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Abstract

Spurred by the strong demand for scaling dimension of the transistor to nanometer region where
the quantum mechanical effects play a crucial role, the development of fast and reliable theoretical
tools to investigate and understand such systems becomes an urgent issue. At the nanometer scale,
the quantum transport calculation based on the density functional theory is promising. However,
such calculation is still computationally expensive even with the state-of-the-art supercomputer and
therefore more efficient algorithms are needed to perform the realistic device simulations. In this thesis,
new efficient formulation, implementation, and algorithm for first-principles transport calculation are
presented. In particular, the computational aspect of calculating the transport properties of Landauer-
Bittiker two-probe systems within the non-equilibrium Green’s function method is discussed. Herein,
I employ the real-space grids to construct the Kohn-Sham Hamiltonian matrix but the extension of
the developed method to the tight-binding approximation or any localized basis set is straightforward.

The most time-consuming parts of quantum transport calculation are evaluating the self-energy
matrices of electrode and solving the Kohn-Sham equation under the open boundary condition. Self-
energy matrices describe the boundary matching condition between electrodes and central region, and
a solution of the Kohn-Sham equation is obtained by matrix inversion associated with the Green’s
function. For the calculation of the self-energy matrices, the formulation and implementation with
the use of the partitioning and singular value decomposition techniques are derived. In addition, the
contour integral eigensolver based on Sakurai-Sugiura method is developed to obtain the self-energy
matrices and leads to a reduction of the computational burden by up to orders of magnitude. The
efficient formula for the retarded and lesser part of the Green’s functions is presented so as to compute
the charge density and transmission efficiently. Using the mathematically strict relationship between
the retarded and unperturbed Green’s function, the physically important quantities are obtained from
the first and last block matrix columns of the unperturbed Green’s function which is solved efficiently
by the newly developed iterative solver, modified shifted conjugate-orthogonal conjugate gradient
method. To illustrate the capability of the proposed methods, several benchmarks to measure serial
and parallel performance tests are conducted. As applications, transport properties of the SiC/SiOq
interface based on power electronic device and silicene based on the nanoscale electronic devices are

investigated.

iii






Contents

Introduction
1.1 Units and notation . . . . . . . . . . . . e
1.2 Outline . . . . . .,

Density Functional Theory

2.1 Born-Oppenheimer approximation . . . . . . . . . . . .. .
2.2 Hohenberg-Kohn theorem . . . . . . . ... ... ... .. .
2.3 Kohn-Sham equation . . . . . . . . . . .. L
2.4 Exchange correlation functionals . . . . . . ... .. ... ... L.
2.4.1 Local density approximation . . . . ... ... ... ... ..
2.4.2 Generalized gradient approximations . . . . . . ... ...
2.5 Pseudopotential method . . . . . . . ... oL
2.5.1 Norm-conserving pseudopotentials . . . . . .. . ... ... ... ... .....
2.5.2 Kleinman-Bylander separable form . . . . . .. ... ..o
2.6 Comment on other issues . . . . . . . . . . .
First-principles quantum transport approach
3.1 Phase-coherent transport . . . . .. ...
3.1.1 Two-probe system . . . . . . . . ... e
3.1.2 Hamiltonian in two-probe systems . . . . . .. ... ... ... ..
3.2  Green’s function method: GF . . . . . . .. . ...
3.2.1 Basicformalism . . . . . . .. ...
3.2.2  Self-energy matrices . . . . . ...
3.3 WFEM method: WEM . . . . . . .. e
3.3.1 Basicconcept . . . . ...
3.3.2 Generalized Bloch states . . . . . . . . .. ... o oL
3.4 Relationship between GF and WFM . . . . .. .. ... ... 0oL
3.4.1 Construction of Self-energy matrices from generalized Bloch states . . . . . . .
3.4.2 Transmission probability . . . . . . .. ..o
3.4.3 Chargedensity . . . . . . . . . e

W W =

© O ot W

10
11
12
14
15
16
17



CONTENTS CONTENTS
4 Evaluation of self-energy matrices on RSFD scheme 41
4.1 Basic concept . . . . . ... e 41
4.2 Computational aspects . . . . . . . . L 45
4.3 Singular value decomposition . . . . . . .. L L oL 46
4.4  Left surface Green’s function . . . . . . .. .. . L oL L L 49
4.5 Matrix inversion . . . . ... L. L 50
4.6 Optimization of OBM method . . . . . . . . .. .. .. .. 51
4.7 Reduction of matrix size . . . . . . . . . . .. 52
4.7.1 Error analysis of generalized Bloch states . . . . ... .. ... ... .. .... 53

4.7.2 Computational cost . . . . . . . . ... 56

4.7.3 Error analysis of self-energy matrix . . . . . . . . ... oL 57

5 Evaluation of Green’s function on RSFD scheme 61
5.1 Charge density revisit . . . . . . ... L L 61
5.2 Transmission revisit . . . . . . ... Lo 64
5.3 Shifted Krylov solvers . . . . . . . . . . .. 65
5.3.1 Krylov solver for computing Green’s function . . . . . . . ... ... ... ... 65

53.2 COCGmethod . . . . . . . . 65

5.3.3 Shifted COCG method . . . . . . . . . .. .. L 66

5.3.4 Efficient implementation of the shifted COCG method . . . . . .. .. .. ... 68

5.3.5 Extension to the generalized shifted linear equations . . . . . . ... ... ... 70

5.4 Benchmark test . . . . . . . .. e 71
5.4.1 Naatomic wire . . . . . . . . . . L e 72

54.2 Cgp@Q(10,10)CNT peapod . . . . . v v v v ittt 73

5.5 Application . . . . . . . 75
5.5.1 Silicon Carbide MOSFETs . . . . . . . . ... ... ... .. ..., 75

5.5.2 Computational details . . . . . . ... ..o Lo 78

5.5.3 Results and discussion . . . . . . . ... Lo 80

5.5.4  Short summary . . . . . . ... e 82

6 Contour integral method 85
6.1 Modified WFM method . . . . . . . . . .. . 85
6.2 Sakurai-Sugiura method for QEP . . . . . . ..o oo 87
6.3 Efficient implementation of SS method . . . . . . . .. .. ... o oL 90
6.3.1 Symmetry between inner and outer integrations . . . . . . .. ... .. .. ... 91

6.3.2 Multiple energy calculations: shifted BiCG method . . . . . . . ... ... ... 92

6.3.3 Modified shifted BiCG method for evaluating complex band structure . . . . . 92

6.4 Accuracy of the Sakurai-Sugiura method . . . . . . . . ... ... 93
6.5 Parallel implementation . . . . . . . . . .. 97

vi



6.6 Parallel performance . . . . . . . .. L Lo
6.6.1 Scalability in small system . . . . . . . . .. ... Lo
6.6.2 Scalability in medium-sized system . . . . . . ... oo
6.6.3 Scalability in large system . . . . . . . ... Lo Lo

6.7 Variable conversion from A space to k space . . . . .. ... oo L

6.8 Numerical experiments on k space. . . . . . . . . . ... o
6.8.1 Accuracy of eigenpairs inside I' . . . . . . ... o oL
6.8.2 Robustness of algorithm . . . . . . .. ... oo

6.9 Transmission calculation . . . . . . . .. L L Lo

6.10 Serial performance . . . . . . . . ..

6.11 Application . . . . . . . . L
Conclusion and outlook

Group velocity

Dual singular value decomposition for self-energies

Shifted BiCG method and seed switching technique

Kronig-Penny model
O

108

121

125

127

129

131






List of Figures

2.1
2.2

3.1
3.2

3.3

4.1
4.2

4.3

4.4

5.1

5.2

5.3
5.4

Schematics of self-consistent calculation in Kohn-Sham scheme. . . . . . . . ... ...
The pseudo and all-electron valence wavefunctions and ionic pseudopotentials for alu-

MINUIML. . . o o e e e e e e e e e e e e

Illustration of one-dimensional narrow conductor to derive the Landauer formula. . . .
Schematic representation of a quasi-one-dimensional conductor sandwiched by two semi-
infinite electrodes. . . . . . . . L
One-to-one correspondence between NEGF and WFM methods . . . .. ... ... ..

