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Abstract

Accurate estimates of sea ice conditions such as ice thickness and ice concentration in
the ice-covered regions are critical for shipping activities, ice operations and weather fore-
casting. The need for this information has increased due to the recent record of decline in
Arctic ice extent and thinning of the ice cover, which has resulted in more shipping activi-
ties and climate studies. Despite the extensive studies and progress to improve the quality
of sea ice forecasts from prognostic models, there is still significant room for improvement.
For example, ice-ocean models have difficulty estimating the ice thickness distribution accu-
rately. To help improve model forecasts, data assimilation is used to combine observational
data with model forecasts and produce more accurate estimates.

The assimilation of ice thickness observations, compared to other ice parameters such
as ice concentration, is still relatively unexplored since the satellite-based ice thickness
observations have only recently become common. Also, preserving sharp features of ice
cover, such as leads and ridges, can be difficult, due to the spatial correlations in the
background error covariance matrices. At the same time, the current ice concentration
assimilation systems do not directly assimilate high resolution sea ice information from
synthetic aperture radar (SAR), even though they are the main source of information for
operational production of ice chart products at the Canadian Ice Service. The key challenge
in SAR data assimilation is automating the interpretation of SAR images.

To address the problem of assimilating ice thickness observations while preserving sharp
features, two different objective functions are studied. One with a conventional l2-norm
and one imposing an additional l1-norm on the derivative of the ice thickness state esti-
mate as a sparse regularization. The latter is motivated by analysis of high resolution ice
thickness observations derived from an airborne electromagnetic sensor demonstrating the
sparsity of the ice thickness in the derivative domain. The data fusion and data assimi-
lation experiments are performed over a wide range of background and observation error
correlation length scales. Results demonstrate the superiority of using a combined l1-l2
regularization framework especially when the background error correlation length scale
was relatively short (approximately five times the analysis grid spacing).

The problem of automated information retrieval from SAR images has been explored
in a problem of ice/water classification. The selected classification approach takes advan-
tage of neural networks to produce results comparable to a previous study using logistic
regression. The employed dataset in both studies is a comprehensive dataset consisting of
15405 SAR images over a seven year period, covering all months and different locations.
In addition, recent neural network uncertainty estimation approaches are employed to es-
timate the uncertainty associated with the classification of ice/water labels, which was not
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explored in this problem domain previously. These predicted uncertainties can improve
the automated classification process by identifying regions in the predictions that should
be checked manually by an analyst.
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Chapter 1

Introduction

1.1 Problem Statement

Sea ice covers a large area of the ocean surface and plays an important role in ship navi-
gation, fishing industries, oil exploration and construction operations, and global climate
change. Sea ice extent and thickness are also important indicators of global warming. The
remote locations and extreme climate of ice covered regions have made sea ice studies diffi-
cult. Initially, prior to the 1900s, sea ice observations were collected by people who lived in
these regions. Later, ships and submarines were used to gather sea ice information. How-
ever, the provided information was limited to a focused area. Nowadays, satellite remote
sensing provides the main source of observations for sea ice applications.

According to the recent records of sea ice concentration and thickness, there has been
a significant decline in Arctic ice extent and thinning of the ice cover over the past two
decades [98, 107]. The continuation of this trend facilitates marine transportation across
the ice covered regions [44]. However, the safety of navigation in ice covered regions
depends in part on the availability of accurate estimates of the small scale details of ice
concentration, ice thickness and ice pressure. Ships will tend to navigate through narrow
openings in the ice cover, and if there are none present they will attempt to find a route
where the ice appears to be thin and/or undeformed [94]. Sudden changes in ice thickness
(e.g., deformation ridges) and ice pressure play a significant role in vessel besetting events
[81]. Given these information, it is required to have reliable sea ice forecasts over all regions
and different time-scales.

Ideally, sea ice forecasts would be made in a similar manner to weather forecasts, using
data assimilation [12]. Data assimilation is a method for combining available observations
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with a background state from a numerical forecast model, to find the best estimate of the
current state of the system, which is called the analysis [83]. The analysis is then used
to initialize the forecast model to run a short-term forecast, the output of which is used
as the background state for the next data assimilation cycle. Using a data assimilation
system would allow physically-based forecasts to be made of features in the ice cover that
cannot be directly observed, such as regions of high ice pressure.

Data assimilation can also be considered an inverse problem where the objective is to
find the best state, x ∈ Rn, that satisfies the relationship y = H(x) + ε, where y ∈ Rm

represents the available observations, H : Rn → Rm is the observation operator, which
maps the state vector to the observation space and can be a physical or mathematical
model, and ε ∈ Rm is the observation error. The standard objective function in an inverse
problem is defined as the l2-norm of the misfit between the observations and model state as
‖y−H(x)‖22. Since, usually there are not enough observations available (i.e., the dimension
of y is less than x) and/or the observations have errors, the data assimilation problem may
be very ill-posed. Regularization approaches are proposed to address this problem by
adding regularization terms to the standard objective function.

Environment and Climate Change Canada (ECCC) has developed the Regional Ice-
Ocean Prediction System (RIOPS) for operational short-range ice forecasting [89]. Even
though high resolution synthetic aperture radar (SAR) observations currently provide the
most reliable ice information, the assimilation process of RIOPS does not directly use
these data. Instead, they actually use daily ice charts and image analyses products of
Canadian Ice Service (CIS) manually provided based on SAR observation. In addition, they
rely on ice information provided by optical sensor and low resolution passive microwave
and scatterometer sensors. Thereby, the application of SAR images in the operational
sea ice assimilation systems is limited to providing manual ice charts by CIS. The direct
assimilation of automated extracted SAR information is still an open problem to address.

1.2 Challenges

Dealing with the observations is a major yet challenging task in the assimilation of sea ice
observations. The major challenges of these tasks that are further addressed in this thesis
are:

• Data assimilation schemes involve an interpolation of observational information to
a model grid. To carry out this interpolation, certain criteria should generally be
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satisfied, such as smoothness of the underlying fields [95, 129]. This poses a spe-
cific problem for sea ice because even though at large scales sea ice seems to be a
nonrigid continuum, at small scales it includes important sharp features or discon-
tinuities [125]. These sharp features can be difficult to preserve in data fusion and
data assimilation due to the spatial correlations in the background error covariance
matrices. In addition, the current data assimilation systems assume constant and
uncorrelated observation errors.

