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ABSTRACT

Managing Temporal Robot Constraints using Reachable Volumes

Everett Siyan Yang
Department of Computer Science and Engineering

Texas A&M University

Research Advisor: Dr. Nancy M. Amato
Department of Computer Science and Engineering

Texas A&M University

This project focuses on planning the motion for high degree of freedom manipulator

robots under dynamic (or temporal) constraints. Manipulator robots are widely used in

industry and are important because they can do jobs that are either too tedious or too dan-

gerous for humans. An example would be picking up toxic waste or exploring underwater

archeological sites.

Motion planning for high degree of freedom (DOF) manipulators under task con-

straints is challenging because it gives rise to high dimensional configuration spaces (Cspace)

that are complex in structure. Our approach reduces the complexity by re-parameterizing

the manipulator robots DOFs into a space that contains the valid regions that the end effec-

tor of the robot can reach, known as the Reachable Volume space (RVspace). In this way,

we can sample valid configurations in Cspace in linear time with the number of DOFs of

the manipulator.

Current Reachable Volume theory only handles permanent constraints and cannot adapt

to scenarios that require constraints that are enabled at certain times in the problem and dis-
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abled at other times. For example, when a manipulator grabs an object, closure constraints

on the grasper must be satisfied, but when the object is to be dropped, these constraints

must be ignored. Additionally, certain scenarios require the cooperation of multiple robots.

This is obvious if we consider problems that involve objects that are too large for a single

robot to handle.

In this work, we produce a working computational framework for efficient motion

planning of high degree of freedom manipulator arms under dynamic constraints through

the extension of existing work in Reachable Volume spaces.
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1. INTRODUCTION

A robot is very often required to traverse an environment while satisfying different task

constraint(s). Imagine an underwater robot that needs to open a barrel in order to uncover

an artifact. Such a robot would need to constrain its graspers to be in a closed position so

it can lift objects. This would be an example of a task constraint. When the robot is ready

to drop the object, the constraint on its graspers must be released.

In order to have these robots do such high-level tasks autonomously, we use techniques

in motion planning, which is the problem of guiding a robot through some environment

while satisfying any constraints placed on it. However, motion planning is a computation-

ally hard problem. Exact approaches are infeasible, and randomized approaches do not

provide a general solution. From the latter, there is also the question of the precision of

solutions obtained.

Recently, there have been several new developments that relieve some inefficiencies as-

sociated with constrained planning [1], [2], [3]. Notably, the reparameterization approach

has proven to be effective in creating valid configurations for a high dimensional robot. In

fact the approach is able to create such configurations in linear time with the number of

degrees of freedom of a robot by constructing a space of all reachable points from a robots

base, called the Reachable Volume space.

It is on this development that our current project rests. In particular, our project focuses

on using such a method to handle cases where the constraints are not permanent. In these

time sensitive cases, the Reachable Volume space must adapt to the changing constraints

as the problem progresses. We will show methods to efficiently handle such changes.

We test our algorithms on a 14-DOF manipulator robot navigating through an empty

environment. We show that the algorithm is able to guide such complex robots through
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the environment while continuously satisfying any constraints on its end effector. An

immediate application of the algorithm is to the drawing problem, where the robots end

effector must follow some curve in space.
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2. PRELIMINARIES AND RELATED WORK

This section reviews existing work in the field and introduces concepts crucial to the

understanding and solving of the motion planning problem.

2.1 The Motion Planning Problem

Navigating a robot from a point A in space to a point B is called the robot motion

planning problem. A robot in space is an n-dimensional object, where n is equal to the

number of degrees of freedom it exhibits. When we place a robot in the environment, we

set its degrees of freedom, thus forming a robot configuration. The space of all possible

configurations is aptly named the configuration space, or Cspace [4].

The notion of configuration spaces allow us to formulate the motion planning problem

as a problem of finding a continuous curve in Cfree (the set of all feasible configurations of

Cspace) which connects a robot start and goal configuration.

