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ABSTRACT

Towards Robust Design and Training of Deep Neural Networks

Jeffrey D. Cordero
Department of Computer Science and Engineering

Texas A&M University

Research Advisor: Dr. Anxiao (Andrew) Jiang
Department of Computer Science and Engineering

Texas A&M University

Currently neural networks run as software, which typically requires expensive GPU

resources. As the adoption of deep learning continues for a more diverse range of appli-

cations, direct hardware implemented neural networks (HNN) will provide deep learning

solutions at far lower hardware requirements. However, Gaussian noise along hardware

connections degrades model accuracy, an issue this research seeks to resolve using a novel

analog error correcting code (ECC).

To aid in developing noise tolerant deep neural networks (DNN), this research also

investigates the impact of loss functions on training. This involves alternating multiple loss

functions throughout training, aiming to prevent local optimals. The effects on training

time and final accuracy are then analyzed.

This research investigates analog ECCs and loss function variation to allow for future

noise tolerant HNN networks. ECC results demonstrate three to five decibel improvements

to model accuracy when correcting Gaussian noise. Loss variation results demonstrate a

correlation between loss function similarity and training performance. Other correlations

are also presented and addressed.
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NOMENCLATURE

DNN Deep Neural Network

ECC Error Correcting Code

FER Facial Expression Recognition

HNN Hardware (Implemented) Neural Network

HP Hyperparameter

MSE Minimum Squared Error

NSR Noise-To-Signal Ratio

PDF Probability Density Function

SNR Signal-To-Noise Ratio
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1. INTRODUCTION

Deep learning is a subfield of machine learning that implements algorithms inspired by

the biological brain. These neural networks consist of multiple cascading layers of simple

processing units, ‘neurons,’ with neurons connected to others in previous and following

layers, as demonstrated by Figure 1.1. This layer-based design can learn data abstractions

via supervised or unsupervised learning, proving invaluable for complex feature extraction

tasks. For this reason, deep learning has quickly dominated the field of machine learning.

It is often applied to problems like computer vision, natural language processing, and

automatic image and text generation.

Figure 1.1: Basic neural network design [2]

1.1 Noise Correction in Hardware Neural Networks

Current deep learning solutions require powerful compute resources and complex soft-

ware, adding vast overhead to working DNN solutions. Thus, the implementation of DNNs

as dedicated hardware seeks to provide improved functionality at far reduced requirements.
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1.1.1 Benefits of HNN networks

HNNs would reduce costs by lowering hardware requirements and decreasing power

consumption. Reduced space would allow for further parallelism and distributed comput-

ing, improving speed by orders of magnitude. Additionally, hardware implementations

would benefit from graceful degradation, as hardware faults would reduce model perfor-

mance. This is unlike software solutions which fail under system faults.[8] These benefits

will allow deployment of DNN capabilities as embedded systems, providing deep learning

solutions to environments and applications previously inaccessible to software versions.

1.1.2 Issues facing HNN networks

Although hardware implementations would provide many benefits over software so-

lutions, they currently suffer performance loss from Gaussian noise. This noise impairs

training by altering descent trajectory, increasing the cycles required for convergence, or

making it outright impossible. Noise also degrades evaluation accuracy in trained models

as its effects are propagated throughout the network, making high classification accuracy

with large HNNs currently unobtainable. For this reason, HNNs are still a relatively small

subfield of deep learning.

1.1.3 Simulating Noise

Modern computer hardware experiences Gaussian noise, noise with a probability den-

sity function (PDF) equal to normal distribution. Simulating Gaussian [9] noise is accom-

plished by generating uniform random samples before applying the Gaussian PDF

f(x) = (
1√

2 ∗ π
)e

−x2

2 .

The quantity of noise affecting a system is measured using the signal-to-noise ratio (SNR),

a measure of signal power, that is meaningful information, to background noise power,

7



unwanted interference [10]

SNR =
Psignal

Pnoise

often also expressed in decibels

SNRdb = 10 log10

Psignal

Pnoise

.

