
Manipulation of Mesenchymal Stem Cell
Morphology and Functions through Nano- and
Micro-patterned Surfaces

著者（英） Yingjun YANG
year 2019
その他のタイトル ナノ及びマイクロパターン化表面による間葉系幹細

胞の形態と機能の制御
学位授与大学 筑波大学 (University of Tsukuba)
学位授与年度 2018
報告番号 12102甲第8987号
URL http://doi.org/10.15068/00156652



 

 

 

 

 

Manipulation of Mesenchymal Stem Cell Morphology and 

Functions through Nano- and Micro-patterned Surfaces 

 

 

Yingjun YANG 

 

 

 

 

 

 

 

 

February 2019 

 

 

 

 



2 

 

 

 

 

Manipulation of Mesenchymal Stem Cell Morphology and 

Functions through Nano- and Micro-patterned Surfaces 

 

Yingjun YANG 

Doctoral Program in Materials Science and Engineering 

 

 

 

 

 

 

 

Submitted to the Graduate School of Pure and Applied Science  

in Partial Fulfillment of the Requirements for the  

Degree of Doctor of Philosophy in Engineering 

 

at the 

University of Tsukuba



 

i 

Contents 

Chapter 1 General introduction ..................................................................................................................... 1 

1.1 Mesenchymal stem cells ...................................................................................................................... 1 

1.1.1 MSCs in tissue engineering ....................................................................................................... 2 

1.1.2 MSCs in cell-based gene therapy .............................................................................................. 3 

1.2 Factors in regulation of MSC functions ............................................................................................... 4 

1.2.1 Biochemical factors .................................................................................................................. 5 

1.2.2 Biophysical factors ................................................................................................................... 5 

1.3 Nano- and micro-patterning techniques ............................................................................................... 6 

1.3.1 Micro-patterning techniques ..................................................................................................... 6 

1.3.2 Nano-patterning techniques ...................................................................................................... 7 

1.4 Issues and objectives ............................................................................................................................ 8 

1.4.1 Issues of MSCs morphology in differentiation .......................................................................... 8 

1.4.2 Issues of MSCs morphology in transfection .............................................................................. 9 

1.4.3 Objectives and outline .............................................................................................................. 9 

1.5 References.......................................................................................................................................... 10 

Chapter 2 Preparation of circular micro-patterns having different size for investigation of cell size 

influences on MSCs osteogenic commitment and phenotype maintenance .............................................. 19 

2.1 Summary ............................................................................................................................................ 19 

2.2 Introduction........................................................................................................................................ 19 

2.3 Materials & methods .......................................................................................................................... 20 

2.2.1 Synthesis and characterization of photo-reactive AzPhPVA ................................................... 20 

2.2.2 Preparation and characterization of micro-patterns .............................................................. 21 

2.2.3 Cell culture.............................................................................................................................. 22 

2.2.4 Fluorescence staining of actin and nuclei .............................................................................. 23 

2.2.5 Immunofluorescence staining of stem cell marker .................................................................. 23 

2.2.6 Alkaline phosphatase and Alizarin Red S staining.................................................................. 24 

2.2.7 Statistical analysis .................................................................................................................. 24 

2.3 Result ................................................................................................................................................. 24 

2.3.1 Characterization of synthesized photo-reactive AzPhPVA...................................................... 24 

2.3.2 Preparation and characterization of micro-patterned surfaces .............................................. 25 

2.3.3 Cell morphology and actin filaments structure ....................................................................... 26 

2.3.4 Influence of cell size on CD105 expression ............................................................................ 27 

2.3.5 Influence of cell size on ALP activity and calcium deposition ................................................ 28 

2.4 Discussion .......................................................................................................................................... 30 

2.5 Conclusions........................................................................................................................................ 31 

2.6 References.......................................................................................................................................... 32 

Chapter 3 Preparation of micro-patterns having different size and aspect ratio for investigation of cell 

morphology on MSCs transfection efficiency .............................................................................................. 35 

3.1 Summary ............................................................................................................................................ 35 

3.2 Introduction........................................................................................................................................ 35 

3.3 Materials and methods ....................................................................................................................... 36 



 

ii 

3.3.1 Preparation of micro-patterns and characterization .............................................................. 36 

3.3.2 Cell culture.............................................................................................................................. 37 

3.3.3 Plasmid amplification and purification .................................................................................. 37 

3.3.4 Transfection ............................................................................................................................ 37 

3.3.5 Cellular uptake of cationic complexes .................................................................................... 38 

3.3.6 BrdU staining .......................................................................................................................... 38 

3.3.7 Fluorescence staining of actin and nuclei .............................................................................. 39 

3.3.8 Measurement of cell stiffness .................................................................................................. 39 

3.3.9 Statistical analysis .................................................................................................................. 39 

3.4 Results ............................................................................................................................................... 39 

3.4.1 Preparation and characterization of micro-patterns and controlling of cell morphology by 

micro-patterns .................................................................................................................................. 39 

3.4.2 Influence of cell spreading area and elongation on gene transfection efficiency ................... 40 

3.4.3 Influence of cell spreading area and elongation on cellular uptake of cationic complexes ... 40 

3.4.4 Influence of cell spreading area and elongation on DNA synthesis ........................................ 41 

3.4.5 Actin filaments structure and cellular stiffness ....................................................................... 42 

3.5 Discussion .......................................................................................................................................... 43 

3.6 Conclusions........................................................................................................................................ 45 

3.7 References.......................................................................................................................................... 45 

Chapter 4 Preparation of micro-nano hybrid pattern surfaces for regulation of MSCs differentiation 50 

4.1 Summary ............................................................................................................................................ 50 

4.2 Introduction........................................................................................................................................ 50 

4.3 Materials and methods ....................................................................................................................... 51 

4.3.1 Preparation of micro-nano hybrid pattern surfaces ............................................................... 51 

4.3.2 Cell culture.............................................................................................................................. 52 

4.3.3 Actin, vinculin and nuclei staining .......................................................................................... 52 

4.3.4 Analysis of cell morphology .................................................................................................... 52 

4.3.5 Myogenic, osteogenic and adipogenic induction culture of MSCs ......................................... 52 

4.3.6 Analysis of myogenic, osteogenic and adipogenic differentiation of MSCs ............................ 53 

4.3.7 Statistical analysis .................................................................................................................. 54 

4.4 Results ............................................................................................................................................... 54 

4.4.1 Micro-nano hybrid pattern surfaces ....................................................................................... 54 

4.4.2 Cell alignment and elongation on micro-nano hybrid pattern surfaces ................................. 55 

4.4.3 Myogenic differentiation of MSCs on micro-nano hybrid pattern surfaces ............................ 58 

4.4.4 Osteogenic differentiation of MSCs on micro-nano hybrid pattern surfaces .......................... 59 

4.4.5 Adipogenic differentiation of MSCs on micro-nano hybrid pattern surfaces.......................... 60 

4.5 Discussion .......................................................................................................................................... 61 

4.6 Conclusions........................................................................................................................................ 63 

4.7 References.......................................................................................................................................... 63 

Chapter 5 Concluding remarks and future prospects ................................................................................ 66 

5.1 Concluding remarks ........................................................................................................................... 66 

5.2 Future prospects ................................................................................................................................. 67 

List of publications and awards .................................................................................................................... 68 

Acknowledgements ........................................................................................................................................ 69 

 



 

iii 

List of abbreviations 

AFM          Atomic force microscope 

ALP          Alkaline phosphatase 

ASCs          Adult stem cells 

AzPhPVA          Azidophenyl-derivatized poly (vinyl alcohol) 

BEC          Biphasic electric current 

BMPs           Bone morphogenetic proteins 

BSA          Bovine serum albumin 

DEX          Dexamethasone 

DMEM          Dulbecco’s modified eagle medium 

ECM          Extracellular matrix 

ESCs          Embryonic stem cells 

FBS          Fetal bovine serum 

FGF          Fibroblast growth factor 

GP           β-glycerophosphate disodium salt hydrate 

HGF          Hepatocyte growth factor 

IBMX          3-isobutyl-1-methylxanthine 

IDO          Indoleamine-pyrrole 2,3-dioxygenase 

IGF-1          Insulin-like growth factor – 1 

IL-1β          Interleukin 1 beta 

iPSCs          Induced multipotent stem cells 

iNOS          Inducible nitric oxide synthase 

MSCs          Mesenchymal stem cells 

NMR          Nuclear magnetic resonance 

MMP-2          Matrix metalloproteinase 2 

MT1-MMP         Membrane type 1 matrix metalloproteinase 2 

PBS          Phosphate buffer saline  

PDMS          Poly (dimethyl siloxane) 

PGE2          Prostaglandin E2 

PDGF          Platelet-derived gr2owth factor 



 

iv 

PIGF          Placental growth factor 

PS           Polystyrene 

PVA          Poly (vinyl alcohol) 

RUNX2          Runt-related transcription factor 2 

SMA          Smooth muscle actin 

TCPS          Tissue culture polystyrene 

TGF-β          Transforming growth factor-β 

TIMP          Tissue inhibitor of metalloproteinase 

TNF-α          Tumor necrosis factor alpha 

VEGF-A         Vascular endothelial growth factor-A 



General introduction 

1 

 

 

Chapter 1  

 

General introduction 

 

1.1 Mesenchymal stem cells 

Mesenchymal stem cells (MSCs) are a kind of unspecialized adult stem cells with expression of typical stem 

cell surface markers including CD44 (cell-surface glycoprotein), CD73 (5’-nucleotidase), CD90 (Thy1), CD105 

(endoglin), CD106 (vascular cell adhesion protein 1, VCAM-1) and STRO-1 and lacking of hematopoietic markers 

like CD11b (integrin alpha M), CD19 (B-lymphocyte antigen), CD34 (transmembrane phosphoglycoprotein protein) 

and CD45 (protein tyrosine phosphatase, receptor type, C) [1]. Based on many attractive advantages, MSCs have 

tremendous potentials in the development of regenerative medicine and numerous diseases treatment [2]. They can 

be easily isolated from adipose tissue, bone marrow, and peripheral blood [3] and rapidly expanded in vitro with the 

maintenance of multipotency [4]. They are demonstrated to be able to differentiate into osteoblast [5], myocytes [6], 

chondrocytes [7] and adipocytes [8]. Additionally, MSCs also possess the ability to migrate into injured, 

inflammation or tumor site without suffering from the immune rejections [9]. Beneficial from these properties, 

MSCs are widely applied in tissue engineering and cell-based gene therapy. Therefore, it is extreme valuable for 

investigation of MSC functions regulation. 

Figure 1.1 Multipotency of mesenchymal stem cells (MSCs) 
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1.1.1 MSCs in tissue engineering 

Tissue engineering is a field that focuses on repairing or regeneration of physically or disease injured tissues 

through integrated application of cells, materials and biological factors [10]. As one of the essential components in 

tissue engineering, cells are the source for the new tissues or organs formation [11]. Various kinds of cells could be 

applied as the cell source for tissue engineering [12]. All of them are summarized to somatic cells and stem cells. 

At the primary stage of tissue engineering development, the somatic cells are commonly applied for the recreation 

of injured tissues. For example, the autologous chondrocytes are successfully been applied to repair the damaged 

cartilage [13] while the fibroblasts and their extracellular matrix (ECM) are the attractive cell source and induction 

factor for skin repairment [14]. However, the autologous somatic cells from injured sites are always insufficient to 

be harvested and the diseased somatic cells are unable to be expanded in vitro. In another words, the autologous 

somatic cells limite the further development of damaged or pathological tissues repairment [15].  

Therefore, the stem cells including embryonic stem cells (ESCs), adult stem cells (ASCs) and induced 

multipotent stem cells (iPSCs) are applied to substitute the autologous somatic cells for tissue engineering [16]. The 

stem cell is an umbrella term for series cells with the ability of differentiation [17]. Due to the limited source and 

ethics argument of ESCs [18] and limited production efficiency of iPSCs [19], ASCs are most widely applied in the 

recreation of tissues or organs. As one of the ASCs, MSCs are famous for their multipotency to develop into various 

cell lineages under different biochemical or biophysical stimuli [3] (Figure 1.1). Benefitted from the multipotency, 

they are subsequently been applied in repairment of adipose tissue [8], bone [20], cartilage [21], vascular [22] and 

muscle [6]. Among them, the adipogenic, osteogenic and myogenic differentiation of MSCs are most widely 

analyzed and applied in the tissue engineering. The MSCs proceed the osteogenesis with the occurrence of 

dexamethasone (DEX) and β-glycerophosphate (GP) [23]. The activity of alkaline phosphatase (ALP) and calcium 

deposition are commonly determined to indicate the osteogenesis level of MSCs [24]. The adipogenesis of MSCs 

is stimulated by insulin [25], DEX [26] and 3-isobutyl-1-methylxanthine (IBMX) [27]. The occurrence of lipid 

vacuoles in cytoplasm is demonstrated as the striking evidence for MSCs directed into adipocyte lineage [8]. The 

myogenesis of MSCs is related to generation of skeletal muscle cells [28] and cardiomyocytes [29]. It is stimulated 

by TGF-β1 (transforming growth factor beta 1) [30] and monitored by the level of the smooth muscle actin (SMA) 

and calponin expression [28]. Under stimuli of β-mercaptoethanol, MSCs are able to change to neuronal phenotype 

with expressing neuron-specific marker [31]. Additionally, MSCs also have some other advantages that they can be 

easily isolated from various sources and rapidly expanded in vitro.  

MSCs attract tremendous attention in tissue engineering based on their multipotency and self-renewability. 

However, there are still many urgent issues of applications in tissue engineering need to be settled. The primary task 

Figure 1.2 Self-renewability and multipotency of MSCs. 
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for development of new tissues or organs from MSCs is how to induce and manipulate them into a specific cell 

lineage and further develop to functional mature tissues or organs. Although some biochemical and biophysical 

factors are revealed to be efficient in regulation of MSCs commitment, the influence of some certain factors are still 

necessary to be clarified. Additionally, the differentiation of MSCs is well-recognized as a reversible process [32-

34]. Therefore, after the in vitro differentiated MSCs transplant into patient’s body for tissue repairment, their ability 

of differentiated phenotype maintenance is limited by the insufficient chemical induction factors [35]. Additionally, 

the critical role of cell morphology in regulation of MSCs differentiations have been demonstrated [36, 37]. 

However, the influence of some kinds of cell morphology in regulation of MSCs differentiations is still confusing 

with each other. 

1.1.2 MSCs in cell-based gene therapy 

In contrast to the traditional therapeutic interventions such as physical surgery or chemical medicine, gene 

therapy is a novel technique that delivers the exogeneous functional gene into human cells for diseases treatment 

[38]. Nowadays, human healthy are threatened by a variety of diseases and tissue defects. Gene therapy has been 

widely applied for treatment of gene defects related diseases including cystic fibrosis [39], hemophilia [40], 

muscular dystrophy [41] and sickle cell anemia [42]. In particular, the genetically modified MSCs also provide a 

promising approach for the treatment of diabetes [43], obesity [44] or inflammatory diseases [45].  

During recent years, MSCs become an attractive cell vector for gene therapy since they are able to initially 

migrate into some specific regions in the human body. For instance, MSCs are showing the significant potential in 

wound healing and able to migrate into injury and inflammation sites [46]. In addition, after activated by liver cancer 

cells secreted epithelial cell adhesion cell molecular, MSCs are also able to migrate to liver tumor site [47]. 

Additionally, with the occurrence of breast cancer cells secreted monocyte chemotactic protein-1, MSCs are able to 

migrate into breast tumor sites [48].  

Furthermore, based on numerous secreted functional biomolecules MSCs have wide immunoregulatory 

properties that make them able to avoid the immune rejection during gene therapy [49]. Firstly, MSCs are 

hypoimmunogenic with lack of expression of major histocompatibility complex (MHC) class II proteins [50]. 

Additionally, MSCs are efficient in preventing T cells activation through regulation of dendritic cells functions [51]. 

Simultaneously, MSCs are able to secrete some soluble factors including TGF-β [52], hepatocyte growth factor 

(HGF) [53], prostaglandin E2 (PGE2) [54], indoleamine-pyrrole 2,3-dioxygenase (IDO) [55] and inducible nitric 

oxide synthase (iNOS) [56] for immunosuppression. 

Figure 1.3 Directional migration of mesenchymal stem cells. 
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Furthermore, the genetically modified MSCs have board applications in diseases treatment. The superoxide 

dismutase-2 (SOD-2) overexpressed MSCs are efficient in the treatment of type 2 diabetes [44]. Interferon beta 

(INF-β) [57], TNF-related apoptosis-inducing ligand (TRAIL) [58] or pigment epithelium-derived factor (PEDF) 

[59] upregulated MSCs are effective in inhibition of tumor growth. The neurodegenerative diseases could be treated 

by transgenic MSCs with modification of insulin-like growth factor -1 (IGF-1) [60]. The placental growth factor 

(PIGF) gene-modified MSCs are beneficial for the treatment of cerebral ischemia [61]. 

