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Abstract
A number of genetic studies have identified rare protein-coding DNA variations associated with autism spectrum disorder
(ASD), a neurodevelopmental disorder with significant genetic etiology and heterogeneity. In contrast, the contributions of
functional, regulatory genetic variations that occur in the extensive non-protein-coding regions of the genome remain poorly
understood. Here we developed a genome-wide analysis to identify the rare single nucleotide variants (SNVs) that occur in
non-coding regions and determined the regulatory function and evolutionary conservation of these variants. Using publicly
available datasets and computational predictions, we identified SNVs within putative regulatory regions in promoters,
transcription factor binding sites, and microRNA genes and their target sites. Overall, we found that the regulatory variants
in ASD cases were enriched in ASD-risk genes and genes involved in fetal neurodevelopment. As with previously reported
coding mutations, we found an enrichment of the regulatory variants associated with dysregulation of neurodevelopmental
and synaptic signaling pathways. Among these were several rare inherited SNVs found in the mature sequence of
microRNAs predicted to affect the regulation of ASD-risk genes. We show a paternally inherited miR-873-5p variant with
altered binding affinity for several risk-genes including NRXN2 and CNTNAP2 putatively overlay maternally inherited loss-
of-function coding variations in NRXN1 and CNTNAP2 to likely increase the genetic liability in an idiopathic ASD case. Our
analysis pipeline provides a new resource for identifying loss-of-function regulatory DNA variations that may contribute to
the genetic etiology of complex disorders.

Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental
disorder with heterogeneous genetic origins. Recent gen-
ome sequencing studies have identified many risk genes
from the loss-of-function protein-coding variants, which has
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driven a move toward analysis of convergent risk pathways
[1–4]. However, less is known about the contribution to risk
by the variants in non-coding regulatory regions, which
hold the potential to disrupt the finely tuned biological
pathways involved in brain development, as demonstrated
by a recent study in the influence of the 3′ untranslated
regions (3′UTR)-regulatory variants in language impair-
ment [5]. Nevertheless, progress is being made by using
whole-genome sequencing of the ASD families. In a recent
landmark-autism study, non-coding de novo DNA varia-
tions were found to be enriched in the untranslated regions
of genes, gene boundaries, and DNase I hypersensitive
regions [6]. Similarly, a number of previous exome-
sequencing studies including our own [7] have shown that
there are many DNA variations that occur in the non-coding
regulatory regions of genes, albeit of unknown functional
significance.

The functional impact of the non-coding variants has
been difficult to interpret due to the lack of specific
knowledge concerning their contribution to the regulatory
regions that control and modulate gene transcription. Even
in cases where a variant in a non-coding region is found to
be associated with a disorder through linkage analyses, it is
a challenge to assess whether such variations have gene
regulatory functions, or whether the risk lies elsewhere in
the linkage region [8]. The problem is compounded with the
de novo mutations, which are unlikely to be represented in
public databases, despite their significant contribution to
ASD [6, 7, 9–11]. Much of this difficulty arises from the
lack of data integration and functional sequence analysis
surrounding transcription control, the molecular interac-
tions, and transactions, of which are poorly understood
when compared to the classic set of rules (also known as
genetic code) by which genetic information encodes the
protein sequences. In this regard, the identification and
contribution of the non-coding regulatory variants to ASD-
associated biological pathways remains unknown.

The availability of large, genome-wide regulatory
resources such as FANTOM5 [12], ENCODE [13], and the
BrainSpan developmental brain tissue expression datasets
[14] have been instrumental in developing modern-systems-
biology-approaches to evaluate the regulatory loss-of-
function mutations associated with human disorders.
Moreover, these novel approaches involve predicting whe-
ther a variant has the potential to change the dynamics of
gene networks by disrupting the interactions between key
regulatory molecules, such as miRNAs and transcription
factors, and their target functional pathways [8, 15, 16].
There is now an increased focus on ASD-associated muta-
tions within the regulatory regions, particularly near-known
ASD-risk genes [17, 18], with studies examining the
enhancer regions [19] and microRNA targeting [5]. Toge-
ther these data provide a vision of how we might assess the

potential impact of non-coding regulatory DNA variations
associated with ASD.

In this study, we developed a systems-based analysis to
identify the non-coding regulatory variants using the pre-
viously published whole-exome sequencing (WES) data of
the ASD families [7], and focusing on the microRNA genes
and the gene-proximal cis-regulatory variants. Single
nucleotide variants (SNVs) in the regulatory regions were
filtered by rarity and functional score. We compiled a
genome-wide resource of regulatory regions covering
microRNA genes and their putative target sites, transcrip-
tion start sites, and transcription-factor-binding sites (TFBS)
in promoters, 5′ and 3′ UTRs, to evaluate the relationship of
these regulatory SNVs to the synaptic pathways. We further
characterized these regulatory mutations using ASD-related
databases and functional network analyses to show that rare
heterozygous loss-of-function coding and non-coding var-
iations combine as the probable causal elements. We spe-
cifically highlight the functional significance of a SNV
found in microRNA-873, which affects target binding
affinity and regulation of the key ASD-risk genes.

