

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Stress adaptation and ageing is controlled by senescence-inducing agerelated changes in *Arabidopsis thaliana*

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Plant Biology

at Massey University, Palmerston North, New Zealand.

Aakansha Kanojia

2018

Abstract

Senescence is the final stage of leaf development and leads to the death of a leaf. In leaves, chloroplasts are the major source of nitrogen (75%-80%), which is found mainly in proteins. The disassembly of chloroplasts during the senescence process releases a considerable amount of nitrogen, which is then remobilized to other growing parts of the plant. Thus, nutrients from dying parts of the plants are crucial for the initial development of seeds and new plant organs. Therefore, while leaf senescence is a destructive process, efficient senescence also increases viability of the whole plant and its survival to the next season or generation. However, senescence can also be induced prematurely by abiotic stress. Early senescence caused by environmental stress can be undesirable as it may affect the growth and yield of a plant. Plants grown under abiotic stress conditions such as high salinity, drought, cold or heat, display a variety of molecular, biochemical and physiological changes. Plants under environmental stress conditions activate several signalling pathways which, in coordination with hormones such as ethylene and abscisic acid, allow for an adaptive response to stress, resulting in adjustments of plant growth and development, in an attempt to maximise survival chances. Early senescence of old leaves is one of the important strategies adapted by plants for the survival of young growing tissues. The remobilisation of nutrients from old leaves to young tissues allows survival of the whole plant under stressed conditions. However, the outcome of the stress, i.e. survival or death, depends on the strength and duration of the stress in combination with the stress response.

A plant's response to stressed conditions also depends on the age of the plant. It has been reported by multiple studies that the tolerance to stress decreases with age, however, the underlying molecular mechanisms are not well understood. In chapter 1, it is reviewed and proposed that plants of different age show distinct responses to environmental stress because of senescence-inducing age-related changes (ARCs). Research work in chapter 3 sought to understand the synchrony between ageing and reduction of plant stress tolerance, using *Arabidopsis thaliana* as a model plant. Transcriptomic studies were carried out to examine the occurrence of senescence-inducing ARCs in *Arabidopsis* first rosette early expanding leaves (EEL), mid expanding leaves (MEL) and fully expanded leaves (FEL). The transcriptomic dataset showed that, as the leaf grows, genes associated to DNA repair mechanisms are downregulated and genes linked to stress hormone biosynthesis, oxidative stress, senescence and other stress responses, are upregulated. This research confirmed that *Arabidopsis* young, mature and adult plants, when treated with drought, salt, and dark stresses, had greater stress sensitivity with increased age, consistent with the role of senescence-inducing ARCs in stress because

of negligible senescence-inducing ARCs in young leaves, whereas the gradual accumulation of ARCs in mature leaves, and rapid accumulation in old leaves, results in decreased resistance to stress.

Next, to characterise mutants that modulate senescence-induced ARCs, I used stress-sensitive onset of leaf *death* (old) mutants of Arabidopsis thaliana. The mutants were characterised based on stress responses observed in *old13* and *old14* mutant plants compared to the wild type (WT) (Chapter 4). The *old13* mutant was selected as an appropriate mutant to study the regulatory pathway of senescence-inducing ARCs as I found that the *old13* mutant plants are susceptible to stress in an age-dependent manner (Chapter 5). The transcriptomes of *old13* leaves compared with the WT samples illustrate that stress susceptibility in the *old13* mutant is because of early acquisition of senescence-inducing ARCs. Compared to the WT leaves, old13 showed significant downregulation of genes involved in antioxidant activity, stress tolerance, and cell-wall morphology, while genes involved in oxidative stress, senescence and stress responses were upregulated. Furthermore, transcriptional and metabolomic data illustrated that an unbalanced sugar level in *old13* leaves is one of the important senescence-inducing ARCs involved in ageing and stress responses. Chapter 6 includes an attempt to identify the mutated gene in *old13* using high throughput next generation sequencing. Further study on *old13* gene recognition will offer an exciting opportunity to gain an in-depth knowledge of the coupling between ageing and stress responses in plants. Together, this study suggests that the occurrence of senescence-inducing ARCs is an intrinsic process integrated into the stress response and ensures certain death in plants.

