-

View metadata, citation and similar papers at core.ac.uk brought to you byt CORE

provided by Tsukuba Repository

1
Repository

Study of Kaon Bag Parameter with Wilson
Fermion using Gradient Flow

HRERERERE Asobu Suzuki

year 2019

O0o000o00n0 Gradient FlowO OO OWilsonO OO OO O 0O OKO
O0Bag O OO OOOO

O000on 0000 (University of Tsukuba)
ooooon 2018
o000 121020 [0 893401

URL http://doi.org/10.15068/00156551



https://core.ac.uk/display/211164806?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Study of Kaon Bag Parameter
with Wilson Fermion using Gradient Flow

Asobu Suzuki

February 2019



Study of Kaon Bag Parameter
with Wilson Fermion using Gradient Flow

Asobu Suzuki
Doctoral Program in Physics

Submitted to the Graduate School of
Pure and Applied Sciences
in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in Science
at the University of Tsukuba



CONTENTS CONTENTS

Contents
1 Introduction 3
2 Kaon Bag Parameter 5
2.1 Standard Model Parameter . . . . . . . . .. . 6
2.1.1 CPViolation . . .. . . . . . . . . e 6
212 CKMmatrix . . ... ... 7
213 K-KOmixing . . . . . . .. 8
2.2 Lattice Fermion and Chiral Symmetry . . . . . . . .. .. ... .. .. ... 10
2.2.1 Naivediscretization. . . . . . . . . . ... 10
2.2.2 Nielsen-Ninomiyatheorem . . . . . . . . .. .. .. .. ... ....... 12
2.2.3 Wilsonfermion . . . . . . . . .. 12
224 Operatormixing . . . . . . . . e e e e 14
2.25 Previousworks . . . . . ... e 15
3 Gradient Flow 18
3.1 Definition and Techniques . . . . . . . . . . . . .. ... .. .. 19
3.1.1 Flowequations . . . . . . . . . . . . . 19
3.1.2 Renormalization and gradientflow . . . . . . .. ... .. ... ...... 22
3.1.3 Smallflowtimeexpansion . . . . ... ... . ... ... . ... ... 25
3.1.4 Backgroundfieldmethod . . . . . ... ... .. ... ... ... ... 27
3.2 Example: Fermion Bi-linear Operator . . . . . . ... .. ... ... ....... 31
3.2.1 Quarkfield renormalization . . ... ... ... ... ... .. ..., 31
3.2.2 Axialvectorcurrent . . . . ... e 38
3.2.3 Pseudoscalardensity . . . . . .. ... 41
3.2.4 Infrareddivergence . . . . . . . . . .. 42
3.3 HadronicObservables. . . . ... .. .. .. .. ... .. 48
3.3.1 Computational procedure onthe lattice . . ... ... ... ... ..... 48
3.32 MesonNmasS. . . . . . .. e e e 52
3.3.3 Decayconstant . . . . . .. ... e 54
3.4 Previous Works with GradientFlow . . . . . .. ... .. ... .......... 57
3.4.1 Energy momentumtensor . . . . . . . . . .. .. e 57
3.4.2 Topologicalcharge . . . . . . . . . . . . ... 60
3.4.3 Chiralcondensate . . . . . . . . . . . . ... e 61
3.5 PCACRelation . . .. . . . . . . . . . e 63
3.5.1 \Validationof PCACrelation . . . .. ... ... ... ... ... ..... 63
352 PCACMASS . . . . . . . . e 66



CONTENTS

CONTENTS

4 Four Fermion Operators

4.1 Kaon Bag Parameter

41.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7

421

Fierz rearrangement
Dimensional reduction

Feynmandiagrams . . ... .. ...
Calculation of diagram c, d and e
Calculation of diagram a and b
ResultifMS scheme . . ... ... ..
Matchingfactor . . . . ... ... ...
4.2 AS=1 Operator
Penguindiagram . . ... ... ...
4.2.2 Flowed penguin diagram

5 Summary and Outlook



1 INTRODUCTION

1 Introduction

The study of thekg — Ko mixing is very important phenomena to study the indirect CP-violation,
because the CKM matrix elements emerges in the Feynman diagrams. The mission of the lattice
QCD is the calculation of the QCD correction of the diagrams, such quantity is called as the kaon
bag parameter. There were marjoets to calculate the kaon bag parameter, however, it tends to
struggle in the calculation using the Wilson-type fermions. This problem relates to the chiral sym-
metry breaking which makes us to perform an extra renormalization. We discuss about the kaon
physics and its relation with th€g — Ko mixing in the section 2.1.

In this thesis, we suggest that the gradient flow works for the calculation of the kaon bag param-
eter. The gradient flow is a recent nettiogt of the lattice QCD, it considers a fictitious time and
the developments of fields towards that direction. Moreover, the gradient flow has a property that
it removes the ultraviolet divergence from the theory, in other words, we can regard the gradient
flow as a certain renormalization scheme. From the previous researches, we know the way to de-
fine the renormalized operator via the gradient flow scheme, which is called as the small flow time
expansion. It is also known that the background field method can be applied to the flowed theory
and it makes calculations slightly easy. We will review these techniques of the gradient flow in the
section 3.1.

The gradient flow made many contributions to the lattice QCD. For example, the energy momen-
tum tensor is successfully defined even on the lattice via the gradient flow. The energy momentum
tensor is a convenient origin of the thermodynamical quantities and is defined as a Noether cur-
rent of the translational symmetry. Since the translational symmetry is broken on the lattice, it has
the important meaning that the gradient flow removes the details of the lattice. In addition, the
computation of the topological susceptibility provides a new perspective for calculations with the
Wilson fermion. The topological susceptibility is involved with the axion and known as one of the
targets of the finite temperature lattice QCD. The topological susceptibility can be defined via the
two different ways, however, one of them uses the chiral Ward-Takahashi identity. The previous
work tells that the two definitions have good agreement with each other. From the fact that the
Wilson fermion breaks the chiral symmetry, the gradient flow makes the great assistance of the
renormalization even for the Wilson fermion.

We would like to use the consequence above to the other computation. In especially, the aim of this
study is calculation of the kaon bag parameter with the Wilson fermion using the gradient flow. We
must calculate a transition amplitude of th& = 2 four fermion operatoQ?S=2 = (§)/bd)(§ybd),
to calculate the kaon bag parameter. When we consider the renormalization/d$ the? four
fermion operator, however, it must be contaminated by another operators which have same parity
and other chirality with the original S = 2 four fermion operator.

082 = 7072 4 Z ZiO;.
|

Ren
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1 INTRODUCTION

Our prospectus is that the gradient flow undertakes this bothersome renormalization.

To substantiate our claim, we numerically study about the meson correlation functions in the sec-
tion 3.3 and 3.5. In particular, we estimate meson masses, pion decay constant and PCAC mass
using the gradient flow. In especially, the calculation of PCAC mass is important from the view-
point of chiral symmetry, because it is defined via the PCAC relation which is a kind of the chiral
Ward-Takahashi identity. Our numerical results were consistent with the Schrédinger functional
scheme, therefore, the gradient flow works well for the lattice calculation.

In this study, we will consider the matching factor of th& = 2 operator. Calculations with the
gradient flow is very convenient, however, what we want to calculate are operators renormalized
in the MS scheme. Such transformation can be done by the small flow time expansion method
[37],[120]-[123]. According to the small flow time expansion method, we can evaluate the match-
ing factor with the perturbation theory. For the fermion bi-linear operators, the matching factor
have been calculated. Since our new calculation is in relation to the four fermion operators, we
calculate it in the section 4.1. The calculation of four fermion operator needs several techniques,
dimensional reduction scheme and Fierz rearrangement. We will review these techniques at the
same time. We also challenge to the calculation ofABe= 1 operator which is important for the
K — 7z decay in the section 4.2AS = 1 operator includes so-called penguin diagrams. We will
evaluate them with the gradient flow.



2 KAON BAG PARAMETER

2 Kaon Bag Parameter

The purpose of the lattice QCD is to "solve” the QCD from the view point of first principle nu-
merical study. For example, the nucleon-nucleon potential is one of the recent achievements of the
lattice QCD and the finite density lattice QCD challenges to drive the confingseenhfinement

phase transition of the QCD phase diagram. It is also important to study the CP violation phenom-
ena, because it is involved with the undecided parameter of the Standard Model.

Historically, CP violation is deeply involved with the kaon physics. The kaon has been discovered
in 1947 and contributed to the discovery of CP violation in 1964. After that, the kaon physics
has been active as a prove of the CP violation. Even in the 21st century, the NA48 and the KTeV
experiments detected the direct CP violation from the kaon decay.

The neutral kaon has an unique property that it oscillate to its antiparticle pair with each other.
This phenomena is called as 8 — KO mixing and gives an indirect evidence of the CP violation.
The kaon bag parameter also relates to the CP violation phenomena, since it gives QCD corrections
of the K — KO mixing. There are many works to attacking the bag parameter, however, it tends to
sufer from the operator mixing for the Wilson type fermions.

The lattice QCD is one of the most powerful framework to attack the QCD in a non-perturvative
way, however, we must take care to artifacts called doublers. It is known that the lattice action
which describes one particle corresponds to 16 particles in the naive discretization method. The
Wilson fermions add the extra term which vanishes in the continuum limit and succeed to remove
the doublers in exchange for the chiral symmetry. THiisreis useful for many observables, how-
ever, if an observable relates to the chiral symmetry we must perform an extra renormalization to
obtain the correct result. The kaon bag parameter just corresponds to this case.

In this section, we will discuss about the mechanism of the operator mixing. The section 2.1
shows the definition of the bag parameter and its relation with the CP violation Vi theK 0
mixing. The section 2.2 shows an brief introduction to the lattice QCD with the Wilson fermion, in
which we will see the explicit chiral symmetry breaking and fteet.



2.1 Standard Model Parameter 2 KAON BAG PARAMETER

2.1 Standard Model Parameter

The Standard Model describes strong, electromagnetic and weak interactions based on the
SU(3)cxSU(2). xU (1)y gauge theory [1]-[9]. In 2012, the Standard model Higgs boson was
detected by ATLAS and CMS collaborations [10][11], and the Standard Model was established.
However, there are some parameters which cannot be fixed from the original theory. The CKM
mixing angles and the CP violation phase are included in such the undecided parameters. In this
section, we will start from the CP violation phenomena and reach to the kaon bag parameter which
describes the QCD correction of thg — Ko mixing.

2.1.1 CP Violation

In our Universe, the matter exists overwhelmingly more than the antimatter. It indicates that the CP
symmetry is broken under the development of the Universe. The CKM matrix takes into account
about the CP violation in the Standard Model.

The CP violation deeply relates to the kaon physics. The experiment which firstly found the CP
violation detected the process in kaon decays [12]. KRestate is constructed from tfgequark
and thed quark. It has an antiparticle pai'(r’T and they are related via the CP transformation as

CP|K®) = —‘@>. 2.1)
From this relation, we can construct eigenstates of the CP transformation,
K= & (Ko_@) 2.2)
V2
1 -
Ky = — (KO ; KO) . (2.3)
V2

They have eigenvaluel. Let us assume that the weak interactions do not change the CP symmetry
and consider a decay process to two pion state. Because the two pion state is CP even,

CPnnm) = + |y, (2.4)

only theK; can decays to the two pion state. However, the experiment [12] detected th&t the
can decay to the two pion state via a state called,as

Let us next regard thig andKO as the two state system and consider their time evolution via the
Hamiltonian,

i Mg — 511 Myp— 4T
HeM-lr- 11 |2 11 12 |2 12 (2.5)
2 M, =317, Maz =302
Because of th€ PT, we can assume symmetry that
Hi1 = Hao. (2.6)

6



2.1 Standard Model Parameter 2 KAON BAG PARAMETER

From the Schrodinger equation,

.d
Iaw = Hy, (2.7)

we obtain the time evolution of the each state as

.d i 1

|aK1 = [Hn - M2 + ERe{r12} Ky + §|m {T'2} Ko

. d i 1

IaKz = H]_l + |\/|12 - ERe{Flz} K2 — §|m {F]_z} K]_. (2.8)

ThereforeK; andK; do not diagonalize the Hamiltonian (2.5) and are mixed with each other. Since
K1 has even parity anid, has odd parity for the CP transformation CP is no longer conserved under
this Hamiltonian.

2.1.2 CKM matrix

As we saw in the previous section, the mixing, in other words the CP violation, comes from the
complex number. The Cabbibo-Kobayashi-Maskawa maWix describes the mixture between
the other generations of quarks, which explains the CP violation [14][15]. By using the CKM
matrix we can write the coupling of the W gauge bosons as

Vud Vus Vub da
(" & " )y"(L-vs)| Vea Ves Voo || So |- (2.9)

g .
9w
22 "
Vid Ms VMo by

Because of the unitarity of the CKM matrix, it has 9 free parameters. Because some of the pa-
rameters can be absorbed into the phase of the quark fields it is enough to consider 4 parameters
as

C12C13 S12C13 S13€71018
—S12C23 — 12523513613 C12Cp3 — S12523513€°%  Sp3C13 |, (2.10)

S12523 — C12C23513€%18  —C12Cp3 — S12C23513€%%%  Cp3Ci3

where we denoted as
Gj = cog#6ij), sj = sin(6ij). (2.11)
and the 4 free parameters@s, 6,3, 613 andd13!. Because the experimental data show that

S13 K $H3K G2, (2.12)

IThis parameterization is called as standard parameterization [16].

7



2.1 Standard Model Parameter 2 KAON BAG PARAMETER

we can parameterize that
S12 = A, Sp3 = A1%, 51362 = AL3(p — i), (2.13)

with the parameters, A, p andn?2. The CKM matrix becomes

1—%/12 A A3(p —in)
) 1-122 AL? : (2.14)
AB3(1-p—in) -A1? 1

for O (/14).
Note that the complex numbers emerge in the matrix elemgpendV;q denote the CP violation
in the Standard Model.

2.1.3 K- KP° mixing

In the section 2.1.1, we dealt the® — KO system and mixing. The eigenstates which diagonalize
the Hamiltonian are ndf; andK,. The correct ones are given as

1
IKs) = (IK1) + € 1K2)), (2.15)
1+ €2
1
IKL) = g (IK2) + € |Ky)) . (2.16)

The subscriptsS/L mean the shofiong living particle. TheKg mainly decays to the two pion

CP even state, on the other hand, Kagmainly decays to the three pion CP odd state. However,

because of the mixing_ can also decays to the two pion state although such process is rare.
Let us consider the box diagrams in Figure 1 which describ&fhe KO° mixing. It is important

s—i WL i os—ds, L Yia_ g
it Y wE wt
T
d AAN-—— 5 g
Via Vis Via U Vg

Figure 1: Box diagrams of th&® — K© mixing.

that at the vertex there are the complex CKM matrix elemgmgandViq. In the Standard Model,
we cannot apply the perturbation theory to the QCD part since the coupling constant becomes large

2This parameterization is called as Wolfenstein parameterization [17].

8



2.1 Standard Model Parameter 2 KAON BAG PARAMETER

at low energy scale. To take out the QCD part from the diagrams, [18] and [19] integrate out heavier
particles and obtain theffective Hamiltonian as

HEZ? o f d*x 0*S2(x), (2.17)
0% = (Syu(1-7s)d) (Syu(1-s)d). (2.18)

The bag parameter our target of this study characterize the matrix elementAss th@ operator
as

<@ ' OAS=2 ‘ K°> <@ ‘ OAS=2 ‘ K°>

%|<0|§7u(1—75)d|K0>)2 - Sm2 12

(2.19)

wheremy and fx mean the mass and decay constant of the kaon. We need the lattice QCD calcu-
lation to obtain the bag parameter.

In this section, we considered the CP violation in the viewpoint of the kaon system. Since the
KO- KO mixing does not describe the end state of the decay process, it is called as the indirect CP
violation. The bag parameter relates to the QCD part okthe KO mixing and it is necessary to
use the lattice calculation.
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2.2 Lattice Fermion and Chiral Symmetry

The lattice regularization has two important meanings for the field theory. One is that the lattice
regularization provides a non-perturbative formulation of the theory. It is well known that the
Wilsonian renormalization group approach brought a big progress in the analysis of the critical
phenomenon. One is that the lattice, discrete space time, is compatible with numerical calculations.
The lattice QCD is almost the only numerical method that gives non-perturbative calculations, and
becomes a big field in the elementary particle theory nowadays. We focus on the later property and
consider an application to the bag parameter. We will review some problems specific to the lattice
QCD in the progress.

2.2.1 Naive discretization

In this section, we will see the most naive discretization procedure of the QCD. Since QCD needs
the gauge invariance of the theory, it is natural to put quarks on the site and put gluon onhe link
Along with that, the gauge fields are defined through the link variable,

U, (x) = 90oACHl2) (2.20)

The gauge transformations are defined as

y(x) — QX)y(x), (2.21)
() - ¥(x)Q"(x), (2.22)
U,(x) — Q(x+ aa)u,(x)Qf(x), (2.23)
Q) e SUQ) (2.24)

on the lattice. When we take the naive continuum limit> 0 the gauge transformation (2.23)
reproduces the correct gauge transformation, because

1 +igoaA,(x) + O(a?)

— 1+igoa {Q(x) AQT(x) - ég(x)aﬂm(x)} +0(a?). (2.25)

By using the link variable, we can construct the gauge invariant plaquette action as

S.(U) = iz > Retr[Uy, + U ()], (2.26)
gO Y NTRY
U (x) = U(0U, (x+ @)U (x + 7)US (), (2.27)

3Gauge fieldsA, (x) depends not only on the coordinatéut also on the directiop!

