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Abstract

Third-party commercial cloud services such as Amazon Web Service, AliCloud and Azure provide

a flexible way of using computing and storage resources on demand. Moreover, using these cloud

services can significantly reduce the amount of management work, i.e., users do not need to take

care of the firmware, hareware and even the software.

Using the cloud is convenient and economical, however, on the opposite side, it brings potential

risks to users’ personal information. For example, Facebook Leak and Heartland Payment Systems

(HPY) credit card breach leak out million of personal data and credit card records. These leaks

harm user’s privacy and lead to a great economic loss. Also, data that transferred and stored in

the third-party server is out of the user’s control. Users are forced to trust cloud service providers

not to spy on their private information and must to believe them not to take record even the user

want to delete the data. Potential risks of data privacy and control-less issues are becoming the core

concerns when using commercial cloud services. Especially when the data is highly sensitive and

confidential, such as genomic data and federal records, it is difficult (even illegal) to transfer these

data to an outside cloud server.

In this dissertation, we present three primitives, i.e., ΠIP (§ 3), ΠMP (§ 4) and ΠSMP (§ 5)

using fully homomorphic encryption. These primitives are delicately designed for computing inner

products of encrypted values, but with a different requirement. Using ΠIP, we can compute a single

inner product of long vectors in a very efficient way. On the hand, ΠMP enables us to compute

iterative inner products from multiple vectors, e.g., matrix exponent. In addition, for applications

that require a smaller communication overhead, we present the third primitive ΠSMP, which is also

friendly for a weak decryptor.

The inner product functionality is the fundamental operation of many statistical computations,

such as statistic tests, descriptive statistics, predictive statistics, and machine learning. As the

concrete applications of the proposed primitives, we present three use-case applications.

• For ΠIP, we present an efficient FHE-based protocol to conduct Hardy–Weinberg Equilibrium

test and Linkage Equilibrium. More specifically, we consider two participants who provide

genomic and clinical data, respectively. Our approach is about 2000× faster than the previous

solution [Lauter et al., 2014a].
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• For ΠMP, we present a framework that equipped with three kinds of encodings and three

fundamental building blocks for securely outsourcing a various types of statistical analysis over

numerical, categorical and ordinal data. Moreover, we present a protocol to privately outsource

the decision tree evaluation to the cloud, which is the first construction of outsourcing such

functionality privately, to the best of our knowledge.

• For ΠSMP, we present a communication efficient secure matrix multiplication protocol. This

protocol enables us to conduct privacy-preserving machine learning (PPML) evaluation in a

much more efficient manner. For instance, our matrix multiplication protocol can reduce more

than 90% computation time and communication overhead over the state-of-the-art PPML

approaches [Liu et al., 2017, Mohassel and Zhang, 2017].
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Notation

Notation Description

Zt set of integers [−t/2, t/2) ∩ Z
Zt[X]/(XN + 1) set of polynomials for a 2-power number N

P [i] the i-th coefficient of the polynomial P

a χ
←− S sample a from S following the distribution χ

I{P} return 1 if the predicate P is true. Otherwise return 0

v,v[i] vector and its i-th entry

M ,M [i, j] matrix and its (i, j)-th entry

M [i, :],M [:, j] the i-th row and the j-th column of matrix

〈v,u〉 inner product of vectors

Mu product of matrix and vector

(sk, pk, evk) decryption, encryption and evaluation key

u ◦ v entry-wise multiplication of two vectors

u+̇v entry-wise addition of two vectors

drc rouding the real value r to the nearest integer

1



Chapter 1

Introduction

1.1 Background

Analyzing data collected from various types of sources allows more accurate analysis results and

more insightful decision makings. In practices, these data usually come from different parties.

For instance, health information exchange networks (e.g., GaHIN [GaH, 2015], NHIN [NHI, 2015])

have been established for improving public health. The government needs to combine tax records

with education records to analyze the efficiency of educational investments by linking two and more

databases [XRo, 2018]. In addition, two satellite operators belonging to different nations (e.g., the US

and Russia) perform collision predictions by exchanging their satellite’s status. On the other hand,

third-party commercial cloud services such as Amazon Web Service, AliCloud and Azure provide

a flexible and economic way to perform data analysis on large scale data. According to a recent

survey [Microsoft, 2016], about one third of organizations and companies work with commercial

clouds.

On the opposite side, outsourcing data and computation to the commercial cloud might bring

potential risks to users’ personal information. For example, Facebook Leak and Heartland Payment

Systems (HPY) credit card breach leak out million of personal data and credit card records. These

leaks do harm to user’s privacy and lead to a great economic loss. Also, data that transferred and

stored in the third-party server is out of the user’s control. Users is forced to trust cloud service

providers not to spy on their private information, and must trust them not to take record even the

user want to delete the data. Potential risks of data privacy and control-less issues are becoming

the core concerns when using the commercial cloud services. Especially when the data is highly

sensitive and confidential, such as genomic data and federal records, it is difficult (even illegal) to

outsource data to an outside cloud. It is necessary to develop advanced techniques to protect the

confidentiality of data to enable secure analysis on the cloud environment.

2



CHAPTER 1. INTRODUCTION 3

Fully homomorphic encryption (FHE) [Gentry, 2009] that allows to perform arithmetic opera-

tions above encrypted values directly is one of promising solution for the privacy issue on the cloud

environment. By using FHE, data and values can be encrypted before transferring to the cloud,

and all computation and evaluation by the cloud are performed over ciphertexts only. This gives

a powerful way to protect the privacy data on the cloud. For example, even the database on the

cloud is leaked or hacked, only the encrypted data are released. As long as the decryption key is

kept secret, the privacy and confidentiality of the leaked information is unscathed.

However, the two main difficulties of deploying FHE to cloud applications are the large compu-

tation overhead and communication overhead of FHE.

Large Computation Overhead. From the theoretical point, FHE allows to evaluate an arbitrary

Boolean circuit on encrypted data by using a plaintext space Z2, which requires to encrypt each bit

of the input data [Gentry et al., 2012a]. Nevertheless, [Gentry et al., 2012b] have shown that the

overhead of evaluating a Boolean gate on FHE ciphertexts is a polylog function aspect to the security

level, the practical running time of an FHE-based protocol could be too long to be practical. For

example, it might took more than 36 hours to evaluate the AES circuit (which is a small size circuit

consists of about 3.0 × 104 gates) on FHE ciphertexts [Gentry et al., 2012a]. Even the following

optimizations and programming improvements accelerated this AES performance to 7 minutes, the

bit-wise encryption manner seems too far from practical for daily applications such as statistical

analysis and machine learning which can consist of millions of Boolean gates. In other words, the

bit-wise encryption and Boolean circuit manner is so powerful that we can evaluate any functionality

on encrypted data, at the cost of a large computation and storage overhead. On the other hand,

to have a better performance, we can evaluate Arithmetic circuits instead of evaluating Boolean

circuits, i.e., using a prime field Zt for a prime t > 2. Many approaches belong to on this line such

as e.g., Wu and Haven [2012], Lauter et al. [2014a]. However, the efficiency of these approaches are

not convincing enough, e.g., it took Wu and Haven [2012] more than 400 minutes to compute the

linear regression from encrypted data with only 5 features.

Large Communication Overhead. When developing FHE protocols for the cloud applications,

the communication overhead might require more care than the computation overhead because it

is much more difficult for the cloud provider to extend its network bandwidth than adding more

machines [Pinkas et al., 2014]. However, most of the current FHE protocols does not take count

of the communication efficiency. For example, the method of Liu et al. [2017] aims to evaluate a

convolutional neural network over encrypted images, but this method needs to exchange more than

9 GB data just for one single 32× 32 pixels RGB image.



CHAPTER 1. INTRODUCTION 4

1.2 Our Contributions

The existing FHE-based applications have their own performance issue. Some of them require too

much computing resources (e.g., thousands hours of computation) while some of them introduce a

large communication overhead. These issues are not specified to the applications described but also

to many other approaches that use FHE. It is commonly thought by the community that FHE is too

expensive to use, e.g., requiring many hours to evaluate circuits with a few hundreds of (Boolean or

Arithmetic) gates. However, in this dissertation, we will show that FHE protocols with a reasonably

small computation overhead and communication overhead are possible as long as we use appropriate

message packings (described in the following chapters).

More specifically, we focus on the functionality of inner product of vectors. The inner product

functionality can be represented by an Arithmetic circuit. More importantly, it is the fundamental

operation of many statistical computations, such as statistic tests, descriptive statistics, predictive

statistics and machine learning. In other words, if we want to develop a practical application for

such statistical computations using FHE, communication and computation efficient FHE protocols

for the inner product functionality are necessary.

In this dissertation, we present three FHE-based primitives, i.e., ΠIP (§ 3), ΠMP (§ 4) and ΠSMP

(§ 5), via existing and newly proposed packing techniques. These primitives are delicately designed

for computing inner products of encrypted values, but with a different requirement. Using ΠIP, we

can compute a single inner product of long vectors in a very efficient way. On the hand, ΠMP enables

us to compute iterative inner products from multiple vectors, with a larger computation overhead

compared with ΠIP. For example, products of K matrices (i.e, K > 2) can be reduced to iterative

inner products. In addition, for applications that require a smaller communication overhead, we

present the third primitive ΠSMP, which is also friendly for a weak decryptor. ΠSMP is useful for

client–server applications, in which the network bandwidth is very limited and the client’s computing

power is usually much weaker than the server.

Moreover, using the proposed three primitives, we present three concrete applications of using

FHE on the cloud. In particular, we deal with three different ways of using the cloud which can

cover many real applications; that is cloud-aid data sharing, outsourcing computation and cloud-

based online service. Cloud-aid data sharing is used when two weak clients want to cooperate

together by vertically joining their data. Because the clients are not powerful enough to conduct

the computation, they want to use the computing resources of the cloud. On the other hand,

outsourcing computation involves more than two participants, and thus is more more general than

the cloud-aid data sharing setting. We can use traditional secure multi-party (MPC) solutions but

they are less practical because MPC solutions need a quadratic number of communications between

the participants [Couteau, 2018] . On the other hand, by collecting participants’ data to a center

server, we can eliminate the communications between the participants. For the third setting, the

cloud-based online service runs between a client and a web server (e.g., AliCloud’s face recognition
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service), leading two kinds of privacy to be considered. One is the client’s data privacy (e.g., the

client’s facial information). The other is the web server’s privacy (e.g., the parameters of the classifier

of face recognition).

Our contributions include designing and developing efficient protocols for secure computing on

untrusted cloud servers via fully homomorphic encryption. In this thesis, we will show four specific

protocols for the three settings introduced above.

• For the cloud-aid data sharing setting, we present an efficient FHE-based protocol to conduct

Hardy–Weinberg Equilibrium test and Linkage Equilibrium. More specifically, we consider

two participants who provide genomic and clinical data, respectively. Our approach is about

2000× faster than the previous solution [Lauter et al., 2014a].

• For the outsourcing computation setting, we present a framework that equipped with three

kinds of encodings and three fundamental building blocks for securely outsourcing a various

types of statistical analysis over numerical, categorical and ordinal data. Moreover, we present

a protocol to privately outsource the decision tree evaluation to the cloud, which is the first

construction of outsourcing such functionality privately, to the best of our knowledge.

• For the cloud-based online service setting, we present a communication efficient secure ma-

trix multiplication protocol. This protocol enables us to conduct privacy-preserving machine

learning (PPML) evaluation in a much more efficient manner. For instance, our matrix multi-

plication protocol can reduce more than 90% computation time and communication overhead

over the state-of-the-art PPML approaches [Liu et al., 2017, Mohassel and Zhang, 2017].



Chapter 2

Cryptographic Preliminaries

In this chapter, we review some background of cryptographic primitives and privacy-preserving

computation under the simulation-based paradigm [Goldreich, 2009].

2.1 (Decision) Ring Learning with Errors

The security of the homomorphic encryption we used is based on the famous Ring Learning with

Errors (RLWE) problem [Lyubashevsky et al., 2010]. We give a definition of the decision-RLWE

problem here.

Definition 1. Let N be a power of 2. Let A = Z[X]/(XN + 1), and At = A/tA for some prime

integer t. Let s be a random element in At, and let χe be a distribution over At obtained by sampling

each coefficient of the polynomial from a discrete Gaussian distribution over Z. We write As,χe to

denote the distribution obtained by sampling a U
←− At uniformly at random, choosing e χe←− At, and

outputting (a · s + e, a). Decision-RLWE is the problem of distinguishing between the distribution

As,χe and the uniform distribution on A2
t .

According to [Lyubashevsky et al., 2010], for certain parameters (e.g., N, t, standard deviation

of χe, and the distribution of s), the decision-RLWE problem is as hard as solving a certain famous

lattice problem (i.e., shortest vector problem) in the worst case.

2.2 BGV’s Homomorphic Encryption Scheme

In our research, we use fully homomorphic encryption (FHE) as one of the building blocks. Specifi-

cally, we apply BGV’s homomorphic encryption scheme [Brakerski et al., 2012] due to the publicly

available implementation, i.e., HElib [Halevi and Shoup, 2017]. We give some details of the BGV’s

scheme.

6
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2.2.1 Distributions

Three distributions are involved in the construction of the BGV’s encryption scheme.

• For a real value σ > 0, χe denotes a distribution over ZN which picks its elements independently

from the discrete zero-mean Gaussian distribution of variance σ2. Due to the security concerns,

σ is normally chosen as 3.2 [Chen et al., 2017].

• HWT denotes the uniform distribution over the set {−1, 0, 1}N whose Hamming weight is

exactly 64.

• ZO is the distribution over the set {−1, 0, 1}N which draws ±1 with probability of 0.25, and

draws 0 with probability of 0.5.

Also, we write U to indicate the uniform distribution. For example, a U
←− Zt is sampling uniformly

at random from Zt.

2.2.2 BGV’s Homomorphic Encryption Scheme

The BGV scheme is defined over polynomial rings of the form A = Z[X]/(XN + 1) where N is a

power of 2. The plaintext space for the scheme the ring is At := A/tA, namely polynomials modulo

XN + 1 and a prime t.

The ciphertext space for this scheme consists of vectors over Aq = A/qA, where q is an odd mod-

ulus that evolves along with the homomorphic evaluation. Specifically, the scheme is parameterized

by a chain of moduli, q0 < q1 < · · · < qL, and a newly encrypted ciphertext is defined over AqL .

Along with homomorphic multiplication, we switch to smaller and smaller moduli before we get to

the last level, i.e., Aq0 . We designate ciphertexts that are defined over Aqi , “i-th level ciphertexts”.

These i-th level ciphertexts are size-2 vectors over Aqi , i.e., c = (c0, c1) ∈ A2
qi .

BGV’s homomorphic encryption scheme consists of five algorithms, i.e., KeyGen, Enc, Dec, Add

and Mult. We now review these algorithms.

KeyGen: Three keys are generated. The secret key is sampled according to the hamming weight

distribution sk := (1, s) where s HWT←− {−1, 0, 1}N . The public key is computed as pk = (t·e−a·
s, a) where e χe←− AqL and a U←− AqL . The evaluation key is computed as evk = (s2+t·e′−a′ ·s, a′)
where e′ and a′ follow the same distribution of e and a, respectively. Note that the arithmetic

operations here (i.e., ·,+ and −) are performed over the quotient space AqL .

Enc: Given the plaintext m ∈ At, the L-th level ciphertext is computed as

(c0, c1) := u · pk +̇ (m+ t · e1, e2) ∈ A2
qL

where u ZO←− {−1, 0, 1}N and e1, e2
χe←− AqL .
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Dec: To decrypt a l-th level ciphertext (c0, c1) ∈ A2
ql

, we compute (c0 + c1 · s mod ql) mod t.

Add: Homomorphic addition of two l-th level ciphertexts c, c′ ∈ A2
qi , are simply adding the compo-

nents, i.e., (c0 + c′0, c1 + c′1). We designate the operator ⊕ as the homomorphic addition.

Mult: Homomorphic multiplication of two l-th level ciphertexts c, c′ ∈ A2
qi are more complicated than

the homomorphic addition. We first compute three values (d0, d1, d2) = (c0 ·c′0, c0 ·c′1 +c1 ·c′0, c1 ·
c′1). Then, we need the evaluation key evk and compute (d′0, d

′
1) = (d0, d1) +̇ d2 ◦ evk. Finally,

we rescale them and convert the level-l ciphertext to the next level (d 1
t c · d

′
0, d 1

t c · d
′
1) ∈ A2

ql−1

via the modulus-switching [Brakerski et al., 2012]. In other words, the BGV’s scheme supports

maximally a multiplicative depth of L. Even though, with the bootstrapping technique [Halevi

and Shoup, 2015], we can evaluate any depth of multiplicative circuit. However, current

bootstrapping techniques are still too expensive to use. For most of the applications, the

maximum depth L must be decided in advance. We also designate the operator ⊗ as the

homomorphic multiplication operation.

2.3 Existing Packings

To make homomorphic encryption more practical and useful, one of the most important methodology

is applying an appropriate packing for the task at hand. Recall that the plaintext element in

the BGV’s scheme are polynomials in At, and homomorphic operations on encrypted values are

transferred in the plaintext space as corresponding operations (i.e,. multiplication and addition)

in the ring At. On the other hand, the user of homomorphic encryption would instead want to

operate computation on integers (real numbers). Packing methods are responsible for converting

these integers (real numbers) inputs to elements of At, and after the homomorphic operations, the

packing methods convert the computed results back to the integer (real number) domain.

There are three packing methods [Chen et al., 2017, Yasuda et al., 2013, Smart and Vercauteren,

2014] that encode information into the coefficients of polynomials.

2.3.1 Packing A Single Integer

Suppose that (adad−1 · · · a0)B is the B-radix representation of an integer a ∈ Z, that is a =
∑d
i=0 ai ·

Bi. The integer packing πint simply packs the integer a as the polynomial

πint(a) = A = sign(a) ·
d∑
i=0

aiX
i.

As long as d < N and B < t, we can see that A ∈ At.
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2.3.2 Packing A Single Floating Point Value

The floating point value is given by an integer part and a fractional party, e.g., 5.875 = 5 + 0.875.

Formally, a floating point value b ∈ R can be written as

b =

d∑
i=0

bi · 2i︸ ︷︷ ︸
integer part

+

d′∑
j=1

b′j · 2−j︸ ︷︷ ︸
fractional part

for bi, b
′
j ∈ {0, 1}. The fractional packing works as

πfrac(b) = B :=

d∑
i=0

biX
i +

d′∑
j=1

−b′jXN−j .

As long as d+ d′ ≤ N , then B ∈ At.
The plaintext space of the FHE can only handle at most log2 t bits of precision. A larger t

introduces more noise than a smaller one during the homomorphic operations. As a result, when a

large t is used, we might need to set a large N to prevent decryption failure. On the other hand,

the integer packing πint and fractional packing πfrac enable us to handle values with more than log2 t

bits of precision. For example, πint allows to encrypt integer in the range of [0, tN ), which is about

N log2 t bits of precision. Thereby, we can use a relatively smaller (and thus faster) parameter N

for the FHE scheme.

2.3.3 Forward Backward Packing

The technique of Yasuda et al. [2013] and Lu et al. [2015] enables efficient private evaluation of inner

products. We give a generalization of this technique. Let u,v ∈ ZNt be vectors of integers. We

introduce two functions πfwd and πbwd that convert a vector of integers to a polynomial:

πfwd(u) =

N−1∑
i=0

u[i] ·Xi, πbwd(v) =

N−1∑
j=0

v[j] ·XN−1−j . (2.1)

Let α be a scalar. We have the following properties.

πfwd(u) + πfwd(v) = πfwd(u+ v) α · πfwd(u) = πfwd(α · u)

πbwd(u) + πbwd(v) = πbwd(u+ v) α · πbwd(v) = πbwd(α · v).

In other words, we can operate the vector addition and the vector-scalar multiplication with πfwd

and πbwd.
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2.3.4 Chinese Remainder Theorem Packing

Aside from the forward backward packing, the CRT-packing presented in [Smart and Vercauteren,

2014] is another technique commonly used for developing efficient FHE-based protocols. CRT-

packing leverages the polynomial Chinese Remainder Theorem (i.e., CRT) to convert a polynomial

vector to an element of At.
The plaintext space of the BGV scheme are elements of At := Zt[X]/(XN+1), and the polynomial

XN + 1 factors prime t into ` irreducible factors, {Fj(X)}j

XN + 1 = F1(X) · F2(X) · · ·F`(X) (modt),

where all the factors of degree d = N/`. For the purpose of packing, we view a polynomial A ∈ At
not as polynomial of modulus t but as a polynomial over the extension field Ftd . The plaintext

values that encoded in A are its evaluations at ` (specific) primitive 2N -th roots of unity in Ftd .

In literature, factors {Fj(X)} are called plaintext slots. We write πcrt : (Ftd)` → At to denote

the CRT-packing function, and write π−1
crt as the reversing function.

The most important property of this packing is element-wise operations. Let p and q be two

length-` vectors of polynomials, where p[j], q[j] ∈ Zt[X]. The element-wise polynomial addition and

multiplication are given as

πcrt(p) + πcrt(q) = πcrt(p +̇ q) (2.2)

πcrt(p)× πcrt(q) = πcrt(p ◦ q).

Beside the element-wise operation, the CRT-packing also enables “slot-movement”. As noted

in [Gentry et al., 2012b], for each slot index i, j ∈ {1, 2, · · · , `} there is a mappingMk parameterized

by k ∈ Z∗2N ,Mk : A(X) 7→ A(Xk) mod (XN +1), which will exchange the element in i-th slot with

the element in the j-th slot. By multiplying binary masking vectors, we can achieve cyclic rotation

on the ciphertexts of CRT-packed vectors. It is noteworthy that the mapping Mk changes the

decryption key. Suppose the ciphertext c’s decryption key is sk := (1, s). Then, after the application

of Mk on c, the corresponding decryption key becomes sk′ := (1,Mk(s)). Thereby, during the key

generation procedure, we need to generate some “key-switching” keys Mk(s)→ s.

2.4 Security Model

Our protocols are private under the semi-honest assumption. That is the protocol players follow

the protocol specification, but might want to learn extra information during the protocol execution.

Our security definitions follow the real world/ideal world paradigm of [Canetti, 2000, Goldreich,

2009]. Specifically, we compare the protocol execution in the real world to an execution in an ideal
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world. In the real world, protocol players follow the specification of a protocol Π, and in the ideal

world, protocol players have access to a trusted third party (TTP) that evaluates the functionality.

The protocol execution is viewed as occurring in the existence of an adversary A and cooperated

with an environment C = {Cκ} which is modeled as a class of polynomial-size circuits parameterized

by a security parameter κ. The role of the environment is to choose the input to the protocol

execution and to distinguish experiments in the real world and the ideal world. We use the notation

of privacy [Ishai et al., 2011].

Definition 2. Let F : {0, 1}∗ × {0, 1}∗ 7→ {0, 1}∗ be a deterministic functionality, and Fb(x1, x2)

denote the b-th element of F(x1, x2). Let Π be a two-party protocol for implementing F . The view

of the b-th party (i.e., b ∈ {1, 2}) during an execution of Π on (x1, x2), written as VΠ
b (x1, x2), is

(xb, r,m1, · · · ,mT ), where r denotes the random coin of the b-th party, and mi represents the i-th

message it has received.

Protocol Π is said to privately implement the functionality F(x, y) in the semi-honest model if

there exist probabilistic polynomial-time algorithms, denoted S1 and S2, such that

{S1(x1,F1(x1, x2))}x1,x2∈{0,1}∗ ≈
c {VΠ

1 (x1, x2)}x1,x2∈{0,1}∗

{S2(x2,F2(x1, x2))}x1,x2∈{0,1}∗ ≈
c {VΠ

2 (x1, x2)}x1,x2∈{0,1}∗ ,

where ≈c denotes computational indistinguishability by classes of polynomial-size circuits.

Informally, a protocol Π privately implements a functionality F if for any polynomial-size circuit,

it can not distinguish between the real and ideal world executions.