The inverse of SNR is thus the systems noise-to-signal ratio (NSR)

NSR =
1

SNR
.

To simulate hardware noise during experimentation, an additive white Gaussian noise

channel alters all model weight with Gaussian noise of a given SNR.

1.1.4 Current Error Correction

To avoid noise induced message alteration, modern computing architecture implements

binary signals for data representation. This provides natural fault tolerance as binary sig-

nals are unaffected by minor signal variation. As well, binary communication can employ

existing binary error correcting codes, including the famous 7, 4 Hamming Code [11],

which adds redundancy via extra bits allowing receivers to detect and correct message

errors without need for re-transmission.

Although HNNs do exist in use today, they currently only fit a small subset of appli-

cations due to size and performance limits from noise perturbations. Examples include

real-time embedded controllers [12], autonomous robotics [13], and character recognition

[14].
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1.2 Introduction to Loss Variation

Neural networks are typically trained using a single loss function, chosen by hyper-

parameter tuning or personal experience. Loss variation describes a novel process of al-

ternating multiple loss functions during network training. This research investigates the

effects of training using loss variation, focused on training time and test accuracy. It also

provides insight into how loss functions interact during training.

1.2.1 Introduction to Loss Functions

Loss functions provide a numeric evaluation of current network performance, quanti-

fying the difference between expected output and actual model output. During training, the

optimization algorithm continually works to minimize the loss value. The most common

is gradient descent which computes the gradient of the loss function. Backpropagation ap-

plies gradient descent to adjust neuron weights throughout the network. Although all loss

functions have the same purpose, their numeric loss value depends on different equations.

For this reason, some loss functions only apply to certain data types, for example cate-

gorical verses binary outputs. Additionally, loss functions perform differently depending

on model structure and hyperparameters, providing differing training times and evaluation

accuracies.

1.2.2 Loss Variation Theory

In “A General and Adaptive Robust Loss Function” [15], Barron demonstrates im-

proved model robustness and evaluation accuracy training with an automatically changing

loss function based off L2 loss, generalized Charbonnier loss [16], and Welsch loss [17].

Otherwise, little research exists addressing switching loss functions as a training strategy.

Throughout training, loss function minimization leads to local ‘minima,’ where train-

ing improvements level out. However, such local minima do not represent the most optimal

9



configuration, the global minima, as demonstrated in Figure 1.2. In theory, although loss

functions have distinct local minima, their global minima should be similar, likely over-

lapping. Therefore, switching loss functions would theoretically pull the model out of the

previous function’s local minima, providing a better chance of reaching the global min-

ima. If valid, this would substitute short term performance to improve resulting validation

accuracy.

Figure 1.2: Local and Global minima, from [3]

1.2.3 Facial Expression Recognition

Facial expression recognition (FER), describes a challenging problem involving com-

puter recognition of seven facial expression categories: anger, disgust, fear, happiness,

sadness, surprise, and neutral. While facial expressions are a major part of human inter-

action, their subtlety makes recognition difficult for computers, resulting in low validation

accuracy. This low accuracy using traditional deep learning approaches makes FER a good

10



candidate for testing loss variation.

1.3 Objectives/Goals

This research investigates the intersection between these deep learning sub-fields to

help develop noise tolerant DNN networks. This will aid in designing HNN architectures

resistant to accuracy degradation from Gaussian noise. It first investigates a novel analog

error correcting code to negate performance loss due to noise. It also determines whether

training DNN networks using loss variation will increase performance.
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2. ROBUST NEURAL NETWORKS WITH ERROR

CORRECTING CODES

The methodologies presented include the implementation and testing of an analog error

correcting algorithm designed by Upadhyaya [18]. For each experiment, the measured

value was plotted against decreasing SNR values and represents the average of twenty

trials. Averaging was necessary due to the random nature of Gaussian noise, causing

performance differences in each trial.