Additionally, since the MSCs differentiation can be enhanced by some specific kind of exogenous gene, the 

MSCs based gene therapy is also applied in tissue regeneration. The osteogenesis of MSCs is promoted by 

overexpressed runt-related transcription factor 2 (RUNX2) [62], bone morphogenetic protein 2 (BMP-2) [63]. The 

overexpressed TGF-β is beneficial for chondrogenic differentiation of MSCs [64]. 

Even the MSCs owning many advantages to be the cell vector in gene therapy, there are still many obstacles 

limit their board applications. The major problem is the challenges in genetic modification of MSCs. Since they are 

a kind of typical difficult-to-transfect cells [65] with the low viability and transfection efficiency after transfection 

[66, 67], MSCs are very difficult to be transfected. Nowadays, many advanced techniques are developed to improve 

the transfection efficiency of MSCs, but all of them still have their own disadvantages. A novel method in regulation 

of MSCs transfection is necessary for the application of MSCs based gene therapy. 

1.2 Factors in regulation of MSC functions 

To broaden the applications of MSCs in tissue engineering and gene therapy, some obstacles including 

determination of differentiation direction, maintaining differentiated phenotype and improving MSCs transfection 

efficiency should be overcome. Therefore, the regulation of MSC functions and behavior is necessary for 

development of tissue engineering and gene therapy techniques. In vivo microenvironment, MSCs are affected by 

various functional factors including biochemical factors and biophysical factors from extracellular matrix (ECM) 

or adjacent cells (Figure 1.4). Furthermore, the cell morphology is demonstrated as another critical factor in the 

regulation of MSC functions and behavior recently. 

Figure 1.4 In vivo microenvironment of MSCs. 
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1.2.1 Biochemical factors 

The biochemical factors including various kinds of cytokines and growth factors, different concentration of 

oxygen or nutrients and other functional proteins or molecules in vivo microenvironment are effective in the 

regulation of MSC functions and behavior.  

Previous researches demonstrated bone morphogenetic proteins (BMPs) are effective in the promotion of 

MSCs osteogenesis [68] and inhibition of MSCs proliferation [69]. For the generation of brown adipose tissues 

from MSCs, BMP-7 is necessary [70]. Epidermal growth factor (EGF) accelerates the proliferation of MSCs [71, 

72]. The fibroblast growth factor-2 (FGF-2) could enhance the chondrogenesis [73] and osteogenesis [74] of MSCs. 

Hepatocyte growth factor (HGF) and IGF-1 are also critical in the regulation of MSCs myogenesis [75]. IGF-1 can 

also enhance the migration of MSCs [76]. Platelet-derived growth factor (PDGF) is efficient in the regulation of 

vascular generation through enhancement of MSCs different into endothelial cells or vascular smooth muscle cells 

[77]. TGF-β1 can not only induce myogenic differentiation of MSCs [30] but also stimulate the MSCs proliferation 

[78]. TGF-β3 [7] can be applied to induce chondrogenic differentiation of MSCs. Vascular endothelial growth 

factor-A (VEGF-A) is able to induce MSC differentiation into endothelial cells [79].  

Some kinds of cytokines have also been applied to manipulate MSC functions and behavior. Stromal-cell 

derived factor 1 (SDF-1) is essential for MSCs migration [80]. Inflammatory cytokines including interleukin 1 beta 

(IL-1β) and tumor necrosis factor alpha (TNF-α) are effective to improve MSCs migration ability through up-

regulation of matrix metalloproteinase 2 (MMP-2), membrane type 1 MMP (MT1-MMP), tissue inhibitor of 

metalloproteinase 1 (TIMP-1), and tissue inhibitor of metalloproteinase 2 (TIMP-2) [81]. Interferons c (IFN-c) [82] 

and interleukin 17 receptor A (IL17RA) [83] are necessary for the immunosuppressive capacity of MSCs.  

Additionally, the other chemical molecules are also playing a critical role in regulation of MSC functions and 

behavior. The low concentration ascorbic acid is effective in the promotion of MSCs proliferation, while the high 

concentration of ascorbic acid leads to the MSCs differentiation into osteoblast [84]. The different concentration of 

glucose is critical in the different stage of MSCs chondrogenesis [85] and the low glucose concentration is beneficial 

for MSCs proliferation [86]. The insulin, DEX, and IBMX are essential in stimulation of MSCs adipogenesis [27]. 

The DEX, ascorbic acid, and GP are efficient in the regulation of MSCs osteogenesis [23]. Oxygen is another kind 

of important biochemical molecular for regulation of MSC functions and behavior. The low concentration of oxygen 

is benefited for the maintenance of genetic stability [87] and proliferation [88]. The ideal concentration of oxygen 

for chondrogenic differentiation of MSCs is 10 – 11% [89].  

1.2.2 Biophysical factors 

1.2.2.1 Biomechanical factors 

Besides the biochemical factors, the functions and behavior of MSCs are highly relevant with many different 

kinds of biomechanical factors including stiffness of ECM, gravity, hydrostatic pressure and shear stress in vivo 

microenvironment.  

Many researchers have investigated the influence of substrate stiffness on MSC functions and behavior by 

using stiffness tunable hydrogels. The low stiffness (soft) of the substrate is beneficial for chondrogenesis and 

adipogenesis of MSCs. On the other hand, the higher stiffness (hard) substrate promotes the osteogenesis and 

myogenesis of MSCs [90-92]. In addition, the mechanical stretch has a marked impact on MSCs proliferation [93]. 

The hypergravity having the positive functions on the myogenesis and osteogenesis of MSCs [94] while showing 

inhibitory functions on MSCs proliferation [95]. The unidirectional and isotropic directional gravity showing 
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significant influence in the regulation of MSCs actin stress fiber structure [96]. By using a bioprocessor, the 

hydrostatic pressure is demonstrated to be functional in the stimulation of MSCs proliferation and osteogenesis [97, 

98]. The shear stress is useful to induce the MSCs developed into osteoblast [99] and smooth muscle cells [100]. 

The cyclic strain promotes the myogenesis of MSCs [101]. Pulsatile biphasic electric current (BEC) contributes to 

the osteogenesis of MSCs [102]. Electrical stimuli can enhance the neurogenesis of MSCs [103]. The mechanical 

stimuli from structured substrate are efficient in the regulation of focal adhesion and cytoskeleton structure of MSCs 

[104] and favorable for enhancement of MSCs osteogenesis [105] and neurogenesis [106]. 

1.2.2.2 Cell morphology 

MSCs in vivo microenvironment are surrounded and constrained by ECM and adjacent cells. Subsequently, 

their morphology is determined by the different structure of the surrounding environment. In recent years, the 

importance of cell morphology in the regulation of MSC functions and behavior has been revealed through various 

structured substrates. By seeding cells on micro- or nano-structured surfaces, the morphology of cells is easily 

manipulated and the influence of cell morphology on MSC functions and behavior is also investigated. The larger 

spreading area or size of MSCs is beneficial for stimulation of osteogenesis [107, 108] and cellular uptake capacity 

for gold nanoparticles (AuNPs) of MSCs [109]. On the contrast, the smaller spreading area or cell size will facilitate 

the adipogenesis [108], chondrogenesis [110] and maintenance of stemness [111]. The highly elongated MSCs have 

the positive effects on the stimulation of osteogenesis and inhibition of adipogenesis of MSCs [112, 113]. The 

different curvature of MSCs with the same spreading area is also effective in regulation of osteogenic and adipogenic 

differentiation of MSCs [36, 112]. The highly alignment of MSCs is critical in the promotion of osteogenesis [114] 

and myogenesis [75]. After MSCs morphology is controlled by the grid-structured graphene oxide surfaces, the 

neurogenesis can be facilitated under electronic stimulation [103, 115]. 

1.3 Nano- and micro-patterning techniques 

As mentioned above, the biomechanical stimuli and cell morphology have been demonstrated as the critical 

factors in the regulation of MSC functions and behavior. Additionally, the cell morphology is manipulated by the 

ECM and adjacent cells in vivo microenvironment. Therefore, mimicking the different structure of ECM and 

adjacent cell by using nano- or micro-patterning techniques is necessary for manipulation of MSC functions and 

behavior. 

1.3.1 Micro-patterning techniques 

Micropatterning techniques including photolithography, micro-contact printing, plasma/laser ablation and 

stencil associated micropatterning are applied to prepare micropatterned surfaces to precisely control cell 

morphology (Figure 1. 5). Benefitted from the stability of prepared surfaces and simplicity of preparing process, 

photolithography has been well applied on the preparation of micropatterned surfaces. The photo-reactive cell 

adhesion repellent materials are firstly coated on a cell adhesive substrate and selectively been photo-irradiated 

through a micropatterned photomask. The photo-reactive materials below transparent regions of the photomask are 

activated and grafted on the cell adhesive substrate. On the contrast, the photo-reactive materials under opaque areas 

of the photomask are easily removed after washing process to expose cell adhesive substrate. After cell culture, cells 

adhere only to the exposed regions of substrate and cell morphology is easily confined by the different shape of 

micropatterned surfaces [20, 116]. The microcontact printing is also widely applied to prepare biomolecular printed 
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micropatterned surfaces. For instance, a micro-structured PDMS stamp is prepared through curving on a 

microfabricated silicon wafer. Then, the pre-prepared micro-structured stamp is coated by a thin layer of cell 

adhesive biomolecules through self-assembling and gently pressed on the substrate. After removal of stamp, the 

micropatterned biomolecular could be printed on the surface of substrate. The cells trend to adhere on the cell 

adhesive biomolecular coated parts on the substrate [117, 118]. Recently, an advanced micropatterning technique 

by using plasma or laser ablation has been developed to prepare complex structured micropatterned surfaces. A 

well-controlled laser beam or plasma through precise instruments is applied to selectively ablate the antifouling 

materials on the substrate. After incubated with cell adhesive molecules, they can deposit only on the exposed 

regions of the substrate for cell adhesion [119]. After repeating this process, several different kinds of proteins are 

coated at a different position in sequence [120]. The stencil associate micropatterning technique was also applied to 

prepare micropatterned surfaces. The micro-structured stencil is pre-prepared and attached on a rigid substrate. Then, 

the substrate and micro-structured stencil are immersed in the cell adhesive molecular solution or simply sprayed 

by the cell adhesive molecules. The micropatterned cell adhesive molecules on the substrate are harvested after the 

micro-structured stencil is peeled off from the substrate [121]. The micropatterning techniques are commonly 

applied to control cell morphology [122] through confinement of cell adhesion and spreading region. Furthermore, 

micropatterned surfaces are also applied to generate the different size of cell spheroids [123]. 

1.3.2 Nano-patterning techniques 

In vivo microenvironment includes both micro- and nano-structured components. Recently, researchers have 

developed some nanopatterning techniques to mimic the nanostructured components in vivo microenvironment and 

further manipulating the cell morphology or functions (Figure 1. 6). The simple and low-cost nanoimprinting 

method including thermoplastic nanoimprinting, photo nanoimprinting, and resist-free nanoimprinting are widely 

applied to prepare nanostructured surfaces. Briefly, a nanostructured mold is pre-prepared and impressed on a layer 

of polymer solution. After curing of the polymer through temperature changing, photoirradiation or drying, the mold 

will be peeled off to harvest the nanostructured surfaces [124]. The nanolithography is also developed to prepare 

nanopatterned surfaces. It is always consisting with photo-reactive photoresist. The photoresist is firstly coated on 

Figure 1. 5 Micropatterning techniques 
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the substrate and UV irradiated through a nanopatterned photomask. The unreacted photoresist is removed before 

etching process. After incubated with etching reagent, the exposed substrate is etched to generate the nanostructured 

substrate [125]. The electrospinning method is also applied to prepare nanofibers structured surfaces. When a high 

voltage is applied to a polymer solution on the needle of syringe, the polymer solution droplet tends to be elongated 

to generate nanofibers. A collector is set to recover the resulting polymer nanofibers. The structure and orientation 

of nanofibers can be adjusted by changing the voltage, a distance between needle and collector and the different 

shape of the collector [126-128]. The nanopatterned surfaces are always applied to inducing the unification of cell 

orientation, cell elongation and cell spreading through manipulation of focal adhesion (FA) and plasma membrane 

structures [126, 129, 130]. Besides controlling cell morphology, nano-structured surfaces containing nanowires and 

nanopillars are also applied to regulating cell migration and direct delivery [131] of exogeneous for improvement 

transfection [132] through stretching on the cytoplasm membrane. 

1.4 Issues and objectives 

As mentioned above, MSCs have many advantages in the development of tissue engineering, regenerative 

medicine, and cell-based gene therapy. Thus, manipulation of MSC functions and behavior is necessary for further 

broader their applications. The present research focuses on the influence of biophysical cues, especially for the cell 

morphology, in the regulation of MSC functions and behavior. In recent years, many researches have revealed the 

importance of various cell morphology in the regulation of MSC functions. However, some elusive issues in the 

relationship between cell morphology and MSCs are still not clear and need to be clarified. 

1.4.1 Issues of MSCs morphology in differentiation 

It is demonstrated that the differentiated MSCs could return to unspecialized state or transdifferentiate into 

Figure 1. 6 Nano-patterning techniques 
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another cell linage after withdrawing or changing induction factors [33, 34, 89, 133]. The differentiation of MSCs 

is regarded as a strongly reversible process [133]. As a result, the differentiated MSCs are very difficult to maintain 

their differentiated phenotypes without sufficient biochemical stimuli [134]. It is a challenge to keep the 

differentiated MSCs developing into the matured functional tissues or organs after transplantation. The significant 

influence of biochemical stimuli in the induction of MSCs differentiation and maintenance of differentiation 

phenotype has already been revealed over decades. The conventional solutions in maintaining differentiated 

phenotype in vivo are based on the sustained release systems or materials [135-137]. However, the functions of cell 

morphology are still not clear. The clear role of cell morphology in the maintenance of MSCs differentiated 

phenotype will provide a new sight in the design and development of biomaterials for tissue regeneration. 

Based on previous researches, the effective functions of cell alignment and elongation in the regulation of 

MSCs differentiation have already been demonstrated [6, 22, 114]. The cell orientation and elongation are controlled 

by the manipulation of FA structure through nano-patterned surfaces and confinement of cell adhesion area through 

micropatterned surfaces. However, by using nano- or micro-patterned surfaces separately, the unified cell 

orientation is accompanied by a high cell elongation. Therefore, the different functions of cell alignment and aspect 

ratio in regulation of MSCs differentiation are still not clear. 

1.4.2 Issues of MSCs morphology in transfection 

Because of their migratory capacity, immunosuppression ability, and potential in diseases treatment, MSCs are an  

attractive carrier for gene therapy. However, MSCs are very difficult to be genetically modified. Nowadays, many 

transfection techniques including various materials-based transfection, physical-based transfection, and virus-based 

transfection have been developed to improve gene transfection efficiency into MSCs. However, all of them have 

their own disadvantages. The cationic materials-based transfection related with low transfection efficiency [65]. The 

physical-based transfection through direct delivery of plasmid into mammalian cells are often resulted in low cell 

viability [138]. Although virus-based transfection could get high transfection efficiency, the risk of oncogenesis 

limits their board applications in clinical treatments [139]. All of these techniques are focus on the exogenous gene 

delivery method and a little attention has been paid to the effects of cell functions or behavior on transfection 

efficiency. In addition, the role of cell morphology in MSCs transfection is still not clear.  

1.4.3 Objectives and outline 

In this study, the role of MSCs morphology in the regulation of their differentiated phenotype maintenance, 

differentiation and transfection was investigated by using nano- and micro-patterned surfaces prepared through 

nano-imprinting and photolithography. The azidophenyl-derivatized poly (vinyl alcohol) (AzPhPVA) was 

synthesized through Steglich esterification between hydroxy groups of poly (vinyl alcohol) (PVA) and carboxy 

groups of azidobenzoic acid to prepare micropatterned surface. The polystyrene (PS) nano-grooved surfaces were 

prepared through nano-imprinting method and applied to prepare nano-micro hybrid surfaces with using of photo-

reactive AzPhPVA. MSCs were cultured on the different kinds of the surfaces to investigate the effects of cell 

morphology on MSC functions and behavior. The detailed outline is shown as below.  

Chapter 2 describes the role of cell size in MSCs osteogenic commitment and differentiated phenotype 

maintenance. MSCs were cultured on micropatterned surfaces with micro-dots containing different diameter to 

control the size of MSCs. The synthesis process and characterization of photo-reactive AzPhPVA were introduced 

in this chapter. The micropatterned MSCs were cultured in osteogenic induction media for different periods to clarify 

the role of cell size in osteogenic commitment. Then, the induction medium was replaced and the differentiated 
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micropatterned MSCs were further cultured in basal medium to check the function of cell size in MSCs osteogenic 

differentiated phenotype maintenance without biochemical stimuli. The stemness marker CD105, early osteogenesis 

marker ALP, and late osteogenesis marker calcium deposition were analyzed to characterize MSCs phenotype at 

different time points.  