Chapter 3

Efficient Inner Product of

Encrypted Long Vectors

The inner product of vectors is a basic and important computation. For example, the studies of

the independence between human genome and disease (e.g., χ2 statistic tests) involve inner prod-

uct of long vectors. Also, descriptive statistics such as Fisher discriminant analysis and principal

component analysis use inner products. In the context of the secure computation, we can get a

direct method of computing inner products using FHE, since what we need to evaluate the inner

product are just additions and multiplications. Indeed, the FHE inner product method from Lauter

et al. [2014a] is a such direct method, i.e., encrypting the entries of the vectors separately and ap-

plying the multiply-then-add computation to achieve the FHE inner product. Thus the complexity

of their method is O(d) aspect to the vector size of d. However, their method would take a long

computation time when long vectors are involved. For instance, in genome-wide association studies

(GWAS), e.g., Linkage Disequilibrium and Hardy-Weinberg Equilibrium, the vector size equals to

the number of patients (or objects), and thus d would be a few thousands [Bos et al., 2014a]. From

the experiments in the following section, we will show that Lauter et al. [2014a]’s approach might

take days to conduct such genome-wide association studies.

To overcome the high computation overhead of computing inner product of long vectors, in

this chapter, we present to pre-preocess the long vectors into polynomials before encryption by

expoliting the algebra struture of the plaintext space At. As a result, we reduce the complexity

of computing the inner product from O(d) to O(d/N) where N is usually set as N > 4000, which

leads to a significant speed up comparing to the previous method. In addition, as the application,

we present an FHE protocol for two common genome-wide association studies, i.e., χ2 test for

independence and Linkage Disequilibrium. The basic strategy is to compute allelic frequency tables

and genotype frequency tables privately from encrypted genetic data (i.e., in the form of vectors).

12
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Protocol ΠIP

Input from encryptor: Vector u ∈ Zdt .
Input from evaluator: Vector v ∈ Zdt .
Output of decryptor: Inner product 〈u,v〉 mod t. Protocol:

Encryptor:

1. Encryptor partitions u into N -sized blocks, i.e., u = u1‖u2‖· · · ‖ud′ where d′ = dd/Ne. (The
last block might be less than N elements). Encryptor processes each block with the forward

packing and then apply encryption. Then encryptor sends the ciphertexts {Enc (πfwd(ui))}d
′
i=1 to

evaluator.

Evaluator:

2. Similarly, evaluator also partitions v into N -sized blocks, v = v1‖v2‖· · · ‖vd′ . However, evaluator

processes those blocks with the backward packing obtain ciphertexts {Enc (πbwd(vi))}d
′
i=1.

3. Evaluator computes and sends the ciphertext cfinal to decryptor

R⊕(

d′⊕
i=1

Enc (πfwd(ui))⊗Enc (πbwd(vi))) where R U
←− At except that the N -th coeff. R[N−1] = 0.

Decrytpor:

4. Decrytpor decrypts cfinal to R′ and outputs the N -th coefficient, i.e. R′[N − 1].

Figure 3.1: Inner Product Protocol of Encrypted Vectors

With these tables, GWAS-related statistics including D′ measure of Linkage Disequilibrium, the

Pearson Goodness-of-Fit, HWT, and the χ2 test can be conducted. We defer the details of these

studies in the following subsection. The experimental results show that using our efficient inner

product, these two GWAS computations can be 4000× faster than that uses the inner product of

Lauter et al. [2014a].

3.1 Efficient Inner Product of Encrypted Long Vectors

We now present our FHE inner product ΠIP in Figure 3.1. The protocol ΠIP takes as input of

ciphertexts of two length-d vectors u,v ∈ Zdt , and outputs the ciphertext of their inner product

〈u,v〉 mod t.

Theorem 1. Protocol ΠIP of Figure 3.1 privately implements the inner product functionality, i.e.,

〈u,v〉 mod t.

Proof (Correctness). The vectors u and v are partitioned into blocks of the same size. We directly

have 〈u,v〉 =
∑
i 〈ui,ui〉. For the correctness, it suffices to prove that Enc (πfwd(ui))⊗Enc (πbwd(vi))

gives the ciphertext of 〈ui,ui〉 because the summation can be performed by homomorphic additions.
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Table 3.1: Timing of fully homomorphic scheme with parameters N = 8192, t = 640007, L = 6.

Operation Encrypt Mult Add Add with Plaintext

Time (ms) 3.08 7.57 0.032 0.789

From the construction of the forward-backward packing, the N -th coefficient of the resulting

polynomial πfwd(ui)× πbwd(vi) is
∑N−1
j=0 ui[j] · vi[j] which is exactly the inner product 〈ui,vi〉.

Proof (Privacy). The privacy against semi-hones encryptor and evaluator is directly given by the

semantic security of the underlying homomorphic encryption since encryptor and evaluator can only

see encrypted values.

On the other hand, the view of decryptor consists of the polynomial R′. The coefficients of

R′, except the N -th coefficient, are distributed uniformly at random over Zt due to the random

polynomial R in Step 3. Thereby, we can simply construct a simulator to simulate the view of

decryptor by sampling a uniform random polynomial from At.

Complexity and Parameter Selection. The computation complexity of the evaluator in ΠIP

is O(d/N) where d is the size of vectors and N is one of the FHE parameter. Also, according to

the security analysis of Gentry et al. [2012a], we need to set N ≥ 8192 to achieve at least 128-bit

security level. In other words, we can conduct the inner product of vectors with more than 8000

entries via just a single homomorphic multiplication, which is a significant boost comparing to the

naive solution (see the next subsection).

Limitation. The N -th coefficient of the resulting polynomial πfwd(ui) × πbwd(vi) does give the

inner product of ui and vi. On the other hand, the other N − 1 coefficients are randomized, and

thus we barely re-use these N − 1 coefficients in any further computation. These N − 1 randomized

coefficients are considered as noisy terms.

3.1.1 Comparison to the Naive (non-packing) Approach

Table 3.1 summarizes the computing time of each homomorphic operation under a specific FHE

parameter. By using an appropriate packing, we can see that the inner product of two encrypted

vectors can be much more efficient than the naive non-packing approach, according to the numbers

of Table 3.1. For example, the naive unpacking method to compute the inner product of vectors of

length 8192 would need 8192 homomorphic multiplications and additions, which would take about 62

seconds. On the other hand, using the forward packing packing, it would only take one homomorphic

multiplication and addition, and thus taking less than 8.0 ms, to compute the inner product of 8192

elements. It is more than a 8000× boost under this FHE parameter.



CHAPTER 3. EFFICIENT INNER PRODUCT OF ENCRYPTED LONG VECTORS 15

Figure 3.2: Joining encrypted genotype and phenotype data cross multiple data contributors.

3.2 Application: Secure Genome-wide Association Studies

on Cloud

The proposed protocol ΠIP can be used in many cloud-aid computation scenario. As an example,

we give an application of privacy-preserving χ2 statistic test and linkage disequilibrium (LD) in-

dependence test, which are two commonly used statistics in genome-wide association studies. By

using our inner product protocol, we can efficiently compute χ2 and LD from a large (encrypted)

genomic and clinical data on the cloud. Empirical results show that, our approach is about 2000×
faster than the previous cryptographic solution [Lauter et al., 2014b]. In this section, we give an

application of ΠIP: secure genome-wide association studies (GWAS). More specifically, we target on

two commonly used statistical tests, i.e., χ2 test and linkage disequilibrium test.

Because of recent advances in DNA sequencing technologies, the cost of DNA sequencers is

dropping rapidly. As a result, the scale of genomic data used by researchers is becoming larger

and larger. To conduct computations on a large-scale genomic dataset, a cloud server that provides

computational resources at low cost is regarded as a promising option. Genomic and clinical data

are highly sensitive. Outsourcing these data to an external server raises concerns about the privacy

of sensitive data. Consequently, for outsourcing of computation with genomic data, privacy should

be rigorously preserved.

Related Work. FHE has been used to protect to genomic and clinical data in the cloud. Bos et al.

[2014b] proposed a working implementation of cloud service for private computation of encrypted

health data using FHE. Lauter et al. [2014a] demonstrated an approach to conducting private com-

putation using encrypted genomic data with FHE (Figure 3.2). Unfortunately, these cryptographic

solutions are not sufficiently time and space efficient to conduct a GWAS-scale computation, which

can involve about 3× 106 SNPs for thousands or more subjects.
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Our contribution includes a much more efficient cryptographic protocol for χ2 and linkage dise-

quilibrium test. Empirical results show that, our approach is about 2000× faster than the previous

cryptographic solution [Lauter et al., 2014b].

3.2.1 Problem Statements: χ2 Test and Linkage Disequilibrium Test

Table 3.2: Examples of raw genome data and raw phenotype data.

(a) Raw genome data Dg

ID Genomic Data
1 CC CG CT GG AA
2 AG CT CT AG CT
3 CT GG CC AG AA
4 AA GG GG AG CC

(b) Raw phenotype data Dp

ID′ Disease Status
1 Case
2 Control
3 Control
4 Case

Our basic strategy is to compute allelic frequency tables and genotype frequency tables privately

from encrypted genetic data. With these tables, GWAS-related statistics including D′ measure of

LD, the Pearson Goodness-of-Fit, HWE, and the χ2 test are conducted. In this work particularly,

we apply our method to the χ2 test and LD to demonstrate the effectiveness of our protocol.

We review an allelic frequency table and a genotype frequency table with two markers. Table 3.2a

gives a view of a genomic dataset Dg. Each record contains an explicit identifier ID and SNPs.

Similarly, Table 3.2b gives a view of a phenotype dataset Dp. Each record contains an explicit

identifier ID′ to identify each subject and an attribute to indicate the disease status of the subject.

Presuming that M subjects and N SNPs are involved, then the dataset Dg contains N rows, with

each row containing M data points; the dataset Dp includes M rows.

Table 3.3: Observed allele frequency in a case–control study of M subjects.

Allele Type total

A a

case o1 o2 N1

control o3 o4 N2

total N ′1 N ′2 2M

Presuming that A, a are possible alleles. An allelic frequency table (Table 3.3) consists of 2× 2



CHAPTER 3. EFFICIENT INNER PRODUCT OF ENCRYPTED LONG VECTORS 17

Table 3.4: Genotype frequencies at markers M1 and M2 of M subjects.

Marker M1
Total

AA Aa aa

Marker M2

BB o11 o12 o13 N1

Bb o21 o22 o23 N2

bb o31 o32 o33 N3

Total N ′1 N ′2 N ′3 2M

counts

o1 = 2N case
AA +N case

Aa o2 = 2N case
aa +N case

Aa

o3 = 2N control
AA +N control

Aa o4 = 2N control
aa +N control

Aa ,

where N case
AA and N case

Aa are the observed population counts for genotype AA and Aa in the case

group: N control
AA and N control

Aa are the observed counts for the control group.

The χ2 test for the additive model is equivalent to the χ2 test based on Table 3.3. The one

degree of freedom (d.f.) test statistic is written as

χ2
a =

2M(o2(o3 + o4)− o4(o1 + o2))2

N1N2N ′1N
′
2

.

In addition to a χ2 test, we can evaluate the Hardy–Weinberg Equilibrium directly from an allelic

frequency table similarly.

Given alleles (A/a and B/b) at two markers, a genotype frequency table (Table 3.4) with two

markers is obtained that consists of 3× 3 counts

o11 = NAABB o12 = NAaBB o13 = NaaBB

o21 = NAABb o22 = NAaBb o23 = NaaBb

o31 = NAAbb o32 = NAabb o33 = Naabb.

The value Nii′jj′ denotes the observed population counts for genotype ii′ and jj′ where i, i′ ∈ {A, a},
and j, j′ ∈ {B, b}.

We evaluate LD from Table 3.4. The linkage disequilibrium is calculated as D = Pr(AB) −
Pr(A) Pr(B), where probabilities Pr(AB), Pr(A) and Pr(B) are computed, respectively, as (2o11 +

o12 +o21)/2M , (2N ′1 +N ′2−o22)/2M and (2N1 +N2−o22)/2M . We omit the frequency o22 to avoid

the problem of haplotype ambiguity, especially when only genotypes are measured. See [Ziegler and

König, 2010] for more details.
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We remark that several measures for measuring linkage disequilibrium were proposed, including

Pearson’s correlation, Lewontin’s D′, frequency difference and Yule’s Q. Our proposal works for all

these measures. However, we applied our method to Lewontin’s D′ measure in the experimentation

because of space limitations. Additional details related to these measurements are explained in an

earlier report of the literature [Ziegler and König, 2010].

3.2.2 Data Encoding

Let A and a be the alleles of the biallelic locus. Consequently, the genomic data at the locus is either

AA,Aa, or aa. We represent each row of the genomic dataset Dg as two integer vectors xAA,xAa.

Here, xAA[i], the i-th element of xAA, represents the frequency of genotype AA at the marker locus:

xAA[i] = 2 for AA and xAA[i] = 0 for other genotypes. xAa[i] is similar to xAA[i] except that

xAa[i] = 1 for Aa.

We presume that the disease status of each subject is represented by a binary variable, then

“disease” is represented by 1 (case); “non-disease” is represented by 0 (control). The phenotype

dataset Dp for all subjects is therefore represented by a binary vector ycase.

Presume in addition to the following that dataset Dg consists of N SNPs with M subjects. Q

data contributors are involved in the procedure. Therefore, they separately hold the phenotype

vector ycase and 2N genotype vectors xAA
(i) and xAa

(i) , where (i) is the ID of the genotype data. Let

π : {0, 1, 2}M × {1, 2, · · · , Q} 7→ {0, 1, 2}M be an assignment function that represents the partition

of genotype/phenotype held by the q-th data contributor. For example, the vertical partition of a

vector x for the q-th data contributor is represented as shown below.

π(x, q)[j] =

x[j] if q-th data contributor holds the j-th element of x

0 o.w.
.

We assume that each element of vectors is contributed from only one data contributor, i.e.
∑
q π(x, q)[j] =

x[j] holds for every j.

3.2.3 Evaluate the Allelic Frequency Table

With the encoding described, we evaluate Table 3.3 through scalar products of the representing

vectors. More specifically, frequencies o1, N
′
2, and N1 in Table 3.3 are evaluated respectively through

three scalar products as

o1 =
〈
xAA + xAa,ycase

〉
, N ′1 =

〈
xAA + xAa,1

〉
, N1 = 〈ycase,1〉 ,

where 1 is a vector of which the elements are 1. Because Table 3.3 is freedom-1 and the number of

objects M is assumed to be known,
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3.2.4 Evaluate the Genotype Frequency Table

Similarly, we compute the genotype frequency table described by Table 3.4 with two markers by

scalar products of the represented vectors as well. In particular, to calculate a D′-measure for the

LD, the following six scalar products are needed.

4 · o11 =
〈
xAA,xBB

〉
, 2 · o12 =

〈
xAa,xBB

〉
,

2 · o21 =
〈
xAA,xBb

〉
, o22 =

〈
xAa,xBb

〉
,

2N ′1 +N ′2 =
〈
xAA + xAa,1

〉
, 2N1 +N2 =

〈
xBB + xBb,1

〉
.

3.2.5 Full Protocol

The procedure of secure outsourcing χ2 and LD to the cloud is shown in Figure 3.4. Recall that

the evaluation of scalar product requires a forward-packed vector and a backward-packed vector.

Consequently, at Step 1 and Step 2, data contributors upload four copies for one genotype data in

the form of the forward-packed and backward-packed vectors. The cloud aggregates the collected

ciphertexts at Step 3, which only involves homomorphic additions. Then the cloud computes the

allelic frequency table and the genotype frequency table respectively at Step 4 and Step 5.

The correctness of Figure 3.4 is directly given by the description in § 3.2.3 and § 3.2.4. Moreover,

the privacy of Figure 3.4 can be reduced trivially to the privacy of our inner product protocol

of Figure 3.1. Intuitively, the view of the cloud during the protocol execution of Figure 3.4 consists

of only ciphertexts. Thus, we omit the form security proof of Figure 3.4.

3.2.6 Evaluations

We benchmarked the computational costs of our method and compared it with a method proposed by

Lauter et al. [2014a], in which a genetic data point and a clinical data point are encoded respectively

into three bits and two bits. All experiments were conducted on computers with a 2.60 GHz CPU

(Xeon; Intel Corp.) and 32 GB RAM. We measured the computation time separately for Step 1.1

and 1.2 as the preparation time and for Steps 3.1 and 3.2 as the evaluation time. Details of the

experiment settings are presented following. 1) An artificial dataset includes 1.0 × 104 subjects.

2) Q = 5 data contributors are sharing same quantity of data points. 3) We used 8 threads for

computation in parallel. 4) Parameters of the encryption scheme were set as N = 8192, t = 640007,

and L = 6.

Performance of Homomorphic Encryption and Implementation Hints. The implemen-

tation of Lauter et al. was done on an algebraic computation system, i.e. Magma, whereas our

implementation was developed on native codes. To compare our method with their method fairly,

we measured the computation time of operations in HElib and re-estimated the computation time

method of Lauter et al. Table 3.1 shows the computation time of the operations of homomorphic
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(a) Benchmark for outsourcing χ2 test with 1.0×104 subjects. (b) Benchmark for outsourcing LD with 1.0× 104 subjects.

Figure 3.3: Comparison of the proposed secure outsourcing χ2 test and LD with Lauter et al. [2014a].

encryption scheme. Values are the mean of 1000 runs of each operation with 8-threads. We used

parameter N = 8192, which is not sufficiently large to conduct more than 8192 subjects. Indeed, we

partitioned vectors into smaller parts and encrypted each part as a ciphertext. In doing so, we were

able to conduct a large-scale dataset while maintaining smaller N . We remark that as the number

of the partition increases, more communication time must be used during the upload phase.

Evaluation Results: χ2 Test. We benchmarked our proposed protocol of evaluating χ2 test on an

artificial dataset that contains M = 1.0×104 subjects. The results are presented in Figure 3.3a. The

number of the total genotype data was varied from 1.0× 103 to 1.0× 106. Recalling that parameter

N = 8192, one can thereby maximally pack genotype/phenotype data of 8192 subjects into a single

ciphertext. Consequently, to conduct the experiment with 1.0×104 subjects, we partitioned a vector

into two parts having equal length. Figure 3.3a depicts the performance of our proposed method and

the estimated computation time of the method of Lauter et al. [2014a]. As shown in Figure 3.3a,

for evaluation of χ2 test statistics of 1.0 × 106 genotype data with M = 1.0 × 104 subjects, our

method took about 12 hours (about 43ms per test). Compared to the method of Lauter et al., the

evaluation is expected to cost more than 2000 days. Our proposal is therefore considerably efficient.

Evaluation Results: Linkage Disequilibrium. The benchmark of the evaluation of LD is

presented in Figure 3.3b. In this experiment, we considered a smaller synthesis data containing

1.0 × 103 genotype data of M = 1.0 × 104 subjects. The number of LD to be evaluated was about

5.0× 105 LDs in this experiment. With this settings, our method costs less than 11 hours (about 80

ms per LD). We consider that result as great increase in speed compared with the method of Lauter

et al. that might cost more than 2600 days to finish the evaluation in estimation.
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Protocol Full Protocol for Secure Outsourcing χ2 Test and LD Test.

Public known: All data contributor can access to the encryption key pk. The number of subjects M
is also publicly known.
Private inputs: The q-th data contributor has input its clinical data π(ycase, q). For genotype data
with ID(i), the q-th data contributor hash input π(xA(i), q) for A ∈ {AA,Aa, aa}. The analyst has input
the decryption key sk.
Outputs: The analyst obtains the χ2 statistics or LD.

Protocol:

1. Upload Phenotype Data: The q-th data contributor computes and sends ciphertext(s)

Enc (πbwd(π(ycase, q)))

to the cloud.

2. Upload Genotype Data: For genotype data with ID(i), the q-th data contributor computes and
sends ciphertexts

Enc
(
πfwd(π(xA(i), q))

)
Enc

(
πbwd(π(xA(i), q))

)
for A ∈ {AA,Aa}.

3. Join: For genotype data with ID(i), the cloud joins the collected ciphertexts

êxA
(i)

:=

Q⊕
q=1

Enc
(
πfwd(π(xA(i), q))

)
exA

(i)
:=

Q⊕
q=1

Enc
(
πbwd(π(xA(i), q))

)
.

The cloud also joins the ciphertext of phenotype data as eycase := ⊕Qq=1Enc (πbwd(π(ycase, q))) and
prepares two plain values: πfwd(1) and πbwd(1).

4. Evaluate χ2 Statistics: Frequency N1 in Table 3.3 is homomorphically computed as eN1 =
eycase ⊗ πfwd(1). For genotype data with ID(i), the cloud homomorphically compute sufficient
statistics in Table 3.3 as

eo1 = (êxAA
(i)
⊕ êxAa

(i)
)⊗ eycase eN′1 = (êxAA

(i)
⊕ êxAa

(i)
)⊗ πbwd(1)

5.1. Evaluate LD: Given two genotype ID(i) and ID(j), the cloud computes six frequencies in Ta-
ble 3.4.

e4o11 = êxAA
(i)
⊗ exAA

(j)
e2o12 = êxAa

(i)
⊗ exAA

(j)

e2o21 = êxAA
(i)
⊗ exAa

(j)
eo22 = êxAa

(i)
⊗ exAa

(j)

e2N′1+N′2
= (exAA

(i)
⊕ exAa

(i)
)⊗ πfwd(1)

e2N1+N2 = (exAA
(j)
⊕ exAa

(j)
)⊗ πfwd(1)

5.2. From these six frequencies, the cloud can further compute the necessary values for D′-measure.

ePr(A) := e2N′1+N2
− eo22 ePr(B) := e2N1+N2 − eo22

e2 Pr(AB) := e4o11 ⊕ e2o12 ⊕ e2o21

6. Query χ2 Test: The cloud answers the χ2 query from the analyst and sends ciphertexts eN1 ,
eo1 and eN′1 to the analyst. Then the analyst can reconstruct the allelic frequency table, i.e.,
Table 3.3.

7. Query LD: The cloud answers the LD query from the analyst and sends ciphertexts e2 Pr(AB),
ePr(A) and ePr(B) to the analyst. Then the analyst can reconstruct the allelic frequency table, i.e.,
Table 3.4.

Figure 3.4: Full Protocol for Secure Outsourcing χ2 Test and LD Test.



Chapter 4

Iterative Computation on

Encrypted Matrices

Given a matrix A, we can use the protocol ΠIP described in the previous chapter to compute

the multiplication A2 privately since the matrix multiplication can be reduced to inner products.

However, we can not use ΠIP for a higher degree, i.e., Ak for k > 2 due to the error terms introduced

by the forward backward packing. On the other hand, the functionality A 7→ Ak for k > 2 is a very

important operations for many applications such as statistical analysis (e.g., linear regression) and

machine learning (e.g. collaborative filtering). If each entry of the matrix is encrypted separately as

Wu and Haven [2012], it is trivial to perform the iterative multiplications on the encrypted matrices.

Obviously, the method of Wu and Haven [2012] requires O(d3) number of homomorphic operations

aspect to the matrix dimension d.

In this chapter, we present a protocol ΠMP to compute iterative multiplications of encrypted

matrices. The key point of our iterative matrix multiplication protocool is to use the CRT packing

in a layout consistent way. Take the row-major layout as the example, that is each row of the matrix

is separately CRT-packed. The method of Halevi and Shoup [2014] uses CRT packing, however, it

outputs the resulting matrix in a column-major layout. To perform iterative multiplications, time

comsuming layout adjustments are needed. On the other hand, our iterative matrix multiplication

protocol takes as input of row-majorly encrypted matrices, and outputs the resulting matrix in

the row-major layout directly without any further layout adjustment. Overall, our iterative matrix

multiplication protocol needs O(d3/`) homomorphic operations, which is ` times faster than the

baseline method of Wu and Haven [2012].