10



2.2 Lattice Fermion and Chiral Symmetry 2 KAON BAG PARAMETER

whereU,, is called as the plaquette which is the simplest gauge invariant quantity. We can also
show that when we take a naive continuum limit»> O the plaquette action becomes the gluon
action as

SU] = 9—622 {1—%Tr(uw(x)+vaT(x))} (2.28)
0 X;u<v
_ f dx F2 (x)F2,(x) + O(a?). (2.29)

In practice, the rectangular actto(2.30) is often used, because it can get closer to the continuum
limit earlier than the plaquette action.

g_lz Z Tr {(1 B 8C)U/“’(X) +C (R##V(X) + vay(x))} > (230)
0 X;u#v

Ruw(X) = Uu()Uu(x + fa)U, (x + 2aa)U} (x + fa+ va)u (x + 7a)Uu) (x), (2.31)

S[V]

whereR,,,, is the 2x 1 rectangular plaquette.
The naive discretization of the fermion action is given by

vl = DU {Z 22 (V00w O+ @) = U (n = @ (x - m)}
X M
+M Y T (X). (2.32)

Note that we rewrite the quark field = a¥2y and the quark madd = mato erase the dimension.
This action return to the continuum actionan- 0,

Uy 0] - f d*x { () 7uDuwr (%) + My (X)y (x)] . (2.33)

however, it includes the doublers which are extra degrees of freedom. To indicate the doublers
explicitly, let us take

Uu(x) = 1. (2.34)

With this condition, the naive fermion action becomes

SWU=1y.9] = > ¥ X {Z %" (W' (x+ 1) = ' (x - ﬁ))} +M D (0w (x)
X u X

[T (irsinpia) + m)w/ (o) (2.35)
p

4C = -0.331 is known as the Iwasaki gauge action[106].

11



2.2 Lattice Fermion and Chiral Symmetry 2 KAON BAG PARAMETER

where we denoted

1
) = d*p (---). 2.36
Je= [ Gt (236)
In the naive continuum limit, the quark propagator is given by
_ ey (=i Y, €y B+ M

— P> | 2. €77 yPy g (x-y) 2137
) Zp]e fp s , (2:37)

~ 1.
P = asm(p#a) (2.38)

where we denoted as the momenta runs ir?2= 16 vertices of the hyper-cubic lattice,
pe{(000,0),(r,000),(--), (x,7,0,0),(--), (x, 7, 7, 0), (---), (7, &, m, 7)}, (2.39)

where(- - -) means possible permutations. These 15 extra degrees of freedom are called doubler,
which must be removed from the lattice theory.

2.2.2 Nielsen-Ninomiya theorem

The fermion doubling problem is not failure of the lattice formulation. We can understand it as
a property the lattice formalization essentially has. Such property is known as Nielsen-Ninomiya
theorem [26]. The statement of the theorem is that if the lattice fermion satisfy the assumptions
below the doubling problem must occur.

e translational invariance on the lattice

chiral symmetry

hermitian symmetry

bi-linear form of the fermion field

locality

One can find the proof of this theorem, for example, in [27] and [28], in which the Poincare-Hopf
index theorem is used.

2.2.3 Wilson fermion

The Nielsen-Ninomiya theorem seems to impose the strong restriction to the lattice theory. How-
ever, if we use it in the reverse sense there are possibilities to avoid the fermion doubling problem.

12



2.2 Lattice Fermion and Chiral Symmetry 2 KAON BAG PARAMETER

The Wilson fermion realizes it by giving up the chiral symmetry of the fermion action.
The chiral transformation is defined by

y — €y (2.40)
v - g, (2.41)

Since theys anti-commutes with the other gamma matriggsthe naive fermion action (2.33) is
surely invariant with respect to the chiral transformation. Besides, half of the doublers,

pe{(0,0,0,0), (n,7,00),(:-), (m, 7, 7, m)}, (2.42)
have positive chirality and the other half of the doublers
p_e {(ﬂ-’O’O’O)a ("')9 (ﬂ.’ﬂ-’ﬂ-’O), ("')}9 (243)

have negative chirality.
The Wilson fermion is defined as

réﬁ[u,W]
= 52, 10 00U (x + a4+ 3 (x+ MUY (x) = 20 ()¢’ (x)§2.44)
X

S\éVilson[U’w’E]

The additive term correspondsdta) term,

—ar f d*x ¥ (x) D2y (X), (2.45)

and it will be vanished in the naive continuum limit. Simultaneously, it can be seen that the additive
term breaks the chiral symmetry explicitly. Let us consider the quark propagator again. We can
write down it as

_ iy, @Ry |
(poF) = T [ TR TS TR, @
p p
m(p) = m+2ErZsin2(pﬂa/2). (2.47)
u

We can see that the pole mass is changed from (2.37). Them{a¥seturns to the bare mass
in the continuum limit. On the other handy(p) diverges as Ja at the 15 edges of the Brillouin
zone. In this way, the doublers are removed from the theory at the expense of the chiral symmetry
for the Wilson fermion.

Practically, the Wilson-clover fermion [105] is frequently used,

S\éViIson-cIovel[U’w’w_] _ S\:Nilson[u,w,a] _C,, Z Wﬁw(x)lp'(x), (2.48)

U<V

13



2.2 Lattice Fermion and Chiral Symmetry 2 KAON BAG PARAMETER

where we defined the "clover” term as
A i
F,uv(x) = _é(u,uv(x) + Uy—v(x) + U—,uv(x) + U—,u—v(x) — (> )). (2.49)

This additional term i) (a) improvement of the action and it approaches to

[yp, Yvl
2i

_aG,, f d*x i/ (x) o (0 (). (2.50)

in the continuum limit.

There are some kinds of fermions besides the Wilson fermion. The Kogut Susskind fermion [29]
doubles the #ective lattice spacing to reduce the Brillouin zone. The doublers reduce to half,
however, the chiral symmetry also breaks. The overlap fermion [32] which satisfies the Ginsparg
Wilson relation [30] and the domain wall fermion [31] which uses the five dimensional heavy
quarks are newfBorts of the lattice QCD. They avoid the fermion doubling problem and realize the
lattice chiral symmetry at the same time in exchange for computational costs.

2.2.4 Operator mixing

The Wilson fermion explicitly breaks the chiral symmetry as we saw in the previous section. This
breaking emerges as artifacts which hav@edent chirality on the calculation of the bag parameter.
To see this, let us consider for a four fermion operator,

B T W Sy
O = 5 ((Wal'w2) (Wal"va) = (4aTwa) (43 "v2)). (2.51)
and its chirality. It is convenient to take the interpolate operdicaaadI” as

(I,T) € (VV+AAVV - AA SS+ PR, SS-PRTT
VA+AV,VA- AV, SP+ PS SP- PS TT} (2.52)

When we consider the discrete chiral transformation as

Wo = iysa, W — iYyys,
= r _ 2.53
i { Ya — iysa, Yq— idyys, (259

and

U1 - iyspa, Yy — iggys,
= - = 2.54
v { Y1 — ysha, Yo — iYyys. (259

14



2.2 Lattice Fermion and Chiral Symmetry 2 KAON BAG PARAMETER

Under these transformations, the each four fermion operators are transformed as

X24 X12

OGvian — ~OGvian » OGvian — +00vian (2.55)
Ofyv_na— +O%y_aa » Ofy_an—2 +Ofy_an (2.56)
Ofs pp — +0%g pp » Ofspp — ~OZs ppr (2.57)
Ofspp — —Ofgpp - Ofgpp — ~Ofs pp (2.58)
o X -0t , O 15 -0, (2.59)

OF arav - ~OGarav » OVacav - +O§ ArAvs (2.60)
Ofaay — +0%any + OFaay —2 +O0a av- (2.61)
Ofpps—— +O%pps - Ofpps— ~OZp ps (2.62)
Ofp.ps—— ~OZp,ps - Ofpps— —Obpps (2.63)
ox 2% -0, 0x 25 -0k (2.64)

Therefore, the bag parameter which has the chirglx+ AAdoes not mix with the other operator
in the massless limit. However, the chiral symmetry breaking contributes to the renormalization
factor as

Ofian =, ZuvsaniOl, (2.65)
i

where subscript runs in{VV + AA VV — AA SS+ PP, SS- PP, TT} and Zyv,aai means the
mixing codticients for the bare operat@iO with VV + AA

For the domain wall fermions, it is suggested that the mixindfoments with the wrong chirality
Zyvianis i # VV + AAareO ((am)z) [93][94], in which the Rome-Southampton method [92]
works well to calculate the bag parameter.

2.2.5 Previous works

The kaon bag parameter has been calculated with the domain wall fermions, the improved staggered
fermion and the twisted mass Wilson fermioifhere is no mixing of operators for the domain wall
fermion, however, it is hard to increase the number of statistics. The staggered fermioriaiso su
from the chiral symmetry breaking.

For the Wilson fermion, there are two approaches to the kaon bag parameter. The first method
uses the chiral Ward-Takahashi identity to determine the mixing¢fic@nts [89] and the second
method uses the twisted mass approach [99][100]. The first one tends to struggle with the unwanted
operators as in Figure 2 and 3. ETMC collaboration has used the twisted mass appragch for
2+ 1+ 1 flavor QCD [102] and succeeded to calculate the kaon bag parameter with high precision.

50ne can find the recent progress of the bag parameter in the figures of [95] or [102] for examples.

15



2.2 Lattice Fermion and Chiral Symmetry 2 KAON BAG PARAMETER

Figure 4 shows their results.
In this thesis, we propose to use the gradient flow method to the kaon bag parameter. Since the

T | T | T | T T

o B (NDR, 2GeV)

I
I
I
I
I
1
1
I
I
I
I
I
T

0.5

T T T T I T T T T | T T T

00 __________“_______)ﬁ_‘i\““““_““““"_‘:»._.:,--_
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Figure 2. The bag parameter calculated in [89].

unwanted mixing is originally lattice artifacts, it will be vanished by applying the gradient flow in
prospect. To support our claim, we will see the details of the gradient flow in the next chapter.
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Figure 4. The bag parameter calculated in [102].
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3 Gradient Flow

In recent years, the gradient flow method [33]-[38] provides many advantages to the Lattice QCD
calculation. The concepts of the gradient flow have been expanded even for the quark fields, and
use range was also expanded significantly, definition of the energy momentum tensor, setting a
scale to the lattice, computation of the chiral susceptibility, studying the topological susceptibility,
and so on[39]-[57]. Especially for the computation of the topological susceptiifitprovides

a new perspective for calculations with the Wilson fermion. Since the Wilson type fermion ex-
plicitly breaks the chiral symmetry at the finite lattice spacing, it is hard to define the topological
susceptibility in naive ways. However, they successfully used the property that the gradient flow
can present a correct renormalization for operators even it is related to the chiral symmetry. They
suggested two definitions for the topological susceptibility which coincide throughout the chiral
Ward-Takahashi identity, and their numerical results had a very good agreement. Therefore, the
gradient flow makes the great assistance of the renormalization even for the Wilson fermion.

In this chapter, we firstly introduce the gradient flow and see the matching factor of forming bi-
linear operators as simple examples. When we use the gradient flow method is there is need to
transfer an expectation value to this scheme. According to the renormalization group argument,
perturbative calculations are justified, however, the gradient flow increases the number of Feynman
diagrams and makes the calculatioffidult. Since such calculations are generally tough, we will
put the first half of this chapter into it.

In the later part of the chapter, we will see numerical examples of the gradient flow. As the
concrete examples of lattice QCD, we will treat the meson mass and the decay constant in the sec-
tion 3.3. They do not relate to the chiral symmetry, however, we make sure that the gradient flow
correctly renormalize the hadronic observables. In the section 3.4 and 3.5, we finally proceed to
calculations of the quantity which is related to some symmetry. We will see the numerical study
of the energy momentum tensor, the topological charge, the chiral condensate and the PCAC mass.
The energy momentum tensor is the Noether current of the translational symmetry and it is hard to
calculate on the lattice. Because the topological susceptibility and the PCAC mass can be defined
via the chiral Ward-Takahashi identity, it is also hard to calculate with the Wilson fermion. The
chiral condensate needs a nontrivial additive renormalization for the Wilson fermion. We will see
that the gradient flow solves such the problems. Finally, note that the results in the section 3.4 are
short review and in the section 3.5 are our original results.
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3.1 Definition and Techniques

In the gradient flow method, we consider a time evolution to the fictitious time direction. If the
original theory is defined on the 4 dimensional space time we add one dimension and consider a
4 + 1 dimensional "flowed” theory. The time evolution equations are originally defined via the
variation of the action,

69 ¢]
op(t,Xx)
This method was a great success in Yang-Mills theory [35] and the other theories. For examples,
super Yang-Mills theory [60][61] an®(N) non-linear sigma model [62]. In these theories, it is
known that the right hand side of (3.1) takes a form like a therntBdslon equation. The idea was
also incorporated into QCD and the flow equation for the quark fields were also written down [36].

At the same time, computational techniques were developed, the small flow time expansion
method and the background field method. The small flow time expansion provides us a way to
transfer the gradient flow scheme to the other renormalization scheme and the background field
theory makes perturbative calculations slightly easy. In this section, we will review and introduce
them in a practical way.

() = -

(3.1)

3.1.1 Flow equations

The gradient flow for th&SU(N) gauge group is called as the Wilson flow [35], and is defined via
a flow equation,

oB,(t,x) = D,G,,(t,x), Bu(t=0,x) = A,(X), (3.2
Gu(t,x) = 9,B,(t,x) —0,B,(t,x) + [B,(t,x), B, (t,X)], (3.3)
D, = 0,+[By(t.x), ]. (3.4)

We denote the fundamental gauge fieldAagx) and its flowed field a8, (t,x). The right hand
side of the flow equation (3.2) is nothing but the gradient of the Yang-Mills action,

Srm

F/JV (X)

1
_Z_gé f dPx tr[F,,, (X)Fo (X)], (3.5)
O A (X) = 0, Au(X) + [Au(X), Ay (X)]. (3.6)

Note that the symbadl means the flow time ang means four dimensional coordinated et us
consider the gauge transformation of the flow equation. If the gauge transformation does not depend
on the flow time,

B,.(t. X)=V(x) (B (t.X) + ) V%), (3.7)

S\We distinguish the coordinate time from the flow time and write ix@s
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the flow equation obviously covariant. To consider the flow time dependent gauge transformation,
it is convenient that we regard the original flow equation (3.2) as a special case of the generalized
flow equation,

aB,(t,x) = D,G,,(t,X) + oD ,0,B,(t,X). (3.8)

If we choose the gauge parametgras 0, the flow equation (3.8) returns to the original one (3.2).
We can show that (3.8) is also covariant for the flow time dependent gauge transformation,

B,.(t, X) >V (t,X) (Bu(t,X) + 6,,) V-1 (t, X), (3.9)
where the transfer matri (t, x) satisfies
&V (t,x) = —a0d, B, (t,x)V(t,x) , V(t=0,x)=1. (3.10)
In particular, (3.9) can be changed to an infinitesimal gauge transformation
B, (t,X)—B,(t,x) + Dyw(t, x), (3.12)
where the transfer matrix(t, x) satisfies
ow(t,X) = agD,d,w(t,X) — Sapd, B, (t,X) , w(t=0,x)=0. (3.12)

This infinitesimal gauge transformation changes the gauge paramgietyy + dao.
The flow equation (3.8) can be separated to a linear part and a nonlinear part as

aB.(t,x) = 8°B,(t,X) + (@0 — 1)8,0,B,(t,X) + Ry(t,X), (3.13)
whereR, means the nonlinear part,

Ru(t,X) = 2[B,(t,X),8,B,(t,X)] — [B,(t,X),8,B,(t,x)]
+(ao = 1)[By(t,x), 8, B, (t,X)] + [B,(t,x),[B, (t.X), Bu(t, )] (3.14)

To construct the formal solution, we define the heat kernel

1 .
Ke(X),00 = f 2 ({09 - pip) &P 4 p, p,e et dPX (3.15)
p
If we choose the gauge parametgrto 1, the heat kernel reduces to a Gaussian damping factor
_tp2 ipx e_X2/4t
Kt(X)yvlaozl = ﬁ 6We el = 5#VW. (316)

According to the general solution offtgrential equations, the solution of (3.8) is constructed by
the solution for linear part,

B, (t, )" = f a5 Ke(X — )0 A0, (3.17)
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and the particular solution for the nonlinear part,

_ t
Bﬂ(t’x)non-llnear — deyL ds Kt—s(X—y)vav(S’y)’ (3.18)
Bu(t.X) = By(t,x) " + By (t,x)"oMnear (3.19)

The gradient flow can be expanded for the quark field[36]. The gradient flow is originally defined
via the variation of the action, however, we give the flow equation in the form of a therfhadidin
equation,

A x (t,X) = D%y (t,X) — 2od, B, (t, X) x (t, %), (3.20)
8 (t,X) = T(6,x)D? + g (t, X)8, B, (t, X), (3.21)

and the initial condition
x(t=0x) =y(x), X(t=0x) =y(x). (3.22)
The covariant derivative is act for the quark field as
D, = 8, + B(t.X). (3.23)
We can also discuss about the flow time dependent infinitesimal gauge transformation

x(tx) - (L+iw(t,Xx)) x(t,x), (3.24)
X(t,X) = ¥, xX)(1-iw(t,X)). (3.25)

If the gauge transfer matrix(t, x) satisfies (3.12) the flow equations for the quark field are also
covariant.
To construct the formal solution of the flow equation (3.20), we separate it as

Ay (t,X) = 0%x(t,X) + A x(t,X), (3.26)
N (1 - 0)d, B, (t,X) + 2B, (t,X)d, + B, (t,X)B,(t,X). (3.27)

At this time, we define the heat kernel as

o - €7
Ky(X) = f e - . (3.28)
D (4rt)P/2

and obtain the formal solution,

t
xex) = [ dDy{Kt(x—y)w<y)+ [ s Kt_s(x—y)A'x(s,w}. (3.29)
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We can also construct the formal solution for the flow equation with respect to the anti-quark field
(8.21) as

T = [ dDy{w(y)Kt(x—yH | ds;(s,y)A'Kt_s(x—y)}, (3.30)
0
A = —(1-a0)d,B,(t,X) = 29,B,(t,X) + B, (t,X)B, (t, X). (3.31)

In the next section, we will adopt a perturbative calculation of the gradient flow. Since the formal
solutions (3.19), (3.29) and (3.30) take the simplest form we will set the gauge parameter to 1,
ao = 1 for the perturbation. By contrast, we will set the gauge parameteite 9,0 for numerical
calculation exclusively. Numerical study of the gradient flow is discussed in the section 3.3.1.

