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ABSTRACT 

Analyzing the State of Computer Vision Algorithms via Robustness, Degeneracy, and 

Recognized Flaws 

 

 

Jonathan Weishuhn 

Department of Computer Science 

Texas A&M University 

 

 

Research Advisor: Dr. Dezhen Song 

Department of Computer Science and Engineering 

Texas A&M University 

 

 

 One of the most vocalized applications of computational interactivity today stem from 

our biological sense of perception, both in its promise for automation and heeding of its still 

prevalent weaknesses. Computer vision, as it is known, is a rapidly growing sub-field of 

computer science that creates use out of visual input utilizing various vision models and 

algorithms. Naturally these models and algorithms vary widely in terms of correctness, 

robustness, and degeneracy, especially when operating under disparate environments and 

conditions. Many publications explore the goal of developing new and robust vision models or 

algorithms, but less so explore the comparisons between those that already exist. The purpose of 

this paper is to detail the performance of Visual SLAM with other modern computer vision 

models (such as PTAM, ORB-SLAM, DSO, LSD, etc.) to produce a standard by which full 

comparisons may be drawn for both disparate environmental and conditional datasets. It is hoped 

that this paper will inform others in academia of the current state of computer vision models and 

help determine when the use of one model should be preferred over another given a certain 

environment and/or operating condition.  
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LSD  Large-Scale Direct Monocular Simultaneous Localization and Mapping 
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CHAPTER I 

INTRODUCTION 

 

In the world today it has become nearly impossible to perform one’s daily routine without 

experiencing some form of computer interaction. Be it in terms of touch on a hand held device, 

by sound to a home smart speaker, or even by composition via glucose reader, technology is 

increasingly becoming more adept and interactive with its environment in means not that 

different from our very own. In particular, it seems many of the most vocalized applications of 

computational interactivity today stem from our biological sense of perception, both in its 

promise for automation and heeding of its still prevalent weaknesses. Regardless of application, 

the need and desire for a more robust and less degenerate vision model will be paramount to 

progressing computer vision for the future. 

One of the most critical components of this constant struggle originates from the 

increasingly small proximity in which humans and machines have come to work. Although 

major errors and incidents are less likely than ever before to occur, the mere existence of the 

possibility means there’s always improvements to be made and lives to be saved. A prominent 

example today would be in the rise of the popularity of autonomous vehicles like the one shown 

in Figure 1. In that context, the robustness of even the simplest algorithm could quite literally be 

the difference between life and death. Some current computer vision algorithms have known 

calculation issues when the agent, or camera, turns on one of its axis in perfect rotation or if 

multiple reference images contain nothing but a solid white wall [1]. These problems aren’t 

particularly unique to the field of computer vision and are derived from two fundamental 

measurements any algorithm will have, robustness and degeneracy. In the mathematical sense, 
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robustness refers to a process that can tolerate imperfect data with particular emphasis on 

outliers, like the white wall. Degeneracy is the quality of some process to degrade in accuracy or 

usefulness over a range [2]. In the context of the field of computer vision these properties 

represent the parameters at which algorithms can be measured for use in some particular 

application. As it stands today, most publications emphasizing these values only do so for one or 

two algorithms at a time which means in a broader survey of computer vision algorithms a 

researcher or industry developer would have to compare algorithms against each other under 

disparate contexts making it nearly impossible to gain one algorithm’s true merit in terms of 

another. 

 

Figure 1. Texas A&M’s entry into the AutoDrive autonomous vehicle Challenge. 
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Visual SLAM [3], PTAM [4], ORB-SLAM [5], DSO [6], and LSD [7] are all computer 

vision algorithms harnessing different methodologies to perform a similar functionality, which is 

to categorize what is contained within an image, or set of images, within a given environment 

using the same principle of simultaneous localization and mapping (SLAM). Specifically, Visual 

SLAM is the process of creating a map or defined environment in the local area of some object, 

without any global context [8]. Initially conceived by Andrew Davidson, SLAM also contains 

the process by which the object can track itself within its own mapped local area [3]. Visual 