2.2 Sampling Based Planning

Since configuration space can be quite complex, methods that give an exact solution are

generally not feasible [5]. Instead, we sample probabilistically on the Cspace. In this way

we can achieve a polynomial time solution to the motion planning problem. A commonly

used algorithm is the Probabilistic RoadMap (PRM) method [6], which samples config-

urations in Cfree) and connects them using a local planner, which interpolates on each

edges, generating feasible intermediate robot configurations. Once a connected roadmap

is formed in the workspace (the space that the physical robot lives in) we use a graph

search algorithm (e.g., Dijkstra’s, A*) to find the shortest path between the start and goal

nodes. Once this is done, the problem is solved.

There are many ways to sample robot configurations with some being more effective

7



for a specific environment than other methods. For example, in an environment cluttered

with obstacles we may want to use Obstacle-based sampling [7], which randomly sam-

ples configurations on the surface of workspace obstacles, yielding much more connective

roadmaps, in these cluttered environments, than the classic uniform sampling method.

2.3 Reachable Volumes for Constrained Planning

Although sampling based methods are effective for sampling in unconstrained spaces,

they fail when constraints are introduced . To understand this intuitively, we can see that

the configuration space (sample space) is large compared to the sub-manifold contain-

ing constraint satisfying samples (the configurations we are interested in). Traditional

sampling is so hard that the probability of generating a valid sample approaches zero as

sampling continues [8].

To this end, the notion of a Reachable Volume space has been developed for efficient

sampling of high-DOF manipulator configurations. Sampling valid nodes in RV space

takes only polynomial time [3].

Instead of sampling directly on the constraint sub-manifold, we take into consideration

all the points our robot (or a sub-section of our robot) can reach from a given base posi-

tion. In this space, we can directly sample valid configurations without having to do low

probability rejection sampling as with traditional sampling. For manipulators, this is done

using the sampling algorithm detailed in [3].

Computing the RV-space for a given manipulator is quite efficient with the concept

of Minowski sums. Figure 2.1 shows the reachable volume (RV) of a typical manipula-

tor arm. Notice that the large reachable volume (dark green spherical shell) has smaller

reachable volumes contained within it. This is because the RV of the robot is constructed

from RVs of its linkages, which have smaller outer radii.

We convert a reachable volume sample into a sample of Cfree with the use of concepts
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Figure 2.1: Reachable Volume of a simple manipulator arm

in trigonometry, as two robot linkages of known length form a triangle of angle θ which can

be computed simply with the law of cosines. For unconstrained RVs, the position of the

corresponding Cfree configuration sample is assigned at random. If the RV is constrained

to be at some point(s), it must use those points in the conversion.

Thus, reachable volume space acts as an interface to the configuration space, in the

meantime speeding up the sampling process substantially.
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3. APPROACH

We use sampling based planning to construct a roadmap as described in section 2.2.

To construct constraint satisfying samples we use Reachable Volumes described in section

2.3.

Although the method used to keep track of what set of constraints is "on" at which time

is invariant, the application of these constraints varies based on the type of constraints and

robots involved. For a simple manipulator robot that is only constrained to have its end

effector at some point, we simply construct the Reachable Volume around the point and

sample valid configuration from that RV. This section will describe how we manage tempo-

ral constraints and how the Reachable Volume is constructed and reconstructed throughout

planning.

3.1 Constraint Management

In order to efficiently manage constraint that can be either dynamic or static, we intro-

duce new data structures to the pre-existing Reachable Volume framework.

3.1.1 Constraint Matrix

We define the constraint matrix to be an array of constraint sets. Each array of con-

straints represents a different phase in the problem. For example, when a robot is trying

to retrieve an object from a closed barrel, the phase 1 constraint set consist of having the

robots end effector be on the barrel lid and its body positioned next to the barrel, {C1, C2}.

