
Bidirectional Interplay between Mathematics
and Computer Science: Safety and Extensibility
in Computer Algebra and Haskell

著者（英） Hiromi ISHII
year 2019
その他のタイトル 数学と計算機科学の相互作用：計算代数とHaskell

における安全性と拡張性
学位授与大学 筑波大学 (University of Tsukuba)
学位授与年度 2018
報告番号 12102甲第8930号
URL http://doi.org/10.15068/00156548

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tsukuba Repository

https://core.ac.uk/display/211164803?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Bidirectional Interplay between Mathematics and
Computer Science: Safety and Extensibility in

Computer Algebra and Haskell

Hiromi ISHII

February 2019

Bidirectional Interplay between Mathematics and
Computer Science: Safety and Extensibility in

Computer Algebra and Haskell

Hiromi ISHII
Doctoral Program in Mathematics

Submitted to the Graduate School of
Pure and Applied Sciences

in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy in

Science

at the
University of Tsukuba

PREFACE

In this thesis, we will see a bidirectional interplays between mathematics and computer science. The
main research contributions, which we will see in Chapters 3 and 4, are based on two individual
papers [41, 32].

The contents of this thesis can be divided into two parts. In Part I, we will review preliminar-
ies which can help understanding the main research contributions of the thesis. Main research
contributions are given in Part II.

Part I consists of two chapters. Chapter 1 is devoted to computer algebra. There, we will briefly
review the basic theory and facts about Gröbner basis and introduce state-of-the-art algorithms for
computing Gröbner basis, including Hilbert-driven, 𝐹4, and 𝐹5 algorithms. Then, in Chapter 2, we
will skim through the overview of the Haskell programming language, which we will use as the
main programming language in the research contributions. The first three sections covers basic
concepts in functional programming and Haskell. Then, in the last section 2.4, we will introduce
advanced language extensions that we need. Since these language features are not standard part
of Haskell, readers are advised to read this section to get better understanding of the research
contributions.

The main research contributions are stated in Part II, consisting of two independent chapters.
Chapter 3 is devoted to “Freer monads and More extensible effects”, which is based on the contents
of Kiselyov–Ishii [41]. There, we will see how constructions in mathematics can be applied to
functional programming to achieve composability. What we see in Chapter 4 is, in a sense, opposite
direction of application: we see how methods developed in functional programming can be applied
to mathematics, especially to computer algebra. The contents is based on Ishii [32] and we apply
progressive type-systems and formal methods to computer algebra to achieve safe and extensible
system.

acknowledgements

First of all, the author would like to express deep gratitude to the supervisor Professor Akira Terui.
He gracefully accepted me as a Ph.D. student even though it is at the end of the second year of my
doctoral course that I discussed with him about changing a supervisor and asked him to accept me
as a student. Since then, he have spared me a tremendous amount of time to discuss the plan of my
graduation and given me a lot of helpful advices. It is no doubt that, without his help, I couldn’t
even complete my doctoral course.

The author is also grateful to the ex-supervisor Professor Masahiro Shioya. He instructed me for
four years since my master’s course, and gave helpful advices. Even though I’ve already left from
his supervision, but my mathematical sense owes a lot to his instruction.

Great gratitude goes to my supervisors during undergraduate, Professor Katsuya Eda and
Professor Hajime Kaji. Professor Eda gives me generous and kind advice and taught me an element
of mathematical logic. It is Professor Kaji that gave me the first contact with Gröbner basis; without
his lecture, I couldn’t even come up with the topic of this thesis. I really appreciate these two
supervisors, since experience in seminars with them constitute the backbone of my mathematical
skill.

The author is indebted to Professor Daisuke Ikegami and Professor Toshimichi Usuba, for they
having hosted seminars on set-theory and spared me a lot of time for discussions. Even though the

i

ii

topic is not directly related to the contents of this thesis, their graceful guidance helps me a lot and
time I have experimented with them was so joyful.

The author would also thank Professor Oleg Kiselyov for discussions about extensible effects and
permitting me to reprint the co-authored paper in this thesis. Writing a paper with him was so
stimulating activity for me.

Professor Kazuhiro Yokoyama helped me a lot and spared me time for helpful discussions during
the trip to Lille for Computer Algebra in Scientific Conference 2018.

The staff of office of mathematical department at University of Tsukuba have helped me a lot for
paperworks. I would also thank graduate and undergraduate colleagues. Having seminars with
them has always been a fun and exciting experience.

The author also wants to express great gratitude to an anonymous foreign visitor at Tsukuba
Station. He rescued me from a firmly sealed W.C. on the day of the submission of this thesis.
Without him, I could not submit this thesis, or, even worse, I must end my life in WC.

Aside from academic activity, having a joyful time with dearest friends make me feel alive. Thank
you all for being my side.

The author acknowledges that the content of this paper is partially supported by Grant-in-Aid
for JSPS Research Fellow Number 17J00479.

Finally, I would like to express the deepest appreciation to my parents, Toshiyuki and Miyuki
Ishii. Without their mental and financial support, I could not pursue my goal in graduate school –
of course, I don’t even exist at all without them :-)

CONTENTS

I introduction and preliminaries
1 a brief introduction to computer algebra 3

1.1 Basic Definitions and Facts about Gröbner Basis . 3
1.2 Algorithms for Computing Gröbner Bases . 5

1.2.1 Buchberger Algorithm . 5
1.2.2 Gröbner Basis via Homogenisation . 6
1.2.3 Hilbert-driven Algorithm for Homogeneous Ideal 6
1.2.4 Faugère’s 𝐹4 Algorithm . 7
1.2.5 𝐹5 and Signature-based Algorithms . 8

2 purely functional programming in haskell 11
2.1 Overview of Haskell . 11

2.1.1 Notation . 11
2.2 Functional and Declarative Programming in Haskell 12

2.2.1 Programming with Recursive and Higher-order Functions 12
2.2.2 Types in Haskell . 13

2.3 Imperative Programming in Haskell with Monads . 15
2.3.1 Monads as a Modular Semantics . 15
2.3.2 Examples of Monads . 16
2.3.3 Handling Failures by Maybe-monad . 16
2.3.4 Non-deterministic Computation with List-monads 17
2.3.5 Handling I/O with Monads . 17

2.4 Advanced Topics . 18
2.4.1 Higher Rank Polymorphism and ST-monads 18
2.4.2 Generalised Algebraic Data-types and Dependent Types in Haskell 19

II research contributions
3 freer monads, more extensible effects 23

3.1 Abstract . 23
3.2 Introduction . 23
3.3 Derivation of Free-er Monad . 24

3.3.1 Reader Effect . 24
3.3.2 Reader/Writer Effect . 25
3.3.3 Free Monad . 26
3.3.4 Free-er Monads . 27
3.3.5 From Free(er) Monads to Extensible Effects . 29
3.3.6 Performance Problem of Free(er) Monads . 30

3.4 Final Result: Freer and Better Extensible Eff Monad 30
3.4.1 Composed Continuation as a Data Structure 31
3.4.2 Library Showcase: Defining and Interpreting Effects 32
3.4.3 Improved Performance . 35

3.5 Performance Evaluation . 36
3.5.1 Deep-monad-stack Benchmarks . 36
3.5.2 Single-effect Benchmark . 36
3.5.3 Non-determinism Benchmarks . 38

iii

iv contents

3.5.4 Comparison with “Fusion for Free” . 39
3.5.5 Inlining of Key Functions . 40

3.6 Non-determinism with Committed Choice . 40
3.7 Catching IO Exceptions . 43
3.8 Regions . 44
3.9 Related Work . 46
3.10 Conclusions . 48

4 a purely functional computer algebra system embedded in haskell 49
4.1 Introduction . 49
4.2 Type System for Safety and Composability . 50

4.2.1 Type Classes to Encode Algebraic Hierarchy 50
4.2.2 Classes for Polynomials and Dependent Types 50
4.2.3 Proofs in Dependent Types and Type-driven Casting Function 52
4.2.4 Optimising Casting Functions with Rewriting Rules 53
4.2.5 Notes on Applicability in Imperative Languages 54

4.3 Type-safe Quotient Rings with Implicit Configuration 54
4.4 Lightweight Correctness: Property-based Testing . 55

4.4.1 Property-based Testing Introduced . 55
4.4.2 Discussion . 56

4.5 Case Study: the Hilbert-driven, 𝐹4 and 𝐹5 algorithms 57
4.5.1 Homogenisation and Hilbert-driven Basis Conversion 57
4.5.2 A Composable Implementation of 𝐹4 . 59
4.5.3 The 𝐹5 Algorithm . 59
4.5.4 Benchmarks . 60

4.6 Conclusions . 61
Bibliography 63
Symbols 67
Index 69

Part I

INTRODUCT ION AND PREL IM INAR IES

1
A BR IEF INTRODUCT ION TO COMPUTER ALGEBRA

In this chapter, we will briefly skim through basic concepts in computer algebra on which the
contents of Chapter 4 are based. For more detail of this chapter, we refer readers to standard
textbooks such as Cox–Little–O’Shea [14]. Even though the main contents of Chapter 4 doesn’t
require theoretical details, we include them here for completion.

1.1 basic definitions and facts about gröbner basis

Notation. In what follows in this chapter, 𝑘 denotes a field and 𝑘[𝑋1, … , 𝑋𝑛] the 𝑛-variate polynomial ring
over 𝑘. For simplicity, we write it as 𝑘[X] if 𝑛 is obvious from the context.

We identify the set 𝑀𝑛 of 𝑛-variate monomials with the set ℕ𝑛 of 𝑛-tuples of natural numbers (including
0). In particular, we identify 𝛾 = (𝑘1, … , 𝑘𝑛) ∈ ℕ𝑛 with the monomial X𝛾 = 𝑋𝑘1

1 … 𝑋𝑘𝑛
𝑛 .

Definition 1.1. 1. A binary relation ≺ on ℕ𝑛 is a monomial ordering if it is a well-ordering com-
patible with the multiplication on 𝑀𝑛.

Let ≺ be an 𝑛-variate monomial ordering and 𝑓 = ∑𝛾∈Γ 𝑎𝛾X𝛾, where Γ ⊂ ℕ𝑛 is finite and 𝑎𝛾 ≠ 0
for all 𝛾 ∈ Γ.

2. The leading monomial of 𝑓 with respect to ≺, denoted by LM≺(𝑓) is the ≺-largest element of Γ.
In this situation, we call 𝑎LM(𝑓) as the leading coefficient of 𝑓 with respect to ≺ and denote it by
LC≺(𝑓). Then, the leading term LT≺(𝑓) is simply LT≺(𝑓) ∶= LC≺(𝑓)LM≺(𝑓).
We omit ≺ if it is clear from the context.

3. Let 𝐼 ⊆ 𝑘[X] be an ideal. 𝐺 = { 𝑔1, … , 𝑔ℓ } ⊂ 𝐼 is aGröbner basis of 𝐼 if ⟨LM(𝐼)⟩ = ⟨LM(𝑔1), … ,LM(𝑔ℓ)⟩.

4. Let 𝑓 , 𝑔, ℎ ∈ 𝑘[X]. We say that ℎ is a reduction of 𝑓 modulo 𝑔, denoted by 𝑓 −→𝑔 ℎ, if there is some
term 𝑐X𝛾 ∈ 𝑘[X], 𝑐 ≠ 0, such that ℎ = 𝑓 − 𝑔 ⋅ 𝑐X𝛾 and LM(𝑐X𝛾𝑔) ≼ LM(𝑓). For a set 𝐹 ⊆ 𝑘[X],
we write 𝑓 −→

𝐹
ℎ if there is some 𝑔 ∈ 𝐹 with 𝑓 −→𝑔 ℎ.

We denote the transitive and reflexive closure of −→𝑔 by ∗−→𝑔 ; similar for ∗−→
𝐹
.

5. 𝑓 is of 𝐹-normal form if 𝑓 = 0 or there is no 𝑓 ∗ such that 𝑓 ∗−→
𝐹

𝑓 ∗.

By the well-foundedness of monomial orderings, the relations −→𝑔 and −→
𝐹

are strongly normalising;
i.e. 𝐹-reduction of any polynomial 𝑓 terminates after finite steps and hence 𝑓 has at least one 𝐹-normal
form. Also, by the definition of monomial orderings, 𝑓-reduction is compatible with polynomial
addition and multiplication.

Although normal forms might not be unique for general set of polynomials, one can compute one
normal form for each polynomial:

Algorithm 1.2 (Multivariate polynomial division)
Let 𝑓 , 𝑓1, … , 𝑓𝑛 be polynomials. A polynomial remainder 𝑓

(𝑓1,…,𝑓𝑛)
of 𝑓 with respect to a tuple (𝑓1, … , 𝑓𝑛)

is computed as follows:

3

4 a brief introduction to computer algebra

1. 𝑟 ⟵ 0.

2. If 𝑓 = 0, then return 𝑟.

3. If there is no 𝑖 such that LM(𝑓𝑖) divides LM(𝑓), then 𝑓 ⟵ 𝑓 − LT(𝑓) and go to (2).

4. If there is such 𝑖, pick the least such 𝑖.

5. 𝑟 ⟵ 𝑟 + LT(𝑓)
LT(𝑓𝑖)

𝑓𝑖, 𝑓 ⟵ 𝑓 − LT(𝑓).

6. Go to (2).

The division algorithm above terminates thanks to the well-foundedness of a monomial order. It
is obvious that 𝑓

(𝑓1,…,𝑓𝑛)
gives one of normal forms of 𝑓 modulo { 𝑓1, … , 𝑓𝑛 }, but the result depends

on the ordering of 𝑓𝑖’s and might result in different value after reordering.
The prominent feature of Gröbner basis 𝐺 is that every polynomial has the unique normal form

with respect to it, and hence every polynomial has the unique remainder w.r.t. it regardless of
particular ordering of elements of 𝐺. In other words, 𝑓

𝐺
becomes well-defined for a set 𝐺, not a

tuple, and it coincides with the unique 𝐺-normal form of 𝑓:

Fact 1.3 (Buchberger). Let 𝐼 be an ideal and 𝐺 = { 𝑔1, … , 𝑔𝑘 } ⊂ 𝐼 be a finite subset. The followings are
equivalent:

1. 𝐺 is a Gröbner basis for 𝐼,

2. Every non-zero 𝑓 ∈ 𝐼 is reducible by 𝐺,

3. Every 𝑓 ∈ 𝐼 has the unique 𝐺-normal form 0,

4. 𝐺 generates 𝐼 and −→
𝐺

has the Church–Rosser property; i.e. every 𝑓 ∈ 𝑘[X] has the unique 𝐺-normal
form.

Proof. (1) ⟹ (2): Pick anynon-zero 𝑓 ∈ 𝐼. By the assumption, wehave ⟨LT(𝐼)⟩ = ⟨LT(𝑔1), … ,LT(𝑔𝑘)⟩.
Clearly we have LT(𝑓) ∈ ⟨LT(𝐼)⟩; hence the is some 𝑖 such that LT(𝑔𝑖) ∣ LT(𝑓). Hence we have
𝑓 −→

𝐺
𝑓 − LT(𝑓)

LT(𝑔𝑖)
𝑔𝑖.

(2) ⟹ (3): pick 𝑓 ∈ 𝐼. By the well-foundedness of a monomial ordering, 𝑓 must have at least
one 𝐺-normal form 𝑓 ∗. But by (2), such 𝑓 ∗ must be zero because otherwise there must be ℎ such
that 𝑓 ∗ −→

𝐺
ℎ, which contradicts that 𝑓 ∗ is 𝐺-normal form.

(3) ⟹ (4): It is clear that 𝐺 generates 𝐼. Pick any 𝑓 ∈ 𝑘[X] and let 𝑓1, 𝑓2 ∈ 𝑘[X] be 𝐺-normal
forms of 𝑓. Then, by the definition of the reduction relation, clearly we have 𝑓1 − 𝑓2 ∈ 𝐼. By (3), we
have 𝑓1 −𝑓2

∗−→
𝐺

0. But, since the relation ∗−→
𝐺

is compatible with addition, we have 𝑓1 = 𝑓1 −𝑓2 +𝑓2
∗−→
𝐺

𝑓2.
Then, since both 𝑓1 and 𝑓2 are 𝐺-normal form, we must have 𝑓1 = 𝑓2.

(4) ⟹ (1): it suffices to show that for any 𝑓 ∈ 𝐼 there is some 𝑔 ∈ 𝐺 with LM(𝑔) ∣ LM(𝑓). Since
𝐺 generates 𝐼 and 𝑓 has the unique 𝐺-normal form, we have 𝑓

𝐺
= 0. In particular, LM(𝑓) must be

canceled at the first iteration of Division Algorithm 1.2 and the step (4) is executed. In particular,
there is some 𝑔 ∈ 𝐺 such that LM(𝑔) ∣ LM(𝑓). This situation is exactly what we wanted.

Corollary 1.4 (Buchberger). Every ideal over 𝑘[X] has aGröbner basis. In particular, there is an algorithm
that, given a monomial ordering ≺ and set { 𝑓1, … , 𝑓𝑛 } of polynomials, computes a Gröbner basis of ⟨𝑓1, … , 𝑓𝑛⟩
with respect to ≺.

We can solve various problems about polynomial rings and modules with Gröbner basis. For
example, the original motivation behind Gröbner basis is to solve the Ideal Membership Problem:

1.2 algorithms for computing gröbner bases 5

Definition 1.5 (Ideal Membership Problem). The Ideal Membership Problem is the following prob-
lem: given any polynomials 𝑓 , 𝑓1, … , 𝑓𝑛 ∈ 𝑘[X], decide whether 𝑓 ∈ ⟨𝑓1, … , 𝑓𝑛⟩ or not.

Theorem 1.6 (Buchberger). Ideal Membership Problem is decidable.

Proof. Let 𝐺 = { 𝑔1, … , 𝑔𝑘 } be a Gröbner basis of 𝐼 ∶= ⟨𝑓1, … , 𝑓𝑛⟩. It is clear that 𝑓 ∈ 𝐼 iff 𝑓 ∗−→
𝐺

0.
But since 𝐺 is a Gröbner basis and by Theorem 1.3, whether 𝑓 ∗−→

𝐺
0 or not can be easily determined

just by checking if 𝑓
𝐺

= 0.

1.2 algorithms for computing gröbner bases

Buchberger gave an algorithm to compute Gröbner basis for a given ideal. Later, other, more efficient
algorithms are proposed for computing Gröbner basis. In this section, we first review the basics of
Buchberger’s algorithm and then briefly skim through other Gröbner basis algorithms.

1.2.1 Buchberger Algorithm

The central concept in Buchberger Algorithm is the 𝑆-polynomial of a pair of polynomials:

Definition 1.7. The 𝑆-polynomial 𝑆(𝑓 , 𝑔) of polynomials 𝑓 and 𝑔 is defined as follows:

𝑆(𝑓 , 𝑔) ∶=
LCM(LT(𝑓),LT(𝑔))

LT(𝑓) 𝑓 −
LCM(LT(𝑓),LT(𝑔))

LT(𝑔) 𝑔.

Lemma 1.8 (Buchberger Criterion). 𝐺 = { 𝑔1, … , 𝑔𝑛 } is a Gröbner basis if and only if 𝑆(𝑔𝑖, 𝑔𝑗)
∗−→
𝐺

0
for all 𝑖 < 𝑗 ≤ 𝑛.

The intuition behind the Buchberger’s algorithm is to add enough 𝑆-polynomials so that the
Buchberger Criterion holds.
Algorithm 1.9 (Buchberger Algorithm)

1 INPUT 𝑓1, … , 𝑓𝑛 ∈ 𝑘[X]
2 OUTPUT a Gröbner basis 𝐺 for an ideal ⟨𝑓1, … , 𝑓𝑛⟩
3 𝐺 ← (𝑓1, … , 𝑓𝑛)
4 𝑅 ← ∅
5 do

6 𝐺 ← 𝐺 ⌢ 𝑅
7 𝑅 ← { 𝑆(𝑝, 𝑞)

𝐺
∣ 𝑝 ≠ 𝑞 ∈ 𝐺 } ∖ { 0 }

8 until 𝑅 = ∅
9 return G

The heaviest part of Buchberger’s algorithm is polynomial-remaindering. Many of the improve-
ments to Gröbner basis computation proposed so far concentrate on how to reduce the total count
of polynomial remaindering.

One typical example of such heuristics is given by the following:

Lemma 1.10 (Coprime Criterion). If leading terms of 𝑓 and 𝑔 are coprime, i.e. if LCM(LT(𝑓),LT(𝑔)) =
LT(𝑓)LT(𝑔), then 𝑆(𝑓 , 𝑔) −−−→

{ 𝑓 ,𝑔 }
0.

Hence, the algorithm obtained by replacing Line 7 in Buchberger Algorithm with the following will
terminate and outputs a Gröbner basis of an input:

𝑅 ← { 𝑆(𝑝, 𝑞)
𝐺

∣ 𝑝, 𝑞 ∈ 𝐺,LT(𝑝) and LT(𝑞) ∶ coprime } ∖ { 0 } .

6 a brief introduction to computer algebra

1.2.2 Gröbner Basis via Homogenisation

In homogeneous cases, i.e. when an input ideal is generated by homogeneous polynomials, Gröbner
basis computation can be made much easier. Furthermore, for any monomial ordering ≺ and an
ideal 𝐼, there is ≺h such that dehomogenising a ≺h-Gröbner basis of 𝐼h gives a Gröbner basis for 𝐼,
where 𝐼h is an ideal in 𝑘[X, 𝑌] given by homogenising generators of 𝐼. Precise definitions and facts
are as follows:

Definition 1.11. Let 𝑓 = ∑𝛾∈Γ 𝑐𝛾X𝛾 ∈ 𝑘[X] be a polynomial with 𝑐𝛼 ≠ 0 of total degree 𝑑 (i.e.
𝑑 = max𝛾∈Γ deg𝛾), 𝐼 = ⟨𝑓1, … , 𝑓ℓ⟩ ⊆ 𝑘[X] an ideal and 𝑌 a variable distinct from 𝑋𝑖’s.

1. The homogenisation 𝑓 h of 𝑓 by a variable 𝑌 is given as follows:

𝑓 h(X, 𝑌) ∶= 𝑌𝑑𝑓 (𝑋1𝑌−1, … , 𝑋𝑛𝑌−1) = ∑
𝛾∈Γ

𝑐𝛾X𝛾𝑌𝑑−deg(𝛾).

2. For any homogeneous polynomial 𝑓 ∈ 𝑘[X, 𝑌], the dehomogenisation 𝑓 𝑑 ∈ 𝑘[X] is defined by
𝑓 d(X) ∶= 𝑓 (X, 1).

3. For a set (or tuple) 𝐹 ⊆ 𝑘[X] of polynomials, put 𝐺h ∶= { 𝑔h ∣ 𝑔 ∈ 𝐹 }; similar for 𝐺d for
𝐺 ⊆ 𝑘[X, 𝑌].

4. A monomial ordering ≺h on X𝑌 is defined as follows:

X𝛼𝑌𝑑 ≺h X𝛽𝑌𝑒 def⟸⟹
⎧{
⎨{⎩

X𝛼 ≺ X𝛽, or
X𝛼 = X𝛽 and 𝑑 < 𝑒.

Fact 1.12. Let ≺ be a monomial ordering on X, 𝐼 = ⟨𝑓1, … , 𝑓ℓ⟩ ⊆ 𝑘[X] an ideal and 𝐺 be a Gröbner basis for
⟨𝑓 h1 , … , 𝑓 hℓ ⟩ with respect to ≺h. Then 𝐺𝑑 is a Gröbner basis for 𝐼 with respect to ≺.

Proof. See [13, Theorem 5].

Thanks to Theorem 1.3, we can convert any Gröbner basis algorithm for homogeneous ideals into
general Gröbner basis computation.

1.2.3 Hilbert-driven Algorithm for Homogeneous Ideal

In the previous section, we have seen that Gröbner bases of general ideals can be reduced to those of
homogeneous ones. We introduce one powerful homogeneous Gröbner basis computation algorithm:
the Hilbert-driven algorithm.

Definition 1.13 (Hilbert–Poincaré series). Let 𝑚 be a natural and 𝐼 homogeneous ideal. For any
set 𝑅 of polynomials, we write 𝑅𝑚 ∶= { ℎ ∈ 𝑅 ∣ deg(ℎ) = 𝑚 }.