2.1 Network Architectures

Three smaller DNN models were identified that represent a range of purposes and

network designs. This validates the developed ECC generalizes to the full range of modern

DNN architectures and applications. Larger models were also tested, though presented

separately [18].

Each model was implemented using the Keras [19] Python library with TensorFlow

[20] backend. The models all came from the standard Keras library [19] as it represents

a common source, eliminating additional variability. Each model was trained on its cor-

responding dataset, ensuring high validation accuracy and preventing overfitting. After

training, the neuron weights were saved to use the same weights for each experiment.

2.1.1 MNIST Model

The MNIST dataset [4] (Figure 2.1) contains 28x28 images of handwritten digits with

60,000 training and 10,000 testing images. The MNIST model is the smallest, with

1,199,882 weights in total. It is a convolutional network with two ReLU activated 3x3

convolutional layers that are fed into a 2x2 2D max pooling layer with 25% dropout, a

flattening layer, a ReLU fully connected layer with 50% dropout, and finally a softmax

12



classifier.

Figure 2.1: MNIST [4] sample data

2.1.2 CIFAR-10 Model

The CIFAR-10 dataset [5] (Figure 2.2) consists of 32x32 color images falling into ten

classes of 6,000 images apiece with 50,000 training and 10,000 testing images total. The

CIFAR-10 model is a larger, convolutional network with 1,250,858 weights. It begins

with four 3x3 ReLU activated convolutional layers split into two distinct blocks with each

ending in 2x2 2D max pooling and 25% dropout layers. Finally, the network ends with a

flattening layer feeding into a ReLU fully connected layer with 50% dropout and a softmax

classifier.

Figure 2.2: CIFAR10 [5] sample data
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2.1.3 IMDB Model

The IMDB dataset [7] (Table 2.1) contains 25,000 movie reviews prelabeled by senti-

ment (positive/negative) from the IMDB website. As the data is textual, a recursive DNN

network implementing long-short term memory (LSTM) modules was used for sequence

processing. The model contains 2,691,713 weights total and begins with an embedding

layer from 20,000 to 128. This is fed into size 128 LSTM modules with 20% dropout and

20% recurrent dropout. The model terminates with a sigmoid activated fully connected

layer of size one since classifying binary sentiment.

Table 2.1: IMDB [7] sample data

Positive I liked this movie a lot. It really intrigued me how Deanna and Alicia
became friends over such a tragedy. Alicia was just a troubled soul and
Deanna was so happy just to see someone after being shot.

Negative This movie was messed up. A sequel to “John Carpenter’s Vampires,”
this didn’t add up right. I’m not sure that I enjoyed this much.

2.2 Measuring Performance Degradation From Noise

The following steps represent the major development stages for assuring valid ECC

implementation and obtaining experimental results. The first step studied DNN network

performance with weights perturbed by Gaussian noise of increasing variance. This pro-

vided a performance baseline for expected accuracy of hardware based models not using

any error correction techniques. For each variance, calculated from corresponding SNRs,

the weights were altered by adding values from a Gaussian normal distribution before

re-evaluating the model’s validation accuracy.

Starting off, mean µ and variance Du of all weights was calculated. The weights

were then divided into K×1 sized vectors (K = 30 for all experiments presented), each

represented by w. Next, w was converted into its corresponding zero mean equivalent u

14



by subtracting µ, such that for each wi,

ui = wi − µ

The zero mean weights u were then encoded to corresponding codeword vectors using

the generator matrix G. This K×N matrix was used to encode each K weight vector into

its N size codeword vector, where N>K. The G matrix ensures the energy per information

bit is Eb, thus being scaled by a factor of
√

Eb

Du
. (N-K) rows were then deleted from the

originally orthogonal matrix. Therefore, the final G satisfies

GGT = diag{Eb

Du

,
Eb

Du

, ...,
Eb

Du

}

The generator matrix is used to obtain N size codeword vectors v from u. Each includes

redundant information, the N-K excess symbols, allowing for approximating the original

values after perturbation from noise.