22
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4.1 Primitives: Homomorphic Rotation and Homomorphic

Replication

We leverage the CRT-packing with a well-tuned homomorphic rotation operation in ΠMP. In addition

to the element-wise addition and multiplication, the CRT-packing also supports manipulations of

encrypted vectors. Specifically, we can homomorphically rotate an encrypted vector and replicate

one element of an encrypted vector. Similarly, let Rotate : At × Z 7→ At be the rotation function.

π−1
crt (Rotate(πcrt(x), k)) = u ∈ Z`t

∀1 ≤ j ≤ ` u[j] = x[j + k mod `].

In other words, we can homomorphically rotate the encryted vector by the offset of k.

Also, from the rotation operation, we can derive a replicate operation Replicate : At × Z 7→ At
directly using O(log `) rotations.

π−1
crt (Replicate(πcrt(x), k)) = v ∈ Z`t,

∀1 ≤ j ≤ ` v[j] = x[k].

That is, we can pick a specific element (i.e., the k-th entry) from the encryted vector, and homo-

morphically propagate it to the other positions.

4.2 Proposal: Iterative Multiplication of Encrypted Matri-

ces

In this work, we consider the row-major order in which rows of the matrix are encrypted separately.

It is natural to apply this layout in real applications. For instance, some research agents might

independently hold data with a different size but following the same data schema. Recall that

we apply the CRT-packing to each row of matrices and then encrypt each row Thereby, we write

{Enc (πcrt(A[i, :]))}di=1 and {Enc (πcrt(B[i, :]))}di=1 to denote the ciphertexts of each row of A,B ∈
Zd×dt , respectively. The ciphertext of a vector u ∈ Zdt is written as Enc (πcrt(u)).

Now, we present our iterative matrix multiplication protocol ΠMP in Figure 4.1.. To keep the

layout consistent, we use the Replicate function. The following example demonstrates the idea



CHAPTER 4. ITERATIVE COMPUTATION ON ENCRYPTED MATRICES 24

Protocol ΠMP

Inputs: Ciphertext of the matrix A ∈ Z`×`t , i.e., {Enc (πcrt(A[i, :]))}i for 1 ≤ i ≤ `. The exponent
k > 1.
Outputs: Ciphertext of the matrix exponent Ak, i.e.,

{
Enc

(
πcrt(A

k[i, :])
)}
i
.

Protocol:

1. We replicate the slots of each row ciphertexts of A and obtain `2 ciphertexts, i.e.,

ai,j = Replicate(Enc (πcrt(A[i, :])) , j) for 1 ≤ i, j ≤ `.

2. Let designate c
(1)
i := Enc (πcrt(A[i, :])) for 1 ≤ i ≤ `.

3. Iterate in range 2 ≤ k′ ≤ k and compute

c
(k′)
i =

⊕̀
j=1

(
c
(k′−1)
i ⊗ aj,i

)
for 1 ≤ i ≤ `.

4. Output ` ciphertexts {c(k)
i }

`
i=1 which decrypts to Ak[i, :], respectively.

Figure 4.1: Iterative Matrix Multiplication of Encrypted Matrices.

behinds ΠMP.

[
[1, 2]

[3, 4]

]
︸ ︷︷ ︸

A

·

[
[e, f ]

[g, h]

]
︸ ︷︷ ︸

B

=


j=1︷ ︸︸ ︷

[1, 1] ◦ [e, f ] +̇ [2, 2] ◦ [g, h]

[3, 3] ◦ [e, f ] +̇ [4, 4] ◦ [g, h]︸ ︷︷ ︸
j=2

 .

Basically, we replicate each element of the left-hand-side matrix A and perform the element-wise

additions and multiplications. The resulting matrix is also in the row-major layout.

Theorem 2. (Correctness.) The protocol of Figure 4.1 correctly implements the functionality of

iterative matrix multiplication, i.e., Ak.

Proof. We prove via mathematical induction. It is clear that for k = 1, Figure 4.1 works correctly.

Suppose that c
(k′)
i decrypts to the i-th row of Ak′ . We prove that c

(k′+1)
i decrypts to the i-th row

of Ak′+1. The ciphertext ai,j in Step 1 of Figure 4.1 decrypts to the (i, j) entry of A. Thereby, the

Step 3 is homomorphically computing
∑
jA

k′ [i, :]·A[j, i], which is exactly the i-th row of Ak′+1.

Matrix–vector Multiplication. Halevi and Shoup [2014] introduced a general procedure for the

matrix–vector multiplication. For the row-major layout, their procedure requires to “sum up” all

the slots of the CRT-packing, which might be expensive than the replication operation regarding

computational time. However, we give a different routine according to the observation that we only
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involve symmetric matrices in the matrix–vector multiplication (i.e., PCA). We thus can conduct

the matrix–vector multiplication Au as follows

d⊕
i=1

Enc (A[i, :])⊗ Replicate(Enc (u) , i). (4.1)

Notice that, this results at a ciphertext of CRT packed vector. Thereby, this matrix–vector multi-

plication can be used to compute iterative multiplications.

The security analysis of Figure 4.1 is deferred to the last section of this chapter.

4.3 Proposal: Batch Greater-than

We describe the batch greater-than protocol in Figure 4.2 which are used in the next application

section. Given integers 0 ≤ a, b < D for some positive D, we know that a > b if and only if

∃1 ≤ w < D such that a − b − w = 0. Thereby, we can construct a straw-man protocol by

homomorphically computing (a − b − w) · r for all w where the random value r is used to hide

|a− b|. This straw-man protocol, thus, requires O(D) homomorphic operations and generates O(D)

ciphertexts. We can reduce the computational cost and the number of ciphertexts of the straw-man

protocol by using the CRT-packing. Recall that the CRT-packing enables us to pack ` integers into

one ciphertext and the homomorphic addition and multiplication are then carried out on these `

integers simultaneously. Thereby, we can compute (a − b − w) · r with ` different w by viewing

these w as a vector w and using the πcrt function. Moreover, we need to shuffle the positions of

each w before packing them since |a − b| will be revealed if the position of w is predictable. This

greater-than method, thus, requires O(dD/`e) homomorphic operations and generates O(dD/`e)
ciphertexts which is a considerable improvement for a large `.

Theorem 3. (Correctness.) The protocol of Figure 4.2 correctly implements the batch greater than

functionality I{ai > bi} for 1 ≤ i ≤ θ under the semi-honest setting.

We usually use the bGT only in the last step of a larger protocol since we need to decrypt the

output of bGT to obtain the comparison result. However, exceptions do exist when we can take

advantage of the randomness of the output of bGT. For instance, in the next section, we use the

bGT as an intermediate step to obliviously zero-out some rare values in a contingency table.

Summary of Complexity. The complexity of the proposed primitives and basic routines are

summarized in Table 4.1. We count the number of homomorphic operations used in each primitive.

4.3.1 Comparison with the Garbled Circuit-based Solutions

We empirically compared the performance of the matrix multiplication protocol ΠMP and batch

greater-than protocol ΠbGT with their garbled circuit counterpart implementations. The comparison
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Protocol Batch Greater-than Protocol ΠbGT

Inputs: Ciphertext of the integer vector a, b ∈ {0, 1, · · · , D − 1}θ for D, θ ∈ Z+.
Output: Ciphertext of the CRT-packed vector γ where the length of γ is θ ·D.
Remark: One can learn I{a[j] > b[j]} = I{0 ∈ {γ[k · θ + j]}D−1

k=0 } from γ.

1. Compute ã = Repeat(Enc (πcrt(a)), θ,D); b̃ = Repeat(Enc (πcrt(b)) , θ,D).

2. Generate random permutations πj : {0, 1, · · · , D − 1} → {0, 1, · · · , D − 1} for 0 ≤ j < θ.

3. Compute a θ · D dimension vector w in which w[α(j)] = πj(α). Here α(j) := θ · α + j, for
α ∈ {0, 1, · · · , D − 1} and 0 ≤ j < θ.

4. Compute Enc (πcrt(β)) = ã− b̃− πcrt(w).

5. Compute Enc (πcrt(γ)) = Enc (πcrt(β))⊗ πcrt(r) where r U
←− (Zt/{0})θ·D.

6. Output Enc (πcrt(γ)).

Figure 4.2: Batch Greater-than Protocol

Sub-Protocol Repeat

Inputs: Ciphertext of CRT packed vector Enc (πcrt(u)) and θ,R > 0.
Output: Ciphertext of the repeated vectors ũ which repeats the first θ elements of u for R times.

1. ũ = Enc (πcrt(u))⊗ πcrt([1 . . . 1︸ ︷︷ ︸
θ

00 . . . ]); u = Enc (πcrt(ũ)).

2. View R in the binary format R = (bρ · · · b1b0)2 where bρ is the most significant bit.

3. For 0 ≤ i ≤ ρ iterate as follows

a) If bi is 1 then ũ = Rotate(ũ, k).

b) ũ = ũ⊕ u.

c) u = u⊕ Rotate(u, k)

d) k = k × 2.

4. return ũ

Figure 4.3: Repeat Sub-Protocol.

results are shown in Figure 4.4. We first describe our experiment setup.

GC Setting. For GC, we used a state-of-the-art framework, i.e., ObliVM [Liu et al., 2015] which

allows us to implement the garbled circuit with a high-level programming language interface. We

used two physically separated machines as the circuit generator and the circuit evaluator. The

generator and evaluator held random shares of the private inputs. We ran the GC experiments on

two network settings: a Local Area Network (two machines located inside the same router) and

a Wide Area Network (one machine located in Japan and the other located on the west coast of

USA). The network bandwidth of LAN and WAN was about 88 Mbps and 48 Mbps, respectively.
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Table 4.1: Complexity of our primitives. d is the matrix dimension. ` denotes the number of slots
of the CRT packing. θ is the batch-size of the greater than protocol. We write “–” to indicate that
the homomorphic operation is not used.

addition multiplication rotation

X · u (Figure 4.1) O(d2/`) O(d2/`) O(
d2 log `

`
)

X + Y O(d2`) – –

X · Y (Figure 4.1) O(d3/`) O(d3/`) O(
d3 log `

`
)

bGT (Figure 4.2) O(d(θD)/`e) O(d(θD)/`e) O(logD)

In ObliVM, we used the real-mode which provides the garbled-row-reduction [Naor et al., 1999] and

free-XOR [Kolesnikov and Schneider, 2008] optimizations.

FHE Setting. In the executions of the FHE primitives, we assume an encryptor encrypts the

private inputs and uploads the ciphertexts to the server. The server operates the primitives on the

ciphertexts and obtains the result. A decryptor downloads the result from the server and gets the

plain result after the decryption. For performance measurement, we used the same network (LAN

and WAN) as GC. For FHE-based primitives, we implemented using eight parallels. We also used

different parameters in bGT and the matrix primitives. Specifically, we set the parameters of the

BGV’s scheme t = 67499 and Φm(X) with m = 5227 (i.e., ` = 1742) for evaluating the batch

greater-than primitive. On the other hand, we use t = 73213 and m = 27893 (i.e., ` = 78) for

evaluating the matrix primitives.

Performance Measurements. We employed three different performance measurements: evalu-

ation time, ciphertext size, and operation time. The operation time of our FHE-based primitives

includes the time of encryption, upload, evaluation, download, and decryption. The evaluation time

includes the time of evaluation only, which is independent of the network bandwidth. For the GC

implementations, we measured the time for circuit generation and the time for circuit evaluation.

When we use the FHE primitives as an independent two-party computation, the entire computa-

tion time is measured by the operation time. On the other hand, when the FHE primitives are used

as building blocks for a more complicated two-party computation, the outputs of the FHE primitives

are successively reused without interaction with the other party. In such reuses, encryption, upload,

and download are not processed, and thus the server does not need to communicate with encryptors

and decryptors. Thus, to measure the efficiency of our FHE primitives, we measured the evaluation

time, too. We note that we can not separately evaluate the evaluation time from operation time

for GC execution. Therefore, the evaluation time of GC is the same as the operation time in our

evaluation.

We also compared the size of ciphertexts that the FHE-based primitives output with the size of
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Figure 4.4: Performance numbers (averaged over 10 runs) of FHE-based and GC-based primitive
implementations. LAN and WAN were introduced. For the matrix addition and matrix multiplica-
tion, matrices with 32-bits values were used. The numbers on the figure (g) – figure (i) indicate the
number of AND-gates in the garbled circuits.

network packets exchanged during the execution of the GC-based primitives 1.

Evaluation Result: Greater-than. Figure 4.4a, Figure 4.4d, and Figure 4.4g show the perfor-

mances of the FHE-based and GC-based greater-than implementations. As shown in the results,

our FHE-based greater-than primitive offers competitive performances to its GC counterpart when

comparing relatively small integers such as integers with less than 16 bits. The complexity of the

FHE-based greater-than grows exponentially with the bit length. Thus, it seems inefficient for our

greater-than primitive to handle large numbers. Noting that descriptive statistics of ordinal or cat-

egorical attributes typically assumes small domains (e.g., 0 ≤ age ≤ 150), we consider 12 − 16-bits

to be sufficient to meet regular requirements in many cases.

Evaluation Result: Matrix Addition. Figure 4.4b, Figure 4.4e, and Figure 4.4h show the

1We counted the number of AND-gates (20 bytes each) in the circuit.
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performances of the FHE-based and GC-based implementations of matrix addition. Since we leverage

the CRT-packing for FHE encrypted matrices, the evaluation time of the FHE-based matrix addition

increases linearly with the matrix dimension. The FHE-based matrix addition can operate faster

than its GC counterpart in terms of evaluation time while the size of ciphertexts generated by

the FHE-based matrix addition was two magnitudes larger than that in the GC counterpart. The

operation time of the FHE-based matrix addition is thus greater than that of its GC counterpart.

We can also see that the evaluation time of the FHE-based matrix addition was smaller than the

operation time of the GC (Figure 4.4b). In the WAN setting, the operation times of these two

implementations were quite close. We emphasize that the performance of the GC-based matrix

addition and that of the FHE-based matrix addition are not directly comparable. If the matrix

addition itself is the target computation, the GC-based solution works faster. However, when we need

successive matrix additions in the middle of a larger computation, the FHE-based implementation

can provide competitive performance with its GC counterpart.

Evaluation Result: Matrix Multiplication. Figure 4.4c, Figure 4.4f, and Figure 4.4i show

the performances of FHE-based and GC-based implementations of matrix multiplication. The GC

implementation ran slightly faster than the FHE-based one in the LAN environment while in the

WAN environment, these two implementations performed almost the same regarding evaluation

time. Notice that the number of ciphertexts in the FHE-based matrix multiplication and that of the

FHE-based matrix addition were the same due to the layout-consistency of our matrix primitives.

On the other hand, the GC-based matrix multiplication exchanged more network packets than that

of the GC-based matrix addition. We can see that the evaluation time and operation time of the

FHE-based matrix multiplication were almost the same, indicating the time of network communi-

cation in FHE-based matrix multiplication is negligible. When we need to operate iterative matrix

multiplications, the FHE-based primitive, which requires less network communication time, can offer

better performance in terms of operation time.

From the experimental results, we can conclude that our two building blocks are viable for cloud-

based applications. We admit that our greater-than primitive might be inefficient for comparing

large numbers, but for many statistics, small domains such as sizes of several thousand might be

sufficient. Also, we have to transfer hundreds of megabytes of ciphertexts which seems to hinder the

performance of our FHE-based matrix primitives. But we are interested in the statistical analysis

rather than a single matrix addition or multiplication. For the FHE-based matrix primitives, the

number of generated ciphertexts is independent of the number of iterations. Thus, after the cloud

finishes the analysis, the cost of transferring the FHE ciphertexts might not be the bottleneck.

However, the network packets exchanged by the GC-based implementations increases linearly with

the number of iterations. In other words, for evaluating complex functions, e.g. functions with a

large multiplicative depth or functions with large fan-in, the communication time might become the

bottleneck of GC solutions. Moreover, FHE-based solutions enable to delegate the computation to
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the cloud, and allow the encryptor to perform encryption only.

4.4 Application: Secure Outsourcing Statistical Analysis

At a high level, FHE enables us to perform addition and multiplication on ciphertexts. Thus it

allows us to evaluate any function F on ciphertexts. We can decompose the input into bits and

encrypt each bit separately. Since addition and multiplication on {0, 1} are equivalent to the AND-

gate and the XOR-gate in boolean circuits, we can construct the corresponding boolean circuit for

the function F and evaluate the boolean circuit on ciphertexts. Such scheme has become widely

recognized as a technology to enable processing of private data without compromising privacy.

Computational resources of cloud computing are completely virtualized, which helps to reduce

the operational costs of service providers. However, such virtualization makes it difficult to keep

control of data. In many domains; for instance, medical, and financial ones, confidentiality and

privacy of data are one of the principal concerns raised in cloud-based applications. FHE schemes

provide a natural method to address these concerns by encrypting data in the cloud and performing

computations on ciphertexts without decrypting the data. Since FHE schemes theoretically allow

evaluating any function on ciphertexts, FHE schemes might enable us to use the cloud for outsourcing

computational tasks such as statistical analysis with a guarantee of data privacy.

Statistical analysis usually involves a large scale of data with a large number of dimensions. As a

result, conducting statistical analysis in a way that evaluates the corresponding boolean circuits on

FHE ciphertexts might be inefficient in practice, in terms of the memory usage and computational

time. On the other hand, we can avoid encrypting the data bit-by-bit to obtain more efficient

solutions. In Naehrig et al. [2011], Yasuda et al. [2013], and Lu et al. [2015], particular encoding

methods are used to obtain computationally and spatially efficient solutions on FHE ciphertexts.

We remark that these encoding methods are specifically designed for a certain statistical analysis

task. Thus it seems difficult to reuse these encoding methods for other tasks.

In this chapter, we focus on applications of FHE to statistical analysis with three types of data.

Our goal is to conduct a wide range of statistical analysis on FHE ciphertexts with computational

and space efficiency, using the proposed primitives in the previous section. In this work, we present

efficient procedures for a wide range of statistical analysis using just a few of generic data encodings.

Specifically, we use two encodings to conduct descriptive and predictive statistics including the

histogram (count, histogram order), contingency table with cell suppression, k-percentile, principal

component analysis, and linear regression.

Related Work. Several studies that realize evaluating descriptive statistics using FHE have been

reported. Evaluating the standard descriptive statistics such as the mean and standard deviation

from FHE ciphertexts are presented in [Naehrig et al., 2011]. In [Wu and Haven, 2012], they also show

how to compute the co-variance using FHE. Notice that these statistics involve numerical attributes
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only, while in the statistical analysis we also have categorical and ordinal data. For categorical and

ordinal statistics, such as histogram and k-percentile, we can use the private database query system

of [Boneh et al., 2013]. However, this method requires to evaluate a circuit with O(M) multiplicative

depths where M is the number of data points. Thereby, it would be practical only for a very small

M , e.g., M < 20.

For predictive statistics, the earlier study [Graepel et al., 2012] presents the construction of

building linear classifiers (i.e., the Linear Mean Classifier and Fisher’s Linear Discriminant Classifier)

from FHE encrypted data. More recently, the work of [Bost et al., 2015] shows three protocols for

private evaluation of hyperplane decision classifiers, naive Bayes classifiers and decision tree classifiers

on ciphertexts. Notice they focus on the model evaluation and the privacy-preserving model building

is beyond the scope of [Bost et al., 2015]. In [Wu and Haven, 2012], they present a protocol to train a

linear regression model from FHE encrypted data using Cramer’s rule for matrix inversion. Thereby,

the computational complexity of this method blows up factorially with the data dimension. In other

words, their method is only suitable for data with small dimensions. Indeed, only six dimension

data are used in [Wu and Haven, 2012]. To the best of our knowledge, no practical FHE solution

that trains the linear regression model from data with high dimension has been established.

4.4.1 Data Representations: Numerical, Categorical and Ordinal Data

In this paper, we aim to conduct a broad range of statistics of numerical, ordinal, and categorical

data. We firstly describe data representations for different types of attributes.

Categorical Attributes. The values of categorical attributes represent some states without mean-

ingful order. Let dc be the number of categorical attributes. We denote the domain of each cate-

gorical attribute as

Cj = {sj1, s
j
2, · · · , s

j
|Cj |}, 1 ≤ j ≤ dc,

where sjk is the k-th state of the attribute Cj . The cross-product gives the domain of the categorical

attributes C := C1 × · · · × Cdc . Let ci ∈ C be a vector of the categorical data. Then ci[j] ∈ Cj is a

categorical value of the j-th categorical attribute.

Ordinal Attributes. Values in an ordinal attribute have a meaningful ranking among them. We

designate the number of ordinal attributes as do. Similarly, the domain of each ordinal attribute is

represented as

Oj = {ŝj1, ŝ
j
2, · · · , ŝ

j
|Oj |}, 1 ≤ j ≤ do,

where ŝjk is the k-th state of the attribute Oj . The order of attribute values is given as ŝj1 � · · · �
ŝj|Oj |. We also present the domain of the ordinal attributes as the cross-product O := O1×· · ·×Odo .
Let oi ∈ O be the i-th ordinal data. Then oi[j] is an ordinal value of the j-th ordinal attribute.

Numerical Attributes. In this paper, we presume that all the numerical values are integers since

the BGV’s scheme can only process integers. We use a fixed point number of finite precision. Given



CHAPTER 4. ITERATIVE COMPUTATION ON ENCRYPTED MATRICES 32

x ∈ R and ∆ ∈ Z, we have b∆xe ∈ Z where b·e rounds a real number to the nearest integer. Let dn

be the dimension of numerical data and x>i ∈ Zdnt be the i-th numerical data. The j-th element of

each vector is designated as the j-th numerical attribute.

We represent the collections of M categorical, ordinal, and numerical data points respectively as

follows.

C =


c>1
...

c>M

 ∈ CM O =


o>1
...

o>M

 ∈ OM X =


x>1
...

x>M

 ∈ ZM×dnt

Indicator Encoding Eid : Cj → {0, 1}|Cj |. Eid takes as input an attribute value sjk ∈ Cj and outputs

a vector with all elements zero except the k-th element, which is set to 1. For instance, presuming

|Cj | = 3, the indicator encoding of the second state sj2 will be Eid(sj2) = [0, 1, 0]. We construct

protocols of the histogram (count) and the contingency table using this encoding.

Staircase Encoding Est : Oj → {0, 1}|Oj |. Staircase encoding takes as input an attribute value

ŝjk ∈ Oj and outputs a binary vector. The staircase encoding sets the 1-st to the (k−1)-th elements

as 0 and sets the k-th to the last elements as 1. For example, presuming the domain size of |Oj | = 3,

the staircase encoding of the second state ŝj2 will be Est(ŝj2) = [0, 1, 1]. We use Est for the evaluation

of k-percentile.

4.4.2 Application Scenario and Stakeholders

We consider three stakeholders: encryptor, cloud, and decryptor. We assume all stakeholders behave

semi-honestly and the cloud does not collude with the decryptor. Let x be a private input of the

encryptor and f be a publicly known function. We consider the following model (Table 4.2). The en-

cryptor sends the ciphertext Enc (x) to the cloud for the computation of a particular functionality F .

The cloud operates specified homomorphic operations on Enc (x) and sends the resulting ciphertext

Enc (z = F(x)) to the decryptor. The decryptor decrypts the resulting ciphertext and learns z but

nothing else. The cloud and the encryptor learn nothing at the end of the execution of the protocol.

The encryptor sends the encryption of his private input following the data processing of different

types of data in Table 4.3. In the following protocol descriptions, we thus omit the encryption phase

of the encryptor.

4.4.3 Problem Statements: Descriptive Statistics and Predictive Statis-

tics

In this work, we consider statistical functions including the histogram (count and histogram order)

and contingency table (with cell suppression) for categorical attributes; the k-percentile for ordinal
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Table 4.2: Input-output relationships for the stakeholders. We write “–” to indicate no input or
output. Input and output are viewed as bits stream x, z ∈ {0, 1}∗.