Singular values of B normalized by the largest singular value smax. - - - - - . . . . . .
Residual 2-norms |[[-A"'Bt + (eI — A) — AB]¢!||» for a set of dsyp in the range of
(0,10716,10714,10712,10719). Note that the solutions are normalized by |[|@}||2 = 1.

Distribution of eigenvalues of quadratic eigenvalue problem for a set of dgyp in the range
of (0,10716,1071,10712,10719). The eigenvalues or residual norms becomes NaN are
omitted from counts. . . . . . . ...

Errors in the calculation of self-energy matrix as a function of dgyp. . . . . . . . . ..

CPU time required to obtain unperturbed Green’s functions of Na atomic wire. The
black square, red circle, and blue triangle are the results obtained by the COCG (Ta-
ble 5.1), shifted COCG (Table 5.2), and the modified shifted COCG (Table 5.3), re-
spectively. The energy points are set are chosen so as to be equidistance in the interval
e—ep € [—1,1] eV, where ep is the Fermilevel. . . . . .. ... ... ... ... ...
Electronic band structures of (a) (10,10)CNT and (b) Cgo@(10,10)CNT. The Fermi
level is marked by the dotted line. . . . . . . . . .. ... ... ... .. ...
Conductance spectrum of Cgo@(10,10)CNT. . . . . . . . . . ...
Charge density distributions of scattering wavefunctions of Cgo@(10,10)CNT. (a) and
(b) correspond to the energies indicated by the arrows in Fig. 5.3. The spheres represent
the positions of carbon atoms. Each contour represents twice or half the charge density

of the adjacent contour lines. The lowest-density contour represents a density of 5.0 x
1074 e/A%

1X

16

21

23
40

53

95

56
99

72

74
76



LIST OF FIGURES

LIST OF FIGURES

9.5

5.6

5.7

5.8

5.9

6.1

6.2

6.3

6.4

6.5
6.6

6.7
6.8

6.9

6.10

Atomic structures of 4H-SiC(0001)/SiO2 interface. (a) h type and (b) k type. Blue,
yellow, red, and white spheres are Si, C, O, and H atoms, respectively. . . . . . . . ..
Atomic structures of (a) clean, (b) Ojt, (¢) Ojttsub, (d) VcOa, (e) (C-Cj)c, and (f) CC
at SiC/SiOq interface. Green spheres are additional O atoms in Oi¢, Ojiftgup, and VaOa.
Light-blue spheres are C atoms in (C-C;j)c and CC. Other colors are the same as those
in Fig. 5.5, .« . o . o
Schematic image of transport-calculation model. The boundary between the scattering
region and the semi-infinite electrodes is distinguished by solid lines. Supercells of
electrodes are bounded by dotted lines. The illustrated transition region contains Ojs
within the h type. Colors are the same as those in Fig. 5.5. . . . ... ... ... ...
Transmission spectra for (a) oxygen-related structures in h type, (b) oxygen-related
structures in k type, (c) carbon-related defects in h type, (d) carbon-related defects in
k type. The horizontal axis is the energy relative to the Fermi energy er defined as the
center of the band gap. The vertical axis is the total transmission probability. . . . . .
(a) Channel transmission and (b) spatial distributions of scattering wave function for
eigenchannel. In (b), the case for Oyt in h type at 1 eV from the CBE is shown. Channels

are labeled in descending order of transmission probability. . . . . ... ... ... ..

Relationship between the generalized Bloch states and solutions of the quadratic eigen-
value problem. . . . . . . .. e
Contour path for the target ring-shaped region. The target eigenvalues and the others
are shown by e and o, respectively. . . . . . . ... L L Lo
Unit cells of A1(100) and (6,6)CNT. The black arrow indicates the z-axis, i.e., transport
direction. . . . . . ..o
Complex band structure for (a) Al(100) and (b) (6,6)CNT. . . ... ... .. .. ...
Residual norms of (6,6) CNT computed by SS-Hankel, SS-CAA, and Beyn methods. .
Convergence behavior of the BiCG method for (a) Al(100) and (b) (6,6)CNT at ¢ = ep.
The figure shows the residual norms as a function of the number of iteration at each
quadrature point z;. . . . . .. ...
Hierarchical parallelism of the Sakurai-Sugiura method used in this study. . . . . . . .
Schematic diagrams of (a) pristine (8,0) CNT, (b) BN-doped (8,0) CNT with 1024
atoms, and (c) BN-doped (8,0) CNT with 10240 atoms. Carbon, boron, and nitrogen
are depicted as brown, green, and blue balls, respectively. The BN-doped (8,0) CNTs
are made by randomly inserting boron and nitrogen into a pristine (8,0) CNT.

Scalability of three layers of parallelism for (8,0) CNT with 32 atoms. 68 OpenMP
threads were assigned to each MPI process. . . . . . . .. ... ... ... .......
Scalability of three layers of parallelism for BN-doped (8,0) CNT with 1024 atoms. 17
OpenMP threads were assigned to each MPI process. . . . . . ... .. ... ......

78

79

80

83

84

87

91

93

95
96

98
99

100

102



LIST OF FIGURES

LIST OF FIGURES

6.11

6.12
6.13

6.14

6.15

6.16

6.17
6.18

6.19
6.20

6.21

Scalability of middle and bottom layers of parallelism for BN-doped (8,0) CNT with
10240 atoms. Four OpenMP threads were assigned to each MPI process. . . . . . . ..
Two equivalent contours in complex A and k planes. . . . . . . . ... ... ......
Numerical results for fcc Al bulk at Fermi energy of (a) distribution of eigenvalues
within the domain enclosed by I' and (b) residuals ||[e] — H (ky)]én||2 when varying
the order of the Gauss-Legendre quadrature rule, N; = (Ng1, Ng2). The number of
target eigenvalues that do not include spurious eigenpairs is 18. The plots clearly
show that the positions of the eigenpairs are almost unchained and that the accuracy is
straightforwardly improved by increasing N,. Convergence is achieved at N, = (24, 24):
further improvement is not achieved by increasing N, over (24,24). Contour pass on k
plane is indicated by the broken line. . . . . . . . . . ... o o oL
Numerical results for fcc Al bulk at Fermi energy of residuals ||[e — H (kp)]¢n||2 when
varying the number of right-hand sides, N,p. Ny, = 8 and N, = (24, 24) are used. The
plots clearly show that the positions of the eigenpairs are almost unchained and that
the accuracy is straightforwardly improved by increasing N,,. Convergence is achieved
at N,, = 16: further improvement is not achieved by increasing N, over 16. . . . . .
Residuals ||[e] — H(k,)]¢n||2 for fcc Al bulk at e = ep + 1.0 €V calculated on the k
plane (EEP/SS) and A plane (QEP/SS). For A, = 0.001, the number of eigenvalues
that do not include spurious eigenpairs is 18. In both cases, the EEP/SS method uses
N, = (24,24) as the order of the Gauss-Legendre quadrature rule; by contrast, the
QEP/SS method uses the trapezoidal rule with the number of quadrature points being
36 per circle in Fig. 6.12(a). The other parameters are kept the same. . . . . ... ..
(a) Transition region of Au atomic chain with CO adsorption. Au, C, and O atoms
are represented as gold, brown, and red balls, respectively. (b) Transmission spectra
obtained using self-energy matrices calculated by the proposed method with four dif-
ferent A values: 0.999 (red line), 0.1 (blue line), 0.01 (green line), and 0.001 (black
line). For clarity, transmission spectra are shifted by the amount of 2.5 with respect to
the original values in descending order of the legend. (c¢) The transmission spectrum
obtained with the proposed method (black line). . . .. ... ... ... ... .....
Optimized interface structure of silicene with -8 interface. . . . . . . . .. ... ...
Effects of the a-f interface on the transmission spectra. The solid line is the result of
real-space grid calculation using the self-energy matrices obtained with A, = 0.01.
Empty dots denote the transmission spectrum without the defect. . . . . ... .. ..
(a) Band structure and (b) group velocity of silicene. . . . . . . ... .. ...
Charge densities of two bulk modes in III band for left electrode at ¢ = ep + 0.6 and
0.91 eV. . . . e
An illustration of the scattering of silicene at ¢ = ep 4+0.91 eV. The symbols L, M, and

