
   

 

   

 

GRAPHBLAS: SOLVING GRAPH ALGORITHMS WITH LINEAR 

ALGEBRA 

 

 

An Undergraduate Research Scholars Thesis 

by 

JULIO CESAR MALDONADO GUZMAN 

 

 

Submitted to the Undergraduate Research Scholars program at  

Texas A&M University 

in partial fulfillment of the requirements for the designation as an 

 

 

UNDERGRADUATE RESEARCH SCHOLAR 

 

 

Approved by Research Advisor:                                                                              Dr. Timothy Davis 

 

 

May 2019 

 

 

Major: Computer Science  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M University

https://core.ac.uk/display/211174502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


   

 

   

 

TABLE OF CONTENTS 

 

Page 

ABSTRACT................................................................................................................................... 1 

DEDICATION............................................................................................................................... 3 

ACKNOWLEDGMENTS.................................................................................... ........................ 4 

CHAPTER  

I. INTRODUCTION ...................................................................................................... 5 

Why Use Linear Algebra ...................................................................................... 5 

Why Not Use Linear Algebra ............................................................................... 5 

Moving Forward ................................................................................................... 6 

 

II. METHODS ................................................................................................................. 7 

Ease of Understanding .......................................................................................... 7 

Ease of Writing ..................................................................................................... 7 

Efficiency .............................................................................................................. 8 

A Reliable Experience .......................................................................................... 8 

 

III. RESULTS................................................................ ................................................... 9 

Ease of Understanding.............................................................. ............................ 9 

Knowledge.............................................................. .............................................. 9 

Resources.............................................................. .............................................. 10 

Ease of Writing.............................................................. ..................................... 10 

Floyd-Warshall.............................................................. ..................................... 10 

Floyd-Warshall in GraphBLAS.............................................................. ............ 11 

Comparison.............................................................. ........................................... 12 

Efficiency.............................................................. .............................................. 12 

Floyd-Warshall Efficiency Comparisons..............................................................13 

Floyd-Warshall Efficiency Results.............................................................. ....... 13 

Table 1................................................................. ............................................... 13 

Table 2................................................................. ............................................... 14 

Table 3................................................................. ............................................... 14 

Floyd-Warshall Takeaways.............................................................. .................. 15 

Breadth First Search............................................................................................ 15 

BFS in GraphBLAS.............................................................. .............................. 16 

Comparison.............................................................. ........................................... 16 



   

 

   

 

BFS Efficiency Comparisons.............................................................................. 17 

BFS Efficiency Results.............................................................. ......................... 17 

Table 4................................................................. ............................................... 17 

Table 5................................................................. ............................................... 18 

Table 6................................................................. ............................................... 18 

BFS Takeaways.............................................................. .................................... 18 

 

IV. CONCLUSION......................................................................................................... 20 

Future.............................................................. .................................................... 20 

 

REFERENCES................................................................................... ........................................ 21 

  



   

 

 1  

 

 

 

ABSTRACT 

GraphBLAS: Solving Graph Algorithms with Linear Algebra 

 

 

Julio Cesar Maldonado Guzman 

Department of Computer Science and Engineering 

Texas A&M University 

 

 

Dr. Timothy Davis 

Department of Computer Science and Engineering 

Texas A&M University 

 

 

GraphBLAS is a C library written by Dr. Davis that allows users to easily represent graphs as 

sparse matrices. GraphBLAS also allows linear algebra operations on its graphs, so that users can 

develop graph algorithms in the language of linear algebra. Concluding that GraphBLAS is a 

more efficient and concise way of writing graph algorithms is important to academia, as it’d 

introduce a better approach for researchers and students to learn and write graph algorithms. The 

ability to write graph algorithms efficiently will allow researchers to test what they’re needing to 

do at a quicker pace. Instructors will also be able to teach and explain graph algorithms to their 

students in a way that they can easily grasp the material. In return, the students will get to learn 

the material in a new way and be able to test their understanding. My outcomes will further the 

validation and understanding of GraphBLAS as an alternative to regular graph algorithms. 