3.1.2 Renormalization and gradient flow

The gradient flow has the property that the gradient flow makes an expectation value of a composite
operator become free from the ultra violet divergence. The general proof is subject to [37][59] and
we see the flowed energy,

E(t) :% f d®x (G2, (t.X)G2, (t.X)) . (3.32)

as an example. We use the dimensional regularization scli2me} — 2¢, and consider one loop
perturbation theory. As we mentioned, the gauge parameter is set to 1 for simplicity. Therefore, the
flowed gauge field is given as

t
Bu(t,x) = dey {Kt(x_y)Au()’)"‘j; ds Kt_s(X—y)Rp(S,y)}, (3.33)
R.(t,X) = 2[B,(t,x),0,B.(t,x)](t,x)]
—[By(t,x),d,B, +[B,(t,x),[B,(t,X), B,(t, )], (3.34)
with the heat kernel
Ki(x) = | etPdPx, 3.35
(9 fp e (3.35)
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Note that the formal solution above is a recursive representation and we can separate the flowed
gauge field as

Bu(t,X) = Z Bk(t. ), (3.36)
k=123,
Bt = [ &y Kilx-»A0), (3.37)
t
Buo(t,X) = f dPy fo ds Ki-s(x - ¥) (2[B,.1(5.). 8y Bua(s.3)] - [Bya(s.).9,Bya(s.1)]) . (3.38)
t
Bus(t.x) = f d®y fo ds Ki_s(x = ¥) (2[B,2(s.7).0yBua(s.3)] = [By2(s.¥). 8,Bya(s.y)]

+2[Bv,1(s’y)’av B#,Z(S,y)] - [Bv,l(S’Y)’ay Bv,Z(S’y)] + [Bv,l(s7 y)7[BV,1(S’y)’ Bﬂ,l(s’y)]]) .
(3.39)

The higher order terms of the flowed gauge fiddgx- 3, areO(gg) and we omit them. The each

Bu,l AN

Figure 5: Diagrammatic representation of the flowed gauge field.

term (3.37)-(3.39) are also diagrammatically represented as in the Figure 5. The heat kernel is
pictured as a double wavy line. By using these picture, we can also describe the flowed energy,
E = <GWGW> /4, diagrammatically as shown in the Figure 6, where the black spots mean the
usual QCD vertices.

One can calculate the flowed energy as

N2-1)(D -1 8t)€ 1. 2 \1 .
Et) = 2(8ﬂ)t§D/2 )gg [1 + ((473)293 {(EN - éNf) ~+ (flnlte)} + O(gé’)] . (3.40)
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Figure 6: One loop diagrams for the eneigy- (GWGW> /4.
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The ultraviolet divergence can be absorbed into the gauge coupling,

02 = P42 (4ne ) {1— ot (%N - §Nf) L. 0(g4)} | (3.41)
This cancellation is not a coincidence but a general property. Lischer and Weisz [37] provided a
general proof for the renormalizability of the gradient flow. In this thesis, we admit the renormal-
izability of the gradient flow and proceed to concrete calculation methods.

Note that when we include the flowed quark fieldsand’y we must impose the field strength
renormalization in addition to the gauge coupling and the quark mass. In [123], it is suggested that
a useful choice of the field strength renormalization is given by

@(t) x (t. x), (3.42)
()X (t,%), (3.43)

X (t.x)
X (t.x)

Where)(°and§ are renormalized quark field and the fflt@enty is defined by
-6

(@22 (707,51 (t9))

T —
e(t) = D,=D,-D,. (3.44)

We will discuss the perturbative evaluation of the renormalization factor (3.44) in the section 3.2.1.

3.1.3 Small flow time expansion

The small flow time expansion method provides us a way to "match” an expectation value calcu-
lated in the gradient flow scheme to the other renormalization scheme. Since the general choice
is theMS scheme we particularly consider the matching factor foMiSescheme later. The first

step of the small flow time expansion is calculating the relation between the bare operator and the
flowed operator. When we consider the» 0 limit, because of the symmetry, we can demand the
relation as

O(x,x,B) ~ c(t)O(y,y,A) , (fort — 0), (3.45)

whereO(y,, A) means the bare operator a@dy, y, B) means its flowed operaforThe codi-
cientc(t) connects the bare operator and the flowed operator. To obtain theerdc(t), let us

7As an example, if we choose the bare operator as the scalar density,
Oy, A) = YT,

its flowed operator is given by

O(x,x,B) = xT“x.
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consider the one particle irreducible vertex correction of tiffedinced(y, ¥, B) — O(¥, ¥, A). In
generally, it would be proportional to the vertex functioh

(O(x.%.B) ~OW.0.A),, = ler(tT, (3.46)

where we denote the proportional constantggt). The left hand side will be

(O0x:X-B) ~OW. 4, A),,, = (ct) - 1) (0. ¥, A)),

(c(t) - 1) ZoT ~ (c(t) - )T (3.47)

In the second line, we considered one loop perturbation theory and used the faxtxhal is
O(g?), because the tree level contributions of the flowed operator and the bare operator are same,

(O(x, X, B))1pi ltree I, (fort—0), (3.48)
<O(W’Z, A)>1P| lree = T (3.49)

Comparing them and the right hand side of the (3.45), we obtain the representation of the small
flow time expansion as

O(x.x.B) ~ (1 + Ige(t))O(y, ¥, A) + O(t) , (fort — 0). (3.50)

We will see concrete examples of the flagentigg(t) in the section 3.2.
As we mentioned, we must renormalize the quark field by the useful choice,

U = POt (3.51)
T = VPO, (3.52)
ot) = - (3.53)

(@n)22 (3, ()7, B . 0)

Therefore, the flowed operator must be writterﬁis?,%, B)®. If the operatolO includes a quark
field O( ¥, x,B) andO(y, x, B) are related to

O(%. % B) = ¢"2(t)O(x. ¥, B). (3.54)

8For the scalar density,

For the scalar density,

O(¥.x.B) =xT“x.
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Finally, we have

O(%. %> B) = o"2(t) (1 + I6e(t) Oy, ¥, A), (3.55)

for the small flow time. Renormalizing the bare operator as

_ 1 == _
OW. ¥, A) = ————50" (Y. Uiys: A, (3.56)
ZMS

MS
Z5 v

we obtain the matching factor,

__ . n/2
GF-MS 4y _ Zgls ZLIIYIS
20 hgo e (3:57)

By using this matching factor, we can define M8 operator via the gradient flow as
ZE-MS(1)0( ., B). (3.58)

The point for calculation of the matching factor (3.57)¢g(t), in other words, the one patrticle
irreducible vertex correction of theféérenceO( v, ¥, B) — O(¥, ¥, A). However, there are many
diagrams specific to the gradient flow. We can reduce some diagrams by using the background field
method. We will discuss it in the next section.

3.1.4 Background field method

To calculate the matching factor (3.57), we must consider the one particle irreducible vertex correc-

tion. Since the formal solution of the gauge field and the quark fields are recursive representation

the number of diagrams increases. Moreover, it is alfacdlt to evaluate the integration in gen-

eral. The background field method provides a way to reduce the number of diagrams to evaluate.
The background field method [63]-[67] is originally adopted for general field theory including

QCD. It improves the perspective of the perturbative calculation by separating the fields to back-

ground fields and quantum fields. Especially for QCD, the gauge Aigland the quark field/,y

are separated to

AX) = AX)+au(x), (3.59)
y(x) = t/:/(X)+p(X), (3.60)
() = () +P(x). (3.61)

We denote the background fields,&pa W, @ and the quantum fields asg, p, p. In actual calcula-
tion, we can fix the background fields to some constant value and regard the quantum fields as the
integration variables for the path integral.
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Let us consider the flow time evolution of the each field[121]. From here on, we denote the flowed
background fields aB,, ¥, ? and the flowed quantum fields bg, k, k. Of course, the sum of the
background and the quantum fields return to the original fields,

B.(X) = Bu(x)+b,(x), (3.62)
x(X) = x(X) +K(x), (3.63)
Y(X) = ¥(X) +K(X). (3.64)

We naturally assume that the background fields evolve along the form of original flow equation
with ag =0,

aB.(t,x) = D,G,.(t,x) , B.(t=0,x)=A,(x), (3.65)

artx) = D?p(t.x) . R(t=0%) =i(x), (3.66)
~ ~ <"_2 ~ -~

ax(t,x) = xtx)D . X(t=0,x) =y(x), (3.67)

where we defined that the field strength of the background field
Gu(t,X) = &B,(t,x) — B,(t,x) + [B,(t,x), B, (t,x)], (3.68)

and the covariant derivative with the background field

(WH
Il

u 8, +[B.(t,x), -1, (for gauge fields (3.69)
d, +Bu(t,x) , (for quark field$. (3.70)

(wH

u

Let us suppose that the background gauge iﬁ@ld() satisfies the equation of motion,
D,F,.(x) = 0. (3.71)
In such situation, the background gauge field does not flow and we can write
B,.(t,x) = A (X). (3.72)
The solutions for the background fermion flow also simplified as
(%) = €25 (), (3.73)
F(t,x) = i(x)etﬁz. (3.74)

The formal solutions for the background fields take greatly simple form, however, the quantum
field part must take more complicated structure.
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Because of the equations (3.62)-(3.64), the flow equations for the quantum fields must be remain-
ing part of the original flow equation as

ab,(t,X) = {6,,D%+ (a0 —1)D,D,}b,(t,X) + 2[G,, (t,X), b, (t,X)] + Ru(t, %), (3.75)
ak(t.x) = {D? - aoDyuby(t.x)} k(t.x)
+{(1 - @0) Dby (t.x) + 20,(t.x) B, + Bt X)} £(. %), (3.76)

aKLX) = K(t,X) {(52+a/of)#b'u(t,x)}
+x(t, X) {-(1 — ag) Dby, (t,x) - 26#b,1(t, X) + bA(t, x)} , (3.77)
with the initial conditions,
b.(t=0,x) = au(x), (3.78)
kit=0,x) = p(x), (3.79)
k(t=0,x) = p(x), (3.80)

where we defined the higher order term as
R.(t,X) = +2[b,(t,x), D,b,(t,x)] - [b,(t,X), Db, (t,x)]
+(0 = D[by(t.x). Byby (t.X)] + [by(t.). [by(t.X). bu(t.x)]]. (3.81)
Note that when we clearly indicate the color index the higher order term become
RA(t,x) = 2f2%0(t, x) DS (t, x) — F2P%0(t, x) Dbl (t, X)
+FaPeF e (t, x) bl (t, X) b (t, X). (3.82)

We can construct the formal solution for these flow equations with the same assumption (3.71) and
the gauge fixingyg = 1,

t
fex = [ {K?b(x,y)waﬁ’(y)+ [ s Kta_%(x,y)wfes(s,y)}, (3.83)
kt,x) = €P’p(x)
t " ~
+ f ds 95 {2, (s, x)D, + PA(s. )} {eP 0 (x) + k(s )},  (3.84)
0
Ktx) = poed

t ~ o2 _ (A_ 2
+ f ds{E(x)eSD +K(s, x)} {—2Dﬂbﬂ(s, X) + bz(s,x)} et=9b = (3.85)
0

where we defined the heat ker&t®(x, y) by

Ke(xy) = elDrr2F o] (3.86)
D = 5209, + BE(t,x) F2P, (3.87)
Fax) = FE,00 2. (3.88)
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In this section, we constructed the formal solutions for the background (3.72), (3.73), (3.74) and the
quantum flow equations (3.83), (3.84), (3.85). The results above will be used for the calculations
of bi-linear operators in the next section and the four fermion operators in the next chapter.
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3.2 Example : Fermion Bi-linear Operator

In this section, we will see two examples of the matching factor of fermion bi-linear operators
[120][123]. We deal with the axial vector current and the scalar density for the later convenience.
We will view the PCAC relation via evaluating the axial vector current and the pseudo scalar density
numerically in the section 3.5. At first, we evaluate the renormalization factor of the quark field
(3.44) which is necessary for the renormalization. Although the calculation is complicated, it will
be a good exercise for the gradient flow.

For the fermion bi-linear operators, the calculation itself has ficcdlty, however, we must take
care to the infrared divergence. We will see that the order of the integration is sensitive. We will
discuss about them in the end of this section.

3.2.1 Quark field renormalization

As we mentioned, we must consider the renormalization of the field in the case of quarks. When
we choose the prescription,

X(X) = Velt)x(t,x), (3.89)
X(tX) = Ve)x(tx), (3.90)
o(t) = -6 (3.91)

(4122 (7297, B (039

we must evaluate the expectation value,

<Y(t, X)7, D ux(t, X)> : (3.92)

We evaluate the expectation value (3.92) with one-loop perturbation. We set the gauge parameter
ao = 1 for simplicity. As we did in the section 3.1.2, the flowed quark field can be decomposed
into

xtX) = > xk(tX), (3.93)
k=123,

) = [ Pykx-nu0) (3.94)
t

xet) = [y [ dskealx-2)2Basndna(s ) (3.95)
t

x3(t,x) = deyfo ds Ki_s(x = y) (2B,1(S.¥)0) x2(s,y) + B, 1(S,¥)Bya(s,y) x1(s.y)) ,
(3.96)
whereB,; means the linear term of the flowed gauge field,
B.i(t,X) = dey Ke(X = ) Au(y), (3.97)
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andK; means the heat kernel,

_th 'px e_X2/4t
Kt(x):fpe &= o (3.98)

The each term (3.94)-(3.96) can be diagrammatically represented as in the Figure 7. The heat

X1

v
 —ab
Y hoh

Figure 7: Diagrammatic representation of the flowed quark field.

kernel is pictured as a double line. By using these pictures, we can also describe the expectation
value (3.92) as in the Figure 8. Since the propagator of the linear term of the flowed gauge fields
can be calculated as

b 2_e(t+s)a§ )
(B2, (t. 0B (s.)) = 62 7 0%5,,0( = ). (3.99)

X
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D02 D03 D04
D05 D06
D07 D08

Figure 8: One loop diagrams for the quark renormalization factor.
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the each diagram in the Figure 8 are denoted as

D02 : (-ipu)e 2" S\ (D)Sr,(P - 1)Sre (PG NT2TO [yuvvyayo¥sys],  (3.100)
DO3 : fo tds(—ip#)e‘(t‘s)pze‘s(p")ze‘tpzS:V(p)SF(,(p—I) (3.101)
x (=2i(p - 1)2)G(s.0:)T3T?tr [y,7,7,%0 | -
D04 : ft dsfsdu(—ipﬂ)SFV(p)e‘(t‘s)pze‘(s‘”)('D")ze‘“"’ze‘t'o2
i i X (=21 (p = 1),)(~2ipa) G35 (s.u; NTATPtr [y, ] . (3.102)
D05 ft dsft du(_ipﬂ)szy(p_|)e—(t—S)pze—(t—U)pze—(sw)(p—l)z
0 0

X (<21 (p=1),)(2 (P~ 1)o) G (s U; DTATr [y,7 ], (3.103)

D06 fo tds(—ipﬂ)SFV(p)e‘(t‘s)pze‘spze‘tszf‘)g(s,s;I)TaTbtr ] (3.104)
D07 : e e et P s (p)S(p+ NGER(L 0N TATOr [y,y070a] - (3.105)
D08 f tdse_(t_s)pze‘(”s)(p”)z(—2i(p—I)p)SFV(p+I)Gﬁg(t,s;l)TaTbtr[ym/y],

’ (3.106)

with the quark and gluon propagator,

S,.(0) = -i 'I—g (3.107)

1
gee I = 5205 (3.108)

Gan(t.s;1) B

14
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Calculations specifically to the gradient flow are the internal momentum integral and the each ones
are denoted as

lpoz = f ﬁe‘w, (3.109)
lpos = f f ds = e—tp g S(P-)? g sP - (t-9)p? (3.110)
lboa = f f dsf du X (p e (t-9)p” g(s-U)(p-1)* g Ul g th = (s+)1” (3 117)
loos = f f dsf qu PP (p ) e t-9p - (-0 g (s0) (-5 (3.112)
lbos = flpfo dsl—ze‘(t‘s)p e‘s"’ze‘t'f’2e‘25'2 (3.113)
lborwy = f| : me—tpze—“ze—t(p”)z (3.114)
lbo72) = fl,p Wﬂl)?e_tp g P g tp+)’ (3.115)
lpog = fftdsIize‘(t‘s)pze‘(”s)'ze‘(”s)(p”)z. (3.116)
»Jo

The each integrals are calculated as follows.
We use the Feynman parameter integrall fay,.

f fldx - 26_2“02
IpJo {(1 = px)2 + x(1 - x)p?}

L o a ™
dx 5€
IpJo {12+ x(1 - x)p?}

_ F(Z - D/Z) fldx XD/2_2(1 _ X)D/Z—lf (pz) D/2-2 e_2tp2

Ipo2

(4m)P72 - Jo p
= Wl(él)“ {1 + 2 log(8xt) + 1} (3.117)

where we used the representation of the beta function

F()r(y)

Focr ) (3.118)

B(X,y) _f dx (@ —t) ! =
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The other integrals can be performed straightforwardly.