U represent the lower buckled, non-bucked, and upper buckled atoms, respectively. . .

xi

109

110

112

113
116

117

118

119

120



D.1 An illustration of a one-dimensional system with square potential barriers. The param-
eters a, b, V, and Vj represent the width of depths, width of barriers, barrier height in
L and R regions, and barrier height in C region, respectively.

D.2 (a) Energy dispersion of the Kronig-Penny model with periodic square potentials and
(b) transmission spectra. The parameters in atomic units are set as a = 2.0,b =
0.2,V =10, and V; = 11.



List of Tables

4.1

5.1

5.2

5.3

5.4

9.5

6.1

6.2

6.3

6.4

Breakdown of the method in Sec. 4.3. dgyp is the tolerance of the singular value
decomposition. N, is the number of singular values s; such that s; > spaxdsvp, i.e.,
rank of BT. 2N, — NnaN is the number of solutions except ones whose eigenvalues with

NaN. Here, Nnan is the number of solutions whose eigenvalues or residuals become NaN. 57

COCG algorithm for Az = b, with a complex symmetric matrix AeCM*M o b, 1Ty, €
CM, and ay, B, € C. Note that the inner product is defined as (u,v) = u’v. . .. .. 66
Shifted COCG algorithm for [A + ol]@,(c) = b, with a complex symmetric matrix
AeCMxXM 4 ¢ C,%n, PnsTny Tn(0), pn(0) € CM | and oy, Bn, an(0), Bn(c), m (o) € C.
Note that the inner product is defined as (u,v) =w’v. . ... ... .. ... ..... 68
Modified shifted COCG algorithm for [A + o]x,(c) = b, with a complex symmetric
matrix A € CM*M 7 ¢ CM*L 5 € C,@p,pp,Tn € CM €,.(0),0,(0), pn € CL, and
Qs By n(0), Bn(0), mn(0) € C. Note that the inner product is defined as (u,v) = uTv. 69
Generalized shifted COCG algorithm for [A+oB)x,(c) = b, with a complex symmetric
matrices A, B € CM*M 5 € C a, pp, T, 7, € CM | and oy, Bn, an(0), Bu(0), ma(o) €
C. Note that the inner product is defined as (w,v)g =uTBv.. . ... ... ... ... 71
Transmission probabilities of the third channel and barrier heights calculated using
Eq. (5.42). The energies of the incident wave are ecpg + 0.7 eV and ecpp + 1.0 eV,
where ecpp is the energy of the CBE. . . . . . . . .. .. ... 0oL 82

Number of right-going waves that satisfy 1078 < |\,|' < 1 for several electrode materials

as a function of the number of unit cells [. The Fermi energy is used as an input energy,

and all calculations are performed by OBM method using QZ algorithm. . . . . . . . . 86
SS-Hankel method for quadratic eigenvalue problem, [~A; 2Bt + (eI — A)— X\, B]¢,, = 0,
with complex matrices A, B € CM*M ¢ e CM N\, eeC.. ... ... ... ...... 89
SS-CAA method for quadratic eigenvalue problem, [—)\gléT + (z-:f - /l) - Ané]¢n =0,
with complex matrices A, B € CM*M ¢ e CM N\, eeC.. . ... ... ... ..... 90

Modified shifted BiCG algorithm for [A + o]x,(c) = b and [AT + ¢1]&,(0) = b, with
a general complex matrix A e CMXM 7 ¢ CM*New g € C, @, Py Tnys Tns Prs T €
CM,En(O'),On(U),pn,én(U),én(O'),ﬁn € CNThv and Oén,ﬁn,an(O'),,Bn(U),’ﬁn(U) € (C o 94

xiii



LIST OF TABLES LIST OF TABLES

6.5 Breakdown of the SS-Hankel, SS-CAA, and Beyn methods for (6,6)CNT. . ... ... 97
6.6 Parallel performance inside the node. Elapsed times of 1000 iterations of the BiCG
procedure for the (8,0) CNT with 32 atoms and (8,0) BN-doped (8,0) CNTs with 1024
and 10240 atoms were measured by fixing the total number of cores and splitting their
allocation between the OpenMP and bottom layer parallelism. . . .. .. .. ... .. 103
6.7 CPU times in hours for computing the eigenvalue problems arising from the self-energy
computations for various electrode materials. Here, M is the size of the Hamiltonian
matrix, and 2N, is the number of nontrivial solutions of Eq. (3.65). N, is the number
of right-hand sides used in the SS method. The CPU times of the proposed method (this
work) are averaged by the computation times at 100 different energy points between
er —1eVand ep + 1 eV, where ep is the Fermi energy. On the other hand, the CPU
times of the OBM method (CG/SS) are measured only at the Fermi energy owing to

the limitation of computational resources. . . . . . . . .. ... ... oL 115

Xiv



Chapter 1

Introduction

Looking back on the history of the silicon integrated circuit, there is no doubt that “Moore’s law” is
the most important keyword. Moore’s law, named from Intel co-founder Gordon Moore, states that
the density of complementary metal-oxide-semiconductor (CMOS) transistor doubles every 18 to 24
months. For decades, the integrated circuit manufacturers have endeavored to remain on track of this
empirical rule by pursuing the miniaturization of the transistor. As a result, the drastic progress owed
to high speed, small, and low power consumption transistor has brought great deals of benefits for our
life, for example, laptops, smartphone, tables have become an indispensable part of our life. However,
in the mid-2000s, it became much harder to continue downsizing the transistor due to several physical
limitations, and therefore conventional scaling is no longer an effective way to improve the device
performance. Nowadays, to pursue further transistor downsizing, innovation of the transistor structure
and novel material has undergone with rapid advancement. As successful examples in this direction,
high quality native insulator SiOs has been replaced by the so-called “high-k” insulators, which have
higher dielectric constants rather than that for SiOs, and conventional two-dimensional MOS field
effect transistors (MOSFETSs) has evolved into three-dimensional FinFET. Recently, extensive efforts
have been devoted to develop the future devices such as all surrounding gate nanowire FET, carbon
nanotube FET, and tunnel FET, but none of them is decisive. The quest for novel device structure
and material can also be seen in the research field of the power electronic device. Although silicon is
currently also mainstream semiconductor in power electronic device, wide band gap semiconductors
such as silicon carbide and gallium nitride emerged for high-power and high-temperature electronics. In
this situation, researchers can no longer rely solely on their intuitions and past knowledge accumulated
on silicon technology to find the candidates of the future devices.