Furthermore, such graph algorithms will also allow for software developers in industry to write 

graph algorithms quickly. Such algorithms are crucial to various situations such as figuring out 

bots on Facebook and search results on Google. Kepner and Gilbert prefaced that graph 



   

 

 2  

 

algorithms “have become essential in controlling the power grid, telephone systems, and, of 

course, computer networks (xxv)”, further validating how impactful a new way to compute these 

algorithms could be. Previous research on this topic conducted by Buluc and Gilbert detail how 

to approach many different graph algorithms in the language of linear algebra. That research can 

be referred to gather information on how to better approach graph algorithms in GraphBLAS. 

We will be able to compare how easy and efficient it is to write such algorithms to the regular 

method using adjacency matrix or vertexes to test my research statement of GraphBLAS being a 

powerful and expressive way to develop graph algorithms.  



   

 

 3  

 

DEDICATION 

 

Para Bri, que ha estado ahí para mí para todo. Para mi hermano, de quien no podría estar 

más orgulloso. Para mi madre, que siempre nos dio todo lo que tenía para criarnos. Para mi 

padrastro, quien nos enseñó a trabajar duro y no esperar nada a cambio. 

For Bri, who has been there for me for everything. For my brother, who I couldn’t be 

prouder of. For my mother, mi mamá, who raised my brother and I no matter how hard it got. 

For my step-father, mi papá, who taught us how to work hard and not expect anything in return.  

  



   

 

 4  

 

ACKNOWLEDGEMENTS 

 

I’d like to thank Dr. Timothy Davis for being my faculty advisor, mentor, and role model. 

I’ve learned a lot in the past year and I’ve seen firsthand how an idea can become reality through 

determination and hard work. Thank you for the guidance and support throughout the course of 

this research. 

Thanks also to my peers, colleagues, and department faculty and staff for making my 

time at Texas A&M University a great experience. I’d like to personally thank Dr. Teresa Leyk 

for her support throughout my time at A&M. Thank you for letting me become a peer teach to 

pass off my knowledge to other students who struggled just like I did. Thank you also to Dr. 

Scott Schaefer and Dr. Dilma Da Silva for doing everything you could to help me out. 

Finally, thanks to all my friends who have supported me, no matter how small or big of a 

part each of you have played. I am forever grateful.  



   

 

 5  

 

CHAPTER I 

INTRODUCTION 

 

Linear algebra can be used for several applications, ranging from mechanical vibrations 

to computer vision. It’s versatility and powerful operations stirred the idea of using linear algebra 

to solve graph algorithms. The GraphBLAS community came around and rallied behind this 

concept and began to contribute to graphblas.org. Dr. Timothy Davis went on to develop the 

largest, active and open source library in C, implementing graph algorithms solved with linear 

algebra appropriately called GraphBLAS. 

Why Use Linear Algebra 

Math and computer science often go hand in hand in educational settings. A solid 

mathematical background is often considered crucial to doing well in the field of computer 

science. However, computer science usually begins to deviate from math and becomes about 

quickly developing efficient code. Efficient code is where we introduce math once again, i.e. 

using bit shifting for quicker multiplications, Fermat’s theorem to determine whether a number is 

prime, or using linear algebra to perform a BFS on a graph. Linear algebra has powerful 

operations and expressions that allow for easy to understand and efficient operations on a graph. 

Why Not to Use Linear Algebra 

Some might fear the idea of using linear algebra rather than traditional data structure, 

such as queues and adjacency matrixes, to perform graph algorithms. It can sound daunting at 

first, especially to those who aren’t comfortable with math. The barrier to entry might be too 

high. Another potential reason is that there are fewer resources to turn to. If a company decides 

to switch over, then they would have to refactor a substantial amount of code; and if the 



   

 

 6  

 

company struggles with a complex algorithm, they have less options to receive help. These 

issues might be overwhelming at first, so figuring out whether switching over is worth it is 

crucial.  

Moving Forward 

There are advantages and disadvantages for using GraphBLAS – I’ll list out as many as I 

can find so that I provide insight into how powerful the library is. It is important to keep in mind 

that although the GraphBLAS library is intended for mass usage for everyday problems, it will 

not always be the best solution. Some companies have already developed their own custom 

graph libraries for their business, while researchers might enjoy using a particular graph library, 

and students may not care too much about efficiency. Choosing a graph library is a conscious 

decision that considers many factors. That’s standard in computer science. GraphBLAS is not 

intended to be the solution to every problem, rather it is intended to raise the floor so that every 

developer can immediately start representing and manipulating graphs in a very efficient manner. 