• The practical implementation of SAR-derived sea ice information, as the current
primary source of information, in the sea ice data assimilation systems is still limited.
Part of that limitation is due to the difficulty of automated information extraction
from SAR images that forces the scientists to manually provide the products. This
issue has been caused by the overlap of backscatter signatures from different ice types
with open water. In addition, most of the current ice/water classification studies use
a specific geographical area for training [62, 108, 2]. This is in contrast to most sea
ice data assimilation systems, which cover larger regions.

• Another reason for limited utilization of SAR-derived sea ice information is the fact
such information does not typically include any uncertainty estimates or confidence
levels in such retrievals. While there are a few studies on uncertainty estimation of
sea ice retrievals, for the task of ice/water classification there are no known published
uncertainty estimates. Having the uncertainty of observations can provide additional
insight for choosing useful observations to assimilate.

1.3 Objectives and Contributions

The objectives of this thesis target the problem of assimilating sea ice observations via the
following three contributions.

1. Demonstrating the existence of sparsity in sea ice thickness observations in the spatial
derivative domain using both airborne survey data, and submarine sonar data, which
is described in Chapter 3. The sparsity information has been further used to show its
impact on improving the quality of sea ice estimates when an additional regularization
term is imposed on the cost function of the data fusion and data assimilation problem.
The data assimilation experiments discussed in Chapter 3 not only examine the
impact of background error correlations on the analyses, but also the impact of
observation error correlations.
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2. Improving the quality of automated ice/water classification of RADARSAT-2 dual-
polarization HH-HV images using a neural network approach, which is described in
Chapter 4. The experiments are designed to evaluate the classification performance
considering different network sizes and feature inputs.

3. Estimating the uncertainty of ice/water classifications of Chapter 4 by modifying the
proposed neural network based on recent advances in neural networks, which is de-
scribed and assessed in Chapter 5. The neural network based uncertainty approaches
include uncertainty induced by model parameters in addition to uncertainty induced
by dataset features. These uncertainties have the potential to provide observation
errors for data assimilation purposes.

1.4 Thesis Outline

The remainder of the thesis is organized as follows.

In Chapter 2, the essential background material required for understanding and mo-
tivating this research are provided. These include the overview of data assimilation and
regularization, sea ice observations as inputs of sea ice data assimilation systems and some
approaches on automated ice and water detection from SAR.

In chapter 3, the use of l1-norm regularization when the data assimilation state exhibits
sparsity in the actual or transformed domain is investigated in a sea ice assimilation prob-
lem. The experiments are conducted using real ice thickness observations and a 1-D sea
ice model.

In chapter 4, a neural network approach is utilized to classify a comprehensive database
of SAR image features into ice and open water.

The classification models and results from Chapter 4 provide the basis for Chapter 5
where the recent developments in the field of neural networks are used to provide model-
induced and data-induced uncertainty maps besides the classification maps.

Finally in Chapter 6, the thesis is concluded with a summary of contributions and
proposed future work.
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Chapter 2

Background

2.1 Introduction

This chapter is devoted to reviewing the materials and methods required for the purpose
of improving the quality of sea ice data assimilation states, with emphasis on regularized
data assimilation and uncertainty estimation of sea ice retrievals from remote sensing data.
First, a general overview of data assimilation and its techniques is given. Following that, the
context of regularization for data assimilation as an inverse problem is reviewed. Then, sea
ice parameters and methods to retrieve these parameters from remote sensing instruments
are briefly reviewed to provide the prerequisites for the following content on ice water
classification and uncertainty estimation.

2.2 Data Assimilation Overview

Data assimilation is a method for combining available observations, with a prior estimate
of the current state of the system that is typically based on a numerical model, such as a
forecast model, to find the best estimate of the current state of the system. The Regional
Ice-Ocean Prediction System (RIOPS) developed by Environment and Climate Change
Canada (ECCC), like any other operational ice prediction system, requires assimilation
of different types of ice observations [89]. The reason for combining numerical model
output with observational data, instead of relying solely on the observations is that in
most cases, observations are sparse or partial in geophysics and they are also imperfect,
and sometimes only indirectly measure the quantity of interest. Models are required to

5



Assimilation Observations 

Updated model 

state 

(Analysis) 

Model state 

(Background) 

Forecast model 

Figure 2.1: Forecast-assimilation cycle of data assimilation

interpolate available observations to unobserved regions or quantities. Since the beginning
of data assimilation in 1940s, numerical weather prediction (NWP) is its most well-known
application [25, 69]. Navigation systems [26], remote sensing [24] and pollution source
estimation [109] are other applications of data assimilation.

2.2.1 Data Assimilation Cycle

Data assimilation, as described in Figure 2.1, is performed in cycles. Each cycle consists
of two steps. In the first step, called the assimilation step, using the given model state
(called the background state) and the observations, an optimal state estimate called the
analysis is produced. In the second step, known as the forecast step, the analysis is given
to the forecast model to be integrated forward in time. The outcome of this process is a
new forecast or background state for the next cycle.

2.2.2 Notations and Operators

In this subsection, principal notation and operators of data assimilation are reviewed briefly.

• State vector: The first step in developing a data assimilation system for the desired
application is mathematical formalization. This system needs a numerical represen-
tation of the system state, which is denoted as state vector x. The best possible
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representation of reality as a state vector is called the true state xt. The prior esti-
mate or initial guess of the state before the analysis is called the background, denoted
as xb and the optimal state estimate after the analysis is called the analysis, denoted
as xa.

• Observations: The observational data values are gathered in observation vector
y. In practice, the size of the observation vector is usually different from the size
of the state vector. The state vector has to be mapped from the state space to
the observation space to be used in the analysis and to enable comparison between
the state vector and the observation vector. The mapping function is called the
observation operator denoted by H. This operator can be either linear or nonlinear.
Also, in some cases the number of observations are fewer than the number of elements
in the state vector [9].

• Error variables: Since the background and observation states are both not quite
accurate, error models are used to reflect these inaccuracies.

The error variables in a data assimilation analysis are:

– Background errors: The difference between the true state and the background
state is defined as

εb = xb − xt, (2.1)

while the background error covariance matrix is

B = (εb − ε̄b) (εb − ε̄b)T . (2.2)

Here, ε̄b describes the mean of the background error .

– Observation errors: The difference between the true state and the observation
state is defined as

εo = y −H(xt), (2.3)

with ε̄o as the mean of the observation error, the observation error covariance
matrix is

R = (εo − ε̄o) (εo − ε̄o)T . (2.4)

– analysis errors: The difference between the true state and the analysis state is
defined as

εa = xa − xt, (2.5)

with ε̄a as the mean of the analysis error, the analysis error covariance matrix
is

A = (εa − ε̄a) (εa − ε̄a)T . (2.6)
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The averages of errors are known as biases and their presence is the sign of a sys-
tematic problem in the assimilation system as they will produce bias in the analysis
[27].