Materials and methods

Annotation and filtering of whole-exome
sequencing data

The WES data used in this study was from our previous
study of Australian ASD families (n= 128; 48 ASD cases,
and 80 parents) [7], and we considered the single nucleotide
variants (SNVs) for this analysis as there were no large copy
number variations (CNVs) detected in this sample (data not
shown). The participants were recruited from the Western
Australian Autism Biological Registry at the Telethon Kids
Institute in Perth, Australia [20] and the blood samples were
collected and analyzed with the approval by the Ethics
Committee’s at the Princess Margaret Hospital for Children,
University of Western Australia (1845/EP) and the Uni-
versity of Queensland (2012000269). Informed written
consent was obtained from next of kin, caretakers, or
guardians on behalf of the minors/children enrolled in our
study. In this study, we have mapped our WES data
(NimbleGen SeqCap version 3) to the hg19-reference gen-
ome with the BWA-MEM algorithm [21]. Duplicate reads
were removed using Picard tools v2.60. Indel realignment
and base quality score recalibration were performed using
GATK v3.5 [22]. The germline SNVs and indels were
called using the GATK HaplotypeCaller tool and only high
quality SNVs were selected for further analysis
(RMSMappingQuality, MQ > 40; QualByDepth, QD > 2).
We further selected only SNVs at genomic positions cov-
ered by more than 20 reads in at least 90% of the

S. M. Williams et al.



128 samples. Annotations were made using the ANNOVAR
package (2017Jul16) [23] with additional databases
(dbSNP150, gnomAD exome and genome collections,
CADD version 1.3). The Genome Aggregation Database
(gnomAD) was used to obtain minor allele frequencies
(MAF) for all quality-passed SNVs (NFE or Non-Finnish
European children were used as background population)
[24].

As per the previous analysis of the coding variants in the
same ASD cohort [7], we used a two-stage filtering process
to identify the most interesting SNVs. First a Minor Allele
Frequency filter (MAF < 0.01) was applied to select the rare
variants, which were thought to have a larger effect in
complex disorders such as ASD [7, 25, 26], then a ‘func-
tional’ score (CADD score ≥ 15) [27] was used to prioritize
the potential loss-of-function SNVs.

Computational analysis of the regulatory regions

We defined the regulatory SNV set as those situated in
promoters, transcriptional start sites, enhancers, microRNA
genes, putative microRNA regulatory elements (MREs) on
the 3′UTRs, and TFBS on the promoters, 5′UTRs and 3′
UTRs of the protein-coding genes.

Promoter regions were defined using FANTOM5 phase 1
TSS (transcription start site) CAGE data (Cap Analysis of
Gene Expression) as regions 1000 bp upstream and 300 bp
downstream of the annotated CAGE peaks for Human
Genome Nomenclature Consortium (HGNC) gene records
[12]. The enhancer region coordinates were downloaded
from the FANTOM5 phase 1 database [28]. Genomic
annotations of the non-coding regions are from the Uni-
versity of California Santa Cruz (UCSC) ‘knownGene’
annotation (downloaded 21 February 2013) on the hg19-
human reference genome including all transcript variants.

For TFBS prediction, we built a database of 1289 DNA
motifs collected from different studies: the FANTOM5
project [12], JASPAR [29], Cristino, Williams [30], and
Jolma and Yan [31], as well as data from several stem-cell-
focused transcription factor studies [32–40]. We searched
for instances of these DNA motifs (at least 70% similarity)
on 3′UTRs, 5′UTRs, and promoter regions of genes, using
the TAMO package (Version 21 March 2012) [41].

We predicted MREs across 3′UTRs for all human
microRNAs (miRBase version 19) [42]. The microRNA-
target sites predicted by miRanda [43], (default parameters,
free energy ≤−18), having a 75% overlap with RNAhybrid
[44] (-b 2000, -e −18, -s 3utr_human, then filtered free
energy ≤−25) were used for further analysis.

We also searched for SNVs falling within the
microRNA-mature-sequence regions themselves. These
variants were filtered by population frequency (MAF <
0.01) and CADD score (CADD ≥ 15), and SNVs interpreted

on the basis of the mature sequence (as annotated in miR-
base19) and seed regions (2–8nt at 5′-end of mature
sequence). To identify the conserved microRNA match
motifs as a proxy for seed regions, we ran MEME (v4.9.0,
options: -mod zoops -nmotifs 1-maxw 15-maxsize
10,000,000) over each microRNA’s predicted MREs [45].
Regions of motifs with low information density were
trimmed out with TAMO (trimming threshold 0.2) [41]. To
estimate the effects of the microRNA gene variants in terms
of loss or gain of targets, we used miRanda [43] (default
parameters, free energy <=−18) to predict the target sites
for microRNA sequences incorporating their respective
variants across all known 3′UTR sequences available in the
TargetScan database v7.0 [46].

Enrichment analyses of the regulatory SNVs

To test for a general association of the regulatory SNVs
with ASD, enrichment was calculated against several ASD-
associated gene sets from different sources; the Simons
Foundation Autism Research Initiative (SFARI) AutDB
database (December 2015 update, Scores indicating any
support: S,1–4) [47], our previously developed ASD
protein-protein interaction network (AXAS-ASD), which
uses ‘seed’ genes from public resources and their first-
degree neighbors [30] and Module 13 (M13-Li2014)—a
module of protein–protein interactions from Li, Shi [48]—
which is associated with ASD risk. In addition three control
datasets were retrieved from the GWAS catalog
(https://www.ebi.ac.uk/gwas): (1) coronary artery disease
(GWAS-CAD), (2) Crohn’s disease (GWAS-Crohn), (3)
and autism spectrum disorders (GWAS-ASD).