Driven by the fast development of new material, new structure, and new principle electronics,
atomistic-scale simulations based on the quantum mechanics become increasingly important for under-
standing and predicting transport properties. In the past, technology computer aided design (TCAD)
tool based on the drift-diffusion and Boltzsmann transport equation was frequently used to predict
the device properties with practically sufficient accuracy. However, as decreasing the dimension of

the transistor, the effects of quantum mechanical effects like quantum confinement and tunneling on
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device properties become too large to ignore. The empirical tight-binding approximation is one of the
simplest ways to include the quantum mechanical effects and it may give the reasonable results in
some cases. Although the tight-binding approximation shows a good balance between accuracy and
efficiency, there is severe problem that it is difficult to obtain the transferable parameters from the
experimental measurements. Then, the tight-binding approximation often fails in the system contain-
ing impurity, surface and interface, where the influence of the individual atoms is essential. At the
atomistic scale, the first-principles approach whose Hamiltonian matrix is constructed self-consistently
without any empirical parameter should be the ultimate solution.

The great majority of first-principles electron transport calculations have been based on the den-
sity functional theory (DFT) within the local density or generalized gradient approximations. The
first attempts to the understand electron transport were based on the Landauer formula, implemented
by the Lippmann-Schwinger method. The current-voltage curve of the nanostructure between semi-
infinite electrodes was evaluated by solving the time-independent Kohn-Sham equation under the open
boundary condition. At this stage, there were many limitations and restrictions such that crystalline
electrodes are approximated by jellium electrodes, contributions from electron-phonon and electron-
electron interactions are difficult to include, and self-consistent calculations are numerically unstable.
To overcome these difficulties, theoretical and computational improvements have been studied exten-
sively. Currently, the most successful approach at the level of DF'T calculation is the non-equilibrium
Green’s function (NEGF) method often combined with the localized basis set. However, in the DFT
calculations of electron transport, a reasonable description of actual experiments involving over thou-
sands atoms is still computationally demanding, and therefore, the development of an efficient com-
putational method remains a vital task. Especially in the framework of the NEGF method, the
evaluation of the self-energy matrices of electrodes and retarded Green’s function is the hotspot of
the whole computation for large systems. A major contribution of this thesis is that the quantum
transport calculation of nanoscale conductor containing thousands of atoms makes it feasible.

In this work, I present new computational methods for quantum transport simulations based on
the real-space finite-difference scheme. In order to obtain the transmission probability and other
physical quantities, I have developed the efficient formulas and algorithms for the computationally
most expensive parts of the transport calculations. In addition, fully utilizing the sparsity of the
Hamiltonian matrix, the proposed methods are suitable for massively parallel computing. Although
all derivations in this thesis are assumed to use real-space grids, extensions to the tight-binding
approximation and localized basis set calculations are straightforward, and I believe that the efficient
algorithms presented here makes first-principles investigations of transport properties in large-scale

atomic structures feasible. My contributions to this work includes

e Derivation of the efficient formula and implementation for the self-energy matrices based on
real-space finite-difference scheme combined with partitioning and singular value decomposition

techniques.

e Implementation of the Green’s function method based on the sparsity of the self-energy matrices
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and Dyson equation. Implementation of the shifted conjugate-orthogonal conjugate-gradient

method for the unperturbed Green’s function to perform transmission calculations efficiently.

e Development and implementation of a contour integral method for calculation of generalized

Bloch states, complex band structure, and self-energy matrices.
e The study of transport properties of the SiC/SiO2 interface based on the power electronic device.

e The study of transport properties of the silicene interface based on the nanoscale electronic

device.

1.1 Units and notation

Unless otherwise noted, Hartree atomic units (m. = A = e = 1) are used throughout this thesis.

Following unit conversions are often used.

1 unit of Length = 0.5292 (A)
1 unit of Energy = 27.2114 (eV)
1 unit of Time = 0.02418 (fs)

1 unit of Electron mass = 9.1096 x 1073 (kg)
1 unit of Electron charge = 1.6022 x 107 (C)
1 unit of angular momentum = 1.0546 x 10734 (Js)

The following mathematical notations are used in this thesis. Scalars are written as italic charac-
ters, a,b,x,y, z, etc. Integer variables are predominantly given in i, j, k, N, etc. Vectors are denoted
by bold face characters, a, b, x,y, z, etc, and matrices are predominantly with hat, fl, B, X, }A’, Z, etc.
To indicate the specific element of vector, I use the notation a; = [a]; and similarly A;; = [A]m for
matrices. Finally, the particular block matrix element of vectors and matrices are denoted by a; and

A; j, respectively.

1.2 Outline

The thesis is composed of 7 chapters, 4 appendices, and the bibliography. In Chap. 2, 1 briefly
review the framework of the density functional theory and derive the Kohn-Sham equation for the
norm-conserving pseudopotential. In Chap. 3, I discuss the state-of-the-art theoretical modeling of
the quantum transport based on the Landauer picture in weakly interacting phase-coherent nanoscale
conductor. In Chap. 4, I describe the formulation and implementation of self-energy matrices evalua-
tion based on the real-space finite-difference scheme. In Chap. 5, I present the formalism for a more
efficient implementation of the retarded and non-equilibrium Green’s functions to compute the charge

density and transmission. In addition, an efficient numerical solver to obtain the reduced solution of



1.2 Outline CHAPTER 1 Introduction

the shifted linear systems arising from the unperturbed Green’s function calculation is implemented.
In Chap. 6, I describe a contour integral method for the fast evaluation of the generalized Bloch
states, complex band structure, and self-energy matrices within the formalism of the Green’s function

or wavefunction-matching method. In Chap. 7, I give a short conclusion and outlook.



Chapter 2
Density Functional Theory

Density functional theory (DFT) is the first-principles theoretical approach to treat the many-body
electron system in the ground state. From the pioneering work by Hohenberg and Kohn [1] in 1964,
numerous efforts have been devoted to enhance the capability of the DFT calculations, for exam-
ples, proposals of the Kohn-Sham equation [2], ab initio norm-conserving pseudopotential [3], various
exchange correlation functionals [4-6], Car-Parrinello molecular dynamics method [7], and so on.
Owing to these theoretical breakthroughs and remarkable advance on the super computers, current
DFT-based simulations enable us to investigate the electronic properties of a wide range of materials
accurately as well as the structural changes and phonon spectral theoretically. Nowadays, beyond
the ground state properties, electronic excitations including electron-transport and optical properties
are tractable by combined with theories such as Landauer-Biittiker formalism [8] and time-dependent
DFT [9]. T would like to begin this thesis from the minimum review of the DFT.

2.1 Born-Oppenheimer approximation

The purpose of condensed matter physics is to understand the behavior of electrons in matter includ-
ing gas, liquid, and solids that consist of a lot of electrons and atomic nuclei. The non-relativistic

Hamiltonian for the system of electrons and atomic nuclei can be written as below:
1
H = —— ——V2
S5 e S e 2 DI

where r; is the position of the i-th electron and R,,, M,, and Z, are the position, mass and charge of

(2.1)

ml’

the n-th nucleus, respectively.

In addition, Schrédinger equation for the Hamiltonian in Eq. (2.1) is
D =ED. (2.2)

It is assumed that the eigenfunction of the above equation can be expressed by the product of the

wavefunction of electrons and that of nuclei

(I)(I'l, cees Rl, ) = ‘I/(I‘l, cees Rl, )A(Rl, ) (23)
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Here W is the eigenfunction of the electronic Hamiltonian (2.1)
H\I/(I'l, ceey Rl, ) = E(Rl, ...)\I/(I‘l, ees) Rl, ), (24)

where
(2.5)

1

H= (—f
3
Note that the atomic position R, contributes to the electron system as just a parameter, and F
depends on the atomic positions. However, one might think that the vibration of the atomic nuclei
around the equilibrium position at the finite temperature will affect the electrons. To see this effect,

substituting Eq. (2.3) into Eq. (2.2) and using Eq. (2.4), one might obtain

%@:@[Z(—WWHERL... Z|R RmdA 22]\14 (2V, 0V, A+ V20A). (26)

n n;ém

The second term in Eq. (2.6) is the electron-phonon interaction. If the electron-phonon interaction
can be ignored, the freedoms of degree for electrons and nuclei systems are separated completely, and
therefore, this approximation is called adiabatic approximation or Born-Oppenheimer approximation.
Actually, by calculating the expected values of the first and second terms of the electron-phonon
interaction in Eq. (2.6), its effect is much smaller than the kinetic energy of electrons by the order of
1/M,, = 1073 ~ 10~°. This approximation seems to be quite good.