1. The Hilbert function of 𝑘[X]/𝐼 at 𝑚 is defined by:

HF𝐼(𝑚) ∶= dim(𝑘[X]𝑚/𝐼𝑚).

2. The Hilbert–Poincaré series 𝑃𝐼(𝑡) of 𝐼 is the generating function of its Hilbert function; i.e:

𝑃𝐼(𝑡) ∶=
∞
∑
𝑚=0

HF𝐼(𝑚)𝑡𝑚

The following theorem illustrates why we define Hilbert–Poincaré series here:

1.2 algorithms for computing gröbner bases 7

Theorem 1.14. For any homogeneous ideal 𝐼 and finite 𝐺 ⊂ 𝐼, the following are equivalent:

1. 𝐺 is a Gröbner basis for 𝐼;

2. 𝑃𝐼(𝑡) = 𝑃⟨LM(𝐺)⟩(𝑡).

So, if one has an access to the Hilbert–Poincaré series for a given ideal, then one can use it to
determine whether a procedure can stop or not.

We can easily compute the Hilbert–Poincaré series of given monomial ideal:

Lemma 1.15. For a monomial ideal 𝐼 ⊆ 𝑘[𝑋1, … , 𝑋𝑛], one can compute Hilbert–Poincaré series HPS(𝐼) =
𝑃𝐼(𝑡) as follows.

First let 𝑇 be a set of minimal generators of 𝐼; i.e. the subset of monomials in 𝐼 such that for any monomial
X𝛾 ∈ 𝐼 there is X𝛿 ∈ 𝑇 dividing X𝛾 and X𝛼 ⟂ X𝛽 for any X𝛼,X𝛽 ∈ 𝑇. Then HPS(𝐼) = HPS(𝑇) can be
computed by the following recurrence equation:

HPS(𝑇) =

⎧{{{{
⎨{{{{⎩

(1 − 𝑡)−𝑛 (if 𝑇 = ∅)
0 (if 𝑇 = { 1 })
(1 − 𝑡)|𝑇|−𝑛 (if ∀𝑚 ∈ 𝑇 deg(𝑚) = 1)
HPS(𝑇 ∪ { 𝑋𝑖 }) + 𝑡 ⋅ HPS(𝑇 ∶ 𝑋𝑖) (if ∃𝑚 ∈ 𝑇 deg(𝑚) > 1 ∧ 𝑋𝑖 ∣ 𝑚).

Here, (𝑇 ∶ 𝑋𝑖) = { X𝛾 ∣ X𝛾𝑋𝑖 ∈ 𝑇 }.

Hence, one can compute the Hilbert–Poincaré series of a given ideal provided that if one knows its
Gröbner basis. Since wewant to use Hilbert–Poincaré series to compute Gröbner basis, this situation
might seem nonsense. But, by its definition, Hilbert–Poincaré series is defined for a polynomial
and doesn’t depend on particular monomial ordering. So, if one wants to compute a Gröbner basis
for homogeneous ideal with respect to “heavy” monomial ordering, say ≺, one can calculate the
Hilbert–Poincaré series from a Gröbner basis with respect to lighter ordering, e.g. ≺grevlex, and
then use it to compute a Gröbner basis with respect to ≺. Here, one can regard this process as a
conversion of monomial ordering.

1.2.4 Faugère’s 𝐹4 Algorithm

Faugère [17] proposed a matrix-based Gröbner basis computation algorithm called 𝐹4. The basic
idea behind 𝐹4 is that polynomial remaindering can be seen as a matrix triangulation and one can
use techniques in linear algebra to perform polynomial reduction simultaneously and efficiently.

Definition 1.16. Let 𝐹 = (𝑓1, … , 𝑓ℓ) ∈ 𝑘[X]𝑚 be a finite tuple of polynomials. We define matrix
𝑀(𝐹) as follows. First, let Mon(𝐹) be the set of all monomials in 𝐹. We enumerate Mon(𝐹) in the
≺-ascending order; i.e. Mon(𝐹) = { 𝛾1 ≻ 𝛾2 ≻ ⋯ ≻ 𝛾ℓ }. Then 𝑀(𝐹) = (𝑎𝑖𝑗)𝑖≤𝑚,𝑗≤ℓ is 𝑚 × ℓ-matrix
defined by:

𝑎𝑖𝑗 ∶= the coefficient of 𝛾𝑗 in 𝑓𝑖.

Conversely, for any 𝑀 = (𝑎𝑖𝑗)𝑖,𝑗 ∈ M𝑚,ℓ(𝑘) and set Γ = { 𝛾1 ≻ 𝛾2 ≻ ⋯ ≻ 𝛾ℓ }, we define the set of
row polynomials of 𝑀, denoted by rows(𝑀, Γ) or rows(𝑀) if Γ is obvious, as follows:

𝑓𝑖 ∶= ∑
𝑗≤ℓ

𝑎𝑖𝑗𝛾𝑗

rows(𝑀, Γ) ∶= { 𝑓𝑖 ∣ 𝑖 ≤ 𝑛, 𝑓𝑖 ≠ 0 } .

Then, the 𝐹4 algorithm is given as follows:

8 a brief introduction to computer algebra

Algorithm 1.17 (𝐹4 Algorithm)

1 Input: 𝐹 = (𝑓1, … , 𝑓𝑚) a list of polynomials

2 Output: 𝐺, a Gröbner basis of ⟨𝑓1, … , 𝑓𝑚⟩
3 𝐺 ← 𝐹
4 𝐵 ← { { 𝑖, 𝑗 } ∣ 𝑖 < 𝑗 ≤ 𝑚 }
5 while (𝐵 ≠ ∅)
6 𝐵′ ← any nonempty subset of B

7 𝐵 ← 𝐵 ∖ 𝐵′

8 𝐿 ← {
LCM(LM(𝑓𝑖),LM(𝑓𝑗))

LT(𝑓𝑖)
𝑓𝑖 ∣ { 𝑖, 𝑗 } ∈ 𝐵′ }

9 𝐹 ← { X𝛼

LM(𝑓𝑖)
𝑓𝑖 ∣ X𝛼 ∈ Mon(𝐿), 𝑖 ∶ the least with LM(𝑓𝑖) ∣ X𝛼 }

10 𝑀 ← upper-triangular form of 𝑀(𝐹)
11 𝐺 ← 𝐺 ⌢ rows(𝑀)
12 𝐵 ← 𝐵 ∪ { { 𝑖, 𝑚 + 𝑗 } ∣ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ |rows(𝑀)| }
13 𝑚 ← 𝑚 + |rows(𝑀)|
14 end

15 return 𝐺

Theorem 1.18 (Faugère [17]). The 𝐹4 terminates and correctly computes a Gröbner basis regardless of
choice of 𝐵′ at each step.

Proof. See Faugère [17, Theorem 2.2] or Cox–Little–O’Shea [13, Theorem 2].

1.2.5 𝐹5 and Signature-based Algorithms

Faugère [18] proposed 𝐹5 algorithm, which is known to be one of the fastest Gröbner basis com-
putation algorithm. The central concept of the 𝐹5 algorithm is a signature. The intuition behind
signature-based algorithms is that making use of information of syzygy module can significantly
reduce the burden of computing Gröbner basis. The exposition of signature-based algorithms is
based on Gao–Iv–Wang [20].

Definition 1.19. For any tuple of polynomials g = (𝑔1, … , 𝑔𝑚), the syzygy module H(g) of g is the
submodule of 𝑘[X]𝑚 defined by:

H(g) ∶=
⎧{
⎨{⎩
u = (𝑢1, … , 𝑢𝑚) ∈ 𝑘[X]𝑚 ∣∣∣∣

u ⋅ g =
𝑚

∑
𝑖=1

𝑢𝑖𝑔𝑖 = 0
⎫}
⎬}⎭

.

Let 𝑀 = 𝑀(g) be a submodule of 𝑘[X]𝑚 × 𝑘[X] defined by:

𝑀 ∶= { (u,u ⋅ g) ∣ u ∈ 𝑘[X]𝑚 }

The idea behind signature-based algorithms is to keep track of non-trivial relations on generators
by treating not only the ideal 𝐼 but also a linear coefficients in 𝑘[X]. Such information will be useful
to predict unnecessary polynomial divisions. As a bonus, we can also compute basis for the syzygy
module H. To state the 𝐹5 in detail, we must introduce some more definitions:

Notation. We denote the 𝑖th unit basis in 𝑘[X]𝑚 by e𝑖.

Definition 1.20. 1. A monomial in 𝑘[X]𝑚 is a element X𝛼𝑒𝑖 ∈ 𝑘[X]𝑚 for any 𝛼 ∈ ℕ𝑛. Note
that every element of 𝑘[X]𝑚 can be expressed uniquely as a 𝑘-linear combination of module
monomials.

1.2 algorithms for computing gröbner bases 9

2. A module monomial X𝛼e𝑖 divides X𝛽e𝑗, denoted by X𝛼e𝑖 ∣ X𝛽e𝑗, if 𝑖 = 𝑗 and X𝛼 ∣ X𝛽; the quotient
is given by X𝛽−𝛼e𝑖.

3. A module ordering on 𝑘[X]𝑚 is a well-order which is compatible with multiplication by mono-
mials of 𝑘[X].

4. Let ≺ be a monomial ordering on 𝑘[X] and C module ordering on 𝑘[X]𝑚. C is compatible with
≺ if, X𝛼 ≺ X𝛽 holds if and only if, for any 𝑖 ≤ 𝑚, X𝛼e𝑖 C X𝛽e𝑖.

5. For any u, we define LMC(u) to be the C-maximum monomial of u. Likewise we define
LCC(u) and LTC(u). For any pair 𝑝 = (u, 𝑣) ∈ 𝑀, sig(𝑝) ∶= LM(u) is called the signature of 𝑝.

6. For any 𝑝𝑖 = (u𝑖, 𝑣𝑖), 𝑟 ∈ 𝑘[X]𝑚 × 𝑘[X] (𝑖 = 1, 2), we define top-reduction relation 𝑝1 −→𝑝2
𝑟 by:

𝑝1 −→𝑝2
𝑝1 −

LT(𝑣1)
LT(𝑣2)𝑝2 ⟺

⎧{
⎨{⎩

𝑣1, 𝑣2 ≠ 0,LM(𝑣2) ∣ LM(𝑣1), and
LM(𝑣1)
LM(𝑣2) LM(u2) E LM(u1),

𝑝1 −→𝑝2
𝑝1 −

LT(u1)
LT(u2)𝑝2 ⟺

⎧{
⎨{⎩

𝑣1 ≠ 0, 𝑣2 = 0,u2 ≠ 0, and
LM(u2) ∣ LM(u1).

7. 𝐺 ⊆ 𝑀 is called a signature Gröbner basis if any non-zero 𝑝 ∈ 𝑀 is top-reducible by some 𝑞 ∈ 𝐺.

As the terminology suggests, signature Gröbner bases give Gröbner bases:

Theorem 1.21 (Gao–Iv–Wang [20, Proposition 2.2]). Let 𝐺 ⊆ 𝑀 be a signature Gröbner basis. Then
G0 ∶= { u ∣ ∃𝑣 (u, 𝑣) ∈ 𝐺 } is a Gröbner basis for the syzygy module H and 𝐺1 ∶= { 𝑣 ∣ ∃u (u, 𝑣) ∈ 𝐺 } is
for 𝐼.

Proof. Clear by Theorem 1.3, the characterisation of Gröbner basis.

Hence, finding a Gröbner basis for a given ideal reduces to find a signature Gröbner basis
of associated 𝑀. We now see two main ingredients of signature-based algorithms: Syzygy and
Signature criteria.

Definition 1.22. Let 𝑝𝑖 = (u𝑖, 𝑣𝑖) ∈ 𝑘[X]𝑚 × 𝑘[X] (𝑖 = 0, 1) and 𝐺 ⊂ 𝑘[X]𝑚 × 𝑘[X] be finite.

1. A top-reduction 𝑝1 −→𝑝2
𝑟 is regular if 𝑣2 ≠ 0 and sig(𝑟) = sig(𝑝1); we call it super otherwise.

2. A pair 𝑝1 is eventually super top-reducible by 𝐺 if it has at least one minimal 𝐺-regular top-
reduction which can be super top-reduced by 𝐺.

3. 𝑝1 is covered by 𝑝2 if LM(u2) ∣ LM(u1), 𝑡LM(𝑣2) ≺ LM(𝑣1) where 𝑡 = LM(u1)/LM(u2). 𝑝1 is
covered by 𝐺 if it is covered by some 𝑞 ∈ 𝐺.

4. First put:

𝑡 ∶= LCM(LM(𝑣1),LM(𝑣2)), 𝑡𝑖 ∶=
𝑡

LM(𝑣𝑖)
(𝑖 = 1, 2)

𝑐 ∶=
LC(𝑣1)
LC(𝑣2) , 𝑇 ∶= max { 𝑡1 LM(u)1, 𝑡2 LM(u2) } .

And let 𝑗 be such that 𝑇 = 𝑡𝑗 LM(u𝑗). If 𝑇 = LM(𝑡𝑗u𝑗 − 𝑐𝑡1−𝑗u1−𝑗), we define the 𝑆-pair
𝑆pr(𝑝1, 𝑝2) and 𝑆-signature 𝑆sig(𝑝1, 𝑝2) 1 of 𝑝1 and 𝑝2 by

𝑆pr(𝑝1, 𝑝2) ∶= 𝑡𝑗𝑝𝑗, 𝑆sig(𝑝1, 𝑝2) ∶= 𝑇 = LM(𝑡𝑗u𝑗 − 𝑐𝑡1−𝑗u1−𝑗).
1 In Gao–Iv–Wang [20], they are called “𝐽-pair” and “𝐽-signature”.

10 a brief introduction to computer algebra

Theorem 1.23 (Gao–Iv–Wang [20, Theorem 2.4]). Let 𝐺 ⊆ 𝑀 be finite, and suppose that for any term
𝑇 ∈ 𝑘[X]𝑚 there is some (u, 𝑣) ∈ 𝐺 and monomial 𝑡 such that 𝑇 = 𝑡LM(u). Then the following are
equivalent:

1. 𝐺 is a signature Gröbner basis for 𝑀,

2. Every 𝑆-pair of 𝐺 is eventually super top-reducible by 𝐺,

3. Every 𝑆-pair of 𝐺 is covered by 𝐺.

Proof. See Gao–Iv–Wang [20].

As in the polynomial ideal case, one can compute a signature Gröbner basis by adding 𝑆-pairs
not reduced to zero. Furthermore, we can get the following criteria to discard pairs without actual
reduction.

Corollary 1.24 (Syzygy Criterion, [20, Corollary 2.5]). For any pairs 𝑝1, 𝑝2 ∈ 𝐺, if the𝑆-pair𝑆pr(𝑝1, 𝑝2)
is top-reducible by some syzygy (u, 0) ∈ 𝑀, then 𝑆pr(𝑝1, 𝑝2) ∗−→

𝐺
0.

Corollary 1.25 (Signature Criterion, [20, Corollary 2.6]). For any 𝑝1, 𝑝2 ∈ 𝐺, if the 𝑆pr(𝑝1, 𝑝2) is
covered by 𝐺 or other 𝐽-pair of 𝐺, then 𝑆pr(𝑝1, 𝑝2) ∗−→

𝐺
0. Hence, a signature Gröbner basis needs at most

only one 𝑆-pair for each signature.

By the above two criteria, one can compute a signature Gröbner basis in a similar way to Buch-
berger’s Algorithm, but in more efficient way. Suppose one wants to compute a signature Gröbner
basis for ⟨𝑓1, … , 𝑓𝑚⟩. Fist, one compute the list 𝑆 of principal syzygies as 𝑆 ∶= { 𝑓𝑗e𝑖 − 𝑓𝑖e𝑗 ∣ 𝑖 < 𝑗 ≤ 𝑚 }
and set 𝐺 ∶= { (e𝑖, 𝑓𝑖) ∣ 𝑖 ≤ 𝑚 }. Then, one iterates over 𝑆-pairs of elements of 𝐺. If the 𝑆-pair 𝑠
corresponds to a syzygy, then one store it in 𝑆. Otherwise, one append it to 𝐺 if 𝑠 satisfies neither
of above criteria. This process will terminate in finite steps, and gives a signature Gröbner basis
as desired. For the complete description of algorithm, the readers can refer to Gao–Iv–Wang [20,
Figure 3.1].

2
PURELY FUNCT IONAL PROGRAMMING IN HASKELL

In this chapter, we will review basic concepts and methods in Haskell programming language.
Readers familiar with Haskell can skip this chapter.

2.1 overview of haskell

Haskell [25] is a lazy statically typed purely functional programming language which has been
evolving for the decades.

Being statically typed means that every Haskell program will be tested if the whole program has
the valid type. A type can be regarded as a tag representing their kind. Haskell has a very strong
and expressive type-system which enforces correctness at compile-time type-checking.

In Functional Programming paradigm, one builds up a program by composing functions as building
blocks recursively. Programs in functional programming language seems much declarative, that is
to say, similar to definitions in mathematics.

The purity means that the every expression of Haskell does not have any side-effects, that is, returns
the same result when given the same inputs. This doesn’t mean that Haskell cannot treat side-effect;
indeed, Haskell employs the concept of monads [58] to encapsulate side-effects while maintaining
the purity. As amentalmodel, every effectful computation can be regarded as an abstract instruction,
and then the compiler finally interprets it to the real I/O. It is this purity that enables Haskell to
enjoy the lightweight parallelism and rewriting rules.

Expressions in Haskell are evaluated lazily; i.e. expression will not be evaluated until their value
is actually needed. With this feature, one can encode infinite objects in Haskell intuitively. For
example, we can define the infinite list of Fibonacci sequence as follows:

1 fibs :: [ℤ]

2 fibs = 1 : 1 : zipWith (+) fibs (tail fibs)

Though evaluating fibs alone won’t terminate, one can freely cut-out a finite segment; for example,
“take 5 fibs” results in [1,1,2,3,5]. One can even print the contents of fibs indefinitely:

1 ghci> print fibs

2 −− [1,1,2,3,5, ... <priting elements indefinitely>

In this chapter, we will provide a introductory explanation of programming in Haskell. For more
details, the author refer readers to standard textbooks, such as Bird [6], Hutton [30] or Lipovača [51]

2.1.1 Notation

In what follows in this thesis, we use symbols in Table 2.1 in code fragments for the sake of
readability.

In Haskell, one use $-operator to save parenthesises. For example, map succ $ tail $ 1 : [2]
⌢ [3,4,5] is equivalent to map succ (tail (1 : [2] ⌢ [3,4,5])).

11

12 purely functional programming in haskell

Table 2.1: Symbols in Code Fragments

Symbol Code Symbol Code Symbol Code Symbol Code

ℕ Nat or
Natural

ℤ Integer ℚ Rational 𝔽𝑝 F p

:: :: = == ≠ /= 𝜆 x⃗ → e \x⃗ -> e

× * ⋉ !* ⌢ ++ ⊖ %-

≃ :~: ∼ ~ → -> ← <-

⟹ ==> ⇒ => ∶= .= ∶⇐ .%=

⊆ `Subset` ≤ <= ∘ . ∧ .&&.

• .* <$> <$> <∗> <*> ∀∀∀ forall

2.2 functional and declarative programming in haskell

As stated above, Haskell is a statically-typed purely functional programming language. In this
section, we will skim through how these features help a programming a lot.

2.2.1 Programming with Recursive and Higher-order Functions

In functional programming, a program is a composition of functions. Even control structures, such
as if-conditionals and while-loops, can be simulated by functions if one doesn’t care about efficiency.
The secret of such expressivity is to use recursion and higher-order functions. Briefly, a recursive
function is one that calls itself inside its definition. For example, the following program computes a
Fibonacci sequence by recursion:

1 fib :: ℤ → ℤ
2 fib n ∣ n ≤ 1 = 1

3 ∣ otherwise = fib (n − 1) + fib (n − 2)

A higher-order function is one that takes other functions as arguments. For example, one can
write function representing while-loop as follows:

1 while :: (a → Bool) → (a → a) → a → a

2 while p iter a =

3 if p a

4 then while p iter (iter a)

5 else a

The first two arguments of while are functions corresponding to the loop-condition and the body
of loop.

The next function represents 𝑛-times bounded loop construct:

1 loop :: (a → a) → a → ℤ → a

2 loop iter a n = body a n

3 where

4 body x 0 = x

5 body x n = body (iter x) (n − 1)

Thus, loop f a n applies a function f to a 𝑛-times. One can define local subroutines using where

-clause; in the above, since the loop-body function iter doesn’t change across iterations, so we
define inner loop body :: ℤ → a → a which only takes the remaining number of iterations and
current value. One might wonder the main definition of loop must be loop n iter x = body n x.

2.2 functional and declarative programming in haskell 13

Furthermore, one can drop the arguments n and a from the definition; i.e. one can replace Line 2
with:

2 loop iter = body

Such reduction of variables is called . Actually, in Haskell, a function type a → b → c, a type of
functions taking two arguments of types a and b and returns c, is just a short hand for a → (b →
c); i.e. that of functions taking an argument of type a and returns a function of type b → c. In

other words, every function in Haskell is curried by default. Since it defines a function taking an
argument of type a → a and returns a function of type a → ℤ → a, the above new definition is
completely valid and have the same meaning.

With loop function, one can even rewrite fib-function in imperative style:

1 fib :: ℤ → ℤ
2 fib n = fst (loop (𝜆 (a,b) → (b, a + b)) (1,1) n)

3 −− where fst :: (a, b) → a is the canonical projection.

Here, an expression of form (𝜆 x → e) is called a 𝜆-abstraction; it corresponds to an anonymous
function or closure in other languages; (𝜆 x → e) expresses the function which takes an argument
x and returns e, which can depend on x. So, the above fib iterates the operation of shifting and
adding 𝑛-times to the initial value (1, 1).

Further, one can simplify the above code using function composition and 𝜂-reduction as follows:

fib n = fst (loop (𝜆 (a,b) → (b, a + b)) (1,1) n)

= (fst ∘ loop (𝜆 (a, b) → (b, a + b)) (1,1)) n

∴ fib = fst ∘ loop (𝜆 (a, b) → (b, a + b)) (1,1)

2.2.2 Types in Haskell

In Haskell, one can define (ADTs), or data-type simply. ADTs can be regarded as a free object
generated by relations given by sum of products1. The following illustrates examples of simple
ADTs:

1 data Unit = U −− A type with just one element

2 data Boole = FF ∣ TT −− Truth−value
3 data PN = Zero ∣ Succ PN

4 −− A type of naturals, expressed as Peano numerals.

5
6 −− Simple arithmetic expression

7 data Expr = Lit PN

8 ∣ Expr :+ Expr

9 ∣ Expr :× Expr

10 ∣ Negate Expr

Note that PN and Expr has the recursive definition.
One can pattern-match on ADTs; this can be seen as a case-analysis in mathematical proof. For

example, one can write a simple evaluator on arithmetic expressions as follows:

1 evalPeano :: PN → ℤ
2 evalPeano Zero = 0

3 evalPeano (Succ n) = 1 + evalPeano n

1 More rigorously, algebraic data-types in Haskell can be regarded as the initial and final 𝐹-(co)algebra, where 𝐹 is an
endofunctor.

14 purely functional programming in haskell

4
5 evalExpr :: Expr → ℤ
6 evalExpr (Lit n) = evalPeano n

7 evalExpr (e :+ d) = evalExpr e + evalExpr d

8 evalExpr (e :× d) = evalExpr e × evalExpr d

9 evalExpr (Negate e) = − evalExpr e

The type-system of Haskell is based on polymorphic 𝜆-calculus; more precisely, Haskell is some
kind of extension of Hindley–Milner type-system [26]. In particular, the type-system of Haskell
admits both parametric and ad-hoc polymorphism.

Parametric polymorphism is inherited fromHindley–Milner type-system. This allows as to define
polymophic data-types and functions. For example, we can define a list-type2 generically:

1 data List a = Nil ∣ Cons a (List a)

2 empty :: List a

3 empty = []

4
5 ints :: List ℤ
6 ints = Cons 1 (Cons 2 (Cons 3 Nil))

One can define a mapping function3 as follows:

1 mapList :: (a → b) → List a → List b

2 mapList f Nil = Nil

3 mapList f (Cons x xs) = Cons (f x) (mapList f xs)

This function is polymorphic, or generic, in a sense that it can accept arbitrary function and lists
matching its type. For example, one can write mapList succ ints or mapList intToString ints,
where succ :: Int → Int and intToString :: ℤ → String. Furthermore, one can even omit
the type annotation in Line 1; the compiler can infer the type of mapList to be most generic one!