We also calculated enrichment of the regulatory SNVs
(via hypergeometric distribution one-tailed test in R) in co-
expression modules constructed and characterized by Par-
ikshak et al. [2].

Biotinylated microRNA-mRNA pulldown
transcriptome analysis

Biotinylated microRNA-mRNA pulldown experiments
were used to identify bound mRNA transcripts of the miR-
873-5p wild-type (WT) and the variant miR-873-5p (Mut).
Briefly, biotinylated microRNAs were transfected into the
undifferentiated SH-SY5Y cells (a human neuroblastoma
cell line), and captured along with their targeted transcripts
to magnetic streptavidin beads (Invitrogen Dynabeads M-
280).

The pulldown protocol was primarily drawn from Wani
and Cloonan [49], as well as Cristino and Barchuk [50],
with the following modifications. The samples were trans-
fected in a 75 cm [2] flask with 560 pmol of biotinylated
microRNA with lipofectamine 2000 (Thermo Fisher), and
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grown for 24 h before pulldown. Four biological replicates,
from four independent transfection and pulldown experi-
ments, were made for each microRNA (WT and Mut). RNA
was purified with RNAeasy columns (QiAGEN), and
sequencing libraries were prepared from 100-ng input RNA
with Illumina TruSeq Stranded mRNA kit. Libraries were
sequenced across two lanes using v4 SBS chemistry on an
Illumina HiSeq2000. Cells were grown in DMEM F12 with
HEPES media with penicillin/streptomycin at 37 °C with
5% CO2. The synthetic microRNA duplexes with biotin
tags on the 3′ end of the mature microRNA were ordered
from IDT (Supplementary Table 1).

The efficiency of transfection was checked quantitatively
through staining. Then cells were fixed in 4% PFA, rinsed
with PBS, and blocked with 2% BSA in 0.3% Triton X-100
(TX) for 30 min at room temperature for 2 h. The cells were
incubated with Alexa Flour 594 streptavidin (Illumina) in
BSA/PBS/TX mix for 1 h at room temperature on rotation,
followed by 10 min of DAPI incubation.

Sequence data quality was examined with FastQC
(v0.11.3). Illumina-adapter sequences were removed and
reads quality trimmed with Trimmomatic [51]. Sequences
were aligned to the human-GRCh38-Ensembl-release-83
transcriptome with TopHat2 [52]. The gene-level counts
were generated from paired reads in HTseq-count (Para-
meters: -s reverse -m union). The differential expression
analysis to evaluate the enrichment of targets in pulldown
samples (paired comparisons), compared to matched whole-
transcriptome of transfected cells (controls), were done
using DEseq2 [53]. Gene ontology hypergeometric enrich-
ment was calculated with GOStats (v2.40.0, parameters,
conditional= FALSE) [54]. The sequence data is available
via GEO accession: GSE98088.

Bioinformatics, data analysis tools, and structural
modeling

Manipulation of sequence, annotation, and the SNV files
was undertaken using VCFtools (v0.1.12a) [55], tabix
(v0.2.6) [56], ANNOVAR (version: 2017Jul16) [23],
SAMtools (v0.1.18) [57], and bedtools (v2.17.0) [58].
Cytoscape (v3) [59] was used for network visualization, and
the ClueGO plugin (v2.3.2) [60] used for functional anno-
tation enrichment. The crystal structure of the extracellular
domain of NRXN 1 alpha was from Bos taurus (PDB:
3QCW [61]), and the resolution of the structure was used as
the model was 2.65 Å. The Pro436Ser mutation was mod-
eled using FoldX version 3.0b4 (http://foldxsuite.crg.eu/),
with default settings.

Results

Annotation, and filtering the genetic variants in the
regulatory regions

In this study, we have used the previously published WES
data [7] to investigate putative regulatory genetic variation
in 128 individual genomes from an Australian ASD cohort
(48 affected cases and 80 parents). To examine the captured
non-coding regions, we developed a computational pipeline
to systematically analyze WES data in non-coding reg-
ulatory contexts: proximal promoter regions, transcription
start site (TSS), untranslated regions (5′ and 3′UTRs),
TFBS, MRE, and miRNA genes (Fig. 1).

We generated overlapping predictions of TFBSs (4.8
million in 5′UTR/22.4 million in 3′UTR from 1289 DNA

Fig. 1 An overview of the computational pipeline and databases used to identify the putative regulatory regions. Identification of the regulatory
regions to check for variants in (1) promoters and transcription start site (TSS), (2) TFBS, (3) MREs, and (4) miRNA genes
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motifs) and MREs (2.6 million from 2042 mature miRNAs)
across 59,133 untranslated regions of 19,414 genes, and
used public databases of miRNA genes (miRbase v19) [42],
transcription start sites and promoters (FANTOM5) [12]
and enhancers (FANTOM5) [12] (Table 1).