Thanks to the Born-Oppenheimer approximation, electron-nuclei interactions are treated as the
external potentials, and the target problem becomes solving Eq. (2.4) instead of Eq. (2.2). However,

it is still very difficult to solve Eq. (2.4) due to the electron-electron interactions.

2.2 Hohenberg-Kohn theorem

In this section I explain the theoretical framework of DFT to obtain the ground state of Schrodinger
equation for Hamiltonian of N-electron system. As a preparation for deriving the Hohenberg-Kohn
theorem [1], I introduce the external potential V., and electron particle number operator 7(r) defined

as

N
V:zxt = Zveajt(ri)v (27)

N
ar) = > d(r—r), (2.8)
i=1
where v+ (r;) is an external potential acting on the i-th electron:

Uext rz Z ’I‘
i

R,|
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The electron density is obtained as a expected value of 7n(r) for the N-electron wavefunction,
n(r) = (¥[a|¥)
= /\Il(rl, oy IN)R(T) ¥ (T, ..., Ty )dry . dry. (2.10)

In addition, potential energy for V. is expressed using the electron density,

N
(U| Vi |¥) = /qz(rl,...,rN)va(ri)q:(rl,...,rN)drl...drN

7

N
= /\I/(rl,...,rN)Z </vemt(r)5(r—ri)dr>\I/(r1,...,rN)drl...drN

= /Uezt(r)n(r)dr. (2.11)

Following the quantum mechanics, if V. is given, N-electron wavefunction and electron density

are determined uniquely except for degeneration. The first Hohenberg-Kohn theorem is its reverse.

Theorem 1 For a given electron density, external potential and ground state wavefunction are deter-

mined uniquely except for degeneration.

Proof. Assume that there are two different external potentials v, (r) and v.,,(r) that give the same
electron density n(r). If H and H’ denote the corresponding Hamiltonians for veg(r) and vl (r),
ground state wavefunctions ¥gg and Ui, g are different unless vege(r) — v, (r) = const. From the

variational principle, ground state energy Egg must satisfy

Egs = (Ugs| H |¥as) < (Pgsl H|Vgs)
= (Pgsl(H = V' +V)|¥qg)

— Efs+ [ (tuanlr) — o (0l 212
and also for E(gq,

Egs = (Vs H [Wgs) < (Yas|H' |Yas)
= (Ugs|(H-V+V')[¥gs)

= FEgs+ /(vext(r)' — Vezt(r))n(r)dr. (2.13)
Adding Eq.(2.12) and Eq.(2.13) yields
Ecs + Eqg < Egs + Egg. (2.14)

The above equation is contradictory. Thus, ve,¢(r) and v.,,(r) that give the same n(r) do not exist
(End of Proof).
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The first Hohenberg-Kohn theorem asserts the one-to-one mapping between n(r) and vez(r), that
is, all physical properties of ground state are described by the universal functional of n(r). For example,

ground state energy can be described as a functional of n(r)

Egsln] = Fn] + /vext(r)n(r)dr, (2.15)

where
Fln] = (Yas| (T + Vee) [¥as) - (2.16)

Here, T and V.. are the kinetic energy of electrons and electron-electron interactions, respectively.
The first Hohenberg-Kohn theorem only shows the existence and uniqueness of n(r) but says nothing
about how to obtain the true electron density. The second Hohenberg-Kohn theorem concerns this

issue.
Theorem 2 FElectron density which minimizes the ground state enerqgy is the exact electron density.

Proof. Following the first Hohenberg-Kohn theorem, for a trial electron density n/(r), there exists the

/

corresponding external potential v,

(r) and ground state wavefunction ¥jq. From the variational

principles, ground state energy for n'(r) is obtained as below:

Egsln'] = (gl H[Vgg)
— [ ey () + P

> Egg[n] = /Uext(r)n(r)dr—i—F[n]. (2.17)

(End of Proof)

Second Hohenberg-Kohn theorem asserts that the ground state energy Fgg is obtained once we
know the exact electron density n(r). The second theorem is too simple but important because
it reduces the problem of finding the wavefunction ¥(ry,...,ry) with 3N variables into finding the
electron density n(r) with 3 variables. Although the complexity of the problem is dramatically reduced,
the specific form of the functional F'[n] in Eq. (2.16) is still unclear.

Note that the first and second Hohenberg-Kohn theorems assume the existence of the external
potentials that reproduce the ground state electron density (V-representability). In addition, the
second theorem further assumes that the ground state electron density is obtained from the anti-
symmetrized wavefunction (N-representability). Strictly speaking, these are not correct. However,
using the constrained search formulation proposed by Levy [10, 11], it is enough to consider the
N-representability only. Fortunately, N-representability is not problematic in practical calculations
because the electron density constructed by the solutions of the Kohn-Sham equation to be appeared

in the next section satisfies the N-representability.
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2.3 Kohn-Sham equation

In the following year of the paper by Hohenberg and Kohn, Kohn and Sham derived the single-particle
equation known as Kohn-Sham equation and opened the way of the electronic structure calculation
based on DFT. The central idea of the Kohn-Sham method is introducing the fictitious system, which
is a set of non-interacting electrons whose electron density is identical to that of the true many-body
system. The electrons of the fictitious system moves in the local effective potential ves(r), instead of
ignoring the electron-electron interaction. So the Hamiltonian operator is described by just a sum of

the one-electron operator, and we simply solve the single-particle (Kohn-Sham) equation;

[ 592+ g ()] ie) = () (2.18)

for N non-interacting electrons. Here, ¥;(r) and ¢; are known as the Kohn-Sham orbital and energy,
respectively. When the full wavefunction is expressed by the Kohn-Sham orbitals as the form of a

Slater determinant, the true electron density will be given by

N
)= [hi(r). (2.19)
In order to obtain ves¢(r), F[n] might be decomposed into three terms:

Fln] = Ts[n] + 1/n<r)n(r/>drdr’ + Eyc[n), (2.20)

2 lr —r/|

where T[n] is the kinetic energy of non-interaction electrons, and the second term is the classical
Coulomb interaction contributed from the charge density n(r), and E,.[n] is the exchange-correlation
energy which includes the kinetic energy and electron-electron interaction of interacting electrons
except for the first and second terms in Eq. (2.20). Using the Kohn-Sham orbitals ;(r), Ts[n] can be

described as

T.n] = Z/wz S V)(r)dr
= Zsz—/ueff r)n(r)dr. (2.21)

The ground state energy Egg[n] in the true many-body system is

Egs[n Zsl —/Ueff r)n(r )dr—i—/vemt(r)n(r)dr—i—;/Wdrdr’—l—l?u[n]. (2.22)

By the way, the guideline of determining the unknown v.ss(r) is the variational principle for Egg[n].