Ad-hoc polymorphism, on the other hand, is some kind of polymorphism with constraints.
Consider the following function for taking the sum of the given list of integers:

1 sumInt :: [ℤ] → ℤ
2 sumInt [] = 0

3 sumInt (a : as) = a + sum as

One can also have the summation function for Doubles:

1 sumDouble :: [Double] → Double

2 sumDouble [] = 0

3 sumDouble (a : as) = a + sum as

Although they have almost identical definitions, types are different. We cannot define generically
solely with parametric polymorphism; summation function cannot be defined for arbitrary types,
but those with additive structure. In other words, the summation function can be defined for the types
which satisfies the constraint that it is endowed with addition. This is where ad-hoc polymorphism
can play a role. To express such constrained form of polymorphism, Haskell provides a functionality
called type-classes. For example, Haskell provides the type-class Num for “numeric” types:

1 class Num a where

2 (+) :: a → a → a

2 Haskell has the built-in type [a] for the list-type. Here, we define it on our own for the sake of exposition.
3 The map built-in function in Haskell.

2.3 imperative programming in haskell with monads 15

3 (×) :: a → a → a

4 (−) :: a → a

5 fromInteger :: ℤ → a

6 ...

With this, we can define sum function for arbitrary types which is an instance of Num!

1 sum :: Num a ⇒ [a] → a

2 sum [] = fromInteger 0

3 sum (x : xs) = x + sum xs

Then, since we have Num instances for ℤ and Double, we can use sum function for lists of integers
and doubles. One can add an instance for type-classes at anytime4.

One can even extend the type-class by defining subclass. For example, in Haskell, Integral
type-class is defined for integer-like Num-types:

1 class Num a ⇒ Integral a where

2 toℤ :: a → ℤ
3 divMod :: a → a → (a, a) −− Integral division

4 ...

2.3 imperative programming in haskell with monads

So far, we have seen the pure part of Haskell. But, as claimed above, Haskell can also treat effectful
computations, that is, functions with side-effects.

In this section, we will see how we can use monads to handle side-effects.

2.3.1 Monads as a Modular Semantics

Monadswere introduced to the realm of computer science first by Moggi [58]. Although the concept
of monad comes from category theory, we only consider the definition of monad only in Haskell.

Definition 2.1 (monad). A unary type 𝑚 is a monad if it is endowed with two functions

return :: a → m a

(>=>) :: (a → m b) → (b → m c) → (a → m c)

such that the following equalities hold:

return >=> 𝑓 = 𝑓 = 𝑓 >=> return

(𝑓 >=> 𝑔) >=> ℎ = 𝑓 >=> (𝑔 >=> ℎ)

We call the operator (>=>) a monadic composition.

Intuitively, monads abstracts the concept of sequential executions. We regard a function of type
a → m b as an effectful function from a to bwith side-effect cared with m. In this view, the monadic
composition operation (>=>) can be regarded as a composition operator of effectful functions,
generalising mere composition (∘). Then, the first law states that return behaves as the left- and
right-identity to the monadic composition, generalising the identity function. The second law
requires monadic composition to be associative; i.e. composition doesn’t depend on particular
composition ordering.

4 Strictly speaking, one can prevent this by hiding class definition.

16 purely functional programming in haskell

In Haskell, one can use do-natation to write monadic program in imperative-style. First we define
the monadic application operator, 𝑓 ≫= 𝑔, as follows:

1 (≫=) :: Monad m ⇒ m a → (a → m b) → m b

2 ma ≫= f = (id >=> f) ma

The next code fragment illustrates how a do-notation look like and how compiler desugars it to a
monadic expression:

do a ← calc x calc x ≫= (𝜆 a →
doSomething ⇒ doSomething ≫= (𝜆 _ →
b ← other a ⇒ other a ≫= (𝜆 b →
return (f a b) return (f a b))))

See Haskell 2010 Language Report [24, §3.14] for the formal specification of do-notation.

2.3.2 Examples of Monads

To get a picture, we see some examples of monads.

2.3.3 Handling Failures by Maybe-monad

In Haskell, Maybe-monad is often used to express the computation which can possibly fail.

1 data Maybe a = Nothing ∣ Just a

2 instance Monad Maybe where

3 return = Just

4 Nothing ≫= _ = Nothing

5 Just a ≫= f = f a

Above, Nothing denotes the failure of computation and absence of result. Just a, on the other
hand, represents a succeeded computation with a result value a. Since we assume that failed
computation cannot be recovered, we define the monadic composition on Maybes so that:

1. If the preceding computation is failed (i.e. Nothing), then the entire computation must be
failed (Line 4),

2. If the previous computation returns successfully with result a (i.e. Just a), then just feed it
to the next step (Line 5).

For example, the following function tries to find an element of the given list with specified
property:

1 find :: (a → Bool) → [a] → Maybe a

2 find p [] = Nothing

3 find p (x : xs)

4 ∣ p x = Just x

5 ∣ otherwise = find p xs

Then, one can nest find functions freely as follows:

1 doubleOddElementInEvenList :: [[ℤ]] → Maybe ℤ
2 doubleOddElementInEvenList xss = do

3 −− Finds a list of integers of even length.

2.3 imperative programming in haskell with monads 17

4 list ← find (even ∘ length) xss

5 i ← find odd list −− Πck an odd number from the list

6 return (2 × i) −− Double the result.

This takes a nested list of integers, then finds and doubles an odd number in the even-length list.
For example,

ghci> doubleOddElementInEvenList [[1,2,3],[4,8],[5,6,7]]

Nothing

ghci> doubleOddElementInEvenList [[1,2,3],[4,5],[6,9]]

Just 10

2.3.4 Non-deterministic Computation with List-monads

Actually, lists can be regarded as a monad.

1 instance Monad [] where

2 return x = [x]

3 xs ≫= f = concat (map f xs)

4
5 concat :: [[a]] → [a] −− Flattening map

Let’s redefine the find function as follows:

1 find :: (a → Bool) → [a] → [a]

2 find p [] = []

3 find p (x : xs)

4 ∣ p x = x : find p xs

5 ∣ otherwise = find p xs

Then, the doubleOddElementInEvenList above returns now lists and can return multiple results:

ghci> doubleOddElementInEvenList [[1,2,3],[4,8],[5,6,7]]

[]

ghci> doubleOddElementInEvenList [[1,2,3],[4,5],[6,9]]

[10,18]

2.3.5 Handling I/O with Monads

Wecan also handle I/O actions, such as randomnumber generation, operations onmutable reference,
or read/write inputs to files, etc, with monads. Actually, Haskell provides the IO-monad for that
purpose. The IO-monad differs from Maybe and list monads in a such a way that the actual semantics
of IO-monads are defined at the meta-level, not the object-level. That is to say, values of IO can be
regarded as an abstract directive specifying computations and interpreted directly by the compiler.

And, expressing I/O computations with a type IO a, one can distinguish impure computations
from pure ones. In contrast to Maybe and list-monads, one cannot retrieve pure values from IO-
value5. In this way, monads provides a way to treat impure computations yet retaining purity and
type-safety at the same time.

5 Actually, there is a function to convert value of type IO a to pure value of type a, but it is marked as “unsafe” and not
recommended to be used frequently.

18 purely functional programming in haskell

2.4 advanced topics

In this section, we will briefly review the advanced features eventually used in what follows. Indeed,
features we will discuss in this section is not standard ones in Haskell, but those implemented in
Glasgow Haskell Compiler [21] (GHC), a flagship compiler of Haskell.

2.4.1 Higher Rank Polymorphism and ST-monads

In the original Hindley–Milner type-system, one can treat only polymorphism of rank 1. In other
words, higher functions can take a function, but an argument cannot be polymorphic, i.e. cannot
have universal quantifiers over types. One might may that map function’s type (a → b) → [a]

→ [b] is not rank-1 polymorphic. But, if we revive the universal quantifier over type variables,
the actual type of map is indeed ∀∀∀ a b. (a → b) → [a] → [b], and hence it actually is rank-1
polymorphic.

This restriction is for the sake of decidability and completeness of type-inference. But, in many
practical cases, type-inference can be done for higher rank polymorphism, and Haskell provides
Rank2Types and RankNTypes language extensions which enables rank-2 and higher rank polymor-
phic functions.

As we will see in Section 4.5.1, higher polymorphism itself is particularly useful and improve
the expressivity of the language. Furthermore, Launchbury and Peyton Jones [48] proposed the
another way to exploit higher polymorphism to improve type-safety and purity at the same time: an
ST-monad.
ST-monad provides a way to treat mutable states within pure computations. The problem that ST-

monad solves is as follows. Although we can treat mutable states in IO-monad, one cannot retrieve
the result of computations with mutable states in IO safely, even though the entire computation is
pure at total. This restriction is inherent in IO-monad, since any unsafe operations can be taken
place in IO-computation. Providing a unwrapping function just for a mutable reference doesn’t
make sense here, because if one have something like readRef :: IO (IORef a) → a and have
value nestedRef :: IORef (IORef Int), then one can extract mutable states outside by readRef

(return nestedRef), which breaks purity!

Code 1 The interface of ST-monad
1 type ST s a

2 data STRef s a

3 newSTRef :: a → ST s (STRef s a)

4 writeSTRef :: a → STRef s a → ST s ()

5 readSTRef :: STRef s a → ST s a

6 runST :: (∀∀∀ s. ST s a) → a

ST-monad solves this problem with a trick using Skolem variable to encapsulate mutability and
prevent them from leaking outside. Code 1 shows the basic interface of ST-monad. Intuitively, a
type-variable s represents the internal state, or “world”, of whole computation. The type STRef

s a corresponds to a mutable state with internal state s. Functions newSTRef, writeSTRef and
readSTRef correspond to operations of creating, writing and reading mutable states respectively.
As the types indicate, each operation results in the monadic value inside ST s with the same type
parameter s as the s. In other words, inside ST s-monad, one can freely access mutable states of
type STRef s a.

We use runST function to retrieve the result of ST s-computation, where the Skolem trick comes
into play. Note that runST has a higher polymorphic type; the first argument must be polymorphic,

2.4 advanced topics 19

or generic, in type-variable s. The genericity constraint on s means that the entire computation
must be agnostic about a specific internal state s; in particular, the result type a cannot depend a
particular value of s. This can be described more rigorously by syntactic argument: a is bound
the outermost position but s is bounded only inside the first argument of runST, hence a cannot
depend on particular s. This situation is analogous to the eigenvariable, or Skolem variable, condition
in formal logic: to deduce ∀𝑥 𝜑 from 𝜑[𝑦/𝑥], 𝑦 must not occur in 𝜑 and this variable 𝑦 is called
eigenvariable or Skolem variable. In this way, rank-2 polymorphism can be used to prevent the leak
of inside state.

2.4.2 Generalised Algebraic Data-types and Dependent Types in Haskell

In GHC, one can define non-parametric type with Generalised Algebraic Data-types (GADTs). We
refer readers to Hinze [28] for more detailed explanation.

Consider the early example of data-type expressing arithmetic expressions:

1 data Expr = Lit PN

2 ∣ Expr :+ Expr

3 ∣ Expr :× Expr

4 ∣ Negate Expr

Suppose one wants to extend the expression with boolean conditionals and predicates, such as
zero-test or boolean combinations. One simple modification is as follows:

1 data Expr = Lit PN

2 ∣ Expr :+ Expr

3 ∣ Expr :× Expr

4 ∣ Negate Expr

5 ∣ IsZero Expr −− Check if zero

6 ∣ IfThenElse Expr Expr Expr −− If−expression
7 ∣ Expr :&& Expr −− Booelean conjunction

8 ∣ Expr : ∣ ∣ Expr −− Boolean disjunction

9 ∣ Not Expr −− Boolean negation

10 ∣ Boole Bool −− Boolean literal

But this approach is rather unsafe in a sense that one can form ill-typed terms such as True + 2 or
if 5 then True else 4. One possible idea is to introduce a type-parameter to indicate the entire
type of expression. But, in the standard Haskell, one can only define parametric type variable or
completely phantom type, which doesn’t occur in the actual definition of constructors. But with
GADTs, one can control phantom type parameters in constructor definition as follows:

1 data Expr a where

2 Lit :: PN → Expr ℤ
3 (:+) :: Expr ℤ → Expr ℤ → Expr ℤ
4 ...
5 IsZero :: Expr ℤ → Expr Bool

6 IfThenElse :: Expr Bool → Expr a → Expr a → Expr a

7 (:&&) :: Expr Bool → Expr Bool → Expr Bool

8 Boole :: Bool → Expr Bool

Then, the compiler rejects ill-typed terms at compile-time.
Another application of GADTs is to simulating dependent types in Haskell. Briefly speaking,

types depending on expressions are called Dependent Types. GHC supports them via the Promoted
Data-types language extension [70] since version 7.4.

20 purely functional programming in haskell

For example, one can write length-parametrised lists as follows:

1 data PN = Zero ∣ Succ

2 data Vec n a where

3 Nil :: Vec Zero a

4 (:-) :: a → Vec n a → Vec (Succ n) a

So, the type Vec 𝑛 a corresponds to the type of lists with exactly 𝑛 elements of type a. With this,
one can achieve a type-safe tail function as follows:

1 tailV :: Vec (Succ n) a → a

2 tailV (_ :- as) = a

In less-typed setting, tail function is partial; in particular tail [] passes type-checking but halts
with error at run-time. But in this setting, tailV Nil is rejected at compile-time, since Nil is of type
Vec Zero a, which won’t match with Vec (Succ n) a!

So far, so good. Next, consider the following replicate function, which returns a simple list
consisting of a specified number of copies of the same element:

1 replicate :: ℕ → a → [a]

2 replicate 0 _ = []

3 replicate n a = a : replicate (n − 1) a

For example, replicate 3 True returns [True, True, True]. How this function can be generalised
to length-parametrised lists? One might write the following simple generalisation:

1 replicateV :: PN → a → Vec n a

2 replicateV Zero _ = Nil

3 replicateV (Succ n) a = a :- replicateV (n − 1) a

But this won’t work well. Actually, the type parameter n in the result is free and independent of the
first argument! So what we need in this situation is something like:

1 replicateV :: (n :: PN) → a → Vec n a

Then, the type parameter n is bound by the first argument and must coincide with the length
of the result. In other words, the type of replicateV depends on the value n. Such a type can
be expressed in type-systems with full dependent-types, but GHC doesn’t support such type-level
argument directly. But, one can use singleton GADTs [16] in place of such type-level arguments.

Intuitively, the singleton type Sing n of type n :: T has exactly one inhabitant for each n, which
has an “isomorphic” structure to n. For example, one can define the singleton types for type-level
Peano numerals by GADTs as follows:

1 data Sing (n :: PN) where

2 SZero :: Sing Zero

3 SSucc :: Sing n → Sing (Succ n)

With this, Peano-numeral version of replicateV can be readily implemented:

1 replicateV :: Sing n → a → Vec n a

2 replicateV SZero _ = Nil

3 replicateV (SSucc n) a = a :- replicateV n a

GHC also has the built-in type-level natural numbers, which is implemented in terms of primitive
integers and not represented as Peano numerals. One can also use singletons for built-in naturals,
but pattern-matching on them is impossible and we need additional dedicated facilities to treat
them seamlessly. We will turn-back to and solve this problem in Section 4.2.3.

Part II

RESEARCH CONTR IBUT IONS

3
FREER MONADS , MORE EXTENS IBLE EFFECTS 1

3.1 abstract

We present a rational reconstruction of extensible effects, the recently proposed alternative tomonad
transformers, as the confluence of efforts to make effectful computations compose. Free monads
and then extensible effects emerge from the straightforward term representation of an effectful
computation, as more and more boilerplate is abstracted away. The generalisation process further
leads to freer monads, constructed without the Functor constraint. The continuation exposed in
freer monads can then be represented as an efficient type-aligned data structure. The end result is
the algorithmically efficient extensible effects library, which is not only more comprehensible but
also faster than earlier implementations.

As an illustration of the new library, we show three surprisingly simple applications: non-
determinism with committed choice (LogicT), catching IO exceptions in the presence of other
effects, and the semi-automatic management of file handles and other resources through monadic
regions.

We extensively use and promote the new sort of ‘laziness’, which underlies the left Kan extension:
instead of performing an operation, keep its operands and pretend it is done.

3.2 introduction

That monads do not compose was recognised as a problem early on [66]. Two independently-
written expressions using different side-effects (and hence monads) are difficult to combine in one
program. Modifying a small part of a large program to use a new side-effect (e.g., adding debug
output) sends ripples of changes throughout the code base. The very same difficulty of adding
and combining effects has plagued denotational semantics [8]. In fact, monads, introduced by
Moggi as a way to structure denotational semantics, inherited that problem. One can identify three
approaches to solving it. The most popular is monad transformers [49], implemented in the widely
used monad transformer library (MTL). They are based on Moggi’s original idea of “monads with
a hole”, adding to it the lifting of monad operations through the transformer stack. The second
approach combines monads through a quite complicated co-product [53], whose simplification has
lead to the free monad popularised in Data types à la carte [67]. The third, presented just before
monad transformers, looked at effects as an interaction and introduced side-effect–request handlers
[8]. That idea of effect handlers, generalising exception handlers, was picked up in [4, 62], and
developed into the language Eff. In Haskell, it was implemented as extensible effects [42] and [38].

We present, in §3.3, a unifying view: we derive the free monad and extensible effects by progres-
sively abstracting the straightforward term representation of an effectful computation. Extensible
effects emerge as the combination of the ideas of freemonads and open union. The unifying, rational

1 The contents of this chapter is based on the following article: O. Kiselyov and H. Ishii. Freer monads, more extensible
effects. Proceedings of the 2015 ACM SIGPLAN Symposium on Haskell, 50(12):94–105, December 2015 [41]. © 2015 ACM
New York, NY, USA. The final publication is available on ACM Digital Library with doi: 10.1145/2804302.2804319.

23

https://doi.org/10.1145/2804302.2804319

24 freer monads, more extensible effects

reconstruction is not only edifying: it pointed to the further generalisation in §3.3.4: freer monads,
free even from the Functor constraint. Freer (or, free-er, for emphasis) monad is an algebraic data
type that is a monad by the very construction, just like list is a monoid by construction.

Besides intellectually satisfying, the freer monads are more economical with memory, avoiding
rebuilding of the request data structure on each bind operation. Mainly, by exposing the continuation
the freer monads made it easier to represent it differently, as a type-aligned sequence data structure
[61], which improved the performance algorithmically. §3.4 describes the improved extensible
effects library and §3.5 demonstrates its better performance on several benchmarks, in comparison
with MTL and other effect handler libraries.

Our contribution thus is rationally deriving – telling the compelling story – of the freer monad,
which supports the easy addition, composition and also subtraction (that is, encapsulation) of effects.
It is so far the most efficient and expressive extensible monad. We demonstrate the expressivity on
three applications, which were previously considered difficult for extensible effects or monads in
general. §3.6 shows the exceptionally straightforward implementation of non-determinism with
committed choice (the LogicT monad). §3.7 presents the surprisingly simple implementation of
catching IO errors in monads other than IO. At last IO exceptions behave, with regard to other
effects (State, in particular), just as non-IO exceptions. Finally, §3.8 is the ultimate demonstration of
effect encapsulation: monadic regions, re-implementing and simplifying the transformer-based
library of [44].

§3.9 describes the related work. The complete code is available at http://okmij.org/ftp/
Haskell/extensible/Eff1.hs.

3.3 derivation of free-er monad

In this section we derive the freer and extensible monads by progressively removing boilerplate
from the term representation of effects. The result, however elegant, has poor performance, to be
improved in §3.4.

3.3.1 Reader Effect

We start with the simplest side effect: dynamic binding, or Reader in the MTL terminology. Reader
computations depend on a value supplied by the environment, that is, their context. A side-effect
can be understood [8] as an interaction of an expression with its context. The possible requests can
be specified as a data type, which in our case is2

1 data It i a = Pure a

2 ∣ Get (i → It i a)

Such an algebraic modelling of possible operations was pioneered in Haskell by Hughes [29] and is
nowknown inHaskell as ‘operational’ [1]. Hinze [27] gave the lucid demonstration of this technique,
to derive backtracking monad transformers. (We also deal with non-determinism, in §3.6). The
expression Pure e marks the computation e that makes no requests, silently working towards a
value of the type a. The request Get k asks the context for the (current dynamically-bound) value
of the type i. Having received the value i, the computation k i :: It i a continues, perhaps
asking for more values from the context. One may hence call Get’s argument k a continuation.

The simplest asking computation is

1 ask :: It i i

2 ask = Get Pure

2 The choice of the name It should become clear shortly.

http://okmij.org/ftp/Haskell/extensible/Eff1.hs
http://okmij.org/ftp/Haskell/extensible/Eff1.hs

3.3 derivation of free-er monad 25

which immediately returns the received value. Bigger computations are built with the help of the
monad bind (≫=): It i is a monad.

1 instance Monad (It i) where

2 −− return :: a → It i a

3 return = Pure

4
5 −− (≫=) :: It i a → (a → It i b) → It i b

6 Pure x ≫= k = k x

7 Get k' ≫= k = Get (k' ≪> k)

The last clause in the definition of bind says that a computation that waits for an input and then con-
tinues as k', and after that, as k – is the computation that continues after waiting as the composition
of k' and k. The operation (≪>), Kleisli composition, is the composition of effectful functions:

1 (≪>) :: Monad m ⇒ (a → m b) → (b → m c) → (a → m c)

2 f ≪> g = (≫= g) ∘ f

Here are two examples of bigger Reader computations

1 addGet :: Int → It Int Int

2 addGet x = ask ≫= 𝜆i → return (i+x)
3
4 addN :: Int → It Int Int

5 addN n = foldl (≪>) return (replicate n addGet) 0

The latter asks for n numbers and returns their sum.
The computations addGet and addNmake requests to the context. We need to define how to reply,

that is, how to “run” these computations. The following interpreter gives the same value i on each
request: It i a is indeed interpreted as the Reader monad.

1 runReader :: i → It i a → a

2 runReader _ (Pure v) = v

3 runReader x (Get k) = runReader x (k x)

Unlike the MTL Reader, It i a may be treated differently: each request gets a new value, as if read
from an input stream:

1 feedAll :: [i] → It i a → a

2 feedAll _ (Pure v) = v

3 feedAll [] _ = error "end of stream"

4 feedAll (h : t) (Get k) = feedAll t (k h)

In this interpretation, It i a is called an iteratee and feedAll an enumerator [40].

3.3.2 Reader/Writer Effect

Let us add another effect: rather than asking a context for a value, we tell the context. This is a
Writer, or tracing effect.

1 data IT i o a = Pure a

2 ∣ Get (i → IT i o a)

3 ∣ Put o (() → IT i o a)

26 freer monads, more extensible effects

The Put o k request tells the value o to the context. After the context acknowledges with ()3 the
computation continues as k (). The extended IT i o is also a monad:

1 instance Monad (IT i o) where

2 return = Pure

3 Pure x ≫= k = k x

4 Get k' ≫= k = Get (k' ≪> k)

5 Put x k' ≫= k = Put x (k' ≪> k)

Again, a computation that tells the context and continues as k' and then as k, really continues as
k' ≪> k.

In MTL’s Writer monad, the told value must have a Monoid type. Our IT i o has no such
constraints. If we write a Writer-like IT interpreter to accumulate the told values in a monoid, it
will have the Monoid o constraint then:

1 runRdWriter :: Monoid o ⇒ i → IT i o a → (a,o)

2 runRdWriter i m = loop mempty m

3 where

4 loop acc (Pure x) = (x,acc)

5 loop acc (Get k) = loop acc (k i)

6 loop acc (Put o k) = loop (acc `mappend` o) (k ())

There are other ways of interpreting IT i o a requests, for example, keeping the last told value,
or writing the told value to stderr. Yet another interpreter, of IT s s computation takes the told
value as the one to give when next asked, thus treating IT s s as a State computation.

The IT i o computation is an extension of It i. Alas, data types are not extensible. Therefore,
we had to change the data type name and hence modify (the signatures of) addGet and addN, even
if their code does not care about the new writer effect and remains essentially the same.