  



   

 

 7  

 

CHAPTER II 

METHODS 

 

I am the first documented undergraduate to experiment with the SuiteSparce GraphBLAS 

library. The three factors I will talk about will be my ease of understanding, ease of writing, and 

efficiency of the algorithms. These three factors will be a good indicator as to how simple it is to 

learn the library, how easy it is to use the library, and how good the library is. Nevertheless, my 

experiences are personal and somebody else might have an easier, or more difficult, time with 

GraphBLAS. 

Ease of Understanding 

GraphBLAS is built on the idea of using linear algebra to solve graph algorithms, so 

many who struggle with linear algebra might struggle with understanding what the function calls 

do. I have a mathematics minor where I’ve taken a variety of math courses, including linear 

algebra. I'll share what I think is important to know in linear algebra so that anybody who does 

not have a similar background can be prepared to start using GraphBLAS. These metrics are 

important in understanding what it'll take to transition to GraphBLAS. 

Ease of Writing 

To understand is one thing, but to use is another. The built-in functions of GraphBLAS 

should be simple enough to understand and use so that a developer can start using them after 

reading the API. The flow of the program should also be easily understood, so that other 

developers can read the code and know what’s happening. These two factors are important in 

software development for companies, research for academics, and learning for students. 

 



   

 

 8  

 

Efficiency 

I plan on implementing three graph algorithms: BFS, Floyd-Warshall, and Prim’s 

algorithms in C, Python, and in GraphBLAS. I’ll then be able to compare the run times of the 

algorithms for various graphs, from dense to sparse, to determine whether scenarios exist where 

a different approach is preferred. Through these measurements, I hope to increase the 

understanding of what it will take to take GraphBLAS to a wider audience, including education, 

academia, and industry. 

A Reliable Experience 

Although these factors aren’t perfect, they are commonly used by software development 

teams, research teams, and students to decide on what approach to use to solve a problem. The 

simpler it is to learn something, then use it, and get a very good outcome from it often 

corresponds to a better experience. A good experience is what will later create active users, 

contributors, and advocates for GraphBLAS. We can then reliably use these metrics to determine 

the feasibility of GraphBLAS. 

  



   

 

 9  

 

CHAPTER III 

RESULTS 

 

There are many factors that influence how easy it is to grasp a new technology. Similar 

experiences are probably one of the most important. If I’ve worked with a functional 

programming language before, then I’ll probably have an easier time learning a new one. 

GraphBLAS is completely written in C, and most of my programming experience involves using 

C++. I’ve learned various graph algorithms, however learning them under the context of linear 

algebra was a new challenge.  

Ease of Understanding 

To start off, GraphBLAS is not the easiest library to learn. Some of the challenges of 

learning the library include lack of references that are easy to find, knowledge of C, and 

knowledge of the library itself. However, most of the issues can be resolved through more 

support and usage of the library. 

Knowledge 

There exists a large online community of GraphBLAS supporters, but what’s important 

to note is that there is not an official GraphBLAS implementation or single library that is widely 

supported. Dr. Davis’ version of GraphBLAS is one of the largest and most complete libraries 

available, while Kepner and Gilbert’s “Graph Algorithms in the Language of Linear Algebra” is 

one of the most encompassing books written about how to solve such algorithms. Most of the 

algorithms implemented are based off the pseudocode and explanations written in the book. It’s 

therefore safe to say that there are many experts in GraphBLAS, but not many experts in Dr. 

Davis’ implementation of GraphBLAS. Furthermore, one of GraphBLAS strong points is the 



   

 

 10  

 

ease of parallelization. Parallelization is an advanced topic, and being able to efficiently 

implement it is hard. Knowledge of parallelization, the C library, and GraphBLAS are all 

necessary to get the most out of the algorithms. 