Under the constraint that total number of electron is constant, we can derive the variational equation

- Bastnl = u( [ ne)ar = N)] = =gy )+ vene) + [ 2w o) =0, 29

v — 1’|

9
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where p is the Lagrange multiplier and

0Ec[n]
on

Vgo(r) = (2.24)

The vg(r) is called exchange-correlation potential and its analytical expression will be given in next
section. As can be seen from Eq. (2.18), because p uniformly shift €;, we put = 0. The forth term
in Eq. (2.23), the Hartree potential, is

[
v (r) = / . (2.25)

r —r

Because the direct integration of the vy (r) is very expensive, it is usually evaluated by solving the
Poisson equation
V2 (r) = —4mn(r), (2.26)

under the appropriate boundary condition. Typical numerical techniques to solve the Poisson equation
are the conjugate-gradient method, multi-grid method, and fast Fourier transform method. Thus, the

Verf(r) can be rewritten as below:

Veff (I‘) = 'Uemt(r) + 'UH(r) + vxC(r)‘ (227)

As a result, our target problem, that is, calculating the ground state of the N-electron system is
reduced to solve Eq. (2.18), Eq. (2.19), and Eq. (2.27) self-consistently. In the actual calculation, the
self-consistent solution is obtained by following iterative steps.

Step 1. Guess the trial electron density 7(r) and Kohn-Sham orbital v;(r)

Step 2. Construct the effective local potential vesf(r)

Step 3. Solve the Kohn-Sham equation (2.18) to obtain the new n(r) and ;(r).

Step 4. if |n(r)—n/(r)] is sufficiently small, the procedure stops and evaluate the physical quantities
such as Fgg. Otherwise mix the new and old densities and go to Step 2.

Fig. 2.1 illustrates the self-consistent procedure in a DFT calculation.

2.4 Exchange correlation functionals

The Kohn-Sham equation derived in the previous section is a highly efficient approach for quantum
many-body problem, but the exact exchange-correlation energy F,.[n| and its functional derivative
vze(r) are still unclear, and unfortunately it might be quite difficult to give its exact expression.
Kohn and Sham have already pointed out in their paper that many of solids can be regarded as
a homogeneous electron gas limit. In this limit, E,.[n] can be well approximated by the local or
semi-local functional of the electron density. Although various analytical forms for E,.[n] have been
proposed so far, it is beyond the scope of this thesis to derive them. Here, I only mention typical ones,
the local density approximation and generalized gradient approximation, that are used in the current

calculations.

10
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Kohn-Sham equation

1
[—2\72 + veff(r)] Yi(r) = epi(r)

Vesf (T)/' \ i (1)

Change density

N
n() = ) i)
i=1

Effective local potential n(r)

Verr (r) = vext(r)+vH (T)+ch(r)

Figure 2.1: Schematics of self-consistent calculation in Kohn-Sham scheme. The cycle is continued

until solution of the Kohn-Sham equation v;(r), charge density n(r) and v s¢(r) become self-consistent.

2.4.1 Local density approximation

Local density approximation (LDA) is the simplest approximation which assumes E,.[n] is given by

E..[n] = /n(r)e%éjA(n(r))dr, (2.28)
where eéCDA is the exchange-correlation energy per electron for the homogeneous electron gas. Fur-
thermore, ¢£P4 can be divided into exchange and correlation terms

ere (n(r)) = egP(n(r)) + P4 (n(r)). (2.29)
eLPA is so called Slater exchange energy and given by
376 \1/3
LDA
e (n) = 71<;n) . (2.30)
For the correlation energy efDA, several analytical forms have been proposed. The commonly used

LDA
c

analytical representations of e were formulated by Perdew and Zunger [12], Vosko, Wilks, and
Nusair [13], and Perdew and Wang [14]. Because all these expressions were obtained by fitting the
quantum Monte Carlo calculation by Ceperley and Alder [15] for the homogeneous electron gas, their
results are qualitatively similar. For example, the analytical expression formulated by Perdew and

Wang is given by

eLPA(r) = —2%0.031091(1 + 0.21370r,)

1
xIn| 1+ v 5 ,(2.31)
2 % 0.031091(7.5957r5'~ + 3.5876r + 1.6382r%'~ + 0.4929472)

where rg is the density parameter given by

e (2)7 232

dmn

11
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The exchange-correlation potential v,.(r) for LDA can be obtained by the functional derivative of
E.c[n] in Eq. (2.28), that is,

0E .[n]
on(r)

_ / [5n(r/)€LDA(n(r/)) + n(r,)éechA(n(r’))}dr,

on(r) *°

= [ [ )

_ ez (n(r))
= D) ) T (2.33)

Uge(r) =

SeLDA(n(x")) ] on(r’)

It is known that the LDA is generally accurate enough to describe the structural properties in-
cluding atomic structure, lattice constant and bulk modulus for a wide range of materials. The reason
why the LDA is good approximation even for inhomogeneous gas can be explained by two reasons: (i)
exchange-correlation energy only depends on the angle-averaged exchange hole and the LDA result is

similar to the exact one, (ii) the LDA functional satisfies the charge sum rule [16].

2.4.2 Generalized gradient approximations

While the LDA works well beyond our expectation, it turned out that the LDA results are unsatisfac-
tory in some cases such as the overbinding of the molecules, overestimation of cohesive energies, poor
accuracy of activation energy barriers in chemical reactions, wrong orders of the structural energy
differences, descriptions for 3d-metals and its oxides, and so on.

Generalized gradient approximations (GGAs) are exchange correlation energies that involve the
first-order gradient of the electron density to improve the description of the systems where the density

changes rapidly such as in molecules. The GGA exchange-correlation energy is expressed by
Buln) = [ ne)e Sl nt, [V, (9t
= /n(r)eéCDA(nT, nH) Eye(n®,n¥, [Vn'|, |Vnt|)dr, (2.34)

where n' and n' are up- and down-spin electron densities. Although various successful forms of F.
have been proposed so far, T only introduce the GGA proposed by Perdew, Burke, and Ernzerhof
(PBE) [6], which might be the simplest and most widely used GGA functional in the field of the
solid state physics. From the scaling rule for the exchange energy, it is enough to consider the spin-

degenerated PBE exchange energy

FPBE(5) =1 - 2.
e (s)=1+k Ty (2.35)
where x = 0.804, u = 0.21951 and
[Vl
= ) 2.
s epn (2.36)
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Here, kp = (377271)1/ 3. On the other hand, for the correlation energy, the spin dependencies must be

treated explicitly,
HPPE(rg,1,¢)

EPBE(T b |Wnl|, |VnH)) = 1 + ——2 222 2.37
( [Vnl|, [Vn]) IDA(r, 0) (2.37)
where
[Vn|
t = 2.38
26k’ (2.38)
T _ b
¢ = 2= (2.39)
n

Here, ks = (4kp/m)"/? and € = [(1 + ¢)*? + (1 — ¢)*?]/2. The PBE correlation term H(r,t,() in
Eq. (2.37) is given by
), (2.40)

A= Ble—etPA0a0/08) _ g1, (2.41)
7

1+ At?
1+ A2 + A24

HPBE(r ¢ ¢) = 753111(1 + é752
v

where g = 0.066725,~ = 0.031091, and

The GGA exchange-correlation potential v,.(r) can be obtained by the functional derivative for

E,. with respective to the n and Vn

acA aeGGA aeGGA
E;pc — g xc g xc g , 242
S Eyefi] ;/[e o+ b Vi (2.42)
where o =1 or |. Using §Vn = Vin,
|Vn| Vn Vn
0|Vn| =46|Vn|/=m— =0Vn:- — = —— - Vén. 2.43
Substituting Eq. (2.43) into Eq. (2.42) results in
3€GGA 8€GGA Yn®
0Eyc[n] = aaa ze ze -V |dn°dr. 2.44
[n] Z/[ezc +n o +n8|Vn"| V] V} n’dr (2.44)

Thus, the tractable form of v,.(r) can be obtained as below

" 6 Eyeln DeGGEA  §eGGA o
(1) = OEelr] ]={GGA } . (2.45)

= S | T one T avne| Vo]

The last term in Eq. (2.45) acts as the differential operator, resulting in vZ,(r) is the non-local potential.

