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ABSTRACT 

Source-to-Source Transformations for Parallel Optimization in STAPL 

 
 

Brian Kelley 
Department of Computer Science & Engineering 

Texas A&M University 
 
 

Research Advisor: Dr. Lawrence Rauchwerger 
Department of Computer Science & Engineering 

Texas A&M University 
 

 

  Programs that use the STAPL C++ parallel programming library express their control and 

data flow explicitly through the use of skeletons. Skeletons can be simple parallel operations like 

map and reduce, or the result of composing several skeletons. Composition is implemented by 

tracking the dependencies among individual data elements in the STAPL runtime system. 

However, the operations and dependencies within a compose skeleton can be determined at 

compile time from the C++ abstract syntax tree. This enables the use of source-to-source 

transformations to fuse the composed skeletons. Transformations can also be used to replace 

skeletons entirely with equivalent code. Both transformations greatly reduce STAPL runtime 

overhead, and zip fusion also allows a compiler to optimize the work functions as a single unit. 

We present a Clang compiler plugin and wrapper that automatically perform these 

transformations, and demonstrate its ability to improve performance. 
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CHAPTER I 

INTRODUCTION 

 

 STAPL is a powerful system for both distributed and shared-memory parallel 

programming. It provides a library of distributed containers inspired by the C++ standard 

template library (vector, graph, matrix, etc.) and high-level parallel execution patterns (map, 

scan, reduce, etc.). The execution patterns are called skeletons. Each skeleton can call user-

defined work functions on each element, and accesses container data through “views”. It also 

provides a runtime system for scheduling these parallel operations according to their data 

dependencies [13]. STAPL can coarsen skeletons, which means that operations on individual 

elements are be grouped together to reduce the overhead. The goals of STAPL are similar to the 

popular Cilk system [2, 7], a C language extension for shared-memory parallel programming. 

Cilk provides lower-level parallel constructs like “spawn thread” and “synchronize”, but also 

higher-level patterns like parallel for loops (the “map” skeleton in STAPL) [7]. Through this 

lower-level approach, Cilk’s runtime builds a “spawn tree” of tasks, and launches these tasks as 

soon as its dependency tasks have been completed [2]. STAPL uses a similar but higher-level 

approach: each skeleton depends on some views for input, and may modify some views as 

output. This data dependency graph is called a “PARAGRAPH” [13]. PARAGRAPHs may be 

arbitrarily complex, since skeletons can be nested and composed (the output of one skeleton 

becomes the input of another). The STAPL runtime is also able to send work through MPI to idle 

processors (remote method invocation) [13]. 

 Generally, STAPL handles skeleton nesting, composition and coarsening at runtime. For 

example, if two map skeletons (with work functions f and g) are composed and operate on the 
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same vector, the PARAGRAPH will contain two separate nodes with a dependency between the 

two. However, it is possible to combine these two operations into one: h(x) = g(f(x)). In this 

case, running a single map skeleton with work function h has the same effect as running the 

original maps f and g in sequence [13]. Combining the operations has several benefits: it 

simplifies the PARAGRAPH, it lets the compiler eliminate redundancies between the two 

operations, and it allows data elements to be used twice while they are in the cache. 

 Coarsening is a general skeleton transformation that STAPL implements with template 

metaprogramming. It replaces a skeleton with a two-level nested version. The outer skeleton is 

coarse-grained and operates on chunks of input data. The inner skeleton runs the work function 

within chunks. The granularity (chunk size) can be tuned for specific skeletons, but chunks 

respect data locality - the elements in a chunk are all stored in the same location (an MPI 

process, or a thread within a process) [13]. Coarsening requires that the input views be 

transformed to nested views at runtime to match the structure of the nested skeleton. The inner 

view type supports zero-overhead iteration, since no communication or global-to-local index 

translation is needed. Source-to-source transformations benefit performance by replacing the 

coarsened skeleton with equivalent statements that create the same nested view, but implement 

the skeleton’s algorithm directly. This avoids the overhead of PARAGRAPH creation and 

STAPL’s runtime scheduler. 