3.3.3 Free Monad

A data type describing an effectful computation such as It i a and IT i o a follows a common
pattern: It is a recursive data type, with the Pure variant for the absence of any requests, and
the variants for requests, usually containing the continuation that receives the reply (except for
exceptions that do not expect any reply). The recursive occurrences of the data type are always
as the return type of the continuations, that is, in covariant positions. This pattern, of pure and
effectful parts and covariant recursive occurrences can be captured as

1 data Free f a = Pure a

2 ∣ Impure (f (Free f a))

where f is a (categorical) functor, that is, in f a, the type a occurs covariantly. The latter phrase
means that if we can convert a value of type a into some other value of type b, we can also turn f a

into f b. The Functor type class captures that meaning literally:

1 class Functor f where

2 fmap :: (a → b) → (f a → f b)

The concrete instantiations of f define the types of requests and replies, that is, the effect signature
of a particular effectful computation. This splitting of a recursive data type such as It i into a
non-recursive “structure component” and the recursive tying the knot Free f a was pioneered in
[65] (who also used extensible effectful interpreters as one of the examples).

3 In Haskell, this () acknowledgment is not needed, but it fits our story better.

3.3 derivation of free-er monad 27

The monad instances for It i and IT i o also look very much alike. It is a shame to keep writing
such instances for each new effect and each combination of effects. The Free f data type lets us
capture the common pattern:

1 instance Functor f ⇒ Monad (Free f) where

2 return = Pure

3 Pure a ≫= k = k a

4 Impure f ≫= k = Impure (fmap (≫= k) f)

Thus Free f for a functor f is a monad – the free monad. New effects will have new effect signatures
f, but the single instance of Monad (Free f) will work for all of them, with no further re-writing.

As an example, the earlier IT i o computation may now be specified as

1 data ReaderWriter i o x = Get (i → x) ∣ Put o (() → x)

2 instance Functor (ReaderWriter i o) where ...
3 type IT i o a = Free (ReaderWriter i o) a

The word “free” in free monad refers to the category theory’s construction of the left adjoint of a
forgetful operation [2]. In English, if we take a monad, say, State s with its return, bind, fmap,
put and get operations and forget the first two, we can recover the monad as Free (State s), with
prosthetic return and bind. In short, we get the Monad instance for free.

In general monads do not compose: if M1 a and M2 a are monads, M1 (M2 a) is generally not.
Free monads however are a particular form of monads, defined via a functor. Functors do compose.
We will exploit that fact after one more generalisation.

3.3.4 Free-er Monads

Let us look more carefully at the Monad instance for Free f. The purpose of fmap there is to extend
the continuation, embedded somewhere within (f (Free f a)), by (≪>)-composing it with the
new k. The operation fmap lets us generically modify the embedded continuation, for any request
signature.

Since the continuation argument is being handled so uniformly, it makes sense to take it out of
the request signature and place it right into the fixed request data structure, as the second argument
of Impure:

1 data FFree f a where

2 Pure :: a → FFree f a

3 Impure :: f x → (x → FFree f a) → FFree f a

The remaining part of the request signature f x tells the type x of the reply, to be fed into the
continuation. Different requests have their own reply types, hence x is existentially quantified. Our
Reader-Writer effect gets then the following signature:

1 data FReaderWriter i o x where

2 Get :: FReaderWriter i o i

3 Put :: o → FReaderWriter i o ()

It is a GADT: the type variable x in FReaderWriter i o x is instantiated depending on the type of
the request. For Get, the reply type is i, and for Put, it is unit. The IT i o a is now

1 type IT i o a = FFree (FReaderWriter i o) a

The monad instance for FFree f no longer needs the Functor or any other constraint on f:

28 freer monads, more extensible effects

1 instance Monad (FFree f) where ...
2 Impure fx k' ≫= k = Impure fx (k' ≪> k)

FFree f is more satisfying since it abstracts more of the common pattern of accumulating con-
tinuation, compared to Free. It is more general, not imposing any constraints on f – it is “freer”.
Continuing our example of State s from the end of §3.3.3, we can now forget not only return

and bind but also the fmap operation, and still recover the state monad through FFree (State s)

construction. We no longer have to bother defining the basic monad and functor operations in the
first place: We now get not only the Monad instance but also the Functor and Applicative instances
for free.

Freer monad is also more economical in terms of memory (and running time) because the
continuation can now be accessed directly rather than via fmap, which has to rebuild the mapped
data structure. The explicit continuation of FFree also makes it easier to change its representation,
which we will do in §3.4.

Marcelo Fiore has suggested in private communication that the above FFree construction is the
left Kan extension.

To highlight this point we show another derivation of FFree. Recall, if f :: × → × is a functor,
we can convert f x to f a whenever we can map x values to a values. If g :: × → × is not a
functor, such a conversion is not possible. We can “cheat” however: although we cannot truly fmap
h :: x → a over g x, we can keep its two operands as a pair, and assume the mapping as if it were
performed:

1 data Lan (g :: × → ×) a where

2 FMap :: (x → a) → g x → Lan g a

Any further mapping over Lan g a updates the original mapping, leaving g x intact. That is, Lan g

is now a “formal” functor:

1 instance Functor (Lan g) where

2 fmap h (FMap h' gx) = FMap (h ∘ h') gx

This Lan construction is the Left Kan extension. One may think of it as a free Haskell Functor –
Functor by construction – just as a list is a free Monoid.

Let us see what Free (Lan g) is: substituting f in the type of (f (Free f a)) → Free f a of
Free.Impure with Lan g gives us

1 exists x. (x → (Free (Lan g) a)) → g x → Free (Lan g) a

which is the type of FFree.Impure. Hence

1 type FFRee g = Free (Lan g)

Incidentally, the type-aligned sequences, which we will use in §3.4, are essentially Free-er Applica-
tive.

By analogy with the “free functor” Lan g we may also define a “free bifunctor”

1 data BiFree p a b where

2 Bimap :: (a → b) → (c → d) → p a c → BiFree p b d

which is a generalisation of the bifunctor used in [36, §6.3].
One last generalisation step remains, to deliver the promised extensibility.

3.3 derivation of free-er monad 29

3.3.5 From Free(er) Monads to Extensible Effects

We have hinted in §3.3.3 that the form of free monads, built from functors, lends itself to compos-
ability since functors compose. This section demonstrates this composability on freer monads, built
around left Kan extensions, which are functors by construction. There are two sides to compos-
ability: extensible monad type and modular interpreters. The latter part has been receiving less
attention: for example, Data types à la carte [67] provides the former but not the latter.

A monad type is extensible if we can add a new effect without having to touch or even recompile
the old code. The Free f or FFree f lets us do that: the monad type is indexed by the request
signature f. Specifying this signature as an ordinary data type, such as ReaderWriter in §3.3.3 or
GADT FReaderWriter in §3.3.4 is not extensible: an ordinary variant data type is a closed union,
with the fixed number of variants. Open unions are relatively easy to construct, essentially by
nesting the simplest union, the Either data type. Themonad transformer paper [49] already showed
such an implementation; Swierstra [67] used essentially the same.

We will use the open union that improves the previous implementations, including the one
in [42]. It provides the (abstract) type Union (r :: [× → ×]) x where the first argument r is
a type-level list of effect labels, to be described shortly. The second argument is the response
type, which depends on a particular request. The argument r lists all effects that are possible in a
computation; a concrete Union r x value contains one request out of those listed in r.

It is crucial for extensibility to be able to talk about one effect without needing to list all others.
For the sake of this effect polymorphism, our implementation provides a type class

1 class Member t r where

2 inj :: t v → Union r v

3 prj :: Union r v → Maybe (t v)

that asserts that a label t occurs in the list r. If an effect is part of the union, its request can be
injected and projected. We also offer another function, not present in [49, 67], to “orthogonally
project” from the union,

1 decomp :: Union (t ': r) v → Either (Union r v) (t v)

obtaining either a request labeled t or a smaller union, without t. This function is needed for
effect encapsulation. The earlier extensible effects library [42] provided a similar open union,
implemented using overlapping instances and Typeable. The latter in particular attracted a large
number of complaints. Deriving Typeable is indeed an extra step for a library aiming to encourage
using many custom effects. For applications like monadic regions, Typeable was quite an obstacle,
as we discuss in §3.8. The current implementation uses neither overlapping, nor Typeable. It also
does not provide the no longer needed Functor instance.

The extensible freer monad, the monad of extensible effects, is hence FFreewith the open union:

1 data FEFree r a where

2 Pure :: a → FEFree r a

3 Impure :: Union r x → (x → FEFree r a) → FEFree r a

A request label defines a particular effect and its requests. For example, the Reader and Writer
effects have the following labels:

1 data Reader i x where

2 Get :: Reader i i

3 data Writer o x where

4 Put :: o → Writer o ()

30 freer monads, more extensible effects

Informally, we split the monolithic FReaderWriter request signature into its components (to be
combined in the open union). The simplest Reader computation, ask of §3.3.1, can now be written
as

1 ask :: Member (Reader i) r ⇒ Eff r i

2 ask = Impure (inj Get) return

The signature tells that ask is an Eff r i computation which includes the Reader i effect, without
telling what other effects may be present. Unlike the old ask of §3.3.1, the new one can be used, as
it is, without any adjustments to code or the signature, in programs with other effects. The new ask
is thus extensible.

Making interpreters such as runRdWriter of §3.3.2 modular is just as important, and not always
achieved in the past. We describe them §3.4.

3.3.6 Performance Problem of Free(er) Monads

Free (and freer) monads are certainly elegant and insightful, but poorly performing. Let us look
again at the FFree f monad instance

1 instance Monad (FFree f) where ...
2 Impure fx k' ≫= k = Impure fx (k' ≪> k)

The bind operation traverses its left argument but merely passes around the right argument. There-
fore, the performance of left-associated binds, like the performance of left-associated list appends,
will be poor – algorithmically poor. For example, the running time of addN n, implemented either as
the It i monad or the FEFree [Reader i] monad, is quadratic in n. This is because addN happens
to associate addGets on the left. For example, addN 3 evaluates to

1 (((return ≪> addGet) ≪> addGet) ≪> addGet) 0

which takes 3 evaluation steps to

1 ((Impure (inj Get) return ∘ (+0)) ≫= addGet) ≫= addGet

The two evaluations of bind then produce the final request

1 Impure (inj Get) ((return ∘ (+0) ≪> addGet x) ≪> addGet)

The continuation, the second argument to Impure, is the addGet chain we started with, only one
link shorter. Processing the reply from the context will again take time linear in the size of the chain.
Overall, processing 𝑛 requests takes 𝑂(𝑛2) time. We refer the reader to [61] for more illustration and
discussion of this performance problem, and for the general solution: representing the continuation
as an efficient data structure, a type-aligned sequence.

3.4 final result: freer and better extensible eff monad

This section describes our current, improved and efficient library of extensible effects. Thanks to
the Freer monad and the new open union it became easier, compared to the version presented two
years ago [42], to define a new effect and to write a handler for it. There is no longer any need for
Functor and Typeable instances. The performance has also improved, algorithmically; see §3.4.3.
Before showing off the library in §3.4.2 we describe the last key improvement, representing the
continuation as an efficient data structure.

3.4 final result: freer and better extensible eff monad 31

3.4.1 Composed Continuation as a Data Structure

The new library is based on the FEFree monad derived in §3.3.5 (repeated here for reference):

1 data FEFree r a where

2 Pure :: a → FEFree r a

3 Impure :: Union r x → (x → FEFree r a) → FEFree r a

differing in one final respect: Now that the request continuation x → FEFree r a is exposed, it can
be represented in other ways than just a function. The motivation for a new representation comes
from looking at the monad instance for FEFree f

1 instance Monad (FFree f) where ...
2 Impure fx k' ≫= k = Impure fx (k' ≪> k)

which extends the request continuation k'with the new segment k. The lesson of [61] is to represent
this conceptual sequence of extending the continuation with more and more segments as a concrete
sequence. It would contain all the segments that should be functionally composed –without actually
composing them! We shall see soon that the composing is not really needed: it was just a way
of accumulating continuation segments, and not an efficient way at that. (Another motivation to
look for a new representation of continuations is the performance problem of free(er) monads,
described in §3.3.6).

We call the improved FEFree r monad Eff r, where r, as in §3.3.5, is the list of effect labels. The
request continuation – which receives the reply x and works towards the final answer a – then has
the type x → Eff r a. We define the convenient type abbreviation for such effectful functions,
that is, functions mapping a to b that also do effects denoted by r.

1 type Arr r a b = a → Eff r b

The job of the monad bind is to accumulate the request continuation, by (≪>)-composing it with
further and further Arr r a b segments. Rather than really doing the composition, we assume
it as performed, and merely accumulate the pieces being composed in a data structure. The left
Kan extension used the same ‘pretend the operation performed’ trick. The data structure has
to be heterogeneous, actually, type-aligned [61]: the Arr r a b being composed have different a
and b types, and the result type of one function must match the argument type of the next. The
type-aligned sequences enforce this invariant by construction. We chose the sequence FTCQueue of
the following interface

1 type FTCQueue (m :: × → ×) a b

2 tsingleton :: (a → m b) → FTCQueue m a b

3 (∣ >) :: FTCQueue m a x → (x → m b) → FTCQueue m a b

4 (> <) :: FTCQueue m a x → FTCQueue m x b → FTCQueue m a b

5 data ViewL m a b where

6 TOne :: (a → m b) → ViewL m a b

7 (: ∣) :: (a → m x) → (FTCQueue m x b) → ViewL m a b

8 tviewl :: FTCQueue m a b → ViewL m a b

FTCQueue m a b represents the composition of one or more functions of the general shape a → m b.
The operation tsingleton constructs a one-element sequence, (B) adds a new element at the right
edge and (><) concatenates two sequences; tviewl removes the element from the left edge. All
operations have constant or average constant running time. Our FTCQueue may be regarded as the
minimalistic version of a more general fast type-aligned queue FastTCQueue: see [61] and type-
aligned on Hackage. Thus the composition of functions (continuation segments) a → Eff r t1,
t1 → Eff r t2, …, tn → Eff r b is represented as

32 freer monads, more extensible effects

1 type Arrs r a b = FTCQueue (Eff r) a b

and the Eff r monad has the following form

1 data Eff r a where

2 Pure :: a → Eff r a

3 Impure :: Union r x → Arrs r x a → Eff r a

A composition of functions is a function itself; likewise Arrs r a b is isomorphic to the single
Arr r a b (or a → Eff r b). In one direction,

1 singleK :: Arr r a b → Arrs r a b

2 singleK = tsingleton

the conversion builds the sequence with one element. In the other direction,

1 qApp :: Arrs r b w → b → Eff r w

2 qApp q x = case tviewl q of

3 TOne k → k x

4 k : ∣ t → bind' (k x) t

5 where bind' :: Eff r a → Arrs r a b → Eff r b

6 bind' (Pure y) k = qApp k y

7 bind' (Impure u q) k = Impure u (q > < k)

The qApp operation applies the argument x to a composition of functions denoted by the sequence
Arrs r a b. To be precise, it applies x to the head of the sequence k and ‘tacks in’ the tail t (if
any) as it was. That is the performance advantage of the new representation for continuation. The
bind' operation is like monad bind (≫=) but with the continuation represented as the sequence
Arrs r a b rather than the a → Eff r b function. If the application k x runs in constant time, the
whole qApp q x takes on average constant time.

Finally, in the monad instance of Eff r

1 instance Monad (Eff r) where

2 return = Pure

3 Pure x ≫= k = k x

4 Impure u q ≫= k = Impure u (q ∣ > k)

the bind operation grows the sequence Arrs r x a of continuations by appending another segment,
k, which takes constant time.

3.4.2 Library Showcase: Defining and Interpreting Effects

We now demonstrate the extensible effects library: writing and composing effectful computations
with the Effmonad. We re-do the reader and writer example §3.3.1, §3.3.2 to show that now adding
the writer does not have to change the earlier code.

An effect is defined first by listing its requests and the corresponding reply types. For the Reader i

effect, the request merely asks for a reply of the type i.

1 data Reader i x where

2 Get :: Reader i i

The simplest client that returns the received reply is hence

1 ask :: Member (Reader i) r ⇒ Eff r i

2 ask = Impure (inj Get) (tsingleton Pure)

3.4 final result: freer and better extensible eff monad 33

Recall, tsingleton creates the singleton sequence. The following library functionmakes the sending
of requests even easier:

1 send :: Member t r ⇒ t v → Eff r v

2 send t = Impure (inj t) (tsingleton Pure)

The other Reader computations addGet and addN of §3.3.1 are expressed in terms of ask and monad
operations; their code is hence unchanged. Here they are, for the ease of reference:

1 addGet :: Member (Reader Int) r ⇒ Int → Eff r Int

2 addGet x = ask ≫= 𝜆i → return (i+x)
3
4 addN :: Member (Reader Int) r ⇒ Int → Eff r Int

5 addN n = foldl (≪>) return (replicate n addGet) 0

Their types however become more general: addN n has the Reader effect and can be used in compu-
tations that do other effects.

Interpreters of Reader requests now have to keep in mind there may be other request types, for
other interpreters to deal with. Here is the new version of runReader from §3.3.1:

1 runReader :: i → Eff (Reader i ': r) a → Eff r a

2 runReader i m = loop m where

3 loop (Pure x) = return x

4 loop (Impure u q) = case decomp u of

5 Right Get → loop $ qApp q i

6 Left u → Impure u (tsingleton (qComp q loop))

The type signature says that runReader i receives the Eff computation with the Reader i effect,
and returns the Eff computation without. The Reader i effect is thus handled, or encapsulated.
The code indeed replies to the Get request – leaving other requests for other interpreters, see the
Left u case. After that other interpreter replies, the program resumes and may make further Get
requests. That is why we append the reader interpreter loop to the reply continuation q, using the
function qComp:

1 qComp :: Arrs r a b → (Eff r b → Eff r' c) → Arr r' a c

2 qComp g h = h ∘ qApp g

The result continuation has the different list of effect labels r' since some of the effects will be
handled by the interpreter h.

The common request handling code is factored out in the following function provided by the
library:

1 handle_relay :: (a → Eff r w) →
2 (∀∀∀ v. t v → Arr r v w → Eff r w) →
3 Eff (t ': r) a → Eff r w

4 handle_relay ret _ (Pure x) = ret x

5 handle_relay ret h (Impure u q) = case decomp u of

6 Right x → h x k

7 Left u → Impure u (tsingleton k)

8 where k = qComp q (handle_relay ret h)

The first two arguments of handle_relay are like return and bind. The reader interpreter can be
thus written simply as

1 runReader i = handle_relay return (𝜆Get k → k i)

34 freer monads, more extensible effects

The last part of handle_relay’s signature, Eff (t ': r) a → Eff r w, shows that the label t of
the handled effect must be at the top of the list of effect labels r. Whereas effectful functions like
addN above or rdwr below regard r truly as a set of effect labels, with no particular order, handlers
impose the order. This fact is noticeable already in the interface of Union in §3.3.5: in the signatures
of inj and prj, effects are represented by the type variable r, with a Member constraint. On the other
hand, decomp takes the collection of effects to be specifically a list, with the projected effect t at its
head. In our experience so far, this imposition of order by the handlers has not been a problem.
It is theoretically unsatisfying. Although we could avoid it by playing with Constraint types, the
required type annotations made the result impractical. Unfortunately, there does not seem to be any
convenient way in Haskell to discharge one type class constraint by submitting the corresponding
dictionary. (Implicit parameters do come very close.)

To run the Eff computation after all effects have been handled by the corresponding interpreters,
the library provides

1 run :: Eff '[] a → a

2 run (Pure x) = x

The Impure case is unreachable since Union '[] a has no (non-bottom) values. Thus we run
addGet 1 as

1 run ∘ runReader 10 $ addGet 1

Let us add the writer effect, of telling the context the value of type o:

1 data Writer o x where

2 Put :: o → Writer o ()

3
4 tell :: Member (Writer o) r ⇒ o → Eff r ()

5 tell o = send $ Put o

The type of tell lets it be combined in any effectful computation with the Writer o effect. Here is
a sample combined reader-writer computation

1 −− rdwr :: (Member (Reader Int) r, Member (Writer String) r)

2 −− ⇒ Eff r Int

3 rdwr = do{ tell "begin"; r ← addN 10; tell "end"; return r }

whose inferred type is shown in the comments. Because the type of addN is polymorphic in r, we
could use addN as it was in a computation with more effects (and similarly, for tell).

In §3.3.2, the interpreter for Reader-Writer computations was the monolithic runRdWriter, which
handled both types of requests. Now we can interpret only the Writer requests

1 runWriter :: Eff (Writer o ': r) a → Eff r (a,[o])

2 runWriter =

3 handle_relay (𝜆x → return (x,[]))

4 (𝜆(Put o) k → k () ≫= 𝜆(x,l) → return (x,o:l))

and literally compose it with the previously written runReader. The sample reader-writer computa-
tion rdwr is thus run as

1 (run ∘ runReader 10 ∘ runWriter) rdwr

Since the reader and writer effects commute, the order of the interpreters can be switched without
affecting the result.

One may write other reader and writer interpreters, for example, handling Reader and Writer
requests together; the value last told becomes the value to give on the next Reader request. We thus

3.4 final result: freer and better extensible eff monad 35

implement State, by decomposing it into the reading and mutating parts. It becomes easier to tell,
just from their inferred type, which parts of the computation mutate the state.

1 runStateR :: Eff (Writer s ': Reader s ': r) w → s → Eff r (w,s)

2 runStateR m s = loop s m where

3 loop :: s → Eff (Writer s ': Reader s ': r) w → Eff r (w,s)

4 loop s (Pure x) = return (x,s)

5 loop s (Impure u q) = case decomp u of

6 Right (Put o) → k o ()

7 Left u → case decomp u of

8 Right Get → k s s

9 Left u → Impure u (tsingleton (k s))

10 where k s = qComp q (loop s)

3.4.3 Improved Performance

This section re-analyses the performance of the freer monad after changing the representation of
the request continuation, on the problematic example from §3.3.6. As before, addN 3 evaluates to

1 (((return ≪> addGet) ≪> addGet) ≪> addGet) 0

and then to

1 ((Impure (inj Get) [return ∘ (+0)]) ≫= addGet) ≫= addGet

The two evaluations of bind produce the request

1 Impure (inj Get) [return (+0), addGet, addGet]

(where we used the list notation for the type-aligned sequence for clarity). So far, the process and its
result seem similar to that for the non-optimised monad in §3.3.5. The fact that the continuation of
the Get request is now represented as an efficient sequence makes the difference. When a runReader
interpreter replies, say, with the value v1, it does the following operations that eventually produce
a new request. For emphasis we denote as t the tail of the request continuation (in our example, t
is the singleton sequence [addGet]):

1 qApp (return (+0) : addGet : t) v1

2 ⟹ return v1 `bind'` (addGet : t)

3 ⟹ addGet v1 `bind'` t

4 ⟹ Impure (inj Get) (return (+v1) : t)

The above reduction sequence has dealt only with the two head elements of the entire continuation
of the original request. The tail t was merely passed around and not even looked at. Furthermore,
all FTCQueue operations involving t such as concatenation, etc., were constant-time. Therefore, the
entire sequence of reductions above runs in time independent of the length of t. The run-time of the
entire addN n computation is thus linear in n. Compared with the previous version §3.3.5, we obtain
the algorithmic improvement in performance, from quadratic to linear. The key to the performance
is the ability to look at and remove initial segments from the accumulated request continuation. If
the continuation is represented as a composition of functions, we cannot ‘uncompose‘ them – but
we can deconstruct a data structure.

36 freer monads, more extensible effects

3.5 performance evaluation

This section reports on several micro-benchmarks used to evaluate the performance of extensible
effects (EE) relative to monad transformer library MTL, Kammar’s et al. “Handlers in action (HIA)”
[38] and the old version of EE presented in [42].

The benchmark code was compiled with GHC 7.8.3 with the flag −threaded −O −rtsopts. We
ran the benchmark on an Intel Core i7 (2.8GHz) laptopwith 16GB of RAM. The Criterion framework
was used to report the run-time.