When the size of model state is n, the B matrix is a square and symmetric matrix
of size n × n. Similarly, the size of matrix R is m × m when observation vector
has size m. The diagonal elements of these matrices contain error variances and the
off-diagonal elements are cross-covariances between each pair of components in the
state or observations for B and R, respectively.

The error models will help the analysis to minimize its difference from the truth.
Observation errors mainly include instrument errors and representativeness errors,
which refer to the error of representing the model state on a discrete grid and the
error in interpolating from the model grid to the observation locations. The error can
also be due to the fact that the physical scales represented by the observations and
the state vector may be different, which means they can capture different phenomena.
For example, H can be a radiative transfer model transforming brightness temper-
ature to surface temperature, etc. Background and analysis errors are related to
the forecast error and these errors can be described by probability density functions
(pdfs), typically Gaussian function is a popular one that can be fully characterised
by a mean and covariance [38].

Table 2.1 briefly represents the essential parameters used in a data assimilation problem.

2.2.3 Data Assimilation Techniques

There are a variety of different techniques that have been developed to tackle the state
estimation problem in the assimilation step of a data assimilation cycle. These techniques
can generally be classified into two groups: sequential methods and variational methods.
In sequential assimilation algorithms such as Kalman filter [67] or Best linear unbiased
estimator (BLUE) [9], the system of equations needed for an optimal solution is solved
explicitly while in variational algorithms like 3D-Var the equations are solved implicitly
through the minimization of a cost function. Starting with the BLUE analysis, some
popular assimilation techniques will be reviewed in this section.

Best linear unbiased estimator (BLUE)

Best linear unbiased estimator (BLUE) is an assimilation technique that tries to find
the optimal analysis state under some basic assumptions [9]. The linear term in BLUE
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Table 2.1: Parameters notation and description

notation description size

xt true state n× 1

xb background state n× 1

y observation vector p× 1

xa analysis state n× 1

εb background error n× 1

εo observation error p× 1

εa analysis error n× 1

H observation operator n→ p

B background error covariance matrix n× n

R observation error covariance matrix p× p

A analysis error covariance matrix n× n
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means that we are optimizing a linear combination of the background and observation and
unbiased term means that all the errors are assumed to be unbiased. Also, the best or
optimal solution is calculated by minimizing the trace of the analysis error variance. In
the following, all the assumptions are described in detail.

1. Linearized observation operator: For any x in the vicinity of the background state
xb we have

H(x)−H(xb) ' H[x− xb] (2.7)

where H is a linear operator. For the linear operator the above equation is obvious
but for the nonlinear cases it could be calculated as

H ≡ ∂H

∂x
∈ Rn×p (2.8)

where p is the number of observations, and n is the length of the state vector x.

2. Non-trivial errors: B and R are positive definite matrices.

3. Unbiased errors: εb = εo = 0

4. Uncorrelated errors: εbεTo = 0.

5. Linear analysis: our optimal state is a linear combination of the background state
and observations.

6. Optimal analysis: the aim is to make the analysis state as close as possible to the
true state (i.e. it is a minimum variance estimate).

Based on the fifth assumption, the best estimate has the form of a linear combination
of the background estimate and the observation:

xa = Wxb + Ky (2.9)

where W and K are to be determined to make the analysis optimal. Substituting equations
2.1, 2.3 and 2.5 into 2.9 gives

εa + xt = W (εb + xt) + K (εo +H(xt)) . (2.10)

Recalling that the errors are unbiased and assuming the observation operator is linear,
after applying the expectation operator to equation 2.10 we have

W = I−KH. (2.11)
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Now substituting equation 2.11 into equation 2.9 gives

xa = (I−KH) xb + Ky (2.12)

and so
xa = xb + K (y −Hxb) . (2.13)

The next step is to obtain K. Using equations 2.1,2.3,2.5 and 2.13 we have

εa = (I−KH) εb + Kεo. (2.14)

By developing the expression of εaε
T
a and taking its expectation, recalling the linearity of

the expectation operator and the uncorrelated error assumption leads to

εaεTa = (I−KH) B (I−KH)T + KRKT . (2.15)

The best unbiased estimate in BLUE analysis corresponds to the minimum analysis error
variance. As the last step, the analysis error covariance matrix given by 2.15 is taken and
its trace is minimized by setting its derivative with respect to K to zero. The minimization
yields

K = BHT (HBHT + R)−1 (2.16)

and also
A = (I−KH) B. (2.17)

More detailed explanations on how to derive equations 2.16 and 2.17 exist in [9]. equations
2.13, 2.16 and 2.17 constitute the best linear unbiased estimator (BLUE) under the con-
straint of minimum variance. In these equations, K is called the gain, or weight matrix,
and A is the analysis error covariance matrix.

Kalman filter

The BLUE analysis assumes that the observation and background error covariance matrices
are fixed in time. However, this is a poor assumption when the background error changes
with time while the model state evolves. The Kalman filter, introduced by Kalman [67]
and Kalman and Bucy [68], is a method in which the background error covariance matrix
also evolves in time in addition to the model state. The Kalman filter is a widely applied
concept in time series analysis used in fields such as signal processing and econometrics [6].
The Kalman filter process is decomposed in two steps: analysis and forecast. The analysis
step is the same as the BLUE analysis described in Section 2.2.3 except for the following
notations and assumptions:
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• variable i is added to include the time sequence. A model exists where M i→i+1

indicates the model forecast operator from time i to i+ 1.

• model error η(i) is defined as the deviation of the forecast prediction from the evolved
true state, M i→i+1xt(i)− xt(i+ 1). The assumption is that the model is not biased
and the model error covariance matrix denoted as Q(i) is known.

• analysis errors εa(i) = xa(i) − xt(i) and models errors of the subsequent forecast
M i→i+1xt(i)− xt(i+ 1) are mutually uncorrelated.

• forecast operator is linearized; i.e., for any x(i) in the close vicinity of xa(i), we have
M i→i+1[x(i)]−M i→i+1[xa(i)] = Mi→i+1[x(i)− xa(i)].