v = GTu

The variance of all codeword values was then calculated and used as the energy per

information bit Eb when solving for the standard deviation of Gaussian noise σ. That is,

solving

SNR = 10 log10(
Eb

σ2
)

using

σ =

√
Eb

10
SNR
10

To simulate an additive white Gaussian noise channel, Gaussian noise n was generated

by selecting random normal values between 0 and σ. This noise was added to obtain noisy

15



codeword vectors r using

r = v + n

before selected the first K elements of each codeword vector and re-adding the original

mean µ

unoisy = rfirstK + µ

This simulated hardware based noise perturbation like that of a more complex system

implementing error correction methods.

2.3 Applying Error Correction

The second step involved applying an analog ECC to estimate the original weights

from noise altered codeword vectors. After following the method from step one to gen-

erate codeword vectors, and adding noise to simulate physical message transmission, the

codeword was decoded to û, the estimated values of the original u weight values.

û = Ar

for decoder matrix

A = (GGT )−1G

Finally, the noise corrected, estimated weight values ŵ were recovered by re-adding µ.

ŵi = ûi + µ

2.4 Comparing Theoretical and Experimental Performance

The third stage involved comparing theoretical and experimental error correction per-

formance to ensure correct implementation. Although experimental performance cannot

16



achieve theoretical performance, being close implies correct ECC implementation. The

experimental minimum squared error (MSE), that is experimental distortion, was obtained

and plotted alongside the calculated theoretical distortion as demonstrated in Figure 4.1.

The sample MSE was computed for each K-size weight vectorwi and its corresponding

estimated weight vector ŵi,

∆sample
MSE

=
1

K

K∑
i=1

(wi − ŵi)
2

The experimental MSE was then calculated using all sample errors

∆exper
MSE

=
1

num_samples

∑
num_samples

∆sample
MSE

Finally the experimental MSE is compared to the theoretical MSE as calculated using

maximum likelihood:

∆ML =
Duσ

2

Eb

2.5 Evaluating Model Accuracy With Corrected Weights

To observe accuracy improvements from the ECC, model test set accuracy was evalu-

ated first with the noisy, uncorrected weights, unoisy, then with the estimated weights, ŵi,

obtained by the decoding phase. This entire process, including adding noise and applying

the ECC, was run 30 times for each SNR value. The results were then averaged, producing

the best performance estimation for the given noise quantity. Averaging was necessary due

to Gaussian noise’s inherent randomness, causing differing amounts of noise throughout

the model, leading to a wide range of evaluation accuracies. These averaged accuracies

were then plotted to produce Figure 4.3.
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3. LOSS VARIATION METHODOLOGY FOR ROBUST

TRAINING

A challenging problem in deep learning, facial expression recognition (FER) was se-

lected to test the training capabilities of loss variation. This involved developing a model

for the FER2013 dataset and experimentation with specialty FER loss functions. Training

with loss variation was then carried out on a range of models and sets of loss functions.

Loss interaction experiments then investigated how loss functions interact as part of loss

variation.

3.1 FER2013 Dataset

FER2013 [6] (Figure 3.1) is a challenging dataset containing 48x48 size grey scale

images of seven facial expression classifications, angry (4,593 images), disgust (547),

fear (5,121), happy (8,989), sad (6,077), surprise (4,002), and neural (6,198). In total, it

provides 28,709 training, 3,589 validation, and 3,589 test images.