Phase 2 could then contain n constraints that deal with the robot grabbing the object from

inside the barrel, so the set S = {C1, C2, C3, ..., Cn}. The 2D array contains all of these

sets of constraints for the problem. The structure will be used in the planning phase by the

RV-sampler.
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3.1.2 Temporal Roadmap

Once the environment contains enough samples that satisfy each of the constraints in

the set, we are now tasked with connecting them so that a valid path from the starting node

to the ending node can be found. Connection should be done in a way that allows for the

problem to be solved correctly. In all cases, we will need to establish a notion of time to

prevent the robot from forming an ill ordered path (e.g., moving to write something on a

whiteboard before picking up a marker, etc.). To do so, we implement what is called a

temporal roadmap. This is a roadmap that contains configurations that each store a value

containing information about their position in time. This is necessary as the notion of time

is considered when we are connecting nodes under different constraints. The mapping is

done using a standard hashmap with O(1) access time.

3.2 Algorithm Description

This section details the planning algorithm, which involves the structures introduced

in section . We will discuss each of the essential functions and how they work together to

form a plan for the robot.

The high level structure of the planning strategy described in Algorithm 1 is similar to

the algorithm in [6]. In other words, we adopt the PRM algorithm and make changes to it’s

components in order to handle temporal constraints. Thus our approach is easily extended

to other frameworks, such as a tree-based planning algorithms (e.g., RRTs [9]).

The changes made to handle temporal constraint lie in Algorithm 2 and 3, detailed in

section 3.2.2 and 3.2.3, respectively.

3.2.1 Temporal Reachable Volumes

As mentioned above, Algorithm 1 adapts from the classic PRM algorithm. Unlike the

PRM algorithm, we do preprocessing on a user inputted constraint matrix. This is done so
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the sampler can assign timesteps to the valid nodes generated.

Algorithm 1 Temporal Reachable Volume Strategy
Input: S: temporal constraint set

1: env: environment the robot lives in
2: robot: model of the manipulator robot to be planned
3: start: robot start configuration
4: goal: robot goal configuration

Output: g: constraint satisfying Temporal Roadmap for robot in env
5: function STARTPLANNING

6: ParseConstraintMatrix(S)
7: while !ValidPathExistsBetween(start, goal) do
8: TemporalSample(robot, S)
9: TemporalConnect()

10: end while
11: end function

3.2.2 Sampling in the Constraint Matrix

To ensure that no constraint set in the constraint matrix is starved of samples, we

take the straightforward approach of uniform sampling in the constraint matrix. Formally,

Pr(Ai) =
1

|S|
, whereAi is the event that the Reachable Volume sampler produces a sample

that satisfies Ci ∈ S.

Algorithm 2 makes clear the way we choose samples from the parsed list of constraints

from the constraint matrix.

3.2.3 Connecting Samples in the Temporal Roadmap

Connecting is done after every sampling iteration. Each existing node in the graph is

connected with it’s nearest neighbors, with the added condition that two nodes must have

consecutive timesteps. The importance of this is mentioned in section 3.1.2.
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Algorithm 2 TemporalSample
Input: robot: model of the manipulator robot to be planned

1: S: temporal constraint set
2: rvSampler: Reachable Volume sampler

Output: Valid robot samples added to g
3: function TEMPORALSAMPLE

4: randNum = generateRandomNumber() % |S|
5: currentConstraintSet = S.get(randNum)
6: listOfValidSamples = rvSampler.sample(currentConstraintSet)
7: g.add(listOfValidSamples)
8: end function

3.3 Simple Manipulator with End Effector Constraint

We implement our approach for the simple case of a manipulator that only requires its

end effector to be constrained at some point. The constraint matrix would be reduced to a

one dimensional list because each element in the matrix would only contain one element

(the point that the end effector should be positioned at). That is |Ci| = 1∀i ∈ 1, 2, ..., n.

Next, we simply set the end effector point of the reachable volume constructed for

the robot to be at this point, thus the reachable volume is simply being translated through

Cspace as constraints change. We demonstrate that, given information about the constraints,

we can use this method to grasp objects and move them through complicated environ-

ments.