We assessed the WES coverage across the different non-
coding regions (Supplementary Figure 1). There was suf-
ficient read depth for the call-variants across 20–24% of all
predicted TFBS and MREs in the untranslated regions
(Table 1). Fortuitously, despite the limitations of exome
capture design in the non-coding regions, the actual
sequence coverage is highest in the regions proximal to
exome-capture gene targets, where the most potentially
interesting cis-regulatory elements would be expected
(Supplementary Figure 1). The MiRNA genes were well-
covered (48%), and although the promoters had less callable
coverage (13%), they still yielded valuable data (Table 1).
The enhancers had very low callable coverage (1%) due to
their distance from the captured exonic regions, and were
omitted from this analysis (Table 1).

After filtering the SNVs for rare population frequency
(Minor Allele Frequency ≤1% based on gnomAD exome
and genome collections) and functional annotation (CADD
score ≥15), each individual case had an average of 288
protein-coding and 299 regulatory variations (Supplemen-
tary Figure 2; Supplementary Table 2). Greater numbers of
the SNVs were identified in protein-coding regions and
TFBSs in the promoter regions, followed by UTR TFBSs
and 3′UTR MREs, reflecting the relative sizes of these
regions (Table 1).

The genome-wide annotation of regulatory regions, and
TFBS PWM (Position Weight Matrix) definitions in TAMO
format [41] are available at figshare (https://doi.org/
10.6084/m9.figshare.2198773.v1).

Association of the rare variants with the ASD-risk
genes

We used a standardized score (Z-score) of the binomial
distribution test to assess whether the genes with rare

Table 1 Summary of regulatory region predictions, exome-sequencing coverage, and SNVs in the regulatory regions

Regulatory region Number of
features

Cumulative region
size

SNV-callable size
(% of total size)

Average number of
SNVs per individual

Promoters 235917 74.57Mb 9.7 Mb (13%) 148

TFBS - 5′UTRs 4770730 7.67Mb 1.9 Mb (24%) 53

TFBS - 3′UTRs 22447998 22.75Mb 4.8 Mb (21%) 63

MRE - 3′UTRs 2624853 18.08Mb 3.5 Mb (20%) 35

microRNAs 2042 0.05Mb 0.02Mb (48%) 0.07

Enhancers 43011 12.39Mb 0.06Mb (0.5%) 0.1

Note that, feature counts include redundant features (e.g., target sites of similar miRNAs) and overlapping regions (e.g., promoters from alternate).
Feature sizes and coverage are calculated using non-redundant genomic regions. SNV-callable coverage is defined as genomic regions with 20
TSS × read depth (sufficient for SNV-calling) in at least 90% of the samples. The raw variants are all quality passed SNV calls, and the filtered
variants are those having passed the MAF ( < 0.01) and functional score (CADD score ≥ 15) filtering, described in the methods. For the promoters,
only SNVs in TFBS and TSS (CAGE_peak) were used to estimate the average number of filtered variants per individual

TFBS Transcription factor binding site. MRE miRNA regulatory elements

Fig. 2 Enrichment of the filtered regulatory variants and the protein-
coding variants from ASD cases in different ASD-associated datasets
AXAS-ASD (n= 2664) [30], SFARI (n= 397) [47], M13 - Li 2014
(n= 115) [48], and GWAS-ASD (ASD associated genes as described
in the NHGRI-EBI GWAS Catalog). Two unrelated disease control
datasets, coronary artery disease (GWAS-CAD), and Crohn’s disease

(GWAS-Crohn) were also retrieved from the NHGRI-EBI GWAS
Catalog. The bar graph shows –log10(P-values) for the Z-scores
(Supplementary Table 3). Only genes found in the Human Genome
Nomenclature Consortium (HGNC) database and the whole protein-
protein interaction network [30] were considered as the background
datasets used for Z-score calculations (Supplementary Table 3)

An integrative analysis of non-coding regulatory DNA variations associated with autism spectrum disorder



protein-coding and non-coding regulatory SNVs found in
our ASD cohort were over-represented in the ASD-
associated genes. In a previous study [7], we have shown
that the rare protein-coding SNVs identified in our ASD
cohort were significantly enriched in ASD-associated
pathways (AXAS-ASD) [30]. Herein, we have modified
our pipeline to identify the putative loss-of-function
SNVs in both protein-coding and non-coding regions, and
also to reduce filtering steps biases (MAF < 0.01 and CADD
score ≥15; Supplementary Table 2). Strikingly, the reg-
ulatory SNVs identified in ASD cases were significantly
enriched in the ASD-associated datasets (AXAS-ASD,
SFARI, M13-Li2014, and GWAS-ASD; Fig. 2 and Sup-
plementary Table 3), but not in the control datasets—cor-
onary artery disease (GWAS-CAD) and Crohn’s disease
(GWAS-Crohn; Fig. 2 and Supplementary Table 3).

Interestingly, the SNVs identified in the protein-coding
regions showed the highest enrichment in SFARI gene list,
while the SNVs in the non-coding regulatory regions are
highly enriched in the AXAS-ASD-gene network (Fig. 2;
Supplementary Table 3).

Having seen an overall ASD association, we then
examined whether the regulatory mutations were over-
represented in particular pathways or regions during neu-
rodevelopment. Parikshak et al. [2] have previously con-
structed and characterized a set of co-expressed gene
modules with respect to ASD. We saw significant enrich-
ment of genes having regulatory mutations in ASD cases
against two modules associated with regulation of gene
expression (M3) and early synaptic development (M16;
Supplementary Table 4), at late fetal and early-postnatal
timescales [2].