Chapter 3 introduces the influence of cell morphology on gene transfection efficiency in MSCs. MSCs were 

cultured on micropatterned surfaces containing micro-dots with different diameter to control cell size and micro-

ellipses with different aspect ratio and same area to control cell elongation. The micropatterned MSCs were 

transfected with plasmid DNA encoding green fluorescence protein (GFP) to check the influence of cell morphology 

on gene transfection efficiency. The relationship between cell morphology and cellular uptake capacity, DNA 

synthesis activity and cytoskeleton organization were also investigated to clarify the possible mechanism. 

Chapter 4 introduces a new method for preparation of nano-micro hybrid pattern surfaces through nano-

imprinting and photolithography. The different orientation of PS nanogrooves and different spacing of PVA 

microstripes were prepared to control MSCs alignment and elongation simultaneously. The cell alignment, aspect 

ratio and structure of focal adhesion were controlled to investigate the different role of cell alignment and elongation 

in the regulation of MSCs myogenesis, osteogenesis and adipogenesis. 

Finally, Chapter 5 provides the concluding remarks and future prospects of this study. 
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Chapter 2 

 

Preparation of circular micro-patterns having different size for 

investigation of cell size influences on MSCs osteogenic commitment 

and phenotype maintenance 

 

2.1 Summary 

Osteogenic differentiation and commitment of MSCs is a complex process which is induced and regulated by 

various biological factors and biophysical cues. Although cell size, as one of the biophysical cues, plays a critical 

role on regulation of osteogenic differentiation of MSCs, its influence on maintenance of osteogenically 

differentiated phenotype of MSCs is still not clear. In this study, PVA was micro-patterned on TCPS surface and the 

micro-patterned surfaces were applied for manipulate MSCs size. The effects of cell size on osteogenic commitment 

and maintenance of differentiated phenotype of MSCs was investigated. Large MSCs showed higher degree of 

osteogenic differentiation, slower losing of osteogenically differentiated phenotype and slower recovery of stem 

cell marker than did small MSCs. Therefore, large cell size was beneficial for osteogenic differentiation and 

maintenance of osteogenically differentiated phenotype of MSCs. 

2.2 Introduction 

Regeneration of deficient or injured tissues through tissue engineering and regenerative medicine approaches 

has been well developed for several decades [1]. Stem cells are attractive cell sources for these approaches. In 

particular, MSCs which possess self-renewability and multipotency to differentiate into osteoblast [2], smooth 

muscle cells [3-5], chondrocytes [6-8] and adipocytes [9-11] have been demonstrated as one of the very useful cell 

sources [12, 13]. The challenging issue for utilization of MSCs for tissue engineering and regenerative medicine is 

how to control stem cell differentiate into desirable somatic cells and how to maintain the differentiated phenotype 

after transplantation. Osteogenic differentiation and osteogenesis of MSCs have been broadly investigated by using 

various osteogenic induction factors under different conditions.  

Osteogenic induction factors including dexamethasone, BMP and transforming growth factor have been 

frequently used for osteogenic differentiation and osteogenesis of MSCs. However, osteogenic differentiation and 

commitment of MSCs are extremely complicate processes that may be affected by various factors [14, 15]. Except 

these biological induction factors, biophysical cues have also been reported to play a critical role on stem cell 

differentiation [16, 17]. Combination of biological factors and biophysical cues has been proposed to exhibit their 
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synergistic effects on promotion of stem cell differentiation. Cell size is one of the typical biophysical cues, which 

has been extensively studied for controlling stem cell functions. Cell size has shown regulative functions on cell 

proliferation [18], migration [19-21], differentiation [9] and reprogramming [22]. Cell morphology  and size can 

be precisely controlled by using a variety of micro-patterning techniques such as microcontact printing , 

photolithography [23] and stencil patterning [24]. 

Although many researches have elucidated the influence of biophysical cues on stem cell differentiation, their 

influence on maintaining the differentiated phenotype of stem cells after removal of biological induction factors is 

unclear. Maintenance of differentiated states after stem cell differentiation is a critical issue for functional tissue 

regeneration because stem cell differentiation has been shown as a reversible process [25] and it may be difficult to 

maintain the differentiated or committed phenotype after removal of biological induction factors [26]. Disclosure 

of morphological influence of stem cells on maintenance of the phenotype of osteogenically differentiated MSCs is 

strongly anticipated. Therefore, in this study, micro-patterned surfaces were prepared through UV-lithography and 

used for culture of MSCs to manipulate cell spreading area and further investigate the influence of cell size on 

osteogenic commitment and maintenance of the osteogenically differentiated phenotype of MSCs. 

2.3 Materials & methods 

2.2.1 Synthesis and characterization of photo-reactive AzPhPVA 

Photo-reactive AzPhPVA was synthesized through Steglich esterification (Figure 2.1a) reaction 

between carboxyl groups of azidobenzoic acid and hydroxyl groups of PVA [27]. Briefly, 10 mL 1.13 mM 

dicyclohexylcarbodiimide (Watanabe Chemical Industries, Ltd., Japan) solution in dimethyl sulfoxide 

Figure 2.1 Preparation of micro-patterned surfaces through UV lithography by using photo-reactive AzPhPVA. (a) 

Synthesis of photo-reactive PVA through Steglich esterification. (b) Preparation scheme of micro-patterned surfaces 

through UV-lithography. 
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(DMSO), 10 mL 0.113 mM 4-pyrrolidinpyridine solution in DMSO and 40 mL 2.26 mM PVA solution in 

DMSO were sequentially dropwise added into 25 mL 1.13 mM 4-azidobenzoic acid (Tokyo Chemical 

Industry Co, Ltd., Japan) solution in DMSO. Reaction mixture was filtered after being stirred at room 

temperature in dark for 24h. The filtrate was harvested and dropwise added into methanol. 10 mL DMSO 

was applied to dissolve the precipitant again. Then, the DMSO solution was dropwise added into methanol 

to purify the synthesized photo-reactive PVA. The purified precipitate was dissolved in Milli-Q water to 

prepare the aqueous solution of AzPhPVA at a concentration for following experiments. The AzPhPVA 

aqueous solutions were characterized by ultraviolet-visible (UV-Vis) absorbance analysis (JASCO V-660 

Spectrophotometer). The UV spectra of azidobenzoic acid, PVA and the mixture of PVA and azidobenzoic 

acid were measured to confirm the reaction between PVA and azidobenzoic acid. The AzPhPVA aqueous 

solutions were freeze dried and re-dissolved in deuterium oxide (D2O, Sigma-Aldrich Co. LLC., USA). 

The AzPhPVA D2O solutions were characterized by 1H-NMR to calculate the grafting efficiency. 

2.2.2 Preparation and characterization of micro-patterns 

Photo-reactive AzPhPVA was used to prepare PVA micro-patterns on tissue culture polystyrene (TCPS) discs 

through photo-lithography. TCPS discs were cut from FalconTM tissue culture treated flask. 200 μL of 0.3 g/L 

AzPhPVA aqueous solution was dropped on each TCPS discs. After the AzPhPVA aqueous solution was air-dried 

in room temperature under dark, the AzPhPVA-coated TCPS discs were irradiated by ultraviolet light (UV, Funa-

UV-linker FS-1500, 0.25 J/cm2) through a micro-patterned photomask (Figure 2.1b). The photomask was a quartz 

wafer containing non-transparent micro-dots with a diameter of 20, 40, 60 and 80 μm , respectively. After UV 

irradiation, the unreacted AzPhPVA molecules below non-transparent micro-dots of the photomask were completely 

removed after ultrasonic washing in Milli-Q water. The micro-patterned discs were sterilized by immersing in 70% 

ethanol aqueous solution for 20 min and rinsed by aseptic Milli-Q water before cell culture. 

Figure 2.2 UV spectra of AzPhPVA, azidobenzoic acid, PVA and mixture of PVA and azidobenzoic acid. 
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The micro-patterned surfaces were observed by a phase-contrast microscope (BX51, Olympus, Tokyo, Japan) 

and characterized by an MFP-3D-BIO atomic force microscope (AFM, Asylum Research Corporation, Santa 

Barbara, CA). For AFM characterization, a cantilever with a nitride tip was used. Contact mode in Milli-Q water 

was performed during scanning process. 

2.2.3 Cell culture 

Human bone marrow-derived mesenchymal stem cells (MSCs) were purchased from Lonza Walkersville, Inc 

at passage 2. Cell colony from single MSCs was used for the following cell culture experiments. Cell colony of 

MSCs was obtained by a previously reported method [28]. Briefly, less than 30 cells were seeded onto a cell culture 

dish (d = 10 cm) and proliferated in MSCGMTM medium for 3 weeks to obtain cell colonies. Cell colonies were 

collected and subcultured in 25 cm2 TCPS flask for another 3 weeks to obtain the homogeneous cell mass. The 

purified MSCs at passage 4 were used for following experiments. The sterilized micro-patterned discs were placed 

in 6-well TCPS plates and added with 3 mL MSCGMTM per well. Glass rings with 1.5 cm inner diameter were 

placed on each micro-patterned disc to constrain the seeded cells on the micro-patterns. Cell suspension including 

around 5000 cells was added inner each glass ring. Glass rings were removed after the cells were cultured on the 

micro-patterned surfaces in a CO2 incubator at 37 °C for 6 hours. After another 18 hours culture, cell attachment on 

the micro-patterned surfaces was observed by a phase-contrast microscope. 

After MSCs were cultured on the micro-patterned surfaces in MSCGMTM for 24 hours, the culture medium 

was replaced by osteogenic induction medium (complete DMEM serum medium supplied with 100 nM DEX  and 

10 mM GP. The osteogenic induction culture was continued for 3 days, 1 week, 2 weeks and 3 weeks. To investigate 

if the osteogenically differentiated cells could maintain their differentiated phenotype, the osteogenic induction 

Figure 2.3 1H-NMR spectrum of synthesized AzPhPVA 
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medium was changed to proliferation medium without osteogenic induction factors. After osteogenic induction 

culture for designated time, the osteogenic induction medium was replaced to proliferation medium MSCGMTM and 

the cells were further cultured for 1 week or 2 weeks under 37 °C and 5% CO2 in a humidified incubator. The 

medium was refreshed every 3 days. 

2.2.4 Fluorescence staining of actin and nuclei 

After the MSCs were cultured on micro-patterned surfaces in proliferation medium for 1 day, the cells were 

fixed by paraformaldehyde aqueous solution. The fixed samples were permeabilized by TritonTM X-100 and blocked 

by immersing in BSA aqueous solution in room temperature. Then, the cells were stained by Alexa Fluor-488® 

phalloidin in room temperature under dark for 20 minutes. After being rinsed by PBS solution, the samples were air 

dried in room temperature and mounted with VECTASHEILD®. Fluorescence images of each sample were captured 

through an Olympus fluorescence microscope. 

2.2.5 Immunofluorescence staining of stem cell marker 

A representative marker of MSCs, CD105 (endoglin), was stained after MSCs were cultured on the micro-

patterned surfaces at the above-mentioned conditions. Samples were fixed by paraformaldehyde aqueous solution 

Figure 2.4 Characterization of PVA/TCPS micro-patterned surfaces. Representative photomicrographs of micro-

patterned photomask. Scale bar: 100 μm. (b) Representative photomicrographs of micro-patterned surfaces. Scale 

bar: 100 μm. (c) Representative height images (up) and section images (down) of micro-patterned surfaces 

characterized by AFM. 
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and blocked by BSA and glycine for 30 minutes in room temperature. Samples were incubated with a primary 

CD105 antibody (Invitrogen, CA, USA) aqueous solution diluted at 1:500 in 1% BSA. After being rinsed with PBS, 

the samples were incubated with an Alexa Fluor-488® conjugated goat anti-mouse IgG antibody (Invitrogen, CA, 

USA) at a dilution ratio of 1:1000 in PBS in room temperature. After being rinsed for by PBS and dried in room 

temperature under dark, the samples were mounted by VECTASHEILD® (with DAPI, Vector Laboratories, Inc.). 

The fluorescent images of stained cells were obtained through a fluorescence Olympus BX51 microscope at a fixed 

parameter (5s, ISO:200). The corrected total fluorescence (CTFCell) of CD105 was calculated through an ImageJ 

software. The area (ACell) and integrated intensity (ICell) of each micro-patterned cell were measured. The area 

(ABackground) and integrated intensity (IBackground) of micro-patterns without cells were also measured and set as 

background. The CTF of CD105 in micro-patterned cells was calculated as CTFCell = (ICell/ACell – IBackground/ABackground) 

× ACell. The CTF of micro-patterned cells which were only incubated with secondary antibody (Alexa Fluor-488® 

conjugated goat anti-mouse IgG antibody) without incubation with first antibody were calculated and set as a control 

group (CTFControl). CD105 positive cells were defined as the cells having 50 times higher fluorescence intensity than 

control group (CTFCell/CTFControl > 50). The ratio of CD105 positive cell number to the total cell number was 

calculated to evaluate the stemness of MSCs. More than 150 cells from 3 independent experiments were used for 

the analysis. 

2.2.6 Alkaline phosphatase and Alizarin Red S staining 

Osteogenic differentiation of MSCs on the micro-patterned surfaces during osteogenic induction culture was 

evaluated by alkaline phosphatase (ALP) staining and alizarin red S (ARS) staining. After MSCs were culture for 

designated time, the cells were rinsed with pre-warmed PBS solution for twice and fixed with 4% cold 

paraformaldehyde aqueous solution and rinsed with PBS. Then, the fixed samples were immersed in staining 

solution of ALP or ARS in room temperature for 10 minutes. ALP staining solution was composed of 56 mM 2-

amino-2-methyl-1,3-propanediol (Sigma-Aldrich Co. LLC., USA), 0.1 wt% naphthol AS-MX phosphate (Sigma-

Aldrich Co. LLC., USA) and 0.1 wt% Fast Blue RR salt (Sigma-Aldrich Co. LLC., USA). ARS staining solution 

was 0.1% ARS solution. Optical images of the stained cells were obtained through a phase-contrast microscope. 

The optical images were analyzed by Color Deconvolution plugin of ImageJ to discriminate ALP positive and 

negative cells. In the original optical images, color-specific vectors were assigned as purple and brown channels. 

The percentage of ALP or ARS positively stained cells was calculated. More than 150 cells from 3 independent 

experiments were analyzed. 

2.2.7 Statistical analysis 

The quantitative data are reported as means ± standard deviation (SD). The significant difference was 

confirmed through multiple comparisons of one-way ANOVA. The significant difference was defined when p < 

0.05. 

2.3 Result 

2.3.1 Characterization of synthesized photo-reactive AzPhPVA 

The photo-reactive AzPhPVA was synthesized according to the previous articles [27]. The photo-reactive azido 



Maintenance of osteogenic differentiated phenotype 

25 

groups were introduced into PVA through the reaction between carboxyl groups of azidobenzoic acid and hydroxyl 

groups of PVA. Compared with PVA absorbance curve, the absorbance peak at 275 nm in AzPhPVA absorbance 

curve indicated the benzenoid structure was included in the AzPhPVA aqueous solution (Figure 2.2). To confirm the 

azidophenyl groups were successfully introduced into the PVA through the esterification, the azidobenzoic acid 

aqueous solution and the mixture of PVA and azidobenzoic acid aqueous solution were measured. The benzenoid 

structure absorbance peak in the curves of unreacted azidobenzoic acid was appeared at 270 nm. The bathochromic 

shift of benzenoid absorbance peak was related with the configuration change of benzoic acid [29]. The percentage 

of azidophenyl groups in AzPhPVA was calculated through spectrum of 1H-NMR (Figure 2.3). The peaks between 

7.0 and 8.0 ppm represented the protons of benzenoid structure. The peaks at 1.4 and 3.8 ppm represented the 

methylene and methylidyne protons on PVA, respectively. The grafting degree was calculated through integration 

of each peak.  

2.3.2 Preparation and characterization of micro-patterned surfaces 

As shown at Figure 2.1b, the PVA/TCPS micro-patterned surfaces were prepared through UV-lithography. A 

thin layer of photo-reactive AzPhPVA was firstly coated on cell adhesive TCPS discs. The AzPhPVA-coated TCPS 

discs were UV irradiated through a transparent quartz photomask with non-transparent micro-patterns. After UV 

irradiation, the AzPhPVA molecules below transparent regions of the photomask were grafted on the TCPS disc 

surface. The AzPhPVA molecules below non-transparent micro-patterns of the photomask were easily stripped from 

the TCPS surfaces after washing procedure. After washing, micro-patterned TCSP surfaces were obtained. 