3.4 Closed Chain Constraint

Another constraint that we consider, in theory, is the closed chain constraint, where a

grasper-like robot will need to configure its degrees of freedom to form a closed loop.

When we require the closed chain constraint to be "on" we simply construct the Reach-

able Volume representation as described in [3]. When we want it "off", or not considered

during some interval in planning, we will simply discard that Reachable Volume and com-
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Algorithm 3 TemporalConnect
Input: g: temporal map with valid nodes
Output: new edges added to g

1: function TEMPORALCONNECT

2: for all nodes n1 in g do
3: neighbors = FindNeighbors(n)
4: for all nodes n2 in neighbors do
5: if (n2.getTimeStep() - n1.getTimeStep()) == 1 then
6: if ConnectableUsingStraightLineLP(n2, n1) then
7: edge = ConstructEdge(n1, n2)
8: g.addEdge(edge)
9: end if

10: end if
11: end for
12: end for
13: end function

pute an unconstrained RV. Though sampling in the unconstrained RV may, with low prob-

ability, also produce a closed chained constraint, this should not be worrysome as it will

be overwhelmed by non-closed samples. In other words, the limit, as we sample, of the

ratio of closed to open sample should equal 0.

We do not run experiments that explicitly use closed chained constraints. One can

easily see that our algorithm is extensible to such constraints once the corresponding RV

sampler is implemented.

An example of a robot under closed chained constraints is shown in Figure 3.1 in its

Reachable Volume.

3.5 Reconstructing the Reachable Volume Space

When multiple constraints are required to solve a problem, we require that the Reach-

able Volume be dynamically reconstructed so to represent the constraints currently active.

Notice that given two reachable volumes R1 and R2, R1 can be recomputed into R2 if

and only if both exist. If they both exist, then a trivial recomputation algorithm is to dis-
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Figure 3.1: A closed chained robot in its Reachable Volume

card R1 and compute R2. For the simple end effector constraint, recomputation involves

translating the reachable volume from a point a to a point b in the workspace. Finding

a faster algorithm for recomputation of more complex structures is still an open problem

(see Section 5.1).
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4. EXPERIMENTS

In this section we demonstrate the effectiveness of the methods described in chapter 3.

4.1 Machine Setup

The algorithm was implemented in the Parasol Motion Planning Library (PMPL) in

C++. The library uses a distributed graph from the Standard Template Adaptive Parallel

Library (STAPL) [10]. All experiments were run on a Dell Optiplex 780 running CentOS

Linux 7 with an Intel Core 2 Quad CPU Q9550 with 4 GB RAM.

4.2 Environmental Setup

The environment we use is the Empty Box environment. This environment provides a

simple testbed that serves to show how drawing can be done with temporal roadmaps.

4.3 Simple Manipulator Robot

We use a 14 DOF manipulator robot with spherical joints shown in Figure 4.1. This

is a representative model of a real-world robot as it contains joints and linkages, found in

real robots.

Figure 4.1: Simple manipulator arm with spherical joints
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4.4 Drawing with Simple End Effector Constraints

Oftentimes, a robot arm will be asked to follow some smooth curve in space. For

example, in industry a robot manipulator may be tasked with painting a car or some other

task which requires precise movements.

In this section, we demonstrate the effectiveness of temporal constraints when coupled

with Reachable Volumes in handling such constraints. In particular, we solve the drawing

problem mentioned above using the simple manipulator robot.

4.4.1 Empty Box Environment

Figure 4.2 shows an empty environment with the robots end effector constrained at

some corners of the box. Configurations in different corners represent the robot at different

points in time of the problem. In our case, this also means that their end effectors are

constrained to different points in workspace.