Resources 

Many of the libraries that I have used are very popular and widely used. Through mass 

and wide spread usage arise experts and beginners. Beginners will be able to ask introductory 

level questions, while experts will be able to answer them. Experts can then go on to create 

blogs, APIs, and tutorials on how to best use a library. I was lucky enough to have Dr. Davis, the 

creator of GraphBLAS, as my advisor, so I had the best resource available. However, when 

asking a more trivial question, it might be easier to simply search for it online and have examples 

to go off. This short-term problem can of course be fixed as experts arise. 

Ease of Writing 

Writing efficient and easy to understand algorithms is always a difficult task. There are 

always opportunities to convolute an algorithm making it slower or harder to read. Let's consider 

Floyd-Warshall as an example.  

Floyd-Warshall 

Here is a snippet of the main component of the algorithm: 

for (int k = 0; k < m; k++) { 
    for (int i = 0; i < m; i++) { 
        for (int j = 0; j < m; j++) { 
            if (g[i][k] == INT_MAX || g[k][j] == INT_MAX) 

      continue; 
            if (graph[i][j] > graph[i][k] + graph[k][j]) 
                graph[i][j] = graph[i][k] + graph[k][j]; 
        } 
    } 
} 
The algorithm is intended to find the shortest path for every single pair in a graph. Therefore, 

you need to run through the entire graph and check if there is a path from one entry to another 



   

 

 11  

 

entry with a cost less than the current path. If there is, then you can update the cost to the cost of 

the better path. It is also wise to set entries that don’t have a path to another entry with the value 

of INT_MAX, which is used to represent the largest value an integer can be. This INT_MAX 

also denotes infinity, meaning that the cost to get to that entry in the graph is infinite, thus 

accessing it is impossible. We must check if either of the added entries are INT_MAX to ensure 

that overflow does not occur so that we calculate the correct cost. This is an advanced algorithm 

that runs in O(㎥). Since the graph must be m x m size, we must check every single item in the 

rows and columns, which is of size m x m thus we must perform m x m operations. We then 

have to run through every entry in the rows to update the path cost if necessary, so we perform 

another m operations, ultimately equating to m x m x m operations. The triple for loop is hard to 

understand and debug if not implemented correctly. An algorithm like this can, however, be 

easily written in GraphBLAS. 

Floyd-Warshall in GraphBLAS 

Here is a snippet of the code to implement Floyd-Warshall in GraphBLAS: 

for (GrB_Index i = 0; i < m; i++) { 
GrB_extract(A, GrB_NULL, GrB_NULL, G, GrB_ALL, m, &i, 1, GrB_NULL); 

 
GrB_extract(B, GrB_NULL, GrB_NULL, G, &i, 1, GrB_ALL, m, GrB_NULL); 

 
GrB_mxm(C, GrB_NULL, GrB_NULL, GxB_MIN_PLUS_FP32, A, B, GrB_NULL); 

 
GrB_eWiseAdd(G, GrB_NULL, GrB_NULL, GrB_MIN_FP32, C, G, GrB_NULL); 

} 
This algorithm does the exact same thing as the previously described algorithm, except it uses 

linear algebra to compute the shortest paths. The code still needs to iterate through all of the 

entries in the graph, hence the outer for loop. It then extracts the next row to A and column to B 

to add the pairs and place them in the temporary graph C. The code will next update the values of 

the graph G with the smaller value, whether it be in the graph G or the computed value in C. The 



   

 

 12  

 

OK function seen here is a C macro that will ensure the GraphBLAS functions were called and 

executed correctly. If the function fails, then the OK macro will be able to cleanly display what 

went wrong internally. 

Comparison 

It’s easy to see that the GraphBLAS version is easier to read, write, and understand. 

Floyd-Warshall is very easy to represent in the language of linear algebra because of the nature 

of it. Other algorithms such as Prim’s or DFS are very hard. The built-in functions that 

GraphBLAS provides almost even force the developer to write good clean code. Since we know 

what the functions do, it is easy to read them and understand them. For example, we know that 

the GrB_eWiseAdd  function will perform an operation on every entry in 2 separate graphs and 

then place the result into a separate graph. We can decide on what operation, such as plus, minus, 

division, etc., so it’s easy to understand what’s going on when we see it. On the other hand, 

reading the for loops in the regular version and then the change of variables in the line 

“graph[i][j] > graph[i][k] + graph[k][j]” is confusing. It’s not obvious that you’re comparing the 

current cost to the cost of a different path.  This is a useful example to see when GraphBLAS is 

the better option.  