Microdots of cell adhesive TCPS were surrounded with cell repellent PVA layer. The circular micro-dot patterns 

prepared with a photomask having a micro-dot diameter of 20, 40, 60 and 80 μm showed the same micro-pattern 

structure as that of the photomask (Figure 2.4 b, Figure 2.4 c). As characterized by AFM, the micro-patterned micro-

dots had a diameter of 20.2 ± 0.5, 41.3 ± 0.4, 60.7 ± 1.4 and 82.1 ± 1.4 μm , respectively. The area of each type of 

circular micro-patterns was 321.5 ± 17.2, 1338.6 ± 23.0, 2894.0 ± 134.9 and 5294.4 ± 184.7 μm2 , respectively. The 

depth of PVA layer in the four types of micro-dot patterns was 64.6 ± 3.1, 58.4 ± 3.4, 58.3 ± 3.2 and 60.6 ± 4.9 nm , 

Figure 2.5 Cell adhesion and morphology on micro-patterned surfaces. (a) Representative photomicrographs of 

MSCs adhered on micro-patterned surfaces after culture in proliferation medium for 1 day. (b) Representative images 

of actin (green) and nuclei (blue) staining images of MSCs shown in (a). 
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respectively. All the micro-dot patterns had almost the same thickness of surrounding PVA layer, which could protect 

protein adhesion and protect cell adhesion. Cells could only adhere on the TCPS micro-dots to form micro-patterned 

cells. 

2.3.3 Cell morphology and actin filaments structure 

The PVA/TCPS circular micro-patterns were used for culture of MSCs to control cell size and spreading area. 

Figure 2.6 Representative images of CD105 immunofluorescence staining of (a) Micro-patterned MSCs cultured 

in osteogenic induction medium for 3 days (3d) and re-cultured in proliferation medium for 1 (3d + 1w) and 2 (3d 

+ 2w) weeks; (b) Micro-patterned MSCs cultured in osteogenic induction medium for 1 week (1w) and re-cultured 

in proliferation medium for 1 (1w + 1w) and 2 (1w + 2w) weeks; (c) Micro-patterned MSCs cultured in osteogenic 

induction medium for 2 weeks (2w) and re-cultured in proliferation medium for 1 (2w + 1w) and 2 (2w + 2w) 

weeks. (d) Micro-patterned MSCs cultured in osteogenic induction medium for 3 weeks (3w) and re-cultured in 

proliferation medium for 1 (1w + 1w) and 2 (1w + 2w) weeks. Scale bar: 50 μm. 
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MSCs adhered on the TCPS micro-dots of the micro-patterned surfaces, not on the PVA-grafted regions (Figure 2.5 

a). MSCs on the small TCPS micro-dots having a diameter of 20 μm did not spread, while MSCs on the large TCPS 

micro-dots with 40, 60 and 80 μm in diameter spread along the micro-dots. The cells showed the same circular 

morphology as that of the micro-dots. The spreading area was almost the same as that of the micro-dots. Therefore, 

cell morphology and size were precisely controlled by the micro-patterned surfaces. Staining of actin filaments and 

nuclei showed actin filament structure was different when the size of micro-dots was changed (Figure 2.5 b). The 

actin filaments of micro-patterned MSCs with a diameter of 20 μm showed random structure without clear alignment. 

When the spreading area of micro-patterned MSCs increased, alignment of actin filaments became more evident. 

The micro-patterned MSCs with a diameter of 80 μm had highly aligned actin filaments that were well assembled 

along the radial and concentric directions. 

2.3.4 Influence of cell size on CD105 expression 

CD105 is a representative marker of MSCs. CD105 expression was analyzed during cell culture to evaluate 

Figure 2.7 Percentage of CD105 positively stained micro-patterned MSCs. Cell culture condition was the same as 

that shown in Figure 2.6. Data are reported as mean ± SD, n = 3, *p < 0.01, **p < 0.001. # or ∆ represented p < 0.01 

or p < 0.001 in comparison between the respect percentage of CD105 positively stained MSCs and the other three 

groups with same cell spreading area and different cell culture conditions. 
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the stemness of MSCs. The micro-patterned MSCs cultured at different conditions were immunofluorescently 

stained with CD105 antibody. The representative images of immunofluorescence staining of CD105 of MSCs 

cultured in proliferation medium before osteogenic induction (without induction culture); cultured in osteogenesis 

differentiation medium for 3 days, 1, 2 and 3 weeks (osteogenic induction); cultured in osteogenesis differentiation 

medium for 3 days, 1, 2 and 3 weeks followed with culture in proliferation medium for 1 and 2 weeks (re-culture in 

proliferation medium after initial osteogenic induction) are shown in Figure 2.6. Nearly all of the micro-patterned 

MSCs’ CD105 was positively stained when they were cultured in proliferation medium before osteogenic induction 

culture. When MSCs were cultured in osteogenic induction medium, the fluorescence of CD105 staining became 

weak. When the culture medium was changed from osteogenic induction medium to proliferation medium after 

initial osteogenic induction culture for a certain period, the fluorescence intensity of stained CD105 slightly 

increased again. 

CD105 positive MSCs were counted from the immunofluorescent staining of CD105 and percentage of CD105 

positive MSCs was calculated to show CD105 expression level (Figure 2.7). After osteogenic induction culture for 

3 days, CD105 expression of MSCs having a diameter of 20 μm was at the same level as that of MSCs without 

induction culture. CD105 expression level of MSCs after induction culture decreased significantly when the size of 

MSCs increased. MSCs having a diameter of 80 μm expressed the least CD105. When the 3 day inducted MSCs 

were re-cultured in proliferation medium after osteogenic induction, CD1045 expression level increased and reached 

the initial level after 2 weeks re-culture. The rebound of CD105 expression was slower when the cells were larger. 

When the initial osteogenic induction culture time lasted for 1, 2 and 3 weeks, decrease of CD105 expression became 

more evident. Even for MSCs having a diameter of 20 μm, CD105 expression level of MSCs after osteogenic 

induction culture for 1, 2 and 3 weeks was significantly lower than that of MSCs without induction culture. When 

cell size was larger, decrease of CD105 expression level became more evident. When osteogenic induction period 

was longer than 2 weeks, almost no CD105 expression could be detected except for the cells having a diameter of 

20 μm. 

When the initially inducted MSCs were re-cultured in proliferation medium, expression level of CD105 

showed some rebound. The rebound degree was higher and quicker for smaller cells and shorter induction culture 

time. MSCs having a diameter of 80 μm showed the lowest expression of CD105 and slowest rebound. CD105 

expression recovery capacity of micro-patterned MSCs was weakened by the extended osteogenic induction. After 

MSCs were cultured in initial induction condition for 1, 2 and 3 weeks, the rebound of CD105 expression in cells 

with 60 and 80 μm in diameter were very limited and could not reach the level without initial induction. However, 

MSCs having a smaller diameter showed higher CD105 expression recovery capacity after re-culture in proliferation 

medium. In particular, CD105 expression of MSCs having a diameter of 20 μm could be totally recovered even after 

initial induction culture for 3 weeks 

2.3.5 Influence of cell size on ALP activity and calcium deposition 

ALP is a maker to indicate the osteogenic differentiation activity of MSCs. ALP staining of micro-patterned 

MSCs was conducted to analyze the early osteogenic differentiation at different time point. The ALP positively 

expressed cells were stained in purple and negatively stained cells appear in brown (Figure 2.9). ALP staining was 

not evident when cell size was small and osteogenic induction culture time was short, while it became evident when 

the cell size was large and induction time was extended. 

Percentage of ALP positively expressed cells was calculated from the images of ALP staining (Figure 2.9). 

After osteogenic induction culture for 3 days, ALP positive MSCs were not detected from the small MSCs having 

a diameter of 20 μm, while a small amount of ALP positive cells was detected in large MSCs. ALP positive MSCs 

cannot been observed when culture medium was changed to proliferation medium. ALP activity increased when 



Maintenance of osteogenic differentiated phenotype 

29 

osteogenic induction period was extended to 1 and 2 weeks. Compared with MSCs osteogenically induced for 2 

weeks, ALP activity of micro-patterned MSCs was slightly decreased after osteogenic induction culture for 3 weeks. 

ALP activity could decrease slowly when osteogenic differentiation proceeded to late stage. Among all the ALP 

activity results after initial osteogenic induction, larger MSCs showed higher ALP activity. Meanwhile, ALP activity 

decreased significantly when osteogenic induction medium was changed to proliferation medium. 

Calcium deposition is a mature marker of MSCs osteogenesis. Calcium deposition of micro-patterned MSCs 

was stained by ARS to further investigate their osteogenic differentiation. ARS positive MSCs appeared as red spots 

and ARS negative cells appeared in brown (Figure 2.10 a). Calcium deposition was not detected when osteogenic 

induction culture time was short (3 days and 1 week). Only after osteogenic induction culture for 2 weeks, calcium 

deposition was detected. More cells showed calcium deposition when osteogenic induction culture time became 

longer and cell size was larger. Percentage of ARS positive cells was calculated from the images of ARS staining 

(Figure 2.10 b). After osteogenic induction culture for 2 weeks, calcium deposition was detected in large MSCs 

having a diameter of 60 and 80 μm. More calcium deposition was observed after MSCs were osteogenically induced 

Figure 2.8 Representative images of ALP stained micro-patterned MSCs. Cell culture condition was same as that 

shown in Figure 2.6. Scale bar: 100 μm. 
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for 3 weeks. Percentage of ARS positive cells increased with the size of MSCs. When the initially inducted MSCs 

were re-cultured in proliferation medium, percentage of ARS positive cells was significantly decreased. 

2.4 Discussion 

PVA/TCPS micro-dots patterns were used for culture of MSCs to control cell size for investigation of cell size 

influence on osteogenic commitment and maintenance of differentiated phenotype of MSCs. Not only cell size 

influence on osteogenic differentiation of MSCs was analyzed, but also its influence on de-differentiation of the 

initially differentiated cells and re-expression of stem cell marker was investigated. After MSCs were cultured on 

the PVA/TCPS micro-patterned surfaces, the spreading area of MSCs was precisely manipulated and cell size was 

determined by the diameter of TCPS micro-dots. The cells had almost the same diameter as that of the micro-dots 

(20, 40, 60 and 80 μm). The well aligned and organized actin filaments presented in large MSCs indicated that actin 

polymerization was promoted by cell spreading (Figure 2.5 b). Well organized actin filaments can lead to high cell 

contractility [30] which is critical in regulation of osteogenic differentiation [27, 31] and stemness maintenance [28] 

of MSCs.  

Stemness and osteogenic commitment of MSCs on the micro-patterned surfaces were investigated by staining 

stem cell marker and osteogenic differentiation markers. CD105 is a surface marker to identify mesenchymal stem 

cells [32] and to evaluate their multipotency [33]. Expression level of CD105 on membrane surface of MSCs has 

been reported to be associated with the process of osteogenesis [34-36]. In this research, expression of CD105 was 

Figure 2.9 Percentage of ALP positively stained micro-patterned MSCs Cell culture condition was same as that 

shown in Figure 2.6. Data are reported as mean ± SD, n = 3, *p < 0.01, **p < 0.001.  
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used to evaluate the stemness of micro-patterned MSCs of different size during initial osteogenic induction culture 

and re-culture in proliferation medium. Alkaline phosphate (ALP) and calcium deposition which are the respective 

early and late markers of osteogenic differentiation of MSCs were used to evaluate osteogenic differentiation. 

Expression of CD105 in the micro-patterned MSCs decreased as the osteogenic induction period was extended. 

At each group, larger MSCs showed lower CD105 expression level and higher ALP activity and calcium deposition. 

As previously reported that large MSCs can promote osteogenesis [37], the high level of CD105 expression by small 

MSCs in this study should be due to the inhibition of osteogenesis. The result was also consistent with the previous 

results that multipotency of MSCs decreases during osteogenesis process [36] and small spreading area is beneficial 

for maintenance of stemness [28]. 

After the osteogenic induction medium was replaced by proliferation medium, osteogenesis of micro-patterned 

MSCs was immediately inhibited and the CD105 expression was partially or fully recovered. Recoverability of 

stemness was related with cell size and osteogenic induction period. The fully recovered CD105 expression was 

only observed in small MSCs or MSCs were osteogenically induced for a short period. The results indicated that 

stemness recoverability could be compromised by promoted osteogenesis or stemness could only be recovered at 

the initial stage of osteogenesis. Cell size could not only affect osteogenic differentiation of MSCs, but also affected 

the de-differentiation of the initially differentiated cells and recovered expression of stem cell marker. Large MSCs 

facilitated osteogenic differentiation of MSCs more strongly than did small MSCs, while small MSCs could return 

to stem cell stage more easily than did large cells.  

2.5 Conclusions 

In summary, by using UV-lithography and photoreactive AzPhPVA, PVA/TCPS micro-patterned surfaces were 

prepared and used to control the size of MSCs for investigation of the influence of cell morphological cues on 

Figure 2.10 (a) Representative images of ARS stained micropatterned MSCs cultured in osteogenic induction 

medium for 3 weeks (3w) and re-cultured in proliferation medium for 1 (1w + 1w) and 2 (1w + 2w) weeks. 

Scale bar: 100 μm. (b) Percentage of ARS positively stained micropatterned MSCs. 
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osteogenic differentiation and commitment of MSCs. Large MSCs promoted osteogenic differentiation while 

suppressed recoverability of stem cell marker expression. On the contrast, small MSCs inhibited osteogenic 

differentiation but facilitated recovering of stem cell marker expression. The results indicated that cell size was an 

important factor for stem cell differentiation and commitment. 
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Chapter 3 

 

Preparation of micro-patterns having different size and aspect ratio for 

investigation of cell morphology on MSCs transfection efficiency 

 

3.1 Summary 

Gene transfection has broad applications in bioengineering and biomedical fields. Although many gene carrier 

materials and transfection methods have been developed, it remains unclear how cell morphology including cell 

spreading and elongation affect gene transfection. In this study, human bone marrow-derived mesenchymal stem 

cells (MSCs) were cultured on micro-patterns and transfected with cationic pAcGFP1-N1 plasmid complexes. 

Relationship between cell morphology of MSCs and gene transfection was investigated by using micro-patterning 

technique. Spreading and elongation of MSCs were precisely controlled by micro-patterned surfaces. The results 

showed that well spread and elongated MSCs had high transfection efficiency. Analysis of exogenous genes uptake 

and DNA synthesis activity indicated that the well spread and elongated cell morphology promoted gene 

transfection through enhanced uptake of the cationic complexes and accelerated DNA synthesis. The results should 

provide useful information for understanding of cell morphology on gene transfection and development of efficient 

gene transfection methods. 

3.2 Introduction 

Transfection, a technique that introduces exogenous nucleic acid into targeted cells to obtain transgenic cells, 

has been well developed for over 30 years. It has been commonly applied in gene therapy [1, 2], pharmacy [3], 

biological analysis [4] and creation of induced multipotent stem cells [5]. Nowadays, a variety of new techniques 

have been developed to increase transfection efficiency. Since delivery capacity of exogeneous nuclei acid is the 

primary factor in gene transfection, most researches have been focused on development of novel carrier materials 

and delivery methods. Cationic liposome [6-8] , polymer [9-11] and particles [1, 12, 13] are commonly applied to 

enhance the delivery efficacy of exogenous genes. However cationic carrier-associated transfection is accompanied 

with low transfection efficiency and limited cell types [14]. Although virus-mediated transfection can significantly 

improve transfection efficiency [15, 16], induction of oncogenesis and inflammatory responses has shown 

tremendous concerns for the safety in clinical applications. Physical methods including microinjection [17], 
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electroporation [18] and sonoporation [19] can directly deliver the naked nucleic acid into cells. However they may 

induce harmful effects on cells [20]. 

In contrast to the tremendous efforts in designing new carrier materials and transfection method, influence of 

cell morphology on transfection of exogenous genes has rarely been studied. Many recent researches have shown 

that cell morphology can affect cell contractility [21], proliferation [22], migration [23, 24] and differentiation [25-

28]. Although influence of cell morphology on endocytosis of exogenous nanoparticles has been reported[29], it 

remains unclear how cell morphology such as cell spreading and elongation affects uptake of exogenous genes and 

gene transfection efficiency. Precise controlling of cell morphology and understanding of their influence on gene 

transfection can provide useful information for development of new gene transfection techniques and methods. 