 We use the Clang C++ compiler infrastructure to transform STAPL programs. Clang is a 

C/C++ compiler, but it also exists as a library intended for writing syntax tree analysis and 

transformation tools. This can be done either in a standalone program or in a Clang compiler 

plugin, which runs as a pass after the normal C++ frontend [5]. Duffy et al. used LibTooling (the 

library for standalone AST transformation programs) to analyze the control flow complexity of 
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C++ programs [3]. The ROSE compiler infrastructure project is another example of a syntax tree 

analysis framework. ROSE is particularly suited for analyzing parallel programs that use 

OpenMP and MPI [8, 10]. However, STAPL programs are represented using abstract skeletons 

that are insulated from the details of threads, communication and synchronization, so a Clang 

plugin is more than sufficient for our purposes. A plugin was used instead of a standalone tool 

because plugins do not make persistent changes to source files and do not interact directly with 

the many compiler flags needed for building STAPL programs. 

 

  



5 

CHAPTER II 

METHODS 

 

Plugin and Compiler Wrapper 

 The source-to-source transformations performed in this paper are done in a single Clang 

plugin. The plugin is a shared library that is linked to various LLVM and Clang libraries, 

providing AST traversal and source rewriting. The Clang plugin can easily be added as a 

compilation step between parsing and code generation. It traverses the AST, detects 

opportunities to perform transformations, and performs changes using a Rewriter. However, the 

AST in memory is an immutable data structure - it is not possible to reparse modified source 

code and continue the compilation process [5]. The Rewriter simply stores a list of textual 

changes and can output the full modified source (either to a new file, or by overwriting the 

original). Because of these constraints, the original goal of optimizing STAPL programs with no 

user intervention is achieved using a compiler wrapper. 

 The compiler wrapper is a simple script that replaces the normal compiler (e.g. mpicxx) 

in the user’s Makefile. This only requires setting the variable CC_USER. The wrapper takes 

exactly the same set of arguments as the normal compiler. It determines from its arguments the 

set of input source files. For each input file, it runs Clang with the plugin set to output a 

temporary transformed file. The -emit-ast flag is added to stop the compiler after the frontend. 

After each input file has been transformed, the original compiler command is run with 

substituted input files. Running the compiler frontend an extra time for each file does increase 

build times, but otherwise the transformation process is invisible to the user. 



6 

 Each transformation in the plugin has the same structure. A PluginASTAction is 

registered in Clang’s global list of frontend actions to run. The “action” in this case is to traverse 

the AST using a custom subclass of both ASTConsumer and ASTVisitor. ASTConsumer’s 

HandleTranslationUnit method is overridden to traverse the AST and then output the modified 

file. ASTVisitor’s VisitStmt method is called on every statement and expression in the program. 

VisitStmt is overridden to test whether the statement is a STAPL construct that can safely be 

transformed, and if so does the transformation using the Rewriter. 

Zip Fusion 

 The first and simplest transformation to be implemented was zip fusion within compose 

skeletons. The zip skeleton runs a work function with an element from each input view to 

produce an element of an output view [13]. When two or more zip skeletons are composed, their 

work functions can be fused to construct a single equivalent zip. This can be expected to reduce 