Figure 3.1: FER2013 [6] sample data

3.2 FER Network Architecture

The model developed for the FER2013 dataset is a convolutional network containing

1,485,831 weights total. It begins with a 5x5 ReLU activated convolutional layer fed into

2x2 2D max pooling. This leads to two convolutional blocks, each containing two 3x3

ReLU convolutional layers and a 2x2 2D average pooling layer. The model then applies

18



a flattening layer fed into two ReLU 1024 size fully connected layers with 20% dropout

each. The output is then split, the first being a size 10 softmax activated dense layer for

use with standard loss functions (namely softmax). The second is a size 2 ReLU dense

layer providing input (x, y) positions and representing their classification relative to class

centers. This special output is fed through custom FER loss functions, center loss and

island loss.

3.3 Custom FER Loss Functions

Although FER models can and do use standard loss functions for training, specialty

ones improve training performance by increasing classification distance between class cen-

ters and decreasing inter-set distance around centers. The loss functions described below

are visualized in Figure 3.2.

(a) Softmax loss + center loss (b) Softmax loss + island loss (c) Softmax + center + island

Figure 3.2: Classification visualizations for FER loss functions

3.3.1 Softmax Loss

The softmax function is applied to the standard model output in FER networks. How-

ever, softmax is not actually a loss function, it is an activation function that provides clas-

sification probabilities for class based loss functions, typically cross-entropy loss. These

classification probabilities are normalized to sum to one. For each sample zi, for all possi-
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ble classifications {1,...,K}:

σ(z)j =
ezj∑K
k=1 e

zj

Cross-entropy loss then provides a loss value using the classification probabilities ob-

tained by softmax. For each iteration i, using true labels y, and model predictions ŷ:

H(p, q) = −
∑
i

pi log qi = −y log ŷ − (1− y) log(1− ŷ)

3.3.2 Center Loss

Center Loss [21] improves classification by penalizing the distance between features

and their corresponding class centers, therefore reducing intra-class variation. For the ith

sample, having class label yi and feature vector xi, and Cyi ∈ IRd being the center of all

samples with the same class label:

LCL =
1

2

m∑
i=1

∥∥xi − Cyi

∥∥2
2

3.3.3 Island Loss

Island loss [22] improves classification by increasing the pairwise distance between

different class centers. For the set of N expression labels, where Ck and Cj are the kth and

j th cluster centers:

LIL =
∑
Cj∈N

∑
Ck∈N,Ck /∈Cj

(
Ck · Cj

‖Ck‖2
∥∥Cj

∥∥
2

+ 1

)

3.3.4 Experimental Loss Function

To alternate center and island loss loss variation experimentation, the loss function

used was a summation of each function with a corresponding hyperparameter αLoss, set to

20



0 when not in use:

L = αSLS + αCLLCL + αILLIL

During training, cluster centers were updated by subtracting the center update ∆Ct
j ,

scaled by hyperparameter α, from current position Ct
j:

Ct+1
j = Ct

j − α∆Ct
j

The center update ∆Ct
j is computed as follows, where δ(yi, i) represents whether the

given sample yi is in set j:

∆Cj =

∑m
i=1 δ(yi, j)(Cj − xi)
1 +

∑m
i=1 δ(yi, j)

δ(yi, i) =

{
0 ifyi = j

1 ifyi 6= j

3.4 Experimental Process for Loss Variation

This research required extensive experimentation to understand loss function interac-

tions during training. Therefore, an automated test suite was developed for efficient testing

with many different models and various sets of loss functions. Starting with the first loss

function, the model was trained to a local minima, applying early stopping to identify

when achieved. The stage’s training history was then recorded before re-starting training

with the next loss function. After all loss functions have been used, it begins again with

the first. Training was concluded when the loss values begin ‘oscillating,’ where the differ-

ence in a given loss function’s validation loss after each training cycle was within a given

range.
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3.5 Experimental Process for Loss Interaction

As observable by the loss variation results (section 4.2), loss functions seem to inter-

act negatively. Because of this, additional experimentation analyzed whether loss values

were optimal when training with their corresponding loss function. This sought to pro-

vide insight into how loss functions interact. If a loss value was always lowest for its loss

function, this would demonstrate they indeed optimize the model against each other.