Benefit from the self-renewability and multipotency, human bone marrow-derived mesenchymal stem cells 

(MSCs) are a very useful cell source for tissue engineering and regenerative medicine [30-32]. It is noteworthy that, 

since MSCs can avoid immune response, genetically modified MSCs are the ideal gene carriers for applications of 

gene therapy [33]. Additionally, because stem cell differentiation can be selectively enhanced by specific exogenous 

genes, genetically modified MSCs have promising prospect in contribution to tissue engineering [34]. However, as 

one of the typical difficult-to-transfect types of cells, successful transfection of exogeneous gene into MSCs remains 

challenge by using traditional transfection technique [7]. Elucidation of influence of stem cells morphology on 

exogenous gene transfection is strongly desired for development of efficient transfection techniques for stem cells 

and further broad applications of stem cells. Therefore, in this study, micro-patterned surfaces were prepared by UV 

lithography with photomasks having well deigned micro-patterns. The micro-patterned surfaces were used to 

control cell spreading area and elongation of MSCs. Influence of MSCs spreading are and elongation on transfection 

efficiency cellular uptake of cationic complexes and DNA synthesis activity were investigated 

3.3 Materials and methods 

3.3.1 Preparation of micro-patterns and characterization 

Photo-reactive PVA, AzPhPVA, was synthesized through the Steglich esterification between hydroxyl groups 

of PVA and carboxyl groups of 4-azidobenzoic acid as previously reported.[35] AzPhPVA was dissolved in Milli-

Q water to prepare its aqueous solution. TCPS discs were cut from cell culture flask (BD FalconTM). 200 μL of the 

0.3 mg/mL AzPhPVA aqueous solution was coated within 2.25 cm2 square on each TCPS disc surface and dried in 

room temperature air in dark. The AzPhPVA-coated TCPS disc was irradiated by an ultraviolet light (UV, Funa-

UV-linker FS-1500, 0.25 J/cm2) through a photomask. The micro-patterns of the photomask were designed as 

circular micro-patterns of different diameter (20, 40, 60 and 80 μm) and ellipse micro-patterns of different aspect 

ratio (1:1, 2:1, 4:1 and 8:1) while the same area of 5027 μm2. After UV irradiation, the discs were sonicated in Milli-

Q water to remove uncrosslinked AzPhPVA. The micro-patterned disc was sterilized by immersing in 70% ethanol 

aqueous solution for 20 min and rinsed by aseptic Milli-Q water. To enhance cell adhesion, the sterilized micro-

patterned surfaces were coated with fibronectin (Sigma-Aldrich Co. LLC., USA) by dropping 300 μL fibronectin 

aqueous solution (20 μg/mL in NaHCO3 aqueous solution, pH 8.4) on each micro-patterned surface and incubating 

at 37 °C for 1 h in a CO2 cell incubator. The fibronectin-coated micro-patterned plates were washed with sterile 

NaHCO3 aqueous solution and sterile Milli-Q water for following experiments.  

The micro-patterned surfaces were observed by a phase-contrast microscope (Olympus BX51, Tokyo, Japan). 

The character of micro-patterned surfaces was analyzed by an atom force microscope (AFM, Asylum Research 

Corporation MFP-3D-BIO, Santa Barbara, CA). A cantilever with a nitride tip was used for scanning of the micro-

patterned surfaces in Milli-Q water by a contact mode.  
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3.3.2 Cell culture 

The human bone-marrow derived MSCs were purchased at passage 2 from Lonza Walkersville and proliferated 

in MSCGMTM medium. The cells at passage 4 were harvested for cell seeding. The fibronectin-coated micro-

patterned discs were placed in cell culture dishes and added with 3 mL complete DMEM serum mediums previously 

reported [35]. Glass ring having an inner diameter of 1.5 cm was placed on each micro-patterned disc for constraint 

of cell suspension solution on the micro-patterned surfaces. 200 μL of MSCs suspension (2.5×104 cells/mL) was 

added in each glass ring. Glass ring was removed after the cells were cultured in a CO2 cell incubator for 6 h. After 

another 18 h culture, cell attachment on the micro-patterned surfaces was observed by a phase-contrast microscope. 

3.3.3 Plasmid amplification and purification 

A commercially available pAcGFP1-N1 vector that encodes a green fluorescent protein (GFP) was used. It 

was purchased from Clontech Laboratories, Inc and amplified by using Escherichia coli DH5α (E. coli, TAKARA 

BIO INC. Japan). The pAcGFP1-N1 was transformed into E. coli through heat shock. Transformed E. coli was 

seeded on Agar-LB plate containing kanamycin (30 μg/mL, Sigma-Aldrich Co. LLC., USA) and incubated in 37 °C 

overnight. The colonies formed on the Agar-LB plate were picked and re-seeded in 3 mL LB broth miller (25 mg/mL, 

Nacalai Tesque, Inc., Kyoto, Japan) with 30 μg/mL kanamycin and then incubated in 37 °C with shaking for 18 h. 

The amplified pAcGFP1-N1 was harvested and purified by using Plasmid Mini Kit (QIAGEN, CA, USA) according 

to the product protocol. The concentration of amplified pAcGFP1 was assayed by spectrophotometry (Nanodrop, 

Thermo Fisher Scientific Inc., USA) at 260 nm. The integrity of amplified pAcGFP1-N1 was confirmed by DNA 

electrophoresis in agarose gels and stained by ethidium bromide solution (Bio-Rad Laboratories, Inc., USA). 

3.3.4 Transfection 

LipofectamineTM 2000 Transfection Reagent (Invitrogen, CA, USA) was applied to enhance plasmid delivery 

efficacy. To prepare LipofectamineTM 2000/pAcGFP1-N1 complexes, 1 μL LipofectamineTM 2000 and 500 ng 

pAcGFP1-N1 was diluted in 50 μL Opti-MEM® (Thermo Fisher Scientific Inc., USA) separately and incubated in 

room temperature for 5 min. The LipofectamineTM 2000 and plasmid solutions were gently mixed. The mixture 

solution was incubated for another 30 min to prepare cationic plasmid complexes. Before addition of the cationic 

plasmid complexes, MSCs were starved in Opti-MEM® for 2 h after 24 h culture in DMEM serum medium. Glass 

rings with an inner diameter of 1.5 cm were placed on the micro-patterned surfaces to prevent leakage of cationic 

plasmid complexes during transfection. 100 μL cationic plasmid complexes solution was added on the cells in the 

glass ring. The plasmid complexes were incubated with the micro-patterned MSCs for 6 h in a CO2 cell incubator. 

And then, the medium containing the cationic plasmid complexes was replaced by DMEM serum medium and 

further incubated for 18 h. After that, the samples were rinsed by pre-warmed PBS twice and fixed by 

paraformaldehyde aqueous solution (4%, 4°C, 10 min). The cells were treated by 1% TritonTM X-100 and blocked 

by BSA. Finally, the actin and nuclei of transfected MSCs were stained by Alexa Fluor-594 phalloidin (Invitrogen) 

and Hoechst 33258 (Wako Pure Chemical Industries, Ltd.) as previously reported.[25] The stained samples were 

observed and recorded through a fluorescence microscope (Olympus, Japan) with a 10X objective lens at fixed 

parameters (11s, ISO: 200). The GFP fluorescence intensity was calculated through an ImageJ software. The 

corrected total fluorescence (CTF) of each cell was calculated as CTF = I - (A × M) (A: area of selected cell; I: 

integrated intensity of selected cell; M: mean fluorescence intensity of micro-patterns without cells). CTF was 

considered as corrected fluorescence intensity of GFP. The CTF of plasmid untreated MSCs was also calculated by 
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the same method. Fluorescence intensity threshold to distinguish positive or negative GFP expression is generally 

set at the intensity where more than 99.5% of plasmid untreated cells are considered fluorescence-negative.[36] In 

the present study, GFP positive cells were defined as the cells which CTF of GFP was 50 times higher than that of 

plasmid untreated cells on the same micro-patterns. To evaluate transfection efficiency, GFP positive cells were 

counted and percentage of GFP positive cell number was calculated. Only single cell on the micro-patterns was 

used for the analysis. From each sample, more than 150 cells were counted and 5 samples were used for each 

analysis. 

3.3.5 Cellular uptake of cationic complexes 

Fluoresbrite® carboxylate microspheres (d = 500 nm, Funakoshi Co., Ltd., Japan) were applied to evaluate the 

capacity of cellular uptake. 0.1 μL microsphere stock solution and 1 μL LipofectamineTM 2000 were separately 

added into 50 μL Opti-MEM® medium to prepare microspheres dilution solution and LipofectamineTM 2000 

dilution solution, respectively. The two solutions were mixed and added in the micro-patterned MSCs for 6 h culture 

by the above-mentioned method. To evaluate the quantity of endocytosed microspheres, the samples were firstly 

rinsed by pre-warmed PBS for 3 times and extracellular fluorescence of microspheres was quenched by 0.4% trypan 

blue solution (Sigma-Aldrich Co. LLC., USA). Then, the samples were fixed with paraformaldehyde aqueous 

solution. To confirm the position of cationically modified microspheres, plasma membrane of MSCs was stained 

by CellMaskTM Deep Red (0.25 μg/mL, Invitrogen, CA, USA) and observed under a fluorescence confocal 

microscope (Zeiss, Germany). Actin filaments and nuclei were stained. Similar with the evaluation of GFP 

fluorescence intensity, the total fluorescence yield of FITC was calculated from the CTF of microspheres 

fluorescence within the micro-patterned MSCs as previously described. Fifteen cells from 5 independent 

experiments (3 cells from each independent experiment) were analyzed. 

3.3.6 BrdU staining 

Before cell seeding on the micro-patterned surfaces, MSCs were starved in FBS-free DMEM for 24 h to keep 

cells staying in G0 phase as previously reported.[37] And then, MSCs were seeded on the micro-patterned surfaces 

and incubated in complete growth medium for 24 h in a CO2 cell incubator before transfection. After MSCs were 

incubated with the cationic plasmid complexes for 6 h, Opti-MEM® with cationic plasmid complexes was replaced 

by growth medium supplemented with 1% BrdU labelling reagent (v/v, Thermo Fisher Scientific Inc., USA). The 

cells were incubated with BrdU labelling reagents under 37 °C in a CO2 cell incubator for 18 h. And then, the samples 

were rinsed by pre-warmed PBS, fixed by 70% (v/v) ethanol aqueous solution and denatured by 2 M HCl. After 

being rinsed by PBS, the samples were permeabilized by 1% TritonTM X-100 for 10 min and blocked by 2% BSA 

for 30 min. The primary anti-BrdU antibody (1/200 in 2% BSA, Abcam, plc.) was incubated with samples for 1.5 

h at room temperature. And then, the samples were incubated with Alexa Fluor® 488-conjugated anti-mouse IgG 

antibody (1/500 in PBS, Thermo Fisher Scientific Inc., USA) for 1 h and Hoechst 33258 (1/1000 in PBS) at room 

temperature. Finally, the percentage of BrdU positively stained cells were counted through fluorescence microscopy 

images. From each sample, more than 150 cells were counted and 5 samples were used for each analysis. 
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3.3.7 Fluorescence staining of actin and nuclei 

After the cells were cultured on micro-patterned surfaces for 24 h, the actin and nuclei of micro-patterned 

MSCs were stained. Fluorescence images of each sample were captured through a fluorescence microscope and a 

confocal fluorescence microscope (Zeiss, Germany). 

3.3.8 Measurement of cell stiffness 

The stiffness of living MSCs was measured through nanoindentation of MFP-3D-BIO AFM as previously 

reported[24]. A cantilever with a silica sphere (d = 600 nm) was applied as a probe for nanoindentation. The spring 

constant of cantilever was proofed before measurement. The position of cells or cantilever was observed through a 

phase-contrast microscope. The cells were directly used for measurement after being seeded on the micro-patterned 

surfaces and cultured in DMEM serum medium for 1 day. Measurement time for each sample was controlled less 

than 2 h to maximize cell viability. During nanoindentation, 2 nN trigger force and 4 μm/s indentation rate were 

performed to avoid any damage on cells. Young’s modulus of each micro-patterned cell was calculated by fitting 

force-distance curves obtained at a central region of cells to a Hertz contact model. For each sample, 20 force-

distance curves from each cell were measured and analyzed. The average of Young’s modulus from 10 cells was 

calculated. 

3.3.9 Statistical analysis 

The quantitative data are reported as mean ± standard deviation (SD). The significant difference was confirmed 

through multiple comparisons of one-way ANOVA. The significant difference was defined when p < 0.05. 

3.4 Results 

3.4.1 Preparation and characterization of micro-patterns and controlling of cell morphology by 

micro-patterns 

PVA micro-patterns were fabricated on TCPS surfaces through UV lithography by using AzPhPVA. The 

micro-patterned circles and ellipses of TCPS, which were surrounded by cell-repellent PVA, were formed to control 

MSCs spreading and elongation. The typical diameter of MSCs is around 20 μm [38] and their spreading area is 

less than 5000 μm2 [39]. Hence, 4 types of circle micro-patterns of different diameter (20, 40, 60 and 80 μm) were 

prepared to control cell size and spreading area. Another 4 types of ellipse micro-patterns of different aspect ratio 

(1:1, 2:1, 4:1 and 8:1) while the same surface area as that of 80 μm circle micro-pattern were prepared to control 

cell aspect ratio and elongation. Observation by a photo-contrast microscope and AFM confirmed formation of the 

micro-patterns (Figure 3.1 a and b). AFM measurement indicated that the average thickness of PVA thin layer was 

66.8 ± 1.8 nm. The 4 types of micro-patterned circles had a diameter of 21.7 ± 0.6, 41.4 ± 0.2, 61.4 ± 0.6 and 81.5 

± 0.9 μm, which were measured from the AFM images. Their respective area was calculated to be 368.6 ± 18.7, 

1346.8 ± 13.5, 2962.1 ± 58.3 and 5221.1 ± 120.1 μm2. The 4 types of micro-patterned ellipses had the same surface 

area of 5199.8 ± 174.0 μm2 while different aspect ratio of 1.0 ± 0.1, 2.0 ± 0.1, 4.1 ± 0.3 and 7.6 ± 0.5. The micro-
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patterns were coated with fibronectin and applied for MSCs culture. After 24 h culture, MSCs attached on the micro-

patterns and their morphology was controlled by the micro-patterns (Figure 3.1 c). 

3.4.2 Influence of cell spreading area and elongation on gene transfection efficiency 

The influence of cell morphology on gene transfection efficiency was investigated. Actin filament staining 

(red) indicated that the spreading area and aspect ratio of MSCs were confined by the different size and shape of 

micro-patterns (Figure 3.2 a and c). Since pAcGFP1-N1 plasmid is encoded with GFP as a reporter gene, the 

transfected cells could be confirmed by a fluorescence microscope. Percentage of GFP positive cells to the total cell 

number (transfection efficiency) was considered (Figure 3.2 b and d). The results showed that gene transfection 

efficiency increased with the increasing of cell size and aspect ratio. Larger MSCs had a higher transfect efficiency. 

When cell spreading area was controlled at the same level, high aspect ratio of cells promoted gene transfection. 

The results indicated that cell spreading and elongation were beneficial for gene transfection 

3.4.3 Influence of cell spreading area and elongation on cellular uptake of cationic complexes 

The influence of cell morphology on cellular uptake capacity of cationic complexes was investigated through 

evaluation of endocytosed quantity of LipofectamineTM 2000-modified Fluoresbrite® microspheres. The negatively 

charged Fluoresbrite® microspheres with carboxyl groups were modified by LipofectamineTM 2000 to prepare the 

fluorescent cationic microsphere complexes. After incubation with the cationic microsphere complexes, actin (red) 

and nuclei (blue) were stained to confirm cell morphology. Microspheres (green) were observed within all the 

micro-patterned cells (Figure 3.3 a). Cytoplasm membrane of the micro-patterned cells was stained and observed 

Figure 3.1 Characterization of micro-patterned surfaces. (a) Phase-contrast microscope images of micro-patterned 

surfaces having different diameter circles or different aspect ratio ellipses. (b) Representative AFM 3D view and 

cross section of micro-pattern of 60 μm diameter circle. (c) Phase-contrast micrographs of MSCs adhered on the 

micro-patterned surfaces. Scale bar at the bottom is 100 μm and scale bar in the insets is 50 μm. 
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by a laser confocal microscope (Figure 3.3 b). All the microspheres (green) were observed inside the cytoplasm 

membrane (red), indicating cellular uptake of the microspheres.  

The cellular uptake capacity was evaluated through calculation of the FITC fluorescence yield of endocytosed 

microspheres in each single MSCs on the micro-patterns (Figure 3.3 c and d). The total amount of endocytosed 

microspheres increased when cells had a high level of spreading and elongation. The results indicated that cellular 

uptake capacity of cationic complexes was promoted by cell spreading and elongation. 

3.4.4 Influence of cell spreading area and elongation on DNA synthesis  

DNA synthesis activity of the micro-patterned MSCs was evaluated by incorporation of BrdU. Percentage of 

BrdU positively stained cells was calculated (Figure 3.4). The results presented that micro-patterned MSCs with 

large cell size had high DNA synthesis activity (Figure 3.4 b). Meanwhile, the high aspect ratio showed promotive 

effect on DNA synthesis (Figure 3.4 c). Therefore, DNA synthesis could be promoted by the cell spreading and 

elongation. 