Fig. 3 Biological significance of the miR-873 variant. a miR-873-5p
showing the variant in individual f34-s1, relative to the conserved seed
motif generated from predicted miR-873-5p regulatory elements with
MEME [45]. b Venn diagram showing the overlap between genes
significantly enriched in the miR-875-5p wild-type (WT) and mutant
(Mut)-pulldown assays. c Percentage of the SFARI genes in genes
specifically enriched in the miR-875-5p wild-type (WT) (n= 905) or
mutant (n= 925) pulldowns – genes enriched in both pulldowns are
not included. P-value calculated with chi-squared test between the
groups, p-value= 0.044, chi-squared statistic= 4.06, and degrees of
freedom= 1. Error bars represent 95% confidence interval. Only genes
present in both pulldown assays at high enough levels to have been
contrasted (p-value calculated) by DEseq2 in both WT and Mutant

experiments were included, omitting three genes that were sig-
nificantly enriched in Mut but uncertain in WT. d Rare protein-coding
and regulatory variants found in case f34-s1 overlap the AXAS-ASD
network [30] and the miR-873-5p target genes (shown as diamonds,
see Supplementary Table 6 for more details). The overlapped network
shown is enriched in functional pathways associated with synaptic
vesicle cycle and synaptic transmission (Supplementary Table 7). e
Family f34 case study showing direct interaction of several synaptic
proteins in the neurexin-neuroligin axis, in the context of the mater-
nally inherited putative loss-of-function NRXN1 coding and the
paternally inherited miR-873-5p variants in individual f34-s1. Putative
target genes of miR-873-5p are shown in blue. (*) SFARI genes
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Effect of the rare microRNA variants in ASD-
associated gene networks

We identified a total of four microRNAs with rare SNVs
within their mature sequences, which could globally disrupt
their mRNA binding specificity (Supplementary Table 5).
Of these, one variant was in the conserved “seed” regions of
the microRNAs, where there is greater potential for dis-
ruption due to the exact target complementarity required in
canonical microRNA-mRNA binding (Supplementary
Table 5). We hypothesize that miRNA mutations within the
mature sequences will affect the microRNA-mRNA-
binding affinity and change the regulation of several tar-
get genes. We found miR-873 gene had a SNV within the
seed region of the mature miR-873-5p (Fig. 3a) sequence.
Computational predictions of miRNA binding suggest that
the mutant miR-873 loses 76% of the predicted target genes,
while also gaining 74% potential new target genes. This is
the greatest predicted loss- or gain-of-binding of any of the
miRNA variants (Supplementary Table 5). In contrast, the
impact of variants that lie in less-conserved positions out-
side the seed regions (e.g., miR-411-5p, miR-668-3p and
miR-323b-5p; Supplementary Table 5) would be less
disruptive.

We propose that this rare miR-873-5p seed mutation
could be relevant to ASD-associated genes and pathways,
due to miR-873’s expression and genomic context. The
miR-873 gene is embedded in the intronic region of the
LINGO2 gene (second intron of LINGO2 variant 2).
Examples of LINGO2 copy number variation (CNV) have
been seen previously in ASD cases [62-65], including two
instances where CNV knocks out the 5′ region of LINGO2
variant 2 including the miR-873 gene [66, 67]. Furthermore,
LINGO2 has been shown to exhibit a neural-specific
expression pattern in early development in mice [68].
Although the host gene expression is not an absolute indi-
cator of embedded microRNA context, it may be con-
cordant, and miR-873-5p mature sequence itself has
neuronal expression in the human brain (Supplementary
Figure 3) [69].

Biotinylated microRNA-mRNA pulldown experiments
were performed to identify the transcriptome-wide binding
profiles of wild-type and mutant miR-873-5p (Fig. 3b) with
3226 and 3249 significantly enriched targeted genes iden-
tified respectively (Supplementary Table 6). By contrasting
the relative pulldown assay enrichment of the wild-type and
mutant miR-873-5p, we identified 2321 overlapping genes
putatively targeted by both wild-type and mutant miR-873-
5p, while 905 and 928 genes were specifically enriched in
the wild-type and mutant microRNA-mRNA pulldown,
respectively (Fig. 3b).

We assessed functional associations of the miR-873-5p
target genes by calculating gene ontology enrichment of

their significantly enriched genes (Supplementary Table 6).
Notably, the target genes of both wild-type and mutant
miR-873-5p were both significantly enriched in the
synapse genes (p-value= 2.88E-09). Moreover, 109 SFARI
candidate genes (27%, SFARI categories 1-4,S) overlapped
with miR-873-5p targets, identified in our miRNA-mRNA
pulldown experiment (in either wild-type or mutant).
Interestingly, the mutant-specific miR-873-5p targets
are more enriched (compared to ‘wild-type’ miR-873-5p)
with many of the ASD-risk genes documented in
the SFARI database (chi-squared test, p-value= 0.04,
df= 1) (Fig. 3c).