For further details on how to handle the last term, we refer the reader to Ref. [17].

13
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2.5 Pseudopotential method

I have reviewed the minimal theoretical foundations of the DFT in the sections above. Next, I shall
consider solving the Kohn-Sham equation (2.18) numerically. In practice, the Kohn-Sham orbital
is expanded by the real-space grid, plane-wave basis set, or pseudo-atomic basis, which transforms
the Kohn-Sham (second-order differential) equation into the matrix eigenvalue problem. Because the
computational cost of solving the eigenvalue problem depends on its dimension, i.e., the number of
basis set, it is useful to discuss how many numbers of the basis set are required to describe the Kohn-
Sham orbital. Here, I choose the aluminum (Al) in bulk and plane wave basis set as a simple example.
The Al in bulk forms the face-centered cubic structure with lattice constant a = 4.05A. Based on
the hydrogen model, the radius of the lowest 1s orbital of the Al is roughly Za; (= 13) times smaller
than that of the hydrogen, that is, b = 0.529/13 = 0.04A. To describe the 1s orbital, plane waves
with the wave vector ky,q. & 27/b will be required, and the reciprocal lattice vector of Al, which can
be considered as a minimum wave vector, is kpin &~ 27 /a. Thus, the required number of plane-wave
basis is estimated by (Kmaz/kmin)® = (a/b)® ~ 10°. This number is very large. On the other hand,
the eigenvalue of the 1s orbital of the Al is Zil times deeper than that of the hydrogen, that is, -2300
eV. Considering that the metallic properties of the Al bulk can be well approximated by the nearly
free electron model, the deep and specially localized 1s orbital of the Al in bulk only weakly affects
on the physical property. Thus, it is reasonable and computationally efficient to ignore the inner-shell
electrons and deal with the outer-shell valence electrons explicitly. This is the basic concept of the
pseudopotential method.

The pseudopotential method has a long history. Several elementary ideas associated with pseu-
dopotentials were recognized in mid-1930s [18,19], however the practical calculations for predicting the
band structure in solids had not been achieved until the empirical pseudopotential method (EPM) was
developed. The EPM is based on the Philips-Kleinman cancellation theorem [20], which enables us
to transform the hard all-electron potential into a smooth pseudopotential. Because of this property,
plane-wave basis set can be used efficiently with the pseudopotentials. While the EPM has been used
to understand the optical and dielectric properties of semiconductors [21], this method only works
for the systems on which parameters are fitted. This problem is known as the transferability prob-
lem and finding the transferable pseudopotentials is still elusive within the empirical pseudopotential
approach. Moreover, there is no reason to believe the EPM for predicting the structural properties
of materials because the empirical parameters are fitted to the only optical excitation. To overcome
these difficulties, the DFT-based pseudopotentials have been studied extensively until now and result
in the impressive advances for understanding the electronic structure of materials. In this section, I
will introduce the norm-conserving pseudopotential method which is one of the most popular method

used in the current DFT calculations.

14
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2.5.1 Norm-conserving pseudopotentials

The pseudopotential method incorporates the inner-shell electrons into the external potentials and
handles valence electrons only, that is, external potentials for nuclei in Eq. (2.18) are replaced by
the pseudopotetials for nulcei plus inner-shell electrons. Pseudopotentials are constructed to make
the pseudo wavefunctions as smooth as possible while keeping the accuracy and transferability. Here
transferable pseudopotentials are those constructed in the isolated atom, but describe the behaviors of
valence electrons in different environments including molecules, clusters, and solids. However, pseu-
dopotentials are not determined uniquely due to its fuzzy definition. The most frequently used pseu-
dopotentials are probably the norm-conserving pseudopotenials (NCPPs) developed by the Hamann,
Schliiter and Chiang (HSC) [3], and its improvements [22-25]. According to the HSC paper, for an

atomic reference configuration, NCPPs must satisfy the following requirements:
(1) & =¢j*,
(2) ¢]°(r) = ¢j(r) for r > re,

S ae dePs (r dofe(r
(3) ¢°(re) = §°(re) and “LD| L

dr ’

r=rc r=rc

(@) [ 6 (Prdr = 77 67 (r)Prdr = Q..

where z—:? * and £7¢ are pseudo and all-electron valence eigenvalues for angular momentum /, and gbf *(r)
and ¢f¢(r) are the radial part of pseudo- and all-electron wavefunctions, respectively. The core radii
rc is a parameter to be chosen appropriately. Immediately from requirements (1) and (2), pseudopo-
tentials agree with the all-electron potentials outside r. because the potentials can be determined
uniquely for a given wavefunction and eigenvalue. The requirement (3), the wavefunction and its
derivative are continuous at 7., results in the smooth potential. The requirement (4) is the essence
of the NCPP. First, through the Gauss theorem, the norm-conservation condition guarantees that
the Hartree potentials outside 7. are identical for pseudo and all-electron densities. Furthermore, the
norm-conservation condition guarantees that the first energy derivative of the logarithmic derivative

of pseudo and all-electron wavefunctions agree at r,

e rsents L g (rie)]

1 d d
5 i = s[ooreet s S meieie)] =@ (240)

r=re r=re
In general, the scattering properties for the atomic potential are determined by the logarithmic deriva-
tive of the wavefunction, and the logarithmic derivative are monotonically increasing function. Thus,
if the logarithmic derivative and its first energy derivative for pseudo wavefunction coincide with
those for all-electron wavefunction at the reference energy, it is expected that pseudopotentials give
the satisfactory results in different environments around the reference energy. Figure 2.2 shows the
pseudo and all-electron valence wavefunctions and ionic pseudopotentials for aluminum generated with

Troullier-Martins scheme [24] using OPIUM code [26].
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Figure 2.2: The pseudo and all-electron valence wavefunctions and ionic pseudopotentials for aluminum
treated in LDA. Pseudofunctions are generated with Troullier-Martins scheme using OPIUM code. 1
set r. = 1.6 bohr.

2.5.2 Kleinman-Bylander separable form

After removal of the valence contribution to the pseudopotential, the ionic pseudopotential v;(r) is

usually separated into the local (I-independent) and non-local parts,
v (r) = Viee(r) + duy(r). (2.47)

Based on the discussion in the previous section, v,.(r) = —@ and ovy(r) = 0 for r > r., where Z;,,
is the charge of nuclei minus inner-core electron. Because dv;(r) depends on the angular momentum

[, the pseudopotentials act on the wavefunction as a semi-local operator:

- Uloc + Z Dflm 5’0[ lm‘ ’ (248)

where Y}, is the spherical harmonics. However, semi-local form is inefficient from the computational

point of view. The calculation of 4P%;(r) is
57545 (1) = t10e(r) 55 (x) + ZYZ n(0.9) [ Yinl® 5", 0', S lcos®)ddt.  (2.49)

In the DFT calculation, we frequently compute

Wl 15) = [ w00 [0 w)] | dr (2:50)

The above operation requires that O(Nfasis) complexity for both computational cost and memory

consumptions, where Npqsis is the number of (real-space) basis surrounding each atom.
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Kleinman and Bylander (KB) [27] proposed the efficacious form for o7

0P & vee(r) + Ok B

B |(5’Ul¢ ps (51)l|
- UZOC Z ‘5/0 ‘ >

= Uloc r +Z|Blm Dl Blm‘) (251)

l,m

where ¢)° = ¢ Yim, |Bim) = [du@]), and D; = (¢} | 6v;|¢)" ). The Kleinman-Bylander form is

lm
much more efficient than the conventional semi-local form because

(Wil oxes v5) = Dy (@il Bim) (Biml5) (2.52)
I,m
where

Thus, the operation in Eq. (2.52) can be executed in only O(Np,ss) calculation and memory usage.
Note that the Kleinman-Bylander form is approximation except for the atomic reference configuration,
leading the problem of the occurrence of the unphysical eigenstates (Ghost states), but can be avoided
with special care [28,29].