Stakeholder Possess Input Output

encryptor pk, evk x –

cloud pk, evk – Enc (z)

decryptor pk, evk, sk – z

Table 4.3: A summary of the form of ciphertexts and statistics

Data Type Ciphertext Form Statistics

ci[q] ∈ Cq Enc (Eid(ci[q])))
histogram, count, histogram order

and contingency table

oi[p] ∈ Op Enc (Est(oi[p])) k-percentile

xi ∈ Zdc Enc (πcrt(xi)) PCA and linear regression

attributes; and the principal component analysis and linear regression for numerical attributes. We

present these statistics in turn.

4.4.4 Descriptive Statistics

Single Categorical Attribute. Let {c1[j], . . . , cM [j]} be the j-th categorical attribute values of

M data points. If cijs are encoded by the indicator encoding, then the summation of vectors yields

the histogram.

Hist({c1[j], . . . , cM [j]}) = h where h =

M∑
i=1

Eid(ci[j]). (4.2)

The histogram query naturally gives the count and histogram order. The count of the state sjp can

be given as

Count({c1[j], . . . , cM [j]}, p) = 〈1p,h〉 , (4.3)

where 1p is an indicator vector of which the elements are 0 except the p-th element is 1.

The histogram order reveals the order of the counts of the histogram h. We define this function-

ality as

HistOrder({c1j , . . . , cMj}) = k, (4.4)

where the count of the state sjkx is not less than the count of the state sjky for any 1 ≤ x < y ≤ |Cj |.
Multiple Categorical Attributes. Next, we consider the evaluation of contingency tables of

two categorical attributes Cp and Cq. Evaluation of a contingency table corresponds to counting

combinations (spu, s
q
v) for all possible (u, v) pairs. We write µuv to denote the count of the combination
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Table 4.4: A contingency table of two categorical attributes Cp and Cq of M data points.

state sq1 · · · sq|Cq| Total

sp1 µ1,1 · · · µ1,|Cq| µ′1
...

...
. . .

...
...

sp|Cp| µ1,|Cp| · · · µ|Cp|,|Cq| µ′|Cp|

Total µ1 · · · µ|Cq| M

(spu, s
q
v). For instance, one categorical data point ci = [· · · , sp2, · · · , s

q
3, · · · ] contributes to the count

µ23 by 1. An example of the contingency table of attributes Cp and Cq is shown in Table 4.4. We

define the functionality of contingency table evaluation as

ContingencyTable({ci[p], ci[q]}Mi=1) = µ. (4.5)

In a contingency table, small counts represent rare individuals or cases of the population. For

concerns of individual privacy, applications that evaluate contingency tables with private data col-

lected from different sources usually additionally perform cell suppression [Nabar and Mishra, 2009,

Kirkendall and Sande, 1998] to conceal existence of individuals with rare combination of attribute

values. A common practice of the cell suppression is to zero-out the counts that are smaller than a

constant threshold T . The functionality of zero-out suppression can be defined as

CT-Suppression({ci[p], ci[q]}Mi=1, T ) = µ̄, (4.6)

where µ̄s = µs · I{µs > T } for 1 ≤ s ≤ |Cp||Cq|. Notice that µ is the output of ContingencyTable.

Ordinal Attributes. For the ordinal attributes, we consider k-percentile. k-percentile is the value

that separates given ordinal values into two parts so that the one part with lower values contains k %

of the data. For instance, the 50-percentile is also named as the median. Letting {o1[j], . . . ,oM [j]}
be the j-th ordinal attribute values of M data points, we can sort the ordinal values in ascending

order as oπ(1)[j] � · · · � oπ(M)[j]. Here, π is a permutation function that returns indices in

descending order. Using the notation of π, we can define the k-percentile functionality as

k-Percentile(o1[j], . . . ,oM [j]) = oM∗ [j], (4.7)

where M∗ := π(d(k ·M)/100e) and oπ(i)[j] � oπ(i+1)[j] holds for all 1 ≤ i < M .
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4.4.5 Predictive Statistics

Principal Component Analysis. PCA is a statistical procedure that converts a set of numerical

observations of possibly correlated variables into a small number of directions that are mutually

linearly independent. In PCA, we firstly compute a covariance matrix

Σ =
1

M
X>X − µµ> where µ =

1

M

M∑
i=1

x>i . (4.8)

Then we compute the eigenvalues and eigenvectors of Σ. Let the eigenvalues of Σ be λ1 ≥ · · · ≥ λdn ,

and denote the corresponding eigenvectors as u1, . . . ,udn . An iterative algorithm (i.e., Power-

Method) can evaluate the k-th eigenvalue λk and the corresponding principal component uk with T

iterations.

PowerMethod (Σ, {λq}k−1
q=1 , {uq}

k−1
q=1):

1. Σk := Σ−
∑k−1
q=1 λququ

>
q .

2. Choose a random vector v(0) U
←− Zdnt .

3. For 0 ≤ τ < T , compute

v(τ+1) = Σkv
(τ). (4.9)

4. Output uk =
v(T )

‖v(T )‖
and λk =

‖v(T )‖
‖v(T−1)‖

.

Linear Regression. The problem of linear regression is to find a model that predicts values of a

numerical target variable from observations of numerical input variables using a linear equation. Let

{(x>i , yi)}Mi=1 be the given dataset in which x>i are the input variables and yi is the target variables.

The model of linear regression is given as y ≈ x>w. Therein, the model w is obtained by minimizing

the least-squares error:

w∗ = argminw

1

M

M∑
i=1

‖yi − x>i w‖22.

The analytical solution w∗ is given as

w∗ = (X>X)−1X>y, (4.10)

where the matrix X and vector y are the collections of numerical data. The Equation 4.10 is

immediately solved if we can evaluate the inverse of X>X. We leverage a division-free variant of

the iterative matrix inversion method from [Guo and Higham, 2006] so that we can compute the

matrix inversion on FHE encrypted matrices. Let M be a matrix, λ be a real value, and T be the

number of iterations. The division-free matrix inversion method works as follows.
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DF-MatrixInversion (M , λ, T ):

1. Initialize A(0) = M ,R(0) = I, α(0) = λ.

2. For 0 ≤ τ < T , compute

R(τ+1) = 2α(τ)R(τ) −R(τ)A(τ),

A(τ+1) = 2α(τ)A(τ) −A(τ)A(τ),

α(τ+1) = α(τ)α(τ).

(4.11)

3. Output R(T ).

Here I is an identity matrix. This method approximates the inverse of the matrix M . According

to the analysis of Guo and Higham [2006], R(τ) converges to λ2τM−1 quadratically if λ is close to

the largest eigenvalue of M .

4.4.6 Computing Descriptive Statistics from Ciphertexts

This section presents the details of evaluating the statistics described in Section 4.4.3 on FHE

encrypted data.

Histogram and Count. The evaluations of Equation 4.2 (histogram) and Equation 4.3 (count) on

FHE encrypted categorical data are straightforward using the CRT-packing and indicator encoding.

For the collection of categorical data C ∈ CM , we can compute the histogram of Cp, i.e. the p-th

attribute, as ⊕Mi=1Enc (Eid(ci[p])). Also, we can compute the histograms of multiple attributes simul-

taneously. For instance ⊕Mi=1Enc (Eid(ci[p])‖Eid(ci[q])) gives the histograms of Cp and Cq. Moreover,

to give the count of specific attribute values, we need one more homomorphic multiplication. For

example,
(
⊕Mi=1Enc (Eid(ci[p]))

)
⊗πcrt(13) gives the ciphertext of the count for sp3, i.e., the third state

of the attribute of Cp. Similarly, we can give multiple counts simultaneously.

Histogram Order. The evaluation of Equation 4.4 requires computing the order of the counts in

the histogram, which indicates that comparisons of encrypted integers are needed. Our method for

calculating the histogram order on ciphertexts splits into two stages: one for operating bGT and the

other for recovering the histogram order from the outputs of bGT. In the second stage, we need to

decrypt the outputs of bGT. In the protocol, the matrix ∆ just acts as a handy helper for us to

calculate the histogram order.

Theorem 4. (Correctness.) The ΠHistOrder protocol correctly implements the histogram order func-

tionality of Equation 4.4 under the semi-honest setting.

Proof. The protocol ΠHistOrder of Figure 4.5 calls the bGT primitive O(|Cj |2) times. By operating

these comparisons, we have obtained the order of the values of the histogram. According to bGT, if
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Protocol ΠHistOrder

Input from encryptors: Ciphertexts of categorical data of the j-th attribute {Enc (Eid(ci[j]))}Mi=1

Output of the cloud: Ciphertexts {Enc (γuv)}1≤u<v≤|Cj |
Remark: Decryptor can learn the histogram order Equation 4.2 from γuv.

The cloud:

1. Computes the histogram Enc (h) =
⊕M

i=1 Enc (Eid(ci[j])).

2. Computes Enc (hp) = Replicate(Enc (h) , p) for 1 ≤ p ≤ |Cj |.
3. For all 1 ≤ u < v ≤ |Cj | pairs, invokes the routine of Figure 4.2 with D = M and θ = 1, and

obtains
Enc (γuv) = bGT(Enc (h[u]) ,Enc (h[v])).

4. Outputs ciphertexts {Enc (γuv)}1≤u<v≤|Cj |.
The decryptor:

5. Constructs a matrix ∆ ∈ {0, 1}|Cj |×|Cj | according to the decryption of {Enc (γuv)}1≤u<v≤|Cj |.

a) The diagonal of ∆ is set to 0, that is ∆[u, u] = 0.

b) For all (u, v) pairs such that 1 ≤ u < v ≤ |Cj |, set δuv = 1{0 ∈ γuv} and set ∆[v, u] = 1−∆[u, v].

6. Outputs a vector k with the value k[l] set as the row-index of ∆ which contains exactly |Cj | − l
of 1s for 1 ≤ l ≤ |Cj |.

Figure 4.5: Protocol ΠHistOrder for Private Histogram Order.

0 ∈ γuv holds then we know that the count of state sju is larger than that of state sjv, which follows

exactly the histogram order functionality.

K-percentile. We conduct the k-percentile of the attribute Oj on FHE ciphertexts as ΠkP of

Figure 4.6. The decryptor can derive the k-percentile of the attribute Oj from γ. Indeed, we obtain

the cumulative frequencies of the j-th ordinal data {o1[j], . . . ,oM [j]} in Step 1 due to the use of

staircase encoding. For instance, let us consider the ordinal data {ŝj1, ŝ
j
2, ŝ

j
3, ŝ

j
3, ŝ

j
1, ŝ

j
2} for M = 6.

Then the summation in Step 1 gives cumulative frequencies f = [2, 4, 6]. To get the k-percentile,

we only need to find out, from left to right, the first frequency that is larger than kM/100. In the

previous example, we know ŝj2 is the 50-percentile point because f1 < 3 ∧ f2 ≥ 3.

Theorem 5. (Correctness.) The protocol ΠkP of Figure 4.6 correctly implements the k-percentile

functionality of Equation 4.7 under the semi-honest setting.

Proof. The Step 1 of Figure 4.6 gives the ciphertext of cumulative frequencies of the j-th or-

dinal attribute. If ŝjn∗ is the k-percentile, Step 2 gives a ciphertext of a vector γ such that

0 /∈ {γk|Oj |+n∗−1}M−1
k=0 while 0 ∈ {γk|Oj |+n∗}

M−1
k=0 , since the input to the bGT in Step 2 is the (en-

crypted) cumulative frequencies of the j-th ordinal attribute. For the boundary conditions, we can

determine that ŝj1 is the k-percentile point if 0 is absent in γ. On the other hand if 0 ∈ {γk|Oj |+n∗}
N−1
k=0

for all possible n∗, we know that the last attribute state ŝj|Oj | is the k-percentile of the population.
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Protocol ΠkP

Input from encryptors: Ciphertexts of j-th ordinal attribute. {Enc (Est(oi[j]))}Mi=1. Positive integer
0 ≤ k ≤ 100.
Output of the cloud: Ciphertexts of a vector γ where |γ| = M · |Oj |.
Remark: The decryptor can learn k-percentile of the j-th ordinal attribute from γ.

The cloud:

1. Aggregates the ciphertexts via additions c =
⊕M

i=1 Enc (Est(oi[j])).
2. Invokes bGT on the aggregated ciphertext:

Enc (πcrt(γ)) = bGT(c,M · k/100)

with D = M and θ = |Oj | as the parameters of the bGT protocol.

3. Outputs Enc (πcrt(γ)) to the decryptor.

The decryptor:

4. Decrypts Enc (πcrt(γ)) as γ.

5. Finds out an index 1 ≤ n∗ ≤ |Oj | s.t. 0 /∈ {γk|Oj |+n∗−1}N−1
k=0 and 0 ∈ {γk|Oj |+n∗}

N−1
k=0 . If no such

n∗ exists, sets the value of n∗ as

n∗ =

{
1 if 0 /∈ γ
|Oj | o.w.

6. The k-percentile of the j-th ordinal attribute is output as ŝjn∗ .

Figure 4.6: Protocol ΠkP for Private k-percentile.

Eid(ci[p]) Eid(ci[p]) Eid(ci[p])
element-wise multi. Eid(ci[q]) Eid(ci[q])

contribute to µ1,1 µ2,2 – µ2,1 µ1,2 –

Figure 4.7: One multiplication gives 2 × 2 combinations of attributes of ci[p] ∈ Cp and ci[q] ∈ Cq
where |Cp| = 2 and |Cq| = 2.

Contingency Table with Cell Suppression. The count µu,v in the contingency table (i.e.,

Table 4.4) is given by the x-th element of µ where (x− 1) ≡ (u− 1) mod k1 and (x− 1) ≡ (v − 1)

mod k2
2. We present a concrete example in Figure 4.7, in which the domain sizes are |Cp| = |Cq| = 2

and k1 = 2, k2 = 3. In Figure 4.7, the white cells indicate 0 since we use 0-padding in the CRT-

packing. Thereby element-wise multiplications on these positions only give 0, and thus no other

information except the contingency table are revealed. The co-prime duplication plays a major role

in the above evaluation.

Theorem 6. (Correctness.) The protocol of Figure 4.8 correctly implements the functionality of

Equation 4.6 (contingency table with suppression) under the semi-honest model.

2Indices start from 1.
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Protocol ΠCTS

Inputs: Ciphertexts of the p-th and q-th categorical data {Enc (Eid(ci[p])) ,Enc (Eid(ci[q]))}Mi=1. The
cell suppression threshold T > 0. Let Σ := |Cp| · |Cq| as the product of the size of the categorical
attributes.
Outputs: Ciphertexts a′, b′ and b∗.
Remarks: One can learn the cell suppressed contingency table defined in Equation 4.6 from the
decryptions of a′, b′ and b∗.

The cloud:

1. Finds the smallest co-prime integers k1 and k2 such that k1 ≥ |Cp| and k2 ≥ |Cq|.
2. For 1 ≤ i ≤M , computes

pi = Repeat (Enc (Eid(ci[p])) , k1, k2)

qi = Repeat(Enc (Eid(ci[q])) , k2, k1).

3. Computes a =
⊕M

i=1 pi ⊗ qi.

4. Invokes bGT: b = bGT(a, T ) with D = M and θ = Σ for the bGT protocol.

5. Computes b′ = b⊕ πcrt(δ) where δ U
←− ZΣ

t .

6. Computes a′ = a ⊕ πcrt(r) where the length of the vector r is M · Σ, r[k · Σ + x] = δ[x] for
0 ≤ k < N , and 1 ≤ x ≤ Σ.

7. Samples r∗ U←− (Zt/{0})M·Σ and computes b∗ = b⊗ πcrt(r
∗).

8. Outputs ciphertexts a′, b′ and b∗.

The decryptor:

9. Decrypts a′, b′ and b∗ to a′, b′ and b∗ ∈ ZM·Σt , respectively.

10. Finds out the set SZ := {(s, z = k · Σ + s)|b∗[k · Σ + s] = 0, 1 ≤ s ≤ Σ, 0 ≤ k < N}.
11. Outputs µ̂ where µ̂[s] = b′[z]− a′[z] for (s, z) ∈ SZ.

Figure 4.8: Protocol ΠCTS for Private Contingency Table with Cell Suppression.

Proof. (Correctness.) We now describe the idea of our cell suppression protocol ΠCTS of Figure 4.8.

Without loss of generality, we presume that µ[s] > T for some specific 1 ≤ s ≤ Σ. According to the

bGT protocol of Figure 4.2, we have one and only one 0 in the set Γs := {b[k · Σ + s]}M−1
k=0 (where

b is the decryption of b in Step 4 of Figure 4.8). This enables us to hide numbers. If we have only

one 0 in Γs, we can recover the value of µ[s] from the tuple {µ[s] + δ, δ +̇ Γs, r
∗ · Γs} with some

non-zero random value r∗. Here the mathematical operations are carried out on each element of Γs.

On the other hand, if µ[s] ≤ T , after the execution of the bGT protocol we have 0 /∈ Γs. We can

not recover the value of µs from the tuple. Thereby, the suppression is achieved.
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4.4.7 Computing Predictive Statistics from Ciphertexts

Principal Component Analysis. For the evaluation of PCA, we can perform the computation

of Equation 4.8 and Equation 4.9 on ciphertexts directly. Given the collection of numerical data

X ∈ ZN×dnt , we evaluate the first principal component with T iterations as the protocol ΠPCA

of Figure 4.9. Step 1 and Step 2 follow Equation 4.8 except we can not perform the division on

ciphertexts. Notice that, in Step 2, the operation generates ciphertexts of a matrix, i.e., M2Σ.

The evaluation in Step 3 is also straightforward using our matrix–vector multiplication primitives

of Equation 4.1.

Protocol ΠPCA

Inputs: Ciphertexts of the numerical data {Enc
(
πcrt(x

>
i )
)
,Enc

(
πcrt(xix

>
i )
)
}Mi=1. Number of itera-

tions T .
Outputs: Ciphertexts v(T ) and v(T−1).
Remarks: One can learn the (approximated) largest eigenvalue and the associated eigenvector from
the decryptions of v(T ) and v(T−1).

The cloud:

1. Computes Enc (πcrt(M · µ)) =
⊕M

i=1 Enc
(
πcrt(x

>
i )
)
.

2. Computes Enc
(
πcrt(M

2Σ)
)

=
(
M ⊗

⊕M
i=1 Enc

(
xix

>
i

))
	Enc (πcrt(M · µ))⊗Enc

(
πcrt(M · µ>)

)
.

3. From 0 ≤ τ < T , iterates
v(τ+1) = Enc

(
πcrt(M

2Σ)
)
⊗ v(τ),

where v(0) is initialized as any non-zero vector.

4. Outputs v(T ) and v(T−1).

The decryptor:

5. Decrypts v(T ) and v(T−1) to vectors v(T ) and v(T−1), respectively. Outputs the largest eigenvalue
as λ1 = ‖v(T )‖/‖v(T−1)‖ and the associated eigenvector as u1 = v(T )/‖v(T )‖.

Figure 4.9: Protocol ΠPCA for Private Principal Component Analysis.

Theorem 7. (Correctness.) The protocol ΠPCA of Figure 4.9 correctly implements the functionality

of Equation 4.9 with approximations under the semi-honest model.

Linear Regression. To conduct the linear regression of Equation 4.10, we need to compute the

inverse of the design matrix X>X. To do so, we use the DF-MatrixInversion procedure in Equa-

tion 4.11. The evaluation of Equation 4.11 on ciphertexts are straightforward using our matrix

multiplication primitive of Figure 4.1. Given the collection of numerical data {(x>i , yi)}Mi=1 and the

largest eigenvalue λ1 of the design matrix, we can evaluate Equation 4.10 with T iterations as the

protocol of Figure 4.10.

The DF-MatrixInversion in Step 3 computes the matrix inversion with a known factor λ2T

1 .

Thereby, the output ciphertext w is the linear regression model w∗ argumened by the factor λ2T

1 .
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Protocol ΠLR

Inputs: Ciphertexts of the numerical data {Enc
(
πcrt(yix

>
i )
)
,Enc

(
πcrt(xix

>
i )
)
}Mi=1. The ciphertext of

the largest eigenvalue Enc (λ1) and the number of iterations T .
Outputs: One encrypted vector w.
Remarks: One can learn the (approximated) linear regression model w∗ with the largest eigenvalue
λ1 and the decryption of w.

The cloud:

1. Aggregates the ciphertexts

Enc
(
πcrt(X

>y)
)

=

N⊕
i=1

Enc
(
πcrt(yix

>
i )
)

Enc
(
πcrt(X

>X)
)

=
N⊕
i=1

Enc
(
πcrt(xix

>
i )
)
.

2. Invokes the DF-MatrixInversion procedure of Equation 4.11

Enc
(
πcrt(λ

2T

1 (X>X)−1)
)

= DF-MatrixInversion
(
Enc

(
πcrt(X

>X)
)
,Enc (λ1) , T

)
.

3. Outputs w = Enc
(
πcrt(λ

2T

1 (X>X)−1)
)
⊗ Enc

(
πcrt(X

>y)
)
.

The decryptor:

4. The decryptor decrypts w to the vector w and outputs w∗ as w/λ2T

1 .

Figure 4.10: Protocol ΠLR for Private Linear Regression.

Theorem 8. (Correctness.) The protocol of Figure 4.10 correctly implements the linear regression

functionality of Equation 4.10 with approximation under the semi-honest model.

4.4.8 Evaluation

We implemented our building blocks and all the procedures that is described in Section 4.4.6. Our

implementations were written in C++, and we used the HElib library [Halevi and Shoup, 2017]

for the implementation of the BGV scheme. We compiled our code using g++ 4.9.2 on a machine

running Ubuntu 14.04.4 with eight 2.60GHz Intel(R) Xeon(R) E5-2640 v3 processors and 32 GB of

RAM. The proposed procedures and the PPE technique are parallelizable. We leveraged 8 parallels

in our benchmarks to accelerate the computation.

We used multiple parameter sets in our benchmarks to show the best performance of our proce-

dures. Our choices for selecting the parameters of the HElib are shown in Table 4.5. In this table,

we have modulo parameter tk, the number of slots of the CRT-packing `, levels parameter L, the

parameter for cyclotomic polynomial m, the number of coprime moduli K, and the security level κ.
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We used at most K = 8 moduli and for each modulo we set tk ≈ 236 to achieve about 300-bit preci-

sion. Specifically, we used parameter set (I) for evaluating the PrivateHistOrder, Private k-Percentile

procedures. The evaluations of PrivateContingencyTable and PCT-Suppression used parameter set

(II) while the evaluations of PrivatePCA and PrivateLR use the set (III).

We conducted experiments on five datasets from the UCI Machine Learning Repository [Lich-

man, 2013]. For detailed discussions, we focus on one of them, the Adult dataset, which includes

M = 32561 records with 6 numerical attributes, 7 categorical attributes, and 1 ordinal attribute.

Specifically, to show the scalability of the ΠPCA and ΠLR protocols, we also gave the benchmarks on

other four datasets.

Plaintext Precision Expansion (PPE). We have described straightforward procedures to con-

duct the PCA and linear regression on ciphertexts, using our matrix primitives. However, we still

have an issue in implementing these procedures. That is, the current implementation of the BGV

scheme, i.e., the HElib [Halevi and Shoup, 2017], only allows a maximum of 60-bits plaintext preci-

sion which might not be sufficiently large enough for conducting the PCA and linear regression. We

show an example of this below.

We take the PCA as an example. Assume that the dn×dn covariance matrix Σ (as Equation 4.8)

is B-bounded, i.e. |σij | ≤ B for all σij ∈ Σ. After T iterations, the output from Equation 4.9

is bounded by dTn∆T+1BT+1. Recall that we need to introduce a fixed magnifier ∆ to convert

the real values to integers. Presuming that we use B = 102, ∆ = 103, and dn = 5, then the

estimation above reveals that T = 3 iterations are not allowed because d3
n∆4B4 ≈ 273 exceeds 260,

the maximum plaintext precision. As a result, the 60-bits precision makes it possible to perform

only a few iterations on ciphertexts. However, the iterative algorithms we used for the PCA and

linear regression might not give converged solutions within a few iterations, which means we can

obtain only very rough approximations for the PCA and linear regression. To address this, we need

to perform more iterations, which requires a higher plaintext precision.