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisor, Dr Paul Dijkwel, for his excellent guidance, encouragement and immense knowledge that he has provided throughout my PhD, whilst giving me the space to work in my own way. I am very grateful for all your help, invaluable advice on both research as well as on my career. Also, I would like to thank Paul for the opportunity to work in the laboratory of the Institute of Biochemistry and Biology, Potsdam University, Germany. I consider myself lucky to have such a supportive and friendly supervisor. I would like to thank my cosupervisors Prof Kathryn Stowell and Prof Derek White for proofreading my thesis chapters, their enlightening suggestions and knowledge they offered me to aid in my research project. I would also like to thank Prof Michael McManus, who, although is no longer with us, helped and supported me during the first year of my PhD. I would also like to thank Erlinde Dijkwel for her friendliness and support during my stay in Palmerston North as well as in Potsdam.

Thank you, Prof Bernd Mueller-Roeber and Dr Tsanko Gechev for your support and scientific discussions during my research at Potsdam University. I am thankful to Dr Maria Benina, from Max Plank Institute of Germany who helped me by performing metabolic profiling, and Saurabh Gupta from Potsdam University who helped in RNA sequencing data analysis. Thank you to the Institute of Fundamental Science for 6 months of research funding and financial support to attend an international conference. I am thankful for the funding provided by Massey University Doctoral Completion Bursary for the successful completion of my thesis writing.

During my research, I have been blessed with a friendly and cheerful group in my lab. Thank you Matthew Denton-Giles, for giving me detailed explanations to my every question, I have learnt a lot from the guidance you provided. I am much obliged to all my lab members Muhammad Srishti, Shane, Julia, Jibran, Rachael, Hannah, Xi Xu, Elva, Nikolai, Rama, Nikola, Meriem, Pallavi and Saurabh from Massey University and Potsdam University who helped me directly or indirectly in every step of my learning process. I would like to make special mention of Susanna and Tina who was always very helpful and provided unlimited assistance in the lab. A special thanks too goes to Yasmin Dijkwel and Srishti Joshi, for being great friends to me and are always willing to help. I also want to show my sincere gratitude to Late Patricia Lopdell, my landlady, who opened both her home and heart to me and stood by me through the good times and bad.

Above all, I would like to thank my father Rakesh Kanojia, mother Anita Kanojia and brother Arpit Raj Kanojia for their unconditional support, I would not be where I am today without their love and

encouragement. My special and heartfelt thanks to my father for the education he provided and for teaching me to set goals and to strive for more. Lastly, to my husband, Ishan Pardeshi, I really appreciate your patience when I was busy completing my research, you understood and gave me time to complete my work without complaining, just so I could focus on finishing my thesis.

Table of Contents

Abstract	ii
Acknowledgements	iv
List of figures	Х
List of tables	xiii
Abbreviations	xiv

Chapter 1 Abiotic stress responses are governed by reactive oxygen species and age	1
1.1 Introduction	1
1.2 Reactive oxygen species	1
1.2.1 ROS scavenging antioxidants	4
1.2.2 ROS and Ethylene	5
1.2.3 ROS and ABA hormone regulation	7
1.2.4 ROS signalling: Interplay between MAPKS, ethylene and ABA	8
1.3 Adaptive mechanism in plants to cope with Abiotic stress	.10
1.3.1 Priming-induced abiotic stress tolerance in plants	10
1.3.2 Abiotic stress-induced programmed cell death as an adaptive response in plants	.11
1.4 The occurrence of age-related changes determines the outcome of the stress response	.14
1.5 Thesis aims	.19
Chapter 2 Materials and Methods	.22
2.1 Plant growth conditions for long and short-day photoperiods	.22
2.2 RNA sequencing analysis	.22
2.2.1 Sample harvest and RNA preparation	22
2.2.2 RNA sequencing analysis methodology	23
2.3 Transcript analysis using quantitative Real-Time PCR (qRT-PCR)	.24
2.4 Measurement of field capacity (FC) and relative water content (RWC)	.26
2.5 Watering schedule during drought stress and salt shock treatments	.26
2.6 Measurement of leaf relative water content (RWC)	.26
2.7 Whole plant dark and recovery treatment	.27
2.8 Chlorophyll quantification	.27
2.9 Electrolyte leakage measurement	.28
2.10 Histochemical detection of H ₂ O ₂ by DAB staining	.28
2.11 Leaf starch assay	.29