Now the analysis step of the Kalman filter at each iteration performs a state analysis as

xa(i) = xf (i) + K(i)[y(i)−H(i)xf (i)], (2.18)

where xf (i) is the forecast state vector and with the analysis error covariance

A(i) = [I−K(i)H(i)]B(i), (2.19)

and the Kalman gain computation as

K(i) = B(i)HT (i)[H(i)B(i)HT (i) + R(i)]−1. (2.20)

In the forecast step the state forecast and the error covariance matrix are updated as
follows

xf (i+ 1) = M i→i+1xa(i), (2.21)

and
B(i+ 1) = M i→i+1AMT

i→i+1 + Q(i). (2.22)

Equation 2.22 is obtained by subtracting xt(i+1) from equation 2.21 and using the linearity
of the forecast operator:

xf (i+ 1)− xt(i+ 1) = Mi→i+1[xa(i)− xt(i)] + [M i→i+1xt(i)− xt(i+ 1)], (2.23)

which is equal to
εf (i+ 1) = Mi→i+1εa(i) + η(i), (2.24)

where εf (i + 1) = xf (i + 1) − xt(i + 1) is the background error at i + 1. Recalling that
analysis error and models error are assumed to be uncorrelated, multiplying each side of
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the equation 2.24 by its transpose and taking the expectation yields equation 2.22. Even
tough the basic Kalman filter is limited to a linear assumption, natural systems are often
nonlinear. The nonlinearity can be associated either with the model or with the observation
model or with both. The extended Kalman filter is an instance of the non-linear Kalman
filter which tries to linearize the forecast model and observation operator but when the
non-linearity is high, it can give particularly poor performance [64]. Related approaches
include the ensemble Kalman filter and its variants [33, 34].

Variational data assimilation

The possible use of methods based on variational calculus in data assimilation was proposed
by Sasaki [113, 114] in the late 1950s and 1960s. In contrast to BLUE analysis that
explicitly solves the equations to find the best estimate, variational methods minimize
a cost function to implicitly solve the problem. One such method is three-dimensional
variational data assimilation (3D-Var) and an extension of this is four-dimensional data
assimilation (4D-Var)[9].

The 3D-variational data assimilation scheme can be defined by a minimization problem
with a cost function of the form

J(x0) =

Jb︷ ︸︸ ︷
(x0 − xb)

TB−1(x0 − xb) +

Jo︷ ︸︸ ︷
(y −H(x0))

TR−1(y −H(x0)) . (2.25)

This cost function tries to find a state, x0, that has the minimum distance from the back-
ground and observations where each distance is weighted by the error covariance matrix.
The gradient of cost function J is

∇J = 2B−1(x0 − xb)− 2HTR−1(y −H(x0)). (2.26)

Lorenc showed if operator H is linear, the 3D-Var is strictly equivalent to the BLUE [95],
since:

xa = argmin
x0

J(x0)⇒ ∇J(xa) = 0

⇒2B−1(x0 − xb)− 2HTR−1(y −Hx0) = 0

⇒(B−1 + HTR−1H)x0 = B−1xb + HTR−1y

x=xa=⇒xa = xb + (B−1 + HTR−1H)−1HTR−1(y −Hxb)

(2.27)
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and based on the Sherman-Morrison-Woodbury (SMW) formula

(B−1 + HTR−1H)−1HTR−1 = BHT (HBHT + R)−1 = K. (2.28)

So, for 3D-Var for the case where the observation operator is linear, the analysis is given
by,

xa = xb + K (y −Hxb) (2.29)

which is equivalent to the BLUE analysis. Moreover, according to the set of equations in
2.27, the analytical solution for the 3D-Var minimization problem when the observation
operator is linear can be represented as

xa = (B−1 + HTR−1H)−1(HTR−1y + B−1xb). (2.30)

In fact, when the number of elements in the state vector increases and/or the observation
operator H is highly nonlinear, 3D-Var direct minimization may be less costly or more
precise than taking the inverse of matrix K. In contrast, when the size of the state vector
is small, using the BLUE approach, which is a linear approximation, is more efficient than
the evaluation of the cost function and its gradient at each iteration of the minimization
process.

2.3 Regularization and Data Assimilation

This section aims to provide a general theoretical overview of data assimilation as an in-
verse problem and its relationship to regularization. Since the most popular regularization
framework is Tikhonov regularization, this approach is reviewed here.

2.3.1 Data Assimilation as an Inverse Problem

Given the state, xt, the forward problem can be defined as that of determining the obser-
vations, y, from this state having a definite physical or mathematical model H as

H(xt) = y. (2.31)

For example, if we observe temperature, currents and sea surface height at given points in
space and time, observation operator H contains the dynamical model mapping the initial
state of the ocean to these observations. Hence, data assimilation can be viewed as an
inverse problem because the true state is unknown and the observations y are determined
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to try to recover xt. In addition, the fact that the number of observations is typically less
than the number of elements in the state vector, coupled with errors in the observations
and in the prior state estimate, as well as in the model, leads to a highly ill-posed inverse
problem. So, in this case, instead of the true solution, the goal is to find a best solution
by formulating the problem as a minimization problem. In this minimization problem, the
true solution is approximated as the state that is closest to all observations, for example
using a least-square approach:

xt = arg min
x
‖y −H(x)‖2. (2.32)

However, since typically only part of the state vector is observed, even a least-square
method will not lead to a unique solution and the problem is underdetermined. This
problem is generally solved by introducing regularization terms that are added to the
least-square penalty function to further constrain the solution.

2.3.2 Tikhonov (l2-norm) Regularization

Recalling subsection 2.2.3, the 3D-Var data assimilation scheme is defined by a minimiza-
tion problem to find optimal state x0 with a cost function of the form

J(x0) =

Jb︷ ︸︸ ︷
(x0 − xb)

TB−1(x0 − xb) +

Jo︷ ︸︸ ︷
(y −H(x0))

TR−1(y −H(x0)), (2.33)

which can also be represented as,

J(x0) =
1

2
‖x0 − xb‖2B−1 +

1

2
‖y −H(x0)‖2R−1 . (2.34)

Under the assumption that the observation operator is linear (H(xb) = Hxb), the analytical
solution of the minimization problem is

xa = (B−1 + HTR−1H)−1(HTR−1y + B−1xb). (2.35)

The error covariance matrices, B and R, are positive definite so, the matrix (B−1 +
HTR−1H) is always positive definite and as a result also has an inverse. However, since
generally there are not enough observations available and the observations have errors, this
problem might be very ill-conditioned. To study the stabilizing role of the background error
covariance matrix, Johnson et al. [63] proposed to reformulate the classic variational data
assimilation problem similar to the standard form of the Tikhonov regularization [126].
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Accordingly, by letting B = σ2
bCB and R = σ2

oCR where CB and CR are the correlation
matrices and using a change of variable z = CB

−1/2(x0 − xb), the cost function can be
reformulated as

J(z) = ‖CR
−1/2(y −Hxb)−CR

−1/2HCB
1/2z‖22 + µ2‖z‖22, (2.36)

where µ2 = σ2
o/σ

2
b . If we define f and G as f = CR

−1/2(y−Hxb) and G = CR
−1/2HCB

1/2,
the cost function would be

J(z) = ‖f −Gz‖22 + µ2‖z‖22. (2.37)

Therefore, by solving
za = arg min

z
J(z), (2.38)

the analysis can be obtained as

xa = xb + CB
1/2za. (2.39)

Having the above reformulated problem, Johnson provided new insights into the role of
the background error covariance matrix on improving the condition number of the (B−1 +
HTR−1H) and thus stability of the classic variational data assimilation problem. Other
regularization techniques can also be considered, which are discussed in Chapter 3.