3.5.1 Deep-monad-stack Benchmarks

First, we ran two benchmark computations with many effects (deep monad stacks). These bench-
marks do a simple stateful computation with many Reader layers under or over the target State
layer. The core State computation is as follows:

1 benchS ns = foldM f 1 ns where

2 f acc x ∣ x `mod` 5 = 0 = do

3 s ← get

4 put $! (s+1::ℤ)

5 return $! max acc x

6 f acc x = return $! max acc x

Strictness annotations are to avoid space leaks.
Figure 3.1 shows the results. If we add the extra Reader layers under the State (the top of Fig.3.1),

EE runs in constant time, while the MTL version takes linear time in the number of layers. Our EE
is about 12% faster than HIA, and 40% faster than the old EE. If the State layer is at the bottom
of the monad stack (the bottom of Fig.3.1) the run-time of HIA and EE versions is linear in the
number of layers, whereas MTL and the old EE are quadratic. The results confirm the analyses
of performance in §3.3.6 and §3.4.3: the EE library presented in this paper indeed algorithmically
improves the performance over the old version – as well over MTL for deep monad stacks. The
overhead of MTL can indeed be severe for deep stacks. We also see that EE is competitive with HIA.

Monad Stack Depth and Memory Consumption

We also evaluated the memory efficiency of the two deep-monad-stack benchmarks by taking the
memory profile, using GHC with RTS options −N2 −prof −p −N2 −p −hm. Figure 3.2 shows the
result.

Adding Reader layers under the State layer (the top of Fig.3.2) affects the memory consumption
of effect libraries (EE and HIA) very little. The memory use does increase linearly with the number
of layers, but by such a small amount that it is very difficult to see in the figure. In contrast, the
amount of allocated memory for MTL is quadratic in the number of layers, and is quite large
compared to the effect libraries. If we add Reader over the State layer (the bottom of Fig.3.2), the
linear increase in allocated memory for effect libraries becomes quite more noticeable. The MTL
memory use is again quadratic in the number of layers. The results confirm our expectation of the
memory efficiency of the EE library presented in this paper.

3.5.2 Single-effect Benchmark

We have just seen that EE can overcome the overhead of handling very many effects. To see how
EE and MTL compare for a single effect, we ran a simpler benchmark, with the single State or the
single Error effect (table 3.1).

3.5 performance evaluation 37

0 1 2 3 4

1

1.5

2

of Reader layers under the State

Ti
m
e
(s
ec

)

State layer at the top

MTL
HIA

Old EE
EE

Inlined EE

0 2 4 6 8

1

1.5

2

2.5

3

of Reader layers over State

Ti
m
e
(s
ec

)

State layer at the bottom

MTL
HIA

Old EE
EE

Inlined EE

Figure 3.1: Runtime in seconds for MTL, HIA, Old EE, EE and Inlined EE. 𝑥-axis corresponds to the number
of Reader layers under (top) or over (bottom) the target State layer.

The single State benchmark counts down from 10, 000, 000 to 0, using the State monad. The EE
version is much slower than the MTL and HIA, 30 and 60 times correspondingly. This is because
the State monad enjoys the preferential treatment by GHC, with dedicated optimisation passes.
Likewise, GHC is very good at optimising simple CPS code employed in simple instances of HIA.
Thus for the single State effect, our EE approach is not so suitable. The new library is still noticeably
faster than the original EE version two years ago.

In contrast, for the Error monad EE and MTL have almost the same performance and notably,
three times, faster than HIA and the old approach. The Error benchmark takes the product of
10, 000, 000 copies of 1 and 0, raising a exception when the zero factor is found.

Thus for the single or few-layered monadic computations, EE can compete with individual single
specialised monads in general, but for some monads, like State, it runs much more slowly.

38 freer monads, more extensible effects

1 2 3 4 5

2

2.5

3

⋅105

of Reader layers under the State

To
ta
la

llo
c
(b

yt
es

)

State layer at the top

MTL
HIA

Old EE
EE

Inlined EE

1 2 3 4 5 6 7

2

3

4

⋅105

of Reader layers over State

To
ta
la

llo
c
(b

yt
es

)

State layer at the bottom

MTL
HIA

Old EE
EE

Inlined EE

Figure 3.2: Total allocation in 105 bytes for MTL, HIA, Old EE, EE and Inlined EE. 𝑥-axis corresponds to the
number of Reader layers under (top) or over (bottom) the target State layer.

3.5.3 Non-determinism Benchmarks

We have run another series of benchmarks, for the non-determinism effect, to be discussed in detail
in §3.6.

The first benchmark (the top of Fig.3.3) searches for Pythagorean triples up to the given bound
with non-deterministic brute-force:

1 iota k n = if k > n then mzero else return k `mplus` iota (k+1) n

2
3 pyth1 :: MonadPlus m ⇒ Int → m (Int, Int, Int)

4 pyth1 upbound = do

5 x ← iota 1 upbound

6 y ← iota 1 upbound

7 z ← iota 1 upbound

8 if x×x + y×y = z×z then return (x,y,z) else mzero

3.5 performance evaluation 39

Table 3.1: A simple benchmark with a single layer (msec).

pure MTL HIA Old EE EE Inlined EE
State - 15.2 7.16 840 579 488
Error 46.4 218 648 644 204 216

For the MTL version, we use the continuation monad transformer ContT. The result shows that our
EE is much faster than old EE, but slightly slower than MTL and HIA. We should stress that our EE
library, unlike HIA and MTL, implements the more general LogicT effect: non-determinism with
committed choice.

The next benchmark adds to the previous one counting of the all attempted choices, using the
State effect. The result at the bottom of Figure 3.3 shows that our EE approach is faster than the
other alternatives.

The results confirm the good performance of EE, also for more complicated computations with
many layers of effects.

3.5.4 Comparison with “Fusion for Free”

Very recently, Wu and Schrijvers [68] introduced the “Fusion for Free” approach for algebraic event
handlers. Since their implementation is not yet published as a library, we will briefly compare
performance in a qualitative manner. Specifically, we ran the benchmarks count_1 and count_2

from [68] for MTL, EE and Inlined EE. The result is shown in Table 3.2.

Table 3.2: Runtime in milliseconds for Counting benchmarks from Wu and Schrijvers [68]

MTL EE Inlined
count_1 103 0.000694 0.0592 0.0488

104 0.00692 0.593 0.489
105 0.0689 5.87 4.81

count_2 103 0.202 0.306 0.287
(Writer 104 4.84 6.40 6.51
bottom) 105 54.4 84.7 80.8

count_2 103 0.0859 0.345 0.316
(Writer 104 2.85 6.57 6.67

top) 105 37.3 85.2 84.2

Here, count_1 is the single State-effect benchmark, counting down in the State monad, similar
to our benchmark in §3.5.2. This is the singular most unfavourable case for EE compared to MTL,
since GHC has several optimisations that benefit the MTL State monad. The table shows that
in all the cases, the run-time increases with the count not just linearly but proportionally. This
qualitatively reproduces the behaviour reported by Wu and Schrijvers in [68].

The next count_2 benchmark counts down using State, and also logs every intermediate value
in the Writer monad. Wu and Schrijvers did not indicate which layer is on top, so we ran both
cases, which proved to make little difference for EE (in contrast to MTL, however). The run-times
again seem linear, but not proportional. In [68], the run-time of “Fusion” is proportional. Although

40 freer monads, more extensible effects

50 100 150 200

0

2

4

6

Search Range

Ti
m
e
(s
ec

)

Simple Pythagorean Triples Search

MTL
HIA

Old EE
EE

Inlined EE

50 100 150 200

0

5

10

Search Range

Ti
m
e
(s
ec

)

Pythagorean Triples Search with Counting

MTL
HIA

Old EE
EE

Inlined EE

Figure 3.3: Runtime in seconds for MTL, HIA, Old EE, EE and Inlined EE. 𝑥-axis corresponds to the search
range for Pythagorean triples.

the qualitative behaviour again seems similar, quantitative comparison is clearly needed. We defer
it to future work, when the code for [68] becomes available.

3.5.5 Inlining of Key Functions

The key functions of the EE library such as handle described in §3.4, contain a recursive reference
but not a recursive invocation. These functions are hence safe to inline. To see if it makes any
difference we added the INLINEABLE pragma for these functions. The pragma had almost no effect.
The performance has improved slightly only when we inlined tviewl into qApp by hand (these
functions are defined in different modules).

3.6 non-determinism with committed choice

Non-determinism, with its inherent balancing of several continuations, may seem impossible to
express as a freer monad, which explicitly deals with a single continuation. This section shows that

3.6 non-determinism with committed choice 41

not only the Eff monad can represent non-deterministic choice, but also that the representation
preserves the sharing of continuations, lost in the standard free monad approach.

Free monad models non-determinism with the following request functor:

1 data Ndet x = MZero ∣ MPlus x x

2 instance Functor Ndet where ...

MZero, like an exception, requests abandoning the current line of computation as unsuccessful;
MPlus asks the context to choose between the two Ndet computations. This request signature
comes straight from the interface for non-deterministic computations in Haskell: MonadPlus or
Alternative:

1 instance MonadPlus (Free Ndet) where

2 mzero = Impure MZero

3 mplus m1 m2 = Impure $ MPlus m1 m2

The MPlus constructor has two continuation arguments. How are we going to separate them
into the single continuation argument of FFree? Let us consider the non-deterministic choice in
context:

1 (mplus m1 m2 ≫= k1) ≫= k2

2 {The bind of the Free monad}

3 ⟹ Impure (fmap (≫= k1) (MPlus m1 m2) ≫= k2

4 {The fmap from the derived Functor instance}

5 ⟹ Impure (MPlus (m1 ≫= k1) (m2 ≫= k1)) ≫= k2

6 {Repeating for k2}

7 ⟹ Impure (MPlus ((m1 ≫= k1) ≫= k2) ((m2 ≫= k1) ≫= k2))

That is, the two continuations collected by MPlus in fact have the common k1, k2 suffix. That suffix,
albeit common, is not shared: although the two MPlus continuations share the common segments,
they are independently composed. It is this common suffix that the freer monad will factor out and
share.

After the common continuation suffix is separated out, what remains of MPlus is the request
to the context to pick and return one of the two choices. There is no need to include the choices
themselves in the request then. Hence in the Eff framework, the non-determinism effect has the
following signature:

1 data NdetEff a where

2 MZero :: NdetEff a

3 MPlus :: NdetEff Bool

4
5 instance Member NdetEff r ⇒ MonadPlus (Eff r) where

6 mzero = send MZero

7 mplus m1 m2 = send MPlus ≫= 𝜆x → if x then m1 else m2

To complete the implementation, we add an interpreter, such as the following, mapping the NdetEff
-effect non-determinism to Alternative:

1 makeChoiceA :: Alternative f ⇒
2 Eff (NdetEff ': r) a → Eff r (f a)

3 makeChoiceA = handle_relay (return ∘ pure) $ 𝜆m k → case m of

4 MZero → return empty

5 MPlus → liftM2 (< ∣ >) (k True) (k False)

42 freer monads, more extensible effects

One may recognise in this code the “flip oracle” of [15, §3], which non-deterministically returns a
boolean value. Just as Danvy and Filinski’s code, we are capturing the context of mplus, represented
as k above, and plugging first True and then False into the very same context.

The advantage of NdetEff over Alternative is not only the ability to mix NdetEff with other
(non-applicative) effects, for example, State. It also supports the so-called “committed choice” [59],
such as logical “if-then-else” (called “soft-cut” in Prolog):

1 ifte :: Member NdetEff r ⇒
2 Eff r a → (a → Eff r b) → Eff r b → Eff r b

Declaratively, ifte t th el is equivalent to t ≫= th if the non-deterministic computation t suc-
ceeds at least once. Otherwise, ifte t th el is equivalent to el. The difference between ifte t

th el and the seemingly equivalent (t ≫= th) `mplus` el is that in the latter el is a valid choice
even if t succeeds. In the former, el is chosen if and only if t is the total failure. One of the examples
of ifte is the many parser combinator with ‘maximal munch’: many p should keep applying the
argument parser p for as long as it succeeds. The following is another, easier to explain albeit more
contrived, example: computing primes

1 test_ifte = do

2 n ← gen

3 ifte (do d ← gen

4 guard $ d < n && n `mod` d = 0)

5 (𝜆_ → mzero)

6 (return n)

7 where gen = msum ∘ fmap return $ [2..30]

8 msum :: MonadPlus m ⇒ [m a] → m a −− choose one from a list

Here gen non-deterministically produces a candidate prime and a candidate divisor. The prime
candidate is accepted if all attempts to divide it fail. For example,

1 test_ifte_run :: [Int]

2 test_ifte_run = run ∘ makeChoiceA $ test_ifte

3 −− [2,3,5,7,11,13,17,19,23,29]

gives the result shown in the comment.
We actually implement not just ifte but the general

1 msplit :: Member NdetEff r ⇒
2 Eff r a → Eff r (Maybe (a, Eff r a))

which expresses all other committed choice operations [45]. One may think of msplit as “inspect-
ing” the argument computation, to see if it can succeed. If a computation gives an answer, it is
returned along with the computation that may produce further answers. The implementation is so
straightforward and small that it can be listed in its entirety:

1 msplit = loop [] where

2 loop jq (Pure x) = return (Just (x, msum jq))

3 loop jq (Impure u q) = case prj u of

4 −− The current choice fails (requested abort)

5 Just MZero → case jq of

6 −− check if there are other choices

7 [] → return Nothing

8 (j:jq) → loop jq j

9 Just MPlus → loop ((qApp q False):jq) (qApp q True)

10 _ → Impure u (tsingleton k) where k = qComp q (loop jq)

3.7 catching io exceptions 43

In words, msplit t intercepts the NdetEff requests of t. If t asks to choose, MPlus, one choice is
pursued immediately and the other is saved in the work list jq of possible choices. The function
finishes when the watched computation succeeds (the worklist is the collection of the remaining
choices then) or when all possible choices failed.

We have demonstrated the most straightforward Eff implementation of not just non-determinism
but non-determinism with committed choice (or, LogicT) [45].

3.7 catching io exceptions

Handling IO errors in the presence of other effects abounds in subtleties. It was also thought to
be a challenge for the Eff library. Not only has Eff met the challenge, it improves on MTL. With
extensible effects, the state of the computation at the point of an exception is available to the handler.
In MTL, an exception handler only has access to the state that existed at the point where it was
installed (that is, catch was entered). Any further changes, up to the point of the exception, are
lost.

Capturing IO errors in general MonadIO computations (not just the bare IO monad) has been a
fairly frequently requested feature, going back to 20034. An early approach5 has been improved and
polished through many packages (such as MonadCatchIO) and eventually de facto standardised in
exceptions . The solution, although very useful in many circumstances is not without problems.
For example, consider the following computation with the Writer and IO effects

1 do tell "begin"; r ←faultyFn; tell "end"; return r

2 `catch` (𝜆e → return ∘ show $ (e::SomeException))

where faultyFn throws an IO or a user-defined dynamic exception. With MTL, any Writer updates
that happened after catch up to the point of the exception are lost. That is, after the above code
finishes the accumulated trace has neither “end” nor “begin”. Such a transactional semantics is
useful – but not when the Writer is meant to accumulate the debug trace. Alas, MTL does not give
us the easy choice.

To understand the MTL behaviour, recall that its WriterT String IO amonad is IO (a,String):
it is the computation that produces the value a along with the contribution to the writer string. The
catch is implemented as (see liftCatch in mtl).

1 catch h m = m `IO.catch` 𝜆e → h e

When an IO exception is raised, the value produced by m, including its Writer contribution, is lost.
MTL’s liftCatch for the State monad has the similar behaviour of discarding the state accumulated
since the catch is entered. In general, effect interaction in MTL depends on the order of the
transformer layers; the IO monad is not a transformer however and must always be at the bottom of
the stack.

If we execute the same code with the extensible-effect IO error handling 6 the trace accumulated
by the writer of course has no "end" but it does have "begin". Here is the whole code for catching
IO exceptions

1 catchDynE :: ∀∀∀ e a r.

2 (MemberU2 Lift (Lift IO) r, Exc.Exception e) ⇒
3 Eff r a → (e → Eff r a) → Eff r a

4 catchDynE m eh = interpose return h m

4 http://www.haskell.org/pipermail/glasgow-haskell-users/2003-September/005660.html http://haskell.org/

pipermail/libraries/2003-February/000774.html

5 http://okmij.org/ftp/Haskell/misc.html#catch-MonadIO

6 http://okmij.org/ftp/Haskell/extensible/EffDynCatch.hs

http://www.haskell.org/pipermail/glasgow-haskell-users/2003-September/005660.html
http://haskell.org/pipermail/libraries/2003-February/000774.html
http://haskell.org/pipermail/libraries/2003-February/000774.html
http://okmij.org/ftp/Haskell/misc.html#catch-MonadIO
http://okmij.org/ftp/Haskell/extensible/EffDynCatch.hs

44 freer monads, more extensible effects

5 where

6 h :: Lift IO v → Arr r v a → Eff r a

7 h (Lift em) k = lift (Exc.try em) ≫= 𝜆x → case x of

8 Right x → k x

9 Left e → eh e

In the extensible effects library, IO computations are requested with the Lift IO effect

1 newtype Lift m a = Lift (m a)

whose interpreter

1 runLift :: Monad m ⇒ Eff '[Lift m] w → m w

is necessarily the last one, which is signified by the special MemberU2 Lift (Lift IO) r constraint.
The library function interpose is a version of handle_relay that does not consider an effect handled
although it does reply to its requests: interpose may also ‘re-throw’ effect’s request. The function
catchDynE intercepts IO requests to wrap them into the Exception.try to reify possible exceptions.
Therefore, IO errors are instantly caught and do not immediately discard their continuation. The
effect handlers in scope and their state are thus preserved.

We can also easily implement transactional behaviour: an exception rolling-back the state to what
it was when the exception handler was installed; see the source code for details.

3.8 regions

Monadic Regions were introduced by Fluet and Morrisett [19] as a surprisingly simple version
of the type-safe region memory management system. It may be thought of as a nested ST monad
while also allowing reference cells allocated in a parent region to be used, relatively hassle-free, in
any child region. Lightweight monadic regions [44] is the Haskell implementation of the extended
version of Fluet and Morrisett’s system, which was applied to IO resources such as file handles
rather than memory cells, and is simpler to use. Lightweight regions statically ensure that every
accessible file handle is open, while providing timely closing. The original Monadic Regions used
an atomic monad, indexed by a unique region name; the lightweight version was built by iterating
an ST-like monad transformer. Extensible effects, with its atomic Eff monad indexed by effects
tempted one to re-implement lightweight regions closer to Fluet and Morrisett’s original style
while still avoiding the inconvenience of passing around parent-child–relationship witnesses. This
challenge was set as future work in [42].

Implementing monadic regions with extensible effects was certainly a challenge. To ensure
that an allocated resource such as a memory cell or a file handle do not escape from their region,
Monadic Regions – like the ST smonad – mark the types of the computation and its resources with
a quantified (or rigid, in GHC parlance) type variable. Defining Typeable instances for such types
was the first challenge. More worrisome, any type-level programming with types that include rigid
variables never meant to be instantiated is fragile. Sometimes, incoherent instances [5] are needed,
which is a rather worrisome extension that we are keen to avoid. Finally, lightweight monadic
regions, although based on monad transformers, intentionally prohibited any lifting and hence the
addition of other effects. Exceptions and non-determinism are clearly incompatible with the region
discipline. On the other hand, State and Reader are benign and should be allowed.

All these challenges have been met7. Below we describe the salient points of the implementation.
Since the new version of extensible effects no longer uses Typeable, the first challenge disappears.

The second one was difficult indeed. The most straightforward realisation of Fluet and Morrisett’s

7 http://okmij.org/ftp/Haskell/extensible/EffRegion.hs http://okmij.org/ftp/Haskell/extensible/

EffRegionTest.hs

http://okmij.org/ftp/Haskell/extensible/EffRegion.hs
http://okmij.org/ftp/Haskell/extensible/EffRegionTest.hs
http://okmij.org/ftp/Haskell/extensible/EffRegionTest.hs

3.8 regions 45

idea is to provide a RegionEff s effect indexed by the rigid type variable s taken to be the name of
the region. File handles allocated within the region will be marked by that region’s name:

1 newtype SHandle s = SHandle Handle

2 data RegionEff s a where

3 RENew :: FilePath → IOMode → RegionEff s (SHandle s)

The data constructors are private and not exported. (The actual implementation is a bit more
complex because it supports bequeathing of file handles to an ancestor region, see [44] for more
discussion.)

The operation to allocate the new file handle will send a RENew request and obtain the handle
marked with the region’s name.

1 newSHandle :: Member (RegionEff s) r ⇒ −− simplified

2 FilePath → IOMode → Eff r (SHandle s)

3 newSHandle fname fmode = send (RENew fname fmode)

The list of constraints is a bit simplified, omitting the type-level computation that scans the list of
effect labels r and finds the name of the closest, that is, innermost, region. The interpreter of the
requests

1 newRgn :: (∀∀∀ s. Eff (RegionEff s ': r) a) → Eff r a

like runST, has higher-rank type: informally, it allocates a fresh rigid type variable s, the fresh name
for the region. The interpreter keeps the list of handles it was asked to allocate, closing all of them
upon normal or exceptional exit. An operation using the handle has the type

1 shGetLine :: Member (RegionEff s) r ⇒
2 SHandle s → Eff r String

that enforces that the region named s owning the handle is active: its name is among the current
effect labels r. Incidentally, the signature automatically allows the handle allocated in any ancestor
region to be used in a child region.

The outlined implementation indeed works, save for two subtleties. It is indeed tempting to
think of the rigid type variable s as the name for the region RegionEff s. Alas, the ever-present
Member (RegionEff s) r constraint, checking that the RegionEff s effect is part of the current
effect list r, cannot distinguish two types RegionEff s1 and RegionEff s2 that differ only in the
rigid type variable. Although these variables will never be instantiated and hence never can be the
same, the constraint-solving part of GHC does not know or understand this fact. Therefore, we have
to give regions another name, a type-level numeral, which the constraint-solver can distinguish.
Therefore, the signatures of newSHandle and newRgn (but not shGetline, etc) are slightly more
complex than shown.

The second subtlety is allowing other effects besides RegionEff. Since all possible effects of a
Eff r computation are listed in r, we merely need to look through the list to check if the effect is
known to be benign. The implementation provides such SafeForRegion constraint, treating Reader

and State as safe8. Exc SomeException is also allowed since newRgn specifically listens for this
request.

The rest of the implementation is straightforward. It passes the old Lightweight Regions regres-
sion tests with minimal modifications.

8 Since the user may write their own interpreter, they may well treat Reader as an exception, which is not safe. We may
prevent such a behaviour by not exporting the data constructor for the Reader request.

46 freer monads, more extensible effects

3.9 related work

The library of extensible effects reported in this paper is the simplification and improvement of
the library presented two years ago [42]. Eff was a co-density-transformed free monad – which
was not made clear in that paper. The co-density transform is regarded as an optimisation – alas,
it does not work for modular interpreters, which have to reflect the continuation when relaying a
request to another handler. The incompatibility of reflection with the co-density optimisation was
described in detail in [61]. We now use the simpler and quite better performing Freer monad with
type-aligned sequences. The new Eff also uses the new implementation of open unions without
the objectionable features: Typeable and overlapping instances. The applications described in
§§3.6,3.7,3.8 are also new, for extensible effects.

One of the most common questions about Extensible Effects is their relation to Swierstra’s well-
known “Data types à la carte” [67]. Similarities are indeed striking: free monads, open unions,
‘modular’ monads leading to a type-and-effect system. Although the à la carte approach provides
extensible monad type, it does not provide modular interpreters with modular effects and hence
effect encapsulation. Related to the lack of composability are problemswith type inference, requiring
cumbersome and what should be unnecessary annotations. (The ambiguity in the definition
of the subsumption relation on collection of types, which caused the inference problems, has
been rooted out in the novel approach by [3].) See http://okmij.org/ftp/Haskell/extensible/
extensible-a-la-carte.html for a detailed comparison with the old Eff library. The present
paper moves past the free monad to freer monad.

In comparison with monad transformers, the interaction of effects in Eff depends not on the
statically fixed order of transformers but on the order of effect interpreters and can even be adjusted
dynamically (by interpreters that listen to and intercept other requests). See [42] for more extensive
comparison with MTL. That paper relates Eff with other effect systems known at that time. In the
following we compare Eff with the systems introduced since.

The effect system of Idris [7] is an implementation of algebraic effects in the dependently-typed
setting. The paper [7] introduces a domain-specific language – a notation – for describing effectful
computations and demonstrates the easy combination of effects. The handlers are specifies as
instances of a type class. The effect order is globally fixed and effects are interpreted essentially
at the top level; there is no encapsulation of effects. The paper makes an excellent case that effect
handlers provide a more flexible and cleaner alternative to monad transformers. We disagree
about limitations: as we show in our implementation, the effect approach is more, rather than less
expressive than monad transformers.

