
SOURCE-TO-SOURCE TRANSFORMATIONS FOR PARALLEL

OPTIMIZATION IN STAPL

An Undergraduate Research Scholars Thesis

by

BRIAN KELLEY

Submitted to the Undergraduate Research Scholars program at
Texas A&M University

in partial fulfillment of the requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by Research Advisor: Dr. Lawrence Rauchwerger

May 2019

Major: Computer Science
Applied Math

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M University

https://core.ac.uk/display/211174441?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TABLE OF CONTENTS

Page

ABSTRACT .. 1

CHAPTER

I. INTRODUCTION .. 2

II. METHODS ... 5

Plugin and Compiler Wrapper .. 5
Zip Fusion ... 6
Coarse Zip Elimination ... 7
Coarse Reduce Elimination ... 8
Coarse Scan Elimination ... 9

III. RESULTS ... 11

Shared Memory and Parallel Library Comparison ... 11
Distributed Memory .. 15
Piped Flow Zip Fusion .. 17

IV. CONCLUSION ... 19

Future Work .. 19

REFERENCES ... 21

1

ABSTRACT

Source-to-Source Transformations for Parallel Optimization in STAPL

Brian Kelley
Department of Computer Science & Engineering

Texas A&M University

Research Advisor: Dr. Lawrence Rauchwerger
Department of Computer Science & Engineering

Texas A&M University

 Programs that use the STAPL C++ parallel programming library express their control and

data flow explicitly through the use of skeletons. Skeletons can be simple parallel operations like

map and reduce, or the result of composing several skeletons. Composition is implemented by

tracking the dependencies among individual data elements in the STAPL runtime system.

However, the operations and dependencies within a compose skeleton can be determined at

compile time from the C++ abstract syntax tree. This enables the use of source-to-source

transformations to fuse the composed skeletons. Transformations can also be used to replace

skeletons entirely with equivalent code. Both transformations greatly reduce STAPL runtime

overhead, and zip fusion also allows a compiler to optimize the work functions as a single unit.

We present a Clang compiler plugin and wrapper that automatically perform these

transformations, and demonstrate its ability to improve performance.

2

CHAPTER I

INTRODUCTION

 STAPL is a powerful system for both distributed and shared-memory parallel

programming. It provides a library of distributed containers inspired by the C++ standard

template library (vector, graph, matrix, etc.) and high-level parallel execution patterns (map,

scan, reduce, etc.). The execution patterns are called skeletons. Each skeleton can call user-

defined work functions on each element, and accesses container data through “views”. It also

provides a runtime system for scheduling these parallel operations according to their data

dependencies [13]. STAPL can coarsen skeletons, which means that operations on individual

elements are be grouped together to reduce the overhead. The goals of STAPL are similar to the

popular Cilk system [2, 7], a C language extension for shared-memory parallel programming.

Cilk provides lower-level parallel constructs like “spawn thread” and “synchronize”, but also

higher-level patterns like parallel for loops (the “map” skeleton in STAPL) [7]. Through this

lower-level approach, Cilk’s runtime builds a “spawn tree” of tasks, and launches these tasks as

soon as its dependency tasks have been completed [2]. STAPL uses a similar but higher-level

approach: each skeleton depends on some views for input, and may modify some views as

output. This data dependency graph is called a “PARAGRAPH” [13]. PARAGRAPHs may be

arbitrarily complex, since skeletons can be nested and composed (the output of one skeleton

becomes the input of another). The STAPL runtime is also able to send work through MPI to idle

processors (remote method invocation) [13].

 Generally, STAPL handles skeleton nesting, composition and coarsening at runtime. For

example, if two map skeletons (with work functions f and g) are composed and operate on the

3

same vector, the PARAGRAPH will contain two separate nodes with a dependency between the

two. However, it is possible to combine these two operations into one: h(x) = g(f(x)). In this

case, running a single map skeleton with work function h has the same effect as running the

original maps f and g in sequence [13]. Combining the operations has several benefits: it

simplifies the PARAGRAPH, it lets the compiler eliminate redundancies between the two

operations, and it allows data elements to be used twice while they are in the cache.