2.11.1 Quantifying stained starch area by image J software	
2.12 Metabolomic profiling and GC-MS analysis	
2.13 Sucrose and dark treatment on first rosette leaves	
2.14 Extraction of nuclear genomic DNA by the method of Lutz et al, (2011)	
2.14.1 Nuclei extraction	
2.14.2 DNA precipitation	
2.15 A hybrid method of CTAB and nuclear DNA extraction to isolate nuclear-enriched ge	enomic
DNA for the next generation sequencing of Arabidopsis	
2.15.1 Solutions	
2.15.2 Procedure	
2.16 Whole genome sequencing	
2.16.1 <i>old13</i> and <i>old14</i> nuclear-enriched genomic DNA sample submission for Illumina sequencing	
2.16.2 Alignment and visualisation of sequenced reads	
2.16.3 Processing NIKS script	
Chapter 3 Transcriptomic chapges in <i>Arabidopsis</i> leaves suggest possible causes for	or loss
of stress tolerance with age.	
2.1 Introduction	26
3.1 Introduction	
3.2 Results	
3.2.1 The global picture of ARCs taking place in different aged <i>Arabidopsis</i> leaves	
3.2.2 Gene Ontology enrichment of differentially expressed genes in <i>Arabidopsis</i> leaves	40
3.2.3 Examination of key ARCs in <i>Arabidopsis</i> leading to reduced stress tolerance with age	41
3.2.4 Confirmation of RNA sequencing data by qRT-PCR	46
3.2.5 Tolerance to drought stress decreases with age in <i>Arabidopsis</i> leaves	47
3.2.6 Tolerance to salt shock decreases with age in <i>Arabidopsis</i> leaves	51
3.2.7 Tolerance to dark stress and ability to recover decreases with age in <i>Arabidopsis</i> leaves	53
3.3 Discussion	56
3.3.1 Senescence-inducing ARCs gradually occur with increased age of Arabidopsis leaves	56
3.3.2 Senescence-inducing ARCs decrease tolerance to stress with increased age of Arabidopsis leaves	62
Chapter 4 Characterisation of mutants modulating age-related changes that reg	gulate
senescence in Arabidopsis thaliana	66
4.1 Introduction	66
4.2 Results	68
4.2.1 Phenotypic characterisation of the <i>old13</i> and <i>old14</i> mutants in long-day photoperiod	68
4.2.2 Phenotypic characterisation of the <i>old13</i> and <i>old14</i> mutants in short-day photoperiod	70
4.2.3 Physiological characterisation of mutants in standard growth conditions	72
4.2.4 Physiological characterisation of mutants grown in stressed environments	73
4.3 Discussion	79