Members of the neurexin gene family have been impli-
cated in cognitive disorders including schizophrenia and
ASD [70]. Two neurexin-family members, NRXN2 and
CNTNAP2 (also known as NRXN4), have been found sig-
nificantly enriched in our pulldown assay. NRXN2 has been
found significantly enriched in both wild-type (log2 fold-
change= 1.8, p-value= 4.03E-50) and mutant miR-873-5p
(log2 fold-change= 1.1, p-value= 1.61E-20). However,
the mutation may have caused a partial loss-of-binding to
NRXN2, since its enrichment levels are smaller in mutant
miR-873-5p-pulldown data (1.5 fold-change decrease in
enrichment). CNTNAP2 was found significantly enriched in
mutant (log2 fold-change= 0.75, p-value= 2.5E-04) and
wild-type miR-873-5p (log2 fold-change= 0.58, p-value=
0.03), but suggests partial gain-of-binding to CNTNAP2 for
the miR-873-5p variant. Intriguingly, miR873’s host gene,
LINGO2, is enriched in the wild-type miR-873-5p-
pulldown assay (log2 fold-change= 0.72, p-value=
6.76E-05) but not in the mutant microRNA (log2 fold-
change= 0.14, p-value= 0.49), indicating loss-of-binding
to LINGO2 mRNA. Another relevant ASD-risk gene, the
transcription factor FOXP1 [71], has also been found to be
significantly enriched only in the mutant miR-873-5p pull-
down assay (log2 fold-change= 0.53, p-value= 3.7E-05)
indicating a complete gain-of-binding, specifically asso-
ciated with the variant miR-873-5p (Supplementary
Table 6).

Convergence of the rare regulatory and the protein-
coding variants in synaptic pathways

We chose to follow-up on the effect of the SNV within
miR-873-5p found in individual f34-s1 due to its location in
the seed region (Fig. 3a), the microRNA’s robustly
expressed profiles across all regions of the human brain
(Supplementary Figure 3), and functional enrichment ana-
lysis of its predicted target genes pointing toward a role in
the regulation of nervous system development (Fisher’s
exact test with Bonferroni step down corrected P-value=
0.002) and signaling (Fisher’s exact test with Bonferroni
step down corrected P= 0.0003) [60].
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However, the miR-873-5p SNV is heterozygous and
inherited from an unaffected father, so although not cau-
sative on its own, we hypothesized that it could contribute
additively through interactions with other small-effect
mutations inherited from parents, as well as de novo
mutations. In our published whole-exome screen, the family
members were assessed for a ‘broader autism phenotype’
(BAP), reflecting a subclinical expression of ASD pheno-
types [7, 72]. Among parents of this proband, the mother
was recorded as having a BAP [7]. In this study, we focused
on the maternally inherited NRXN1 variant, as it is one of
the most highly connected proteins in the case f34-s1-gene
network (Fig. 3d) and a key ASD-risk gene involved in
synaptic transmission [70]. Notably, in case f34-s1, few
variant genes overlapped in both the AXAS-ASD and
SFARI datasets and are well known players in the synaptic
pathways (i.e., NRXN1, CADPS2, CNTNAP2) and regula-
tion of gene expression (i.e., CTNNB1, FOXP1) previously
associated with neurological disorders including autism [71,
73]. Three of these gene variants (NRXN1, CNTNAP2, and
FOXP1) are inherited from the BAP mother, while two are
de novo mutations (CADPS2 and CTNNB1). Nevertheless,
there will be additional contribution of several other small
effects inherited and de novo variations in both protein-
coding and regulatory regions of genes involved in the
functional pathways associated with synaptic vesicle cycle
and transmission (Fisher’s exact test with Bonferroni step
down corrected P= 0.001 [60]; Supplementary Table 7).

The rare variation in NRXN1 genes (G ≥A mutation at
chr2:50847195; rs78540316) results in a Pro429Ser struc-
tural change in LNS domain 2 of NRXN1α (UniProtKB -
Q9ULB1 [74]). The extracellular domain structure of
NRXN1α and other alpha neurexins is characterized by the
linear assembly of six LNS domains, with the L6 LNS
domain extended to form an “L” shape; this assembly has

been shown to be important for their function as synaptic
organizers [61]. Continuous electron density of bovine
NRXN1α (PDB: 3QCW) is visible for L2-L6 LNS domains
showing a concatenated arrangement of these domains
mediated by β11-β12 loops, which play an important role in
the interaction between LNS domains [61] (Fig. 4a). The
packing of this loop in the interface of L2-L3 LNS domain
involves insertion of Pro436 into a hydrophobic pocket of
NRXN1α (Fig. 4b). Pro436 is highly conserved (Supple-
mentary Figure 4), supporting its important role for the
structural arrangement of NRXN1α. Analysis of the puta-
tive effects of replacing this conserved proline residue with
serine on the stability of NRXN1α was undertaken with the
FoldX force field, which has been shown to accurately
predict the effects of mutations on the free energy of
unfolding of proteins [75]. This revealed that the mutation is
moderately (1.81 kcal/mol) to severely (3.18 kcal/mol)
destabilizing, depending on whether Ser436 can hydrogen
bond to the disordered lysine residue (Lys336), due to the
loss of these stabilizing hydrophobic interactions (Fig. 4c).
Given the importance of Pro436 to the correct packing of
the L2-L3 LNS domains, the mutation of this conserved
proline residue to serine (equivalent to Pro429Ser mutation
in the human NRXN1) will most likely result in loss-of-
stability of NRXN1α and disruption of the L2–L3–LNS
domains interface. Thus, the predicted destabilizing effects
of the Pro429Ser mutation provides a plausible structural
change that will affect the structural integrity and thus the
function of NRXN1α.