Testing was straightforward, the model was trained to completion with each loss func-

tion. During training, the value of every loss function was evaluated on the entire training

set after each epoch. By comparing the resulting loss values, it would then be demonstrated

whether loss functions interact negatively.
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4. EXPERIMENTAL PERFORMANCE AND ANALYSIS

This chapter begins with results pertaining to noise reduction in analog ECCs. It begins

by ensuring correct ECC implementation before presenting accuracy-based performance

results. Loss variation experiments are then presented, specifically those tests which best

present observed correlations. Finally, results for testing loss function interactions are

given.

4.1 Experimental Performance for Robust Neural Networks With Error Correcting

Codes

Correct ECC implementation is demonstrated by comparing theoretical and experi-

mental minimum squared error (MSE) as well as observing distortion reduction between

uncoded and experimental distortion. ECC Performance is then presented comparing

model accuracy when evaluated with ECC estimated weights and uncoded weights.

4.1.1 Minimum Squared Error

Minimal difference between theoretical and experimental MSE implies a valid ECC

implementation. Even functioning optimally, ECCs cannot achieve perfect estimations

after perturbations from noise. Therefore, as long as the experimental MSE distortion

from the estimated weights approaches theoretical distortion, the ECC has been correctly

implemented and the accuracy results will be valid.

Although it appears only theoretical performance is plotted in Figure 4.1, this is ac-

tually not the case. For all three models, the experimental and theoretical performance

are equal to a precision unable to be observed here. This allows confidence the accuracy

results will be correct.
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(a) MNIST (b) CIFAR10

(c) IMDB

Figure 4.1: Theoretical verses observed minimum squared error. Note the two separate lines in
each graph overlap.

4.1.2 Uncoded Verses Experimental Distortion

As SNR decreases, noise increases in relation to signal strength, thus causing more

distortion in the system. While the ECC seeks to negate this fault, its estimations can never

perfectly reduce such errors. However, by comparing the amount of distortion experienced

by the uncoded, noisy weights and the experimental, estimated weights, we can observe

the ECC’s ability to reduce such distortion.

Although it appears in Figure 4.2 that the experimental results contain no distortion,

this is not true. The experimental results in 4.2 are the same as those in Figure 4.1, but
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when plotted against the uncoded results, it demonstrates how well the ECC performs.

(a) MNIST (b) CIFAR10

(c) IMDB

Figure 4.2: Distortion experienced by the uncoded (noisy) weights verses that of the error corrected
estimated weights

4.1.3 Observed Accuracy

Naturally a hardware implemented DNN would only be viable if test set accuracy

approached that of its original, software based counterpart. Such accuracy results are pre-

sented in Figure 4.3, comparing accuracy with both ECC estimated weights and uncoded

weights. It should be noted that the plots are of different scales due to initial model accu-

racy and number of data set classes. MNIST and CIFAR-10 drop to 10% accuracy at low
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SNRs since there exists a one in ten chance of random chance success. IMDB only has

two possible classifications on the other hand.

As observable by the estimated accuracy lines, the models all display a natural tol-

erance to lower quantities of noise (higher SNR values). This tolerance varies however,

as the SNR value where a model’s performance begins to drop-off differs significantly.

Drop-off then occurs relatively quickly for all models, descending to random chance over

a small SNR interval.

(a) MNIST (b) CIFAR10

(c) IMDB

Figure 4.3: The accuracy of estimated verses uncoded weights
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Of course significant performance differences between models is to be expected and

yet quite insightful. Previous research [18] demonstrated that noise introduced in earlier

model layers causes more significant performance degradation. Therefore, larger models

should experience greater accuracy loss as noise perturbations at initial model layers are

exacerbated though more layers. It may also be the case that the increased dropout per-

centages of MNIST and IMDB are improving the model’s resilience to noise, similar to

adding Gaussian noise during training to prevent overfitting as presented by [23].