 Coarsening is a general skeleton transformation that STAPL implements with template

metaprogramming. It replaces a skeleton with a two-level nested version. The outer skeleton is

coarse-grained and operates on chunks of input data. The inner skeleton runs the work function

within chunks. The granularity (chunk size) can be tuned for specific skeletons, but chunks

respect data locality - the elements in a chunk are all stored in the same location (an MPI

process, or a thread within a process) [13]. Coarsening requires that the input views be

transformed to nested views at runtime to match the structure of the nested skeleton. The inner

view type supports zero-overhead iteration, since no communication or global-to-local index

translation is needed. Source-to-source transformations benefit performance by replacing the

coarsened skeleton with equivalent statements that create the same nested view, but implement

the skeleton’s algorithm directly. This avoids the overhead of PARAGRAPH creation and

STAPL’s runtime scheduler.

 We use the Clang C++ compiler infrastructure to transform STAPL programs. Clang is a

C/C++ compiler, but it also exists as a library intended for writing syntax tree analysis and

transformation tools. This can be done either in a standalone program or in a Clang compiler

plugin, which runs as a pass after the normal C++ frontend [5]. Duffy et al. used LibTooling (the

library for standalone AST transformation programs) to analyze the control flow complexity of

4

C++ programs [3]. The ROSE compiler infrastructure project is another example of a syntax tree

analysis framework. ROSE is particularly suited for analyzing parallel programs that use

OpenMP and MPI [8, 10]. However, STAPL programs are represented using abstract skeletons

that are insulated from the details of threads, communication and synchronization, so a Clang

plugin is more than sufficient for our purposes. A plugin was used instead of a standalone tool

because plugins do not make persistent changes to source files and do not interact directly with

the many compiler flags needed for building STAPL programs.

5

CHAPTER II

METHODS

Plugin and Compiler Wrapper

 The source-to-source transformations performed in this paper are done in a single Clang

plugin. The plugin is a shared library that is linked to various LLVM and Clang libraries,

providing AST traversal and source rewriting. The Clang plugin can easily be added as a

compilation step between parsing and code generation. It traverses the AST, detects

opportunities to perform transformations, and performs changes using a Rewriter. However, the

AST in memory is an immutable data structure - it is not possible to reparse modified source

code and continue the compilation process [5]. The Rewriter simply stores a list of textual

changes and can output the full modified source (either to a new file, or by overwriting the

original). Because of these constraints, the original goal of optimizing STAPL programs with no

user intervention is achieved using a compiler wrapper.

 The compiler wrapper is a simple script that replaces the normal compiler (e.g. mpicxx)

in the user’s Makefile. This only requires setting the variable CC_USER. The wrapper takes

exactly the same set of arguments as the normal compiler. It determines from its arguments the

set of input source files. For each input file, it runs Clang with the plugin set to output a

temporary transformed file. The -emit-ast flag is added to stop the compiler after the frontend.

After each input file has been transformed, the original compiler command is run with

substituted input files. Running the compiler frontend an extra time for each file does increase

build times, but otherwise the transformation process is invisible to the user.

6

 Each transformation in the plugin has the same structure. A PluginASTAction is

registered in Clang’s global list of frontend actions to run. The “action” in this case is to traverse

the AST using a custom subclass of both ASTConsumer and ASTVisitor. ASTConsumer’s

HandleTranslationUnit method is overridden to traverse the AST and then output the modified

file. ASTVisitor’s VisitStmt method is called on every statement and expression in the program.

VisitStmt is overridden to test whether the statement is a STAPL construct that can safely be

transformed, and if so does the transformation using the Rewriter.

Zip Fusion

 The first and simplest transformation to be implemented was zip fusion within compose

skeletons. The zip skeleton runs a work function with an element from each input view to

produce an element of an output view [13]. When two or more zip skeletons are composed, their

work functions can be fused to construct a single equivalent zip. This can be expected to reduce

STAPL runtime overhead when the skeleton is executed. Compose skeletons can be identified in

the AST by their canonical type name “stapl::skeletons::skeletons_impl::compose”. The

compose type’s template parameters contain the types of the internal skeletons. Knowing which

are inputs and outputs of each skeleton depends on the flow type of the compose (also

determined from template parameters). The flow types are inline and piped. When an inline

compose is constructed, special placeholder objects are used to identify the inputs and outputs of

each skeleton by index. STAPL already supports the zip fusion transformation for inline flows:

stapl::skeletons::transform<tags::zip_fusion>(…) produces a new skeleton where consecutive

zips have been fused. The plugin detects calls to the inline compose constructor, and adds this

transformation automatically if there is more than one zip skeleton.