4.3.1 Growth disorders in the <i>old13</i> and <i>old14</i> mutants	79
4.3.2 <i>old14</i> is a positive regulator of senescence in <i>Arabidopsis</i>	
4.3.3 A mutation in OLD13 causes early occurrence of senescence-inducing age-related change	es in Arabidopsis
Chapter 5 Early acquisition of senescence-inducing ARCs causes noor stres	s tolerance in
ald12 plants	95 torerance m
5.1 Introduction	85
5.2 Results	88
5.2.1 Drought stress susceptibility increases with age in <i>old13</i> mutant plants	
5.2.2 Impaired dark stress tolerance and poor recovery in the <i>old13</i> mutant	91
5.2.3 Analysis of stress resistance gene markers in three developmental stages of Arabidopsis	
5.2.4 Transcriptomic footprints of early age-related changes in the <i>old13</i> mutant	95
5.2.5 Identification of differentially expressed genes governing early senescence-inducing Al mutant.	RCs in the <i>old13</i> 97
5.2.6 Examination of key senescence-inducing ARCs in <i>old13</i> fully expanded leaves	
5.2.7 Increased sensitivity of <i>old13</i> FEL to sugar	
5.2.8 Metabolomic analysis reveals high sugar content in <i>old13</i> FEL	
5.3 Discussion	103
5.3.1 <i>old13</i> plants display age-dependent stress susceptibility	
5.3.2 Comparative transcriptomic analysis revealed an important functional gene categor	y causing stress
sensitivity in <i>old13</i> plants	
5.3.3 Up- and down-regulated genes in FEL reveal essential pathways contributing to stress susce	eptibility in <i>old13</i>
plants	
5.3.4 High sugar causes stress susceptibility in <i>old13</i> fully expanded leaves	109
5.3.5 Biological pathways in <i>old13</i> affected by amplified senescence-inducing ARCs	112
Chapter 6 Attempted identification of <i>old13</i> by whole genome sequencing	g of nuclear-
enriched DNA	116
6.1 Introduction	116
6.2 Results	118
6.2.1 Nuclear-enriched genomic DNA isolation by method of Lutz et al, 2011	118
6.2.2 Hybrid method of CTAB by Dellaporta et al., and nuclear DNA by Lutz et al	119
6.2.3 Elimination of RNA and DNA smearing.	
6.2.4 Examination of genomic DNA quality	
6.2.5 Chloroplast and genomic gene transcripts of DNA samples isolated by hybrid appro-	oach and CTAB
method	121
6.2.6 Alignment of sequenced <i>old13</i> reads to the reference genome	
6.2.7 Mapped <i>old13</i> reads reveal structural variations in the Ler-0 reference genome	123
6.2.8 Bridging the gaps in the Ler-0 draft by iterative mapping	125

6.2.9 Comparison of whole genome sequence of <i>old13</i> and <i>old14</i> by NIKS126
6.2.10 Distribution of SNPs on chromosomes created by NIKS127
6.2.11 Analysis of SNPs created by NIKS for <i>old13</i> mutant identification129
6.3 Discussion131
Chapter 7 Outlook, summary and future work134
Chapter 8 Appendices139
Appendix 1. Up regulated leaf senescence, oxidative stress and other stress-related genes in mature and adult
leaves of Arabidopsis thaliana before the initiation of senescence process
Appendix 2. Soil based phenotypic analysis for growth stages of Ler-0, old13 and old14 in long-day145
Appendix 3. Soil based phenotypic analysis for growth stages of Ler-0, old13 and old14 in short-day146
Appendix 4. The log ₂ values of carbohydrate metabolite content quantified by GC-MS in <i>old13</i> leaf
samples147
Appendix 5. List of SNPs in <i>old13</i> whole genome identified by NIKS148
Appendix 6. Primer sequences of gene markers used for expression analysis
Appendix 7. Statement of contribution to doctoral thesis containing publication155
Bibliography158

List of Figures

Figure 1.1. Distinct response to stress in Arabidopsis plants14
Figure 1.2. A tentative model showing stress response in different age of leaves16
Figure 3.1. Age of first rosette leaf pair selection
Figure 3.2. Heat map depicting gene expression of <i>Arabidopsis</i> WT EEL (10 DAG), MEL (15 DAG) and FEL (20 DAG) first rosette samples 39
Figure 3.3. GO enrichment of differentially expressed genes
Figure 3.4. Differentially expressed genes involved in DNA repair mechanism
Figure 3.5. Differentially expressed genes involved in stress responses
Figure 3.6. Differentially expressed genes involved in hormone signalling45
Figure 3.7. Expression of genes related to senescence-induce ARCs in Arabidopsis EEL, MEL and FEL.
Figure 3.8. Watering schedule during drought stress
Figure 3.9. Effect of drought stress at three different stages of development in Arabidopsis WT plants
Figure 3.10. Watering schedule during salt shock
Figure 3.11. Effect of salt shock at three different stages of development in <i>Arabidopsis</i> WT plants.
Figure 3.12. Effect of 4 days dark stress and 3 days recovery at three different stages of development in Arabidopsis WT plants