SLAM has reached a maturity level of documented strengths and weaknesses that makes it a 

favorable initial standard by which to measure the degeneracy and robustness of other computer 

vision algorithms across datasets spanning environments indoors, outdoors, and of non-optimal 

lighting/clarity. Moreover, to understand the metrics of these algorithms in a broad sense before 

direct experimentation one of their primary, underlying algorithms must first be analyzed. The 

objective and goal of this study was to analyze the robustness of the RANSAC (Random 

Sampling Consensus) algorithm [17]. As shown in Figure 2, RANSAC has far reaching 

derivatives that have found specific applications specializing in one aspect over another, making 

it a popular base for many of the computer vision models in use today. In their paper on the 

Performance Evaluation of RANSAC Family, Choi, Kim, and Yu discussed seven groups of 

RANSAC descendants that revolved around three main functions of speed, accuracy, and 

robustness [9].  
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Figure 2. Various members of the RANSAC family [9]. 

 

These seven groups, depicted in Figure 2, fit roughly amongst the three main functions 

and relate in inner workings of each RANSAC implementation. In the accuracy category, 

descendants using a loss function, local optimization, and/or model selection are depicted. One 

example of a derivative in the loss function group is MLESAC (Maximum Likelihood SAC), 

which utilizes probability distribution of error by inliers and outliers to evaluate the generation 

and sampling of data [11]. Another form, that utilizes local optimization, is LO-RANSAC 

(Locally Optimized RANSAC) which theoretically improves the accuracy of RANSAC by 

optimizing the retrieval of its best guess estimation [12]. Model selections, such as with Torr’s 

GRIC (Geometric Robust Information Criterion), help to make accurate estimations even when 

data doesn’t exactly match the original model inputted [13]. 
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The next category outlined was that of speed which was separated into two subgroups of 

guided sampling and partial evaluations. Guided sampling works on the basis of using prior 

knowledge to attach a score to newly sampled data. NAPSAC (N Adjacent Points SAC) 

implements RANSAC with the assumption that inliers tend to be closer to each other more often 

than to outliers [14]. Partial evaluation algorithms, like R-RANSAC (Randomized RANSAC), 

quit evaluating a given estimation if it stems too far from a predefined threshold, which reduces 

computing time and the number of data needed for each evaluation [15]. 

The third category classified included the derivatives that focused on the robustness of 

RANSAC. In this group these algorithms were split into those exhibiting adaptive evaluations 

and adaptive terminations. Adaptive evaluations dynamically change the estimation threshold 

automatically in order to retain accuracy when data varies noticeably. Algorithms such as 

AMLESAC use uniform search and gradient descent to optimize its computation for Expected 

Maximization [16]. Adaptive termination, on the other hand, iteratively determines a level of 

accuracy that is used to terminate early if it reaches a certain preset threshold. 

Given the wide variety of exposure RANSAC has throughout the world today, this study 

sought to examine the uncertainty of rudimental form of RANSAC as it was subjugated to 

different configurations of inputted data sets, which simulated real world cases beyond the ideal.  
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CHAPTER II 

RANDOM SAMPLING CONSENSUS 

 

Description 

RANSAC (or random sample consensus) is a non-deterministic algorithm used to 

estimate the properties of a provided model from a set of collected data containing both noise 

and outliers. Outliers, in this case, are defined as points that do not fit in the model given. The 

algorithm works on the basis that a random subset of points from the data set will be sampled, 

compared to a noise threshold of the model, and be refined further or discarded, which depends 

on how the consensus set of the sample fits the inlier threshold. It is not practical to sample each 

set of data to exhaustion, so an important part of the RANSAC algorithm is to calculate of the 

number of points needed to estimate the model’s properties within the confines of a provided 

confidence interval. Generally, this is computed by utilizing a probability parameter which 

ensures that at least one of the samples estimated from the set is free of outliers. Since the 

algorithm does not typically sample a set to exhaustion, it will be usually implemented in an 

iterative way, providing a higher degree of success the more iterations it’s allowed to run. The 

rate of success for RANSAC is directly related the number of iterations it’s run, the noise of the 

inliers in the data set, and the proportion of outliers to inliers in the data set. It was by altering 

these parameters that the weaknesses and strengths of the RANSAC algorithm were observed.  