We introduce PPE to achieve a higher plaintext precision with the application of the Chinese-

Remainder-Theorem (CRT). Let f be the function that we evaluate, and let x be the input of f .

Suppose that f(x) > 260. We, thus, cannot directly evaluate f on the ciphertext of x since we

cannot offer plaintext with values larger than 260. To alleviate this problem, we with K distinct

plaintext spaces and get K values as {f(x) mod tk}Kk=1, where tk < 260 for all k. According to the

CRT, if we have gcd(tk, tk′) = 1 for all k 6= k′, then from the set of values {f(x) mod tk}Kk=1, we

can uniquely determine the value which is equal to f(x) mod t for t =
∏K
k=1 tk. Thereby we can

obtain f(x) by using such small tk’s with product is larger than f(x). If we fix the magnitude of

tk, then we can achieve any desired precision by adjusting K for a desired precision. Indeed, PPE

is achieved at the expense of increasing both computational and communication cost by a factor K

while PPE is totally parallelizable. We can also apply the PPE to the evaluation of the descriptive

statistics.
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Table 4.5: Parameter sets of the BGV scheme. tk denotes the coefficient modulo. ` is the number of
slots of the CRT packing. L is the number of primes in the ciphertext moduli. K is the expansion
factor used in for PPE. κ is the security level for that parameter set.

tk ` L m K κ

(I) 67499 1742 5 5227 1 90

(II) 8191 4096 10 16384 1 80

(III) ≈ 236 ≈ 70 32 27893 ≤ 8 110

Parameters of HElib. To achieve the best performance, we need to choose the parameters of the

HElib appropriately. We determined the parameters of the HElib based on the three concerns.

1. To provide the desired security level.

2. To offer sufficient spaces of the CRT packing, i.e. `.

3. To operate the homomorphic rotation efficiently.

In our experiments, we used parameters shown in Table 4.5. These parameter sets offer at least

80-bit security level and provide the number of slots up to several thousand.

Error Ratio. Our private PCA and LR procedures use iterative algorithms and fixed-precision

values. It thus introduces error. We write λ∗ and w∗ to denote the solutions to the PCA and

the LR, respectively. We write λ̂ and ŵ to denote the outputs obtained from our PCA and LR

procedures. We define the error ratio of our procedures as follows.

Errorλ∗ =
|λ∗ − λ̂|
λ∗

Errorw∗ =
‖w∗ − ŵ‖2
‖w∗‖2

.

This error ratio definition enables us to estimate the loss of accuracy.

4.4.9 Evaluation

We measured the time of procedure evaluation and time of results decryption. We give the standard

deviations only for the evaluation time due to the space limit, and remark that standard deviations

for decryption times were negligible in our experiments.

Evaluation Results: Histogram Order & K-percentile. Table 4.6 shows the experimental

results of the ΠHistOrder and ΠkP protocols. For the histogram order (upper part), we ran the exper-

iments on two categories workclass and education, which respectively consists of 8 and 16 attribute

values. The time of decryption became the largest part as M was increased. That was because we

needed to decrypt d(|Cj |2 ·M)/`e ciphertexts. The decryption is totally parallelizable so it can be

easily reduced by using more cores.
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Table 4.6: Benchmark (adult dataset) of the ΠHistOrder (Figure 4.5) and ΠkP (Figure 4.6). Values are
averaged over 10 runs.

Protocol Domain # records M Evaluation Decryption

ΠHistOrder

|Cj | = 8

500 1.26 ± 0.145s 1.26s

1k 1.31 ± 0.157s 1.23s

10k 2.72 ± 0.289s 4.80s

32k 6.28 ± 0.484s 13.2s

|Cj | = 16

500 2.42 ± 0.439s 3.27s

1k 2.53 ± 0.336s 3.30s

10k 6.24 ± 0.448s 13.6s

32k 13.8 ± 1.38s 41.2s

ΠkP |Oj | = 100

500 4.768 ± 0.12s 3.27s

1k 9.487 ± 0.92s 3.11s

10k 97.515± 1.60s 18.6s

32k 321.285 ± 21.7s 48.8s

Table 4.7: Benchmark of the protocol ΠCTS (Figure 4.8). Values are averaged over 10 runs.

Attributes # records M Evaluation Decryption

|Cp| = 8, |Cq| = 6

500 35.69 ± 1.55s 3.84s

1k 68.42 ± 4.17s 7.45s

2k 155.26 ± 20.01s 14.83s

4K 287.02 ± 10.10s 30.00s

For the k-percentile procedures, we conducted the experiments with the ordinal attribute age

from the adult dataset and presumed that the domain size |Oj | = 100. As long as n < ` (i.e., 1742),

the time for download and decryption were steady. When n > `, the decryption time increased

almost linearly with n. To reduce the response time, the analyst can choose the parameters of BGV

that offer a larger `.

Evaluation Results: Contingency Table. Table 4.7 shows the benchmarks of the ΠCTS. We ran

the experiments on two categories workclass and relationship, which respectively consists of 8 and 6

attribute values. The time of evaluation and decryption grow linearly with the number of data M ,

but this computation is entirely parallelizable in our ΠCTS protocol. We can easily accelerate this

procedure with a higher level of parallelism.

Most of the decryption time in the ΠCTS protocol is the time of decrypting the output of the

bGT protocol due to the suppression functionality.
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Table 4.8: Benchmarks of the PCA and LR protocol (adult dataset): ∆ stands for magnification
constant; T denotes the number of iterations. K is the expansion factor. Values are averaged over
10 runs.

(a) PCA (for the 1-st principal component)

∆ T K Evaluation Decryption

3 2 67.3 ± 4.89s 0.876s

10 4 3 99.9 ± 4.77s 0.848s

5 3 122 ± 2.63s 0.874s

3 3 70.6 ± 4.19s 0.848s

100 4 4 104 ± 7.68s 1.27s

5 4 128 ± 7.93 1.26s

3 3 72.7 ± 2.12s 0.96s

1000 4 4 108 ± 4.06s 1.25s

5 5 136 ± 5.67s 1.43s

(b) Linear Regression (the time of one call of PCA
were omitted)

∆ T K Evaluation Decryption

1 1 173 ± 9.12s 0.475s

10 2 3 341 ± 8.12s 0.428s

3 5 672 ± 9.76s 0.618s

1 2 160 ± 3.97s 0.397s

100 2 4 400 ± 27.8s 0.649s

3 7 787 ± 10.5s 0.816s

1 2 164 ± 8.25s 0.388s

1000 2 4 383 ± 10.0s 0.622s

3 8 865 ± 11.7s 0.944s

Evaluation Results: PCA & Linear Regression. We used three different magnification con-

stants ∆ and three different iteration numbers T to benchmark the PCA protocol (only for the 1-st

principal component). The results are shown in Table 4.8a.

By applying the CRT-packing, the number of ciphertexts to transfer and decrypt during the

post-processing phase are O(ddn/`e), which is independent of the number of records M . As shown

in Table 4.8a, the download and decryption time were steady. It took less than 3 minutes to evaluate

one principal component with a low error ratio Errorλ∗ < 0.1.

The experimental results of the LR protocol ΠLR are shown in Table 4.8b. We omit here the

computation time for obtaining the largest eigenvalue λ1. Similarly, we benchmarked the protocol in

9 settings. For the same reason as for the PCA protocol, the time to download and the time to decrypt

the output from our LR protocol were negligible. The matrix inversion converges quadratically. We

thus achieved a error ratio Errorw∗ < 10−3 within a few iterations. For the pre-processing time, it

took about 17 minutes to achieve the error guarantee.

Extra Experiments for the Predictive Statistics. The extra experimental results of the PCA

protocol (the 1-st principal component only) and the LR protocol are shown in Table 4.9. Here, we

used ∆ = 1000 and T = 3, and the running time for the evaluation and decryption were listed. We

can see that the running time of the PCA procedure increases linearly with the input dimension dn,

while the running time of the LR procedure increases quadratically with dn.
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Table 4.9: Experimental results of the PCA and LR protocol using UCI datasets. dn stands for the
number of numerical attributes.

Data set dn M PCA (eval/decrypt) LR (eval/decrypt)
adult 6 32561 141.21s/ 2.36s 872.82s / 1.59s

autompg 7 398 149.80s/ 1.82s 950.93s / 1.47s
wine-equality 12 4898 217.32s / 1.94 3543.76s / 1.68s

forestfires 13 513 299.38s / 1.87s 3757.99s / 1.59s
communities 20 1994 472.98s / 1.86s 10871.34s / 1.76s

Table 4.10: Model classification

Class Protocol Input x Output z f(x)

model-I

Matrix addition X,Y X + Y X + Y

Matrix multiplication X,Y XY XY

ΠoGT (see Chapter 6) a, b I{a > b} I{a > b}
ΠPDT (see Chapter 6) a, T T (a) T (a)

model-II

ΠbGT a, b γ I{a > b}
ΠCTS {Eid(cp[j]), Eid(cq[j])}Mi=1 µ′,γ′,γ∗ µ̂ (Eq. 4.6)

ΠkP {Est(oi[j])}Mi=1 γ ŝjn∗ (Eq. 4.7)

ΠHistOrder {Eid(ci[j])}Mi=1 {γuv}1≤u<v≤|Cj | k (Eq. 4.4)

ΠPCA {x>i ,xix>i }Mi=1 v(T ),v(T−1) u1, λ1 (Eq. 4.9)

ΠLR {yix>i ,xix>i , λ1}Mi=1 λ2T

1 w
∗ w∗ (Eq. 4.10)

4.5 Security Analysis

We also assume that all stakeholders hold the encryption key pk while only the decryptor holds the

decryption key sk. We focus on secure outsourcing in this paper. Thus, we do not discuss the phase

of key generation and key distribution.

The outline of our secure outsourcing that evaluates deterministic function f proceeds as follows.

We consider the following two models for the security analysis.

Model-I (z = f(x)). The encryptor encrypts his private input x and sends Enc (x) to the cloud.

The cloud homomorphically evaluates f on Enc (x) and sends Enc (f(x)) to the decryptor. The

decryptor decrypts Enc (f(x)) and obtains f(x).

Model-II (z 6= f(x)). The encryptor encrypts his private input x and sends Enc (x) to the cloud.

The cloud performs specified homomorphic operations on Enc (x) and sends the resulting ciphertext

Enc (z) to the decryptor. The decryptor decrypts Enc (z) and obtains z. The decryptor derives f(x)

from z by some local post-processing.

We summarize the model classification of the proposed protocols in Table 4.10. We give the

security statements about the protocols.
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Theorem 9. We assume all stakeholders behave semi-honestly and assume that the decryptor and

the cloud do not collude with each other. Let x be a private input of the encryptor. If the FHE

scheme provides semantic security, after execution of the protocol for f , the decryptor learns z but

nothing else. The encryptor and the cloud learn nothing.

We give the proof of Theorem 9 in the next paragraph. If z = f(x), Theorem 9 guarantees the

security of the protocol for f . If z 6= f(x), we need to show that z reveals nothing but f(x). For

some protocols (i.e. ΠbGT,ΠCTS,ΠkP and ΠHistOrder), we show that z does not reveal any information

except f(x). However, in our construction, we allow the protocol of ΠPCA and ΠLR to output z

that contains information more than f(x) for the sake of efficiency. We discuss these points in the

following.

Security Analysis. We give a sketch proof of Theorem 9 and defer the full argument to the full

version of our paper. Our proof follows the simulation-based paradigm Goldreich [2009]. Let the

view of the encryptor, decryptor, and the cloud during the execution of the protocol be Ve, Vd, and

Vc, respectively. Notice that the encryptor does not receive any message from other entities.

Proof of Theorem 9 (Sketch). Let pk be the encryption key used by the encryptor. From the con-

struction of the protocol, the security against the semi-honest encryptor and the semi-honest de-

cryptor are apparent. So, we omit the proofs for the encryptor and decryptor.

Security against a semi-honest cloud follows from the fact that the view of the cloud, Vc, consists

of {pk,Encpk(x),Encpk(z)}. We can simply construct a simulator Sc as follow. Sc firstly randomly

chooses values x′ and z′. Then Sc simulates Vc by V̂c = {pk,Encpk(x′),Encpk(z′)}. Since the FHE

provides semantic security by assumption, Vc and V̂c are indistinguishable. Thus, our protocols are

secure at the presence of a semi-honest cloud.

Security Discussion under Model-II. For protocols classified in the model-II, the decryptor

obtains f(x) with some post-processing on z. We show that z reveals nothing except f(x) for

certain protocols.

Batch Greater-Than. In bGT(Enc (a) ,Enc (b)) (we assume that θ = 1), if a ≤ b holds then the

output z consists of D uniform random values from Zt/{0} and reveals nothing but the output.

If a > b, we have one 0 in γ at a position selected randomly and values at remaining positions

distribute uniformly on Zt/{0}. Thereby, from z the decryptor can only learn 1{a > b} but nothing

else.

Contingency Table with Cell Suppression. We use bGT to compare Σ values in the contingency

table, i.e., µ, with the threshold T . Since these comparisons are independent of each other, we focus

on a specific µs. γ
∗ is the output from the bGT (each element are multiplied with non-zero random

values). If µs > T , we have one 0 in set Γs := {γ∗kΣ+s}
N−1
k=0 at a random position and remaining

values are all random. Otherwise, Γs consists of uniform random values on Zt/{0}. Presume that,

in the set Γs, we have γ∗k′Σ+s = 0. Then the decryptor can learn µ̂s = µ′s − γ′k′ which is the desired
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output. On the other hand if µs ≤ T , for all 1 ≤ k ≤ Σ, value µ′s − γ′k is uniformly distributed on

Zt/{0}. Consequently, from the output z, the decryptor only learns µ̂ and nothing else.

k-Percentile. The output z of the k-percentile protocol comes from the bGT. From z, the decryptor

learns that cumulative frequencies before ŝjn∗ are less than dkM/100e and cumulative frequencies of

ŝjn′ with n′ > n∗ are larger than dkM/100e. That is equivalent to knowing that ŝjn∗ is the k-percentile

of the population. Since the bGT reveals nothing except the comparison results, the k-percentile

protocol reveals to the decryptor no more than that ŝjn∗ is the k-percentile.

Histogram Order. The histogram order protocol invokes bGT O(|Cj |2) times to compare |Cj |
values in the histogram and outputs the comparison results. Since the bGT reveals nothing except

the comparison results, it is straightforward to see that the PrivateHistOrder protocol reveals to the

decryptor no more than the order of counts in the histogram.

Principal Component Analysis. In this protocol, the decryptor receives two vectors, v(T ) and

v(T−1). He learns the largest eigenvalue λ1 = ‖v(T )‖/‖v(T−1)‖ and the associated eigenvector

u1 = v(T )/‖v(T )‖. Precisely speaking, the difference of the direction of v(T ) and v(T−1) can contain

some information about the inputs. However, due to the geometric convergence property of the power

method algorithm, the difference of the directions is negligible after a sufficient number of iterations.

We consider that it is worth letting the decryptor perform the division after the decryption for the

sake of efficiency.

Linear Regression. In this protocol, the output z = λ2T

1 w
∗. We can see that the only information

leaked to the decryptor is the iteration number T . Precisely speaking, T can contain some informa-

tion about the condition number of X>X, which is related to the eigenvalues of X>X. However,

it is not likely that the decryptor can recover (a part of) X from T . Thereby, letting the decryptor

perform the division after the decryption can lead to a more efficient evaluation.



Chapter 5

Communication Efficient Batch

Inner Products

5.1 Target Functionality and the Basic Protocol

In the previous chapters, we have presented cryptographic approaches for computing multiplication

of encrypted matrices via inner product of encrypted vectors. These methods have their advan-

tages, i.e., low computation overhead (ΠIP of Figure 3.1) or supporting iterative computation (ΠMP

of Figure 4.1). However, these methods do not count the communication overhead as a requirement.

In some cases, such as client–server applications, the communication overhead between the client

and the server might be the most important concern, since increasing the outgoing bandwidth of

the server is more difficult than increasing the computing power.

The matrix multiplication can be represented as a batch inner products functionality of Fig-

ure 5.1. The method of Mohassel and Zhang [2017], Demmler et al. [2015] for this functionality has

a relative small communication overhead, which are O(d2) ciphertexts, however the computation

complexity of this method is O(d3) which would take a long time when the matrix dimension d is

large. The optimization from Damg̊ard et al. [2012] and Liu et al. [2017] reduces the computation

complexity to O(d3/N) by using the CRT packing, at the cost of increasing the communication head

to O(d3) ciphertexts. In other words, the existing FHE methods for the functionality of Figure 5.1

stay in the two opposing extremes aspect to computation efficiency and communication efficiency.

In this chapter, we present a new protocol ΠSMP for computing multiplication of encrypted

matrices with a smaller communication and computation overhead. We achieve this via a brand

new packing which addresses the functionality of batch inner products of Figure 5.1. Specifically,

the computation complexity of ΠSMP is O(d3/`) homomorphic operations and the communication

complexity is O(d2/`) aspect to the matrix size d, which achieves a better balance between the

49
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Functionality Batch Inner Products Functionality FbIP

Inputs: ` > 0 pairs of vector (ai, bi)
`
i=1, where ai, bi ∈ Zdt for length d > 0.

Outputs: Inner products 〈ai, bi〉 ∈ Zt for 1 ≤ i ≤ `.

Figure 5.1: Batch Inner Product Functionality.

communication efficiency and the computation efficiency than the previous methods. As one of the

application of ΠSMP, we show how to improve the performance of two existing privacy-preserving

machine learning frameworks, i.e., SecureML [Mohassel and Zhang, 2017] and MiniONN [Liu et al.,

2017]. From empirical results, it shows that ΠSMP reduces about 92% communication bandwidth

of SecureML and about 95% communication bandwidth of MiniONN. More details on the privacy-

preserving machine learning are given in § 5.4.

5.2 Double Packing: New Message Packing for Batching In-

ner Products

From a high-level explanation, the double packing employs the forward-back packing (Equation 2.1)

to each plaintext slot of the CRT packing (Equation 2.2). One should recall that the CRT packing

introduces an isomorphic map

Zt[X]/(XN + 1) ∼=
∏̀
k=1

Zt[X]/(Fk),

where the factor polynomial Fk is a degree-d polynomial andN = d·`. In other words, the polynomial

multiplication in each sub-field is over the modulo Fk. Without assuming the arrangement of Fks’

coefficients, we have the following theorem which is a natural extension of Theorem 1 to the CRT

packing.

Theorem 10. Presume integer vectors u,v ∈ Zδt . Let Fk be one of the degree-d factor polynomial

from the CRT-packing. If 0 < δ ≤ d/2, then the following holds.

Let P = πfwd(u)× πbwd(v) mod Fk. We have P [δ − 1] = 〈u,v〉 .

Proof. If the vector length δ ≤ d/2, then the degree of the product polynomial πfwd(u)× πbwd(v) is

less than d. As a result, taking modulo of the degree-d polynomial Fk does not change the correctness

of Theorem 1.

Theorem 10 simply implies that a batch of ` inner products of vectors of length d/2 can be
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Protocol (Basic) Batch Inner Product Protocol

Input of encryptor : Private vectors ai ∈ Zdt for 1 ≤ i ≤ `.
Input of evaluator : Private vectors bi ∈ Zdt for 1 ≤ i ≤ `.
Output of decryptor: : Inner products 〈ai, bi〉 mod t for 1 ≤ i ≤ `.

1. Encryption. The encryptor encrypts the elements of ai and sends d · ` ciphertexts to the
evaluator

{Enc (ai[k])}1≤i<`,1≤k<d.

2. Evaluation. The evaluator computes as follows.

(1) Computes the inner product via homomorphic operations For example, the j-th inner prod-
uct 〈aj , bj〉 is computed by

cj =

(
d⊕
k=1

Enc (ai[k])⊗ bj [k]

)

(2) Outputs ciphertexts {cj}`j=1.

3. Extraction. The decryptor decrypts cj and obtain 〈aj , bj〉 for 1 ≤ j ≤ `.

Figure 5.2: Basic Secure Batch Inner Products Protocol.

homomorphically computed via one homomorphic multiplication, resulting in one single ciphertext.

When using the double packing for secure matrix multiplication, say AB for |A| = n1 × n2 and

|B| = n2×n3, the encryptor will break down each row ofA into vectors with at most d/2 entries, and

encrypt ` vectors that picked from distinct row as one ciphertext. In total, the encryptor will send

n1/` ·2n2/d ≈ 2n1n2/N ciphertexts to the evaluator. To compute the matrix product, the evaluator

first breaks down each column vector ofB into vectors with at most d/2 entries, and encodes ` copies

of each shorter vector as one polynomial. Then, the evaluator can homomorphically compute the

matrix product via about 2n1n2n3/N operations, resulting in n1n3/` ciphertexts. In other words, by

applying Theorem 10, we can reduce the communication overhead of the basic protocol of Figure 5.2

by a factor of N/2, and reduce the computation overhead by a factor of N/2, too.

5.2.1 Double the Capacity of Double Packing

Using the optimization in the previous section, we can compute ` inner products of vectors with at

most d/2 entries. We now present a way to double this length from d/2 to d which helps reducing

half of the computation time and communication cost of our secure matrix product protocol. To do

so, we must find a such prime t that “shapes” all polynomials Fk into a specific form

Fk = Xd + βk s.t. βk 6= 0. (5.1)
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Table 5.1: Prime t that satisfies Equation 5.1 when N = 4096.

t 84961 82241 82561 70913 84481 87041

` 16 32 64 128 256 512

For example, polynomial X1024 +1 can be decomposed as (X256 +10)(X256 +41)(X256 +96)(X256 +

127) mod 137, that is m = 1024, d = 256, and t = 137. With such Fk’s, we can apply the forward-

backward trick to the plaintext slots with vectors of at most d entries. Empirically, we have found

many primes that satisfy this requirement. In Table 5.1, we present some examples of practical N

and ` for the matrix product functionality. Specifically, the underlying encryption scheme should

provide at least 80-bit security level when N = 4096, according to the security analysis from [Halevi

and Shoup, 2014].

Theorem 11. Suppose integer vectors u,v ∈ Zdt and βk 6= 0. Then the following holds.

Let P = πfwd(u)× πbwd(v) mod Xd + βk.We have P [d− 1] = 〈u,v〉 .

Proof. Before taking the modulo Xd+βk, the (d−1)-th coefficient of the product πfwd(u)×πbwd(v)

equals to 〈u,v〉, according to the forward-backward trick described in Theorem 1. In addition, the

degree of this polynomial is 2d − 2. Therefore, the (d − 1)-th coefficient remains unchanged, even

taking the modulo Xd + βk.

Theorem 11 implies that a batch of ` inner products of vectors of length d can be homomorphically

computed via one homomorphic multiplication, resulting in one single ciphertext if parameters N

and t are chosen properly. The number of encryptions performed by the encryptor is reduced from

2n1n2/N to n1n2/N , and the number of homomorphic operations operated by the evaluator is

reduced from 2n1n2n3/N to n1n2n3/N .

Finally, we write
→
πw and

←
πw : (Zdt )` 7→ At respectively denoting the double packing functions

→
πw(a0, . . . ,a`−1) := πcrt(πfwd(a0), . . . , πfwd(a`−1))
←
πw(b0, . . . , b`−1) := πcrt(πbwd(b0), . . . , πbwd(b`−1)).

The subscript ‘w’ means double packing. When vectors are packed in this way, we can compute the

functionality of Figure 5.1 via one single polynomial multiplication, i.e.,

π−1
w

(
→
πw(a0, . . . ,a`−1)×←πw(b0, . . . , b`−1)

)
gives {〈ai, bi〉}`i=1

In the next section, we introduce how to efficiently unpack (i.e., π−1
w ) the double packed vectors.
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5.2.2 Efficient Double Unpacking

The double unpacking function is defined as π−1
w : At 7→ Z`q, which is used by the decryptor to

extract ` inner products after decrypting the ciphertexts received from the evaluator. Suppose the

polynomial A =
∑N−1
i=0 aiX

i is decrypted from one of the ciphertext that computed by the evaluator.