Ipoz =

t $2
[ [ asdentaele2)
l,pJO 12

1  TI(D/2-1) (! 1-D/2
@@® T02) Jp 457
2(2)2Pr(D/2-1) ., o (Y4 1-D/2
(@nP  T(D/2) 2 [ o (x=)

2(21)2Pr(p/2-1) H1-D 10/2 1
@0® T(D/2) {f dx x x +f3 dx

/4
2(2t)>Pr(D/2-1) ;, p 3/4
@nP® T(D/2) ° {B(G 9 Jue Tx x)}
1

W {1 + 2log(8nt) + 1+ 2log(2) — Iog(S)}

where we replaced = 4tx in the third line and took a limit

3/4
lim dx (x—=x

2) 1-D/2
€=0J1/4 '

D04 and D05 do not diverge with— 0.

and

Ipoa

Ipos

= ffdsf quP Pl (p ) 2 (p-541) gL 12 25

(2t>2(4n>4f dsf

- W {4109(3) — 5l0g(2)} ,

f f dsf qu PP (p D) g2t(p-5521)2 o212 252

1 D/Z}

(3.119)

(3.120)

ffdsf du|2{ (S U)(ZZU 2t)|2} zpzeﬁs;;)—zlze—ZSP
1

+(s—u)(s—u—2t)
4ts — (S W2 (4ts— (s—u)2)?

(3.121)

ffdsf qu L { (S+U)(ZtJ2rU 2t)|2} 2tpze£“T;')—2|Ze—2s|2

2 (s+u)(s+u-21)

(2t)2(4ﬂ)4f0 dsfo d“

= Wl(a,ﬂyl {12lo0g(2) - 5log(3)},

36
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where we tooke — 0 in the middle.
D06 must be calculated on tiizdimension, because it diverges as

— 2t —2|2
ffdslze PPe2s

1 T1(D/2-1) . i
~ @nP 102 f ds ()79 2"

(2)>Pr(D/2-1) 1-D/2
@mD T1(D/2) fdxx

Ipos

1
(2t)%(4m)*

f foo da lze—tpze—tlze—(t+a)(p+l)2
l.pJoO |

1 f‘”d 1 1

 (4n)* Jo aZt+aBt2+2ta/
1

= —— {2l09(2) —log(3)},

{ + 2log(8nt) + 1}

D07 and D08 do not also diverge.

Ipo7(1)

t2(4m)?
and
Ipo72) = ffoodadﬁ T_'zle—(”ﬁ)Pze—“Ze—(Ha)(p+l)2
lpJO
-1 foo t+a 1
= dadp
(4m)* Jo 2t+“+18{3tz+2t(a+ﬁ)+a,3}2
-1
= ———{2l0g(2) —log(3)},
ey 121002) - 10g(3)
and
t t2—s2+ ts
Ipos = ffdslze‘z”oze—%'2
pJo |
1 ft 1 1
= ds —
(4n)* Jo = 232+ 2ts
1
= ———1log(3).
4t2(4r)4 9(3)
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Combining them with the spinor factor, we have

D02 : —% — 2log(8nt), (3.127)
D03 : 2} + 4log(8nt) + 2+ 4log2-2log 3 (3.128)
D04 : —50 log(2) + 1610g(3), (3.129)
D05 : 12log?2) - 5log(3), (3.130)
D06 : —4% — 8log(8nt) — 2, (3.131)
D07 : 8log?2) —4log(3), (3.132)
D08 : -2log(3), (3.133)

in the unit of
-8Nf g5 N2-1
(4r)2t2 (4n)2 2N

(3.134)

Finally, we obtain that

© N°-1 (g’ + 3log(8rx?t) — log (432))} . (3.135)

_ -€ g
pt) = (8nat) {1+(47r)2 2N

3.2.2 Axial vector current

We evaluate the matching factor for the axial vector current in this section. This time, we will use
the background field method. The formal solutions for the background are (3.72), (3.73), (3.74)
and for the quantum flow equations are (3.83), (3.84), (3.85). Since we can freely choose the
background fields we set the gauge field to be 0 and the quark fields to be constant,

B(t,x) = A(x)=0, (3.136)
$(t,x) = ¢(x) = (const), (3.137)
F(t.x) = ¥(x) = (const). (3.138)

According to the small flow time expansion method, it is important to calculate the expansion
codficient Igg, in other words, the one particle irreducible vertex correction of tlfkerdince
O(x,x,B) — O(y,¥, A). Since we are using the background field method théfictent | g will
appear as

(T 7rsT ) = FrursT) o, = lor(dy,sT%. (3.139)

We evaluate (3.139) in the one-loop order. It is enough to consider the quantum quark fields as

t
Kt,x) ~ €9p(x)+ f ds 797" (K(s, X)) + 2b,(5.%)8,6%°p(x)). (3.140)
0
52 t ol o2 2
Ktx) ~ P(x)e?” + f ds (wbz(s,x)—zr)(x) e ‘Eﬂbﬂ(s,x))e“-sﬁ. (3.141)
0
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With the same conditions, the propagator of the gauge field is evaluated as
_glt+9)dZ
d5
By using these representations (3.140)-(3.142), we can calculate the left hand side of the (3.139),
diagramatically it is described as in the Figure 9. We denoted the QCD quark-gluon vertex as the

(a) (b) ()
(@) (e) ()

Figure 9: One loop diagrams for the fermion bi-linear operators.

5326, (x - y). (3.142)

(b2t x)b2(s.y)) ~ 68

black solid point and the flowed vertex as the white solid point. The heat kernel of the gradient flow
is described by the double line. When we set the all of the external momentum to O the diagrams
(d), (e) and(f) in the Figure 9 are vanished, because, the each diagrams are proportional to the
external momentum. The other diagrams can be expressed as

O e S S EROCOEAGH (3.143)
t -~
) : 2 [ ds [UpasT TV G RGN 60D, (3149
t -~
(c) : f ds f yysTATPTCYG (s, 51), (3.145)
0 |
where we used the symbols below,
N
Su(l) = —|I—‘2‘, (3.146)
Ve = yTd (3.147)
Git.s 1) = gge_(“s)lzl%éabéw. (3.148)
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Note that when we calculate the diagréa) (3.143) we must replace

e2? _1- 272 f ds e, (3.149)

and perform the internal momentum integration first. This procedure is related to the infrared
divergence, and we will discuss about them in the section 3.2.4. Anywhere, the contribution from
the diagram(a) become

(a) f ds [ UV y STV (296 S, () S GEE ). (3150
Since the form of the internal momentum integrals are same it is enough to consider that

d°l 1 .. t"P2T1(D/2-1)

— = 151
(2m)P 12 (4n)P/2 T(D/2) (3.151)
and we obtain that
2 2 ~
. 9% N°-1 _ J1 7\ = an
(@) : @n)? 2N ( 1){6+Iog(87rt)+ };,//yﬂyg,T v, (3.152)
2 2 ~
9o N°-1 1 S an
(b) @n)? 2N (+2) {E + log(8nt) + 1} Uy ysT oy, (3.153)
2 2
. Jgo N°-1 _ 1 a
(c) : @02 2N ( 4){6 + log(8nt) + = }!,[/)/#)/51_ . (3.154)
Therefore, the cd&cient of the small flow time expansion become
2 2
95 N 7
lge(t) = (4—;’)2 N ( 3){ + log(8nt) + } (3.155)

Since the axial vector current does not require the renormalization this ultraviolet divergence will

be canceled by the quark field strength renormalization. In reality, because of the small flow time
expansion

2 2
KO0 = {14 o N (5 - 0ssa) favasts, (50

for the small flow time. To obtain the relation (3.156), we used the renormalization of the coupling
constant

95 = g (3.157)

Comparing with theVlS renormalized operator [119],

— 2 NZ
{tMmTaw}m: {1+ ( 4gﬂ)2 >N ( )}wyﬂysT W, (3.158)
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we obtain the matching factor as

2 2
N--1/( 1
ZGF_) (t)aX|aI J (

* a7 N —§+Iog(432)). (3.159)

We can also replace the coupling constarty the running coupling constag(q), because the
matching factor (3.159) is independent of the renormalization group flow as discussed in [120].
Moreover, we can set the scale= 1/ V8t and obtain

ZGFMS () Z 14 g(l(gx/; )2 NZN ( % +|Og(432)). (3.160)

3.2.3 Pseudo scalar density

In the previous section, we saw the matching factor of the axial vector current. Since it does not
require the renormalization there is no divergence derived #oln this section, we will consider

the pseudo scalar density. We can see the mechanism of the renormalization well, since the pseudo
scalar density requires the renormalization.

(FOYsT 0 () - TysT) o = IerOUysT. (3.161)

The Feynman diagrams take the same form of the axial vector current. At this time, non-zero
contributions from the each diagram of the Figure 9 can be represented as

[ rsTor Vg b (3 - 1) S, (05 0GEEQ), (3.162)
t ~
() : 2 f ds f J)@Ta(—ilV)TbyApr;[A/e_SIZS:/l(I)GEE(S.O;I), (3.163)
0 |
t -~
(c) : f ds f UysTATPTC G (s 501). (3.164)
0 |

We can see that the internal momentum integral is same with the previous one anieties ce
comes from the spinor index. The results are

] gg N2 — -~ n
(a) : @n)? 2N ( 4) { + log(8nt) + = }w &, (3.165)
gcz) N2 — -~ anr
(b) (@n)? 2N (+2){ + log(8nt) + 1} ysT Y, (3.166)
2 2
(c) (4g;’)2 N2N (-4) { + log(8nt) + 1} YysTa). (3.167)

The result of the diagrarfb) and(c) are not changed. It can be considered that the diagam
and (c) belong to the self energy part, in other words, the field strength renormalization and the
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diagram(a) is a composite type contribution of the operator. Combining them with the quark field
renormalization, we obtain the dbeient

2 2
_ % N -1 1 4
lgr(t) = @n)? 2N ( 6){6 + log(8nt) + 3}. (3.168)
and the relation
o a0 g> N2-1/( 3 5 — 4
YO ysTx(t) = {1+ @n? 2N (_E — 3log(8rut) — 2 - Iog(432))} YysTY. (3.169)

We again compare with thdS renormalized operator,

{ysTo ) =<1+ ¢ N°-1(3 3 30 (47) + 4| b YrysT? (3.170)
Yys! Y s = @n2 2N - Ty g(4r YysTy, :
and we have
_ g2 N2_1
ZGF*MS(t),Dseuom:1+W N {3log(8tp2)+3y—2log(2)+6+log(432)}. (3.171)
T

When we set the scatp= 1/ V&,

— 2N2
1+g(l/\@) N“-1

GF-MS _
Z (t)pseudo— (47T)2 2N

{3y —6log(2) + 6 + log(432)} . (3.172)

m(1/ V&)
m
Note that we add the factam(1/ v8t)/mto the matching factor to apply the renormalization group
argument.
We can see that the divergence of the flowed operator (3.169) is canceled by the operator renor-
malization (3.170). Therefore, the gradient flow scheme anttBecheme are connected by the
finite renormalization.

3.2.4 Infrared divergence

In the previous sections, we put¢the discussion about the infrared divergence. We considered the
subtraction between the flowed operator and the bare operator. The meaning of this representation
is thate?!” — 1 is rewritten by an integration of the flow time,

t
g2’ _1=_2 f ds g2, (3.173)
0

This replacement cares the infrared divergence and we will see it directly by introducing a gluon
mass to the propagator. Such evaluation appears in the Figure 9. and the integration of the internal
momentum is given by

1 o2
f| m (e a1% _ 1) s (3174)
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where we introduced the gluon mass- 0. We can show that

1 o2 1

fl 212+ 12)° = (4n)2 {~log (214%) -7} (3.175)
1 1 (1 4r

f 1212+ 22) (4n)z{ 7+'°9( )+1} (3.176)

Since the second equation (3.176) is easy, let us proof the first one (3.175)

1 2112 ffoo 1 22 a(240?)
e = d — e e @
fl 212+ 27) Jo 2

1 T(D/2-1) D4f 2y1-D/2g-a
@)% T (D/2) da (a + 2t19)

_ 1 1 —2¢ 2tA? 2
= G 1726 (T(e) -y (e, 204%)), (3.177)
wherey(z p) means a lower incomplete gamma function which is defined by
p
y(zp) = f dx x* e (3.178)
0
We know the power series expansion of it. (3.178) is expanded as
z+n
— b
y(zp) =€ Z T 1) NeE (3.179)
Using equation (3.179), we obtain that
1 _ot)2 1 2
—— = —y —log (2ta19)) . 3.180
f||2(|2+12)e (47r)2< v~ log (2.%) (3.180)

When we consider the subtraction between these two integrations above, the infrared divergence
log(1?) is just canceled out.
As we mentioned that

t 1 |2 t 1 |2
f ds f Z ey f f ds = e 2", (3.181)
0 |12 1Jo 12

because the right hand side is ill-defined. However, we can proof that

t t
1 —2sl2 _ 1 —2s2
fo dsf||2+/lze _flfo ds|2+/lze : (3.182)

Since we calculated the right hand side of (3.182) we must calculate the left hand side of (3.182),

t 1 ) 1 00 t
ds e = /lD‘zf d f ds(a +2s12)~P/2g@
fo f. 12+ 12 (4r)D72 ¢ (a )

1 (4
= a7 2 ”) (1+e)f da {(a + 2042102 - o1 D/2 e

-1

= a7 jﬂ) (1+e)( +Iog(2t/12))

= 2(;—71)2 %+Iog (8nt) + 1). (3.183)
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It is just the right hand side of (3.182). In other words, we can exchange the gluon mass to O limit
and the internal momentum integral on the left hand side of (3.182),

; —ZSI2 1 —2s|?
L'L“of dsf|2 ¢ fo ds yLnO i (3.184)
while cannot exchange them in the right hand side of (3.182)
t
; 1 —2s]? f —25I2
Lano flfo ds 2. 2 e JlID:IO ds P /12 .. (3.185)

This result shows that the gluon masgorrectly cares the infrared divergence, in other words,
the right hand side of (3.181) is contaminated by the infrared divergence. Moreover, it is empha-
sized that we can evaluate the integration (3.175) in four dimensional space time because it has no
divergence derived frora. This property will be helpful for the calculation of the Penguin diagram
in the section 4.2.

As the end of this section, let us calculate the renormalization factor of the quark field with the
gluon mass. We will confirm that the gluon mass does not contribute to the renormalization fac-
tor', There is no need to calculate the diagrddg}, D05, D07 andDO0S8 in the Figure 8, because
they do not have divergence originally. The other diagrams are denoted as

D02 : (-ip)e 2P S, (P)Se,(P— 1) S (PGS (NTATPtr [y, va 7Y ] . (3.186)

t
[ dst-ipe e TS (p)5, (p- 1) (3.187)
0
(=2 (p - 1))GH(s.0:)TTr [y, ¥, e | -
t
; f ds(-ip,) S (p)e (I e P et Ga0 (5,5, 1) TATPtr 2k (3.188)
0

where we denote the gluon propagator including the gluon mass as

2

GV(st;1) = ﬂz e 0% 5abs (3.189)

We can see that integration of the mternal momentwhthe diagramD06 does not dier from
the infrared divergence, and we can remove the gluon nhd&ssn this calculation.

D06 —4% — 8log(8nt) — 2 (3.190)

The diagram$02 andD03 need the gluon mass, and the form of their momentum integration can
be written as

pp-N 1  ap
pl P2 (p—1)212+ 22 ’

t
1
D03 : f | fo ds 73 e S tries?, (3.192)
P.

0One can skip the calculation (3.186)-(3.208), since it is just a confirmation.

D02

(3.191)
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Let us evaluate eq.(3.191) first. We can decompose the integrand as
p-(p-1) 1(1 1 2 1 1
= ={ = - - =+ . 3.193
-1 2\ o Rp-nE 1211 (3439
We added G= |2 — | =2 for later calculation. We can evaluate that

1 1 1 Coo?
fp,l {(D—I)Z_I_Z}Ihﬂe i (3.194)

in four dimensional space time, because they do not have a divergence derived from

1 1 1 >
lim —— 2P
E—)Ofr;JeRD {(p |)2 |2}|2+/12

1 1] 1
= S €. 3.195
fp,lew {(p 1)? IZ} 12 + 22 ( )
When we integrate out the internal momentpmve get
1 1 _2tp2 l 1 f 1
2 e P = 3.196
fmew 1212+ 22 (4m)Z (202 Jy 12017+ 12) (3.196)
and
f = ! e 2P _ f fm do e @P-1)? 1 e 2tp?
pler? (p—l)2 12 + 22 o1 Jo 12+ 12
2
2ta |2 1 1 _ e—ztl
ewn = : 3.197
(47T)2 ff (cx+2t)2 (@m)2(202 J, 1202 + 22) ( )

The other integration must be donebn= 4 — 2¢ dimension, however, we can show that

. 1 12 1
lim f - g 2P
-0 Jpjerp | P? P2(p-1)2) 12+ 22

1 1 _ot 2
_ _ e 2P _ 0, 3.198
fp,leRD {p2l2 pz(p—l)z} ( )

To sum up eg.(3.196) to eq.(3.198), we obtain

1 1 |2 1 1
ol (P2 (p-D2 p2(p-1)2 12]12+22
1 —1 —2t|2

T (@n2(2)2 J) 1202+ 22)
y +log (2t4?%)). (3.199)

!
- (4m)t@)? (

It does not diverge im — 0 limit. The last integration is

f 1 e_2tp2
pl 12(12+ 2?)