Figure 3.2 Gene transfection of MSCs on micro-patterned surfaces. (a) Representative fluorescent images of nuclei 

(blue), actin (red) and GFP (green) expression and (b) transfection efficiency of MSCs cultured on micro-patterns 

having different diameter circles. (c) Representative fluorescent images of nuclei (blue), actin (red) and GFP (green) 

expression and (d) transfection efficiency of the cells were cultured on micro-patterns having different aspect ratio 

ellipses. The means and standard deviations are shown in the figure (n = 5, *p < 0.05, **p < 0.01). 
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3.4.5 Actin filaments structure and cellular stiffness 

Actin filament structure was observed through actin (green) and nuclei (blue) staining fluorescence images 

(Figure 3.5 a and b). Actin filament organization and orientation of MSCs on micro-patterned circles having a 

diameter of 20 μm were not clear. Actin filaments were well organized and oriented when MSCs had large spreading 

area. The organization and orientation level of actin filaments increased when cell spreading area increased. When 

MSCs were cultured on the micro-patterns having different aspect ratios, actin filaments also showed different 

orientation. Actin filaments were assembled along the radial and concentric direction when aspect ratio was 1:1. As 

the aspect ratio of MSCs increased, actin filaments were assembled and oriented along the major axis of cells. In 

particular, when MSCs elongated with an aspect ratio of 8:1, the well aligned perinuclear actin filaments spanned 

above the nuclei (Figure 3.5 b). The stiffness of MSCs on the micro-patterns was calculated through force-distance 

curves from nanoindentation (Figure 3.5 c and e). The Young’s modulus increased significantly when cell spreading 

Figure 3.3 Influence of MSCs spreading area and aspect ratio on cellular uptake capacity of cationic complexes. (a) 

Representative fluorescent images of MSCs cultured on the micro-patterns showing cellular uptake of cationically 

modified Fluoresbrite® carboxylate microspheres (green). Nuclei were stained blue and actin was stained red. (b) 

Fluorescent confocal images of MSCs cultured on 80 μm diameter circle micro-pattern with cationically modified 

Fluoresbrite® carboxylate microspheres (green). Cell membrane was stained red. (c) Total FITC fluorescence yield 

of microspheres in MSCs cultured on micro-patterns having different diameter circles. (d) Total FITC fluoresce yield 

of microspheres in MSCs cultured on micro-patterns having different aspect ratio ellipses. All values represent mean 

value and all error bars represent standard deviation, n = 5, *p < 0.05, **p < 0.01. 
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area and aspect ratio increased (Figure 3.5 d and f). The well organization and orientation of actin filaments were 

accompanied with the increase of cell Young’s modulus.  

3.5 Discussion 

By using PVA/PS micro-patterned surfaces, MSCs adhered on the micro-patterned circles and ellipses. The 

fibronectin-coated PS circles and ellipses of the micro-patterns supported cell adhesion while the PVA thin layers 

surrounding the PS circles and ellipses inhibited cell adhesion. Therefore, cell spreading area and elongation could 

be precisely controlled by the micro-patterns (Figure 3.1 and Figure 3.2). After the micro-patterned single MSCs 

were transfected with the LipofectamineTM 2000 modified pAcGFP1-N1 plasmid, the cells having different 

spreading area and aspect ratio showed different degree of transfection. Cells having larger spreading area and 

Figure 3.4 Influence of MSCs spreading area and elongation on DNA synthesis activity. (a) Representative 

fluorescent images of nuclei (blue) and BrdU (green, white arrow indicated) staining of MSCs on the micro-patterns. 

(b) Percentage of BrdU positively stained MSCs cultured on micro-patterns having different diameter circles. (c) 

Percentage of BrdU positively stained MSCs cultured on micro-patterns having different aspect ratio ellipses. The 

means and standard deviations are shown in the figure (n = 5, *p < 0.05, **p < 0.01). 
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higher aspect ratio showed higher transfection efficiency of GFP genes (Figure 3.2). Both spreading area and aspect 

ratio had dominant influence on gene transfection efficiency. Additionally, compared with 10 - 15% transfection 

efficiency of MSCs by using conventional chemical-based transfection techniques [7, 40], over 20% transfection 

efficiency was achieved for the well spread and elongated MSCs on the micro-patterned surfaces. 

It is interesting that the transfection efficiency was positively correlated with Young’s modulus of micro-

patterned MSCs. Actin fluorescence staining (Figure 3.5 a and b) and Young’s modulus measurement (Figure 3.5 

d and f) indicated the close relationship between the structure of actin filaments and cell stiffness. As one of the 

steps of gene transfection, plasmid endocytosis has been demonstrated a vital step to affect gene transfection 

efficiency [9, 14, 41, 42]. The influence of cell morphology on cellular uptake capacity was investigated by using 

fluorescence-labelled microspheres. The diameter of cationic liposome modified plasmid complexes has been 

reported in a range from 300 nm to 2 μm [43, 44]. The fluorescence-labelled microspheres with 500 nm in mean 

diameter were used to mimic the exogeneous gene. More microspheres were uptaken by the MSCs having larger 

spreading area and higher aspect ratio. Therefore, endocytosis of cationic complexes could be enhanced by cell 

spreading and elongation (aspect ratio) of the micro-patterned cells. Cellular uptake of cationic liposome-modified 

plasmid has been reported to be dominantly dependent on clathrin mediate endocytosis (CME) which is associated 

with actin filaments [45-47]. In the present study, the actin filaments organization and orientation were shown to be 

Figure 3.5 Influence of MSCs spreading area and elongation on cytoskeleton organization. (a) Representative 

fluorescent images of actin (green) and nuclei (blue) staining of MSCs on the micro-patterns. (b) Representative 

fluorescent confocal microscope images of MSCs cultured on the micro-patterns having respect aspect ratios of 1:1 

and 8:1. (c) Representative force-distance curves and (d) Young’s modulus of MSCs having different size. (e) 

Representative force-distance curves and (f) Young’s modulus of micro-patterned MSCs having different aspect 

ratio ellipses. All values represent mean value and all error bars represent standard deviation, n = 5, *p < 0.05, **p 

< 0.01. 
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related to cell spreading area and aspect ratio. More actin filaments were better organized in larger MSCs and the 

actin caps between nucleus and cytoplasm membrane were formed in the elongated MSCs (Figure 3.5 a and b). The 

well organized and oriented actin filaments could increase the stiffness of the MSCs and also promote endocytosis 

of cationic complexes, which is in a good agreement with previous reports [48, 49].  

Except plasmid uptake, DNA synthesis is extremely important for efficient gene transfection [50]. DNA 

synthesis activity of the micro-patterned MSCs was evaluated to investigate the effect of cell morphology on 

plasmid replication. The results indicated that DNA synthesis was facilitated by large cell spreading area. Cell 

spreading area has been reported to have positive effect on stimulation of cell proliferation [37, 51, 52]. Well spread 

cells can lead to enlargement of nuclei volume and activation of DNA synthesis [53, 54]. Regarding to the influence 

of cell elongation, an increasing of cell aspect ratio resulted in high DNA synthesis activity (Figure 3.4 c). Cellular 

contractility through cytoskeleton organization has been demonstrated effective in regulation of cells proliferation 

[52, 55]. Cells with a high elongation showed well-organized actin filaments and actin cap formation, which 

suggested formation of contractile actin bundles along their apical surface (Figure 3.5 b) [56]. The apically posited 

actin cap leads the nucleus-centrosome axis towards the ventral surface which can inhibit primary cilium growth 

[57]. The suppressed cilium will facilitate cell resume to cell cycle and promote cell proliferation [58].  

The critical role of plasmid uptake and replication in regulation of mammalian cells transfection has also been 

revealed by other researchers [59-62]. The results in the present study demonstrated cell spreading area and 

elongation could affect gene transfection of MSCs through regulating uptake capacity of plasmid and DNA 

replication activity. Large and elongated cells were beneficial for gene transfection.  

3.6 Conclusions 

The PVA/PS micro-patterned surfaces prepared through UV lithography were successfully applied to 

manipulate MSCs spreading area and elongation. The micro-patterned MSCs were applied to investigate the 

influence of cell morphology on gene transfection. Highly spread and elongated MSCs on micro-patterns having 80 

μm in diameter or 8:1 in aspect ratio had well organized actin filaments and high transfection efficiency through 

promoted uptake capacity of cationic gene complexes and accelerated activity of DNA synthesis. The results will 

provide a valuable new insight for design and development of new methods and biomaterials for gene transfection. 
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Chapter 4 

 

Preparation of micro-nano hybrid pattern surfaces for regulation of 

MSCs differentiation 

 

4.1 Summary 

Micro- and nano-structured substrates have been widely applied in biomedical engineering field. Their precise 

control on cell morphology makes them promise to investigate various cell behavior. However, regulation of cell 

functions using micro-nano hybrid pattern surfaces is rarely achieved. Since cell microenvironment in vivo has 

complex micro- and nano-structures, it is desirable to use micro-nano hybrid pattern surfaces to mimic the 

microenvironment to control cell morphology and disclose its influence on stem cell differentiation. In this study, 

poly (vinyl alcohol) (PVA) micro-stripes with different spacing (50 μm, 100 μm and 200 μm) were constructed on 

polystyrene (PS) nano-grooves to prepare micro-nano hybrid pattern surfaces where direction of PVA micro-stripes 

and PS nano-grooves was parallelly or orthogonally arranged. Human bone marrow-derived mesenchymal stem 

cells (MSCs) cultured on the micro-nano hybrid pattern surfaces showed different cell alignment and elongation 

dependent on PVA micro-stripe spacing and orientation of PS nano-grooves. Comparison of the cell alignment and 

aspect ratio effects on differentiation of MSCs indicated that myogenic differentiation was dominantly regulated by 

cell alignment and osteogenic differentiation by cell elongation, while adipogenic differentiation neither by cell 

alignment nor by cell elongation. 

4.2 Introduction 

Stem cells, such as mesenchymal stem cells (MSCs), are the ideal cell source for tissue engineering 

and regenerative medicine due to their ability of self-renewal and the multipotency [1, 2]. Regulation of 

stem cell functions, especially inducing stem cells to differentiate into specific lineage, attracts extensive 

interests. In vivo, stem cells are surrounded and affected by various soluble biomolecules, extracellular 

matrix (ECM) and adjacent cells. In recent years, biophysical factors [3, 4], such as the constraint from 

adjacent cells [5] and electrostatic or mechanical properties of ECM [6], have been demonstrated to play a 

vital role in regulating cell behaviours through cell-cell or cell-ECM interactions [7]. Cell morphology is 

known as one of the most important biophysical factors in regulation of cell functions [8]. Cell elongation 

has been demonstrated to be critical in regulating cell proliferation [9], reprogramming [10], stemness [11] 

and differentiation [12]. Additionally, unified cell alignment is effective in muscle [13, 14], liver [15] and 

blood vessel [16] generation. However, manipulation of cell alignment has been always accompanied with 
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change of cell elongation in previous works [17, 18]. It is still not clear whether cell alignment and 

elongation have different roles in regulation of cell functions. 

To investigate the effects of cell morphology on their functions, micro- and nano-patterned surfaces 

have been used [19, 20]. Micro-patterning techniques [21, 22] provide an easy approach to precisely control 

cell spreading area [11, 23-25], shape [26, 27], polarity [28] and aspect ratio [9, 11, 12] through confining 

cell adhesion region. Meanwhile, nano-structured surfaces have been applied to unify cell orientation, 

promote elongation and control cell spreading though regulating the structure of focal adhesion (FA) [29-

32] and actin filament [33]. However, by using micro-patterns or nano-structured surfaces, cell elongation 

is always positively correlated with the state of cell alignment. Cell alignment and elongation cannot be 

separately controlled.  

Therefore, in this study, micro-nano hybrid pattern surfaces were prepared to control cell alignment 

and elongation. The hybrid pattern surfaces were prepared by introducing PVA micro-stripes on PS nano-

grooves through UV lithography and nanoimprinting method. The PVA micro-stripes were controlled to 

be parallelly or orthogonally oriented to the PS nano-grooves. The micro-nano hybrid pattern surfaces were 

applied for culture of MSCs to control their alignment and elongation. The influence of cell alignment and 

elongation on stem cell differentiation was compared. 

4.3 Materials and methods 

4.3.1 Preparation of micro-nano hybrid pattern surfaces 

PS nano-grooved substrate was fabricated by a nanoimprinting method[14]. A nanotextured 

polydimethyl-siloxane (PDMS) mold having nano-grooves with a ridge depth of 400 nm, a ridge width of 

800 nm and a spacing distance of 800 nm was prepared after casting on a pre-fabricated silicon master and 

cured at 60 °C. One drop of a 3 (w/v) % PS toluene solution was dropped on polyethylene terephthalate 

(PET) substrate (1×1 cm2) and directly pressed by the nanostructured PDMS mold with a constant pressure 

(10 kPa). PDMS mold was peeled off after air-drying for 12 h to prepare the nano-grooved PS substrate 

(PS nano-grooves). The PS nano-grooves were treated by oxygen plasma for 100 s under 40 w and 100 

sccm oxygen gas flow rate with a plasma asher (PB-006I, Mory Engineering Co, Ltd.). 

To prepare the micro-nano hybrid pattern surfaces, 50 μL 4 mg/mL AzPhPVA solution was dropped 

on the PS nano-grooves and air dried overnight. A photomask containing micro-stripes with various equal 

width and spacing (50/50 μm, 100/100 μm and 200/200 μm) was covered on the AzPhPVA coated PS nano-

grooves during UV irradiation (Funa-UV-linker FS-1500, 0.25 J/cm2). The photomask micro-stripes were 

parallelly or orthogonally oriented along the PS nano-grooves to obtain the different micro-nano hybrid 

pattern surfaces. PVA micro-stripes on the PS nano-grooves were obtained after ultrasonic washing in 

Milli-Q water. To promote cell adhesion during cell culture experiments, the micro-nano hybrid pattern 

surfaces were coated with fibronectin after sterilization by incubating the substrates in fibronectin solution 

(20 μg/mL, Sigma-Aldrich Co. LLC., USA) diluted with NaHCO3 (pH 8.4) buffer solution at 37 °C. The 

fibronectin coated substrates were then rinsed with a sterile aqueous solution of NaHCO3 for three times 

and sterile water for another three times. 

The micro-nano hybrid pattern surfaces were characterized by an atomic force microscope (AFM) and 

a scanning electron microscope (SEM, Hitachi S-4800, Japan). For AFM observation, a cantilever (DNP, 

Bruker) with a nitride tip was used. A contact mode in Milli-Q water was performed during scanning 

process. 
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4.3.2 Cell culture 

The MSCs were directly purchased from Lonza Walkersville and proliferated in MSCGMTM in a CO2 

incubator at 37 °C. The MSCs at passage 4 were harvested for following experiments. The subcultured 

MSCs were suspended in complete DMEM serum medium containing 4500 mg/L glucose at a 

concentration of 6×104 cells/mL. The sterile fibronectin coated micro-nano hybrid pattern substrates were 

placed in 24-well plates and covered with glass rings having an inner diameter of 8 mm to constrain cell 

suspension medium within the micro-nano hybrid pattern surfaces. To each glass ring, 50 μL of the cell 

suspension solution was added to seed MSCs on the micro-nano hybrid pattern surfaces. The glass rings 

were removed after culture in the humidified incubator at 37 °C and 5% CO2 atmosphere for 6 h to allow 

initial cell adhesion. Then, 1 mL growth medium was added into each well for continual culture in the 

incubator. 

4.3.3 Actin, vinculin and nuclei staining 

After the cells were cultured for 24 h, they were fixed with paraformaldehyde and successively treated 

with Triton X-100 and Tween-20 at room temperature. The BSA solution was applied to block the fixed 

sample at room temperature to avoid non-specific binding of antibodies during the following staining 

procedures. And then, an aqueous solution of mouse anti-vinculin antibody (Merck KGaA, Darmstadt, 

Germany) at a dilution ratio of 1:100 in 2% BSA was added on the blocked samples and incubated at 37 °C 

for 1 h. The samples were rinsed with 0.02% Tween-20 aqueous solution. After being rinsed by PBS for 

three times, the samples were incubated in an aqueous solution of Alexa Fluor-488 labelled goat anti-mouse 

IgG antibody (Invitrogen, CA, USA) at a dilution ratio of 1:1000 at 37 °C for 1 h. Finally, actin was stained 

by incubating the samples with Alexa Fluor-594 phalloidin (Invitrogen, CA, USA) at a dilution ratio of 

1:40 in PBS at room temperature for 20 min. Nuclei were stained by Hoechst 33258 at room temperature 

in dark for 1 h. After being washed by 0.02% Tween-20 and PBS for each three times, the fluorescence 

images of each sample were observed and recorded by an Olympus fluorescence microscope. 

4.3.4 Analysis of cell morphology 

Cellular morphology was characterized through analysis of actin and nuclei staining images by an 

ImageJ software. For cell alignment, the angle between cell major axis and PVA stripes was calculated. 

Aligned cells were defined as those with an angle less than 10°. The ratio of aligned cells to the total cells 

was calculated to evaluate cell alignment. Cell aspect ratio was calculated by dividing the length of cell 

major axis by the width of minor axis which was vertical to the major axis. More than 50 cells from 3 

independent experiments of each micro-nano hybrid pattern surfaces were analyzed for these measurements. 