Efficiency 

This is likely the most important factor. Many systems, such as Facebook, Google, and 

more, absolutely need their algorithms to be as fast as possible. Researchers might not absolutely 

need speed, but if they can quickly read in a graph, compute important operations on it, and then 

quickly get those results, they are likely to take notice. Students are the least likely to prioritize 

efficiency, since speed is not usually necessary. Nevertheless, efficiency encompasses how much 

space and real time the algorithms use up. We’ll consider Floyd-Warshall and then BFS. 



   

 

 13  

 

Floyd-Warshall Efficiency Comparisons 

In order to compare the two algorithms fairly, I used a variety of different graphs to test 

against each other. I then ran the algorithms 9 times each and grabbed the medium, since the 

average could be skewed by outliers. Before I compared the run times, I had to ensure that both 

versions of the Floyd-Warshall were correct. In order to do that, I grabbed 3 different graphs 

from https://sparse.tamu.edu/, an online matrix collection developed by Dr. Davis, and ran the 

regular and GraphBLAS version of Floyd-Warshall on them. I then wrote the resulting graph to 

separate files and compared them. If they were equivalent, then the algorithms were correct. The 

graphs used were of size 1000 x 1000, 2003 x 2003, and 2500 x 2500 and each were of various 

density. The results were the same, so I concluded that both algorithms were correctly 

implemented. 

Floyd-Warshall Efficiency Results 

I first tested the 1000 x 1000 graph of various densities. It’s clear to see, even on a 

smaller graph such as this, on Table 1 the speed up of GraphBLAS as the graph becomes sparser. 

It’s also clear to see that it slows down as the graph becomes denser. At its densest, when it’s 

full, the regular version is 5.5 times faster. At the sparsest attempted, with only 749 entries, the 

GraphBLAS version is 80.1 times faster. The graph was only 0.075% full. 

Table 1 - Results of Floyd-Warshall on a 1000 x 1000 graph 

Entries GraphBLAS Regular 

749 0.023959 s 1.920418 s 

1,498 1.429844 s 2.106021 s 

3,996 12.191048 s 3.441595 s 

1,000,000 30.538794 s 5.487051 s 

https://sparse.tamu.edu/


   

 

 14  

 

Let’s now consider the 2003 x 2003 graph in Table 2. We see the same pattern on this graph too. 

At its sparsest, the GraphBLAS algorithm is 140 times faster. When the graph is full with over 4 

million entries, the regular version is 11 times faster.  

Table 2 - Results of Floyd-Warshall on a 2003 x 2003 graph 

Entries GraphBLAS Regular 

815 0.113640 s 15.954680 s 

1,629 0.444868 s 16.005836 s 

3,258 16.137870 s 19.204371 s 

23,973 31.683506 s 20.750747s 

4,012,009 255.625070 s 22.238127 s 

For the 2500 x 2500 graph, the same pattern is found for both algorithms as seen in Table 3. The 

difference here is that the increase in runtime is very noticeable. The regular version is quite 

consistent in speed, until it processes a half full graph. It takes 10 more seconds. To process the 

full graph takes over twice as long. To process it in GraphBLAS is 7.2 slower. On the other 

hand, at the sparsest attempt, the GraphBLAS version is 1200 times faster.  

Table 3 - Results of Floyd-Warshall on a 2500 x 2500 graph 

Entries GraphBLAS Regular 

183 0.026131 s 31.347659 s 

2,914 3.534615 s 30.024570 s 

927,322 44.652251 s 34.654181 s 

1,854,643 77.027950 s 39.839372 s 

3,123,750 130.489275 s 43.648497 s 

6,250,000 646.821772 s 90.459550 s 



   

 

 15  

 

 

Floyd-Warshall Takeaways 

The data presented is impressive. GraphBLAS slows down as the graph becomes denser, 

but never by an extremely high amount. It does however become far faster as the graph becomes 

sparser, all the way up to 1200 times as fast. The above data doesn’t show the memory usage, but 

it is crucial to note that the regular version will always allocate m x m memory, while 

GraphBLAS will only allocate just enough memory to hold the entries. Some programs that have 

high memory requirements will be unable to be completed using the regular version due to 

constraints by the machine it’s running on. GraphBLAS would be able to compute the algorithms 

on far more graphs thanks to its clever memory usage. GraphBLAS is a better choice here. 