STAPL runtime overhead when the skeleton is executed. Compose skeletons can be identified in 

the AST by their canonical type name “stapl::skeletons::skeletons_impl::compose”. The 

compose type’s template parameters contain the types of the internal skeletons. Knowing which 

are inputs and outputs of each skeleton depends on the flow type of the compose (also 

determined from template parameters). The flow types are inline and piped. When an inline 

compose is constructed, special placeholder objects are used to identify the inputs and outputs of 

each skeleton by index. STAPL already supports the zip fusion transformation for inline flows: 

stapl::skeletons::transform<tags::zip_fusion>(…) produces a new skeleton where consecutive 

zips have been fused. The plugin detects calls to the inline compose constructor, and adds this 

transformation automatically if there is more than one zip skeleton. 
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 If the compose uses a piped flow, the order of skeletons passed to compose’s constructor 

determines the dataflow. The output of one skeleton becomes the input(s) of the next. For 

example, if zips A, B, and C are fused, the new skeleton has the same inputs as A and the same 

outputs as C. The new work function calls the work functions of A, B, and C in sequence, passing 

the return value of one as an argument for the next. The plugin generates the definition of the 

new work function: its call operator returns C(B(A(…))). A may accept different sets of 

parameters, so one version of the call operator is generated for every overload and template 

instantiation of A’s call operator. std::result_of is used to determine the return type of each 

version. With the input and output types identical, the new work function is guaranteed to be 

compatible with every valid usage of the original compose. 

Coarse Zip Elimination 

  Skeleton coarsening is a commonly used feature of STAPL that reduces runtime 

overhead. Instead of managing the data dependencies for each view element individually, a 

coarsened skeleton processes elements in chunks. The default coarsener forms chunks by 

grouping elements by locality. For an array_view with the default distribution, each chunk is the 

contiguous group of elements stored on a given thread. If all input views have the same data 

distribution, zip skeletons require no communication or synchronization. In this case, the 

coarsened zip execution is equivalent to a for-loop over the local elements that calls the work 

function. This means that all skeleton overhead can be completely eliminated. Because the view 

distribution is not known at compile time, the replacement code must first check that all views 

have the same distribution. If not, the original skeleton is executed. Constructing the nested 

views (where the inner level is local) is a relatively cheap operation, so little performance is lost 

in the fallback case. In the fast case, each thread simply iterates over the inner views’ values and 
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calls the work function. No synchronization is needed, because a thread can’t participate in a 

later collective operation until it has finished processing its chunk. 

Coarse Reduce Elimination 

 This transformation idea can also be applied to skeletons that do require communication. 

A reduce skeleton is equivalent to a thread-local reduction, then a reduction within the process, 

and finally a global reduction. The local reduction can be replaced by a loop over the local 

chunk. The process reduction also happens within shared memory, but is done by a single thread. 

The global reduction can be done by a direct call to MPI_Reduce. The intra-process reduction 

uses a shared list of reductions from each thread, and local thread 0 computes the reduction of 

those values. To do local synchronization between the steps, a boost::thread::barrier is used. The 

barrier is created as a shared object within the STAPL process. If the program is running in 

shared memory, then thread 0 has the final result. Otherwise, thread 0 participates in an MPI 

reduction on behalf of the process. 

 There are some criteria for when a distributed reduction is possible - if they are not met at 

runtime, the original skeleton is used as a fallback. It is only done if the original STAPL skeleton 

was run across all processes in the system (MPI_COMM_WORLD). This is because creating a 

subcommunicator is an expensive operation and it would negate any speedup from STAPL 

overhead reduction. Another limitation is that the element type must be trivially copyable. 

Although STAPL supports serialization of all user-defined datatypes, MPI requires types to be of 

a fixed size. C++ primitive types are built in (MPI_INT, MPI_DOUBLE, etc.). Other types are 

defined as a fixed-size byte array using MPI_Datatype_Contiguous. Next, the reduce operation is 

converted to an MPI_Op. All associative arithmetic functions in STAPL are also built-in MPI 

operations: stapl::plus becomes MPI_SUM, stapl::bit_xor becomes MPI_BXOR, etc. More 
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complex work functions are wrapped in a lambda that conforms to the MPI_User_function 

interface, and then this lambda is passed to MPI_Op_create. 