4.3.5 Myogenesis, osteogenesis and adipogenesis induction culture of MSCs 

After cultured for 24 h, proliferation medium was substituted by myogenesis, osteogenesis or 

adipogenesis medium for myogenic, osteogenic and adipogenic differentiation, respectively. Myogenic 

induction medium was MesenPRO RS medium (Invitrogen, CA, USA) supplied with 1 ng/mL transforming 

growth factor β1 (TGF-β1, R&D systems, Minneapolis, MN). Osteogenic induction medium was complete 
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DMEM serum medium supplied with 100 nM DEX and 10 mM GP. Adipogenesis medium was complete 

DMEM serum medium supplied with 4500 mg/L glucose 1 μM dexamethasone, 0.5 mM IBMX, 10 μg/mL 

insulin and 10 μM indomethacin. For myogenic and adipogenic differentiation, 1 mL induction medium 

was added into each well. For osteogenic differentiation, 0.5 mL osteogenic medium was added into each 

well. All the induction media were refreshed every 3 days. Cells were incubated with the induction media 

for 2 weeks. 

4.3.6 Analysis of myogenic, osteogenic and adipogenic differentiation of MSCs 

After incubation with myogenic induction medium for 2 weeks, the cells were washed with PBS twice 

and fixed with 4% cold paraformaldehyde for 10 min. The samples were treated with Triton X-100 (Sigma-

Aldrich Co. LLC., USA) for 2 min and blocked in 2% BSA at room temperature for 30 min. And then, the 

samples were incubated with mouse anti-human smooth muscle actin (SMA, Dako, Carpinteria, CA) at a 

dilution ratio of 1:100 in 2% BSA at 37°C for 1 h. After washing in PBS for 3 times, the samples were 

incubated with Alexa Fluor-488 labelled goat anti-mouse IgG antibody (Invitrogen, CA, USA) at a dilution 

ratio of 1:1000 in PBS at 37°C for 1 h. Nuclei were stained with 10 μg/ml of Hoechst 33258. Images of 

stained cells were obtained through an Olympus BX51 microscope with a DP-70 CCD camera (Olympus, 

Tokyo, Japan). The ratio of SMA positively stained cells to the total cells was calculated to indicate the 

potential of myogenesis. Average fluorescence intensity (AFI) per unit area of each cell was calculated 

through an ImageJ software as previously reported[34]. During ImageJ analysis, the regions near each 

nucleus were selected to calculate area (A) and integrated intensity (I). Corrected total fluorescence (CTF) 

was calibrated as CTF = I - A×M by using mean fluorescence intensity (M) as background. The mean 

fluorescence intensity was measured at PS regions without cells. Average fluorescence intensity (AFI) was 

calculated through AFI = CTF / A. The average value of AFI from all cells in the same image was calculated 

and set as a threshold. The cell which possessed higher AFI than threshold was defined as SMA positively 

expressed cell. More than 100 cells from 3 independent samples of each micro-nano hybrid pattern surfaces 

were analyzed. The percentage of SMA positively expressed MSCs on each micro-nano hybrid pattern 

surfaces was calculated. 

Osteogenic differentiation was analyzed by staining alkaline phosphatase (ALP). The ALP was firstly 

stained according previous introduced in chapter 1. Finally, the cells were rinsed by PBS for three times 

and treated by 1% Triton-X-100 for 2 min followed by incubation with Hoechst 33258 at room temperature 

for. Optical images of the stained cells were obtained through an Olympus BX51 microscope with a DP-70 

CCD camera (Olympus, Tokyo, Japan). Every 2 optical images from each of 3 independent samples were 

taken and the ALP positively stained cells were counted. More than 100 cells from each sample were 

analyzed and the percentage of ALP positively expressed cells was used to indicate the potential of 

osteogenic differentiation. 

For adipogenic differentiation, lipid vacuoles were stained by Oil Red O. After induction culture in 

the adipogenic induction medium for 2 weeks, the cells were washed with PBS twice and fixed with 

paraformaldehydes. The fixed cells were immersed in 60% isopropanol at room temperature and then 

stained by Oil Red O solution. The fresh Oil Red O solution was prepared by dissolving Oil Red O powder 

(Sigma-Aldrich Co. LLC., USA) in 60% isopropanol. Finally, the cells were treated with Triton-X 100 and 

incubated with Hoechst 33258 for 10 min. The percentage of lipid vacuoles presenting cells was used to 

define the level of adipogenic differentiation. More than 100 cells from 3 independent samples of each 

micro-nano hybrid pattern surfaces were used for calculation.  
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4.3.7 Statistical analysis 

The quantitative data are reported as mean ± standard deviation (SD). The significant difference was confirmed 

through multiple comparisons of one-way ANOVA. The significant difference was defined when p value was lower 

than 0.05. 

4.4 Results 

4.4.1 Micro-nano hybrid pattern surfaces 

PS substrates with micro-nano hybrid pattern surfaces were prepared as shown in Figure 4.1. The PS nano-

grooves were firstly prepared by pressing a nanotextured PDMS mold on a PS toluene solution through a 

nanoimprinting method. Subsequently, the PS nano-grooves were treated with oxygen plasma and micro-patterned 

with PVA. PVA was used as a cell adhesion repellent to confine cell adhesion and spreading region on the PS nano-

grooves. 

To prepare PVA micro-patterns, the plasma-treated nano-grooves were coated with photo-reactive 

AzPhPVA aqueous solution. After drying, the AzPhPVA coated PS nano-grooves were covered with a 

photomask containing transparent and nontransparent alternate micro-stripes and irradiated by UV light. 

During UV irradiation, AzPhPVA molecules under transparent micro-stripes of mask were inter- or 

intramolecularly crosslinked and grafted to the PS nano-grooves. On the contrary, AzPhPVA molecules 

under non-transparent micro-stripes were resisted from UV activation and then washed away to expose PS 

Figure 4.1 Preparation scheme of micro-nano hybrid pattern surfaces through nanoimprinting and UV lithography.
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nano-grooves surface. Three sets of PVA micro-stripe patterns with equal width and spacing were prepared. 

The equal width and spacing of the three sets of PVA micro-stripes were 50 μm, 100 μm and 200 μm. By 

changing the photomask angle during UV irradiation, PVA micro-stripes parallelly aligned to PS nano-

grooves (micro-p-nano hybrid pattern) and PVA micro-stripes orthogonally aligned to PS nano-grooves 

(micro-o-nano hybrid pattern) were prepared. 

The PS nano-grooves and micro-nano hybrid pattern surfaces were observed by SEM and AFM (Figure 4.2). 

The PS nano-grooves had an average convex width of 781.3 ± 39.1 nm, an average concave width of 823.5 ± 39.2 

nm (spacing of the convex ridge) and an average depth of 338.9 ± 11.1 nm (Figure 4.2 a). SEM and AFM observation 

of the micro-p-nano and micro-o-nano hybrid pattern surfaces having a PVA stripe width of 50 μm showed that the 

PVA micro-stripe patterns were formed on the PS nano-grooves (Figure 4.2 b and c). The height of PVA terrace over 

PS nano-grooves was 565.6 ± 64.9 nm. The PVA micro-stripes in the micro-p- nano hybrid pattern surfaces were 

parallel to the PS nano-grooves, while those in the micro-o-nano hybrid pattern were orthogonal to the PS nano-

grooves. 

4.4.2 Cell alignment and elongation on micro-nano hybrid pattern surfaces 

The micro-p-nano and micro-o-nano hybrid pattern surfaces were used for culture of MSCs. Staining 

of actin filaments and nuclei of MSCs after 1 day culture showed the cells spread and had different 

morphology on the hybrid pattern surfaces (Figure 4.3 a). Cells adhered on the PS nano-grooves and were 

constrained within the PVA micro-stripe spacing. Cells aligned more regularly on the narrow and parallel 

hybrid pattern surfaces than did on the wide and orthogonal hybrid pattern surfaces. The morphology of 

MSCs was analyzed through the stained images of actin and nuclei by using an ImageJ Software. 

The percentage of aligned cells to the total cells is shown in Figure 4.3 b and c. Both PVA micro-stripe 

spacing and PS nano-groove orientation influenced cell alignment. When PS nano-groove orientation was 

fixed at parallel or orthogonal direction, PVA micro-stripe spacing showed significant effect on cell 

alignment (Figure 4.3 b). The cells showed the highest alignment percentage when PVA micro-stripe 

spacing was 50 μm, while the lowest when PVA micro-stripe spacing was 200 μm. Cell alignment 

percentage on micro-o-nano hybrid pattern surfaces increased significantly with the decrease of PVA 

micro-stripe spacing. Cell alignment percentage on micro-p-nano hybrid pattern surfaces having PVA 

Figure 4.2 Characterization of micro-nano hybrid pattern surfaces. (a) AFM 3D and section images of PS nano-grooves. 

(b) SEM (left) and AFM (right two) images of parallelly oriented micro-p-nano hybrid pattern having 50 μm PVA 

micro-stripes spacing. (c) SEM (left) and AFM (right two) images of orthogonally oriented micro-o-nano hybrid pattern 

having 50 μm PVA micro-stripes spacing. 
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micro-stripe spacing of 50 and 100 μm was almost the same. When PVA micro-stripe spacing was fixed, 

influence of nano-groove orientation on cell alignment was dependent on PVA micro-stripe spacing (Figure 

4.3 c). At a spacing of 50 μm, cell alignment was almost the same regardless of parallelly or orthogonally 

oriented nano-grooves. When PVA micro-stripe spacing was 100 or 200 μm, the aligned cell percentage on 

Figure 4.3 Morphological characterization of MSCs after 1 day culture on micro-nano hybrid pattern surfaces. (a) 

Representative fluorescence images of actin (red) and nuclei (blue) stained MSCs. (b) and (c) Percentage of aligned MSCs 

to the total cells. (c) Aspect ratio of MSCs. Data are reported as mean ± SD (n = 3). *p < 0.05, **p < 0.01, ***p < 0.001. 

Scale bar: 25 μm. 
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micro-p-nano hybrid pattern surfaces was significantly higher than that on micro-o-nano hybrid pattern 

surfaces. 

Cell aspect ratio was also analyzed (Figure 4.3 d and e). Cell aspect ratio on micro-nano hybrid pattern 

surfaces having PVA micro-stripe spacing of 50μm was higher than that on micro-nano hybrid pattern 

surfaces having PVA micro-stripe spacing of 100 or 200 μm (Figure 4.3 d). Cell aspect ratio on micro-nano 

hybrid pattern surfaces having PVA micro-stripe spacing of 100 or 200 μm was almost the same. When 

PVA micro-stripe spacing was fixed at 50 or 200μm, cell aspect ratio on the micro-p-nano hybrid pattern 

surfaces and micro-o-nano hybrid pattern surfaces had no significant difference Figure 4.3 e). When PVA 

micro-stripe spacing was 100μm, cell aspect ratio on micro-p-nano hybrid pattern surfaces was significantly 

higher than that on micro-o-nano hybrid pattern surfaces. 

The cell alignment and aspect ratio results indicated that both cell alignment percentage and aspect 

ratio were dominantly controlled by PVA micro-pattern spacing when PVA micro-stripe spacing was 

narrow (50 μm). Cell alignment became more random and cell aspect ratio decreased as the spacing of PVA 

stripes increased and the effects from PS nano-groove orientation came into play. When PVA micro-stripe 

spacing was 50 μm, cells on both micro-p-nano hybrid pattern surfaces and micro-o-nano hybrid pattern 

surfaces had the same level of high alignment and high aspect ratio. At PVA micro-stripe spacing of 100 

μm, cells on micro-p-nano hybrid pattern surfaces had significantly higher alignment and higher aspect 

ratio than those on micro-o-nano hybrid pattern surfaces. When PVA micro-stripe spacing became 200 μm, 

cells on micro-p-nano hybrid pattern and micro-o-nano hybrid pattern had significantly different alignment, 

but the same level of aspect ratio. Cell alignment and aspect ratio could be separately controlled by the 

spacing of PVA micro-stripes and orientation of PS nano-grooves. 

Focal adhesion (FA) structure of MSCs cultured on micro-nano hybrid pattern surfaces was observed 

through immunofluorescence staining of vinculin (green fluorescence, Figure 4.4). FA was formed along 

PS nano-grooves when MSCs were cultured on micro-p-nano hybrid pattern surfaces (Figure 4.4 a-c). An 

interesting phenomenon was observed when MSCs were cultured on micro-o-nano hybrid pattern surfaces. 

When PVA micro-stripe spacing was 200 μm, FA was assembled along PS nano-grooves (Figure 4.4 f). 

However, when PVA micro-stripe spacing became narrow (50 μm and 100 μm), FA spanned over the PS 

nano-grooves and was assembled along PVA spacing direction (Figure 4.4 d-e).  

Figure 4.4 Representative immunofluorescence images of actin (red), nuclei (blue) and vinculin (green) staining of 

MSCs after 1 day culture on micro-nano hybrid pattern surfaces.
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4.4.3 Myogenic differentiation of MSCs on micro-nano hybrid pattern surfaces 

Smooth muscle actin (SMA), an early smooth muscle cell marker, was stained and analyzed to evaluate 

myogenic differentiation potential after MSCs were seeded on the hybrid pattern surfaces in myogenic 

induction medium for 2 weeks (Figure 4.5 a). Percentage of SMA positively expressed cells was calculated 

(Figure 4.5 b and c). At first, the influence of PVA micro-stripe spacing was compared by fixing the 

orientation of PS nano-grooves in micro-nano hybrid patterns (Figure 4.5 b). The results showed myogenic 

differentiation level of MSCs increased with the decrease of PVA micro-stripe spacing. MSCs cultured on 

micro-nano hybrid pattern surfaces having PVA micro-stripe spacing of 50 μm showed the highest level of 

myogenic differentiation regardless of the orientation of PS nano-grooves. Difference between myogenic 

differentiation level of MSCs on micro-p-nano hybrid pattern surfaces having PVA micro-stripe spacing of 

50 and 100 μm was not significant. 

And then, the influence of orientation of PS nano-grooves was compared by fixing the spacing of PVA 

micro-stripes (Figure 4.5 c). When PVA micro-stripe spacing was fixed at 50 μm, orientation of PS nano-

grooves did not affect the myogenic differentiation of MSCs. When PVA micro-stripe spacing increased to 

100 or 200 μm, myogenic differentiation level of MSCs on micro-p- nano hybrid pattern was significantly 

higher than that on micro-o-nano hybrid pattern. These results indicated that myogenic differentiation was 

regulated by both PVA micro-stripe spacing and PS nano-groove orientation. Narrow PVA micro-stripe 

Figure 4.5 Analysis of myogenic differentiation of MSCs on micro-nano hybrid patterns by SMA expression after 

myogenic induction culture for 2 weeks. (a) Representative immunofluorescence images of SMA stained cells. (b) 

and (c) Percentage of SMA positively stained cells. Data are reported as mean ± SD (n = 3). *p < 0.05, **p < 0.01. 

Scale bar: 25 μm. 
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spacing and parallel orientation of PS nano-grooves promoted, while wide PVA micro-stripe spacing and 

orthogonal orientation of PS nano-grooves inhibited myogenic differentiation of MSCs. 

By comparing the results shown in Figure 4.3 b-e and Figure 4.5 b-c, it can be found that cell alignment 

and myogenic differentiation level of MSCs on micro-nano hybrid pattern surfaces had exactly the same 

trend. However, there was some difference between cell aspect ratio and myogenic differentiation level. 

Although high cell aspect ratio had some promotive influence on myogenic differentiation of MSCs, its 

influence was not as evident as that of cell alignment. When MSCs were cultured on the micro-nano hybrid 

pattern surfaces having the same orientation of PS nano-grooves but different PVA micro-stripe spacing of 

100 and 200 µm, or the same PVA micro-stripe spacing of 200 µm but different orientation of PS nano-

grooves, cell aspect ratio had no significant difference, while myogenic differentiation level was 

significantly different. Therefore, myogenic differentiation of MSCs on micro-nano hybrid pattern surfaces 

was dominantly regulated by cell alignment. High cell alignment was beneficial to myogenic differentiation. 

Cell aspect ratio was less important than cell alignment. 

4.4.4 Osteogenic differentiation of MSCs on micro-nano hybrid pattern surfaces 

After MSCs were cultured in osteogenic induction medium for 2 weeks, ALP was stained to evaluate 

osteogenic differentiation (Figure 4.6 a). Purple regions indicated ALP positively stained cells suggesting 

osteogenic differentiation of MSCs [35]. The positively stained cells were counted to calculate the 

percentage of ALP positively stained cells to the total cells (Figure 4.6 b and c). By comparing micro-nano 

hybrid pattern surfaces having the same parallel/orthogonal orientation but different PVA micro-stripe 

spacing, MSCs showed the highest osteogenic differentiation level when PVA micro-stripe spacing was 50 

μm (Figure 4.6 b). Osteogenic differentiation level decreased when PVA micro-stripe spacing increased. 

Osteogenic differentiation level of MSCs on micro-nano hybrid pattern surfaces having PVA micro-stripe 

spacing of 100 and 200 μm had no significant difference. 