Figure 4.1. Arabidopsis WT Ler-0 and old mutants grown under LD photoperiod68
Figure 4.2. Phenotypic difference between WT Ler-0 and mutant plants in LD light conditions 69
Figure 4.3. Arabidopsis WT Ler-0 and old mutants grown under SD photoperiod70
Figure 4.4. Phenotypic differences between WT Ler-0 and mutant plants in SD light conditions71
Figure 4.5. Physiological characterisation of mutants in normal air grown conditions72
Figure 4.6. Susceptibility of <i>old</i> mutants to drought stress
Figure 4.7. Dark induced early leaf senescence in <i>old</i> mutants
Figure 4.8. Histochemical detection of elevated ROS level in mutants after dark stress76
Figure 4.9. Early starch turnover effect in the <i>old13</i> and <i>old14</i> mutants
Figure 5.1 Model representing the impact of disrupted gene having function in integration of age into the stress response
Figure 5.2. Measured soil field capacity (SFC) in well-watered pots and drought-stressed pots
Figure 5.3. Effect of drought stress at three different stages of development in Arabidopsis WT and old13 plants
Figure 5.4. Effect of 4 days dark stress and recovery in young, mature and adult <i>old13</i> plants93
Figure 5.5. Expression of age-related gene markers in young, mature and adult Arabidopsis WT and old13 leaf samples
Figure 5.6. Venn Diagram showing the differentially expressed genes in 10 DAG, 15 DAG and 20 DAG <i>old13</i> leaf samples compared with the WT samples
Figure 5.7. Heat map showing the increase or decrease in expression trend of total differentially expressed genes from WT and <i>old13</i> first rosette leaf pair

Figure 5.8. GO enrichment of differentially expressed genes in <i>old13</i> 20 DAG leaf samples98
Figure 5.9. Effect of sucrose on detached Ler-0 and old13 first rosette leaves101
Figure 5.10. Primary metabolite profiling of <i>old13</i> first rosette EEL, MEL and FEL102
Figure 5.11. A tentative model showing affected biological pathways in <i>old13</i> as a cause of amplified senescence-inducing ARCs
Figure 6.1. Agarose gel analysis of genomic DNA isolated using the Lutz et al., method119
Figure 6.2. Agarose gel analysis of genomic DNA, isolated with modified step120
Figure 6.3. Agarose gel analysis of gDNA, isolated from hybrid CTAB and nuclear DNA extraction approach
Figure 6.4. Transcript analysis of a chloroplast and a genomic gene in DNA samples extracted from CTAB and hybrid method
Figure 6.5. Misassembled sites observed in draft Ler-0 reference sequence on IGV124
Figure 6.6. Number of gaps identified between 20- 26 Mb region in Ler-0 reference genome125
Figure 6.7. Bridging a gap in draft Ler-0 sequence by iterative read mapping
Figure 6.8. The workflow of NIKS to identify mutations in <i>old13</i> and <i>old14</i> without the reference sequence
Figure 6.9. Distribution of SNPs on chromosomes identified in <i>old13</i> genome using NIKS128
Figure 7.1 A tentative model depicting integration of age into the stress responses

List of Tables

Table 2.1. Read QC stats using in-house script, after filtering for rRNA and pseudo alignment stats
using kallisto23
Table 2.2. qRT-PCR reaction mixture 24
Table 2.3. gRT-PCR programme
Table 4.1. Percentage of stained leaf area calculated by Image J software 78
Table 6.1 Oubit fluorometer readings 121
Table 6.2 List of SNPs identified in PNA coding region that possibly contains $ald 13$ mutation 130
Table 0.2. List of Sivi's identified in KivA coung region that possibly contains <i>olars</i> initiation130

Abbreviations

AAF	ARABIDOPSIS A-FIFTEEN
AAO3	ABSCISIC ALDEHYDE OXIDASE 3
AA	Ascorbic acid
ABA	Abscisic acid
ABP1	Auxin-Binding Protein 1
ACC	1-aminocyclopropane-1-carboylic acid
ACS	1-aminocyclopropane-1-carboylic acid synthase
ACO	1-aminocyclopropane-1-carboylic acid oxidase
ACT 2	ACTIN 2
AOS	Allene Oxide Synthase
AOC	Allene Oxide Cyclase
ARCs	Age-related changes
ATP	Adenosine Triphosphate
APX	Ascorbate peroxidase
BAM	Binary Alignment Map
°C	Degrees celcius
CAT	Catalases
cDNA	Complementary DNA
Chr.	Chromosome
СТАВ	Cetrimonium bromide
C011	CORONATINE INSENSITIVE 1