The temporal roadmap in Figure 4.2 is structured as follows:

• Red indicates phase 1

• Blue indicates phase 2

• Green indicates phase 3

Notice that phase 1 configurations do not connect with phase 3 configurations. As

mentioned in section 3.2 this is the intended result as nodes should only connect in con-

secutive phases, so to maintain chronological order. Each cluster of nodes is centered

around one point, indicating that it is the end effector constraint.

To construct a motion planning problem from this graph, set a goal configuration to be

an robot configuration in phase 3 and a start configuration to be a robot configuration in

phase 1. Then simply follow the edges in one direction in order, to construct a valid path

17



(a) 10 nodes (b) 100 nodes

Figure 4.2: Simple 14-DOF manipulator arms constrained at different points in a simple
box environment (no obstacles)

from start to goal. This step is usually done with a graph search algorithm (e.g., Dijkstra’s

algorithm). In this example the solution to the motion planning problem will provide a

solution to the user provided drawing problem.

The robots are free to orient the linkages in their body that do not contain the end

effector, thus giving many different instances of the robot for each constraint set. This

results from the randomness of Reachable Volume sampler when assembling the robots

from their constituent linkages.

4.5 Discussion

The demonstration above shows that Reachable Volumes can efficiently handle manip-

ulator problems that require different constraint at different times in planning.

Specifically, we solved the drawing problem in an empty box environment.

We did not show a comparison between our method and the traditional PRM or RRT

methods as it is known that it is with probability 0 that those methods will produce samples
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that lay on such a small subset of the configuration space. Thus, Reachable Volumes makes

possible the handling of constraints, particularly those which require such precision as the

ones shown above.

Figure 4.3 shows that the algorithm exhibits an approximate linear slowdown with the

number of nodes sampled. This is expected as it takes linear time for the reachable volume

sampler to produce a valid node and the added temporal tools should each take constant

time.

Figure 4.3: Roadmap construction times on the Empty Box environment with 3 end effec-
tor constraints
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4.6 Limitations

Most of the limitations of the algorithm are mentioned in section 5.1 along with some

proposed solutions.

Additionally, it is fair to mention that, in our experiments, we are using the standard lo-

cal planner that does not sample constraint satisfying samples along the edges. The effects

of this are not noticeable due to the fact that the samples exhaust every possible constraint

satisfying configuration encountered in the problem. In other words, the constrained space

in our case is so narrow (points) that a local planner would not introduce noticeable im-

provement. When the constrained space is a continuous manifold, a reachable volume

local planner is necessary because intermediate configuration produced by the ordinary

straight-line planner on edges may not adhere to the constraints in effect.
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5. CONCLUSION

In this work, we present an approach to managing temporary constraints in high de-

gree of freedom manipulators robots. Combined with pre-existing work in Reachable Vol-

umes we are able to efficiently plan motion for these robots to solve complex real world

problems. Our experiments on a 14-DOF manipulator arm demonstrate that our current

approach is effective in planning robots that are under simple end effector constraints.

In fact, we show that extending reachable volumes to handle these temporal constraints

incurs only a constant time slowdown.

5.1 Further Study

A faster recomputation algorithm for RVs would be interesting and would speed up

much of the current planning process. One potential way to do this is to keep a permanent

template of the reachable volume, determined by only permanent constraints. Then using

this template, compute the needed RV based on the currently needed constraints (stored in

the constraint matrix).

Additionally, our current algorithm does not consider the orientation of the end effec-

tor, thus we are confined to using spherical graspers (which has a uniform orientation).

[11] demonstrates a method for doing this.

We would also like to extend our method to handle grasping, which is a significantly

harder problem than drawing, due to graspers being more complex in structure (more

DOFs, thus higher dimensional Cspace). It is also a problem to determine the optimal

configuration for a robot arm to grasp an object so that the object is secure.

Finally, information about constraints is currently given by the user. We would like to

develop an autonomously method for detecting where a constraint is needed. This brings

us to the difficult problem of determining when a robot should release the object and how,
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if multiple robots are involved, they may collaborate correctly and effectively.
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