However, when the PVA micro-stripe spacing was fixed at 50 or 200 μm, osteogenic differentiation 

level of MSCs on micro-o-nano and micro-p-nano hybrid pattern surfaces had no significant difference 

(Figure 4.6 c). Orientation of PS nano-grooves showed no influence on osteogenic differentiation of MSCs. 

On the micro-nano hybrid pattern having PVA micro-stripe spacing of 100 μm, parallelly oriented PS nano-

grooves showed significantly higher promotive effect on osteogenic differentiation than did the 

orthogonally oriented PS nano-grooves. These results indicated that both PVA micro-stripe spacing and PS 

nano-groove orientation could influence osteogenic differentiation. Narrow PVA micro-stripe spacing and 

parallel orientation of PS nano-grooves showed promotive, while wide PVA micro-stripe spacing and 

orthogonal orientation of PS nano-grooves had inhibitory effect on osteogenic differentiation of MSCs. 

When cell alignment and aspect ratio parameters shown in Figure 4.3 b-e and osteogenic 

differentiation data in Figure 4.6 b-c were compared, it is clear that osteogenic differentiation level of MSCs 

on micro-nano hybrid pattern surfaces had the same trend as that of cell aspect ratio. However, the changing 

trend of cell alignment was different from that of osteogenic differentiation level. In particular, when cell 

alignment was low, difference between the changing trends of cell alignment and osteogenic differentiation 

became evident. Cell alignment on the micro-nano hybrid pattern surfaces having the same orientation of 

PS nano-grooves but different PVA micro-stripe spacing of 100 and 200 μm, or the same PVA micro-stripe 

spacing of 200 μm but different orientation of PS nanogrooves was significantly different, osteogenic 

differentiation level had no significant difference. It could be concluded that osteogenic differentiation of 

MSCs was dominantly regulated by cell aspect ratio although cell alignment had some influence. High cell 

aspect ratio promoted osteogenic differentiation. 
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4.4.5 Adipogenic differentiation of MSCs on micro-nano hybrid pattern surfaces 

Lipid vacuoles is a key sign of adipocytes and used as a marker for adipogenic differentiation of MSCs 

[36]. Oil Red O solutions were applied to stain the lipid vacuoles in cytoplasm. After MSCs were cultured 

on micro-nano hybrid pattern surfaces in adipogenic induction medium for 2 weeks, the cells were stained 

by Oil Red O (Figure 4.7 a). Cells undergoing adipogenesis were stained red. Percentage of lipid vacuoles 

positively stained cells was used to evaluate degree of adipogenic differentiation of MSCs (Figure 4.7 b 

and c).  

When micro-nano hybrid patterns having the same parallel or orthogonal orientation but different PVA 

micro-stripe spacing were compared, adipogenic differentiation potential of MSCs was dependent on both 

PVA micro-stripe spacing and PS nano-groove orientation (Figure 4.7 b). On the parallelly oriented micro-

p-nano hybrid pattern surfaces, adipogenic differentiation level of MSCs on PVA micro-stripe spacing of 

50 μm was the lowest. On the orthogonally orientated micro-o-nano hybrid pattern surfaces, MSCs had 

similar level of adipogenic differentiation level regardless of the PVA micro-stripe spacing. 

On the other hand, when the PVA micro-stripe spacing was fixed at 50 or 100 μm, adipogenic 

differentiation level on micro-p-nano hybrid pattern was significantly lower than that on micro-o-nano 

hybrid pattern (Figure 4.7 c). When PVA micro-stripe spacing was fixed at 200 μm, adipogenic 

differentiation level had no significant difference. The results indicated that orthogonal orientation of PS 

nano-grooves and wide PVA micro-stripe spacing were beneficial to adipogenic differentiation, while 

Figure 4.6 Analysis of osteogenic differentiation of MSCs on micro-nano hybrid patterns by ALP staining after 

osteogenic induction culture for 2 weeks. (a) Representative images of ALP stained cells. (b) and (c) Percentage of 

ALP positively stained cells. Data are reported as mean ± SD (n = 3). *p < 0.05, **p < 0.01. Scale bar: 25 μm. 
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narrow PVA micro-stripe spacing and parallel orientation of PS nano-grooves had inhibitory effect on 

adipogenic differentiation. 

Adipogenic differentiation level of MSCs on micro-nano hybrid pattern surfaces had no evident 

relationship with either cell alignment or cell aspect ratio although high cell alignment and high aspect ratio 

inhibited adipogenic differentiation of MSCs on parallelly oriented micro-p-nano hybrid pattern surfaces 

having PVA micro-stripes of 50 μm. 

4.5 Discussion 

By using the micro-nano hybrid pattern surfaces, alignment and aspect ratio (elongation) of MSCs 

could be simultaneously regulated. Cells cultured on micro-nano hybrid pattern surfaces having PVA 

micro-stripe spacing of 50 μm showed the same level of high alignment and high elongation regardless of 

the parallel or orthogonal orientation of PS nano-grooves. When PVA micro-stripe spacing increased to 

100 μm, micro-p-nano hybrid pattern induced significantly higher cell alignment and elongation than did 

micro-o-nano hybrid pattern. When PVA micro-stripe spacing further increased to 200 μm, cell alignment 

on micro-nano hybrid pattern surfaces with different orientation of PS nano-grooves had significant 

difference, while cell elongation was kept at the same level. 

Figure 4.7 Analysis of adipogenesis of MSCs on micro-nano hybrid patterns by Oil Red O staining after adipogenic 

induction culture for 2 weeks. (a) Representative images of Oil Red O staining of MSCs. (b) and (c) Percentage of lipid 

vacuoles (LV) positively stained cells. Data are reported as mean ± SD (n = 3). *p < 0.05. Scale bar: 25 μm. 
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The role of cell alignment and elongation on MSCs differentiation could be investigated by using the 

hybrid pattern surfaces for culture of MSCs. At the narrowest PVA micro-stripe spacing (50 μm), cell 

alignment and elongation were mainly affected by PVA stripe spacing because of the strong constraint that 

was resulted from the PVA micro-stripes. Narrow PVA micro-stripes spacing could limit cell width and 

unify cell alignment and promote cell elongation. On the other hand, wide PVA micro-stripe spacing could 

weaken the constraint effect of PVA micro-stripes and therefore influence of PS nano-grooves on cell 

alignment and elongation became evident. 

The phenomena could be explained by the FA formation on the micro-nano hybrid pattern surfaces. 

On micro-nano hybrid pattern surfaces with the narrowest PVA micro-stripes (50 μm), FA was formed in 

the same direction of the PVA micro-stripes regardless of the orientation of PS nano-grooves. However, 

when PVA micro-stripe spacing increased, FA was assembled along the PS nano-grooves rather than 

following the PVA micro-stripe spacing. Therefore, cell morphology and FA formation were intimately 

related and dominantly regulated by both PVA micro-stripes and PS nano-grooves depending on the 

spacing of PVA micro-stripes. 

The micro-nano hybrid pattern surfaces were used to investigate the influence of cell morphology such 

as cell alignment and elongation on myogenic, osteogenic and adipogenic differentiation of MSCs. Previous 

studies have reported that cell alignment and elongation are critical for the myogenic differentiation of 

MSCs [12, 37]. Cell alignment has been reported to enhance cell end-to-end contacts which are critical for 

the fusion of myotubes [38] and high cell aspect ratio has been reported to promote myogenic differentiation 

through up-regulation of RhoA/ROCK pathway [12]. However, the different weight of cell alignment and 

cell elongation on myogenic differentiation remains unclear. In this study, by using micro-nano hybrid 

pattern surfaces, influence of alignment and elongation on myogenic differentiation of MSCs was compared. 

As shown in Figure 4.3 and Figure 4.5, myogenic differentiation level had a good relationship with cell 

alignment. High cell alignment resulted in high level of myogenic differentiation and vice versa. However, 

influence of cell elongation was a little complicated. Although cells cultured on the micro-nano hybrid 

pattern surfaces with PVA micro-stripe spacing of 50 μm had high cell aspect ratio and high myogenic 

differentiation level, the relationship became unclear when PVA micro-stripe spacing increased to 100 or 

200 μm. On the micro-nano hybrid pattern surfaces having PVA micro-stripe spacing of 100 or 200 μm, 

cells on the parallelly oriented micro-p-nano hybrid pattern surfaces had the same level of elongation as 

that on the orthogonal oriented micro-o-nano hybrid pattern surfaces, but significantly different level of 

myogenic differentiation. The results suggest influence of cell elongation on MSCs myogenic 

differentiation was weaker than that of cell alignment. 

In contrast to the influence on myogenic differentiation, cell aspect ratio had a more important 

influence on osteogenic differentiation of MSCs than did cell alignment. The dominant influence of cell 

elongation on osteogenic differentiation should be due to high cytoskeleton tension in elongated cells. It 

has been reported that cytoskeleton tension can be regulated by cell elongation and can act a critical role in 

directing MSCs osteogenic differentiation [39]. This result was also consistent with previous work that 

elongated cells promoted osteogenic differentiation through increasing cytoskeleton contractility [25]. 

Combination of narrow PVA micro-stripe spacing and parallelly orientated PS nano-grooves had 

inhibitory influence on adipogenic differentiation. The lowest adipogenic differentiation level of MSCs on 

micro-p-nano hybrid pattern surfaces having PVA micro-stripe spacing of 50 μm group should be due to 

high cell alignment and elongation. It has been reported that high cell aspect ratio can result in cell 

contractility and inhibit adipogenic differentiation [40]. Grooved structure has been reported to facilitate 

adipogenesis through inhibition of FA formation and disturbance of cytoskeleton organization [38, 41, 42]. 

Punctiform FA on orthogonal nano-grooves can weaken the mechanical links between stress fibers and 
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ECM substrate and therefore promote adipogenic differentiation [43]. On the other hand, cells on micro-p-

nano hybrid pattern surfaces having PVA micro-stripe spacing of 100 μm and micro-o-nano hybrid pattern 

surfaces having PVA micro-stripe spacing of 50 μm had high alignment and elongation, while their 

adipogenic differentiation potential was not low. The relationship between cell alignment and aspect ratio 

with adipogenic differentiation of MSCs was not as evident as those related to myogenic and osteogenic 

differentiation. Except for cell alignment and elongation, cell size has also been reported to be vital for 

adipogenic differentiation of MSCs. It has been reported that small cell size is more beneficial for 

adipogenic differentiation of MSCs than large cell size [28, 44]. 

4.6 Conclusions 

Preparation of PS/PVA micro-nano hybrid pattern surfaces through nanoimprinting and photolithography 

provided a useful method to manipulate cell alignment and cell aspect ratio and to investigate their effects on 

myogenic, osteogenic and adipogenic differentiation of MSCs. Cell alignment and aspect ratio were simultaneously 

regulated by changing PVA micro-stripe spacing and orientation of PS nano-grooves of micro-nano hybrid pattern 

surfaces. On micro-nano hybrid pattern surfaces, cell alignment and cell aspect ratio showed different influence on 

MSCs differentiation. Myogenic differentiation of MSCs on micro-nano hybrid pattern surfaces was dominantly 

regulated by cell alignment, while osteogenic differentiation of MSCs was dominantly regulated by cell aspect ratio. 

Adipogenic differentiation level of MSCs on micro-nano hybrid pattern surfaces had no evident relationship with 

either cell alignment or cell aspect ratio. 
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Chapter 5 

 

Concluding remarks and future prospects 

 

5.1 Concluding remarks 

This dissertation describes the influence of cell morphology on the regulation of MSC functions and behavior 

by using nano- and micro-structured surfaces. Various kinds of micro-patterned and nano-micro hybrid pattern 

surfaces were prepared through photolithography and nanoimprinting method. The cell morphology including cell 

size, aspect ratio and alignment was controlled by the different kind of patterned surfaces. Furthermore, their 

functions in the regulation of MSCs differentiation, differentiated phenotype maintenance and gene transfection 

efficiency were investigated. 

 

Chapter 1 introduces the multipotency, self-renewability, migratory capacity and immunomodulatory capacity 

of MSCs and their applications in tissue engineering and cell-based gene therapy. The different factors including 

biochemical factors, biophysical factors and cell morphology in the regulation of MSC functions and behavior are 

also introduced. The conventional nano- and micro-patterning techniques to control cell morphology are 

summarized and reviewed. In order to elicit the motivation of this study, some important issues issues in cell 

morphology regulated MSCs differentiation, differentiated phenotype maintenance and gene transfection are 

emphasized. 

 

In chapter 2, the influence of cell size or spreading area on the regulation of MSCs osteogenic commitment 

and differentiated phenotype or stemness maintenance was investigated. The cell size was precisely controlled by 

the micro-patterned surfaces containing micro-dots having different size. The results of stemness marker expression, 

ALP activity and calcium deposition indicated that the larger cell size had the positive effects on stimulation of 

MSCs osteogenesis with biochemical stimuli and maintenance of osteogenic differentiated phenotype without 

biochemical induction factors was observed. In contrast, the smaller cells inhibited the osteogenesis while beneficial 

for the maintenance of stemness. 

 

In chapter 3, the influence of cell size and aspect ratio on the regulation of MSCs transfection was investigate. 

The MSCs were cultured on micro-patterned surfaces and transfected by GFP encoded exogeneous gene. The results 

indicated that the MSCs with a larger spreading area and higher aspect ratio were related to higher transfection 

efficiency. To explore the possible mechanism of this result, the cellular uptake capacity of cationic complexes, 

DNA synthesis activity and cytoskeleton structure of MSCs with different morphology were also investigated. The 

highly spread or elongated MSCs with well-organized actin filaments improved the capacity of cellular uptake and 
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accelerated DNA synthesis. Therefore, the higher transfection efficiency of well spread and elongated MSCs was 

related with improved cellular uptake capacity and facilitated DNA synthesis. 

 

In chapter 4, micro-nano hybrid pattern surfaces were prepared and applied to investigate the different role of 

cell alignment and elongation in the regulation of MSCs myogenesis, osteogenesis and adipogenesis. By changing 

the orientation of PS nano-grooves and spacing of PVA micro-stripes, the cell alignment and aspect ratio of MSCs 

were well controlled simultaneously. The myogenesis of MSCs was predominantly regulated by cell alignment. The 

osteogenesis of MSCs relied only on the cell elongation. The adipogenesis of MSCs was independent from cell 

alignment and elongation while related to the structure of FA. 

 

In summary, micro-patterned and nano-micro hybrid pattern surfaces were successfully prepared through 

photolithography and nano-imprinting method. These structured surfaces were designed and prepared to control cell 

size, aspect ratio and alignment. The significant influence of the factors on the regulation of MSCs differentiation, 

differentiated phenotype maintenance and transfections revealed the critical role of cell morphology manipulation 

in the application of MSCs in tissue engineering and cell-based gene therapy. The results of this study will provide 

useful information in the design and development of biomaterials for the regulation of stem cells functions and 

behavior in tissue engineering and cell-based gene therapy. 

5.2 Future prospects 

In this study, the photo-reactive AzPhPVA was synthesized and applied to prepare micro-patterns on TCPS or 

nanogrooved PS surfaces. The importance of cell morphology in regulation MSC functions and behavior was 

systematically investigated. In spite of the interesting and useful results obtained in this study, some further 

researches are needed to completely mimic the in vivo microenvironment for practical applications. Because of the 

limitations of using the rigid substrate, the micropatterned surfaces are difficult to be applied in vivo experiments. 

Additionally, the nano- and microstructured surfaces regulated only the 2D topography of cell adhesion, 3D 

structure of cells has yet been manipulated. 

Preparation of in vivo implantable nano- and micro-structured surfaces: Transplantation of the micropatterned 

surfaces in vivo may be considered to further demonstrate the functions of cell morphology on cell functions and 

tissue regeneration at in vivo microenvironment. The non-toxic, flexible and cell adhesive materials (hydrogels, 

electrospun nanofibers, immobilized ECM, and etc.) can be applied as the substrates. The thin layer of AzPhPVA 

can be coated on the substrate and UV irradiated through micropatterned photomask. After removal of unreacted 

AzPhPVA, cells are seeded on the micro-patterned surfaces in vitro firstly or directly transplant the micropatterned 

surfaces in vivo. 

Preparation of 3D micro-patterned surfaces: Cells are surrounded by the 3D structures in vivo 

microenvironment, and precise control of 3D cell structure is meaningful for investigation of the mechanism of cell 

responding to the surrounding stimuli by changing of 3D structure. To do this, the pre-prepared micro-structured 

silicon template can be applied to prepare 3D concave structures on cell adhesive substrate. On the other hand, a 

thin layer of AzPhPVA can be coated on a transparent glass. Then, the 3D structured substrate can be contacted with 

the AzPhPVA thin layer and irradiated with UV to graft the photoreactive AzPhPVA on the contacted parts of cell 

adhesive substrate to prevent cell adhesion. Finally, after being cultured on the structured substrate, cells are only 

seeded within the 3D microstructured parts. The prepared 3D micro-structured substrates can provide an approach 

to investigate the influence of cell 3D structure on their functions and behavior.
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