The closely related to our work is Kammar’s et al. “Handlers in action” [38]. Whereas our library
manages sets of effects using both type-level constraints and type-level lists, Kammar et al. rely
only on type-class constraints. Constraints truly represent an unordered set. Using constraints
exclusively however requires all effect handler definitions be top-level since Haskell does not
support local type class instances. Handlers in Action rely on Template Haskell to avoid much
of the inconvenience of type-class encoding and provide a pliable user interface. The provided
library has excellent performance, which can also been seen from our benchmarks in §3.5. The use
of Template Haskell however significantly hinders the practical use of Handlers in Action. The
present paper demonstrates that many of Kammar’s et al. benefits can be attained in a simple to
develop and to use library, staying entirely within Haskell.

The freer or freer-like monads have already appeared before, yet connecting all the dots took long
time. The origins of freer monads can be traced to the pioneering work of Hughes [29], Claessen
[9] and Hinze [27], who introduced and explained the term representation of effectful monadic
computations. That representation was fully developed in the monad construction toolkit Unimo
[50]:

1 data Unimo r a =

http://okmij.org/ftp/Haskell/extensible/extensible-a-la-carte.html
http://okmij.org/ftp/Haskell/extensible/extensible-a-la-carte.html

3.9 related work 47

2 Unit a

3 ∣ Effect (r (Unimo r) a)

4 ∣ ∀∀∀ b. Bind (Unimo r b) (b → Unimo r a)

It is quite close to FFree of §3.3.4, in particular, the Bind constructor whose second argument accu-
mulates the continuation. Dedicating a variant Effect for effect requests proved to be a drawback,
requiring the interpreter of Unimo r a monad to deal with two separate but very similar cases:
Effect e and Bind (Effect e) k. One can think of free monads as eliminating this boilerplate –
and throwing away the explicit continuation argument in the process. Our FFree brings the explicit
continuation back. Unimo aimed to provide extensibility by emulating monad transformers. The
Operational tutorial [1] introduces

1 data Program instr a where

2 Then :: instr a → (a → Program instr b) → Program instr b

3 Return :: a → Program instr a

which is exactly like our FFree. The tutorial correctly observed that Program instr is a monad
(although without proof). Alas the paper mis-characterised Program as a GADT (it is not: it is a
mere existential data type in GADT notation) and has not made the connection with the free monad.
It is this connection that proves that Program instr really is a monad. More recently, Kammar’s et
al. also came within an inch of the freer monad: [38, Figure 5] contains the following definition

1 data Comp h a where

2 Ret :: a → Comp h a

3 Do :: (h `Handles` op) e ⇒
4 op e u → (Return (op e u) → Comp h a) → Comp h a

where Return is a type family and Handles is a three-parameter type class. It is very, very similar to
FFree of §3.3.4, but with constraints. The very similar data type, also with the constraints, appears
in [64] as the data type NM ctx t a for constrained monad computations. Handlers in Action did
not seem to have recognised that removing all the constraints gives a new algebraic data structure
that is a monad by construction. The paper describes Comp in the traditional way: “the monad
Comp h, which is simply a free monad over the functor defined by those operations op that are
handled by h (i.e. such that (h ‘Handles ‘ op) e is defined for some type e)”. FFree in §3.3.4
requires no functors and has no constraints or preconditions; it is a monad, period.

The papers [1] and [38] have noted the performance problem of free monads and attempted to
overcome it with some sort of continuation passing – which works only up to the (reflection) point,
as explained in [61]. The latter paper, which introduced type-aligned sequences, also applied them
to speed up free monads. The implementation was quite complex, with the mutually recursive
FreeMonad and FreeMonadView. It tried hard to fit the type-aligned sequences into the traditional free
monads, rather than overcoming them. The main lesson of that paper – representing a conceptual
sequence of binds as an efficient data structure – is expressed most clear in the new Eff monad in
§3.4.

The recent ‘Handlers in scope’ [69] gives the more traditional introduction of extensible effects
based on Data types à la carte. It also introduces the notion of a handler scope and two ways to
support it. The underlying idea seems to be to run an effectful computation at the place of its
handler, so to speak. The detailed investigation of the notion of scope deserves its own paper.

Compared to the right Kan extensions, left Kan extensions seem to have found so far fewer
applications in functional programming. A notable application is Johann and Ghani’s [36], which
used a specific form of left Kan extension (only with the equality GADTs) to develop the initial
algebra semantics for GADTs.

48 freer monads, more extensible effects

3.10 conclusions

We have rationally reconstructed the simplified and more efficient version of the extensible effects
library and illustrated it with three new challenging applications: non-determinism, handling
IO errors in the presence of other effects, and monadic regions. The new library is based on the
freer monad, a more general and more efficient version of the traditional free monads. To improve
efficiency we systematically applied the lesson of the left Kan extension: instead of performing an
operation, record the operands in the data structure and pretend it done.

The ambition is for Eff to be the only monad in Haskell. Rather than defining new monads
programmers will be defining new effects, that is, effect interpreters.

This work was partially supported by JSPS KAKENHI Grants 22300005, 25540001, 15H02681.

4
A PURELY FUNCT IONAL COMPUTER ALGEBRA SYSTEM EMBEDDED IN
HASKELL1

We demonstrate how methods in Functional Programming can be used to implement a computer
algebra system. As a proof-of-concept, we present the computational-algebra package. It is a
computer algebra system implemented as an embedded domain-specific language in Haskell, a
purely functional programming language. Utilising methods in functional programming and
prominent features of Haskell, this library achieves safety, composability, and correctness at the
same time. To demonstrate the advantages of our approach, we have implemented advanced
Gröbner basis algorithms, such as Faugère’s 𝐹4 and 𝐹5, in a composable way.

4.1 introduction

In the last few decades, the area of computer algebra has grown larger. Many algorithms have been
proposed, and there have emerged plenty of computer algebra systems. Such systems must achieve
correctness, composability and safety so that one can implement and examine new algorithms within
them. More specifically, we want to achieve the following goals:

composability means that users can easily implement algorithms or mathematical objects so that
they work seamlessly with existing features.

safety prevents users and implementors from writing “wrong” code. For example, elements
in different rings, e.g. ℚ[𝑥, 𝑦, 𝑧] and ℚ[𝑤, 𝑥, 𝑦], should be treated differently and must not
directly be added. Also, it is convenient to have handy ways to convert, inject, or coerce such
values.

correctness of algorithms, with respect to prescribed formal specifications, should be guaranteed
with a high assurance.

We apply methods in the area of functional programming to achieve these goals. As a proof-of-
concept, we present the computational-algebra package [33]. It is implemented as an embedded
domain-specific language in the Haskell Language [25]. More precisely, we adopt the Glasgow
Haskell Compiler (GHC) [21] as our hosting language. We use GHC because: its type-system allows
us to build a safe and composable interface for computer algebra; lazy evaluation enables us to treat
infinite objects intuitively; declarative style sometimes reduces a burden of writing mathematical
programs; purity permits a wide range of equational optimisation; and there is a plenty of libraries
for functional methods, especially property-based testing. These methods are not widely adopted in
this area; an exception is DoCon [56], a pioneering work combining Haskell and computer algebra.
Our system is designed with more emphasis on safety and correctness than DoCon, adding more

1 The contents of this chapter is based on the following article: H. Ishii. A Purely Functional Computer Algebra System
Embedded in Haskell. Computer Algebra in Scientific Computing – 20th International Workshop, CASC 2018, 288–303,
August 2018 [32]. © Springer Nature Switzerland AG 2018. The final publication is available on SpringerLink with
doi: 10.1007/978-3-319-99639-4_20.

49

https://doi.org/10.1007/978-3-319-99639-4_20

50 a purely functional computer algebra system embedded in haskell

ingredients. Although we use a functional language, some methods in this paper are applicable in
imperative languages.

This paper is organised as follows. In Section 4.2, we discuss how the progressive type-system
of GHC enables us to build a safe and expressive type-system for a computer algebra. Then, in
Section 4.4, we see how themethod of property-based testing can be applied to verify the correctness of
algebraic programs in a lightweight and top-downmanner. To demonstrate the practical advantages
of Haskell, Section 4.5 gives a brief description of the current implementations of the Hilbert-driven,
𝐹4 and 𝐹5 algorithms. We also take a simple benchmark there. We summarise the paper and discuss
related and future works in Section 4.6.

4.2 type system for safety and composability

In this section, we will see how the progressive type-level functionalities of GHC can be exploited
to construct a safe, composable and flexible type-system for a computer algebra system. There are
several existing works on type-systems for computer algebra, such as in Java and Scala [47, 37],
and DoCon. However, none of them achieves the same level of safety and composability as our
approach, which utilises the power of dependent types and type-level functions.

4.2.1 Type Classes to Encode Algebraic Hierarchy

Weuse type-classes, an ad-hoc polymorphismmechanism inHaskell, to encode an algebraic hierarchy.
This idea is not particularly new (for example, see Mechveliani [56] or Jolly [37]), and we build
our system on top of the existing algebra package [46], which provides a fine-grained abstract
algebraic hierarchy.

Code 2 Group structure, coded in the algebra package
1 class Additive a where

2 (+) :: a → a → a

3 class Additive a ⇒ Monoidal a where

4 zero :: a

5 class Monoidal a ⇒ Group a where

6 negate :: a → a

Code 2 illustrates a simplified version of the algebraic hierarchy up to Group provided by the
algebra package. Each statement between class or ⇒ and where, such as Additive a or Monoidal
a, expresses the constraint for types. For example, Lines 1 and 2 express “a type a is Additive if it is
endowed with a binary operation +”, and Lines 3 and 4 that “a type a is Monoidal if it is Additive
and has a distinguished element called zero”.

Note that, none of these requires the “proof” of algebraic axioms. Hence, one can accidentally
write a non-associative Additive-instance, or non-distributive Ring-instance2. This sounds rather
“unsafe”, and we will see how this could be addressed reasonably in Section 4.4.

4.2.2 Classes for Polynomials and Dependent Types

Expressing algebraic hierarchy using type-class hierarchy, or class inheritance, is not so new and
they are already implemented in DoCon or JAS. However, these systems lack a functionality to

2 Indeed, one can use dependent types, described in the next subsection, to require such proofs. However, this is too heavy
for the small outcome, and does not currently work for primitive types.

4.2 type system for safety and composability 51

Code 3 A type-class for polynomials
1 class (Module (Coeff poly) poly, Commutative poly, Ring poly,

2 CoeffRing (Coeff poly), IsMonomialOrder (MOrder poly))

3 ⇒ IsOrdPoly poly where

4 type Arity poly :: ℕ
5 type MOrder poly :: Type

6 type Coeff poly :: Type

7 liftMap :: (Module (Scalar (Coeff poly)) alg, Ring alg)

8 ⇒ (ℕ<Arity poly
→ alg) → poly → alg

9 leadTerm :: poly → (Coeff poly, OrdMonom (MOrder poly) n)

10 ...

Code 4 Examples for polynomial instances
1 instance (IsMonomialOrder ord, CoeffRing r)

2 ⇒ IsOrdPoly (OrdPoly r ord n) where

3 type Arity (OrdPoly r ord n) = n

4 type MOrder (OrdPoly r ord n) = ord

5 type Coeff (OrdPoly r ord n) = r

6 ...
7
8 f :: OrdPoly ℚ Grevlex 3

9 f = let [x,y,z] = vars in x ^ 2 × y + 3 × x + z + 1

10
11 instance (CoeffRing r) ⇒ IsOrdPoly (Unipol r) where

12 type Arity (OrdPoly r ord n) = 1

13 type MOrder (OrdPoly r ord n) = Lex

14 type Coeff (OrdPoly r ord n) = r

15 ...

distinguish the arity of polynomials or the denominator of a quotient ring. In particular, DoCon
uses sample arguments to indicate such parameters, and they cannot be checked at compile-time.
To overcome these restrictions, we use Dependent Types.

For example, Code 3 presents the simplified definition of the class IsOrdPoly for polynomials.
We provide an abstract class for polynomials, not just an implementation, to enable users to choose
appropriate internal representations fitting their use-cases.

The class definition includes not only functions, but also associated types, or type-level functions:
Arity, MOrder and Coeff. Respectively, they correspond to the number of variables, the monomial
ordering and the coefficient ring.

Note that liftMap corresponds to the universality of the polynomial ring𝑅[𝑋1, … , 𝑋𝑛]; i.e. the free
associative commutative 𝑅-algebra over { 1, … , 𝑛 }. In theory, this function suffices to characterise
the polynomial ring. However, for the sake of efficiency, we also include some other operations in
the definition.

Code 4 shows example instance definitions for the standard multivariate and univariate polyno-
mial ring types. Note that, in Lines 8 and 12, number literal expressions 1 and 3 occur in type contexts.
As we had seen in Section 2.4.2, types depending on expressions are called Dependent Types in type
theory. Our library heavily uses this functionality, and achieves the type-safety preventing users
from unintendedly confusing elements from different rings.

52 a purely functional computer algebra system embedded in haskell

4.2.3 Proofs in Dependent Types and Type-driven Casting Function

Code 5 Various casting function, with simplified type-signatures
1 convPoly :: (Coeff r ∼ Coeff r', MOrder r ∼ MOrder r',

2 Arity r ∼ Arity r')

3 ⇒ r → r'

4 injVars :: (Arity r ≤ Arity r', Coeff r ∼ Coeff r')

5 ⇒ r → r'

6 injVarsOffset :: (n + Arity r ≤ Arity r', Coeff r ∼ Coeff r')

7 ⇒ Sing n → r → r'

In theory, we can use liftMap to cast between any elements of “compatible” polynomial rings.
To reduce the burden to write boilerplate casting functions, our library comes with smart functions,
as shown in Code 5. The convPoly function maps a polynomial into one with the same setting
but different representation; e.g. OrdPoly ℚ Lex 1 into Unipol ℚ. The next injVars function
maps an element of 𝑅[𝑋1, … , 𝑋𝑛] into another polynomial ring with the same coefficient ring, but
with more number of variables, e.g. 𝑅[𝑋1, … , 𝑋𝑛+𝑚], regardless of ordering. For example, it maps
Unipol ℚ into OrdPoly ℚ Grevelx 3. Then, injVarsOffset is a variant of injVars which maps
variables with offset; for example,

1 injVarsOffset [sn ∣3 ∣] :: Unipol ℚ → Polynomial ℚ 5

maps ℚ[𝑋] into ℚ[𝑋0, … , 𝑋4] with 𝑋 ↦ 𝑋3. Here, [sn∣3∣] is a singleton, which we had seen in
Section 2.4.2, for the type-level natural number 3. More precisely, for any type-level natural n, there
is the unique expression sing :: Sing n and we can use it as a tag for type-level arguments.

To work with type-level naturals, we sometimes have to prove some constraints. For example,
suppose we want to write a variant of injVars mapping variables to the end of those of the target
polynomial ring, instead of the beginning. We might first write it as follows:

1 injVarsAtEnd :: (Arity r ≤ Arity r', Coeff r ∼ Coeff r')

2 ⇒ r → r'

3 injVarsAtEnd =

4 let sn = sing :: Sing (Arity r)

5 sm = sing :: Sing (Arity r')

6 in injVarsOffset (sm ⊖ sn) −− Errors!

However, GHC cannot see Arity r' − Arity r + Arity r ≤ Arity r' even if side-condition
Arity r ≤ Arity r' was given. Although this constraint is rather clear to us, we have to give
the compiler its proof. We have developed the type-natural package [35] which includes typical
“lemmas”. For example, we can use the minusPlus lemma to fix this:

1 −− From type−natural:
2 minusPlus :: Sing n → Sing m

3 → IsTrue (m ≤ n) → ((n − m) + m) ≃ n

4
5 injVarsAtEnd :: (Arity r ≤ Arity r', Coeff r ∼ Coeff r')

6 ⇒ r → r'

7 injVarsAtEnd =

8 let sn = sing :: Sing (Arity r)

9 sm = sing :: Sing (Arity r')

10 in withRefl (minusPlus sm sn Witness) $

4.2 type system for safety and composability 53

11 injVarsOffset (sm ⊖ sn)

Since giving such a proof each time is rather tedious, we can use type-checker plugins to let
the compiler try to prove constraints automatically. In particular, the author developed the ghc-
typelits-presburger plugin [34] to resolve propositions in Presburger arithmetic at compile time.
With a help from this plugin, one can just use the first implementation of injVarsAtEnd by just
adding the following line at the beginning of source-code:

1 {−# OPTIONS_GHC −fplugin GHC.TypeLits.Presburger #−}

This pragma tells the compiler to call the type-checker plugin at the compile time, which resolves
the constraint that 𝑛 ≤ 𝑚 ⟹ 𝑚 − 𝑛 + 𝑛 = 𝑚, since this proposition is a theorem in Presburger
arithmetic. Indeed, a large part of type-natural package is built on top of this type-checker plugin.
The type-natural package also provides a way to pattern-match on GHC’s builtin type-level
naturals, which is impossible without any trick. For example, the replicateV example can be also
written with builtin naturals, not with Peano numerals as we did in Section 2.4.2:

1 {−# OPTIONS_GHC −fplugin GHC.TypeLits.Presburger #−}
2 import Data.Type.ℕ.Builtin (ZeroOrSucc(Zero, Succ))

3 replicateV :: Sing (n :: ℕ) → a → Vec n a

4 replicateV Zero _ = Nil

5 replicateV (Succ n) a = a :- replicateV n a

Our library also provides the LabPoly type, which converts existing polynomial types into
“labelled” ones. For example, one can write as follows:

1 f :: LabPoly (Polynomial ℚ 3) '["x", "y", "z"]

2 f = 5 × #x ^ 2 × #y ^ 3 − #y × #z + 1

This relies on the DataKinds and OverloadedLabels language extensions of GHC. GHC’s type
system is strong enough to reject illegal terms and types, such as #w :: LabPoly (Unipol ℚ) '["

a"] (𝑤 is not listed as a variable) or LabPoly (Polynomial ℚ 3) '["x", "y", "x"] (the variable
𝑥 occurs twice). Using the type-level information, one can invoke the canonical inclusion maps
naturally as follows:

1 f :: LabPoly' ℚ Grevlex '["x", "y", "z"]

2 f = #x × #y × #z + 2 × #y − 3 × #z × #x + 1

3 g :: LabPoly' ℚ Lex '["w", "z", "y", "u", "x"]

4 g = canonicalMap f

5
6 −− Where:

7 canonicalMap :: (xs ⊆ ys, Wraps xs poly, Wraps ys poly',

8 IsPolynomial poly, IsPolynomial poly',

9 Coeff poly ∼ Coeff poly')

10 ⇒ LabPoly poly xs → LabPoly poly' ys

4.2.4 Optimising Casting Functions with Rewriting Rules

Since the casting functions are implemented generically, they sometimes introduce unnecessary
overhead. For example, if one uses injVars with the same source and target types, it should just be
the identity function. Fortunately, we can use the type-safe Rewriting Rule functionality of GHC to
achieve this:

54 a purely functional computer algebra system embedded in haskell

1 {−# RULES "injVars/identity" injVars = id #−}

Each rewriting rule fires at compile-time, if there is a term matching the left-hand side of the rule
and having the same type as the right-hand side.

In Haskell, it suffices just to consider algebraic laws to write down custom rewriting rules. This
is due to the purity of Haskell. That is, every expression in Haskell is pure, in a sense that they
evaluate to the same result when given the same arguments. Note that this does not mean that
Haskell cannot treat values with side-effects; indeed, the type-system of Haskell distinguishes pure
and impure values at type-level, and one can treat impure operations without violating purity as a
whole. The trick behind this situation is to describe side-effects as some kind of abstract instructions,
instead of treating impure values directly. Hence, for example, duplicating the same term does not
make any difference in its meaning, provided that it is algebraically correct. Such a rewriting rule is
used extensively in Haskell. For example, Stream Fusion [12] uses them to eliminate unnecessary
intermediate expressions and fuse complicated functions into efficient one-path constructions. Yet,
DoCon did not do any optimisation using rewriting rules.

In our library, we also use rewriting rules to remove idempotent applications such as “grading” a
monomial ordering twice, e.g:

1 {−# RULES "graded/graded" ∀∀∀ ord.

2 graded (graded ord) = graded ord #−}

4.2.5 Notes on Applicability in Imperative Languages

The safety we achieved in this section cannot be achieved at compile-time without dependent types
and type-level functions. Existing works using type-classes or class inheritance to encode algebraic
hierarchy, such as JAS or DoCon, lack this level of safety. In theory, one can achieve the same level
of safety even in a statically-typed imperative language, if it supports a kind of dependent types. For
example, in C++, templates with non-type arguments can be used to simulate dependent types. On
the other hand, in Java, Generics do not allow non-type arguments and we need to mimic Peano
numerals with classes. In either case, it requires much effort to prove the properties of naturals
within them, because they lack dedicated support for type-level naturals or type-checker plugins.

On the other hand, to make use of rewriting rules, we need purity as discussed above.

4.3 type-safe quotient rings with implicit configuration

In existing less-typed approaches, such as DoCon or JAS, one can treat elements of quotient rings,
but cannot distinguish the denominator, because their type-systems are not strong enough to
express denominators at the type-level. So, if 𝑅 = 𝑘[𝑋, 𝑌], 𝐼 = (𝑋2 + 𝑌2) and 𝐽 = (𝑋, 𝑌), we cannot
distinguish 𝑅/𝐼 from 𝑅/𝐽 at type-level and hence library users can easily add elements from 𝑅/𝐼
and 𝑅/𝐽 unintendedly!

If we can use fully-dependent types, the problem would be completely solved; we can express a
quotient ring of 𝑅 by an ideal 𝐼 as the type like “Quot r i”; i.e. we can make a type also dependent
on a denominator ideal. Then, if 𝐼 and 𝐽 are distinct ideals, the quotient rings have the different
types, say “Quot r i” and “Quot r j”.

But, how can we achieve the same distinction in our weakly dependently-typed setting? Since we
use only naturals and symbols as type-level values, one cannot lift ideals to type-levels directly3.
We use a method of implicit configuration [43] to overcome this situation. Code 6 illustrates the API

3 Indeed, the current GHC allows us to lift-up some ideals up to type-level. But, such a lifting easily violates the
implementation hiding policy and unboxed values such as Doubles cannot be lifted.

4.4 lightweight correctness: property-based testing 55

Code 6 Basic interface for quotient rings
1 data Quot r i

2 modIdeal :: Reifies i (Ideal r) ⇒ r → Quot r i

3 withQuot :: Ideal poly

4 → (∀∀∀ i. Reifies i (Ideal poly) ⇒ Quot poly i)

5 → poly

6
7 instance (Reifies i (Ideal r), IsOrdPoly r) ⇒ Ring (Quot r i)

to treat quotient rings. Intuitively, the type Quot r i corresponds to the quotient ring of 𝑅 by 𝐼 as
above. But here, one cannot specify the value of 𝐼 directly; in particular, the type parameter i is not
a lifted ideal expression. So how can we “encode” the value of ideal to the type parameter i?

One trick playing a role here is to use the Reifies type-class to express such information. In-
tuitively, we read the type-constraint Reifies i (Ideal r) as “i must carry information about
an ideal on the ring r”. So, Line 7 defines a ring instance for Quot r i if and only if i carries
information of some ideal on the ring r. For example, consider the following (pseudo)code:

1 data MyIdeal

2
3 instance Reifies MyIdeal (Ideal ℚ[𝑋, 𝑌, 𝑍]) where

4 reflect @MyIdeal _ = ⟨𝑋2 + 𝑌2 − 𝑍, 𝑋 + 𝑌 − 1⟩

Then one can use Quot ℚ [𝑋, 𝑌, 𝑍] MyIdeal as the type corresponding to the quotient ring
ℚ[𝑋, 𝑌, 𝑍]/ ⟨𝑋2 + 𝑌2 − 𝑍, 𝑋 + 𝑌 − 1⟩ and one can access the content of an ideal with reflect

function.
In this way, one can treat quotient rings with specific ideals by providing custom Reifies instances.

But, how can we treat quotient rings by general ideals? The trick using higher-rank polymorphism
can help here. Indeed, in Code 6, the withQuot function gives us a way to temporarily reifying an
arbitrary ideal to the type parameter and do the computation in the corresponding quotient ring.
The function withQuot takes an ideal j and an element of, or computation f in a quotient ring and
returns the remainder f mod j of the whole computation f modulo i. Here, the second argument
f must be polymorphic, or generic, in the type parameter i. That is to say, the second argument f
for withQuot must be completely generic and agnostic about the specific information of an ideal
except for that it is an ideal. Then withQuot virtually defines a temporary instance for Reifies
coding information of j and do the computation f instantiating the value of i with j and returns
the representative element of the result of computation.