7

 If the compose uses a piped flow, the order of skeletons passed to compose’s constructor

determines the dataflow. The output of one skeleton becomes the input(s) of the next. For

example, if zips A, B, and C are fused, the new skeleton has the same inputs as A and the same

outputs as C. The new work function calls the work functions of A, B, and C in sequence, passing

the return value of one as an argument for the next. The plugin generates the definition of the

new work function: its call operator returns C(B(A(…))). A may accept different sets of

parameters, so one version of the call operator is generated for every overload and template

instantiation of A’s call operator. std::result_of is used to determine the return type of each

version. With the input and output types identical, the new work function is guaranteed to be

compatible with every valid usage of the original compose.

Coarse Zip Elimination

 Skeleton coarsening is a commonly used feature of STAPL that reduces runtime

overhead. Instead of managing the data dependencies for each view element individually, a

coarsened skeleton processes elements in chunks. The default coarsener forms chunks by

grouping elements by locality. For an array_view with the default distribution, each chunk is the

contiguous group of elements stored on a given thread. If all input views have the same data

distribution, zip skeletons require no communication or synchronization. In this case, the

coarsened zip execution is equivalent to a for-loop over the local elements that calls the work

function. This means that all skeleton overhead can be completely eliminated. Because the view

distribution is not known at compile time, the replacement code must first check that all views

have the same distribution. If not, the original skeleton is executed. Constructing the nested

views (where the inner level is local) is a relatively cheap operation, so little performance is lost

in the fallback case. In the fast case, each thread simply iterates over the inner views’ values and

8

calls the work function. No synchronization is needed, because a thread can’t participate in a

later collective operation until it has finished processing its chunk.

Coarse Reduce Elimination

 This transformation idea can also be applied to skeletons that do require communication.

A reduce skeleton is equivalent to a thread-local reduction, then a reduction within the process,

and finally a global reduction. The local reduction can be replaced by a loop over the local

chunk. The process reduction also happens within shared memory, but is done by a single thread.

The global reduction can be done by a direct call to MPI_Reduce. The intra-process reduction

uses a shared list of reductions from each thread, and local thread 0 computes the reduction of

those values. To do local synchronization between the steps, a boost::thread::barrier is used. The

barrier is created as a shared object within the STAPL process. If the program is running in

shared memory, then thread 0 has the final result. Otherwise, thread 0 participates in an MPI

reduction on behalf of the process.

 There are some criteria for when a distributed reduction is possible - if they are not met at

runtime, the original skeleton is used as a fallback. It is only done if the original STAPL skeleton

was run across all processes in the system (MPI_COMM_WORLD). This is because creating a

subcommunicator is an expensive operation and it would negate any speedup from STAPL

overhead reduction. Another limitation is that the element type must be trivially copyable.

Although STAPL supports serialization of all user-defined datatypes, MPI requires types to be of

a fixed size. C++ primitive types are built in (MPI_INT, MPI_DOUBLE, etc.). Other types are

defined as a fixed-size byte array using MPI_Datatype_Contiguous. Next, the reduce operation is

converted to an MPI_Op. All associative arithmetic functions in STAPL are also built-in MPI

operations: stapl::plus becomes MPI_SUM, stapl::bit_xor becomes MPI_BXOR, etc. More

9

complex work functions are wrapped in a lambda that conforms to the MPI_User_function

interface, and then this lambda is passed to MPI_Op_create.

Coarse Scan Elimination

 The final skeleton that can be rewritten by the plugin is scan. The scan skeleton

generalizes a prefix sum. Each element of the output view is the reduction over all previous

elements of the input view. An inclusive scan includes element 𝑘 of the input when computing

element 𝑘 of the output, but an exclusive scan does not. Scan is similar to reduce in that they

both use an associative binary operator. Scan is also a built-in algorithm in MPI. Scan skeletons

can be replaced using a two-pass algorithm, as shown in Figure 1.

Figure 1: Two-pass distributed exclusive scan.

 In the first pass, each thread does a local scan and places the final reduction in a shared

array. Thread 0 from each process does a scan over the thread reductions, and passes its

reduction to MPI_Exscan. The output of MPI_Exscan is the reduction over all previous

processes. In the second pass, each thread combines the MPI scan output with the process scan

10

output, and finally combines that with each local element. An inclusive scan is identical except

the outputs are shifted to the right by one element in the local scan. The identity element (“0”) is

implicitly an input to the first binary operation, and the local reduction is just the last element of

“Out”. The logic to get the MPI_Datatype and MPI_Op is the same as with the reduce

transformation. This algorithm does not require the operation to be commutative - at each

application of the operator, it is known which argument precedes the other.