Breadth First Search 

Let’s now consider the breadth first search (BFS) algorithm, which traverses a graph until 

some condition is met. Here is a snippet of the main component of the code: 

while (!isEmpty(&q)) { 
pop(&q, &sourceNode); 
 
for (int i = 0; i < m; i++) { 

if (!visited[i] && graph[sourceNode][i] != INT_MAX) { 
visited[i] = true; 
push(&q, &i); 

} 
} 

} 
The BFS algorithm will usually require a queue to keep track of what entries need to be 

visited and a visited array to keep track of what entries have been visited. While the queue is not 

empty, we’ll pop from it and store the value in sourceNode. We’ll then go through its neighbors 

to check if they have not been visited. We are also checking that it’s possible to visit the 

neighbor, that is the cost to access it is not infinite. If both conditions have been met, then we’ll 

mark it off as visited in the array and push the neighbor on to the queue. This will let us traverse 



   

 

 16  

 

the tree starting at whichever entry we decide until no more neighbors are accessible. This 

algorithm will run in O(m) time since we at most access every entry in the tree once, if every 

entry is accessible from the source entry. 

BFS in GraphBLAS 

Here is a snippet of the code: 

for (int64_t level = 1; successor && level <= max_level; level++) { 
GrB_assign(v, q, NULL, level, GrB_ALL, n, NULL); 
 
GrB_vxm(q, v, NULL, LAGraph_LOR_LAND_BOOL, q, A, desc); 
 
GrB_reduce(&successor, NULL, LAGraph_LOR_MONOID, q, NULL); 

} 
Here, q represents the entries visited at each level and v the result vector of each iteration. 

The first step is to assign v to the level using q as the mask and then updating q to all the 

unvisited entries using !v as the mask. We then update the successor – if there are no new nodes 

to visit, then it is false, thus the for loop will terminate. The max_level will usually be m, where 

the graph is of size m x m, so that the entire graph can be checked. This algorithm should run in 

O(m), however that will depend on the implementation of the three functions called. If the graph 

is very sparse, they would be done very quickly. Otherwise, they can be quite slow. 

Comparison 

The regular version here is easier to read, write, and understand. BFS is a bit harder to 

represent in the language of linear algebra because of the operations required. A queue is often 

the first data structure that a student will learn so it’s easy to see why many would like to use a 

queue here rather than linear algebra. However, C does not have built in data structures, so I had 

to write my own queue data structure, which took more time than writing the code necessary to 

perform the BFS. The functions necessary on GraphBLAS to perform BFS are built-in and, once 



   

 

 17  

 

again, almost force the user to write clean code. Still, this is a practical example to see when 

GraphBLAS is not the superior option. 

BFS Efficiency Comparisons 

I used the same testing methods to determine that the BFS implementations were correct 

as for Floyd-Warshall. This required me to run both algorithms on the same graphs and compare 

the outputs to each other. If they were the same, then I had properly tested that the algorithms 

worked. In order to grab the practical runtime, I also ran each algorithm 9 times and grabbed the 

medium to ignore the outliers, just as before. 

BFS Efficiency Results 

The BFS algorithm is quite fast, unlike the Floyd-Warshall algorithm. This explains the 

fast runtimes for a 1000 x 1000 graph in Table 4 – not a single run being slower than a second. 

Nevertheless, we can see that the regular BFS is notably faster than the GraphBLAS BFS, even 

on a very sparse graph. The regular version is 3.8 times faster with only 749 entries, but 17 times 

faster when it’s completely full. 