T 2
- Gy (7o) ) o2
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Finally, we have

D02 : —X_2log(Ent). (3.201)
€

Therefore, the diagrad02 is not changed by introducing the gluon mass. One may be wondering
that there is arbitrariness in how to make 0 like

1+e€ 1+e€

0= - 5 (3.202)

however, we can show that such construction makes obvious cancellation. In particular,

”mf 1 1+e 1 o 2P
e—0 plerD (p - |)2 |2 12 + 22
1 1 1 _otp2
——e P, 3.203
* Joe N 2 (8:209)
We evaluate integration inD = 4 — 2e dimension at this time,
f { 1 1} 1 o 2P
plerp ((p—1D?Z 12) 12+ 22
pler? Jo [2 + A

® 1 2ta |2 1 2 1
- do §—— e il — e . (3.204
fleRDfo ¢ {(a + 2t)2¢€ (2t)2¢ } 12+ 12 ( )

It is hard to evaluate this integration, however, we can discuss whether the integrand is bounded.
The most dangerous area is where= 0 and the integrand become 0 in there. If we choose an
equation (3.202) we cannot exchange the limit and the integration.

Let us evaluate the diagraB03 throughout equation (3.192).

—s(p—l)ze—tpze—sl2

fp.f
(47r)2-€(2t)2_ fmf |2+/12 23—_2)|2

D S— 2t l
(47)%- f(2t)26fI2+12{2| 1 ¢ 2“ fds_e %) } (3.205)

where we used an integration by parts. In the second term, the divergence is suppressed because
the integrand is vanishing at= 0. We can evaluate it as

ffd 2“2 (s 2’)—(4—jlr)zlog(g). (3.206)
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The first term will be

(4n)2—el(2t)2—e fl 2|2(|21+ 12) (1 B e_%uz)

_ Wl“(Zt)z (% + 2log(8xt) + 1 - log (g)) . (3.207)

Therefore, there is no change with the gluon mass and we have again

Z, =1+

2
% _ N°-1 (3 ) (3.208)

@? 2N E+6Iog(87rt)—log(432)
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3.3 Hadronic Observables

In the previous sections, we reviewed the theoretical system of the gradient flow and discussed
about some examples. The point is that the gradient flow can be dealt as a renormalization scheme.
Gradient flow is more féective combining it with the lattice calculation. When we calculate some
operator using the gradient flow on the lattice, the result is automatically renormalized in the gradi-
ent flow scheme. Since what we need to calculate is the operator renormalizedi8 Seheme,

we must multiply the matching factor to the numerical result.

We will discuss the numerical procedure of such operation at first. We must take care to the
two important points. One is taking the Wick contraction, and one is extracting of flow time zero
limit. Such discussions are given in the next section. After that, we will calculate mass and decay
constant of mesons, which are practical examples of the lattice calculation.

3.3.1 Computational procedure on the lattice

In this section, we will review the computational procedure of the lattice simulation combining
with the gradient flow. Since there are néfdiences about Hybrid Monte Carlo simulation we can
use the existing configurations. We will discuss about two issues for applying the gradient flow
method to the lattice simulation. One is that the gauge field is defined on the link of the lattice. We
must rewrite the flow equation in terms of the link variable. The other one is caused by the fact
that the integration of the quark field is already performed, in other words, the quark field does not
explicitly appear in the lattice simulation. The flow equation of the quark field will be taken over
by the flow kernel.

In the lattice simulation, gauge field is put on the link and defined via the link variable,

U, (x) = &M+l (3.209)

Therefore, we must consider the flow equatiovith respect to the link variable. According to the
flow equation for the gauge field,

aB.(t,x) = D,G,u(t,x), Bu(t=0,x)=A,(x), (3.210)
G (t,X) = 8,B,(t,X) — 8,B,(t,x) + [B,(t,x), B, (t,X)], (3.211)
D, = 8,+[Bu(t.x),], (3.212)
we obtain that
(AVu(t. ) Vit = =g80xuSu (V). Viult = 0,x) = Up(x), (3.213)

where we defined the plaquette actign

S, (U) = iz Z Re tr[U,,(x)U, (x + U] (x + $)U; (x)] . (3.214)
gO X

1Convenient choice of the gauge parameterds= 0 for numerical studies.
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and its diferential

f (V). X0 ™ 0 =m0, (3.215)

d
Oxuf(U) = T2 —
0 otherwise

ds
When we rewrite the flow equations (3.213) as
oM = Z(M)V, (3.216)

one suspect that the equation (3.216) can be solved by using the Runge-Kutta method. The Runge-
Kutta method gives an approximate solution of fiuiion equation. In generally, let us consider

d
G’ ®=Fty). y(to) = yo. (3.217)
The s stage approximate solution is
S
yw1 = ya+h> bk, (3.218)
i=1
i-1
k= flta+chyn+h) ajk|, (3.219)
j=1

where the cofficientsa, b, c are defined by Butcher tableau.

However, we must solve theftlision equation (3.216) which is defined on the Lie group. The
approximate solutions also must belong to the Lie group. Such techniques are suggested in [77]
and [78]. Luscher constructed the solutions for these equations. According to [34],

Wo = VM, (3.220)
1
W, = exp ZZO)WO’ (3.221)
8 17
W, = exp 521—3—620) Wi, (3.222)
3 8 17
W3 = —Zo— 71+ — W. 3.223
3 expl ;22— 3 1+3620) b, ( )
Z = eZ(W), i=012 (3.224)
The flow time evolution is
Vive = W + O(€h). (3.225)

The flowed quark field emerges via the propagator on the lattice. We must take care that the flowed
propagator is not defined through the inverse of the flowed Dirac operator

xi(®Fr(t) # (D) + m)~L. (3.226)
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To see the correct representation, let us consider the flow equation for the quark field with flavor
f=ud,s.

O xt(t,X) = Axs(t,X), xt(t =0,X) = y¢(X), (3.227)
Xt ) = XrtX)A, Tt = 0,%) = ¥y (x), (3.228)
where we denote
Axi(t,x) = D,D,x(tx), (3.229)
Tt0A = ¥(t.x)D,D,, (3.230)
Duxi(t.X) = (8 + Byu(t.x)) xi(t.x), (3.231)
0D, = Fi(tx) (7, Bu.x). (3.232)

When we describe solutions of the flow equation

xitx) = D KEX 0w (), (3.233)

y
X = D FOKELX0y), (3.234)
y

the flow kernelK (t,x; s,y), (s < t) satisfies flow equation

(0 — Ax) K(t,X;8,y) =0, K(t,X;t,y) = Ox,., (3.235)
—
K(t,x;sy)' (at - AX) =0, K(t.Xt,y)" = 8y, (3.236)
and adjoint flow equation
— —
K(6X:S, ) (as - Ay) 0, (3.237)
(s = Ay) K(t.x;s,y)" =0. (3.238)

We can obtain the correct quark propagator

XtEX)X1(Sy) = D KEX0.v) (St (v,w) = cndu) K(S.3;0,w)", (3.239)

UATY

whereS; (X, y) means the quark propagator with bare mags and satisfies

(Dyyy + mot) St (x,y) = 0. (3.240)

The term including the cdicientcy means a0 (a) improvement of the Green’s function and it is
given at tree level perturbation as

G = =. (3.241)
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Finally, let us see the expectation value of the axial vector current as an example. The axial vector
current at flow time is given by

Ao (t,X) = ca(t)er () (6, ) y,ys T2 xe (LX), (3.242)

where we denote the matching factorcagt) and the renormalization factor of the quark figlgt)
asyi(t) which is defined by
-6 S —

— , D,=D,-D, (3.243)
(422 (%1 (97, B .9

ei(t) =

In the section 3.2.1, we calculated the matching facigt) as

72(VI/8) N2-1

Al =1+ G N

1
(—é +log (432)) . (3.244)

We can estimate (3.244) numerically by using Mathematica, and some instance are listed in the
Table 12. We set theMiS reference scale to 2GeV.

flow timet ca(t) flow time cal(t)
0.1 1.1413035695042358 1.1 1.295406012201491
0.2 1.1644982623865360) 1.2 1.309883214352522
0.3 1.1825307239391032 1.3 1.324921920318857
0.4 1.1983333490997918 1.4 1.340663209539468
0.5 1.212957753382925F 1.5 1.357268112086294
0.6 1.2269285984453740 1.6 1.374927152426942
1
D
)
D

0.7 1.2405611222968254 1.7 1.393873070571669
0.8 1.2540716233799060 1.8 1.414398864862641
0.9 1.2676254449909745 1.9 1.436884714668547
1.0 1.281361393685814) 2.0 1.461840115581190

O W oW 0T © 00 & OCWNRN

Table 1: Matching factor of the axial vector current.

The expectation value of the axial vector current is

<A'u’f(t,X)>
= —calt. )er O [yurs 0t 0 (60
= —Ca(t, )¢r(t) ) [1.ysK (6% 0,9) (S(v,w) = Cad) K(t,%;0,w)T] . (3.245)

2ye set the bare gauge coupligg= 2.05.
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The renormalization factor (3.243) is estimated within almost the same manner. In practice, we
must take the zero flow time limit after taking the continuum limit, because thei@ @yeerms in
the expression (3.242). In principle, we can expand the perturbative calculation to higher order and
such improvement will be helpful to take the zero flow time limit. Two loop calculation and more
detailed discussion can be shown in the [58].

In this section, we briefly reviewed the numerical procedure of the gradient flow method and the
construction of the axial vector current as an example. We will proceed to concrete calculation in
the next section.

3.3.2 Meson mass

The most easiest calculation of lattice QCD is the calculation of pion mass, since it does not need
a renormalization. Therefore, if we calculate the pion mass with the gradient flow, it does not de-
pend on the flow time. It will be a first check of our numerical procedure discussed in the previous
section. We will calculate masses of pion, kapmesony;ss meson an@ meson as an exercise.

We use (21) flavor gauge configurations generated in [104], and the number of configura-
tions is 65. Bare gauge coupling is setgo= 2.05 and hopping parameter of each quarks are
ky = kg = 0.1356 ks = 0.1351, which corresponds ® = 0.0701(29)fm. The Lattice size is
28% x 56. The fermion action i©(a) improved Wilson-clover action[105] and the gauge action is
renormalization group improved Ilwasaki gauge action. The reference scale of renormalization is
fixed tou = 2GeV. Our purpose of this section is reproduction of the original resyltsn, ~ 0.63
andm, /mg ~ 0.73.

At first, we evaluate pion mass with periodic boundary condition. It is calculated via the correla-
tion function of

PA(X,t) = ¢ (X,)ys T (X1). (3.246)
Under the periodic boundary condition, the expectation value of some op€r&éatefined by

(O)ppec = Z(mo é"Tin), (3.247)

n

Where|n) means some complete set ahdheans temporal size of the lattice. Combining with the
fact that

1= 00 Y [ 2P ) E) 5
k:one particle stat (2)3 2E(P)

+(contribution from multi particle stajg(3.248)
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we obtain the representation of the correlation function as

G = » (PE.OPRY),..
X
| < 0|P(0)|Ex(0) > |2

= —mt —my (T-t) ; :
= Z o (et + ™) & (multi particle stat

k:one particle state

(3.249)

When we takd enough larget — T/2, contribution from the lightest particle become relevant,
and we obtain

| < OIP(0)|E«(0) > |2

G(t) ~ =

e ™ T/2 cosh(m,(t — T/2)), (3.250)

and

Gt+1)+G(t-12)

_ ~1
m, = cosh 26(0)

(3.251)

We present the correlation functi@it) for several flow time in the Figure 10. Theflidirence of
color means the tlierence of the flow time. The red, green and blue data reg¢8nat dimension-
less flow timet/a? = 0.1, 1.0 and 20. We can see that the value itself istdient, however, the
slope seems to be constant for each flow time.
Figure 11 describes the flow time dependence of pion mass. As we expected, the pion mass does
not depend on the flow time, since the pion mass is fiected by the renormalization. We can
realize that the gradient flow slightly improves the errors of the meson mass, because the gradient
flow plays a role of smearing for the each field.

1.0x100} £ , | —a
F o flow_time=0.1 F—e—4 1
[ e flow_time=1.0 s ]
= i =
1.0x10M-1} £ = flow_time=2.0 l—o‘—ia. _:
4:\" .‘za 8‘. .‘f
9 i ... 8‘3 ﬂ“ ...
=
£ 1.0x10%2} ¢ e & o .
(&) C % T gt‘ <
I > U e 1
1.0x10%-3} F '°.,. e .
: .V” :
1.0x10%{-4} : ' ' : '
0 10 20 30 40 50
Nt

Figure 10: Correlation functio®(t) for several flow time.
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6.4x10%2} |-

oo [T TEHHHHEELEEEERES
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Figure 11: Flow time dependence of pion mass.

The mass of the other meson can be calculated with almost the same manner. We summarize
the meson mass in the Table 2. We estimated the mass of the pseudo scalar particle, pion, kaon,
nssmeson, and vector mesogmmesong meson. Our results reproduce the original ang/m,, ~
0.63 andm,  /my ~ 0.73. We also estimate the kaon mass which is necessary for the calculation
of bag parameter.

meson| mass[MeV]

r 630.2(4.7)

K 731.7(4.8)

p 975.7(54.1)

Nss 823.6(4.7)
1) 1125.0(28.3)

Table 2: Estimation of meson masses.

The gradient flow is greatly convenient method for the lattice QCD calculation, however, we
need extreme caution for the each calculation. Especially for the Wick contraction of the flowed
quark field (3.239), contraction must be taken at zero flow time. Our first estimates above are first
check of validity.

3.3.3 Decay constant

We can also calculate the decay constant with the gradient flow. Historically, decay constant of a
lot of particle have been measured[115]-[118] and such calculation will become a good exercise.
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The pion decay constant is defied via the probability amplitude,
ipufx = (01AL(0)|Ex(P)). (3.252)
whereA,, means the axial vector current,
A(X) = Y (X)yursT(X). (3.253)

Note that we improved the axial vector current by
1
(A5 () = AY(X) + CA5 (PA(x +ap) - PA(x - ap)), (3.254)

which removes th& (a) errors. The coicient ca is determined non-perturbatively[109], and
given as

ca = —0.0272(18), (3.255)

in our parameter setup. After that, we simply denote the improved axial vector curréf(ds
As we discussed in the previous section, the correlation function of the pion operator with the
periodic boundary condition is denoted by

D UPE.OPE) o < O'P(OZ]'E”(O) > P gtz cosh(m,(t —T/2)).  (3.256)

X

Similarly, the correlation function of the axial vector current and the pion operator with the periodic
boundary condition is denoted by

Z <A,u(6, O)P(X,t)>PBC t—>;|'/2 < OlA,u(O)lEﬂ(O) ;ﬂ< Eﬂ(o)lp(o)lo > e_m"T/z Sinh(mn-(t _ T/Z))

X

(3.257)

When we rewrite the each ciheient as

S UPE.OP(RY), . T Wepcosh(mg(t - T/2)). (3.258)
X

DUABOPERY) . T~ Wapsinh(mg(t - T/2)), (3.259)
X

we can obtain the representation of the pion decay constant,

_ 01A(9)|E(P)) _ Wap
M Vmee ™ T 2Wpp:

f, (3.260)

We will evaluate (3.260) using the gradient flow.
The Figure 12 shows the flow time dependence of the pion decay constant. As we mentioned,
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Figure 12: Pion decay constant andtits O limit.

we must take the flow time to 0 limits, because, our perturbative matching factor contains remnants
which appear a®(t) terms to the calculation. However, we cannot directly take the flow time to O
limits, unlike the case of meson masses. In many cases, observables are contaminated by an artifact
which is proportional t@?/t. If we take the continuum limit before taking the flow time to O limit,

the artifacts are successfully vanished. In [44], a way to skip formal procedures was suggested.
According to the paper [44], once we find a window region in which the flow time dependence
seem to linear, we can extrapolate the flow time to zero limit. We also apply the method and denote
as the red solid line in the Figure 12. The window region which we used is denoted by the area
between the blue dotted line in the Figure 12. We obtain the pion decay constant

f, = 1613(9.3)MeV. (3.261)

At the physical point, the pion decay constantid30MeV. Since our parameter setup is in the
heavy quark regiod our numerical result (3.261) is valid.
We also calculated the kaon decay constant as in the Figure 13. The resultis

f, = 1687(9.3)MeV. (3.262)

In this section, we measured the meson mass and the decay constant. We will advance to mea-
surements of the operators which is related to some symmetry.

Bm, ~ 630MeV
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Figure 13: Kaon decay constant andtits 0O limit.

3.4 Previous Works with Gradient Flow

As we discussed in the section 2.2, Wilson fermion explicitly breaks the chiral symmetry. The
effect is onlyO(a), however, it grows combining with the divergence and we no longer ignore it
even taking the continuum limit. We can define an operator itMBescheme via the gradient flow
method as

<oM_S> = lim Z6F-MS t) (05 (1)) . (3.263)

Numerically, we measuréOGF> on the lattice with the continuum limit. Our claim is that we

can take the continuum limit even if the opera@melates to some symmetry which is broken

on the lattice. In this section, we will see three previous works, energy momentum tensor [48],
topological charge [49] and chiral condensate [48][57]. The each observable relate to breaking
symmetry, however, the numerical results imply that the gradient flow works well even for such

observables.