When comparing the estimated and uncoded accuracy lines in Figure 4.3, the perfor-

mance improvement from the ECC can be seen as it right-shifts the drop-off to lower SNR

values. By comparing similar accuracies between the two lines and subtracting their corre-

sponding SNR values, this right-shifting can be found to improve accuracy between three

and five decibels for all models.

4.2 Experimental Performance for Training With Loss Variation

Due to differences in model design and dataset complexity, loss variation experiments

were run on both CIFAR-10 and FER models. Note in the following graphs, dotted lines

imply swapping loss functions and near vertical changes in loss value are caused by dif-

ferent loss functions which scale their loss values differently.

4.2.1 CIFAR10 Model Results

As presented below, CIFAR-10 results demonstrate complex interactions between loss

functions affecting training success. Results suggest that alternating training with more

similar loss functions provides more stable training, but may also suffer overfitting. On

the other hand, very different loss functions seem to quickly degrade model performance,

inducing wide oscillations in model loss and harming accuracy.
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4.2.1.1 Mean Squared Error And Mean Squared Logarithmic Error

Demonstrated by Figure 4.4, the similar loss functions seem to train the model like

a single loss function, providing smooth loss decline. However, the training accuracy

increases while keeping validation accuracy constant, appearing to prevent overfitting from

decreasing validation performance.

(a) Train and validation accuracy (b) Train and validation loss

(c) All loss functions

Figure 4.4: CIFAR10, Mean Squared Error (30) and Mean Squared Logarithmic Error (30), Using
EarlyStopping

4.2.1.2 Categorical Crossentropy And Mean Squared Error

In Figure 4.5, loss function differences appear to introduce mild disturbances, increas-

ing loss and accuracy instability over loss change cycles. Additionally, while both loss

28



functions typically perform well for CIFAR-10, the training accuracy increases during

mean squared error but decreases during categorical crossentropy. Although validation

loss is not degraded too heavily, training loss is kept far lower than usual.

(a) Train and validation accuracy (b) Train and validation loss

(c) All loss functions

Figure 4.5: CIFAR10, Categorical CrossEntropy(30) and Mean Squared Error (30), Using
EarlyStopping

4.2.1.3 Categorical Crossentropy, Mean Squared Error, and Hinge

Figure 4.6 represents the worst performance observed from this training technique.

It involved training with three loss functions that are functionally quite different and for

more cycles than other tests. Throughout training, both training and validation accuracy

drop at an increasing rate. Additionally, validation accuracy becomes extremely unstable,
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oscillating until it manages to surpass training accuracy at some points. Notice in 4.6c,

4.6d, and 4.6e, that different loss functions’ values oscillate wildly thoughout training,

highest when the model is being trained with a different loss function.

(a) Train and validation accuracy (b) Train and validation loss

(c) All loss functions (d) Hinge loss

(e) Mean Squared Error loss

Figure 4.6: CIFAR10, Categorical CrossEntropy(20), Mean Squared Error (20), and Hinge (20)
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4.2.2 Facial Expression Recognition Model Results

The FER model demonstrated a behavior unseen in CIFAR-10, whereas switching the

loss function causes a sudden drop in training accuracy and spike in each loss function’s

loss value. As the loss value of each independent loss function was evaluated on the

entire training set separately of the training process, it can be confirmed that swapping

loss functions somehow affects the model directly. This prompted further research into

how loss functions interact with each other, presented in 4.2.3.