Implementation 

Since its first publication in 1981 by Fischler and Bolles [17], the RANSAC algorithm 

has seen multitudes of modifications in order to attempt to gain an advantage for some given 
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metric [9]. Although these algorithms were designed to perform in different ways, they’ve all 

remained closely related because they all utilize the same general RANSAC algorithm.  

Figure 3 shows the five major steps in implementing the most basic RANSAC algorithm. 

At the vest least, implementing a generic RANSAC algorithm requires the following: a model to 

be estimated, a noise threshold, an assumed outlier proportion, and a probability that a set of 

random samples does not include an outlier. After this point the first step of the algorithm can 

begin. 

 

 

Figure 3. The rudimental flow of the RANSAC algorithm. θ is the model being estimated. 

 

The first step in the RANSAC algorithm randomly samples a given set of data until the 

minimum amount of data needed to estimate the provided model is reached. In the case that the 

model to be estimated is that of a linear, two dimensional line, only two points from a set of 

points would be sampled. 

The next step in the algorithm would take the sampled data and work backwards to 

calculate the parameters of the given model. Following the linear model as stated in the first step, 

this would mean calculating a slope and intercept from the two points sampled. 

Once a new model is calculated from the sampled points, the implementation would then 

count up all of the inliers or data points from the total given set of data that fit inside the 

estimated model’s noise threshold. Given a linear model estimation, this would require the 
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implementation to count all of the points from the set that fit on the line itself and within the 

given noise threshold value above and below it. 

After the number of inlier is calculated, it is then compared to the previous maximum 

number of inliers. If no previous maximum exists or it exceeds the previous maximum it 

becomes the new maximum for the remaining cycles of iterations and its model estimation is 

saved for future reference. 

Following the estimation and evaluation of the model for a given sample, the next step 

for the RANSAC algorithm is determine whether or not to continue sampling data, or to return a 

final best estimation. In many implementations this metric is calculated as 

 N = 
log(1 - p)

log(1 - (1 - ϵ)
s
)
 (1) 

where N is the number of iterations to be run, p is the probability that at least one of the random 

samples of s points is free of outliers, and ϵ is the probability that a selected point is an outlier. 

Once N iterations have progressed, the algorithm will then produce what it calculated to be the 

best estimation produced of the given model within the given set of data. For the goals and 

intentions of our research, this was the primary criterion used to determine the termination and 

thus accuracy of our RANSAC implementation.  
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CHAPTER III 

UNCERTAINTY ANALYSIS 

 

Purpose 

 To quantify the world around us in an understandable and useful way, measurements of 

some type or classification must be made. Since the world around us is not perfectly aligned to 

any one distinct model, each measurement made must be done so with an inherent assumption 

that it is correct to a predefined degree of accuracy. In defining this accuracy, one must first 

determine the acceptable amount of noise present in the collected data that can be tolerated for 

the specified purpose. Once all these precursory assumptions have been established, 

measurements performed through them can be analyzed, communicated, and utilized in a 

uniform way that can mitigate the uncertainty of a given value by the quantified degree. An 

important feature of quantifying the uncertainty of these measurements is that it allows for the 

benchmarking and statistical analysis of the processes that operate on them. In the context of this 

study, this meant the ability to determine the robustness and statistical accuracy of the RANSAC 

algorithm subject to pseudo-randomly generated data sets confined to preset configurations. 

Given the shrinking proximity of the human-machine relationship, there is a growing need for 

more precise and robust algorithms to ensure mutual safety as well as still maintain a viable 

efficiency. Since the RANSAC algorithm is the fundamental base for a large subset of computer 

vision models used in the academic and commercial world today, this study sought out to 

calculate the uncertainty that results from its implementation and observe any cases of interest 

that drastically skewed the resulting statistical data. In the context of these experiments this 

meant an uncertainty analysis would have to be performed on any resultant data. The foundation 



16 

for the resulting statistical analysis was based on the two-dimensional linear line model 

commonly observed on graphs with X/Y axis. Using this linear model in a RANSAC 

implementation will produce a resultant set of slopes and intercepts that contain both correct and 

incorrect estimations. Measuring the covariance of these two sets will yield a covariance matrix, 

which in conjunction with the chi-squared function and accompanying eigen values will produce 

two radii that can be used to plot an ellipse of uncertainty. This process was the procedure by 

which this study was able to quantify the uncertainty in the performance of an implementation of 

a rudimental form of the RANSAC algorithm. In the next subsection of this chapter the detailed 

procedure of calculating these values is further derived and developed. 