3.4.1 Energy momentum tensor

The energy momentum is Noether current with respect to the translational symmetry. In the thermo-
dynamics of QCD, the energy momentum tensor is used as a convenient source of various thermo-
dynamic quantities. For example, pressure and entropy density can be pulled out from the diagonal
part of the energy momentum tensor. However, since the lattice regularization breaks the transla-
tional symmetry it is hard to define the energy momentum tensor on the lattice in naive ways.

In the finite temperature (continuum) QCD, the energy momentum tensor is written via the four
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dimensional and gauge invariant symmetric operators,

Oy (X) = (X)F (%), (3.264)
Oz (X) = 5 JF2()F2 (X, (3.265)
Oaw(¥) = ¥(¥) (y,,D 9,8, v, (3.266)
O (X) = 8,08 (X)7, D o (). (3.267)
O5/,lV(X) = 6;11/@()()‘//()()’ (3-268)
as
T,uv(x) = gi (Olpv(x) 102yv(x)) + 103/1\/()() 104,uv(x) OSpv(X) (3269)
0

Because the energy momentum tensor takes an additive renormalization we can introduce a renor-
malization prescription for the energy momentum tensor as

(T 00} 5 = T 00 = (T (), (3.270)

where(-)r_o means the vacuum expectation value at zero temperature. However, we cannot use
this definition on the lattice, since, the transnational invariance is no longer guaranteed. In [41],
it is suggested that the gradient flow can play an important role to give the definition of the energy
momentum tensor on the lattice. According to the general considerations of the gradient flow,
if an operator is constructed from renormalized flowed fields the operator is free from the ultra
violet divergence, that is, normalizations. Furthermore, we can expect that if we flow the definition
(3.270) it can be diverted even on the lattice. Therefore, with the flowed operators,

Ouw(t.x) = G2, (t,X)GE,(t.X), (3.271)
Oou(t,X) = 6, Ga - (. X)G5, (1. X), (3.272)
Oa(t.X) = Y(t.X) (y#D +y,D ) 2(t,), (3.273)
O (t,X) = ,uv)((t X)7, D p 2 (t,X), (3.274)
O (,X) = 6, Mix(t,X) ¥(t,X), (3.275)

the energy momentum tensor is given by

{Tw(}, = a® {Olw(t X) — 102W(t x)}+c2(t) {Gauy (t.%) = Gy (1. %))}
€3(t) {Oauv (t,X) = 20, (t,X) = (Gy (t, %) = 20, (t, X))}

Ca(t) { By (£, X) = (O (t. %) )} + €5(t) { Oy (1. %) = (B (t.))} .
(3.276)

+

+
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where the cofficientsc (t) mean the matching factor and given by for 18 scheme as

0 = i e 3™ 5 0200 - G (G- v
(3.277)
ct) = 8(4—1702 (%lN + %Nf) : (3.278)
ca(t) = % {1 + 52((1 ;/F) N;& 1 (g + Iog(432))} : (3.279)
cat) = @ N;; 152(1/ Vat), (3.280)
cs(t) = —%@ {1 + 62((1;/2&) N; 1 (3)/ -6 Iog(2); + Iog(432))} . (3.281)

The validation of the definition (3.276) have been concerne®td(3) Yang-Mills theory# in [44]
and for full QCD in [48]. In this thesis, we review some of the results in QCD [48]. Figure 14

10 gradient flow —&— 25 gradient flow —&— ‘
5 T-integration —&— T-integration —&—
- ® 1 20 | @

p

| pt I ﬁw

0 100 200 300 400 500 600 0 100 200 300 400 500 600
T (MeV) T (MeV)

Figure 14: Pressure as a function of temperathkigure 15: Entropy density as a function of tem-
[48]. perature [48].

shows the numerical result of the pressure and Figure 15 shows the entropy density. The red points
denote the results of the gradient flow method and the black points denote the results of the integral
method. These two results are consistent in the regidno279MeV. It shows that the definition
(3.276) which use the gradient flow works well. At the high temperature, because they used the
fixed scale approach the lattice artifacts are severe and the two methods are not consistent.

14In Yang-Mills theory we must remove the quark fields from the representation (3.276).
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3.4.2 Topological charge

The axion is a hypothetical elementary particle which was introduced to solve the strong CP prob-
lem in QCD. With the progress of the elementary patrticle theory, the axion also became a candidate
for the dark matter. Since the axion mass relates to the topological susceptibility, there were many
attempts to calculate the topological susceptibility on the lattice [69]-[73]. In [49], it is suggested
that the gradient flow can contribute to the measurement of it.

The topological susceptibility can be defined via twfietient ways. One way is straightforward,
and it is defined as a fluctuation of the topological charge,

1
Q = f d&meﬂwﬁ;(xw&(x), (3.282)

xJuomd = \i/ ((@%) -«@?). (3.283)

In [49], this definition is called as gluonic definition.
The other way is using the chiral Ward-Takahashi identity

Xgermionic) _ VﬁNfz (<POPO> — Ns <Papa>2) ’ (3.284)
Pt = [ T, (3.285)

In [49], it is called as fermionic definition. However, this definition has power divergence caused
by the explicit chiral symmetry breaking for the Wilson fermion. They cared this problem by using
the gradient flow. The two definitions evolve to

Q(t) = f d4x64—1ﬂzewngZV(t,X)ng(t,x), (3.286)
Y& = 2 (M) - @) (3.287)

and
xS = Viszz«PO(two(t))—Nf<Pa(t)Pa(t>>2), (3.288)
PO = o) [ dREOTH Y, (3.289)
cs(t) = {1 + % (47 —8log(2) + 8+ g Iog(432))} %@(3_29@

After taking the flow time to O limit, the each expectation value are calculated as in Figure 16
which are the result of [49]. The red points show the gluonic definition (3.287) and the black points
show the fermionic definition (3.288). They have good agreement, therefore, the gradient flow
works well for the chiral Ward-Takahashi identity even for the Wilson fermion.
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Figure 16: Topological susceptibility as a function of temperature [49].

3.4.3 Chiral condensate

Most of the Hadron mass comes from the spontaneous symmetry breaking of the chiral symmetry.
However, when the temperature becomes very high the chiral symmetry is expected to recover.
Such two phases are called as Hadron phase and Quark-Gluon plasma phase. The chiral condensate

> 3 (0w ). (3.291)

is the order parameter of the phase transition. Since the Wilson fermion explicitly breaks the chiral
symmetry (3.291) is taken an additive renormalization. When we consider the susceptibility of the
chiral condensate, which shows a peak around the transition or crossover line,

2

2
X = <{\% Z%(x)wf(x)} > - {(% Z%(x)wf(x)>} . (3.292)

must has a complicated structure for the Wilson fermion.
In [48], the renormalization was done by the gradient flow and realized the calculation of discon-
nected susceptibility. They defined it via the gradient flow as

2 2
x3se(t) = c2(t)¢A(t) <{\3/ ;mmm} > - {<\1/ lem)(f(t,x)» . (3.293)
where the matching cdigcient is given by

g°(1/ V8
(47)2

M (1/ V8t)

T (2GeV) (3.294)

cs(t) = {1 + (4y —8log(2) + 8+ g Iog(432))}
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Figure 17: Disconnected chiral susceptibility as a function of temperature [48].

After taking the flow time to O limit, the disconnected chiral susceptibility become as in Figure
17. The red points show the disconnected chiral susceptibility for u, d quarks and the black points
show for s quark. Moreover, there is a clear peak at199MeV and this transition temperature is
consistent with the previous work [68].

Their calculation was expanded to the connected part of the chiral susceptibility which includes
the two point functions of flowed operators [57]. The flowed connected part is defined by

XEON) = (1) 2(t) <\1/ S0 (6T 4 0) ke (t,0)> . (3.295)

Combining theseféects, the full chiral susceptibility can be calculated and the numerical results
are denoted in Figure 18. The black points show the full chiral susceptibility for u, d quarks and the
red points show for s quark. They also show a peak at199MeV, however, the signal is mild at

this time. It is notable that the same behavior can be seen for the Wilson fermion [74], the overlap
fermion [75] and the HISQ [76].
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Figure 18: Full chiral susceptibility as a function of temperature [57].

3.5 PCAC Relation

In the section 3.2, we saw the two examples, axial vector current and the pseudo scalar density,
which are important and concrete for PCAEelation which is one representation of the chiral
Ward-Takahashi identity. Since we are using Wilson fermion there are nontrivial renormalization
to the equation. In some previous works with Wilson fermion[112]-[114], PCAC relation is used as

a renormalization condition of the Schrddinger functional method[107][108], however, we expect
that the PCAC relation will be automatically satisfied by using the gradient flow. We will obtain two
important consequences in this section. (1) PCAC relation seems to be established. (2) PCAC mass
calculated in gradient flow scheme and calculated in Schrodinger functional scheme are consistent
within error bars.

3.5.1 Validation of PCAC relation

The gradient flow plays a role of ultraviolet ctitéor operators and such property is probably held
even for the operator which relates to the broken symmetry by the lattice fermion. In the previous
section we saw the three circumstantial evidence, energy momentum tensor, topological charge and
chiral condensate. Since our target, the kaon bag parameter relates to the chiral symmetry, more
study about chiral symmetry is important.

In this section, we will see that the PCAC relation is also held by using the gradient flow. The
PCAC relation is a kind of Ward-Takahashi identity with respect to the chiral symmetry. The

5Abbreviation of partially conserved axial-vector current
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infinitesimal chiral transformation is defined as

Y (X) +iT20%(X)ysy (X),
¥ (X) + iy (X)ysT26%(X), (3.296)

W' (X)
¥ (%)

whered(x) means the infinitesimal number. Assuming the invariance of the expectation value of
an operatorg 0|O(y,)|0 >, we obtain the chiral Ward-Takahashi identity

(010(y.1)6SF +60|0) = 0. (3.297)
When we choose the opera(y,) asy (y)ysT2% (y) andd3(x) = 6 = const.,

0
5O

16— 8, A5(x) + 2mP(x), (3.298)
2105(x — y) L (x), (3.299)

where we defined the scalar dens®; the pseudo scalar densi®f and the axial vector current
A as

) = yXwx), (3.300)
PA(X) = ¢ (X)ysT3(X), (3.301)
A(X) = ¥(X)yuysTaw(X). (3.302)

Performing a spacial integration, we obtain PCAC relation
2m(P*(N)P?(0)) = — (30AF(N)P*(0)) (3.303)

We will evaluate its both sides numerically with Wilson fermion using gradient flow. As we saw
in the previous section, the renormalized pseudo scalar density and the renormalized axial vector
current are calculated via the flowed operator as

PRt X) = lim cp()er (€)X (t X)ys T xe (. X), (3.304)
ALt x) = lim ea(t)er (1) (6 X) 7,75 T xe (6, X). (3.305)

Flow time dependence of each operators are shown in Figure.20 and Figure 19. Figure 20 indicates
(P3(N;)P2(0)) and Figure 19 indicateéAg(Nt)Pa(O» with N; = 28. We simply used linear
extrapolation to take the flow time to O limit and the fit range is fixed foMNall The fit range is

taken to 08<t<1.2. The AP indicates a clear signal and a wide window region, howeRerhas

severe flow time dependence as in Figure 20. We chose the fit range AP tred PP seem to
indicate a linear dependence at the same time.
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The numerical results of PCAC relation for u,d quarks are shown in Figure 21 and Figure 22.
We used the same configuration with . The red points mean the left hand side of eq.(3.303) and
the blue points mean the right hand side of eq.(3.303). We use the PCAC mass renormalized in
Schrddinger functional scheme as quark nrass 82.3(4.1)MeV. These two data are successfully
consistent within error bars withol ~ 0.
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Figure 21: PCAC relation Figure 22: PCAC relation folN; ~ 28

Our numerical results tells that the PCAC relation is held, although we are using the PCAC
mass renormalized in Schrodinger functional scheme. However, we have still tested only the linear
fit. We must apply the non-linear extrapolation to take the flow time to O limit, andffeeteshould
be included as an systematic error.

3.5.2 PCAC mass

To estimate the renormalized PCAC mass, Schrddinger functional method is commonly used. In
this section, we estimate the PCAC mass from the gradient flow method. Let us defiffethiees
PCAC mass via the flowed operator as

ca(t)ce (1) @2(t) (9 AZ(N) P2(0))
2¢5(t)¢2(t) (PA(N)P2(0))
At first, we look for a plateau with respect to the temporal distasicas in Figure 23. We specially

pick up the casé = 1.0 in the Figure 23.
The renormalized PCAC mass can be estimated by

mer(t) = (3.306)

Mgr = lim MG (t). (3.307)

We also use the linear extrapolation to take the flow time to O limit for the calculation of the PCAC
mass as shown in the Figure 24 for u,d quarks. We chose the fit range same\&sathe theP P.
Our final result of the renormalized PCAC mass for u,d quarks is that

MGFud = 76.9(5.2)MeV. (3.308)
This result is consistent with Schrédinger functional scheme
Msrud= 82.1(4.1)MeV. (3.309)
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Figure 25: PCAC s quark mass andtits> O limit.

With the same procedure, we can evaluate the renormalized PCAC mass for s quark. Figure 25
shows the linear extrapolation and the result is

Mers= 1259(7.3)MeV. (3.310)

The Schrodinger functional scheme gives

Msk.s= 137.9(6.8)MeV. (3.311)

These results are also consistent within error bar.
In this section, we discussed about the PCAC relation which needs the nontrivial renormalization

related to the chiral symmetry. We started from the validation of the PCAC relation and reached
the PCAC mass. Our numerical result of the PCAC mass for u,d and s quarks are consistent with
the Schrodinger functional scheme. It tells that the gradient flow works well even for the operator
which is related to the chiral symmetry, and become a tailwind of the calculation of kaon bag

parameter with gradient flow.
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4  Four Fermion Operators

We saw a lot of applications of the gradient flow in the previous chapter. The point is that the
gradient flow can be regarded as some kind of renormalization scheme, because the expectation
value of flowed operators are finite. What we must calculate is matching factor of the each operator,
since the most popular expression is given inN®scheme. We have already discussed about the
dominant techniques in the section 3.1 and practiced with fermion bi-linear examples in the section
3.2.

In the case of four fermion operators, the basic idea of the calculation is almost as same as the
fermion bi-linear operators. However, when we consider one loop correction of the four fermion
operators in naive way we can recognize that the spinor indices are disorganized. In general, we
can expand a 4 4 Hermitian matrix with some base. Such reconstruction is known as Fierz
rearrangement and we will see in the section 4.1.1. Fierz rearrangement recompose the spinor
indeces and make the calculation possible. It is emphasized that Fierz rearrangerffentive e
in the four dimensional space time, therefore, the dimensional regularization scheme cannot be
adopted just as it is. The dimensional regularization scheme changes to the dimensional reduction
scheme in which only the internal loop momentums are reduced D thé-2¢ dimensional space
time and the other Lorentz indices run for four dimensional space time. We will see more details
of it in the section 4.1.2. After introducing Fierz rearrangement and the dimensional reduction
scheme, the remaining calculation, integration of the internal momentum, will be smoothly done.
Our calculation will be based on the small flow time expansion with the background field method.
The key is calculation ofOsow — Opare'1p), Which is free from the infrared divergence as discussed
in the section 3.2.3.

Our interest can be expanded to the other four fermion operators. Especially considering the
importance of physics, we will pick upS = 1 four fermion operator in the section 4.2. It relates
to theK — nr phenomenology and, therefore, also with CP-violation. When we consider the one
loop correction of it we face to the new diagrams called QCD penguin diagrams. We will evaluate
the internal momentum integration of penguin diagrams with the gradient flow in the section 4.2.2.
We will see that integration of the internal momentum for the penguin diagram is more complicated
than theAS = 2 four fermion operator.
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4.1 Kaon Bag Parameter

In this section, we calculate the matching factorA8 = 2 four fermion operator which is the
numerator of kaon bag parameter. Before the actual calculations, we will prepare two theoretical
tools, Fierz rearrangement and the dimensional reduction scheme, which are needed for the calcu-
lation peculiar to the four fermion operators.

We also use the same notations with the previous secfidmean anti-Hermitian which satisfy

[T = fabere, (4.1)
1
Tr(TeT?) = 56 (4.2)
N2 -1
T = -1, (4.3)

for fundamentalN representation oSU(N). Gauge fieldA, and quark field) are decomposed
into background fields and quantum fields

Ax) = AuX)+aux), (4.4)
Y(X) = @(X)+D(X), (4.5)
y(x) = ¥(x)+p(x), (4.6)

WhereAﬂ, W, j are background fields araj,, p, p are quantum fields.
The each fields evolve to flowed fieldé,,,, X i b, K, k, along flow equations, whetemeans
the flow time. The flow equation for the background fields are

aB.(t,x) = D,G,.(t,x) , B.(t=0,x)=A,(x), 4.7

artx) = D?p(t.x) . R(t=0%) =i(x), (4.8)
~ ~ l2 ~ ~

atY(t’X) = ?(t’X)D ) Y(t = O’ X) = l//(X), (49)

and for the quantum fields are

ab,(t,x) = D2b,(t,x) + 2[G,, (t,X),b, (t,X)] + Ru(t,X) , b (t = 0,x) = 4,(x), (4.10)
ak(t,x) = {D? - Dyub,(t.x)} k(t.x)

+ {2b,(t. ) Dy, + 07(t. %)} £(t. %) , k(t =0,%) = p(x), (4.11)
aK(tX) = K(tx) {‘52+ Iﬁﬂbﬂ(t,x)}

(6, X) {-z‘ﬁﬂbﬂ(t,x) + bz(t,x)} Jk(t=0,x)=p(x),  (4.12)
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where we define that

Cuw(t.X) = aB,(t.x) - &By(t,x) + [Bu(t. %), By (6. X)], (4.13)

If)N = 0ﬂ+[l_5>ﬂ(t,x),-],(forgaugefield}a (4.14)

D, = d,+B,(t,x) , (for quark field3 (4.15)
R.(t,X) = +2[b,(t,x), D,by,(t,x)]

—[by (t. %), Dby (t.%)] + [y (t.X), [y (t.X), by(t.%)]] . (4.16)

The four fermion operator we will consider throughout this section is defined as

O. = [(Wryuve) (Vayuva) = (Vavuva) (Vavuve)]. (4.17)

. (1-1s)
vy = Yu (4.18)

H

and its flowed one is defined as

O.(t) = [(rwvpxz) (Yavpxa) = (1vixa) (vavixz)]. (4.19)

The subscript 1- - 4 means the flavor index of the quark fields.