2.4 Sea Ice Observations

2.4.1 Sea Ice Parameters

Operational ice monitoring requirements were one of the first applications of sea ice param-
eter retrieval from remote sensing data. These parameters mainly include ice concentration,
ice extent, ice thickness, ice surface temperature, ice types and ice velocity.

The percentage of ice cover within a given area is defined as sea ice concentration. The
considered area can be a footprint of a satellite sensor or a specified polygon covering a
geographic region. Ice concentration is produced regularly on a daily or weekly basis in the
form of maps or charts at a few centers such as Canadian Ice Service (CIS), EUMETSATs
Ocean and Sea Ice Satellite Application Facility (OSISAF), NASA Goddard Space Flight
Center (GSFC) and National Snow and Ice Data Center (U.S.A) (NSIDC). The operational
ice charts of CIS, for instance, include estimates of the total ice concentration as well as
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Figure 2.2: An example of daily ice chart for the Gulf of Saint Lawrence, January 9, 2019.

the partial concentration of presumed ice types. While ice concentration estimation is
important for sea ice navigation and marine vessel and structure operations [48], it is also
a key parameter in specifying the heat and moisture fluxes between the ocean and the
atmosphere [116]. In Figure 2.2 a CIS daily ice chart is represented for the date of January
9, 2019 over the Gulf of Saint Lawrence. The ice chart decomposes the region into different
polygons. Each polygon is associated with an egg code in an oval form that indicates the
total concentration, partial concentration, stage of development and form of ice [97].

Using the concept of ice concentration, ice extent is defined as the area of sea where the
ice concentration is beyond a specific threshold (usually 15%) [136]. Subsequently, ice edge
is identified as the boundary of ice extent [22]. Ice extent is mostly used in monitoring the
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annual variation of the Arctic ice, which is an important indicator of global warming.

Sea ice thickness, as another parameter, is important for both climate studies and
marine operations. While marine operators are more concerned with thick ice rather than
thin ice due to navigational hazards, climate and weather models need more information
on thin ice because of its essential impact on heat flux from the ocean to the atmosphere
[118]. Information on sea ice temperature can also help indicate ice thickness when the ice
is snow free and thin (less than 15cm) [66, 124].

Depending on the stage of development of sea ice, various ice types have been defined
including new ice (weakly frozen crystals), nilas (<10cm thickness), young ice (10-30cm
thickness), first-year ice (≥30cm thickness) and old ice (survived at least one summers
melt) [97]. Ice type information is a vital part of ice chart products.

2.4.2 Sources of Observations

Remote sensing is a primary tool to monitor and provide information about sea ice param-
eters since the major volume of ice is located in remote areas at high latitudes, particularly
in the polar regions. A great deal of remote sensing imagery used today in sea ice ap-
plications is provided by satellites. Different satellites and sensors have different unique
characteristics, which makes them useful for specific applications. Here, a brief summary
of some basic characteristics is provided.

Energy required for remote sensing of the earth is provided by electromagnetic radiation.
The electromagnetic spectral regions used in remote sensing applications consist of optical,
thermal infrared (IR), and microwave [53]. The optical region covers the visible (VIS), near
IR (NIR) and shortwave IR (SWIR) bands. Optical sensors have limitation of sunlight and
cloud-free sky availability. Sensors operating in middle-IR (MIR) and thermal infrared
region (TIR) detect thermal emission. TIR sensors can discriminate between ice and water
based on the temperature they capture from sea and ice surfaces under cloud-free sky.
While observations in far-IR region (FIR) are not used in sea ice applications, microwave
sensors in the millimeter and centimeter wavelength are the primary sensors for sea ice
monitoring. The microwave region of the spectrum is quite large, relative to the visible
and infrared, and there are several wavelength ranges or bands commonly used [131].

In the microwave region of the spectrum the surface signal is mostly unaffected by
atmospheric conditions, especially for relatively large wavelengths (>10mm) [131]. Mi-
crowave radiation can penetrate through cloud cover, haze, dust, and all but the heaviest
rainfall. So, microwave energy can be detected under almost all weather and environmental
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conditions and does not require sunlight. Passive microwave sensors measure emitted radi-
ation while active sensors measure the backscatter of a transmitted signal after reflection
or scattering off a surface. So far, passive microwave remote sensing has provided the most
comprehensive long-term observations of sea ice data for global sea ice monitoring [118].

Passive microwave sensors detect the naturally emitted microwave energy within their
field of view. They are typically radiometers or scanners and the amount of energy they
detect depends on the temperature and moisture properties of the emitting object or
surface. Earth surface radiation in the microwave range is very weak. Therefore, the
fields of view must be large enough to detect the energy. Consequently, most passive
microwave sensors are characterized by low spatial resolution ( a few kilometers or tens
of kilometers) and details of the sea ice, such as leads or other openings in the ice cover,
are not easily detected, but in contrast the spatial coverage is large. Therefore, passive
microwave observations are more suitable for large-scale or global monitoring. Passive
microwave sensors are used mainly for ice concentration [21, 120, 127] and ice extent [16, 99]
monitoring. In addition, estimation of a parameter such as ice thickness from passive
microwave observations is a challenging task since the depth of the emitting layer, which
depends on the wavelength and ice conditions, is typically limited to the few millimeters or
centimeters. Therefore, observations are not usually useful for ice thickness estimation. For
example, 1.4 GHz sensors onboard the soil moisture and ocean salinity (SMOS) satellite
can measure ice thickness up to 50 cm [65, 66] and operational microwave frequencies in
the range of 18-89 GHz are able to estimate ice thickness with an upper limit of 15-20 cm
[102, 124].