To extract ` inner products from A, mathematically, the decryptor must compute the (d − 1)-th

coefficient of A mod Fk for each modulo Fk = Xd + βk. This can be accomplished by using the

unpacking function of the CRT packing π−1
crt : take the modulo A mod Fk; then keep only the (d−1)-

th coefficient of the resulting polynomial and discard the remains. But the effort of computing the

discarded coefficients becomes meaningless.

We now present a faster implementation of π−1
w by examining the algebraic property

(−βk)t−1Xd−1 = Xtd−1 mod Xd + βk

for positive t > 0. This gives us a way to compute the (d − 1)-th coefficient of A mod Xd + βk

directly. Specifically, we compute the (d− 1)-th coefficient of A mod Xd + βk as follows

ad−1 + a2d−1(−βk) + · · ·+ a`d−1(−βk)`−1. (5.2)

Because βks are known during the key generation, the values (−βk)2, · · · , (−βk)`−1 can be computed

once and reused for many unpackings. For the case of secure matrix product, thousands of unpackings

is usually required, and thus Equation 5.2 can reduce the computation cost at the decryptor’s side

significantly. From our empirical results, π−1
w that uses Equation 5.2 was about 25 − 1000 times

faster than using π−1
crt directly.

5.3 Application: Communication Efficient Secure Matrix Mul-

tiplication

We now present our secure matrix product protocol ΠSMP in Figure 5.3 using the double packing.

It is noteworthy that we fix the matrix size of A to `× d and the size of B to d× ` for the sake of

simplicity. The protocol in Figure 5.3 can be easily extended for general size matrices, as described

later.

The matrix product AB is computed through inner products between the row vectors of A and

the column vectors of B. Specifically, the encryptor processes rows of A with
→
πw before doing

encryption in Step 2. This step produces one ciphertext ctx which is sent to the evaluator. In Step

2, the evaluator applies
←
πw to `-copies of each column of B, and then multiplies the packed copies

to ctx, resulting a ciphertext of one row of the product matrix. In Step 3, the decryptor decrypts

all the ciphertexts and uses π−1
w to obtain the result C. We now show that C = AB mod t.
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Protocol Secure Matrix Product Protocol ΠSMP

Remarks: Let sk be a private key and evk be the corresponding evaluation key of the underlying
homomorphic encryption scheme. The decryptor holds the private key sk.
Input of encryptor: private matrix A ∈ Z`×dt

Input of evaluator: private matrix B ∈ Zd×`t

Output of decryptor: the matrix product AB ∈ Z`×`t

Encryptor:

1. The encryptor processes rows of A with the double packing and sends the ciphertext

ctx = Enc
(
→
πw (A[0, :], . . . ,A[`− 1, :])

)
to the decryptor, attached with its evaluation key evk.

Evaluator:

2. For each column B[:, j], the evaluator computes a ciphertext

ctxj = ctx⊗←πw(B[:, j],B[:, j], . . . ,B[:, j]︸ ︷︷ ︸
`-copies

)⊕ πcrt([Rj,1, Rj,2, · · · , Rj,`])

where polynomials Rj,k U←− Zt[X]/(Fk) and the d-th coefficients are set as zero, i.e., Rj,k[d−1] = 0
for 1 ≤ k ≤ `. The evaluator sends back ` ciphertexts {ctxj}j∈[`] to the decryptor.

Decryptor:

3. The decryptor firstly sets C ∈ Z`×`t as a zero matrix. For each ctxj , the decryptor decrypts it
and uses π−1

w presented in § 5.2.2 to extract ` values, which are placed in the j-th row of C.

4. The decryptor outputs C.

Figure 5.3: Communication Efficient Secure Matrix Product Protocol ΠSMP.

Theorem 12. The protocol of Figure 5.3 computes privately the matrix product functionality, i.e,.

AB under the semi-honest setting.

Proof. (Correctness) In Step 1, the encryptor processes the rows of A with
→
πw. According to

Theorem 11, ctxj of Step 2 gives the inner products between the rows of A and j-th column of B,

which forms the j-th row of AB. By iterating all columns of B, the matrix product AB is then

encrypted in ciphertexts {ctxj}j∈[`]. Thus we have C = AB mod t.

Proof. (Privacy.) Security Against a Semi-Honest Evaluator. We first prove security against

a semi-honest evaluator. Given the fact that, the evaluator’s view during the protocol execution

consists only of ciphertexts, and thus the security against a semi-honest evaluator can be reduced

to the semantic security of the underlying encryption scheme.

Security Against a Semi-Honest Decryptor. Next, we prove security against a semi-honest

decryptor. The view of the decryptor during the real execution consists of `2 independent polyno-

mials with coefficients (except the d-th coefficient which is the inner product) distributed uniformly
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Table 5.2: Comparing the computation complexity of three HE-based methods. n indicates the
matrix dimension. N and ` are parameters of the underlying RLWE-based encryption scheme.

Method Encryptor Evaluator Decryptor

Mohassel and Zhang [2017] (AHE-based) O(n2) O(n3) O(n2)

Liu et al. [2017] (RLWE-based) O(n2/N) O(n3/N) O(n3/N)

Ours (RLWE-basd) O(n2/`) O(n3/N) O(n2/`)

over Zt due to the random polynomials Rj,k used in Step 2 of Figure 5.3. Thereby, we can simply

construct a simulator for the view of the decryptor during the real execution by sampling uniform

random polynomials from At.

General Case and Complexity Analysis. For the case of general matrices, A and B can be

partitioned into block matrices {Aik} and {Bkj} where the size of Aik is ` × d and the size of

Bkj is d × `. Zero-padding might be used to align the size. Now, the encryptor must process

each block Aik in Step 1. Then AB is computed through a summation of products of the block

matrices, i.e.,
∑
kAikBkj . The block-matrix product AikBkj is computed in Step 2 of Figure 5.3,

and the summation can be accomplished from homomorphic additions. Thus, the correctness of

Theorem 12 follows. Furthermore, no extra interaction between the protocol players is introduced.

Therefore, the privacy of Theorem 12 follows, too.

In total, the encryptor processes O(n1n2/N) blocks. The evaluator operates O(n1n2n3/N) ho-

momorphic multiplications and additions, resulting O(n1n3/`) ciphertexts which will be transferred

to the decryptor. In Table 5.2, we summarize and compare the complexity of our method with other

homomorphic encryption-based methods. Although the computational complexity of our method

are in the same order with the AHE-based method of SecureML [Mohassel and Zhang, 2017] our

method can provide a considerable acceleration given the fact that m is usually a large value, e.g.,

N ≥ 212. Suppose n1, n2, and n3 = 128 and N = 212. For our method, the server only operate 512

homomorphic operations as opposed to the 2.0 × 106 homomorphic operations of the AHE-based

method.

Special Case: Matrix–Vector Product. When n1 = 1 (i.e., A becomes a single row matrix),

the matrix product AB can be specially regarded as the matrix–vector product. The algorithm of

Figure 5.3 does cover this special case by zero-padding A, although with a small modification, the

complexity of the algorithm can be improved in this setting. That is, in Step 1 of Figure 5.3, the

encryptor sends a ciphertext of `-copies of A, ctx = Enc
((
→
πw(A[0, :], . . . ,A[0, :])

))
. In Step 2, the

evaluator operates the homomorphic multiplication with ` columns of B instead of just one, i.e.,

ctx0 = ctx⊗ πw(B[:, 0],B[:, 1], . . . ,B[:, `− 1]).
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Table 5.3: Speedup of the unpacking π−1
w due to the pre-computation from Equation 5.2. The RLWE

parameters N and t follow Table 5.1.

#slots `

c4.x8large Raspberry Pi

with w/o with w/o

pre-comp. pre-comp. pre-comp. pre-comp.

16 0.008 ms 31.1 ms 0.360 ms 549 ms

64 0.032 ms 33.2 ms 1.33 ms 573 ms

128 0.120 ms 33.3 ms 5.03 ms 612 ms

256 0.437 ms 36.3 ms 21.9 ms 694 ms

512 1.68 ms 41.6 ms 99.9 ms 853 ms

Table 5.4: Micro-benchmarks of ΠSMP using one single access. The performance numbers were
averaged from 50 runs. m and ` are parameters of the underlying encryption scheme, and κ denotes
the security level.

(m, `, κ) n1 × n3
→
πw ENC EVA DEC π−1

w

Total Time (sec) Communication

LAN WAN encryptor decryptor

(4
0
9
6
,1

2
8
,8

0
)

1282 27.9 ms 16.1 ms 205 ms 233 ms 28.9 ms 2.45 3.30 0.25 MB 8 MB

2562 43.8 ms 26.2 ms 670 ms 744 ms 83.8 ms 7.25 8.22 0.5 MB 32 MB

5122 81.1 ms 44.9 ms 2.63 sec 2.82 sec 299 ms 26.4 27.7 1.0 MB 128 MB

(8
1
9
2
,2

5
6
,3

0
0
)

2562 67.9 ms 31.8 ms 614 ms 770 ms 197 ms 9.37 10.7 0.5 MB 32 MB

5122 108 ms 48.4 ms 2.46 sec 2.88 sec 720 ms 29.1 30.4 1.0 MB 128 MB

10242 140 ms 75.9 ms 9.80 sec 11.0 sec 2.81 sec 65.4 110 2.0 MB 512 MB

The remaining steps of the algorithm follows. In this case, the evaluator performs O(n2n3/N)

homomorphic operations, and transfers O(n3/`) ciphertexts to the decryptor.

5.3.1 Evaluations

Implementations. We implemented ΠSMP using HElib [Halevi and Shoup, 2017]. The parameters

N = 4096 and t = 70913 were used to provide ` = 128 slots. The other parameters of HElib were

set properly to provide at least κ = 80-bit security level. A single ciphertext under this setting was

about 64 kilobytes. Additionally, N = 8192 and t = 84481, which can provide at least κ = 300-bit

security level, were also used in the micro-benchmarks of ΠSMP (Table 5.4).



CHAPTER 5. COMMUNICATION EFFICIENT BATCH INNER PRODUCTS 57

We compared ΠSMP with three existing methods, including the OT-based method, the AHE-

based method from SecureML and the RLWE-based method from MiniONN. Specifically, we used

the EMP-toolkit [Wang et al., 2016a] to implement the OT-based method of SecureML, using 16-

bit inputs for a fair comparison because log2 t ≈ 16. For the AHE-based method, we instantiated

the AHE with the DGK scheme [Damg̊ard et al., 2009] with a 1024-bit RSA modulus using the

implementation from [Demmler et al., 2015]. For the method of MiniONN, we used the HElib and

parameters were set as N = 4096 and t = 65537, aiming to provide ` = 4096 plaintext slots.

Computation and Communication Environments. We conducted extensive experiments using

a various types of computing machines and under two network settings.

• Evaluator specifications. We used one AWS c5.18xlarge instance of 72 virtual CPUs (vCPUs)

@3.00 GHz and 25 Gbps outgoing bandwidth as the evaluator node.

• Encrytor & Decryptor specifications. The encryptor’ requests were equally launched from five

AWS c4.8xlarge instances of 36 vCPUs @2.90 GHz for each instance. Also, we ran experiments

on a weak device, i.e., Raspberry Pi model B v1.2 of one CPU @900 MHz.

• LAN setting. For the LAN setting, all the AWS instances were launched inside the same

region. The ping delay was about 2.5 ms.

• WAN setting. For the WAN setting, the evaluator instance was launched in west US and the

encryptor instances were launched in east Asia. The bandwidth was about 114 Mbps with

about 110 ms ping delay.

Measurements. We measured the end-to-end running time of these matrix product protocols using

a high resolution clock (i.e., the standard chrono library). For the OT-based method, the time for

computing the OT-extension [Asharov et al., 2013] is included. For ΠSMP, the computing time of

Equation 5.2 is included while the key generation time is excluded. We also measured the total

amount of data transferred by each method. Moreover, we provide five more micro-benchmarks

of ΠSMP. That is, the computation time of packing
→
πw, encryption (ENC), decryption (DEC),

and unpacking π−1
w on the encryptor and decryptor’s side, and the evaluation (EVA) time on the

evaluator’s side.

5.3.2 Evaluation Results: Faster Unpacking Optimization

We can instantiate the double unpacking function π−1
w using the unpacking function π−1

crt , but this will

introduce an expensive computation at the client’s side. In § 5.2.2, we present to use a pre-computed

table to eliminate the needs of π−1
crt . Experiment results (Table 5.3) show that this optimization can

significantly reduce the computation burden of the client. This experiment was conducted on two

devices, the powerful AWS instance and the much weaker Raspberry Pi. We can see that the

unpacking π−1
w from using Equation 5.2 was much faster than using π−1

crt .
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Table 5.5: Comparing the performances of ΠSMP with the AHE-based method and the OT-based
method from SecureML [Mohassel and Zhang, 2017], and the RLWE-based method from Min-
iONN [Liu et al., 2017], under LAN and WAN, respectively.

Dimension
Method

MT Generation Time (LAN/WAN)
Communication

n1, n2, n3 1 encryptor 10 encryptors 50 encryptors

12
8
,1

2
8
,1

2
8 AHE 26.3 sec/26.9 sec 26.1 sec/26.7 sec 33.2 sec/33.0 sec 3.98 MB

OT 4.07 sec/60.8 sec 140 sec/168 sec 389 sec/485 sec 432 MB

RLWE 123 sec/124 sec 123 sec/127 sec 146 sec/151 sec 32.3 MB

Ours 2.49 sec/3.26 sec 2.54 sec/3.35 sec 3.53 sec/3.36 sec 8.25 MB

25
6
,1

28
,2

5
6 AHE 95.1 sec/95.3 sec 94.6 sec/95.0 sec 122 sec/123 sec 11.9 MB

OT 16.1 sec/235 sec 588 sec/656 sec 0.426 hr/0.472 hr 1664 MB

RLWE 486 sec/489 sec 495 sec/498 sec 545 sec/545 sec 129 MB

Ours 7.38 sec/8.21 sec 7.41 sec/8.63 sec 10.8 sec/11.0 sec 32.5 MB

51
2
,1

28
,5

12 AHE 361 sec/361 sec 356 sec/359 sec 507 sec/510 sec 39.8 MB

OT 57.5 sec/917 sec 0.723 hr/0.732 hr 1.59 hr/1.82 hr 6520 MB

RLWE 0.522 hr/0.538 hr 0.556 hr/0.574 hr 0.560 hr/0.570 hr 513 MB

Ours 26.6 sec/27.5 sec 26.8 sec/29.1 sec 41.2 sec/41.4 sec 129 MB

5.3.3 Evaluation Results: Micro-benchmarks

The micro-benchmarks of ΠSMP is given in Table 5.4. Additionally, we used a higher security level

κ = 160 in this experiment to demonstrate its performance growth with respect to κ. By the virtue

of our new packing method and its extension, the computation on the evaluator’ side (i.e., the EVA

column) was very fast.

5.3.4 Evaluation Results: Comparison to Other Matrix Product Methods

The comparison results to the existing secure matrix product methods are given in Table 6.1. From

Table 6.1, we know that ΠSMP outperformed these methods in terms of computation time, especially

when many encryptors access to the evaluator concurrently.

For the AHE-based method, the evaluator needs to operate n1n2n3 homomorphic operations

while our method requires only n1n2n3/m homomorphic operations. Since the parameter m of the

underlying encryption scheme is usually large, e.g., m ≥ 212, our method can provide a considerable

boost, e.g., it was about 8−12 times faster than the AHE-based method according to our benchmarks.

Although the consumed network traffic of ΠSMP was 2− 3 times larger than that of the AHE-based

method, the absolute amount of the network traffic was still small enough to be transferred through

a narrow bandwidth within a reasonable time.

Comparing to the OT-based method, ΠSMP only exchanged about 1.9% of data of the OT-based
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Figure 5.4: Cumulative histograms of the performances of ΠSMP and the AHE-based method of [Mo-
hassel and Zhang, 2017] under 50, 100, 500, and 1000 concurrent accesses. The size of matrices was
128× 128.

method. As a result, when many clients access to the evaluator concurrently, the running time of

ΠSMP was much faster than the OT-based method, e.g., about 66−97 times faster when the number

of concurrent accesses was 10. Moreover, the performance of our method was less sensitive to the

network latency than the OT-based method. That is because our method is a single-round protocol

while the OT-based method requires multiple rounds of communication between the encryptor and

the evaluator.

5.3.5 Evaluation Results: One Thousand Concurrent Accesses and Con-

strained Devices

To show the feasibility of using the proposed method under the high concurrency setting, we bench-

marked ΠSMP with more concurrent accesses under the LAN setting. Specifically, for each of the

five AWS c4.8xlarge instances, we launched 10, 20, 100, and 200 MT generation requests to the

server instance, and recorded the total running time for each request. In the other words, the server

instance handled concurrent accesses of 50, 100, 500 and 1000 using its 72 vCPUs. We only compare
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with the AHE-based method of Mohassel and Zhang [2017] because of the OT-based method and

the SwHE-based method would take too much time under the high concurrency setting. The results

are shown in Figure 5.4 The server handled 100 concurrent accesses within 10 seconds (that is, the

2-rd plot of Figure 5.4). Therefore, if we want to handle 1000 concurrent accesses within 10 seconds,

we need about 10 server nodes.

We also ran the secure matrix multiplication protocols on a much more weaker device, i.e., the

Raspberry Pi. However we failed to compile the OT library [Wang et al., 2016a] on the Raspberry

Pi. Therefore, only the homomorphic encryption-based methods were considered in this experiment.

Matrices of size 128× 128 were used. The total running times are as follows.

• Ours: 16.2 seconds.

• AHE-based method of Mohassel and Zhang [2017]: 389 seconds.

• RLWE-based method of Liu et al. [2017]: more than 23 minutes.

We can see that our method can perform better than the existing HE-based methods on resource

constrained devices.

5.4 Application: Privacy-preserving Machine Learning

Machine learning is becoming ubiquitous. More and more machine learning-based online services,

such as shopping recommendation [Nikolaenko et al., 2013], traffic-aware navigation [Wu et al., 2016],

medical diagnosis [Singh and Guttag, 2011], and face recognition [Erkin et al., 2009], are reachable

by thousands of clients. One important feature of these online services is high concurrency. That

is, there might be thousands of clients using the services simultaneously. Suppose a traffic-aware

navigation service is running in a metropolitan area, e.g., Tokyo and New York. The number of

clients using the navigation service can be numerous during the peak time. Thus, the machine

learning-based service should be scalable under this highly concurrent setting. Moreover, clients of

these online services are usually equipped with limited computing resources. Take the navigation

service as the example again; the client might connect to the navigation service via his/her cell

phone or through on-vehicle devices. Therefore, the machine learning-based service should avoid

introducing heavy computations at the client’s side.

To use a machine learning-based online service, a client must reveal his/her data to the server.

When the data involves sensitive information of the client, such as locations, shopping logs and

medical records, revealing these data to the server might raise potential risks of compromising

client’s privacy, such as data breaches. A natural question here is whether one can use the machine

learning-based online services and still maintain the privacy of client’s data?

One solution is to use secure two-party computation (2PC) techniques [Goldwasser and Micali,

1982, Yao, 1982]. 2PC allows two parties (e.g., the client and the server) to jointly compute a
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function on their private inputs, learning only the output of the function. In the context of the

privacy-preserving machine learning, one of the most fundamental components is a practical secure

matrix multiplication protocol, since computing the product of matrices is the essential operation of

many popularly used machine learning algorithms such as linear regression [Lu et al., 2017, Gascón

et al., 2017], logistic regression [Wang et al., 2016b] and neural networks [Liu et al., 2017, Riazi

et al., 2018].

Based on the discussions above, the main objective of this work is to develop a practical secure

matrix multiplication protocol that can run fast under the following (realistic) situations.

1. High Concurrency. There can be thousands of clients continuously and concurrently access

to the server while the outgoing and incoming bandwidth of the server and clients are bounded,

e.g., 20 Gbps and 100 Mbps, respectively. In other words, the server can only allocate a small

ratio of its bandwidth for each client.

2. Weak Client. The computing resources at the client’s side might be constrained. For exam-

ple, the computing power of the autonomous vehicles and the Internet of Things (IoT) devices

are usually limited, e.g., one 1.0 - 2.0 GHz CPU chip.

5.4.1 Related Work and Challenges

Recent improvements and optimizations to 2PC, such as Brakerski et al. [2012], Damg̊ard et al.

[2012], Asharov et al. [2013], Demmler et al. [2015], Mohassel and Zhang [2017], Huang et al. [August

8-12, 2011], Wang et al. [2016a], Liu et al. [2015], Songhori et al. [2015] to name a few, enable efficient

secure matrix multiplication protocols. Specifically, we can separate a secure multiplication protocol

into two stages: an offline stage and an online stage. The computation during the offline stage is

input-independent, that is the client and the server do not need to provide any private data in this

stage. They jointly compute some (one-time use) auxiliary data, i.e., Beaver’s multiplication triples

(MTs) Beaver [1995], so that the evaluation of the online stage can be significantly accelerated using

MTs.

Beaver’s MT is one of the most efficient way to perform secure matrix multiplication which has

been applied to many 2PC frameworks such as SPDZ [Damg̊ard et al., 2012], ABY [Demmler et al.,

2015], SecureML [Mohassel and Zhang, 2017] and MiniONN [Liu et al., 2017]. Many optimizations

are proposed to improve the MT generation (i.e., the performance in the offline stage) in these

frameworks. Specifically, ABY and SecureML suggest to use a vectorization technique and propose

a variant type of MT which is specialized for secure dot product. Then, secure matrix multiplication

can be computed by the iterations of secure dot products. They present two concrete solutions from

oblivious transfer (OT) and additively homomorphic encryption (AHE), respectively. On the other

hand, SPDZ and MiniONN propose another optimization from a RLWE-based homomorphic encryp-

tion scheme [Brakerski et al., 2012, Chen et al., 2017] and the message packing technique [Smart
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Figure 5.5: Left: Running time for generating MTs for multiplying matrices of 128 × 128 entries
using the OT-based method of Mohassel and Zhang [2017] under a 25 Gbps outgoing bandwidth.
Right: Running time of our method under the same setting.

and Vercauteren, 2014]. Specifically, a batch of ` > 0 integers are encrypted as a single ciphertext

where ` is a parameter related to the RLWE-based scheme. Then, the homomorphic multiplication

will be carried out to the packed ` integers simultaneously.

The secure matrix multiplication protocol can also be constructed from tools such as Yao’s

garbled circuit [Yao, 1982, Kolesnikov and Schneider, 2008, Zahur et al., 2015, Nikolaenko et al.,

2013] and garbled arithmetic circuit [Applebaum et al., 2011]. However, such generic tools also

require a wide bandwidth as the OT-based methods. Other ad hoc methods [Mishra et al., 2017,

Duong et al., 2016] are efficient regarding computation time but the matrix size is constrained, e.g.,

smaller than 16×16, which might not be sufficient for modern machine learning algorithms like deep

neural networks.

Challenges. Suppose the client and the server evaluate a secure matrix multiplication with private

matrices of n dimension of t-bits integers using the existing methods [Demmler et al., 2015, Mohassel

and Zhang, 2017, Damg̊ard et al., 2012, Liu et al., 2017]. We now show that these methods might

not scale well under the high concurrency and weak client situations.

For the OT-based method of [Demmler et al., 2015, Mohassel and Zhang, 2017], the client and the

server need to perform O(n3t) instances of correlated OT [Asharov et al., 2013], which is lightweight

in terms of computation. However, when many clients access to the server concurrently, these OT-

based methods will take a considerably longer time, since the bandwidth allocated for each user is

eventually bounded. Figure 5.5 gives an example of using the OT-based method of [Mohassel and

Zhang, 2017] to generate MTs for secure matrix multiplication of two 128 × 128 matrices. In this

experiment, the outgoing bandwidth on the server’s side was about 25 Gbps. When the number

of concurrent accesses was small, e.g., 1 − 2, clients only need to wait less than 5 seconds. As the

number of concurrent accesses increases, the waiting time becomes significantly longer. In other

words, if the server wants to handle 1000 concurrent accesses within 5 seconds, it might need to

prepare more than 25000 Gbps outgoing bandwidth, which seems unrealistic for the current Internet.
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Table 5.6: Using ΠSMP to improve the pre-computation stage of SecureML. The mini-batch size B
was fixed as 128 as SecureML. The performance numbers of the methods of SecureML are taken
from their paper Mohassel and Zhang [2017].