Coarse Scan Elimination 

 The final skeleton that can be rewritten by the plugin is scan. The scan skeleton 

generalizes a prefix sum. Each element of the output view is the reduction over all previous 

elements of the input view. An inclusive scan includes element 𝑘 of the input when computing 

element 𝑘 of the output, but an exclusive scan does not. Scan is similar to reduce in that they 

both use an associative binary operator. Scan is also a built-in algorithm in MPI. Scan skeletons 

can be replaced using a two-pass algorithm, as shown in Figure 1. 

 

Figure 1: Two-pass distributed exclusive scan. 

 In the first pass, each thread does a local scan and places the final reduction in a shared 

array. Thread 0 from each process does a scan over the thread reductions, and passes its 

reduction to MPI_Exscan. The output of MPI_Exscan is the reduction over all previous 

processes. In the second pass, each thread combines the MPI scan output with the process scan 
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output, and finally combines that with each local element. An inclusive scan is identical except 

the outputs are shifted to the right by one element in the local scan. The identity element (“0”) is 

implicitly an input to the first binary operation, and the local reduction is just the last element of 

“Out”. The logic to get the MPI_Datatype and MPI_Op is the same as with the reduce 

transformation. This algorithm does not require the operation to be commutative - at each 

application of the operator, it is known which argument precedes the other. 
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CHAPTER III 

RESULTS 

 

Shared Memory and Parallel Library Comparison 

 To measure the impact of skeleton elimination, a test program was created to run each 

skeleton on 10 million element array_views and test for strong scaling. The array size was 

chosen to be large enough for scaling to be possible, but small enough that milliseconds of 

overhead have a significant impact on runtime. All tests were run on Texas A&M University’s 

“Ada” cluster. Each node has two sockets and uses 10-core Intel Xeon E5-2670 v2 processors. 

The interconnect is FDR Infiniband [12]. GCC 6.3.0 with OpenMPI 2.0.2 was used as the 

compiler since Ada does not support Clang with MPI. The transformations were done on another 

machine and the modified source files were copied onto Ada. 

 To frame the impact made by the transformations, each skeleton (map, reduce and scan) 

was also benchmarked in two other parallel libraries, Kokkos [4] and Intel TBB [6]. Unlike 

STAPL, both work only in shared memory. The two projects have similar goals: ease of use 

compared to raw threads, portability and scalability [4, 6]. For a fair comparison, each library 

was run within a single node with between 1 and 20 threads. STAPL supports both Pthreads and 

OpenMP as threading backends, so each was measured separately. Also, a naïve serial version 

was measured as a baseline. All times are averages over 50 trials. 

 The map test simply scaled a vector of 10 million doubles. Figure 2 shows that the 

transformations improved scalability - running time never increased from adding more threads 

and the transformed OpenMP version went on to be the fastest. Without the transformations, 

there was a performance cliff above 8 threads. In Pthread STAPL, the transformation gave 6% 
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and 13% speedups at 4 and 8 threads respectively; for other cases at 1-8 threads there was no 

significant difference. TBB appears to enable better compiler vectorization than all other 

libraries; however, TBB’s runtime decided not to use more than one thread so it shows no 

scaling. 

 

Figure 2: Shared memory map performance 

 Figure 3 shows the running times of sum-reduction on the same 10 million elements. The 

transformation has very little effect (~1%) on OpenMP but provides a good speedup (up to 41% 

at 8 threads) on Pthreads. The transformed OpenMP code stays competitive with Kokkos at all 

thread counts. 
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Figure 3: Shared memory reduce performance 

 Figures 4 and 5 are for exclusive and inclusive prefix sums, respectively. Exclusive scan 

is the only skeleton in which the transformed code is sometimes slower than the original - at 8 

threads the transformed OpenMP code is 29% slower than the original. However, it is also 42% 

faster at 2 threads. The transformed code now experiences the performance cliff at 16 and 20 

threads. STAPL is the only library that uses a different algorithm for inclusive and exclusive 

scans by default - a Blelloch scan is used for inclusive and a binomial scan for exclusive [1, 13]. 