Derivation 

 The measurement of uncertainty of the RANSAC algorithm implemented in this 

investigation was calculated via covariance error using explicit functions, which is a commonly 

used metric to analyze and visualize two-dimensional Gaussian distributed data as an ellipsoid 

using a given Mahalanobis radius. The first step in calculating covariance error ellipse is to 

calculate the variance-covariance matrix of m ordered sets of raw data containing n data points, 

respectively. Suppose X is an m x n matrix as shown in equation (2). 

X = [

𝑋1,1 … 𝑋1,𝑛

… … …
𝑋𝑚,1 … 𝑋𝑚,𝑛

] (2) 

In order to derive the variance-covariance matrix one must first transform the raw values from 

matrix X into deviation scores, designated as the matrix x in equation (3). 

x = X - [
1
…

1𝑚

] [1 … 1𝑚] ∗ X ∗
1

𝑚
 (3) 
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Once the deviation scores have been calculated, one must then compute the n x n deviation sums 

of squares and cross product matrix for x, which is shown below in equation (4) as C, which is 

the variance-covariance matrix used further on to plot an error ellipse of uncertainty. 

C = 𝐱′ ∗ 𝐱 ∗
1

𝑚
 (4) 

Plotting a standard non-rotated requires the use of two radii, as shown in equation (5), 

(
𝒙

𝒓𝒙
)

𝟐

+ (
𝒚

𝒓𝒚
)

𝟐

= 𝟏 (5) 

where 𝒓𝒙  and 𝒓𝒚 are the ellipses horizontal and vertical radii, respectively. Plotting the 

covariance error ellipse requires only a slight modification, still assuming that the ellipse is non-

rotated. Equation (6) shows that the original ellipse equation’s 𝒓𝒙  and 𝒓𝒚 have been replaced by 

𝝈𝒙 and 𝝈𝒚, respectively, in addition to being parametrized by a scale factor s, which is the 

provided Mahalanobis radius or confidence that some probability, p, is met. 

(
𝒙

𝝈𝒙
)

𝟐

+ (
𝒚

𝝈𝒚
)

𝟐

= 𝒔 (6) 

Using a provided p the Mahalanobis radius, s, can be calculated via the chi-squared function, 

shown in equation (7). 

𝒔 =  −𝟐𝒍𝒐𝒈(𝟏 − 𝒑) (7) 

This effectively gives the ellipse a new set of radii of 𝝈𝒙√𝒔 and 𝝈𝒚√𝒔. For the cases when 𝝈𝒙𝒚 

and 𝝈𝒚𝒙 are zero the above derivation works as a viable method of spread indication, but in many 

cases, like the ones detailed in this study, these values are non-zero and produce an ellipse that 

isn’t axis-aligned. Thus, for the purposes experimented on in this thesis, the square roots of the 

eigenvalues of the covariance matrix 𝑪 =  [
𝝈𝒙

𝟐 𝝈𝒙𝒚

𝝈𝒚𝒙 𝝈𝒚
𝟐] are used as the final scaled radii of the 
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desired ellipse. Equation (8) shows the generalized ellipse equation for a given variance-

covariance matrix C. 

(
𝒙

√𝝀𝟏

)

𝟐

+ (
𝒚

√𝝀𝟐

)

𝟐

= 𝒔 (8) 
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CHAPTER IV 

EXPERIMENTATION 

 

 Before performing the statistical analysis of the RANSAC algorithm, its rudimental form 

had to be implemented in a stable environment that would generate data consistently between 

trials. All experiments performed in this study were written and executed via the Python 3.7.0 

programming language utilizing the libraries of MatPlotLib, Seaborn, and Scipy to process, 

visualize, and organize all of the data inputted into and outputted by the RANSAC 

implementation. Throughout this investigation, three distinct sets of experiments were conducted 

in order to try and best quantify the robustness state of the rudimental form of RANSAC. These 

experiments ranged from the analysis of the properties of inherent uncertainty, the observation of 

RANSAC’s performance over a variety of outlier distributions, and the quantification of 

RANSAC’s model estimation success rates over variable outlier percentages and noise 

thresholds. 