11

CHAPTER III

RESULTS

Shared Memory and Parallel Library Comparison

 To measure the impact of skeleton elimination, a test program was created to run each

skeleton on 10 million element array_views and test for strong scaling. The array size was

chosen to be large enough for scaling to be possible, but small enough that milliseconds of

overhead have a significant impact on runtime. All tests were run on Texas A&M University’s

“Ada” cluster. Each node has two sockets and uses 10-core Intel Xeon E5-2670 v2 processors.

The interconnect is FDR Infiniband [12]. GCC 6.3.0 with OpenMPI 2.0.2 was used as the

compiler since Ada does not support Clang with MPI. The transformations were done on another

machine and the modified source files were copied onto Ada.

 To frame the impact made by the transformations, each skeleton (map, reduce and scan)

was also benchmarked in two other parallel libraries, Kokkos [4] and Intel TBB [6]. Unlike

STAPL, both work only in shared memory. The two projects have similar goals: ease of use

compared to raw threads, portability and scalability [4, 6]. For a fair comparison, each library

was run within a single node with between 1 and 20 threads. STAPL supports both Pthreads and

OpenMP as threading backends, so each was measured separately. Also, a naïve serial version

was measured as a baseline. All times are averages over 50 trials.

 The map test simply scaled a vector of 10 million doubles. Figure 2 shows that the

transformations improved scalability - running time never increased from adding more threads

and the transformed OpenMP version went on to be the fastest. Without the transformations,

there was a performance cliff above 8 threads. In Pthread STAPL, the transformation gave 6%

12

and 13% speedups at 4 and 8 threads respectively; for other cases at 1-8 threads there was no

significant difference. TBB appears to enable better compiler vectorization than all other

libraries; however, TBB’s runtime decided not to use more than one thread so it shows no

scaling.

Figure 2: Shared memory map performance

 Figure 3 shows the running times of sum-reduction on the same 10 million elements. The

transformation has very little effect (~1%) on OpenMP but provides a good speedup (up to 41%

at 8 threads) on Pthreads. The transformed OpenMP code stays competitive with Kokkos at all

thread counts.

13

Figure 3: Shared memory reduce performance

 Figures 4 and 5 are for exclusive and inclusive prefix sums, respectively. Exclusive scan

is the only skeleton in which the transformed code is sometimes slower than the original - at 8

threads the transformed OpenMP code is 29% slower than the original. However, it is also 42%

faster at 2 threads. The transformed code now experiences the performance cliff at 16 and 20

threads. STAPL is the only library that uses a different algorithm for inclusive and exclusive

scans by default - a Blelloch scan is used for inclusive and a binomial scan for exclusive [1, 13].

In Kokkos and TBB, the distinction between inclusive and exclusive is instead made in the user-

defined “join” function.

14

Figure 4: Shared memory exclusive scan performance

Figure 5: Shared memory inclusive scan performance

15

Distributed Memory

 Because Kokkos and TBB are exclusively shared-memory, the only comparison that can

be made is between STAPL and the transformed programs. The original and transformed

algorithms did similarly well at 4 threads, so a constant 4 threads per node was used to exercise

hybrid parallelism without an unfair comparison. OpenMPI was configured to give each process

an entire node using “-npernode 1”, so all interprocess communication is over the interconnect

[12].

 Figures 6 and 7 show that transforming both map and reduce skeletons leads to dramatic

speedups. Using OpenMP, the average map speedup is 3.3 and the average reduce speedup is

4.6. The transformed programs also scale better, with consistent speedups after each doubling of

the node count.

Figure 6: Distributed map performance

16

Figure 7: Distributed reduce performance

 Transformations on exclusive (Figure 8) scans were not successful in the distributed case.

At 32 nodes the transformed code was 73% slower. By contrast, transformation on inclusive

scans (Figure 9) gave a consistent speedup, averaging 85%.

Figure 8: Distributed exclusive scan performance

17

Figure 9: Distributed inclusive scan performance

Piped Flow Zip Fusion

 Zip fusion on piped compose skeletons was demonstrated by composing four zip

skeletons. Each represents a piece of a procedure to generate a Mandelbrot set image. The input

to the compose skeleton is a simple counting sequence 0…𝑤𝑖𝑑𝑡ℎ ∗ ℎ𝑒𝑖𝑔ℎ𝑡, and the output is the

image as a flat RGB array. This test is only to demonstrate the decrease in PARAGRAPH

overhead, so the compose skeleton is not coarsened. The image is 960x540 pixels, so each

skeleton is executed 518,400 times. Figure 10 shows the effect of fusing the four zip skeletons

into one. A consistent speedup of 76% is achieved.