4.1.1 Fierz rearrangement

For perturbative calculation of four fermion operator, we will consider some product

(#1AOy2) (43APya) . (4.20)

If A andA©@ take simple form, there is no problem at all. However, we will evaluate the more
complicated spinor structure as

(W1y2) (Wayua), (4.21)

and we must take a summation with respect to the spinor ipd&ktz rearrangement makes such
calculation possible.

Let us consider an arbitrary>d4 Hermitian matrixA. In general termsA can be expanded by 16
linearly independent matrices. We choose them as

AP =1, 5, vy iyuysiou ) (4.22)
We can verify that they are normalized as

tr[AA1B] = 4678, (4.23)
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andA is written by

1
A=7 ZA: tr[AAA] A, (4.24)

When we regard the product afY andA® as a 4x 4 matrix,
i) _ A AR
A§) = APARD, (4.25)
four fermion operator (4.20) is rewritten as
(1ADy2) (F3APys) = UyAf jl)lﬂzj YA wa

1 i —
-2 Z tr[AAADAAR G 2Py pa
A

_ %1 3 (@A 22Dy (F5202) (4.26)
A

where we used equation (4.24) in the second line and imposed that the spinor index run in the four
dimensional space time. If we define the& 4 matrix by (4.27) instead of (4.25),

AP = APAD, (4.27)

we obtain another form of Fierz rearrangement,
(F:0D02) (FaA @) = 5 5 (F1a%04) (BA PN D2). (4.28)

Fierz rearrangement also lead formulae,

SoS = —%(S®S+P®P+V®V—A®A—T®T), (4.29)
PoP = —%(S®S+P®P—V®V+A®A—T®T), (4.30)
SeP = —%(S®P+P®S—V®A+A®V—'I~'®T), (4.31)
PoS = —%(S®P+P®S+V®A—A®V—T’®T), (4.32)
VoV = —%(48@8—4P®P—2V®V—2A®A), (4.33)
Ao A = —%(—4S®S+4P®P—2V®V—2A®A), (4.34)
VoA = —%(—48@P+4P®S—2V®A—2A®V), (4.35)
AGV = —%(4S®P—4P®S—2V®A—2A®V), (4.36)
ToT = —%(—68@8—6P®P—4V®V+4A®A) (4.37)
ToT = —%(—68@P—6P®S+4V®A—4A®V). (4.38)
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4.1.2 Dimensional reduction

We reviewed Fierz rearrangement which organizes the spinor indeces by the complete set (4.22) in
the previous section. Since we consideredaMHermitian matrix, the spinor indeces must run in

the four dimensional space time. We impose that only the internal loop momentums are reduced in
theD = 4-2¢ dimension and the other Lorentz indices run for four dimensional space time, which
condition is called as the dimensional reduction scheme. We denote the gamma matrices in four
dimension ay,,, and the gamma matrices ihndimensional ay,,. When we denote the remaining

part asy,,, the gamma matrices are separated as

Yu =Yyt YV (4.39)

We define theys matrix which anti-commute with every gamma matrices in this scheme.

{ys.vu} = 0. (4.40)
{rs7,} = 0 (4.41)
{ys: 9u} = 0. (4.42)

When we consider an anti-commutation relation betwggeandy ,, it can be calculated as

w70} =T+ ) 70} = 200, (4.43)

where thes,,, means the Kronecker delta B dimension. The other relation can be calculated
almost the same manner. For example,

Yu¥v¥u = Dy =2y, (4.44)
ViV ¥u = =27y (4.45)
In the previous chapter, we calculated the renormalization factor of the quark field with the

dimensional regularization scheme(DREG). The renormalization condition of flowed quark fields
iS

o _ —8N; 12
x (t.x) = S X (6:X) 1= @7 (1) x (t,X). (4.46)
(422 (76297, 5 (0:)
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D02 D03 D04
D05 D06
D07 D08

Figure 26: One loop diagrams for the fermion renormalization factor.
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Feynman diagrams are drawn as Figure26. The contribution of each diagram is given by

DO2perG —% — 2log(8nt), (4.47)
DO3perG 2} + 4log(8nt) + 2+ 4log2-2log 3 (4.48)
DO4perG —50 log(2) + 16 log(3), (4.49)
DO5perc : 12l0g(2) — 5log(3), (4.50)
DO6|perG —4} — 8log(8nt) — 2, (4.51)
DO7perc @ 8 Ioeg(2) —4log(3), (4.52)
DO08perc : —-2l09(3), (4.53)

in the unit of

-8Nf g5 N2-1

(4r)%t2 (4n)2 2N (4.54)

Summing up all, we obtain

(4g7T2)2 N;; - g + 3log(8ru’t) - log (432))} . (4.55)

¢(t)lprec = (8nt)™° {1+

Itis emphasized that this calculation is done in the dimensional regularization scheme and the result
must be changed in the dimensional reduction scheme with finite value. The contribution of each
diagram in the dimensional reduction scheme is

DO2perp —% — 2log(8nt) — 1, (4.56)
DO3|perp 2% + 4log(8nt) + 2+ 4log2- 2log 3 (4.57)
DO4perp @ —20log(2) + 16 log(3), (4.58)
DOSperp @ 12log(2) — 5log(3), (4.59)
DO06|perp —4% — 8log(8nt) — 4, (4.60)
DO7perp : 8log(2) — 41og(3), (4.61)
DO8perp : —2log(3), (4.62)

and the renormalization factor is

2 2
o(t)lorep = (87t)~€ {1+ # N2N ! g +3log(8ru2t) + 3 - log (432))} . (4.63)

The diference emerges in diagram D02 and D06. We use this renormalization factor for the calcu-
lation of four fermion operator.
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4.1.3 Feynman diagrams

The purpose of this section is finding Feynman diagrams whitgtieon the calculation of of
(OL(t) — OL)qp- Or andO. (t) are defined at (4.17) and (4.19).

Let us review the procedure of perturbative calculation of the flowed field. At first, we denote the
flowed operator via the bare operator with small flow time,

O.(t) ~ c(t)O. + O(t) , (fort — 0), (4.64)

where the coicientc(t) is available later. A convenient combinationQOs (t) — O. and its one
particle irreducible vertex correction. When we use the background field method vertex correction
is proportional to the operator which is written by the background field. In this case,

lGr(t)Os, (4.65)
|(Frrsd2) (wavbia) = (Barkie) (varidz)] . @60
where we denote the proportional constant@gt). The right hand side, in other wards, propor-
tional constanigg(t) is calculated in the section 4.1.4 and 4.1.5. We can also calculate the left
hand side by using the relation (4.64) as

(c(t) — 1) (Os)1pi

(c(t) - 1)Zo,0. ~ (c(t) - DO, (4.67)

<Oi (t) - Oi>1P|
O,

(Oi (t) - Oi>1P|

In the second line, we considered one loop perturbation theory and used the faxtxhal is
O(g?), because the tree level contributions of the flowed operator and the bare operator are same,

(O+(t))1p ltree éi , (fort —0), (4.68)
<Oi>1F’I |tree = éi- (4-69)

Comparing (4.65) and (4.67) we obtai(t), therefore, the representation of the small flow time
expansion,

O.(t) ~ (1+ Ir(t))0s + O(t) , (fort — 0). (4.70)

When we define the renormalization of the flowed quark fie{t x) by

o —8N¢
x(t.x) = — S
(422 (707, B e 0. 0)
the relation between the gradient flow scheme andtBescheme are given as

(1+ lr(t))¢? () O
2
| @+ler) (so(t)) oS w12)

WS S
Zo,  \%

x(6,%) = "2(t) x (t. %), (4.71)

O.(t)
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where we define the ringed four fermion opera(ﬁ;r(t),

O. = [(uvy ¥2) (aviika) = (Yavji¥a) (Yavy¥2)] 4.73)
The other factorZ(")"_f and ZF, mean renormalization factor for the four fermion oper&erand

the renormalization factor of the quark fieldx) in theMS scheme.
Eq. (4.72) tells us a representation of the matching factor from the gradient flowkShe

w_ (75
GF—=MS _ +
T T o) (90(0) ' &

We have already calculated the renormalization fag(dy at (4.63) in the dimensional reduction
scheme. What we want to calculate ﬂg_f ZF andlgg(t). We postpone the calculation in the
MS scheme, we consider the ¢ibeient of small flow time expansiolg(t) in this section.

Our starting point is the solution of flow equations of quantum field (4.10), (4.11) and (4.12).
According to background field method, we can freely choose the background fields to a certain
degree. Itis emphasized that our calculation needs contributions from one loop and 1PI diagrams.
Therefore, we can set the background gauge field to zero and the background quark field to be
constant. They evolve along the flow equation of the background field (4.7), (4.8) and (4.9). The
solution are

B(t,x) = A(X)=0, (4.75)
(X)) = ¥(x) = (const), (4.76)
F(t.Xx) = w(x) = (const). (4.77)

Let us review the formal solutions of flow equations discussed in the section 3.1.3,

t
bA(tX) = f d®y {Ktab<x,y)wa5’(y)+ fo ds K?_%(x,y),wfe?(s,y)}, (4.78)
k(t,x) = €P°p(x)
t R “
+ fo ds 95 {2, (s, ) D, + PA(s. )} {eP 0 (x) + k(s )},  (4.79)
Ktx) = poel
t

+ f ols{i(x)esS +K(s, x)} {—2‘5,,bﬂ(s, X) + b2(s,x)} =95 (4.80)
0
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where we define heat kern€p°(x, y) .,

Ke(x,y) = et{z‘)x+2¢(x)5(x—y)}, (4.81)
D = 529, + BS(t,x) F2°, (4.82)
FAX) = FS(x)fa (4.83)

Ra(t,x) = 2220t x) D%l (t, x) — F2P%0(t, x) Dbl (t, )
+FaPefedepd(t, x) bl (t, X) b (t, ). (4.84)

Combining them with the solutions for the background fields, we obtain the propagator between
b(t,I) andb(s,l) as

G(t,s 1) ~ e t9G(1), (4.85)
whereG(l) means gluon propagator at zero flow time witthomentum,
1
G(l) = ggl—zaabaw. (4.86)
The quantum quark fields andk can be simplified as,

kt,x) ~ €9p(x)+ f ' ds dt-99° (62(s. %) + 20,,(5.X)3,67°p(x)) . (4.87)
0

—

- t ~ — —.
Ktx) ~ P(x)e?” + f ds (Jbz(s,x)—zp(x) esazaﬂbﬂ(s,x))e(t‘s)az. (4.88)
0

It is enough to use these three results for the later calculation.
Our purpose of this section is a preliminary arrangement for the calculati¢®.@f) — O.)1p).
We set the external momentum to zero for simplicity. With such conditions, it is enough to consider
five types of diagrams to calculate the one loop corrections, and name the each diaptarfe)
as in Figure 27. We denote the heat keref&199° as double solid line with vertex in white circle.
We can denote the each diagrams as

(a) : f ds (ys7, VA ), (Vo7 VE) ,, (-22)e7 2 S (1) S0 (-1)GER(1) = {Fierz) (4.89)

(b) f VAT L), (ETVE), (296 2P S () (1)G22) = (Fierd), (4.90)
(© f 1,lypymvlv)12( 5., (226 S ()5 ()G22() + (Fierz), (4.91)
(d) f (-i)l Tayvvlbp)lz( L)34 e "5, (1)G20(s.0;1) + (Fierz) , (4.92)
(e) f YeTT?) L (75) 4, Gin(s.s:1) = {Fierz (4.93)
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(a) (b) (c)

(d) (e)

Figure 27: One loop and 1PI diagrams for zero external momentum.

where we abbreviate the quark propagéfey(l), quark-gluon vertex@ and fermion bi-linear
term(I')12to

Sull) = it (4.9
Ve = yTd (4.95)
(D12 = v, (4.96)

The symbokFierz of each equations (4.89)-(4.93) means the Fierz partner of the original operator,
for example

(T™)12(T"®)34 £ {Fierz := (M)12+ (I®)as + (M14 % (I%)a2. (4.97)

Estimation of each diagram will be shown in the next sections.

4.1.4 Calculation of diagram ¢, d and e

In this section, we evaluate the diagrduo), (d) and(e). The calculation is almost same as of
fermion bi-linear operators discussed in the section 3.2. As we discussed in the section 3.2.3, we
must take care the order of the integrations. For example,

t t
f ds f 1easr f f ds L e 2", (4.98)
0 12 1Jo 12
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The right hand side of (4.98) are ill-defined integration because the integrand has infrared diver-
gence. If we introduce a regulator of the infrared divergence such as gluon mass, there is no need
to care the order. More discussion is given in the section 3.2.3.

The biggest dierence comes fror@(e) term called evanescent operator. Evanescent operator
is a byproduct of the dimensional reduction scheme, and it must be removed from the calculation.
The spinor factor of the diagrafe) is calculated as,

(¥ Y67 070) 1, (Vo) 5s = 2D (v5) 1, (76) 30 = 4 (75) 1, (75 ) 54 (4.99)
We can define the evanescent operé&tdny
E = (1)1 (5 ga 3 (75) 1 (75 s (4.100)
We can check that the evanescent operatisrO (€). At first, we transform the evanescent operator,
E = (7)1, (75) 5= 5 (7)1, (75) 54 + O(D). (4.101)

We defined that the remnant gamma magfjtive in the 2 dimension. Therefore, we can consider
that the first term ige). We choose the evanescent operator with (4.100), we can adopt another
definition which vanishes in the limit af — 0.

Removing the evanescent operator, the spinor factor of the dia@gabecome

(Vo 57 o 7u) 1 (76) 30 = D (76) 1 (75 ) 04 (4.102)

The integrations of the internal momentum are given by the formula,

D 1-D/2 -
f d®l 1 et r(D/2- 1) (4.103)

(27)D 12 ~ (4m)P2 T(D/2) °

wherel'(-) means the gamma function. Combing them all, we can evaluate (4.91)-(4.93),

N2-1 -g5 (1 .
CON2-1 g2 (1 A
CON2-1-2g3 (1 .

(e AN ()2 {E + log(8nt) + 1} O.. (4.106)

The above calculations are in essence same as of fermion bi-linear operator. Since we used the
dimensional reduction scheme, the spinor factor causes a g2¢)n We rewrite such gap as the
evanescent operatérdefied in (4.100).

In the next section, we go forward to the calculation of the diagf@nhand(b) which are specific
to the four fermion operators.
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4.1.5 Calculation of diagram a and b

For the evaluation ofa) and(b), Fierz rearrangement make a significant contribution, since the
spinor and the color indeces of (4.89) and (4.90) take a complicated structure. Calculation of the
color factor is easier, because we know a formula,

1 . 1 ..
ToTa = —§5i|51k + méljkL (4.107)

The spinor factor can be calculated using Fierz rearrangement (4.26) and the formulae of gamma
matrix (4.44) and (4.45),

@ (Y6707u) 1, (V¥ Yu) g = 4D (7). (ve)s,
= 4D (71;)12 (7!;)34’ (4.108)
(b): (7ﬂ7PVOL‘)12 (757/?7/#)34 = 2D (75)14 (7/(';)32 -4 (7!;)14 (75)32
=D (7);)14 (75)32 =D (75)12 (7’(';)34' (4.109)
The evanescent operator is removed in the second line of equation (4.109). We use the same

definition of E with (4.100).
We obtain the contributions of the diagrdia), (b),

 NT1 49 (1 5
(a) .+ N w {; + |Og(87Tt) + 1} Oi, (4110)
 N=T1 ¢ (1 .

Since the(a), (b), () type diagrams exist two and tid), (e) type diagrams exist four, the coef-

ficient of the small expansion methagk(t) is estimated as

NZEN g2
N  (4r)2

ler = -3 {% + log(8rm%t) + 1} , (4.112)

where we replace the bare gauge coupyntyy
2 = 1% g2 (4.113)

In the calculation until now, we obtained the renormalization factor of the flowed quarkgfiBld
and the the ca&cient of the small expansion methdgk(t). The last pieces are renormalization
factor for the four fermion operat@.. and the renormalization factor of the quark figifk) in the
MS scheme.
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R4 A

(a) (b)

Figure 28: One loop and 1PI diagrams for zero external momentum.

4.1.6 ResultinMS scheme

The remaining part of our calculationf%? and le"_s. We will estimate them in this section.