 The first experiment performed in this study was one that was meant to analyze the effect 

noise has on any given set of data. In the implementation, two two-dimensional points were 

initially plotted on a graph separated by u units. These points were then used to generated n other 

outlier points that were each plotted to within a given noise threshold of their respective original 

point. Once the two points and their outlier counterparts were initialized, both sets of points, 

denoted as set A and set B were inputted into a function that computed lines from a random point 

in A to a random point in B. After all slopes and intercepts were computed, the function then 

plotted the lines in contrast to the desired line along with the error ellipse produced from the 

matrix consisting of their slopes and intercepts. The goal of this experiment was to observe the 
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way in which the uncertainty of linear model estimation changed as the ratio of noise to 

separation changed. Since RANSAC operates on the principle of selecting random points from a 

set of data, it was hypothesized that this experiment could answer what effect concentrated 

inliers might have on its uncertainty. 

 The second experiment performed in this study was designed to further explore the 

robustness of RANSAC through the input of randomly and non-randomly distributed outliers. 

The procedure for a single trial of this experiment was initiated by first inputting an inlier slope 

and intercept, which was later meant for RANSAC to estimate. Next an outlier proportion, a 

probability threshold, and a noise threshold were required in order to setup the environment for 

the RANSAC implementation. At this point an optional outlier distribution function could also 

be passed to generate the outlier points in some specific configuration. After these parameters 

were employed, RANSAC would then begin sampling points from the full set of data, returning 

a best linear estimation once the iteration threshold calculated in equation (1) was met. If the 

returned estimation matched the predefined inlier model, then the trial would count as a success, 

otherwise it’d count as a failure. Before this study, literature on RANSAC had highlighted the 

algorithm’s ability to remain robust in a set of a large distribution of presumably random outliers 

and little noise. The goal of this experiment was to investigate the effects changes in the 

distribution of outliers had on RANSAC’s success rates in addition to its uncertainty. 

 The third and final experiment sought out in this study was to expand on the resultant set 

of the second experiment by altering the noise thresholds and outlier percentages rather than the 

outlier distributions. Similar to the previous experiment, an inlier slope and intercept were preset 

along with a probability threshold. From there, groups of trials were run varying the values of 

outlier percentage and/or noise threshold. Since it is not always possible to accurately guess the 
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outlier percentage and noise threshold in a real world environment, this experiment set out to 

determine what effects their differing values might have on RANSAC’s success rates over the 

course of several hundred trials. Moreover, this experiment attempted to quantify which of the 

two parameters might be the most important to RANSAC’s implementation for future 

applications. 
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CHAPTER V 

RESULTS 

 

Linear Uncertainties 

 Figures 4 and 5 show the results of performing the experiment analyzing the linear 

uncertainties associated with two generic data points that dwell on a two-dimensional plane. This 

experiment was conducted in two explicit configurations that first plotted two anchor points with 

100 child points, each, that resided within a noise threshold range of ±0.1 of their respective 

parent. Once the anchor points and their children were generated they were separated into two 

distinct sets, from which 100 random pairs were selected. For each of these pairs a line slope and 

intercept was computed and plotted in purple.  

 

Figure 4. Viable estimation models plotted for a noise threshold of 0.1 and a point-sample 

distance of 16 units accompanied by an ellipse plotting the propagation of error. 
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Figure 4, above, shows the first configuration of the linear uncertainty experiment that 

generated two points disjoint by 16 units. In addition to that, Figure 4 also contains the error 

ellipse, plotted in green, that was generated by utilizing a covariance matrix made up of all 100 

recorded slopes and intercepts. 

 

Figure 5. Viable estimation models plotted for a noise threshold of 0.1 and a point-sample 

distance of 1 accompanied by an ellipse plotting the propagation of error. 

 

Figure 5, above and like Figure 4, shows the second configuration of the linear 

uncertainty experiment that generated two points disjoint by only 2 units. In comparison to 

Figure 4, Figure 5 shows just how much apart proximity plays in determining linear uncertainty. 