If one nests the withQuots, then by the genericity of type parameter i’s prevent us from adding
or multiplying elements of quotient rings by the different j’s.

In this way, we can treat quotient rings type-safely yet limiting the use of dependent-types only
to the weak form.

4.4 lightweight correctness: property-based testing

4.4.1 Property-based Testing Introduced

In this section, wewill address the correctness issue, in a top-down, or lightweightmanner. Especially,
we apply the method of property-based testing [10] to verify the correctness of our implementation.
The idea is that one specifies the formal properties that the implemented algorithms and types must
satisfy, and checks if they hold by testing them against randomly or exhaustively generated inputs.

56 a purely functional computer algebra system embedded in haskell

Although it is not as rigorous as a theorem proving, it still gives a guarantee of the correctness at
high assurance, after repeating tests time after time.

Code 7 Formal Specification of Algebraic Programs
1 prop_division :: ℚ → Property

2 prop_division q =

3 q ≠ 0 ⟹ (recip q × q = 1 ∧ q × recip q = 1)

4 ∧ q × 1 = q ∧ 1 × q = q

5
6 prop_passesSTest n =

7 forAll (idealOfArity n) $ 𝜆 ideal →
8 let gs = calcGroebnerBasis (toIdeal ideal)

9 in all (isZero ∘ (`modPoly` gs))

10 [sPoly f g ∣ f ← gs, g ← gs, f ≠ g]

Code 7 presents the example specifications for algebraic programs. In Lines 1 through 4,
prop_division states that the implementation of ℚ must satisfy the axioms of division ring. The
prop_passesSTest function demand the result of calcGroebnerBasis to pass the 𝑆-test. The tester
accepts the specifications above, generates a specified number of inputs (default: 100) and tests
against them. If all the inputs satisfy the specifications, it successfully halts; otherwise, it reports
counterexamples, which is useful while debugging.

4.4.2 Discussion

There are several libraries for property-based testing adopting different strategies to generate inputs.
For example, QuickCheck [10] generates inputs randomly, while SmallCheck [63] exhaustively
enumerates inputs in the depth-increasing order. Even though there are other implementations of
property-based testers in languages other than Haskell [31], it does not seem that it is applied in
existing systems, such as Singular [23], JAS or DoCon.

By its generative nature, property-based testing has several drawbacks and pitfalls. First, evidently,
it cannot assure the validity as rigorously as the formal theorem proving, unless the input space is
finite. There are several pieces of research that combine formal theorem proving and computer
algebra to rigorously certify correctness of implementations (for example, [57, 11]). These first
formalise the theory of Gröbner basis in the constructive type-theory. Then, execute them within
the host theorem proving language, or extract the program into other languages. However, by
its nature, this approach requires everything to be proven formally. It is not so easy a task to
prove the correctness of every part of a program, even with help from automatic provers. Even if
one manages to finish the proof of the validity of some algorithm, when one wants to optimise it
afterwards, then one must prove the “equivalence” or validity of that optimisation. Moreover, it
is sometimes the case that the validity, or even termination, of the algorithm remains unknown
when it is implemented; e.g. the correctness and termination of Faugerè’s 𝐹5 [18] are proven very
recently [60]. Furthermore, there is an obvious restriction that we can extract programs only into
the languages supported by the theorem prover. We consider these conditions too restrictive, and
decided to adopt theorem proving only in trivial arity arithmetic.

Secondly, if the algorithm has a bad time complexity, property-based tests can easily explode.
Specifically, since Gröbner bases have double-exponential worst time complexity, randomly gen-
erated input can take much time to be processed. One might reduce the burden by combining
randomised and enumerative generation strategies carefully, but there is still a possibility that there

4.5 case study: the hilbert-driven, 𝐹4 and 𝐹5 algorithms 57

are small inputs which take much time. To avoid such a circumstance, one can reduce the number
of inputs, however it also reduces the assurance of validity.

Finally, they are not so good at treating existential properties. Although SmallCheck provides the
existential quantifier in its vocabulary, it just tries to find solutions up to a prescribed depth. If
solutions are relatively “larger” than its inputs, this results in false-negative failures. For example, one
can write the following specification that demands each element of the result of calcGroebnerBasis
to be a member of the original ideal, however it does not work as expected:

1 prop_gbInc ideal =

2 let j = calcGroebnerBasis ideal

3 in exists $ 𝜆 cs →
4 and (zipWith (𝜆 f gs → f = dot ideal gs) j cs)

In the above, dot i g denotes the “dot-product”. As a workaround, we currently combine inter-
process communication with property-based testing. More specifically, we invoke a reliable existing
implementation, such as SINGULAR, inside the spec as follows:

1 prop_gbInc = forAll arbitrary $ 𝜆 i → monadicIO $ do

2 let gs = calcGroebnerBasis i

3 is ← evalSingularIdealWith [] [] $

4 funE "reduce" [

5 idealE gs, funE "groebner" [idealE i]]

6 return $ all isZero is

Thus, if the existential property in question is decidable and has an existing reliable implementation,
then it might be better to call it inside specifications.

4.5 case study: the hilbert-driven, 𝐹4 and 𝐹5 algorithms

In this section, we will focus on three algorithms as case-studies: the Hilbert-driven, 𝐹4 and 𝐹5
algorithms. Firstly, we demonstrate the power of laziness and parallelism by the Hilbert-driven
algorithm. Then by the 𝐹4 interface, we illustrate the practical example of composability. Finally, we
skim through the simplified version of the main routine of 𝐹5 and see how imperative programming
with mutable states can be written purely in Haskell. For our purpose, we will discuss only a
fragment of implementations that elucidates the advantages of Haskell, rather than the entire
implementation and theoretical details.

4.5.1 Homogenisation and Hilbert-driven Basis Conversion

As we have seen in Section 1.2.2, homogenisation is a powerful tool in Gröbner basis computa-
tion. Code 8 is an API for (de-)homogenisation and Gröbner basis computation. The type
Homogenised poly represents polynomials obtained by homogenising polynomials of type poly.
Then calcGBViaHomog calc i first checks if the input i is homogeneous. If it is so, then it applies
the argument calc to its input directly (Line 15); otherwise, it first homogenises the input, applies
calc , and then unhomogenises it to get the final result (Line 16). Note that, though it uses the
same term calc in both cases, they have different types. In the first case, since it just feeds an input
directly, calc has type Ideal poly → [poly]. On the other hand, in the non-homogeneous case, it
is applied after homogenisation, hence it is of type Ideal (Homogenised poly) → [Homogenised

poly]. Thus, calcGBViaHomog takes a polymorphic function as its first argument and this is why we

58 a purely functional computer algebra system embedded in haskell

Code 8 Basic API for homogenisation
1 data Homogenised poly

2 instance IsOrdPoly poly ⇒ IsOrdPoly (Homogenised poly) where

3 type Arity (Homogenised poly) = 1 + Arity poly

4 type MOrder (Homogenised poly) = HomogOrder (MOrder poly)

5 type Coeff (Homogenised poly) = Coeff poly

6 ...
7 homogenise :: IsOrdPoly poly ⇒ poly → Homogenised poly

8 unhomogenise :: IsOrdPoly poly ⇒ Homogenised poly → poly

9
10 calcGBViaHomog :: (Field (Coeff poly), IsOrdPoly poly)

11 ⇒ (∀∀∀ r. (Field (Coeff r), IsOrdPoly r)

12 ⇒ Ideal r → [r])

13 → Ideal poly → [poly]

14 calcGBViaHomog calc i

15 ∣ all isHomogeneous i = calc i

16 ∣ otherwise = map unhomogenise (calc (fmap homogenise i))

have ∀∀∀ inside the type of the first argument. Such a nested polymorphic type is called a rank 𝑛
polymorphic type, which we had seen in Section 2.4.14.

Code 9 Data-type of and operations on Hilbert–Poincaré series
1 data HPS n = HPS { taylor :: [ℤ], hpsNumerator :: Unipol ℤ }

2
3 instance Eq (HPS a) where

4 (=) = (=) `on` hpsNumerator

5 instance Additive (HPS n) where

6 HPS cs f + HPS ds g = HPS (zipWith (+) cs ds) (f + g)

7 instance LeftModule (Unipol ℤ) (HPS n) where

8 f • HPS cs g = HPS (conv (taylor f ⌢ repeat 0) cs) (f × g)

9
10 conv :: [ℤ] → [ℤ] → [ℤ]

11 conv (x : xs) (y : ys) =

12 let parSum a b c = a `par` b `par` c `seq` (a + b + c) in

13 x × y :

14 zipWith3 parSum (map (x×) ys) (map (y×) xs) (0 : conv xs ys)

For example, one can use the Hilbert-driven algorithm, which we reviewed in 1.2.3, as the first
argument to calcGBViaHomog. It first computes a Gröbner basis w.r.t. a lighter monomial ordering,
compute the Hilbert–Poincaré series (HPS) with it and use it to compute Gröbner basis w.r.t. the
heavier ordering. In this procedure, we need the following operations on HPS: Equality test on
HPS’s, 𝑛th Taylor coefficient of the given HPS, and the ℤ[𝑋]-module operation on HPS. Code 9
illustrates such an interface for HPS. For equality test, we use the numerator hpsNumerator of the
closed form, and an infinite list taylor maintains Taylor coefficients. By the lazy nature of Haskell,
we can intuitively treat infinite lists and write a convolution on them. In Line 12, par and seq

specify the evaluation strategy. Briefly, expressions x and y in “x `par` y” (resp. seq) are evaluated

4 This can be achieved in object-oriented language with subtyping and Generics.

4.5 case study: the hilbert-driven, 𝐹4 and 𝐹5 algorithms 59

parallelly (resp. sequentially). Since every expression is pure in Haskell, we can safely take advantage
of parallelism, without a possibility of changing results.

4.5.2 A Composable Implementation of 𝐹4

Code 10 Matrix classes and the 𝐹4 function
1 class MMatrix mat a where

2 fromRows :: [Vector a] → ST s (mat s a)

3 scaleRow :: Multiplicative a ⇒ Int → a → mat s a → ST s ()

4 ...
5
6 class MMatrix (Mutable mat) a ⇒ Matrix mat a where

7 type Mutable mat :: ⋆ → ⋆
8 freeze :: Mutable mat s a → ST s (mat a)

9 ...
10 gaussReduction :: Field a ⇒ mat a → mat a

11
12 type Strategy f w = f → f → w

13 f4 :: (Ord w, IsOrdPoly poly, Field (Coeff poly),

14 Matrix mat (Coeff poly))

15 ⇒ proxy mat → Strategy poly w → Ideal poly → [poly]

As mentioned in Section 1.2.4, 𝐹4 is one of the most efficient algorithms for Gröbner basis
computation and introduced by Faugère [17]. Briefly, 𝐹4 reducesmore than two polynomials at once,
replacing 𝑆-polynomial remaindering in the Buchberger Algorithm with the Gaussian elimination of
the matrices. This means that the efficiency of 𝐹4 reduces to that of Gaussian elimination and the
internal representation of matrices. Thus, it is useful if we can easily switch internal representations
and elimination algorithms. For this purpose, we provide type-classes for mutable and immutable
matrices which admit row operations and a dedicated Gaussian elimination. Code 10 demonstrates
the interface for immutable and mutable matrices (Matrix and MMatrix) and the type signature
of our 𝐹4 implementation (f4). In Lines 1 and 6, the last type argument a of Matrix and MMatrix

corresponds to the type of coefficients. Note that, one can give different instance definitions for
the same mat but different coefficient types a. For example, one can implement efficient Gaussian
elimination on 𝔽𝑝 for Matrix Mat 𝔽𝑝, and then use it in the definition of Matrix Mat ℚ, with the
Hensel lifting or Chinese remaindering.

In Line 15, the first argument of f4 of type proxy mat specifies the internal representation mat

of matrices. In addition, f4 takes a selection strategy as the second argument. Here, the selection
strategy is abstracted as a weighting function to some ordered types, and we store intermediate
polynomials in a heap and select all the polynomials with the minimum weight at each iteration.

4.5.3 The 𝐹5 Algorithm

Finally, we present the simplified version of the main routine of Faugère’s 𝐹5 [18] (Code 11), which
we reviewed in Section 1.2.5. Readers may be surprised that the code looks much imperative. This is
made possible by the ST monad [48], which we had seen in Section 2.4.1, encapsulating side-effects
introduced by mutable states and prevents them from leaking outside. We use a functional heap to
choose the polynomial vectors with the least signature, demonstrating the fusion of functional and
imperative styles.

60 a purely functional computer algebra system embedded in haskell

Code 11 Main Routine of the 𝐹5 Algorithm
1 f5 :: (Field (Coeff pol), IsOrdPoly pol)

2 ⇒ Vector pol → [(Vector pol, pol)]

3 f5 (map monoize → i0) = runST $ do

4 let n = length i0

5 gs ← newSTRef []

6 ps ← newSTRef $ H.fromList [basis n i ∣ i ← [0..n−1]]
7 syzs ← newSTRef

8 [sVec (i0 ! m) (i0 ! n) ∣ m ← [0..n−1], n ← [0..j−1]]

9 whileJust_ (H.viewMin <$> readSTRef ps) $

10 𝜆 (Entry sig g, ps') → do

11 ps ∶= ps'

12 (gs0, ss0) ← (,) <$> readSTRef gs <∗> readSTRef syzs

13 unless (standardCriterion sig ss0) $ do

14 let (h, ph) = reduceSignature i0 g gs0

15 h' = map (× injectCoeff (recip $ leadingCoeff ph)) h

16 if isZero ph then syzs ∶⇐ (mkEntry h :)

17 else do

18 let adds = fromList $ mapMaybe (regSVec (ph, h')) gs0

19 ps ∶⇐ H.union adds

20 gs ∶⇐ ((monoize ph, mkEntry h') :)

21 map (𝜆 (p, Entry _ a) → (a, p)) <$> readSTRef gs

4.5.4 Benchmarks

Table 4.1: Benchmark results (ms)

𝐼1 (Lex) 𝐼1 (Grevlex) 𝐼2 (Lex) 𝐼2 (Grevlex) 𝐼3 (Grevlex)

B 1.820 × 100 1.593 × 101 1.400 × 101 4.129 × 100 6.689 × 102

DbyD 6.364 × 101 9.162 × 102 1.147 × 102 5.647 × 101 4.125 × 102

Hilb 1.644 × 102 2.313 × 102 5.265 × 101 3.414 × 101 9.645 × 103

𝐹5 1.851 × 100 4.314 × 102 7.129 × 100 2.648 × 100 1.290 × 103

S(gr) 2.300 × 100 8.493 × 10−1 2.651 × 100 8.210 × 10−1 9.511 × 10−1

S(sba) 2.279 × 10−1 8.711 × 10−1 2.343 × 10−1 7.958 × 10−1 1.541 × 10−1

𝐼1 ∶= ⟨35𝑦4 − 30𝑥𝑦2 − 210𝑦2𝑧 + 3𝑥2 + 30𝑥𝑧 − 105𝑧2 + 140𝑦𝑡 − 21𝑢,
5𝑥𝑦3 − 140𝑦3𝑧 − 3𝑥2𝑦 + 45𝑥𝑦𝑧 − 420𝑦𝑧2 + 210𝑦2𝑡 − 25𝑥𝑡 + 70𝑧𝑡 + 126𝑦𝑢⟩

𝐼2 ∶= ⟨𝑤 + 𝑥 + 𝑦 + 𝑧, 𝑤𝑥 + 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑤, 𝑤𝑥𝑦 + 𝑥𝑦𝑧 + 𝑦𝑧𝑤 + 𝑧𝑤𝑥, 𝑤𝑥𝑦𝑧 − 1⟩

𝐼3 ∶= ⟨𝑥31 − 𝑥6 − 𝑥 − 𝑦, 𝑥8 − 𝑧, 𝑥10 − 𝑡⟩

We also take a simple benchmark and the result is shown in Table 4.1 (examples are taken from
Giovini et al. [22]). This compares the algorithms implemented in our computational-algebra
package and Singular. The first four rows correspond to the algorithms implemented in our library;
i.e. the Buchberger algorithm optimised with syzygy and sugar strategy (B), the degree-by-degree
algorithm for homogeneous ideals (DbyD), the Hilbert-driven algorithm (Hilb), and 𝐹5. S(gr) and
S(sba) stand for the groebner and sba functions in the Singular computer algebra system 4.0.3.
The complete source-code is available on GitHub [33]5. The benchmark program is compiled with
GHC 8.2.2 with flags −O2 −threaded −rtsopts −with−rtsopts=−N, and ran on an Intel Xeon

5 More specifically, we used the implementation in commit 70e6e7b.

https://github.com/konn/computational-algebra/tree/70e6e7b

4.6 conclusions 61

E5-2690 at 2.90 GHz, RAM 128GB, Linux 3.16.0-4 (SMP), using 10 cores in parallel. We used the
Gauge framework to report the run-time of our library, and the rtimer primitive for Singular. For
actual benchmark codes, see http://bit.ly/hbench1 and hbench2. Unfortunately, in our system,
𝐹4 takes much more computing time, hence we did not include the result. The results show that,
among the algorithms implemented in our system, 𝐹5 works fine in general, though it takes much
time in some specific cases. Nevertheless, there remains much room for improvement to compete
with the state-of-the-art implementations such as Singular, although there is one case where our
implementation is slightly faster than Singular’s groebner function.

4.6 conclusions

In this paper, we have demonstrated how we can adopt the methods developed in the area of
functional programming to build a computer algebra system. Some of these methods are also
applicable in imperative languages.

In Section 4.2, we presented a type-system strong enough to detect algebraic errors at compile-
time. For example, our system can distinguish number of variables of polynomial rings at type-level
thanks to dependent types. It also enables us to automatically generate casting functions and we
saw how their overhead can be reduced using rewriting rules. As for type-systems for a computer
algebra system, there are several existing works [47, 56]. However, these systems are not safe
enough for discriminating variable arity at type-level and don’t make use of rewriting rules.

In Section 4.4, we successfully applied the method of property-based testing for verification of the
implementation, which is lightweight compared to the existing theorem-prover based approach
[11, 57]. Although property-based testing is not as rigorous as theorem proving, it is lightweight
and can be applied to algorithms not yet proven to be valid or terminate and available also for
imperative languages.

We have seen that, in Section 4.5, other features of Haskell, such as higher-order polymorphism,
parallelism and laziness, can also be easily applied to computer algebra by actual examples. Even
though they are shown as fragments of code, we expect them to be convincing.

Since some of the methods in this paper, such as dependent types or property-based testing, are
not limited to the functional paradigm, it might be interesting to investigate their applicability in
the imperative settings.

From the viewpoint of efficiency, there are much to be done. For example, efficiency of our
current 𝐹4 implementation is far inferior to that of the naïve Buchberger algorithm, and other
algorithms are far much slower than state-of-the-art implementations such as Singular. To optimise
implementations, we can make more use of Rewriting Rules and efficient data structures. Also, the
parallelism must undoubtedly play an important role. Fortunately, there are plenty of the parallel
computation functionalities in Haskell, such as Regular Parallel Arrays [39] and parallel package
[55], and another book by Marlow [54] on general topics in parallelism in Haskell. Also, there is
an existing work by Lobachev et al. [52] on parallel symbolic computation in Eden, a dialect of
Haskell with parallelism support. Although Eden is retired, the methods introduced there might
be helpful.

http://bit.ly/hbench1
http://bit.ly/hbench2

B IBL IOGRAPHY

[1] Heinrich Apfelmus, The Operational monad tutorial, The Monad.Reader 15 (2010), ed. by Brent Yorgey, pp. 37–56.

[2] Steve Awodey, Category theory, 49, Oxford Logic Guides, Oxford University Press, 2006, isbn: 978-0199237180.

[3] Patrick Bahr, Composing and decomposing data types: a closed type families implementation of data types à la carte,
Workshop on Generic programming at ICFP 2014, Gothenburg, Sweden, Aug. 2014, pp. 71–82, isbn: 978-1-4503-
3042-8, doi: 10.1145/2633628.2633635.

[4] Andrej Bauer and Matija Pretnar, Programming with algebraic effects and handlers, Journal of Logical and Algebraic
Methods in Programming (2012), doi: 10.1016/j.jlamp.2014.02.001, arXiv: 1203.1539 [cs.PL].

[5] Jean-Philippe Bernardy and Nicolas Pouillard,Names for free: polymorphic views of names and binders, Proceedings of
the 2013 ACM SIGPLAN symposium on Haskell, 2013, pp. 13–24, isbn: 978-1-4503-2383-3, doi: 10.1145/2503778.
2503780.

[6] Richard Bird, Introduction to functional programming, 2nd, Prentice Hall, 1998, isbn: 978-0134843469.

[7] Edwin Brady, Programming and reasoning with algebraic effects and dependent types, Proceedings of the 18th ACM
SIGPLAN International Conference on Functional Programming, 2013, pp. 133–144, isbn: 978-1-4503-2326-0, doi:
10.1145/2500365.2500581.

[8] Robert Cartwright and Matthias Felleisen, Extensible denotational language specifications, Theoretical Aspects of
Computer Software, ed. by Masami Hagiya and John C. Mitchell, Springer Berlin Heidelberg, 1994, pp. 244–272,
isbn: 978-3-540-48383-0, doi: 10.1007/3-540-57887-0_99.

[9] Koen Claessen, Parallel parsing processes, Journal of Functional Programming 14.6 (2004), pp. 741–757, doi:
10.1017/S0956796804005192.

[10] Koen Claessen and John Hughes, QuickCheck: a lightweight tool for random testing of Haskell programs, Proceedings
of the Fifth ACM SIGPLAN International Conference on Functional Programming, ICFP ’00, New York, NY, USA:
ACM, 2000, pp. 268–279, isbn: 1-58113-202-6, doi: 10.1145/351240.351266, url: http://doi.acm.org/10.1145/
351240.351266.

[11] Thierry Coquand and Henrik Persson, Gröbner bases in type theory, Types for Proofs and Programs, ed. by Thorsten
Altenkirch, Bernhard Reus, and Wolfgang Naraschewski, Berlin, Heidelberg: Springer, 1999, pp. 33–46, isbn:
978-3-540-48167-6, doi: 10.1007/3-540-48167-2_3.

[12] Duncan Coutts, Roman Leshchinskiy, and Don Stewart, Stream Fusion: From lists to streams to nothing at all,
Proceedings of the 12th ACM SIGPLAN International Conference on Functional Programming, ICFP ’07, 2007,
isbn: 978-1-59593-815-2, doi: 10.1145/1291151.1291199.

[13] David A Cox, John Little, and Donal O’Shea, Additional Gröbner basis algorithms, Ideals, Varieties, and Algorithms:
An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer, 2015, chap. 10,
pp. 539–591, isbn: 978-3319167206, doi: 10.1007/978-3-319-16721-3_10.

[14] , Ideals, varieties, and algorithms, Springer, 2015, isbn: 978-3319167206, doi: 10.1007/978-3-319-16721-3.

[15] Olivier Danvy and Andrzej Filinski, Abstracting control, Proceedings of the 1990 ACM Conference on Lisp and
Functional Programming, 1990, pp. 151–160, isbn: 0-89791-368-X, doi: 10.1145/91556.91622.

[16] Richard A. Eisenberg and Stephanie Weirich, Dependently typed programming with singletons, ACM SIGPLAN
Notices - Haskell ’12 47.12 (Sept. 2012), pp. 117–130, issn: 0362-1340, doi: 10.1145/2430532.2364522.

[17] Jean-Charles Faugère, A new efficient algorithm for computing Gröbner bases (𝐹4), Journal of Pure and Applied
Algebra 139.1-3 (1999), pp. 61–88, issn: 0022-4049, doi: 10.1016/S0022-4049(99)00005-5.

[18] Jean-Charles Faugère, A new efficient algorithm for computing Gröbner bases without reduction to zero (𝐹5), Proceedings
of the 2002 International Symposium on Symbolic and Algebraic Computation, Lille, France: ACM, 2002, pp. 75–
83, isbn: 1-58113-484-3, doi: 10.1145/780506.780516.