Active microwave sensors transmit a microwave signal towards the target and detect
the backscattered portion of the signal. These sensors, also known as radars, are divided
in two main categories: imaging and non-imaging. Altimeters [106] and scatterometers
[93] are examples of non-imaging sensors. Compared to passive microwave sensor, for local
observations such as determining the route for marine navigation through ice-covered water,
imaging active microwave sensors are better applicable as they produce observations at finer
spatial resolutions (for SAR around 100m or even higher) and also provide a relatively wide
spatial coverage (even several hundreds of kilometers) [105].

The most commonly used active microwave sensor for operational ice monitoring in
Canada is synthetic aperture radar (SAR). The first space-borne SAR, namely SEASAT,
was launched in 1978 and ended the mission after 105 days. However, its 25m fine resolution
imagery data were used to produce the first detailed sea ice motion maps and set the stage
for more space-borne SAR missions. Identifying individual ice floes [54], producing an
ice deformation grid [35], identification of openings in the ice cover and determining heat
exchange from the ocean to the atmosphere [13] were successful application of the first SAR.
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For the Canadian Ice Service (CIS), SAR data from the Canadian satellite RADARSAT-
1 was the prime source of information for data analysis and ice charts products since
1996. RADARSAT-1 was replaced with RADARSAT-2 since its commissioning in 2008
(RADARSAT-2 was launched in December 2007 and RADARSAT-1 was decommissioned
in March 2013). The most reliable current ice information is provided by SAR observations
from the ongoing satellite missions such as Canadian RADARSAT-2, European Sentinel-1A
and 1B, TanDEM-X, Japanese PALSAR-2 and Italian X-Band Cosmo-SkyMED.

One feature of the SAR sensors is their polarization which is described by two letters:
the first one describes the emitted polarization and the second one describes the received
polarization. Thereby, a SAR system using H and V linear polarizations can have HH,
VV, HV and VH channels. RADARSAT-2, as the current main data source of CIS, carries
an advanced SAR with different imaging modes and polarizations with a resolution from
3 to 100 metres. The HH images include more details than HV images but these are very
sensitive to wind speed and incidence angle. In contrast, HV backscattering is not sensitive
to the incidence angle and is less sensitive to wind speed but it suffers from banding effect
that leads to distortion. At small incidence angles, wind roughened open water, new ice
and first year ice are difficult to distinguish in HH images. However, HV images can
provide information about the first year ice since water and new ice have zero or near
zero backscatter in HV images. Figure 2.3 shows an example of HH and HV images of a
dual-pol RADARSAT-2 image acquired on April 25, 2015 over the Beaufort Sea. Bright
areas on the left side of the HH and HV images correspond to multi-year ice and the lighter
grey region at the bottom right of the images is wind-roughened open water.

Even though SAR imagery is the primary source of data for generating sea ice charts
in national ice centers for more than thirty years, a robust approach to retrieve ice con-
centration from SAR has not been developed [130]. Therefore, the required information
is still extracted based on visual analysis of the image by trained ice analysts. The main
challenge for developing an automated method for ice classification and concentration re-
trieval is the variation of backscatter signatures from different snow-covered sea ice and
wind-roughened open water. SAR backscatter in ice-covered regions is influenced by many
physical parameters, such as wind speed and direction, surface roughness, salinity, ice
structure, melt, snow cover, temperature and floe distribution [14]. As an example, low
backscatter of smooth ice surface overlaps with the low backscatter of calm open water.
Similarly, high backscatter generated by wind driven ocean surface roughness overlaps with
the high backscatter signature from rough young and first-year ice [118].
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(a) HH (b) HV

Figure 2.3: HH and HV bands of a dual-pol RADARSAT-2 image acquired on April 25,
2015 over Beaufort Sea. HH image includes more details but it is sensitive to wind speed
and incidence angle.

2.4.3 Automated Ice/Water Classification of SAR Data

Given the difficulties discussed above about the complexity of discriminating ice from open
water in SAR imagery of sea ice, here, some of the previous studies that have attemped to
address this problem are now reviewed.

The overlapping characteristic of backscatter signals between ice and water resulted in
the employment of image texture features such as gray level co-occurrence matrix (GLCM)
to improve the quality of ice/water classifications. Holmes et al. introduced the use of tex-
ture features for sea ice classification of HV image of the Beaufort Sea [62]. They reported
an overall accuracy of 65%. Clausi and Deng also used tone besides texture features in a
study on pixel-based segmentation of RADARSAT1 images [19]. Their unsupervised ap-
proach used Markov random field (MRF) tuning on top of K-means clustering to classify
both ice/water as well as ice types. The continuation of this study has led to an approach
called Iterative Region Growing with Semantics (IRGS) which is an iterative region grow-
ing segmentation method followed by a support vector machine (SVM) classification to
label the segments [133]. This method provides per-pixel ice type classification and is the
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first known successful end-to-end process for operational SAR sea ice image classification.
The average reported classification accuracy of this method on 20 RADARSAT-2 scenes
over the Beaufort Sea with respect to manually drawn ice charts is 96.5 % [20, 87, 104].

SVM classification has also been employed by Liu et al. to classify RADARSAT-2
images using backscatter and GLCM texture features as well as ice concentration [92].
In this study, first ice concentration is trained by SVM using 10 backscatter and texture
bands as input. Then, another SVM is implemented on the retrieved ice concentrations
besides the other 10 bands and finally the results are labeled into multiple sea ice types by
applying a decision tree. Zakhvatkina et al. also applied SVM for the problem of ice/water
classification using 24 RADARSAT-2 training images with backscatter and texture fea-
tures [134]. Their algorithm was applied on a total of 2705 RADARSAT-2 scenes and
validated against manually derived ice charts of the Norwegian Meteorological Institute.
The reported accuracy was around 91%.

Thresholding is another classification approach that has been investigated in a number
of studies. In a basic version, pixels are classified into two classes based on their grey
level value using a cut-off threshold [15]. This cut-off threshold can be defined globally
for the whole image or locally for each region. Dynamic thresholding has been introduced
by Haverkamp et al. [58] and further continued by Soh and Tsatsoulis [119]. Karvonen et
al. developed an algorithm for ice-water discrimination also using RADARSAT-1 images
[72]. In this approach the images are first segmented based on their intensities and then
segmentation is further refined by another segmentation based on local autocorrelation.
After this, thresholding followed by filtering is applied to label the segments. The study
reported 90% accuracy compared to ice charts for the Baltic Sea. This approach has been
used by the Finnish Meteorological Institute (FMI) [70]. In another study, Karvonen has
compared the segment-wise autocorrelation algorithm with another algorithm based on
segment-wise edge information using both Envisat ASAR and RADARSAT-2 data [71].