N,D, t Method Time (LAN/WAN) Commu.

104, 100, 156

AHE 248.4 sec/252.9 sec 20 MB

OT 7.9 sec/420.2 sec 1.9 GB

Ours 23.4 sec/30.2 sec 159 MB

105, 100, 1563

AHE 2437.1 sec/2478.1 sec 200 MB

OT 88.0 sec/4125.1 sec 19 GB

Ours 168 sec/187 sec 785 MB

For the RLWE-based method of [Liu et al., 2017], the client and the server exchange O(n3/`)

RLWE ciphertexts through the network. This method can consume less bandwidth than the OT-

based solutions because of the packing technique allows embedding a large number of plaintext

values into a single ciphertext, such as ` = 212. However, this method requires the client to perform

O(n3/`) unpackings, which can be extremely expensive for a weak client. For instance, in our

benchmarks, it took a Raspberry Pi more than 23 minutes to perform the unpacking when n = 128

and ` = 212. Even for a powerful AWS instance, this computation still took more than 2 minutes.

For the AHE-based method of [Demmler et al., 2015, Mohassel and Zhang, 2017], the client

and the server exchange O(n2) AHE ciphertexts. The client needs to perform O(n2) decryptions,

and no unpacking is needed. It seems that the AHE-based method is the best under our situations.

However, the server needs to operate O(n3) public key operations which can become the performance

bottleneck when n is large. For instance, when n = 512, the client would need to wait more than 6

minutes before the server completes the secure matrix multiplication.

5.4.2 Application to Private Machine Learning Model Training

SecureML is a secure computation framework that is originally designed for training machine learning

models from a dataset that is already shared additively between two collusion-free servers. The

private model training is performed between the two collusion-free servers using OT-based secure

matrix multiplication protocol, and other cryptographic tools such as Yao’s garbled circuit Yao

[1982], Wang et al. [2016a].

Specifically, SecureML uses the mini-batch stochastic gradient descent (SGD) of a batch size

B > 0 to train their models from a dataset X ∈ ZN×D within t steps. Here, N indicates the

number of data points in the dataset and D indicates the number of features. As suggested by

SecureML, when using SGD for some classes of machine learning algorithms, e.g., linear regression
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Table 5.7: Using ΠSMP to improve the pre-computation stage of MiniONN. The performance numbers
of the method of MiniONN are taken from their paper Liu et al. [2017].

(a) The matrix products involved in NN-CIFAR.

Layer 1 3 6 8
A 1024× 27 1024× 576 256× 576 256× 576
B 27× 64 576× 64 576× 64 576× 64

Layer 11 13 15 17
A 64× 576 64× 64 64× 64 1× 1024
B 576× 64 64× 64 64× 16 1024× 10

(b) Performances under a single access.

Method Time (LAN/WAN) Communication

MiniONN 472 sec/ – 3046 MB

Ours 24.5 sec/26.6 sec 137 MB

and logistic regression, the SGD computation involves a matrix product UV , where the size of U

is B ×D and the size of V is D × t. The value of B is usually a few hundreds, e.g., B = 128 as in

SecureML, and the value of t is usually set such that Bt > N .

We now show that ΠSMP can be a better alternative for performing secure matrix multiplication in

SecureML, especially under the high concurrency setting. Specifically, we compared the computation

time and communication cost with the performance numbers presented in their paper Mohassel and

Zhang [2017]. Notice that, 64-bit inputs were used in SecureML while the plaintext precision of our

encryption scheme was log2 t ≈ 16. To have a fair comparison, we use the techniques of [Lu et al.,

2017] to achieve the same level of 64-bits precision. The comparison details are given in Table 5.6.

It is apparent that our method is more efficient, especially when the matrix size is large and the

number of concurrent accesses is more than one. Specifically, our method was about 3 − 21 times

faster than the AHE-based method when the matrix size was 100× 1563. Also, it was 5− 35 times

faster than the OT-based method and consumed only about 4.0%− 5.3% of the OT-based method.

5.4.3 Application to Private Deep Neural Networks Evaluation

The recent explosive evolution of neural network research has led to breakthroughs in many machine

learning tasks. The application area covers not only image and speech recognition but also diverse

types of predictive and cognitive modeling. The unprecedented accuracy of deep learning models

enables various novel services that might have marked effects on our society, for example, human

virus detection [Brion et al., 2005], and drug discovery [Baskin et al., 2016].

The private neural network evaluation framework, i.e., MiniONN, is proposed by Liu et al.

[2017], which apply the CRT packing technique to speed up the server’s computation time, at the
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Table 5.8: Neural Network Description. c′ indicates the number of channels, h is the size of filters
and s is the stride size. ρ is the pooling size.

Layer Output Size Activation Note
Input 32× 32× 3 - RGB image
Conv-1 30× 30× 32 ReLU c′ = 32, h = 3, s = 1
Conv-2 28× 28× 32 ReLU c′ = 32, h = 3, s = 1
MaxPool-1 14× 14× 32 - ρ = 2
Conv-3 13× 13× 64 ReLU c′ = 64, h = 2, s = 1
Conv-4 12× 12× 64 ReLU c′ = 64, h = 2, s = 1
MaxPool-2 6× 6× 64 - ρ = 2
FC-1 512× 1 ReLU 2304× 512
FC-2 10× 1 Softmax 512× 10

cost increasing the communication overhead and the computation overhead of the client. More

specifically, in the protocol of Liu et al. [2017], the server transfers a cubic number of ciphertexts to

the client. For example, the protocol of Liu et al. [2017] requires the client to transfer more than 9

GB data to evaluate a middle-sized convolution network (i.e., achieving about 81% test accuracy on

the CIFAR-10 dataset). Also, the client might need to perform many decryption to obtain the final

result, which is expensive especially for clients of constrained bandwidth and computing power.

We experimentally show that ΠSMP is a more practical option for MiniONN to perform secure

matrix multiplication. Specifically, we take the 17-layer neural network from MiniONN as an ex-

ample. This network was originally designed for classifying the CIFAR-10 dataset [Krizhevsky and

Hinton, 2009], and thus we designate it as NN-CIFAR. In Table 5.7, we list up all the matrix prod-

ucts involved in NN-CIFAR where the matrix A is the private input from the client and B is the

private input from the serverr. We compared the computation time and communication cost of our

protocol with MiniONN. The comparison details are shown in 5.7b. It is apparent that ΠSMP con-

siderably reduced the computation time and the communication cost of the pre-computation stage

of MiniONN for evaluating NN-CIFAR, i.e., saving more than 95% of the computation time and

communication cost.

5.4.4 Concret Example of Private Deep Neural Networks Evaluation

To demonstrate the practicality of our ΠSMP, we conduct experiments with a ten-layer nonlinear

CNN model (Table 5.8) which can provide about 82.8% accuracy for the CIFAR-10 dataset. The

linear transforms (i.e., convolution and fully connected layers) are computed via our ΠSMP protocol,

and the non-linear parts are turned to garbled circuit.

Some Optimizations for Nonlinear Operations. In the some typical deep neural network

architecture, max pooling follows after an activation, that is, ReLU in the network of Table 5.8. We

note that the computation result is unchanged no matter we do the ReLU first or do the max pooling
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Table 5.9: Experimental results of our private CNN evaluation protocol. The evaluation time
includes the computation time and the communication time.

Layer Evaluation (ms)
Communication (MB)

client → server server → client

Conv-1 339± 2.88 15.08 2.23

ReLU 13678± 335.64 23.52 78.96

Conv-2 3464± 38.34 160.48 2.23

ReLUPool 9218± 32.29 12.12 58.07

Conv-3 2355± 14.75 71.47 1.12

ReLU 6015± 175.55 9.60 32.22

Conv-4 4672± 34.05 142.95 1.12

ReLUPool 3395± 100.86 3.88 18.59

FC-1 4152± 2.77 4.47 10.05

ReLU 524± 13.12 0.41 1.37

FC-2 763± 0.53 0.56 2.23

Total 48575± 750.78 444.54 208.19

first, that is, Pool(ReLU(T ), ρ) = ReLU(Pool(T , ρ)) holds. However, the computation complexity of

the first one is larger than that of the second one. From a simple calculation, we can know the

computation complexity is 2n′2 and n′2 + n′2/ρ2, respectively. Moreover, both ReLU and max

pooling require the max operation only. This motivates us to evaluate ReLU(Pool(·)) by combining

the ReLU operation with the following max pooling operation (if exist).

The experimental results are shown in Table 5.9. From the results, we can see that we can

privately evaluate a deep neural network within a reasonable time and communication overhead.

5.5 Conclusion

In this chapter, we presented ΠSMP for computing the multiplication of two matrices efficiently.

ΠSMP is built from ring-based homomorphic encryption with three algorithmic and implementation

optimizations. Our optimizations significantly reduce the computation time, both at the severs side

and at the client’s side. Moreover, the communication cost of our method is considerably less than

the existing OT-based methods. According to our experimental results, ΠSMP outperformed the

existing methods under the high concurrency setting. We also applied ΠSMP to two frameworks of

privacy-preserving machine learning, i.e., SecureML and MiniONN. The experimental results showed

that ΠSMP can reduce MT generation time of these frameworks by more than 74%− 97%. With the

combination of ΠSMP and garbled circuit, we also show that we can privately evaluate a ten-layers
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CNN within one minute with a reasonable communication overhead. In concluding, we consider that

ΠSMP can help forwarding the deployment of more practical and usable secure two-party computation

to machine learning-based online applications.



Chapter 6

Non-interactive and Expressive

Comparison

We have presented protocols for the inner product which are a linear function of the input while

for some algorithms, e.g., decision tree and support vector machine, the comparison (which is a

non-linear function) are also used. The protocol ΠbGT described in the previous chapter is efficient

for comparing two encrypted integers, but it provides a very limited ability to perform further

computation on the comparison bits. For example, given the ciphertexts of two encrypted vectors,

we can not use ΠbGT to compute how many elements in the first vector is larger than the elements

in the second vector. For this purpose, we present another comparison protocol oGT (Figure 6.1)

which can provide more expressiveness. As one of the possible application of oGT, we present the

first non-interactive privacy-preserving decision tree evaluation protocol in the following section.

We first describe the basic idea behind Figure 6.1. The message space of FHE is a polynomial

ring, and thus we can put integers in the coefficient or the degree of the polynomials. In oGT, we

encode 0 ≤ a, b < N in the degree of the polynomials. Remember that N is the parameter of the

underlying FHE scheme which is usually set as a few thousands, e.g., N ≤ 213. Specifically, we use

the encoding π : Z 7→ At, given by π(a) = Xa. The core idea behind oGT is to use the polynomial

C0 = T0 × π(a)× π(−b) mod (XN + 1), (6.1)

where T0 = 1+X+ · · ·+XN−1. Notice that the polynomial with a negative degree X−b is equivalent

to −XN−b modulo XN + 1. We argue that the 0-th coefficient C0[0] ∈ {1,−1}. When a ≤ b, C0[0]

comes from T0[b − a], and thus C0[0] = 1. On the other hand, when a > b, C0[0] comes from the

(m − (a − b))-th coefficient of T0, but in this case C0[0] = −1 due to the degree wrap around, i.e.,

XN−(a−b) ×Xa−b = −1 mod XN + 1. In other words, C0[0] = 1 if a ≤ b, else C0[0] = −1.

68
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Protocol Output Expressive Greater-than oGT

Input: Ciphertexts Enc (Xa), Enc
(
Xb
)

where a, b ∈ ZN where N is one of the FHE parameter.
Output: Enc (C), i.e., the ciphertext of a polynomial C ∈ At.
Remark: One can learn I{a > b} from the first coefficient of C, i.e., I{a > b} = C[0].

1. Compute µ̄ = 2−1 mod t and µ = −µ̄ mod t

2. Set the polynomial T = µ+ µX + · · ·+ µXm−1

3. Sample polynomial R U
←− At and set R[0] = µ̄

4. Negate the degree homomorphically Enc
(
X−b

)
← Enc

(
Xb
)

5. Compute and output Enc (C) = Enc (Xa)⊗ Enc
(
X−b

)
⊗ T ⊕R

Figure 6.1: Output Expressive Greater-than

Theorem 13. (Correctness.) The protocol of Figure 6.1 correctly implements the greater-than

functionality I{a > b}.

Proof. We consider when a ≤ b. In this case, we have exactly one term, i.e., µXb−a of T which leads

the 0-th coefficient of the polynomial (Xa×X−b×T ) being µ. As a result, C[0] = µ+R[0] = µ+µ̄ = 0.

On the opposite side, we consider the case a > b. In this case, this coefficient becomes −µ because

µXm = −µ mod Xm + 1. As a result C[0] = −µ + R[0] which equals to 2µ̄ = 1. This completes

our proof that C[0] = I{a > b}.

Indeed, Step 4 of Figure 6.1 can be avoided if encryptor sends four ciphertexts {Enc (Xa) ,Enc (X−a)}
and {Enc

(
Xb
)
,Enc

(
X−b

)
} to the evaluator. However, this doubles encryptor’s computation and

communication overhead. We now present a way that allows the evaluator to homomorphically

compute Enc
(
X−b

)
from Enc

(
Xb
)
. We achieve this negate step by applying homomorphically the

automorphism map M : X 7→ X2m−1

M(Xb) = X2mb−b = (−1)2b︸ ︷︷ ︸
=1

·X−b mod Xm + 1.

This automorphism is possible on the FHE ciphertext since 2m − 1 ∈ Z∗2m which introduces one

extra key switching matrix into the public key. We refer to [Halevi and Shoup, 2014, Gentry et al.,

2012c] for more details about the automorphism on FHE ciphertexts.

6.1 Preserving Homomorphism

Arithmetic addition and multiplication are still possible on the output ciphertexts of oGT. To

be precise, the resulting ciphertext from oGT encrypts a polynomial of the form C = I{a >
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b} +
∑N−1
j=1 rjX

j where rjs’ are randomly generated integers. We can homomorphically sum the

outputs from several calls of oGT. For example, from the decryption of oGT(Enc (Xa) ,Enc
(
Xb1

)
)⊕

oGT(Enc (Xa) ,Enc
(
Xb2

)
), we can know I{a > b1}+ I{a > b2}.

For the multiplication, we require some constraints. If we operate oGT(Enc (Xa) ,Enc
(
Xb1

)
) ⊗

oGT(Enc (Xa) ,Enc
(
Xb2

)
), we can not obtain any meaningful result due to the random coefficients

introduced in oGT. In other words, we can not multiply the outputs from several calls of oGT directly.

On the other hand, we can only multiply the encryption of an integer e ∈ Zp to the encrypted result

of oGT, giving a ciphertext Enc (e · C). Thereby, after the decryption, we can obtain a meaningful

result e · I{a > b} from the 0-th coefficient.

6.2 Feasible Domain Extension

By exploiting the polynomial structure, our protocol can efficiently compare two encrypted integers.

However, the feasible input domain of oGT is relatively small, that is ZN , and this is the major

limitation of oGT. We now present a method to expand the feasible domain of oGT to ZN2 while

the non-interactive and output expressive properties of oGT remain unchanged.

Our idea is very simple, that is to separately compare each digit of the inputs, from the most

significant digit down to the least significant one. More precisely, an integer a′ ∈ ZN2 is partitioned

into two digits 0 ≤ a′1, a
′
0 < N such that a′ = a′1 ·N + a′0. We can see that I{a′ > b′} is equivalent

to

I{a′1 6= b′1} · (I{a′1 > b′1} − I{a′0 > b′0}) + I{a′0 > b′0}. (6.2)

The two comparisons in Equation 6.2 can be done through oGT, and the preserved additive

homomorphism of oGT allows us to perform the subtraction and addition. The main challenge for

evaluating this equation lies in the computation of the bit I{a′1 6= b′1}, and to multiply this bit to

the output of oGT.

We now show how to compute Enc (I{a′1 6= b′1}) from the ciphertexts Enc
(
Xa′1

)
and Enc

(
Xb′1

)
.

We also present a method to convert this ciphertext to a oGT-compatible form so that we can

homomorphically multiply Enc (I{a′1 6= b′1}) to the private comparison result, i.e.,

oGT
(
Enc

(
Xa′1

)
,Enc

(
Xb′1

))
	 oGT

(
Enc

(
Xa′0

)
,Enc

(
Xb′0

))
.

We can simply compute inequality test through Enc (A) = 1	Enc
(
Xa′1

)
⊗Enc

(
X−b

′
1

)
. Specif-

ically, when a′1 6= b′1, A is a polynomial of 1 − Xa′1−b
′
1 6= 0. If a′1 = b′1, A downgrades to zero. In

other words, the 0-th coefficient of A gives the inequality bit I{a′1 6= b′1}.
An encrypted integer value can be multiplied to the output of oGT, and thus is oGT-compatible.

However, the ciphertext Enc (A) above is not oGT-compatible, that is because Enc (A) might encrypt
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a polynomial more than an integer. Thus, we need to convert Enc (A) to an encrypted integer value

if A 6= 0 (i.e., when a′1 6= b′1), otherwise we should obtain a ciphertext of zero. We now show how to

do this conversion.

The core idea is to employ Fermat’s little theorem under the polynomial modulo XN + 1. That

is Ap
d−1 = 1 mod XN + 1 if A 6= 0, where pd = 1 mod m. When A = 0, Ap

d−1 is still zero.

The naive way needs a multiplicative depth of d log p for computing Enc
(
Ap

d−1
)

from Enc (A).

According to Halevi and Shoup [2014, 2017], we can use automorphisms to reduce this depth. That

is, we first compute the exponent Enc
(
Ap−1

)
from Enc (A) which needs a multiplicative depth of

log2 p. Then we use d automorphism maps Kj : X 7→ Xpj−1

for 1 ≤ j ≤ d. Finally, the product of

d ciphertexts gives Enc
(
Ap

d−1
)

∏
1≤j≤d

Kj(Enc
(
Ap−1

)
) =

∏
1≤j≤d

Enc
(
A(p−1)pj−1

)
= Enc

(
A(p−1)

∑
j∈[d](p

j−1)
)

= Enc
(
Ap

d−1
)

In total, we need a multiplicative depth of log2 p + log2 d and d automorphisms for this conversion

step.

The FHE parameter p defines the message space which is usually determined by the application

scenario. In order to limit the overhead of this conversion step, we tend choosing such p that d is a

small value, e.g., d = 2.

6.3 Comparison with Other HE-based Solutions

Implementation Details. We instantiated oGT using HElib [Halevi and Shoup, 2017] and SEAL [Chen

et al., 2017] separately. SEAL and HElib use a different representation for representing the plain

polynomials from Zt[X]/(XN +1). HElib’s representation for plain polynomials needs more compu-

tation effort than SEAL. As a result, for the ciphertext-plaintext comparison case, oGT instantiated

from SEAL can provide a better evaluation performance than the HElib based one. However, HE-

lib allows automorphisms which are not supported in SEAL yet. The automorphism allows the

“degree-negating” operation described in Section 3.2.1.

All the programs were written in C++ and compiled with g++-6.3. We ran experiments on a

machine equipped with an Intel Xeon E5-2640 v3@2.60 GHz CPU and 32GB RAM running Ubuntu

14.04

Additive HE Setting. We implement the HE based comparison protocols of Fischlin [2001], Blake

and Kolesnikov [2004], Damg̊ard et al. [2009] using the GMP library. The method in Fischlin [2001]

uses the GM encryption scheme with the AND-gate extension technique [Sander et al., 1999]. The

protocols of Blake and Kolesnikov [2004], Damg̊ard et al. [2009] use an additively HE which was

instantiated as the Paillier encryption [Paillier, 1999]. We also instantiated Damg̊ard et al. [2009]
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with lifted ElGamal over elliptic curves [Shigeo, 2017].

We used two security parameters κ ∈ {80, 128}. We set the public key sizes of {1024, 3072}-bits

for the GM encryption and Paillier encryption, and {160, 256}-bits for the elliptic curve. In addition,

we set λ ∈ {20, 40} in the probabilistic method of Fischlin [2001]. For the FHE scheme, we set the

polynomial degree N = 212 and N = 213.

TFHE Setting. TFHE [Chillotti et al., 2016] also supports output expressive private comparison

by encrypting each bit of a and b and performing gate-level bootstrapping. However, for a relative

small domain, e.g., less than 16 bits, the TFHE-based solution might take a longer evaluation time

than oGT due to the bootstrapping operations.

Measurements. We measured the computation time of three parts: 1) time for encrypting the

inputs, 2) time for evaluating comparison, and 3) time for decrypting the resulting ciphertext(s).

Evaluation Results: Additive Homomorphic Encryption. The experimental results are

reported in Table 6.1. The probabilistic method of Fischlin [2001] is able to compare two encrypted

integers within an error rate of 2−λ. The complexity of this method is linear in λ. As a result,

the method of Fischlin [2001] has high computation and communication complexity for a negligible

error rate, e.g., λ = 40.

For the FF-based implementations, our method outperformed Blake and Kolesnikov [2004], Fis-

chlin [2001], Damg̊ard et al. [2009] in terms of evaluation time. We have two settings, that is

two-ciphertexts case, and single-ciphertext case. In the first case, oGT was about 45 − 90 times

faster than Fischlin [2001]. On the other hand, in the second case, oGT can be 54− 175 times faster

than Blake and Kolesnikov [2004], Damg̊ard et al. [2009] in terms of evaluation time. Notice that,

when only one input was encrypted, oGT itself was even about 5 − 6 times faster than with two

encrypted inputs.

Our method took more evaluation time than the ECC-based implementations of Damg̊ard et al.

[2009], but the performance gap was less than one order of magnitude. Note that the elliptic curve

library (i.e., Shigeo [2017]) we used is better optimized than HElib. By using the more recent

FHE library SEAL, we reduced this performance gap. We thus conclude that our comparison

algorithm that exploits the structure of the polynomial ring Xm + 1 is efficient. Remember that the

output of oGT still offers additive homomorphism, and multiplicative homomorphism under a certain

condition. This property is absent in all previous HE-based solutions and is helpful for constructing

a higher level protocol beyond integer comparison.

Evaluation Results: TFHE. We compared the evaluation time of oGT with the TFHE-based

approach from [Chillotti et al., 2016]. The results are shown in Figure 6.2. For bit length δ ∈
{8, 9, 10}, we used the same parameter N = 210 for oGT due to the 80-bit security level requirement.

We can see that the performance of the TFHE method increased linearly with the bit length while our

method increased exponentially. Also, the current TFHE implementation is a symmetric encryption

scheme while oGT was instantiated with an asymmetric scheme. Even though, for small domains
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Table 6.1: Experimentally comparing oGT with previous HE-based private comparison protocols. δ
denotes the input bit length. κ is the security parameter. FF and ECC mean that the protocols were
instantiated with a finite filed scheme and an elliptic curve scheme, respectively. Timing numbers
were measured as the mean of a thousand runs.

δ, κ Method ENC (ms)
EVAL (ms)

DEC (ms)
ctxt–ctxt ctxt–plain

12, 80

Fischlin [2001] (λ = 20, FF) 18.63 574.44 - 2.93

Fischlin [2001] (λ = 40, FF) 18.87 1164.23 - 3.291

Blake and Kolesnikov [2004] (FF) 22.27 - 115.98 20.54

Damg̊ard et al. [2009] (FF) 26.50 - 54.24 16.99

Damg̊ard et al. [2009] (ECC) 0.83 - 0.799 0.45

Ours (HElib) 2.93 13.07 2.28 1.68

Ours (SEAL) 6.97 - 1.00 0.60

13, 128

Fischlin [2001] (λ = 20, FF) 21.77 672.96 - 63.80

Fischlin [2001] (λ = 40, FF) 21.78 1346.97 - 64.97

Blake and Kolesnikov [2004] (FF) 437.77 - 2224.54 410.32

Damg̊ard et al. [2009] (FF) 352.24 - 705.61 340.58

Damg̊ard et al. [2009] (ECC) 2.11 - 1.98 1.10

Ours (HElib) 6.17 28.22 4.68 3.65

Ours (SEAL) 16.54 - 4.04 2.20

(i.e., less than 16-bits), our method was more than 5 – 500 times faster than TFHE. We admit that

for a larger input bit length, the TFHE method will outperform oGT, while for applications that

require only a relatively small domain, oGT can be more efficient.