The line model in the first configuration visualizes a tight grouping of linear estimations than the 

second configuration even though both configurations share the same noise threshold. The error 

ellipses produced by the two configurations show even more quantitative differences as Figure 

4’s ellipse is significantly less pronounced than that of Figure 5’s ellipse. This indicates that as 

the ratio of ratio of noise to separation increases so too does the uncertainty in linear estimation. 
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Outlier Distributions 

 Figure 6 depicts nine different configurations of outliers to inliers where each attempt to 

skew RANSAC’s uncertainty and robustness in a different way. Subfigure 1-1 was the control 

case where all of the outliers were randomly distributed about the range of the expected inliers. 

Outliers in subfigures 1-2 and 2-1 distributed the outliers along the inlier’s slope and intercept 

with noise threshold value at least one magnitude larger to gauge robustness in a proximity 

confined environment both when the outliers surrounded the inliers or kept to one side. 

Subfigures 1-3 and 2-2 sought to gauge how the RANSAC algorithm could handle close 

groupings of outliers both in and completely outside of the searched for estimation. Subfigure 2-

3 was another attempt to try and skew success rates by plotting an independent slope and 

intercept with a larger noise but in a near perpendicular direction. The last three subfigures, 3-1, 

3-2, and 3-3, tested circular, sinusoidal, and logarithmic distributions of outliers to see if non-

linear functions had any prominent effects on the resultant uncertainty values and/or success 

rates over 1000 trials as shown in Figure 7 and Table 1, respectively. 
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Figure 6. A 3x3 grid of subfigures (1-1 to 3-3) visualizing successful RANSAC estimations 

under scenarios of differing outlier distributions plotted against the correctly identified inliers.  

 

 Figure 7 visualizes the average covariance error ellipse generated after performing 1000 

trials of the configurations shown in Figure 6. One may observe that as the outlier distributions 

tended to show visual similarities to the inlier’s distributions, the error ellipses tended to span 

larger areas indicating that as outlier data showed resemblance to the generic linear model the 

larger the uncertainty was with the produced result. This finding is further reinforced with the 

data collected in Table 1. Subfigures with configurations, either resembling a linear model or in 
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close proximity, caused the success rates of RANSAC to decrease significantly when compared 

to the randomly distributed base case. 

 

Figure 7. A 3x3 grid of subfigures (1-1 to 3-3) visualizing the error ellipses of their respective 

subfigures contained within Figure 6.  

 

Table 1. Success rates of 1000 RANSAC trials run on subfigures shown in Figures 6 & 7. 

 

0.88 0.66 0.28 

0.06 0.52 0.86 

0.66 0.58 0.78 
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Threshold Modifications 

 By this point in this study, it was apparent that outlier distributions had a direct effect on 

the robustness and uncertainty of RANSAC. What were still left unquantified was how noise 

thresholds and outlier percentages impacted RANSAC, and whether or not one was more 

important than the other. Before conducting this experiment fully, Figures 8 & 9 were generated 

to grasp exactly what cases would be summed in order to compute a standard success rate 

statistic. 

 

 

Figure 8. A plot containing correctly estimated parameters to a linear model in 95% outliers. 
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Figure 9. A plot containing incorrectly estimated parameters to a linear model in 95% outliers. 

 

 Figure 8 show a randomly distributed plot of outliers and inliers that has been run 

through the RANSAC algorithm and has resulted in a successful estimation. Figure 8 shows the 

same randomly generated plot of points but with an unsuccessful estimation plotted with what 

was desired. Running this process 1000 times and counting the number of successes allowed for 

the success rates in Table 2 to be tabulated through elementary division. 
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Table 2. Success rates of 1000 RANSAC trials run on a linear model with confidence of 0.99. 