18

Figure 10: Zip fusion performance (not coarsened)

19

CHAPTER IV

CONCLUSION

 We have demonstrated that source-to-source transformations can automatically improve

the performance of STAPL programs. For three of the most fundamental algorithmic skeletons

(zip, reduce and scan), a Clang frontend plugin is able to find STAPL calls that are candidates

for transformation and then replace them with direct implementations of the algorithms [5, 13].

The replacement code has minimal interaction with STAPL’s runtime system, reducing overhead

and communication. The transformation process is also robust. It can handle arbitrary user-

defined data types and work functions with few limitations.

 STAPL fully supports hybrid parallelism, using Pthreads or OpenMP for threads and MPI

for communication. The skeleton transformations support both - they generate explicit MPI calls

where communication is necessary. Although STAPL’s intended use case is scaling efficiently

on thousands of nodes [13], we demonstrate that after transformations it compares favorably with

two leading shared-memory parallelism frameworks (Intel TBB [6] and Kokkos [4]).

Future Work

 This project’s handling of exclusive scan skeletons is neutral or detrimental to

performance. STAPL’s binomial scan implementation is very efficient [13], and it might not be

possible for this optimization strategy to be improve upon it. The project could also be continued

by adding transformations for other STAPL skeletons. The challenge is to design the

replacement code in a way that preserves parallelism. For skeletons with more complicated data

access patterns like stencil and wavefront this would be difficult. Another task that might be

automated using transformation is allowing skeletons to run on GPUs using CUDA. Managing

20

memory transfers between host and device efficiently would be more sophisticated than simply

iterating over chunks of elements as was done for the simple skeletons.

21

References

[1] Blelloch, Guy E. 1990. Prefix Sums and their Applications. Department of Computer Science,
Carnegie Mellon.

[2] Blumofe, Robert D., Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H.

Randall, and Yuli Zhou. 1996. "Cilk: An Efficient Multithreaded Runtime System." Journal of
Parallel and Distributed Computing 37 (1): 55-69.

[3] Duffy, Edward B., Brian A. Malloy, and Stephen Schaub. 2014. "Exploiting the Clang AST for

Analysis of C++ Applications." ACM Southeast Conference.

[4] Edwards, Carter H., Christian R. Trott, and Daniel Sunderland. 2014. "Kokkos: Enabling manycore

performance portability through polymorphic memory access patterns." Journal of Parallel and
Distributed Computing 74 (12): 3202-3216.

[5] Finkel, Hal, and Gábor Horváth. 2017. Code transformation and analysis using Clang and LLVM.

Paris, June 12.

[6] Intel Corporation. Intel® Threading Building Blocks. https://software.intel.com/en-us/intel-tbb.

[7] Leiserson, Charles E. 2010. "The Cilk++ concurrency platform." The Journal of Supercomputing 51

(3): 244-257.

[8] Liao, Chunhua, Daniel J. Quinlan, Thomas Panas, and Bronis R. de Supinski. 2010. "A ROSE-Based

OpenMP 3.0 Research Compiler Supporting Multiple Runtime Libraries." Lecture Notes in
Computer Science (Springer, Berlin, Heidelberg) 6132: 15-28.

[9] Negara, Stas, Kuo-Chuan Pan, Gengbin Zheng, Natasha Negara, Ralph E. Johnson, Laxmikant V.

Kalé, and Paul M. Ricker. 2010. "Automatic MPI to AMPI Program Transformation." Euro-Par.
Berlin: Springer-Verlag. 531-539.

[10] Preissl, Robert, Martin Schulz, Dieter Kranzlmüller, Bronis R. de Supinski, and Daniel J. Quinlan.

2010. "Transforming MPI source code based on communication patterns." Future Generation
Computer Systems (Elsevier) 147-154.

22

[11] Quinlan, Daniel J., Markus Schordan, Bobby Philip, and Markus Kowarschik. 2001. "The
Specification of Source-To-Source Transformations for the Compile-Time Optimization of
Parallel Object-Oriented Scientific Applications." LCPC. Cumberland Falls, KY: Springer-
Verlag.

[12] Texas A&M HPRC. 2019. Ada Hardware Intro. 2 28. Accessed 4 6, 2019.

https://hprc.tamu.edu/wiki/Ada:Intro.

[13] Zandifar, Mani, Nathan Thomas, Nancy M. Amato, and Lawrence Rauchwerger. 2014. "The STAPL

Skeleton Framework." Workshop on Languages and Compiler for Parallel Computing. Hillsboro,
OR: LCPC.