To calculate the renormalization factﬁg'?, we must consider the 1PI vertex correction©gh,.
Diagrams what we need to evaluate for the calculation are the diagegm@®), (c) in the Figure
28. The other diagrams do not emerge since they are peculiar for the calculation of the gradient
flow. We again set the external momentum to zero for simplicity. However, we must also regularize
the infrared divergence as same as previous calculation. We introduce a gluoa arassewrite
the propagato&(l) as
525 1. (4.114)

abp. 2
Curllid) = 9ojz, e

Using this replacement, we can denote the contribution from each type of diagrams as

@ (YT VE) 1, (VY AV 5, S SEa(-1)GEN(; A) + {Fierd), (4.115)
(b) : (vf;ypyb)lz (vi7a V) s S,(NSA(1)G20(1; 1) + {Fierz (4.116)
© : (VEyvevaVe) b (v5) 5 4st(|)sH(|)G;iE(|; A) + {Fierz} . (4.117)

Calculations for spinor factors and color factors can be done in the same way. We again use Fierz
rearrangement and the dimensional reduction scheme, and the definition of the evanescent operator
Is same as (4.100). Theftkrence comes from the integration of the internal momentum. The
convenient formula is

dPI 1 1 5 aol(D/2-a)(a+1-D/2)
(2m)P (12)3(12 + 22) ~ (4m)P/2 r(D/2)

(4.118)
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After all, we obtain

 N=F1 495 (1 A A

@ : = N ()2 {E —v +log (ﬁ) + 1} O., (4.119)
. ONF1 -g5 f1 4n .

(b  F Gn)? {6 y +log (12) + 1} 0., (4.120)
CON2-1 g5 (1 4 A

and the one loop 1PI vertex corrections

N2¥3N+2 ¢° (1 4r ? A
O. =[1+ ——vy+lo +1:|0.,. 4122
(Os)1pi N (@n)? {e 4 g( 12 ) } + ( )
The renormalization factor is extracted,
v N2¥3N+2 ¢° (1
ZMS -1 - — | 4 1;. 4.12

Renormalization factor of the quark field is defined via the self energy,

(W) = fp 1 e

Py, +m

2
N —1g2f . 1 o 1 . 1 1 aP(y).
2N "0 Jogq ipy, +m”ig.y, +mipy, +m (p- )2 + A2
(4.124)
Integration of the internal momentugcan be performed as
fy 1 y 1
g 0y, +m’ (p-q)2+ a2
_f iguy,+m 1
Jqg @?+m? (p-0)2+ A2
—ii TREN +lo 4—7T+}+ 14m}— +lo 4—7T+1
T @ P\ e YO 2 T o T a2t e T 9 R '
(4.125)
Reading the renormalization factor of the quark field, we obtain
S N2-1 4% (1 1
ZMS _ 1 S log (4 —— 4.126

We have already seen the renormalization factor for the quark field M$echeme in the section
3.2, however the result is changed only with finite value, because we are using the dimensional
reduction scheme for the spinor factor.
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4.1.7 Matching factor

We get all pieces which are required to calculate the matching factor in the previous sections. Be-
fore seeing the result, let us consider the ultraviolet divergence. We have faced many divergences
1/€ in the calculation of 1PI vertex corrections {@..(t) — O.}, such as (4.110), (4.111), (4.104),
(4.105) and (4.106). These divergences can be classified into two types, derived from bare oper-
ator O.. or derived from flowed field. (t). Indeed, the divergence of (4.110), (4.111), (4.104)
corresponds to the divergence of (4.119), (4.120), (4.121), because the diggjafm3, (c) are
composite combination and must be renormalized by the gradient flow. The other divergences re-
late to the renormalization of quark fields, and caredoft) and ZF. After all, the ultra violet
divergence is removed and the matching factoDofis given by

—_ =\ 2

MS MS
7GF-MS  _ 2o, (ZW )
O. -

(1+1er(t) | (D)

2

g LFN+1 2 B
1+(4ﬂ)2{ 3— (log (8tx®) +y —log 4+ 1)

+N2¢6N+5+ N2 —
2N N

L1og 432} . (4.127)

We can see that the finiteness of the gradient flow indirectly, since the matching factor (4.127) does
not depend on /k. In other words, the gradient flow scheme andt®is bounded by a finite gap.

We have calculated the matching factor throughout this section with some steps. At first, we con-
sidered the one loop and one particle irreducible vertex corrections of the combi@dti@n—O.. }
and obtained the representation of the small flow time expansion of the four fermion operator
O.(t) = (1 + Igp)O.. The codficientlgr is defined via th€O..(t) — O.)1p. Combining with the
renormalization factor of the flowed quark figldt), the relation between bare opera@r and
the ringed operatct’ra)i becomes obvious. When we consider another operator fileeetice should
emerge in the representationlgfe. In the next section, we will calculate it againsg = 1 four
fermion operator which is important fé&¢ — 7z phenomenology.

Our perturbative calculation is justified by applying a renormalization group argument. As dis-
cussed in [120], we can replace the coupling consgaby the running coupling constagi(q)
in (4.127). Moreover, we can set the scgle- 1/ V8t, because the expression (4.127) does not
depend on the scatg

Z8FMS (1, 5(1/ Var))

g1/ VB2 [ FN+1
= e {_" N

(y —log4+1)

+N2¢6N+5+ N2 -1
2N N

log 432} .(4.128)
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Since we adopted the small flow time expansion, the flow time must be restricted to small. There-
fore, the running coupling constagifl/ V8t)? is also small because of the asymptotic freedom of
QCD, and our expression of matching factor (4.128) goes to the perturbative region.

4.2 AS=10Operator

In the previous section, we calculated the matching factor oiAthe= 2 four fermion operator.
Our interesting can be expanded to th® = 1 four fermion operator, which is important to the
kaon decay phenomenology. Lattice calculation of it is aldesing from the chiral symmetry
breaking of Wilson fermion, and we can expect that the gradient floWestave. We will calculate
the matching factor of thaS = 1 four fermion operator in this section.

The AS = 1 four fermion operator has almost same form of Afe= 2 four fermion operator.
The definition is given by

Ot = (Yeyfwa) (Waviva) (4.129)
1—
vy = m%, (4.130)

where the subscrigj meanau, d, s flavor. It is also convenient to consider the operator

O. = [(vurive) (Vavuva) + (Vavuva) (Favpve)]. (4.131)

When we consider the Feynman diagrams, we will recognize that the sulzpergites a new Wick
contraction possible. Such new contribution is called as (QCD) penguin diagrams. We will discuss
the internal momentum integration of the penguin diagrams.

4.2.1 Penguin diagram

We consider the Green function without the gradient flow. The flowed penguin diagrams are treated
in the next section.

The Feynman diagrams are distributed in the Figure 29-31. The gluon exchange diagrams in the
Figure 29 are same as the Figure 28. At the one loop perturbation theory, we can show that the
contribution of them are same as previous ones. Therefore, we omit their estimation.

Let us consider the penguin diagram in the Figure 30. When we set the external momeptum as
and denote the internal momentuml age can denote them as

V¥ VLT AYe®VE, Srp(1)Sea(l - P)GE(p; A), (4.132)
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AR 284

Figure 29: Gluon exchange diagrams.

with the notations,

N
Sul) = i3, (4.133)
Vi, = vl (4.134)
G5 ) = Gz 0™ 0w (4.135)

We took the massless limit of quarks and denote their propagator sim@yasy = S = &.

Since we also use the dimensional reduction scheme, only the gamma matrix accompanies to the
internal momentum live at thB = 4 — 2e dimensional space time. We denote such gamma matrix

by y, as we did in the section 4.1.2.

The remaining contribution is disconnected diagrams described in the Figure 31. We can see that

>0 O

Figure 30: Penguin diagrams.

the disconnected diagram is proportional to the quark mass. Therefore, it will be vanished in the
massless limit.

Let us evaluate the internal momentum integration of the penguin diagram (4.132),

_ l#_pﬂ l,
|#y—[(|_p)2 |—2 (4.136)
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>O<

Figure 31: Disconnected diagram.

Using the Feynman parameter integral and completing the square, we get

ff dx - ply
(x(l - |o)2+(1—x>|2}2

ff dx = puly
(I—xp)2+x(1 x)p?}°

ff dx luly = X(1 - X)p“gy. (4.137)
{12+ x(1 - x)p?}

We can use the useful formula,

22 2 a-b+D/2
f 1) (¥ I(a+D/T(b-a-D/2) (4.138)

| (12+22)° (4n)P72 I'D/2r(b) ’

and thel,, is

1 1 —Juy 1 4
= e o P ax@=0 {2 -+ og (55 - foatx(a- x) + 1}

1
+ (471T)2 fo dx p.p,X(1 - X) {% - v +log (AF')—?ZT) —log(x(1 - x))}

_}1@21 coal )L 81 1 1 ol .2
6(@mn2 2" YO Z) T3 T @2 P e YT ) Tl

(4.139)

We also calculate the flowed penguin diagram in the next section.

4.2.2 Flowed penguin diagram

According to the discussion of the section 4.1, the new calculation is concentrated gpWidch
is defined via the flowed operator and the original operé@i(t) — O.),p;. The other calculation
specific to the gradient flow, the renormalization factor of the quark field, have been calculated in
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the section 4.1.2.
We emphasized that the pdbde (t) — O.. has no infrared divergence and rewrote the flowed kernel

2
etl” as

t
et 1=-)2 f ds ", (4.140)
0

This replacement wasftective, because we set the external momentum to zero in the previous
computation. In the meaning of it, we can separate the pair at this time, because our calculation
here has nonzero external momentpnMoreover, the flowed penguin diagram can be considered
as a composite type diagram at the one loop calculation. Therefore, we can take t@dimit in
the calculation of it.

We start from the flowed disconnected diagrams shown in the Figure 32. We can show that the
flowed disconnected diagrams are proportional to the quark mass, therefore, contributions of them
are also vanished in the massless limit.

PaONLON

PO NLON
> O

Figure 32: Disconnected diagrams with gradient flow.
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When we consider the flow time evolution of the penguin diagram there are two types of the
flowed diagrams described in the Figure 33. The left diagram has the same shape with the original
one, however, the flow kernel is accompanied to the solid line.

O O

Figure 33: Flowed penguin diagram.

Contributions from the left diagram is written as

_t(l_n\2 _+¢]2
VoY VEYYEOVE, Sp(1)Sa (1 — p)e P e G0 (p; 4). (4.141)
The internal momentum integration is denoted by
—Pu 1y o t-p)2gti
y() = e 4.142
or() = f I —p2 iz (4.142)

As we mentioned, we estimate the integral without subtraction of the original op&rattore-

over, we can take — O limit, because, the penguin diagrams are composite combination of the
contraction. Indeed, the internal momentum integratjgiit) can be performed free from the ultra
violet divergence as follows. At first, we put the denominator on the shoulder of the exponential,

| JO 0
- fj: da’[ dB(l, - p'u)|ve—a(l—p)2e—ﬁ|2. (4.143)

Using complete the squared,

2
a(l = p)2+ B2 = (a + B) (|— ¢ p) LB (4.144)

a+p a+p
the integration of the internal momentdraan be performed,

« « B _ |2 _ QB 2
| y(t ff da’f d[)’ (l lv - —Q V) e (a+p) e a+p P
K () | t t K Q+ﬂpﬂp

= (T (gl Lt 9B | e
R R ey L ey R

16|t is very difficult to evaluate the flierencd ., (t) -1, in the 4-2¢ dimensional space time. We decide to evaluate
l,iv (t) inthe D = 4 dimension and,, in D = 4—2¢ dimension. In thd = 4-2¢ dimension, the integrand of (4.147)
takes more complicated structure. Such operation is justified by the general property of the gradient flow.
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where we used the formula

na g2 t22T(2+a) _ B
f|(|) e =G e fora> -2 and D =4. (4.146)

In the second line of (4.145), we can replagg/(a + 8) by 8/9p? as

I Taplt, 1 _ 1 0w
w® = [Tt [T {Jon it mb g €T (414D

Performing the integration g8 for the first term, we obtain

fdaf dﬁ(a+ﬁ)3 i

o 1 1 at 2 1 1 at_ 2 1 1 2
d — = _eanP 4 e P —e Pl (4.148
ft “ { a?(a +1) (P2)2 o 4 } (4.148)

When we make the substitutian= at/(a + t) we get

l1

1 R | 1, t- 1 t t—7)2
lh = ——f de=e”+= | dr—o—se - f dr ﬂe‘sz
(p2)? Ji a4 p? Ji/2 t2T2 (P?)? Jij2 t2r4
oo 1 1 2
-1 f dx —etpix L f dx L= Xt - __1 f o L2 teix
t3(p?)? J1 x4 t2p? J12 X2 t3(p?)? J1j2 x4

(4.149)

Since we are applying the small flow time expansion, we need a power series with respect to the
flow time. We can recognize thét is constructed from the—th order exponential integral,

En(2) zfl dxx—lne‘zx. (4.150)
Its alternating series are
1 k+1zk
Ei(2) = —y-log(2) + Z = zkl , (4.151)
1
En(z) = ﬁe‘z—ﬁEn_l(z). (4.152)

Using them all, we obtain

= s (-2E(P) + EatE) - E4(2tp?) — 4E3(2P7) + 4Ex(21P7))

1
ey
1p2 (Ex(2tp?) - 2E1(2tP2))

tzt 5 (E2(tp®) - Ex(tp?)) +

= % (i +log(2tp?) +y — 2—5) +O(t). (4.153)

2tp? 12
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With the almost same calculation, the second term of (4.147) and we finally obtain
1 1 g/,tv 2 _ 3 _ 25
"6 (4n)? 2 { ST AR (2tr°) + 15
1 1 4r 13
6 (an)? PuPy {—y +log (F) + 1—2} : (4.154)

It is no wonder that A is appearing in the result, because the right diagrams in the Figure 33
cancels such term. Contributions from it are written as

|uv(t) =

t
2 f dsyL7, ToyLeVe (<l ) Se,p(1)e P esietifesPGab ). (4.155)
0

The integration of the internal momentuns

Ly (t) = f ds f v -9 st gosi, (4.156)

Computational procedure is almost same as previous one,

t 00
Ly (t) = fdsf do fl |, e -9 () g g(tra)l gsp?
f de da fl | e (2t+cx)(|+2t+a ) -tp +%r_:<)r_

fdsf da f{uv (- ))Zzpﬂpv}e @+a)l?g (-2‘%_:“L
fdsf da/f
fdsf d

o al? —to? 2.2
{ zpﬂpv} e Peal

2 ip2 s2.2
[0 {5 gl,uly + ?pupv} etPeaP, (4-157)

Replacings?/a by 8/8p?,

_ 1 1 0 $2 2
() = fdsf daetp{ = —+ 3pﬂp,,8p2}errp. (4.158)

After performing the integration far, we apply expand the exponential with respecs,to

(o)
1 20
I, = f da’—3€“p
2t (04

1 822 3_22
s {1 (12777}

1 s2p?
= _@_ﬁ-i- s (4159)
Therefore, the integration of the right diagram is
_1lg,,w23_g_}1 1
L (1) = 6@z 2" (4tp2 3) 6@ PP\ 12) (4.160)
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Let us finally the 1t term in (4.154) is canceled out by thét Term in (4.154). Since such terms
are proportional tg,,, the spinor factor of (4.141) can be written

7’!;7pv1ay717c|;®v1?/ gpaGii’(p: 1)

= ’}’(I}’}’pvla,lﬂﬂ%l;‘g’vlbv 901G (p; A)
= 275y, Ty58Vy, G (p; 4)

= —2y57, T Y58V, 9o Gan(p; ). (4.161)

This spinor factor is same as (4.155). Including the symmetric factor 2 the (4.160)/ttisgust
canceled out.
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5 Summary and Outlook

In the elementary particle physics, the CP violation has an important meaning involved with new
physics. The missions of the lattice QCD are giving the first principle calculation of quantities.
Especially for the kaon bag parameter, since it indicates the QCD corrections K thek 0
mixing the expectation of the lattice QCD is great. UnfortunatelyAtBe- 2 four fermion operator
involves with the chiral symmetry, and is incompatible with the naive Wilson fermions.

The purpose of this study is preparations towards calculations of the kaon bag parameter with the
gradient flow. In particular, we performed two preparations in the thesis. One is the calculation of
the PCAC mass for a numerical practice. One is perturbative evaluation A8tke2 four fermion
operator. These studies have the meaning as follows.

As we mentioned, thaS = 2 four fermion operator causes the operator mixing and the origin is
the chiral symmetry breaking of the Wilson fermion. Similarly, the PCAC relation needs an additive
renormalization, since it is defined via the PCAC relation. Our numerical results in the section 3.5
use only the gradient flow instead of the additive renormalization. Nevertheless, the both sides
of the PCAC relation have good agreement with each other as in Figure 22, and the PCAC mass
is consistent with the one calculated in the Schrddinger functional scheme. Although there is a
problem related to the linear window, the gradient flow method is reasonable for calculations of
the PCAC mass. Note that we simply apply the gradient flow without the other special techniques
and the renormalization is automatically done. It implies that the gradient flow removes the details
of the lattice fermion and make it possible to take a continuum limit with no concern from the
renormalization. We can also expect that the gradient flow can be applied to the operator mixing, in
other words, the kaon bag parameter. However, we must take care of the linear window discussed
in the section 3.3.3. We should research the fit range dependence and fitting function dependence
of the operator, and include it as a systematic error of the results. There is also possibility that such
analyses make the error large. It is the future work of our study.

We should calculate the matching factor which gives the conversion factor td$hscheme
to define theMS operator via the gradient flow. In numerical studies of the section 3, we used
the previously calculated matching factors of the fermion bi-linear operators. However, we must
construct it for four fermion operators. To calculate them, we used the small flow time expansion
combining with the background field method in the section 4.1. Our result is (4.127) with the
dimensional reduction scheme. In addition to th® = 2 four fermion operator, we discussed
about theAS = 1 four fermion operator in the section 4.2. According to the general considerations
of the small flow time expansion, it is enough to see the one particle irreducible vertex of the
difference between the bare operator and the flowed operator. We evaluated the internal momentum
integration as (4.154) and (4.160). Of cause, the numerical studies of them are our future works.
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