Considering this structural evidence, we propose that
putative loss of NRXN1α protein function may additively
contribute to mutant miR-873-5p dysregulation of the
NRXN2 expression (Fig. 3e) and increase the threshold of
genetic liability regarding their function in pre-synaptic
transmission and synapse development in case f34-s1.

Fig. 4 Structural modeling of the Pro429Ser NRXN1α mutation using
the crystal structure of bovine NRXN1α (PDB: 3QCW). a The β11-
β12 loops comprise of a large part of the L2-L3-LNS domain inter-
faces in NRXN1α. In the L2 LNS domain, the loop is characteristically
bent in a horseshoe type conformation, with two proline residues
Pro433 and Pro436 (magenta: equivalent to human Pro426 and
Pro429) stabilizing the tightly kinked structure. b The packing of this

loop in the interface involves insertion of Pro436 into a hydrophobic
pocket of NRXN1α. c The Pro436Ser replacement (equivalent to
Pro429Ser in humans) analyzed with the FoldX force field revealed
this mutation is moderately (1.81 kcal/mol) to severely (3.18 kcal/mol)
destabilizing, depending on whether Ser436 can hydrogen bond to a
disordered Lys336
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Moreover, there may be further impact at the synapse, as the
miR-873-5p-pulldown assay indicated the capability to bind
a number of other ASD-risk genes. MiR-873-5p binds to
key genes for synapse formation and function including all
three SHANK family members (SHANK1, SHANK2 and
SHANK3), three Neuroligin family members (NLGN2,
NLGN3 and NLGN4X), Discs Large MAGUK Scaffold
Protein 4 (DLG4 also known as PSD95), and two DLG
associated proteins (DLGAP3 and DLGAP4), which have
been linked to ASD by multiple studies [47, 76, 77]
(Fig. 3e, Supplementary Table 6).

Discussion

Our analyses provide a novel and comprehensive genome-
wide approach for identification and characterization of
putative regulatory variations in an exome-sequenced-ASD
cohort. By combining our computational TFBS and MRE
predictions with cis-regulatory elements resources, we
showed there was an overall cohort-level enrichment of the
regulatory variants within the ASD-associated genes,
derived from several gold-standard ASD datasets (Fig. 2)
[30, 47, 48]. We specifically focused on a rare mutation
observed in the miR-873 gene, and characterized its
potential impact in the regulation of the synaptic genes.

ASDs have complex and heterogeneous genetic causes,
and may arise from combinations of inherited and de novo
variation in the protein-coding [4] and non-coding regions
[78, 79]. To investigate a possible additive contribution of
the regulatory SNVs, it therefore makes sense to focus on
the clusters of variants, both regulatory and protein-coding,
that are in the functional neighborhood of known ASD-
associated gene networks and functional pathways [30].
Herein, we identified the rare loss-of-function variants in the
regulatory regions potentially disrupting the expression of
the “peripheral” genes incurring in non-zero effects on
regulation of the “core” genes with more direct and specific
roles in disease etiology. Our findings support the omni-
genic model of complex disease [80], which proposes that
any regulatory variation in the genes expressed in disease-
relevant cell-types can contribute to disease etiology with
non-linear effects on risk for that disease/disorder.

There have been several studies that have identified the
functional gene modules involved in ASD-associated bio-
logical processes [2, 3, 48]. Two of the genome-scale co-
expression modules constructed by Parikshak et al. [2] were
enriched in our regulatory variant set; notably one of the
modules was the same one (M16) that they had highlighted
for the potential involvement in ASD. It is enriched for
ASD relevant GO terms such as “synaptic transmission”
and “homophilic cellular adhesion” and more specifically
expressed in later fetal development and early infancy [2].

The hypothesis of Parikshak et al. [2], that M16 might be
targeted by lower-risk inherited variants, in contrast to other
modules involved in more fundamental early developmental
processes, is supported by enrichment of our dataset of
regulatory inherited mutations.

Our study identified four variants found within the
miRNA genes that were predicted to disrupt gene regula-
tion. Notably, we identified a rare variation in the seed
region (the major factor in binding specificity) of miR-873-
5p and functionally verified the changes in binding affinity
of the miR-873-5p variant. MiR-873 is of particular interest
as it is located within a neural gene LINGO2, which has
been investigated with respect to essential tremor and Par-
kinson’s disease [81]. There are also a number of reported
CNVs of LINGO2 found in ASD cases [62, 63, 64, 65],
including one which overlays miR-873 [66, 67]. Further-
more, miR-873 promoter expression has also been found to
be significantly enriched in human brain cells and tissues
(Fantom5 miRNA Atlas; P-value= 2e-40) [82]. It is still
unknown whether these particular rare SNVs on miR-873-
5p (rs777143952; MAF < 6.6e-05) will be statistically over-
represented in ASD cases, and only very large whole-
genome sequencing (WGS) studies would have the neces-
sary power to assign any statistical association to a specific
rare SNV. However, the relevance of the rare variants
outside protein-coding regions, for human complex traits
and phenotypic variance, has only started to be explored in
developmental disorders by recent studies using WGS data
from the large samples sets of European ancestry [78, 79].