6.4 Application: Privacy-preserving Outsourcing Decision Tree

Evaluation

6.4.1 Problem Statements

Decision tree is a fundamental and popularly used classification algorithm, in which a number of

comparisons are evaluated between the elements of an input vector. A decision tree T : Zγ →
{1, 2, · · · , ζ} can be viewed as a function that maps from a γ-dimensional feature space to ζ classes.

The feature space is typically Rγ , and we use fixed-point representation to handle real numbers in

FHE. Then client’s query a ∈ Zγ is designated as feature vector. The decision tree T is a binary-tree

consists of internal nodes and leaf nodes. Let the number of internal nodes be M ′, then the number

of leaf nodes is M ′ + 1. Each internal node vk is attached with a threshold τk ∈ Z and a predicate

fk(a) = I{a[ik] > τk}, where 1 ≤ ik ≤ γ is an index of the feature vector (different internal nodes

can have the same index). Each leaf node ul is attached with an output label zl ∈ {1, 2, · · · , ζ}.
To evaluate the decision tree on an query x ∈ Zγ , we begin from the root node (i.e., v1), and at
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Figure 6.2: Evaluation time of oGT and the bit-wise solution from TFHE [Chillotti et al., 2016] for
comparing two encrypted values aspect to various bit length.

each internal node vk, we compute the predicate fk(a). According to the result of fk(a), we choose

either the left (i.e., fk(a) = 0) or right childnode of vk. This process is repeated until a leaf node

ul∗ is reached. The output T (a) is the label zl∗ of the leaf node ul∗ . The depth of tree T is defined

as the length of the longest path from the root node to a leaf node.

The entity that owns the decision tree model (i.e., {τk ∈ Zp}k∈[M ′]) is called model holder.

Privacy of the decision tree model requires the values of τk to be kept secret.

6.4.2 Existing Private Decision Tree Evaluation Protocols

Existing protocols such as [Bost et al., 2015, Tai et al., 2017] are usually designed as a two-party

computation protocol, in which a client sends its input a to a model holder, who holds the thresholds

{τk}, for the classification label of a. These protocols offer privacy to both the client and the model

holder. That is, after the execution of the protocol, the model holder does not learn about the

client’s input a, except the number of features (i.e., input privacy), while the client learns nothing

about the thresholds {τk}, except the result label (i.e., model privacy). However, the existing private

decision tree evaluation protocols require multiple rounds of interaction between the model holder

and the client.

6.4.3 New Non-interactive Private Decision Tree Evaluation Protocol

We can obtain a non-interactive variant protocol of Tai et al. [2017] by instantiating the private

comparison with oGT, as opposed to Tai et al. [2017] which used the DGK’s private comparison

protocol [Damg̊ard et al., 2009]. The other parts of our protocol are identical to the semi-honest

protocol of [Tai et al., 2017].

By replacing the DGK’s private comparison with oGT, our protocol is superior to its origin [Tai

et al., 2017] in two points. The first is that our protocol allows the client to be offline after he has

sent the ciphertexts of a to the evaluator. The second is that our protocol allows the model holder to



CHAPTER 6. NON-INTERACTIVE AND EXPRESSIVE COMPARISON 75

Protocol ΠPDT

Input of client: feature vector a ∈ Zγm, key pairs sk, pk
Input of server: decision tree T
Output of client: classification result T (a)

Client:

1. Client sends ciphertexts {Enc (Xai)}i∈[γ] to the server attached with his public key pk.

Server:

2. For each internal node vk, the server calls oGT of Figure 6.1

Enc (Ak) = oGT(Enc (Xaik ) , Xτk ).

3. For each path path(ul), the server aggregates ciphertexts along the path

Enc
(
A′l
)

=
∑

wb
k
∈path(ul)

Enc (Ak)	
∑

wb
k
∈path(ul)

I{b = 1}

Enc (Al) = Enc
(
A′l
)
⊗ r ⊕ zl, r U

←− Zt/{0}

Enc
(
Âl
)

= Enc
(
A′l
)
⊗ r′, r′ U←− Zt/{0}

4. The server sends ciphertexts {(Enc (Al) ,Enc(Âl))}1≤l≤M′+1 to the client,

Client:

5. Client decrypts the ciphertexts received from the server to M ′+1 pairs of polynomials i.e., (Al, Âl)
for 1 ≤ l ≤ M ′ + 1. Client outputs the predication result as the first coefficient of Al∗ [0] for a
index l∗ such that Âl∗ [0] = 0.

Figure 6.3: Private Decision Tree Evaluation Protocol ΠPDT.

delegate the evaluation to a third-party evaluator, e.g., a public cloud server, without compromising

the model privacy. That is, the model holder can encrypt the thresholds {τk}, and place the cipher-

texts on the public cloud. Then the cloud can process classification upon the (encrypted) request

from the client using the ciphertexts of {τk} for the model holder. Also, during the classification

process, no interaction between the cloud, the model holder and the clients is needed.

Path. We assign an indicator to each branch of the decision tree. Specifically, for an internal node

vk, we write wbk (b ∈ {0, 1}) to denote its left branch and right branch, respectively. Then we have a

unique path path(ul) from the root node to each leaf node. We perform homomorphic summations

along the path of each leaf node in a way that the summation along the predication path path(ul∗)

evaluates to zero, while that of other paths are non-zero. This allows the client to learn T (a). Our

ΠPDT protocol of Figure 6.3 requires only one round-trip communication between the client and the

server, as opposed to two round-trips of Tai et al. [2017].

Theorem 14. The protocol ΠPDT of Figure 6.3 privately implements the decision tree functionality
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Table 6.2: Comparing total computation time of ΠPDT with Tai et al. [2017]. γ and M ′ respectively
denotes the number of features and the number of internal nodes of the decision tree. δ is the input
bit length.

Data set (γ,M ′) Ours (δ = 13) Tai et al. [2017] (δ = 64)
Heart-disease (13, 5) 0.59s 0.25s

Housing (13, 92) 10.27s 1.98s
Spambase (57, 58) 6.88s 1.80s
Artificial (16, 500) 56.37s 10.42s

Table 6.3: Performance of our ΠPDT protocol on the trained decision tree model. The feasible domain
of oGT was N = 213.

Data set ENC EVAL DEC
Heart-disease 44.18± 2.59 ms 0.32± 0.06 s 0.32± 0.06 s

Housing 46.35± 3.71 ms 5.11± 0.08 s 5.12± 0.08 s
Spambase 193.58± 7.27 ms 3.34± 0.07 s 3.35± 0.07 s
Artificial 54.62± 1.96 ms 28.16± 0.61 s 28.15± 0.61 s

T under the semi-honest model.

Proof. (Correctness.) Since oGT correctly implements the greater than functionality, and additive

homomorphism is preserved, we have A′l[0] = αl mod p by using µ0 = 0 and µ1 = 1. Thereby

Al[0] = αl ·r+zl mod p and Âl[0] = αl ·r′ mod p with non-zero random values r and r′. The client,

thus can learn zl∗ by finding 1 ≤ l∗ ≤M ′ + 1 such that Âl∗ [0] = 0. It suffices to prove that αl∗ = 0

and αl 6= 0 for all l 6= l∗. From the definition of decision tree and path, it is easy to see b = fk(a)

for wbk ∈ path(ul∗). We can see that αl∗ =
∑
wbk∈path(ul∗ ) b = 0. On the other hand, for l 6= l∗, we

have b = 1 − fk(a) for wkb ∈ path(ul)/path(ul∗). In this case, 0 < |αl| ≤ |path(ul)/path(ul∗)|, and

thus αl 6= 0 for all other paths that l 6= l∗.

6.4.4 Evaluation

We trained decision tree models through the scikit-learn library on three real data sets from the

UCI repository Lichman [2013]. We also used an artificial data to show the scalability of our ΠPDT

protocol.

• Heart-disease: γ = 13 and M ′ = 5.

• Housing : γ = 13 and M ′ = 92.

• Spambase: γ = 57 and M ′ = 58.

• Artificial: γ = 16 and M ′ = 500.
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Here γ and M ′ respectively denotes the number of features and the number of internal nodes of the

decision tree. Note that in the training phase was done on plain data without any crypto.

Measurements. We measured the performance of our ΠPDT protocol for the case that both the

client’s input and the tree model are encrypted. In particular, we measured the encryption and

decryption time on the client’s side, and the evaluation time on the cloud’s side.

Empirical Results. The benchmark performance of our ΠPDT protocol on the trained models

are given in Table 6.3. The evaluation time on the server’s side was linear with the number of

internal nodes N , which can be accelerated easily through multi-threads. However, the client needs

to decrypt O(2N) ciphertexts which still takes high computation effort.

Comparison with the-State-of-the-Art. We also compared our protocol to its origin [Tai et al.,

2017], which is the most efficient HE-based private decision tree protocol. Remind that, in [Tai

et al., 2017], the model thresholds {τk} were plaintext due to the DGK’s private comparison, while

in our protocol both the client’s input and the model thresholds were encrypted. The performance

details are shown in Table 6.2. We can see that the performance gap between our protocol and [Tai

et al., 2017], was smaller than than 25-fold, counting the differences of bit length δ. Our protocol

can be hosted on a public cloud. Thus we can take advantage of the abundant computing resources

of the cloud to easily accelerate the protocol execution, e.g., by parallelism.
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Conclusion

In this dissertation, we tackle the problem of secure computation on the cloud. We have shown that

with appropriate packing methods, FHE-based protocols can be feasible for cloud applications. Our

contributions in this dissertation are summarized as follows.

Private Inner Product of Long Vectors. In Chapter 3, we deal with a problem of computing

the inner product of two encrypted large size vectors. As we have shown, the naive approach would

be too expensive to use. To overcome this difficulty, we propose forward backward packing, which

encodes long vectors as polynomials before encryption, and it enables us to compute the inner

product of the vectors with a much smaller number of homomorphic multiplications. Specifically,

the number of homomorphic multiplications are reduced from O(n) to O(n/N) where n is the size of

vectors and N is the FHE parameter. As a concrete application, we show how to use the proposed

inner product protocol to conduct secure χ2 test and linkage equilibrium (Figure 3.4) with a large

clinical and genomic data, on the cloud. Empirical results show that our approach is about 2000×
faster than the previous cryptographic solution for χ2 and linkage equilibrium.

Iterative Computation on Encrypted Vectors. In Chapter 4, we present three feasible FHE

primitives, i.e., ΠMP, ΠbGT and ΠoGT, which enable us to perform iterative computation on encrypted

vectors, including matrix multiplication and greater than. Using these primitives, we develop a

framework of secure outsourcing statistical analysis to the cloud. Specifically, we show how to

evaluate descriptive and predictive statistics from encrypted values, including mean, covariance,

histogram, contingency table with cell suppression, k-percentile, decision tree, principal component

analysis and linear regression. The experiment results show that FHE is usable for non-trivial cloud

applications when appropriate packings and encoding methods are used.

Communication Efficient Secure Matrix Multiplication. In Chapter 5, we present a commu-

nication efficient secure inner product protocol via a newly proposed double packing. The proposed

protocol enables a communication efficient matrix multiplication protocol (ΠSMP of Figure 5.3),

78
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which reduces the cubic communication overhead of the previous method to a quadratic communi-

cation overhead. Empirically, the amount of data transferred by Figure 5.3 was only 1.9% of the

existing OT-based methods. As a concrete application, we employ the protocol ΠSMP to two existing

privacy-preserving machine learning frameworks, i.e., MiniONN and SecureML. Experiment results

show that our protocol can save more than 90% communication cost of these frameworks while keep-

ing a comparable computation time. We consider that ΠSMP can help forwarding the development

of more practical and useable privacy-preserving machine learning cloud-based applications.



Appendix A

Techniques to Implement Fast

Homomorphic Encryption

A good programming implementation of the underlying FHE library is also critical. In this chapter,

we introduce some techniques that help us to write efficient codes that implement BGV’s scheme.

A.1 Polynomial Multiplication

The most important operation of constructing the BGV scheme (and other ring-based homomorphic

encryption) is multiplication of polynomials modulo XN + 1 and some prime t, i.e.,

A ·B mod (XN + 1, t)

for polynomials A,B ∈ At. The naive polynomial multiplication takes O(N2) operations which

might be impractical, since the parameter N of an FHE scheme is usually large, e.g., N = 213. The

discrete Fourier transform (also named as number theoretic transform) is the classic algorithm to

perform fast polynomial multiplications. Let NTT : At 7→ ZNt as the forward transform, and denote

NTT−1 as the backward transform. NTT has the following property.

NTT−1(NTT(A) ◦ NTT(B)) = A ·B mod (XN + 1, t),

where ◦ is the element-wise multiplication of vectors. By using fast Fourier transform, such as Cooley-

Tukey algorithm [Cooley and Stern, 1965], the forward and backward transform take O(N log2N)

operations. Since the element-wise multiplication is linear, the polynomial multiplication can be

done within O(N log2N) operations.

A classic NTT algorithm that uses Cooley-Tukey needs to bit-reversed reorder the coefficients

80
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Protocol NTT on the Cooley-Tukey Butterfly

Inputs: Polynomial A :=
∑N−1
i=0 aiX

i where N is power of 2 and t = 1 mod 2N . The 2N -th primitive
root of unit ψ aspect to t. A pre-computed table Ψ ∈ ZNt stores powers of ψ in bit-reversed order.

1. For 0 ≤ m < log2 N do

2. n = 2log2 N−m−1

3. For 0 ≤ i < 2m do

3.1. d = 2 · i · n
3.2. η = Ψ[2m + i]

3.3. For 0 ≤ k < n do [
ad+k
ad+k+n

]
= η ·

[
ad+k + ad+k+n

ad+k − ad+k+n

]
mod t (A.1)

4. Output {ai} for 0 ≤ i < N .

Figure A.1: Forward Number Theoretic Transform

{ai} and multiplying the coefficients with the 2N -th primitive root of unit. Indeed we can save

these operations by mixing up two kinds of butterflies, i.e., using Cooley-Tukey butterfly in NTT

and using Gentleman-Sande butterfly in INTT [Longa and Naehrig, 2016].

We can see from Figure A.1 and Figure A.2 that the most basic operation of the NTT is the

so-called butterfly operation (Equation A.1), i.e., (x, y) → (x + y, w · (x − y)). Notice that, the

additions and multiplications are performed over the finite field Zt. We use the optimization from

Harvey [2014] for the butterfly operation.

A.1.1 Faster Butterfly for Number Theoretic Transforms

The naive implementation of Equation A.1 would need three correction steps to make sure the results

are inside the range [0, t). However, these correction steps would introduce a large overhead due

to branch misprediction. Harvey [2014] proposes a method to eliminate two of them. Figure A.3

follows the optimized butterfly proposed by Harvey [2014] which also leverages Shoup’s trick for

multiplication reduction. That is, we tend to choose β as power of 2 so that the division and modulo

by β can be done with cheap bit-wise shift and mask operations, respectively.

A.2 Residue Number System

Multi-word values are necessary for constructing BGV’s scheme. That is, the value in the moduli

chain q0 < q1 < · · · < qL is usually large, e.g., qL > 2300. From the view of programming,

we can use multi-precision library such as the GMP library for this. However, these multi-word
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Protocol NTT−1 on the Gentleman Sande Butterfly

Inputs: Vector a := [a0, a1, · · · aN−1] ∈ ZNt in bit-reversed ordering, where N is power of 2 and
t = 1 mod 2N . The inverse of the 2N -th primitive root of unit ψ−1 mod t. A pre-computed table
Ψ−1 ∈ ZNt stores the power of ψ−1 in the bit-reversed order.
Output: NTT−1(a) in standard ordering.

1. For 0 ≤ m < log2 N do

2. h = 2log2 N−m−1

3. For 0 ≤ i < h do

3.1. η = Ψ−1[h+ i]

3.2. d = 2 · i · 2m

– For 0 ≤ k < 2m do [
ad+k

ad+k+2m

]
=

[
ad+k + ad+k+2m

η · (ad+k − ad+k+2m)

]
mod t

4. Output {ai ·N−1 mod t} for 0 ≤ i < N .

Figure A.2: Backward Number Theoretic Transform

implementations are usually a few magnitudes slower than the naive machine word operations. We

introduce an alternative method to achieve multi-word precision using the naive machine word only.

Before describing the alternative method, we need some notations.

• Let p1, p2, · · · , pk be k prime numbers that fix into a machine word.

– Let p be the product of these k primes, i.e., p =
∏
i pi.

– Let p∗i = p/pi ∈ Z and p̃i = (p∗i )
−1 mod pi, i.e., p̃i · p∗i = 1 mod pi.

• For an integer 0 ≤ x < p, we write [x]p to represent the vector

[x1, x2, · · · , xk] s.t. xi = x mod pi.

• For a polynomial A ∈ Zp[X]/(XN + 1), we write [A]pi to denote the residue of coefficients of

A aspect to pi, i.e., [A]pi = [A[0] mod pi, A[1] mod pi, · · · , A[N − 1] mod pi].

Indeed, [x]p is so-called residue number system (RNS) of x. For the RNS representation of values

0 ≤ x, y < p, we have the following properties.

[x]p +̇ [y]p = [x+ y mod p]p

[x]p ◦ [y]p = [x× y mod p]p,



APPENDIX A. TECHNIQUES TO IMPLEMENT FAST HOMOMORPHIC ENCRYPTION 83

Protocol Harvey’s Butterfly

Inputs: 0 < η < t, η′ = bη · β/tc for some β > 4t. 0 ≤ x, y < 2t.
Outputs: x′ = x+ y mod t and y′ = η · (x− y) mod t.

1. x′ = x+ y

• if x′ ≥ 2t then x′ = x′ − 2t.

2. q = bη′ · T/βc where T = x− y + 2t.

3. y′ = (η · T − q · t) mod β.

Figure A.3: Faster Butterfly for Number Theoretic Transforms

where +̇ and ◦ is the element-wise addition and multiplication of vectors, respectively. In other

words, by using RNS representation, we can achieve multi-word precision for addition and multipli-

cation over the finite field. Most importantly, the RNS representation is compatible with the NTT

algorithm, since NTT algorithm involves only additions and multiplications over the finite field. In

more details, we represent the coefficients of polynomials in the RNS format. At the result, we need

to repeat the NTT algorithm through each residue of the polynomial. Since each residue would not

interleave with each other during the NTT algorithm, we tend to store the RNS representation of

polynomials in the residue-order

[[A]p1 , [A]p2 , · · · , [A]pk ].

Notice that, parallelism can be used to accelerate the NTT algorithm on the RNS formatted poly-

nomials, since each residue is totally independent to each other.

A.2.1 Division on RNS

The homomorphic multiplication of BGV’ scheme involves some kind of division operations, which

is tricky if we use the RNS format, since it preserves only the additive and multiplicative properties.

For a general division operation, we might need to convert back from the RNS format to a multi-

precision format such as using GMP, and then perform the division and then convert back to the

RNS format. Fortunately, the division needed in the BGV’s scheme is not that general. It has

some constructive properties. We now introduce the rescale routine from Halevi et al. [2018], which

allows us to perform the needed division operation in the homomorphic multiplication without using

multi-precision values.

Let x ∈ Zp be given in the RNS format [x1, x2, · · · , xk], and let p′ ∈ Z be an integer modulus

p′ > 2. We want to “scale-down” x by a factor p′/p, namely to compute the integer y = dp′/p · xc ∈
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Zp′ .

y := dp
′

p
xc = d(

∑
i

xi · p̃i · p∗i ·
p′

p
)− v′ · p · p

′

p
c

= d
∑
i

xi · (p̃i ·
p′

pi
)c − v′ · p′ = d

∑
i

xi · (p̃i ·
p′

pi
)c mod p′

The first equation comes from the fact that x =
∑
i xi · p̃i · p∗i − v′ · p for some v′ ∈ Z. In the

context of homomorphic multiplication, we can pre-process the rational numbers p′ · q̃i/qi ∈ [0, p′),

and separate into their integer and fractional parts:

p′ · q̃i/qi = αi + βi, with αi ∈ Zp′ and βi ∈ [0, 1).

With (αi, βi) pre-computed, we can rescale x to y via two sums: α =
∑
i xi · αi mod p′ and β =

d
∑
i xi · βc, and then output y = α+ β mod p′.

A.2.2 Barrett Reduction

Barrett reduction [Barrett, 1986] is a fast method used to perform x mod t, assuming 0 ≤ x < t2

and t is constant. The general idea behinds Barrett reduction is to compute x − bx · sc · t where

s ≈ 1

t
. As long as s is computed with sufficient accuracy, this result is exact. However division can

be expensive. On the other hand, Barrett reduction approximates 1/t with a value t′/2k with an

approximation parameter k. Division by 2k is just a right-shift and thus is cheap. The value t′ is

generally set as t′ = b2k/tc. Given t′ and k, Barrett reduction on 0 ≤ x < t2 is working as follows.

1. q = (x · t′)� k.

2. y = x− q · t.

3. output y if y < t, otherwise output y − t.

For a larger k, we have a better approximation, and we need to make sure that the approximation

is good enough for reducing values in the range [0, t2), which is required by the lazy reduction

technique in the next section. Suppose the machine word size is w and the limb size of t is w′, i.e.,

t < 2w
′ ≤ 2w. We use a large approximation parameter, i.e, k = 2w. Notice that, using a such large

k, the multiplication x · t′ will result at a multi-word value. To avoid using multi-precision library,

we need one more constraint on the limb size w, i.e., w′ ≤ w − 2, but now we can only store the

lowest w-bit of b2k/tc because 2k/t > 2w. The Barrett reduction we used is given as follows.

Setup: Suppose that k = 2w and t < 2w
′
. Let t̃ the lowest w-bit of b2k/tc and δ = w − w′.

1. q = (t̃ · (x� w) + (x� δ))� w.
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2. y = x− q · t.

3. output y if y < t, otherwise output y − t.

The correctness of Step 1 can be seen as follows. In the origin Barrett reduction, the step (x · t′)� k

is computing the highest w-bit of (x · t′), since k = 22w is used. Also, we have t′ = 2δ · 2w + t̃ with

t̃ < 2w. In other words, t′ is represented in its w-radix format. We can rewrite 0 ≤ x < 22w′ in

its w-radix format, i.e., x = 2w · x1 + x0 for 0 ≤ x0, x1 < 2w. Thereby the multiplication x · t′ is

decomposed as

x · t′ = (x1 · 2w + x0) · (2δ · 2w + t̃)

= (2δ · x1) · 22w + (2δ · x0 + t̃ · x1) · 2w + x0 · t̃

The highest w-bit is 2δ ·x1 + (2δ ·x0 +x1 · t̃)� w which equals to (2δ · 2w ·x1 + 2δ ·x0 + t̃ ·x1)� w,

and which is exactly ((x� δ) + t̃ · (x� w))� w.

A.2.3 Lazy Reduction

Lazy reduction is used to speed up “inner product” computation over the finite filed, such as
∑
i xi ·

yi mod t for xi, yi ∈ Zt. We tend to defer the modulo reduction for each multiplication, and perform

just a single modulo reduction after the summation. To do so, we need to present double machine-

word. For example, if xi, yi < 264 then we need a data structure to represent 128-bit integers.

Indeed, during the computation of inner product, we do need some modulo reduction, since we need

to make sure no overflow is incurred from the summations. The number of summations we can skip

before the modulo reduction depends on the limb size of t. Suppose the machine word size is w and

the limb size of t is w′, i.e., t < 2w
′ ≤ 2w. The number of summations we can skip is 22w′−2w − 1.
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