 

 50 55 60 65 70 75 80 85 90 95 

0.001 0.77 0.79 0.81 0.77 0.78 0.83 0.81 0.82 0.75 0.67 

0.005 0.84 0.81 0.82 0.81 0.80 0.83 0.80 0.82 0.82 0.55 

0.010 0.77 0.82 0.79 0.86 0.79 0.76 0.84 0.74 0.80 0.45 

0.050 0.79 0.83 0.86 0.84 0.81 0.80 0.83 0.82 0.75 0.29 

0.100 0.87 0.85 0.83 0.78 0.85 0.86 0.76 0.83 0.79 0.26 

0.500 0.90 0.82 0.91 0.86 0.87 0.85 0.95 0.88 0.61 0.24 

1.000 0.86 0.91 0.90 0.87 0.87 0.93 0.91 0.76 0.54 0.14 

  

 By observing the values alone, one is able to make the conclusion that, in general, as 

noise threshold and outlier percentage values increase the success rates of RANSAC estimation 

decrease. Determining if one variable is more important than the other is not a metric that 

appears obvious in the data collected throughout the experiment. It should be noted, however, 

that as the outlier percentage got larger the impact of changes in noise threshold values also got 

larger. It should also be noted that for this experiment the noise threshold values are relative to a 

distribution range of [-10, 10] on both axis. Perhaps in the future this value should be measured 

as a percentage of maximum scale of the data points inputted.    
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CHAPTER VI 

CONCLUSION 

 

Interpretation of Results 

The implementation of the fundamental model of a random sampling consensus utilizing 

linear based model estimation reveals that much work is still left for improvements. It was 

discovered that through the implementation of the RANSAC algorithm, the way in which 

random samples are chosen and/or distributed in the collection greatly affect the resulting 

estimated models via substantial discrepancies in success rates. Figures 4 and 5 show how a 

single two-point linear model distribution with minimal noise can result in large increase to its 

potential error propagation. The larger the error propagation is in the collection set the greater the 

likelihood a false successful fit to the model will be returned since the threshold has an increased 

leeway to capture outlying points. This confirms the hypothesis that proximity of selected 

samples, in any algorithm, contribute significantly to the computed value’s ending uncertainty. 

As proximity and/or noise increases, so too does the resultant uncertainty. This conclusion is 

further backed by the findings of the outlier distribution experiments. When outlier distributions 

exhibited closer proximities, especially to a near-linear model, success rates for RANSAC 

dropped significantly while uncertainty scaled magnitudes larger. The more randomly dispersed 

the outliers were the higher the success rates and lower the scale of uncertainty. Moreover, it was 

observed that so long as the distribution of outliers isn’t similar to the model being estimated that 

RANSAC has the best chance of success in a pool of a larger percentage of outliers. These 

findings come as a result of the visualized data presented in Figures 6 & 7 along with their 

tabulated success rates in Table 1. Once the proximity and distribution of outliers were 
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established as key variables in the performance of RANSAC, the importance of noise threshold 

and outlier percentage was next to be analyzed. Given Table 2, it is obvious that both outlier 

percentage and noise threshold values contribute to the success rates of the RANSAC algorithm. 

Although the trend isn’t prefect, due to the nature of random sampling, the intuitively observed 

statistics of the algorithm becoming less successful as the noise thresholds and outlier 

percentages increased remains evident. It is less obvious, however, how each does so on its own 

since the greatest changes in success rates followed changes in both parameters at the same time. 

Another observation made during this experiment was that although the noise threshold values 

were altered by factors of 10 and 5, this did not account for the range the data was generated in. 

Thus, for this portion of the study it should be stated that more experimentation is needed to fully 

understand the significance that the noise threshold contributes to the generic RANSAC 

algorithm. 

Motivations & Future Work 

The use and analysis of RANSAC has far reaching influences to the various disciplines of 

computer science as well as the many processes performing model estimation. It was for that 

reason that this study was conducted to analyze the robustness and degeneracy of RANSAC. 

Since the of the underlying tendencies of modifications to the primary parameters passed into the 

RANSAC algorithm have been observed, more specific and technical manifestations may now 

be perused. Alternatively, improvements to the base RANSAC algorithm could also be 

investigated as a means to mitigate its shortcomings under certain conditions. This future work 

might include further analysis of specific uses in computer vision applications or any new forms 

that try to improve its speed, robustness, or accuracy (such as with USAC [10]). Other avenues 

of statistical exploration could include processes like object detection or feature matching as well 
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(Figure 10) since both usually employ some form of a RANSAC model estimation to classify 

sample sets based on a provided baseline set. 

 

Figure 10. Feature matching using RANSAC estimation [10]. 
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