Berg and Eriksson investigated the use of neural networks for the classification of ice
and water as the first step of their ice concentration retrieval problem [8]. In this study,
image backscatter autocorrelation is utilized as neural network input for training against
41 sea ice charts over the Baltic Sea. The results reported accuracy of 94% over open
water and 87% for sea ice class with root mean square error of 6.7% in the sea ice con-
centration estimation. In another study, Zakhvatkina et al. extracted 9 GLCM texture
features to train a neural network classifier which was then tested on 20 ENVISAT SAR
images, resulting in average classification accuracy about 80% [135]. Ressel et al. also
utilized neural networks on GLCM features of TerraSAR-X ScanSAR data acquired in
spring 2013 over Western Barents Sea [108]. Their obtained average accuracy was above
70%. In a recent study, Aldenhoff compared ice/water maps generated from Sentinel-1 and
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ALOS-2 PALSAR-2 SAR images over Fram Strait [2]. Their classification approach which
uses backscatter intensities, the incidence angle and the autocorrelation to train a neural
network, achieved an overall accuracy about 86%.

In a recent study, Komarov and Buehner [76] used a logistic regression method to model
the probability of the presence of ice within areas of 2.05km×2.05km. For that purpose, a
relatively large dataset containing thousands of RADARSAT-2 ScanSAR dual-polarization
images along with their corresponding Canadian Ice Service (CIS) image analysis for ver-
ification, was collected. That dataset covers all seasons and all Canadian and adjacent
Arctic regions that are monitored by CIS from 2010 to 2016. This ice/water retrieval ap-
proach, which only labels samples with high level of confidence, was claimed to be suitable
for assimilation into Regional Ice-Ocean Prediction System (RIOPS). This study has been
further continued by the authors to employ adaptive thresholding [77] and ice motion [78]
in the classification procedure.

2.4.4 Observation Uncertainty Estimation in Sea Ice Retrievals

Use of retrieved sea ice parameters in downstream applications such as forecasting or
climate studies is hindered due to the lack of uncertainty information provided with the
retrievals. Here, some research with the goal of estimating uncertainty of sea ice parameters
inside the retrieval approach are reviewed.

In a project conducted by EUMETSATs ocean and sea ice satellite application facility,
a sea ice climate record of sea ice area and extent covering the period from 1978 to 2015
has been generated based on SMMR, SSM/I, and SSMIS measurements [127]. Besides the
ice concentration algorithm used for sea ice extent calculation, a new sea ice concentration
uncertainty estimation algorithm has also been developed. The estimated uncertainties are
defined as the combination of two independent uncertainty components. The first is the
tie-point uncertainty, which is derived from measurements and representativeness error.
The second is the uncertainty caused by employing coarse resolution passive microwave
measurements (footprint of 30-70 km) in finer grid spacing (typically 12.5 or 25 km). The
results have shown that for open water and 100% ice covered areas this component of
uncertainty is zero and we have the minimum total uncertainty (around 5%), in other
cases it is the dominating component of the total uncertainty (around 12%).

The benefit of accounting these provided uncertainties to improve summer ice concen-
tration and ice thickness forecasts in a data assimilation experiment are shown in a study
by Yang et al. [132]. It was found that imposing the estimated uncertainties will improve
the accuracy of ice concentration forecasts.
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In a separate study, the uncertainty of ice concentrations retrieved by the NT2 algo-
rithm is estimated [10]. NT2 uses passive microwave brightness temperature as well as
simulated microwave brightness temperatures as input to estimate sea ice concentration.
The uncertainty in this study is defined as the standard deviation of the ice concentrations
having the 20 smallest δR values. In this definition, δR is the sum of differences between
the observed and simulated inputs to the sea ice concentration retrieval algorithm. The
experiments on regional and seasonal variations has found that ice concentration uncer-
tainties are higher in areas with new ice and deep snow and at the onset of melting and
during the melting season.

In a study by Zygmuntowska et al. Monte Carlo approach is used to calculate the
uncertainty of sea ice volume and thickness which are defined as a function of sea ice area,
density and snow depth [137]. The Monte Carlo approach repeatedly calculates the results
by random sampling from the PDF of each of the input parameters and reporting the
variance of results as the uncertainty. The total uncertainty is derived by simultaneously
iterating through PDF of all the three parameters while the uncertainty of a single pa-
rameter is calculated by iterating through PDF of that single parameter and fixing the
other two parameters at the mean of their distributions. The ice thickness experiments
based on ICEsat freeboard measurements of 2005-2007 revealed higher uncertainty in pe-
riod of October/November rather than February/March. Moreover, snow depth, with up
to 70% contribution, was reported as the main contributor to the total uncertainty and
ice density has about 30-35% contribution. Ice density contribution in the ice thickness
uncertainty was higher in October/November because of small snow cover in that period of
year and sea ice area contribution in total uncertainty was always below 10%. Ice volume
total uncertainty was observed to follow almost similar pattern of contributions from each
parameter.

All the methods described above, provide uncertainties with their products. However,
there is still no method to provide uncertainty with ice/water labels or SAR retrieved
observations. Neural network-based ice/water classification approaches suffer from lack of
uncertainty in their products. The problem of uncertainty estimation for a SAR-based
ice/water classification problem is investigated in Chapter 5 using the recent advances in
the neural network studies.

2.5 Summary

This chapter provided the required background information for investigation of assimilat-
ing using regularization framework and uncertainty estimation of sea ice observations. The
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chapter started with reviewing basics of data assimilation and some popular data assimila-
tion techniques, particularly the 3D-Var method. Moreover, the context of regularization,
specifically Thikhonov regularization, was described in the field of data assimilation. After
briefly discussing sea ice parameters and remote sensing sources of observations, specifically
microwave remote sensing, some popular approaches on the classification of ice and open
water based on SAR data were reviewed. The chapter ended by reviewing previous studies
that addressed the problem of sea ice uncertainty estimation in the retrieval process.
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Chapter 3

Data Fusion and Data Assimilation
of Ice Thickness Observations

3.1 Introduction

Assimilation of sea ice data in case of noisy observations while the state vector exhibits
sparsity (a large fraction of elements that are close to zero) in the real or transformed
domain, can be improved by using sparse regularization. In this chapter, first, evidence
of sparsity in the ice thickness derivative domain is demonstrated using both airborne
survey data, and submarine sonar data. Next, the impact of using a sparse variational
regularization framework, is demonstrated using both data fusion experiments and data
assimilation experiments using a 1-D sea ice model.