In Kokkos and TBB, the distinction between inclusive and exclusive is instead made in the user-

defined “join” function. 
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Figure 4: Shared memory exclusive scan performance 

 

Figure 5: Shared memory inclusive scan performance 
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Distributed Memory 

 Because Kokkos and TBB are exclusively shared-memory, the only comparison that can 

be made is between STAPL and the transformed programs. The original and transformed 

algorithms did similarly well at 4 threads, so a constant 4 threads per node was used to exercise 

hybrid parallelism without an unfair comparison. OpenMPI was configured to give each process 

an entire node using “-npernode 1”, so all interprocess communication is over the interconnect 

[12]. 

 Figures 6 and 7 show that transforming both map and reduce skeletons leads to dramatic 

speedups. Using OpenMP, the average map speedup is 3.3 and the average reduce speedup is 

4.6. The transformed programs also scale better, with consistent speedups after each doubling of 

the node count. 

 

Figure 6: Distributed map performance 
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Figure 7: Distributed reduce performance 

 Transformations on exclusive (Figure 8) scans were not successful in the distributed case. 

At 32 nodes the transformed code was 73% slower. By contrast, transformation on inclusive 

scans (Figure 9) gave a consistent speedup, averaging 85%. 

 
Figure 8: Distributed exclusive scan performance 
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Figure 9: Distributed inclusive scan performance 

Piped Flow Zip Fusion 

 Zip fusion on piped compose skeletons was demonstrated by composing four zip 

skeletons. Each represents a piece of a procedure to generate a Mandelbrot set image. The input 

to the compose skeleton is a simple counting sequence 0…𝑤𝑖𝑑𝑡ℎ ∗ ℎ𝑒𝑖𝑔ℎ𝑡, and the output is the 

image as a flat RGB array. This test is only to demonstrate the decrease in PARAGRAPH 

overhead, so the compose skeleton is not coarsened. The image is 960x540 pixels, so each 

skeleton is executed 518,400 times. Figure 10 shows the effect of fusing the four zip skeletons 

into one. A consistent speedup of 76% is achieved. 
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Figure 10: Zip fusion performance (not coarsened) 
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CHAPTER IV 

CONCLUSION 

 

 We have demonstrated that source-to-source transformations can automatically improve 

the performance of STAPL programs. For three of the most fundamental algorithmic skeletons 

(zip, reduce and scan), a Clang frontend plugin is able to find STAPL calls that are candidates 

for transformation and then replace them with direct implementations of the algorithms [5, 13]. 

The replacement code has minimal interaction with STAPL’s runtime system, reducing overhead 

and communication. The transformation process is also robust. It can handle arbitrary user-

defined data types and work functions with few limitations. 

 STAPL fully supports hybrid parallelism, using Pthreads or OpenMP for threads and MPI 

for communication. The skeleton transformations support both - they generate explicit MPI calls 

where communication is necessary. Although STAPL’s intended use case is scaling efficiently 

on thousands of nodes [13], we demonstrate that after transformations it compares favorably with 

two leading shared-memory parallelism frameworks (Intel TBB [6] and Kokkos [4]). 

Future Work  

 This project’s handling of exclusive scan skeletons is neutral or detrimental to 

performance. STAPL’s binomial scan implementation is very efficient [13], and it might not be 

possible for this optimization strategy to be improve upon it. The project could also be continued 

by adding transformations for other STAPL skeletons. The challenge is to design the 

replacement code in a way that preserves parallelism. For skeletons with more complicated data 

access patterns like stencil and wavefront this would be difficult. Another task that might be 

automated using transformation is allowing skeletons to run on GPUs using CUDA. Managing 
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memory transfers between host and device efficiently would be more sophisticated than simply 

iterating over chunks of elements as was done for the simple skeletons. 
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