The binding profile of miR-873-5p measured by the
pulldown assay includes several ASD-risk genes—all three
members of the SHANK family (SHANK1, SHANK2, and
SHANK3), several neuroligins (NLGN2, NLGN3, and
NLGN4X), and neurexins (NRXN2 and CNTNAP2). This
targeting information, combined with the neural expression
of miR-873-5p and its host gene LINGO2, strongly suggest
a potential regulatory role in synapse development and
function. We also found that the miR-873-5p variant binds
to the transcription factor FOXP1 transcript, suggesting a
dysregulation of FOXP1 expression, which has previously
been shown to play a critical regulatory role in CNTNAP2
expression [83], as well as a functional role of striatal
pathways important for vocal communication [84]. Despite
this miRNA mutation being inherited from an unaffected
parent, the measurable loss-of-binding in several ASD-risk
genes leads us to postulate that it may contribute additively
to ASD risk, particularly when combined with the mutation
load from the mother with recorded BAP. Consistent with
this idea, is the convergence of functional disruption of
neurexins in this individual—specifically an observed par-
tial change in NRXN2 and CNTNAP2 binding affinity from
the paternally inherited miR-873-5p mutation when com-
bined with the maternally inherited NRXN1 and CNTNAP2
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coding variants. Moreover, this ASD case (f34-s1) carry
two additional de novo protein-coding variations in
CADPS2 gene that are involved in neurotrophin release and
interaction with dopamine receptor type 2 [85], and
CTNNB1 gene associated with impaired social interactions
and repetitive behaviors [86]. Considering the above evi-
dence concerning pathways and processes associated with
ASD (e.g., synapse development), this work showcases the
importance of compounded effects of protein-coding and
regulatory mutations in a biological systems framework,
particularly in the case of de novo mutations, which con-
tribute significantly to ASD risk [10].

We are aware of the limitations of using a human neu-
roblastoma cell line (SH-SY5Y), in which the transcript
levels and alternative splicing isoforms might not necessa-
rily capture the same molecular interactions as CNS neu-
rons, and we are mindful that spatial and temporal gene
expressions patterns of various brain cells and tissues have
been shown to also vary. Nevertheless, our study is the first
to propose an integrated approach to predict and validate a
mechanistic hypothesis for a possible causal effect of a
single nucleotide variation changing the binding affinity
between miRNA and target transcripts. Hence, our approach
still represents a significant and novel contribution to sys-
tematically evaluate the (under the same SH-SY5Y tran-
scriptome background) loss or gain of affinity effects of the
genetic variants in regulatory regions, such as miRNA
genes.

We are also mindful that our analyses are focused on rare
loss-of-function heterozygous DNA variations that are
represented by a minor allele frequency of < 1% in the
human population. We are similarly aware of the ongoing
debate as to the relative contribution of the rare inherited
alleles to ASD and that there exists an uncertainty asso-
ciated with current estimates [87]. Much of this uncertainty
surrounds the contribution of loss-of-function variations
found in non-coding DNA that comprises majority of the
genome. Arguably, in the absence of detailed whole-
genome analysis, estimates concerning the contribution of
the rare inherited non-coding variants to ASD remain
speculative. The whole-genome sequencing approaches
when combined with rigorous clinical and behavioral pro-
filing of family cohorts and functional characterization of
DNA variations are now providing the means to further
identify and evaluate rare and de novo non-coding reg-
ulatory variations that may affect brain development [4, 6,
88, 89], yet we see that even exome-based data can yield
useful information. A major confound regarding estimates
of heritability surrounds the impact of epigenetic processes
in the penetrance of heterozygous alleles. Although it is
difficult to the access neural tissue, there are attempts to
interpret global epigenetic events to identify patterns of
methylation and other DNA modifying chemistries, and

assess the regulatory significance of non-coding DNA var-
iations occurring at these sites. Interestingly, Yuen et al.
(2016) recently reported that de novo regulatory variations
associated with DNMT3A and ADNP are likely to more
directly affect the global methylation processes. With regard
to the epigenetic mechanisms, any new data resource
detailing non-coding sequences that control gene regulation
or the stability of transposons and repetitive DNA that affect
transcription, can logically be incorporated into this analysis
pipeline to more completely account for other regulatory
layer of DNA variations associated with ASD.

Public genomic resources are constantly improving, lar-
ger populations of SNVs will aid the identification of the
rare variants and projects such as psychENCODE [90] and
CommonMind consortium [91], aimed at generating
detailed datasets of regulation in the brain, can only
improve interpretations of the variants in the regulatory
regions. The approach described here is equally applicable
to the whole-genome sequencing data and to the evaluation
of the variants identified in the genome-wide association
studies; moreover it provides a generalized template for
analysis of complex genetic disorders. When combined,
more ASD-cases-sequence data, new genomic resources,
and integrated systems-based approaches that examine the
regulatory variants in ASD-associated genes and pathways,
as identified in this study, should elucidate the role of the
non-coding regulatory variants and their additive contribu-
tion to the risk of ASDs.
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