[19] Matthew Fluet and J. Gregory Morrisett, Monadic regions, Journal of Functional Programming 16.4–5 (2006),
pp. 485–545, doi: 10.1017/S095679680600596X.

[20] Shuhong Gao, Frank Volny, and Mingsheng Wang, A new framework for computing Gröbner bases, Mathematics of
Computation 85 (Jan. 2015), doi: 10.1090/mcom/2969.

[21] GHC Team, The Glasgow Haskell Compiler, 2018, url: https://www.haskell.org/ghc/ (visited on 2018).

63

https://doi.org/10.1145/2633628.2633635
https://doi.org/10.1016/j.jlamp.2014.02.001
https://arxiv.org/abs/1203.1539
https://doi.org/10.1145/2503778.2503780
https://doi.org/10.1145/2503778.2503780
https://doi.org/10.1145/2500365.2500581
https://doi.org/10.1007/3-540-57887-0_99
https://doi.org/10.1017/S0956796804005192
https://doi.org/10.1145/351240.351266
http://doi.acm.org/10.1145/351240.351266
http://doi.acm.org/10.1145/351240.351266
https://doi.org/10.1007/3-540-48167-2_3
https://doi.org/10.1145/1291151.1291199
https://doi.org/10.1007/978-3-319-16721-3_10
https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1145/91556.91622
https://doi.org/10.1145/2430532.2364522
https://doi.org/10.1016/S0022-4049(99)00005-5
https://doi.org/10.1145/780506.780516
https://doi.org/10.1017/S095679680600596X
https://doi.org/10.1090/mcom/2969
https://www.haskell.org/ghc/

64 bibliography

[22] Alessandro Giovini et al., “One sugar cube, please” or selection strategies in the Buchberger algorithm, Proceedings of
the 1991 International Symposium on Symbolic and Algebraic Computation, ISSAC’91, ACM, 1991, pp. 5–4, isbn:
0-89791-437-6, doi: 10.1145/120694.120701.

[23] Gert-Martin Greuel and Gerhard Pfister, A singular introduction to commutative algebra, 2nd, Springer, 2007, isbn:
9783540735410, doi: 10.1007/978-3-662-04963-1.

[24] Haskell Committee, Haskell 2010 language report, ed. by Simon Marlow, 2010, url: https://www.haskell.org/
onlinereport/haskell2010/ (visited on 12/06/2018).

[25] , The Haskell programming language, url: http://haskell.org/.

[26] R. Hindley, The principal type-scheme of an object in combinatory logic, Transactions of the American Mathematical
Society 146 (1969), pp. 29–60, issn: 00029947, doi: 10.2307/1995158, url: http://www.jstor.org/stable/
1995158.

[27] Ralf Hinze, Deriving backtracking monad transformers, Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming, 2000, pp. 186–197, isbn: 1-58113-202-6, doi: 10.1145/351240.351258.

[28] , Fun with phantom types, The Fun of Programming, ed. by JeremyGibbons, Oege deMoor, andGeraint Jones,
Palgrave, Dec. 2003, chap. 12, isbn: 978-0333992852, url: https://www.cs.ox.ac.uk/publications/books/fop/.

[29] John Hughes, The design of a pretty-printing library, First Intl. Spring School on Adv. Functional Programming
Techniques, London, UK, UK: Springer-Verlag, 1995, pp. 53–96, isbn: 3-540-59451-5, doi: 10.1007/3-540-59451-
5_3.

[30] Graham Hutton, Programming in Haskell, 2nd, Cambridge University Press, 2016, isbn: 978-1316626221, doi:
10.1017/CBO9781316784099.

[31] Hypothesis, Most testing is ineffective - hypothesis, 2018, url: https://hypothesis.works (visited on 06/05/2018).

[32] Hiromi Ishii, A purely functional computer algebra system embedded in Haskell, Computer Algebra in Scientific
Computing (Lille, France), ed. by Vladimir P. Gerdt, Wolfram Koepf, and Werner M. Seiler, vol. 11077, Lecture
Notes in Computer Science, Springer, Cham, 2018, pp. 288–303, isbn: 978-3-319-99638-7, doi: 10.1007/978-3-319-
99639-4_20, arXiv: 1807.01456.

[33] , The computational-algebra package, 2018, url: https://konn.github.io/computational-algebra.

[34] , The ghc-typelits-presburger package, 2017, url: http : / / hackage . haskell . org / package / ghc -
typelits-presburger.

[35] , The type-natural package, 2013, url: http://hackage.haskell.org/package/type-natural.

[36] Patricia Johann and Neil Ghani, Foundations for structured programming with GADTs, Proceedings of the 35th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2008, pp. 297–308, isbn:
978-1-59593-689-9, doi: 10.1145/1328438.1328475.

[37] Raphaël Jolly, Categories as type classes in the Scala Algebra System, Computer Algebra in Scientific Computing,
ed. by Vladimir P. Gerdt et al., Cham: Springer, 2013, pp. 209–218, isbn: 978-3-319-02297-0, doi: 10.1007/978-3-
319-02297-0_18.

[38] Ohad Kammar, Sam Lindley, and Nicolas Oury, Handlers in action, Proceedings of the 18th ACM SIGPLAN
International Conference on Functional Programming, 2013, pp. 145–158, isbn: 978-1-4503-2326-0, doi: 10.1145/
2500365.2500590.

[39] Gabriele Keller et al., Regular, shape-polymorphic, parallel arrays in Haskell, Proceedings of the 15th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’10, Baltimore, Maryland, USA: ACM, 2010, pp. 261–
272, isbn: 978-1-60558-794-3, doi: 10.1145/1863543.1863582.

[40] Oleg Kiselyov, Iteratees, Proceedings of the 11th International Symposium on Functional and Logic Programming,
2012, pp. 166–181, isbn: 978-3-642-29821-9, doi: 10.1007/978-3-642-29822-6_15.

[41] Oleg Kiselyov and Hiromi Ishii, Freer monads, more extensible effects, Proceedings of the 2015 ACM SIGPLAN
Symposium on Haskell, Haskell ’15, Vancouver, BC, Canada: ACM, 2015, pp. 94–105, isbn: 978-1-4503-3808-0, doi:
10.1145/2804302.2804319.

[42] Oleg Kiselyov, Amr Sabry, and Cameron Swords, Extensible effects: an alternative to monad transformers, Proceedings
of the 2013 ACM SIGPLAN symposium on Haskell (Boston, Massachusetts, USA), ACM New York, NY, USA,
2013, pp. 59–70, doi: 10.1145/2503778.2503791.

[43] Oleg Kiselyov and Chung-chieh Shan, Functional pearl: implicit configurations - or, type classes reflect the values of types,
Proceedings of the 2004 ACM SIGPLAN workshop on Haskell (Snowbird, Utah, USA), Jan. 2004, pp. 33–44, doi:
10.1145/1017472.1017481.

[44] , Lightweight monadic regions, Proceedings of the First ACM SIGPLAN Symposium on Haskell, 2008, pp. 1–
12, isbn: 978-1-60558-064-7, doi: 10.1145/1411286.1411288.

https://doi.org/10.1145/120694.120701
https://doi.org/10.1007/978-3-662-04963-1
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
http://haskell.org/
https://doi.org/10.2307/1995158
http://www.jstor.org/stable/1995158
http://www.jstor.org/stable/1995158
https://doi.org/10.1145/351240.351258
https://www.cs.ox.ac.uk/publications/books/fop/
https://doi.org/10.1007/3-540-59451-5_3
https://doi.org/10.1007/3-540-59451-5_3
https://doi.org/10.1017/CBO9781316784099
https://hypothesis.works
https://doi.org/10.1007/978-3-319-99639-4_20
https://doi.org/10.1007/978-3-319-99639-4_20
https://arxiv.org/abs/1807.01456
https://konn.github.io/computational-algebra
http://hackage.haskell.org/package/ghc-typelits-presburger
http://hackage.haskell.org/package/ghc-typelits-presburger
http://hackage.haskell.org/package/type-natural
https://doi.org/10.1145/1328438.1328475
https://doi.org/10.1007/978-3-319-02297-0_18
https://doi.org/10.1007/978-3-319-02297-0_18
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1145/1863543.1863582
https://doi.org/10.1007/978-3-642-29822-6_15
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/2503778.2503791
https://doi.org/10.1145/1017472.1017481
https://doi.org/10.1145/1411286.1411288

bibliography 65

[45] Oleg Kiselyov et al., Backtracking, interleaving, and terminating monad transformers (functional pearl), Proceedings
of the tenth ACM SIGPLAN international conference on Functional Programming, 2005, pp. 192–203, isbn:
1-59593-064-7, doi: 10.1145/1086365.1086390.

[46] Edward A. Kmett, The algebra package, 2011, url: http://hackage.haskell.org/package/algebra (visited on
2018).

[47] Heinz Kredel and Raphael Jolly, Generic, type-safe and object oriented computer algebra software, Computer Algebra
in Scientific Computing, ed. by Vladimir P. Gerdt et al., Berlin, Heidelberg: Springer, 2010, pp. 162–177, isbn:
978-3-642-15274-0, doi: 10.1007/978-3-642-15274-0_14.

[48] John Launchbury and Simon L. Peyton Jones, Lazy functional state threads, Proceedings of the ACM SIGPLAN 1994
Conference on Programming Language Design and Implementation, PLDI ’94, Orlando, Florida, USA: ACM,
1994, pp. 24–35, isbn: 0-89791-662-X, doi: 10.1145/178243.178246.

[49] Sheng Liang, Paul Hudak, and Mark Jones, Monad transformers and modular interpreters, Conference Record of
POPL ’95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Francisco,
CA), 1995, pp. 333–343, isbn: 0-89791-692-1, doi: 10.1145/199448.199528.

[50] Chuan-kai Lin, Programming monads operationally with Unimo, Proceedings of the eleventh ACM SIGPLAN interna-
tional conference on Functional programming, 2006, pp. 274–285, isbn: 1-59593-309-3, doi: 10.1145/1159803.
1159840.

[51] Miran Lipovača, Learn you a Haskell for great good: A beginner’s guide, No Starch Press, 2011, isbn: 978-1593272838,
url: http://learnyouahaskell.com (visited on 12/06/2018).

[52] Oleg Lobachev and Rita Loogen, Implementing data parallel rational multiple-residue arithmetic in Eden, Computer
Algebra in Scientific Computing, ed. by Vladimir P. Gerdt et al., Berlin, Heidelberg: Springer, 2010, pp. 178–193,
isbn: 978-3-642-15274-0, doi: 978-3-642-15274-0_15.

[53] Christoph Lüth and Neil Ghani, Composing monads using coproducts, Proceedings of the seventh ACM SIGPLAN
international conference on Functional Programming, 2002, pp. 133–144, isbn: 1-58113-487-8, doi: 10.1145/581478.
581492.

[54] Simon Marlow, Parallel and concurrent programming in Haskell: techniques for multicore and multithreaded programming,
O’Reilly Media, 2013, isbn: 9781449335908.

[55] Simon Marlow et al., Seq no more: better strategies for Parallel Haskell, Proceedings of the Third ACM Haskell
Symposium on Haskell, Haskell ’10, Baltimore, Maryland, USA: ACM, 2010, pp. 91–102, isbn: 978-1-4503-0252-4,
doi: 10.1145/1863523.1863535, url: http://doi.acm.org/10.1145/1863523.1863535.

[56] Serge D. Mechveliani, Computer algebra with Haskell: applying functional–categorial–“lazy” programming, Proceedings
of International Workshop CAAP, 2001, pp. 203–211.

[57] Sergei D. Mechveliani, Docon-a a provable algebraic domain constructor, 2018, url: http://www.botik.ru/pub/
local/Mechveliani/docon-A/2.02/manual.pdf (visited on 06/05/2018).

[58] E. Moggi, Computational lambda-calculus and monads, LICS, Piscataway, NJ, USA: IEEE Press, 1989, pp. 14–23, doi:
10.1109/LICS.1989.39155.

[59] Lee Naish, Pruning in logic programming, tech. rep. 95/16, Department of Computer Science, University of Mel-
bourne, 1995.

[60] Senshan Pan, Yupu Hu, and Baocang Wang, The termination of the F5 algorithm revisited, Proceedings of the 38th
International Symposium on Symbolic and Algebraic Computation, ISSAC ’13, Boston, Maine, USA: ACM, 2013,
pp. 291–298, isbn: 978-1-4503-2059-7, doi: 10.1145/2465506.2465520.

[61] Atze van der Ploeg and Oleg Kiselyov, Reflection without remorse: revealing a hidden sequence to speed up monadic
reflection, Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell, 2014, pp. 133–144, isbn: 978-1-4503-
3041-1, doi: 10.1145/2633357.2633360.

[62] Gordon Plotkin and Matija Pretnar, Handlers of algebraic effects, Programming Languages and Systems, York, UK:
Springer-Verlag, 2009, pp. 80–94, isbn: 978-3-642-00590-9, doi: 10.1007/978-3-642-00590-9_7.

[63] Colin Runciman, Matthew Naylor, and Fredrik Lindblad, SmallCheck and Lazy SmallCheck: automatic exhaustive
testing for small values, Proceedings of the First ACM SIGPLAN Symposium on Haskell, Haskell ’08, Victoria, BC,
Canada: ACM, 2008, pp. 37–48, isbn: 978-1-60558-064-7, doi: 10.1145/1411286.1411292, url: http://doi.acm.
org/10.1145/1411286.1411292.

[64] Neil Sculthorpe et al., The constrained-monad problem, Proceedings of the 18th ACM SIGPLAN international
conference on Functional programming, 2013, pp. 287–298, isbn: 978-1-4503-2326-0, doi: 10.1145/2500365.
2500602.

[65] Tim Sheard and Emir Pašalić, Two-level types and parameterized modules, Journal of Functional Programming 14.5
(Sept. 2004), pp. 547–587, doi: 10.1017/S095679680300488X.

https://doi.org/10.1145/1086365.1086390
http://hackage.haskell.org/package/algebra
https://doi.org/10.1007/978-3-642-15274-0_14
https://doi.org/10.1145/178243.178246
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/1159803.1159840
https://doi.org/10.1145/1159803.1159840
http://learnyouahaskell.com
https://doi.org/978-3-642-15274-0_15
https://doi.org/10.1145/581478.581492
https://doi.org/10.1145/581478.581492
https://doi.org/10.1145/1863523.1863535
http://doi.acm.org/10.1145/1863523.1863535
http://www.botik.ru/pub/local/Mechveliani/docon-A/2.02/manual.pdf
http://www.botik.ru/pub/local/Mechveliani/docon-A/2.02/manual.pdf
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1145/2465506.2465520
https://doi.org/10.1145/2633357.2633360
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1145/1411286.1411292
http://doi.acm.org/10.1145/1411286.1411292
http://doi.acm.org/10.1145/1411286.1411292
https://doi.org/10.1145/2500365.2500602
https://doi.org/10.1145/2500365.2500602
https://doi.org/10.1017/S095679680300488X

66 bibliography

[66] Guy L. Steele Jr., Building interpreters by composing monads, Proceedings of the 21st ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, 1994, pp. 472–492, isbn: 0-89791-636-0, doi: 10.1145/
174675.178068.

[67] Wouter Swierstra, Data types à la carte, Journal of Functional Programming 18.4 (July 2008), pp. 423–436, doi:
10.1017/S0956796808006758.

[68] NicolasWu and TomSchrijvers, Fusion for free: efficient algebraic effect handlers, Mathematics of ProgramConstruction
2015, 2015, isbn: 978-3-319-19797-5, doi: 10.1007/978-3-319-19797-5_15, url: /Research/papers/mpc2015.pdf.

[69] Nicolas Wu, Tom Schrijvers, and Ralf Hinze, Effect handlers in scope, Proceedings of the 2014 ACM SIGPLAN
Symposium on Haskell, 2014, pp. 1–12, isbn: 978-1-4503-3041-1, doi: 10.1145/2633357.2633358.

[70] Brent A. Yorgey et al., Giving Haskell a promotion, Proceedings of the 8th ACM SIGPLAN Workshop on Types in
Language Design and Implementation, TLDI ’12, Philadelphia, Pennsylvania, USA: ACM, 2012, pp. 53–66, isbn:
978-1-4503-1120-5, doi: 10.1145/2103786.2103795.

https://doi.org/10.1145/174675.178068
https://doi.org/10.1145/174675.178068
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1007/978-3-319-19797-5_15
/Research/papers/mpc2015.pdf
https://doi.org/10.1145/2633357.2633358
https://doi.org/10.1145/2103786.2103795

SYMBOLS

≺h . 6

e𝑖 . 8

𝑓 >=> 𝑔 . 15
𝑓 ≫= 𝑔 . 16
𝑓

(𝑓1,…,𝑓𝑛)
. 3

𝑓
𝐺

. 4
𝑓 d see also dehomogenisation, of polynomial,

6
𝑓 h see also homogenisation, of polynomial, 6
𝑓 −→

𝐹
ℎ see also reduction, 3

𝑓 ∗−→
𝐹

ℎ see also reduction, 3
𝑓 −→𝑔 ℎ see also reduction, 3
𝑓 ∗−→𝑔 ℎ see also reduction, 3

𝐺d . 6
𝐺h . 6

HF𝐼(𝑚) see also function, Hilbert, 6
H(g) see also module, syzygy, 8
HPS(𝐼) . see also 𝑃𝐼(𝑡), 7

𝑘[X] . 3

LC≺(𝑓) . 3
LCC(u) . 9
LC(𝑓) . see LC≺(𝑓)

LC(u) . see LCC(u)
LM≺(𝑓) . 3
LMC(u) . 9
LM(𝑓) . see LM≺(𝑓)
LM(u) . see LMC(u)
LT≺(𝑓) . 3
LTC(u) . 9
LT(𝑓) . see LT≺(𝑓)
LT(u) . see LTC(u)

𝑀(𝐹) . 7
𝑀𝑛 . 3
Mon(𝐹) . 7

𝑝1 −→𝑝2
𝑟 see also top-reduction, 9

𝑃𝐼(𝑡) see also series, Hilbert–Poincaré, 6

𝑅𝑚 . 6
rows(𝑀) . see rows(𝑀, Γ)
rows(𝑀, Γ) see also polynomial, row, 7

𝑆(𝑓 , 𝑔) see also 𝑆-polynomial, 5
sig(𝑝) see also signature, 9
𝑆pr(𝑝1, 𝑝2) see also 𝑆-pair, 9
𝑆sig(𝑝1, 𝑝2) see also 𝑆-signature, 9

X𝛾 . 3
X𝛼e𝑖 ∣ X𝛽e𝑗 see also division, of module

monomials, 9

67

INDEX

algorithm
Buchberger . 5
𝐹4 . i, 7, 7, 8, 49, 59
𝐹5 . i, 8, 49, 59
Hilbert-driven i, 6, 58
signature-based 8, 59

basis
Gröbner . i, 3

characterisation of 4
signature . 9
via homogenisation 6

coefficient
leading . 3

compatibility
of module ordering and monomial order-

ing .
9

composability . 49
composition

monadic . 15
correctness . 49
cover . 9
criterion

Buchberger . 5
coprime . 5

currying . 13

data-type
algebraic

generalised . 19
polymorphic . 14
promoted . 19

declarative . 11, 49
dehomogenisation

of polynomial . 6
division

of module monomials 9
of multivariate polynomials 3

do-notation . 16

𝜂-reduction . 13
eventually super top-reducible 9

function . 12

composition . 13
higher-order . 12
Hilbert . 6
polymorphic . 14
recursive . 12

functional programming 11, 49

GADT . see data-type, algebraic, generalised
GHC 18, see Glasgow Haskell Compiler
Glasgow Haskell Compiler 18, 49

Haskell . i, 11, 49
homogenisation

of polynomial . 6, 57

Ideal Membership Problem 5
decidability . 5

𝜆-abstraction . 13
lazy evauluation . 11
lazy-evaluation . 49

map
inclusion . 53

module
syzygy . 8

module ordering . 9
monad . 11, 15, 23

IO . 17
list . 17
Maybe . 16
ST . 18

monomial . 3
in module . 8
leading . 3

of module element 9
monomial ordering . 3

normal form . 3

overloaded label . 53

pattern-matching . 13
polymorphism . 14, 18

ad-hoc . 14
parametric . 14
rank 𝑛 . 58

69

70 index

polynomial
labelled . 53
remainder . 3

uniqueness . 4
row . 7

polyrmohism
rank 1 . 18

proof
in dependent type-system 52

property-based testing 49
purity . 11, 49, 54

quotient
of module monomial 9

recursion . 12
reduction . 3
rewriting rule . 53

𝑆-pair . 9
𝑆-polynomial . 5
𝑆-signature . 9
safety . 49
series

Hilbert–Poincaré . 6
of monomial ideals 7

side-effect . 11, 15
signature . 8, 9
singleton . 20, 52
stream fusion . 54

term
leading . 3

top-reduction . 9
regular . 9
super . 9

type . 11
associated . 51
dependent 19, 19, 50, 51
instance . 15
phantom . 19
static . 11

type-checker plugin . 53
type-class . 14, 50
type-inference . 14
type-level function 50, 51
type-level natural . 52
type-system . 11, 49, 50

Hindley–Milner . 14

variable
Skolem . 18

	 Introduction and Preliminaries
	1 A Brief Introduction to Computer Algebra
	1.1 Basic Definitions and Facts about Gröbner Basis
	1.2 Algorithms for Computing Gröbner Bases
	1.2.1 Buchberger Algorithm
	1.2.2 Gröbner Basis via Homogenisation
	1.2.3 Hilbert-driven Algorithm for Homogeneous Ideal
	1.2.4 Faugère's F4 Algorithm
	1.2.5 F5 and Signature-based Algorithms

	2 Purely Functional Programming in Haskell
	2.1 Overview of Haskell
	2.1.1 Notation

	2.2 Functional and Declarative Programming in Haskell
	2.2.1 Programming with Recursive and Higher-order Functions
	2.2.2 Types in Haskell

	2.3 Imperative Programming in Haskell with Monads
	2.3.1 Monads as a Modular Semantics
	2.3.2 Examples of Monads
	2.3.3 Handling Failures by Maybe-monad
	2.3.4 Non-deterministic Computation with List-monads
	2.3.5 Handling I/O with Monads

	2.4 Advanced Topics
	2.4.1 Higher Rank Polymorphism and ST-monads
	2.4.2 Generalised Algebraic Data-types and Dependent Types in Haskell

	 Research Contributions
	3 Freer Monads, More Extensible Effects
	3.1 Abstract
	3.2 Introduction
	3.3 Derivation of Free-er Monad
	3.3.1 Reader Effect
	3.3.2 Reader/Writer Effect
	3.3.3 Free Monad
	3.3.4 Free-er Monads
	3.3.5 From Free(er) Monads to Extensible Effects
	3.3.6 Performance Problem of Free(er) Monads

	3.4 Final Result: Freer and Better Extensible Eff Monad
	3.4.1 Composed Continuation as a Data Structure
	3.4.2 Library Showcase: Defining and Interpreting Effects
	3.4.3 Improved Performance

	3.5 Performance Evaluation
	3.5.1 Deep-monad-stack Benchmarks
	3.5.2 Single-effect Benchmark
	3.5.3 Non-determinism Benchmarks
	3.5.4 Comparison with ``Fusion for Free''
	3.5.5 Inlining of Key Functions

	3.6 Non-determinism with Committed Choice
	3.7 Catching IO Exceptions
	3.8 Regions
	3.9 Related Work
	3.10 Conclusions

	4 A Purely Functional Computer Algebra System Embedded in Haskell
	4.1 Introduction
	4.2 Type System for Safety and Composability
	4.2.1 Type Classes to Encode Algebraic Hierarchy
	4.2.2 Classes for Polynomials and Dependent Types
	4.2.3 Proofs in Dependent Types and Type-driven Casting Function
	4.2.4 Optimising Casting Functions with Rewriting Rules
	4.2.5 Notes on Applicability in Imperative Languages

	4.3 Type-safe Quotient Rings with Implicit Configuration
	4.4 Lightweight Correctness: Property-based Testing
	4.4.1 Property-based Testing Introduced
	4.4.2 Discussion

	4.5 Case Study: the Hilbert-driven, F4 and F5 algorithms
	4.5.1 Homogenisation and Hilbert-driven Basis Conversion
	4.5.2 A Composable Implementation of F4
	4.5.3 The F5 Algorithm
	4.5.4 Benchmarks

	4.6 Conclusions

	Bibliography
	Symbols
	Index