Col-0	Columbia
CW	Cell-wall
DAG	Days after germination
DAB	3,3-diaminobenzidine
DDB2	DAMAGED DNA-BINDING PROTEIN 2
DHA	Dehydroascorbic acid
DHAR	Dehydroascorbate reductase
DMF	N, N'-dimethylformamide
DNA	Deoxyribose nucleic acid
DNase	Deoxyribonuclease
EDS1	ENHANCED DISEASE SUSCEPTIBILITY 1
EDTA	Ethylene diamine tetra acetic acid
EEL	Early expanding leaves
EIN	Ethylene Insensitive
EMS	Ethyl methanesulfonate
ETCs	Electron transport complexes
ERFs	Ethylene response factors
FC	Field capacity
FEL	Fully expanded leaves
FSD3	Fe SUPEROXIDE DISMUTASE
FW	Fresh weight
GA	Gibberellic acid
GAST1	GA-STIMULATED TRANSCRIPT 1

gDNA	Genomic DNA
GGC-MS	Gas Chromatography-Mass Spectrometry
Gi	Gigantea
GO	Gene Ontology
GSH	Glutathione
GR	Glutathione reductase
H_2O_2	Hydrogen peroxide
•OH	Hydroxyl radical
ICS	ISOCHORISMATE SYNTHASE
IGV	Integrative genomics viewer
IKI	Lugol's Iodine
JA	Jasmonic acid
Kb	Kilobase Pair
Ler-0	Landsberg erecta
LD	Long-day
LOX	Lipoxygenase
MAPKs	Mitogen-activated protein kinases
MDHAR	Monodehydroascorbate reductase
MDA	Monodehydroascorbate
MEL	Mid expanding leaves
MGS	Massey Genome Service
Mb	Megabase Pair
μg	Micro-gram

μL	Micro-litre	
mM	Milli-molar	
mg	Milli-gram	
mL	Milli-litre	
mm	Milli-metre	
min	Minute(s)	
mRNA	Messenger ribonucleic acid	
MPI	Max Planck Institute	
NAD	Nicotinamide adenine dinucleotide	
NADP	Nicotinamide adenine dinucleotide phosphate	
NADPH	Nicotinamide adenine dinucleotide phosphate (reduced form)	
NCED3	NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3	
NIKS	Needle in a K-stack	
ng	Nano-gram	
NGS	Next generation sequencing	
OD	Optical density	
old	onset of leaf death	
O ₂	Oxygen	
¹ O ₂	Singlet oxygen	
O2.	Superoxide	
OGBF	Otago Genomics and Bioinformatics Facility	
ORE	ORESARA	
PAD4	Phytoalexin Deficient 4	

PCD	Programmed cell death	
PCR	Polymerase chain reaction	
PEN2	PENETRATION2	
PE	Paired end	
phs	pre-harvest sprouting	
pmol	Picomoles	
PS I	Photosystem I	
PS II	photosystem II	
PYL	PYRABACTIN RESISTANCE 1-LIKE	
qRT-PCR	quantitative Real-Time polymerase chain reaction	
RBOHD	RESPIRATORY BURST OXIDASE HOMOLOG D	
ROS	Reactive Oxygen Species	
RNA	Ribonucleic acid	
rRNA	Ribosomal ribonucleic acid	
RNase	Ribonuclease	
RPS18	RIBOSOMAL PROTEIN S18	
RuBisCO	Ribulose-1,5-bisphosphate carboxylase oxygenase	
RWC	Relative water content	
SA	Salicylic acid	
SAM	S-adenosyl-L-methionine	
SAG	Senescence-associated gene	
SD	Short-day	
SDS	Sodium dodecyl sulfate	

sec	Seconds
SFC	Soil field capacity
SNPs	Single nucleotide polymorphisms
SOD	Superoxide dismutase
TET	Tetraspanin
TFs	Transcription factors
TPM	Transcripts per million
TUB 2	TUBULIN BETA-2
UPL 7	UBIQUITIN-PROTEIN LIGASE 7
UV	Ultraviolet
WT	Wild type
ZEP	ZEAXANTHIN EPOXIDASE