
Copyright is owned by the Author of the thesis.  Permission is given for 
a copy to be downloaded by an individual for the purpose of research and 
private study only.  The thesis may not be reproduced elsewhere without 
the permission of the Author. 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Massey Research Online

https://core.ac.uk/display/211167555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Stress adaptation and ageing is controlled by senescence-inducing age- 

related changes in Arabidopsis thaliana 

 

 

A thesis presented in partial fulfilment of the requirements for the degree of 

 

 

Doctor of Philosophy 

 

in  

 

Plant Biology 

 

 

 

 

 

at Massey University, Palmerston North, 

New Zealand. 

 

 

 

Aakansha Kanojia 

 

2018 



 ii 

Abstract 

 

Senescence is the final stage of leaf development and leads to the death of a leaf. In leaves, chloroplasts are 

the major source of nitrogen (75%-80%), which is found mainly in proteins. The disassembly of 

chloroplasts during the senescence process releases a considerable amount of nitrogen, which is then 

remobilized to other growing parts of the plant. Thus, nutrients from dying parts of the plants are crucial 

for the initial development of seeds and new plant organs. Therefore, while leaf senescence is a destructive 

process, efficient senescence also increases viability of the whole plant and its survival to the next season 

or generation. However, senescence can also be induced prematurely by abiotic stress. Early senescence 

caused by environmental stress can be undesirable as it may affect the growth and yield of a plant. Plants 

grown under abiotic stress conditions such as high salinity, drought, cold or heat, display a variety of 

molecular, biochemical and physiological changes. Plants under environmental stress conditions activate 

several signalling pathways which, in coordination with hormones such as ethylene and abscisic acid, allow 

for an adaptive response to stress, resulting in adjustments of plant growth and development, in an attempt 

to maximise survival chances. Early senescence of old leaves is one of the important strategies adapted by 

plants for the survival of young growing tissues. The remobilisation of nutrients from old leaves to young 

tissues allows survival of the whole plant under stressed conditions. However, the outcome of the stress, 

i.e. survival or death, depends on the strength and duration of the stress in combination with the stress 

response.  

A plant’s response to stressed conditions also depends on the age of the plant. It has been reported by 

multiple studies that the tolerance to stress decreases with age, however, the underlying molecular 

mechanisms are not well understood. In chapter 1, it is reviewed and proposed that plants of different age 

show distinct responses to environmental stress because of senescence-inducing age-related changes 

(ARCs). Research work in chapter 3 sought to understand the synchrony between ageing and reduction of 

plant stress tolerance, using Arabidopsis thaliana as a model plant. Transcriptomic studies were carried out 

to examine the occurrence of senescence-inducing ARCs in Arabidopsis first rosette early expanding leaves 

(EEL), mid expanding leaves (MEL) and fully expanded leaves (FEL). The transcriptomic dataset showed 

that, as the leaf grows, genes associated to DNA repair mechanisms are downregulated and genes linked to 

stress hormone biosynthesis, oxidative stress, senescence and other stress responses, are upregulated. This 

research confirmed that Arabidopsis young, mature and adult plants, when treated with drought, salt, and 

dark stresses, had greater stress sensitivity with increased age, consistent with the role of senescence-

inducing ARCs in stress resistance. This study suggests that young plants are more tolerant to stress because 
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of negligible senescence-inducing ARCs in young leaves, whereas the gradual accumulation of ARCs in 

mature leaves, and rapid accumulation in old leaves, results in decreased resistance to stress.  

Next, to characterise mutants that modulate senescence-induced ARCs, I used stress-sensitive onset of leaf 

death (old) mutants of Arabidopsis thaliana. The mutants were characterised based on stress responses 

observed in old13 and old14 mutant plants compared to the wild type (WT) (Chapter 4). The old13 mutant 

was selected as an appropriate mutant to study the regulatory pathway of senescence-inducing ARCs as I 

found that the old13 mutant plants are susceptible to stress in an age-dependent manner (Chapter 5). The 

transcriptomes of old13 leaves compared with the WT samples illustrate that stress susceptibility in the 

old13 mutant is because of early acquisition of senescence-inducing ARCs. Compared to the WT leaves, 

old13 showed significant downregulation of genes involved in antioxidant activity, stress tolerance, and 

cell-wall morphology, while genes involved in oxidative stress, senescence and stress responses were 

upregulated. Furthermore, transcriptional and metabolomic data illustrated that an unbalanced sugar level 

in old13 leaves is one of the important senescence-inducing ARCs involved in ageing and stress responses. 

Chapter 6 includes an attempt to identify the mutated gene in old13 using high throughput next generation 

sequencing. Further study on old13 gene recognition will offer an exciting opportunity to gain an in-depth 

knowledge of the coupling between ageing and stress responses in plants. Together, this study suggests that 

the occurrence of senescence-inducing ARCs is an intrinsic process integrated into the stress response and 

ensures certain death in plants.  
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