Table 4 - Results of BFS on a 1000 x 1000 graph 

Entries GraphBLAS Regular 

749 0.000166 s 0.000043 s 

2,245 0.008284 s 0.002478 s 

6,733 0.016305 s 0.002518 s 

1,000,000 0.041791 s 0.002452 s 

The same pattern exists for the 2003 x 2003 graph in Table 5. At its sparsest, the regular BFS is 

76 times faster, but when it’s full it’s 108 times faster. 

 



   

 

 18  

 

 

Table 5 - Results of BFS on a 2003 x 2003 graph 

Entries GraphBLAS Regular 

815 0.009140 s 0.000119 s 

2,445 0.027511 s 0.009075 s 

7,335 0.026504 s 0.010535 s 

4,012,009 1.086717 s 0.010062 s 

The results here are slightly unexpected for the 2500 x 2500 graph. With only 183 entries, the 

regular BFS is 1.1 times faster. When the graph is full, the regular BFS is 16 times faster. This 

might be because of useful caching or a built-in speedup from GraphBLAS. 

Table 6 - Results of BFS on a 2500 x 2500 graph 

Entries GraphBLAS Regular 

183 0.001498 s 0.001304 s 

549 0.004704 s 0.003517 s 

1,647 0.016576 s 0.011196 s 

6,250,000 0.241566 s 0.015115 s 

BFS Takeaways 

This algorithm does highlight a few of the downfalls of GraphBLAS. The algorithm does 

appear to speed up as the graph becomes sparser, but not notably. Even when the graph is 

extremely sparse, the GraphBLAS BFS could not compete with the regular BFS. This is the case 

because the vector v – it’s sparse at first, but slowly becomes full. The memory required by the 

algorithm is also roughly equivalent, so there’s not a notable improvement there either. However, 

I did use the matrix reader that is readily available in GraphBLAS in my regular BFS 



   

 

 19  

 

implementation and I had to create my own Queue data structure in C. Reading in a file, parsing 

that file line by line, and creating a queue data structure are, at the very least, tedious, if not 

difficult. It is important to note that GraphBLAS could be improved here. The next version of 

GraphBLAS will have a parallelized BFS readily available. Writing a BFS in parallel is very 

difficult and time consuming to implement, so a parallelized BFS ready to be used is attractive. It 

will also be far faster than a non-parallelized version. Nevertheless, there will be algorithms that 

GraphBLAS will be the superior option and others where a regular approach is preferred. 

There’s always a trade-off. 

 

  



   

 

 20  

 

CHAPTER IV 

CONCLUSION 

 

GraphBLAS is a powerful and expressive way to write graph algorithms. The learning 

curve can be steep, but the process is rewarding. The overall experience of learning, 

understanding, and using the library is worth it. It’s clear that the library was developed with a 

lot of thought and effort put into it to ensure extreme versatility. With such versatility, the 

algorithms can be extended to consider various factors such as getting the parents from the 

Floyd-Warshall algorithm, creating the path to obtain an entry in a BFS, and more. GraphBLAS 

even feels different than other graph libraries because of how apparent it is that it considers 

practical applications. It is cautious to only use the required space and speeds up drastically for 

sparse graphs, which most graphs are. These factors contribute to the overall confidence in 

GraphBLAS being a reliable and efficient way of representing graphs and computing graph 

algorithms 

Future 

Although GraphBLAS is a great library, it can be hard to quickly write your own graph 

algorithms. This is why LAGraph is in development. LAGraph is built on top of GraphBLAS to 

provide easy to use functions that will run optimized and parallelized algorithms such as Floyd-

Warshall, BFS, and K-truss in a single line. These functions will provide all the power, 

efficiency, and cleverness of GraphBLAS with an improved API that allows for simple calls with 

big results.  These two libraries are viable and can gain traction to develop a new standard in 

solving graph algorithms. 

  



   

 

 21  

 

REFERENCES 

 

Buluc, Aydin, et al. The GRAPHBLAS C API Specification. 2018 

 

Kepner, Jeremy V., and John R. Gilbert. Graph Algorithms in the Language of Linear Algebra. 

Society for Industrial and Applied Mathematic, 2011. 

 

Timothy Davis. User Guide for SuiteSparse: GraphBLAS. 2018. 