4.2.2.1 Mean Squared Error and Mean Squared Logarithmic Error

Similar to the CIFAR-10 version (Figure 4.4), Figure 4.7 presents stable training when

cycling similar loss functions.
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(a) Train and validation accuracy (b) Train and validation loss

(c) All loss functions

Figure 4.7: FER, Mean Squared Error (30) and Mean Squared Logarithmic Error (30), Using
EarlyStopping

4.2.2.2 Categorical Crossentropy and Mean Squared Error

Unlike the CIFAR-10 version (Figure 4.5), Figure 4.8 does not demonstrate oscilla-

tions in accuracy. Instead, validation accuracy remains smooth, increasing slowly over

time. Training accuracy and training loss also remain smooth, besides initial spikes after

switching loss functions.
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(a) Train and validation accuracy (b) Train and validation loss

(c) Categorical Crossentropy loss (d) Mean Squared Error loss

Figure 4.8: FER, Categorical Crossentropy (10) and Mean Squared Error (10), Using EarlyStop-
ping

4.2.3 Loss Interactions

Experiments on loss function interactions measured all loss values while training to

completion with a single function. This presented negative results of any correlation be-

tween training function and minimization of its loss value. Instead, for each model a

single loss function provided the highest validation accuracy and the lowest loss values for

all loss functions. This implies that training issues from loss switching are not caused by

loss functions optimizing the model in some specific manner.
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5. CONCLUSIONS AND FUTURE WORK

This research investigated two approaches that could enable noise tolerant HNNs in

the future. A novel ECC demonstrated three to five decibel accuracy improvements when

correcting weights perturbed by Gaussian noise. Loss Variation then presented a new

training approach that could improve model performance.

5.1 Concluding Remarks and Future Work on Robust Neural Networks

Although previous research existed on introducing Gaussian noise to improve DNN

training, [23] none has investigated how noise effects evaluation performance. This re-

search has demonstrated DNNs have some natural tolerance to Gaussian noise, with greater

tolerance corresponding to smaller networks. Additionally, although performance drop-off

begins at differing SNR values, complete accuracy loss occurs over a small SNR range,

following a similar pattern for all networks.

This research also presented a novel analog ECC able to estimate decimal point val-

ues altered by additive white Gaussian noise. It then demonstrated the ECC’s ability to

improve accuracy in simulated hardware implemented DNNs. Such a solution could aid

in future development of dedicated neural network hardware using analog signals for effi-

ciency.

5.1.1 Further Research

Being a new topic in deep learning, there is plenty of future research available, includ-

ing implementation into physical hardware. However, most should involve the develop-

ment of more efficient error correction techniques. Although increased redundancy would

improve code estimations, this adds overhead to the encoding and decoding processes and

increases the amount of information required to be transmitted. Therefore, future research
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should investigate the optimal amount of redundancy, providing the best trade-off between

improved estimations and performance overhead.

This research also leaves open the possibility of different forms of analog ECCs. Pre-

vious research proved noise introduced in earlier network layers decreases accuracy more

than later layers [18]. Therefore, a code prioritizing greater amounts of redundancy for

earlier layers could improve model performance while maintaining less overhead.

5.2 Concluding Remarks and Future Work on Robust Training

Training using multiple loss functions presented complex but interesting interactions.

Experiments with CIFAR-10 demonstrated a correlation between loss function similarity

and training performance. As increasingly distinct loss functions were used, oscillation

increased and training performance decreased. This also seemed true of more loss func-

tions. However, such observations appear less true of the FER model, where loss would

spike and accuracy drop immediately after swapping loss functions. Yet after only a few

training epochs both would return to previous or better performance. This need to recover

from initial spikes may be the reason FER demonstrated less oscillations from less similar

loss functions. If so, such an approach may be applicable when training models on difficult

datasets.

5.2.1 Further Research

Going forward, experimentation with more datasets and models could provide further

correlations between dataset difficulty, model size, and loss variation success. Continued

experimentation with different loss function sets could verify that decreased loss function

similarity leads to decreased accuracy and greater loss value oscillation. Investigating

the reason behind loss spikes after loss function swapping in the FER model could also

prove insightful. This is possibly caused by the complexity and difficulty of the FER2013

dataset and testing loss variation on other difficult datasets could demonstrate whether this
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is correct. It may also be possible to reduce spikes by increasing model size to reduce

sensitivity. Overall, experimentation investigating why loss functions interact negatively

could provide better insight into how deep learning models train.
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