
Consider a sliding window w ∈ W and the top-n

most frequent sub-sequences (i.e. tw1, tw2, ..., twn) in the
window. Since each haplotype can generate one sub-
sequence, there are nn possible cases to generate n dif-
ferent sub-sequences by n haplotypes (considering that
multiple haplotypes can generate the same sub-sequence
and some sub-sequences can be erroneous), and each case
will lead to a different set of expected frequencies of the
sub-sequences. Table 7 lists all 27 possible cases and the
expected frequencies of the sub-sequences when n = 3.
Define A(w, k) = (t1, · · · , tn) as an assignment of the

haplotypes to the sub-sequences in sliding window w
when case k is considered (i.e. i-th haplotype generates
sub-sequence ti, 1 ≤ i ≤ n). For example, as shown in
Table 7, for n = 3 and case 7, A(w, 7) = (tw1, tw1, tw2) (i.e.
the observed sub-sequence with the highest frequency in
window w is generated from both the first and the second
haplotypes, while the observed alignment with the second
highest frequency is generated from the third haplotype).

Define δ(A(w, k),A(w′, k′)) as the compatibility between
two assignments A(w, k) = (t1, · · · , tn) and A(w′, k′) =
(t′1, · · · , t′n) and δ(A(w, k),A(w′, k′)) = 1 if, for all 1 ≤ i ≤
n, two sub-sequences ti and t′i are exactly the same in their
overlapped region.Mathematically, if the window size is d,
the two windows overlap l bases, and window w is before
window w′,

δ(A(w, k),A(w′, k′))=
{
1 if ti[ d−l+1· · · d]= t′i[ 1· · · l] ∀i
0 otherwise

We begin from a starting window ws ∈ W and con-
sider all possible nn assignments in ws. Then we consider
the left and the right windows besides ws, and continue
until all the windows have been considered. The optimal
reconstruction of n haplotypes is the set of compati-
ble assignments for all the windows with the maximum
log-likelihood value. The following dynamic program-
ming approach is used to compute the optimal compatible
assignments for all the windows.
Given a starting window ws ∈ W , define ζ(ks, kt ,wt),

where wt ∈ W , 1 ≤ ks, kt ≤ nn, as the maximum log-
likelihood value of the optimal compatible assignments for
the consecutive windows from ws to wt with assignment
A(ws, ks) in window ws and assignment A(wt , kt) in win-
dow wt . If s < t, the assignment is proceeded from left
to right, while if t < s, the assignment is proceeded from
right to left.
Without loss of generality, considering the situation that

the haplotype assignment is proceeded from left to right,
the recursive formula of ζ(ks, kt ,wt) is defined as:

ζ(ks, kt ,wt)= max
k such that

δ(A(wt−1,k),A(wt ,kt))=1

(
ζ(ks, k,wt−1) + log(like(wt , kt))

)

Table 7 There are a total of 27 cases for generating 3 sub-sequences by 3 haplotypes

Haplotypes which generate the sub-sequences Expected frequencies

Case subseq1 subseq2 subseq3 subseq1 subseq2 subseq3

1 h1 h2 h3 f1 f2 f3

2 h1 h3 h2 f1 f3 f2

3 h2 h1 h3 f2 f1 f3

4 h2 h3 h1 f2 f3 f1

5 h3 h1 h2 f3 f1 f2

6 h3 h2 h1 f3 f2 f1

7 h1 & h2 h3 Erroneous f1 + f2 f3 fe

8 h3 h1 & h2 Erroneous f3 f1 + f2 fe

· · · · · · · · · · · · · · · · · · · · ·
26 Erroneous h1 & h2 & h3 Erroneous fe f1 + f2 + f3 fe′

27 Erroneous Erroneous h1 & h2 & h3 fe fe′ f1 + f2 + f3

hi represents that the sub-sequence is generated from haplotype i, and ’erroneous’ represents the erroneous sub-sequences. fi is the estimated proportion of sample i, and
fe , fe′ are the proportions of erroneous sub-sequences
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where like(wt , kt) is the likelihood value of the observed
frequencies of the sub-sequences in window wt when
assignment A(wt , kt) is selected.
Let qki be the i-th largest expected frequency for case k.

like(wt , kt) = mult(gwt1, gwt2, · · · , gwtn; n, qkt1, qkt2, · · · , qktn)

∝
n∏

i=1
(qkti)

gwt i

Therefore,

ζ(ks, kt ,wt) ∝ max
k such that

δ(A(wt−1,k),A(wt ,kt))=1

(
ζ(ks, k,wt−1) +

n∑

i=1
gwtilog(qkt i)

)

In order to increase the accuracy of the haplotype recon-
struction, we reconstruct the haplotypes starting from
a relatively reliable window wŝ with much dissimilarity
between the haplotypes. When n = 3, we locate the win-
dow wŝ which have the greatest value of likelihood value
for the case when each haplotype is assigned to differ-
ent sub-sequence. Let the first and the last window on
the haplotype region be w1 and wlast . The haplotypes are
reconstructed in both directions from the window wŝ
to the beginning and to the ending of the haplotypes,
respectively. Considering the different case kŝ for the start-
ing window wŝ, the log-likelihood value of the optimal
set of compatible assignments for the whole haplotype
region is:

max
kŝ

(
max
k1

(ζ(kŝ, k1,w1)) + max
klast

(ζ(kŝ, klast ,wlast))

)

Since ks and kt have nn possible values (where n is the
number of haplotypes), the overall time complexity of the
method is: O(n2n ∗ |W |). The method explores all the pos-
sible cases and is an exact algorithm. The time is growing
exponentially with the number of haplotypes. For higher
number of haplotypes, a heuristic approach should be
developed accordingly.
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