Consequently, the Kohn-Sham equation for the pseudopotential is defined as below:

Hg o (v) = eif™(r), (2.54)
where )
H?(SS = —§V2 + UZOC(I‘) + @KB + UH(r) + Ua:c(r)‘ (255)

The formulations and calculations in the current study are based on the Kohn-Sham equation (2.54)
and Kohn-Sham Hamiltonian (2.55).

2.6 Comment on other issues

To perform the DFT calculation steadily, efficiently, and accurately, it is necessary to discuss about
the selection of the basis sets, mixing the charge density, iterative eigensolvers, sampling the k-points
in the Brillouin zone, algorithms for molecular dynamics. I also skip the recent advancements on the
development for the exchange-correlation functionals, ultrasoft pseudopotentials [30] and projector-
augmented wave method [31], and the theories beyond the DFT. For further details about the DFT,
I refer the reader to Parr and Yang [32], and Martin [17].
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Chapter 3

First-principles quantum transport

approach

This chapter presents the theoretical modeling of quantum transport through nanoscale conductors
where conduction electrons preserve the feature as a quantum mechanical wave, which gives rise to the
following transport phenomena not observed in the macroscopic conductors: (i) quantum interference
(ii) quantum tunneling (iii) quantum confinement (iv) inelastic scattering by electron-electron and
electron-phonon interaction. The (i)-(iii) phenomena can be treated within the scattering theory for
transport (Landauer-Biittiker formalism [33-35]) combined with the single-particle equations based
on the DFT, Hartree-Fock theory, empirical pseudopotential method, tight-binding approximation,
and effective mass approximation. For the fourth phenomena such as Coulomb blockade, electron-
electron and electron-phonon interactions can be handled as self-energy matrices [36] based on the
non-equilibrium Keldysh formalism which is often called the non-equilibrium Green’s function (NEGF)
method [37,38]. In this thesis, I focus on the system where inelastic scattering effects on the transport
can be neglected, that is, the system is assumed to be at low temperature and low source-drain bias
regime for simplicity.

Reminding that DFT is originally formulated for handling the ground-sate many-body problems,
there is no guarantee that Kohn-Sham equation (2.54) is applicable to the electron transport beyond
the linear response regime. In fact, the conventional LDA/GGA calculations usually underestimate
the band-gap and therefore overestimate the conductance at the Fermi level. To overcome the short-
coming of the DFT for electron transport, the self-energy correction scheme using the Hedin’s GW
approximation has been proposed, and it has been verified that GW calculations give the qualitatively
accurate conductance compared with the experimental values [39,40]. The only drawback of the GW
method is that the computational cost is prohibitively expensive for all but very small systems. Thus,
while the the use of DFT-based approach to the electron transport involves many restrictions, it has
still been the workhorse approach for obtaining the insight of the transport properties of wide rage of
materials due to its computational efficiency.

By neglecting the inelastic effects, results of Landauer-Biittiker formalism and NEGF method are
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formally same since both approaches are conceptually identical. On the other hand, their implementa-
tions are considerably different each other, and therefore appropriate choices of numerical algorithms
and basis sets are indispensable to perform large-scale transport calculations. To begin with this chap-
ter, I will present the both approaches from NEGF method to wavefunction matching (WFM) method
which is one of the theoretical method based on Landauer-Biittiker formalism. Later on that, I will
show the relationship between NEGF and WFM methods, and their advantage and disadvantage.

3.1 Phase-coherent transport

Before going to the theoretical modeling, I shall consider why unique phenomena have been observed
in nanoscale conductors at low temperature. It is well known that electrons in solids are scattered
by potentials of impurities and defects frequently. These scatterings only change the direction of the
motion (momentum), but the energy is preserved during the scattering. Another type of scattering,
inelastic scattering such as electron-phonon interaction changes both momentum and energy of elec-
trons. Roughly speaking, elastic and inelastic scatterings are distinguished by means of the mean free
path L,,f,. If the size of conductor is larger than L,,f,, the inelastic scattering process is dominant
and as a result the phase coherence of electrons is completely lost by collisions between electrons. In
this regime, the motion of electrons is described by the classical Boltzmann transport equation, and
the conductivity is proportional to its width and inversely proportional to its length (Ohm’s law). On
the other hand, if the length of the conductor is smaller than L,,y,, electrons go through the conduc-
tor while keeping the information of its phase, leading the experimental observations of the quantum
mechanical effects such as Aharonov-Bohm effect, quantization of the conductance, and quantum Hall
effect. This type of conduction is called phase-coherent transport. In metals, the relaxation time is
short as 10713 (1071!) s at room temperature (1K), and therefore, the motion of electrons tends to
be diffusive. Thus, to see the quantum interference in metal, the size of samples must be smaller than
1 pm. In semiconductor,L,, s, is much longer than that of metal, and quantum confinement effect is
also expected due to its large fermi wavelength. Most of the theoretical works on the phase-coherent
(ballistic) transport scheme is based on the Landauer-Biittiker formalism as introduced in the next

section.

3.1.1 Two-probe system

Most of the theoretical works for phase-coherent transport have been based on the Landauer picture as
generalized by Buttiker for multi-probe system. This approach has been successful in explaining many
experimental observation qualitatively. I briefly explain the concept of the Landaur picture using the
simplest two-probe system as depicted in Fig. 3.1. Consider the conductor sandwiched by two ideal
leads that are connected with reservoirs whose chemical potentials are py and pg for left and right

reservoirs, respectively. Suppose that the motion of electrons is one-dimensional and its lowest energy
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N-channel
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Figure 3.1: Ilustration of one-dimensional narrow conductor to derive the Landauer formula. Con-

ductor is connected to electron reservoirs with different chemical potentials py, and pg.

level is given by ¢ = h%k2/2m*. The density of states of one-dimensional system is
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where group velocity v, = hk,/m*. Then, the current through two-prob system around zero temper-

ature is

2
|
2o
—
=
[wl
N
O
.
(L)

2

!
o
Z
T
h

!
=
<5
w
N

where f(e — p) is the Fermi distribution function given by

1

fle—p) = w- (3.3)
Here kp and T, are Boltzman constant and electron temperature, respectively. It is assumed that the
current is carried by the single channel around the Fermi level e at zero temperature. The transmis-
sion probability T'(¢) can be computed from the Kohn-Sham equation of two-probe system. Because
the potential difference between left and right electrons is given by —eV = u; — pr, conductance
between two electrodes is

1 e?

G = V = ET(&}?). (3.4)
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This is the Landauer formula for the single channel. In general, sub-bands with discretely quantized
energy levels perpendicular to the transport direction contribute to the transport. For case that total

number of channels is N, the Landauer formula is generalized as follows:

o2 Nen
_ 2
G=— ; [ Tonn |2, (3.5)

where 7, is the probability amplitude in which the n-th channel of the left electrode transfers to the
m-th channel of the right electrode. In this way, a procedure to investigate the transport properties in
a small conductor is reduced to calculating the transmission probability from the Kohn-Sham equation

of two-probe system and determining the conductivity by Landauer formula.

3.1.2 Hamiltonian in two-probe systems

The standard approach of electronic structure calculations for isolated and periodic systems is trans-
forming the Kohn-Sham equation into the matrix eigenvalue problem. This transformation is achieved
by expanding the wavefunction as a linear combination of the basis set or directly mapping on real-
space grids. In this case, the size of Hamiltonian matrix becomes finite and therefore one can easily
solve the Kohn-Sham equation and investigate the electronic structure in large-scale systems. In con-
trast, the two-probe system for transport calculation is neither isolated<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>