3.2 Sparsity of Ice Thickness Observations

At the small scales, similar to observations of precipitation and other geophysical variables
[32, 37], sea ice no longer behaves as a continuum [36], and exhibits sharp features or
discontinuities. To visualise sharp features in the sea ice state, ice thickness measurements
obtained using an airborne electromagnetic (AEM) sensor during an aircraft survey over
the Beaufort Sea are examined. The AEM sensor measures the ice+snow thickness, which
we will refer to as the ice thickness [51], with a spatial distance of 4.5m to 6m (ground
distance) between measurement points. The data used here were acquired on April 20 2015
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in the Beaufort Sea. The measurement sample points indicating the flight path are shown
in Figure 3.1a. For more information about AEM ice thickness measurements see [52].

In the Beaufort Sea, the ice cover is highly heterogeneous, and consists of a mixture
of thin and thick ice, first-year and multi-year ice, with many ridges. The ridges are
spatially localized regions with higher ice thickness than the surrounding ice. While the
AEM measurement is known to underestimate the maximum thickness of pressure ridges,
it has high accuracy over level ice (±0.1m) [50, 52] and it can represent the variability in
ice thickness at small spatial scales, as can be seen in Figure 3.1b.

A state of interest is sparse in a real or transformed domain if its number of zero
elements in that domain is significantly large compared to its dimension in the state space.
To demonstrate the sparsity in the derivative field of AEM ice thickness, various methods
are used. In a sparse distribution, the distribution is more peaked at zero, indicating many
points with values close to zero, with fatter tails, as compared to a Gaussian distribution.
The histogram of the first order spatial derivative of the AEM ice thickness measurements
(taking into account all data points in Figure 3.1b) is shown in Figure 3.2a. Overlaid
on this distribution are fitted Gaussian, Laplacian and generalized Gaussian distributions.
The generalized Gaussian distribution is defined as

PX(x) =
p

2σΓ(1/p)
exp

(
−|x
σ
|p
)
, (3.1)

where Γ(z) is the Gamma function and p and σ are non-negative parameters describing
the shape and width of the density, respectively. For special cases of p = 1 and p = 2,
this probability distribution corresponds to Laplacian and Gaussian distribution respec-
tively. The number of bins in the histograms of Figure 3.2 was set to the maximum of
the Sturges and Freedman Diaconis estimators [39, 123] and the AEM measurement points
were resampled to have an equal spacing of 7m as this simplifies application of the methods
used.

Figure 3.2a shows that the data exhibits a symmetric representation in the derivative
space with a large mass around zero. The large number of zero coefficients in the derivative
domain is caused by the uniformity of ice thickness over a large area, whereas the large
tails are associated with the ridges and/or openings in the ice cover. Note the density of
the histogram values around zero is greater than the fitted Gaussian distribution.

For comparison, histograms of the first order spatial derivatives of sea ice draft from
submarine upward looking sonar [103] and ice thickness retrieved from Cryosat data 1 [85]
are also shown in Figure 3.2. Submarine data in Figure 3.2b are from an archive of data

1http://www.cpom.ucl.ac.uk/csopr/seaice.html
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(a) Measurement path of the AEM ice thickness
survey on April 20, 2015 in the Beaufort Sea.
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(b) The sequence of the AEM thickness data for the measurement path shown in
panel (a)

Figure 3.1: Sea ice thickness measurements from airborne electromagnetic (AEM) sensor
in the Beaufort Sea acquired on April 20th 2015. (a) Sea ice thickness [m] is represented
by the colorbar. The red rectangle outlines a region with deformed first year ice (FYI)
while the black rectangle outlines a region with thinner and smoother first-year ice. These
regions were determined from visual analysis of a SAR image acquired on April 19, 2015.
(b) Sequential representation of the AEM data shown in panel (a).

28



acquired in Arctic ocean in July 2005 and is resampled at 10m. It was expected that these
data would be less sparse than the AEM data, since the underside of the ice is known to be
irregular, containing fewer regions than the surface that can be considered level [110]. This
is supported by the histogram in Figure 3.2b, where it shows that while the fit is closest
to the Laplacian distribution, derivative coefficients have lower concentration around zero
than that of the AEM data showing that AEM data peak is sharper. As another example
of ice thickness sparsity, Figure 3.2c shows the histogram of the derivative field of the
Cryosat sea ice thickness measurements at 5km grid from March and April of 2015. The
distribution of ice thickness derivatives is highly peaked around zero, showing a better fit
to Laplacian and Generalized Gaussian distributions rather than a Gaussian distribution.

To quantitatively describe the goodness of fit of the represented distributions in Figure
3.2 to the ice thickness derivative field distribution, Kullback-Leibler divergence (DKL)
[82] is used. DKL is a measure of the distance between two distributions. For the discrete
probability distributions P and Q it is defined as

DKL(P‖Q) =
∑
i

P (i) log
P (i)

Q(i)
(3.2)

where i is the size of the discrete probability distributions defined by the number of bins
in the histogram. Table 3.1 represents the DKL values for the three datasets in Figure 3.2.
For AEM data, the DKL values of two subsets of data, selected as smooth and deformed
FYI corresponding to the black and red boxes in Figure 3.1 respectively, are also included.
For each distribution, DKL was calculated by substituting the histogram bin values for P
and the fitted distribution values for each bin by Q into equation (3.2). The DKL values
of the first column (AEM all) reflect what can be seen in the histogram, which is that
the distribution of the AEM ice thickness derivatives is statistically closer to a Laplacian
or generalized Gaussian distribution (with p = 0.8 in equation (3.1)) than a Gaussian
distribution. While the DKL values for the Cryosat data are relatively large, the Laplacian
distribution is a better fit in terms of DKL values to the AEM data and other datasets
compared to Gaussian distribution.

To further evaluate the fit of the proposed distributions to the AEM data, a Q-Q plot
[18] is used. In a Q-Q plot the sample data points are plotted against the quantiles of an as-
sumed theoretical distribution in such a manner that the points should form approximately
a straight line. Departure from the straight line indicates departure from the specified dis-
tribution. Figure 3.3 shows that Laplacian and generalized Gaussian distribution are better
fits to the data in comparison with a Gaussian distribution.
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Figure 3.2: Normalized histograms of the ice thickness spatial derivative fields of AEM
data (a), submarine data (b), and Cryosat data (c) with the fitted Gaussian, Laplacian
and generalized Gaussian distributions. All histograms show more similarity to generalized
Gaussian and Laplacian distributions rather than a Gaussian distribution. For the subma-
rine data (b), the fitted generalized Gaussian distribution and the Laplacian distribution
overlap.
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Table 3.1: Kullback-Leibler divergence (DKL) between different ice thickness datasets and
their fitted distributions on the derivative field. A lower number indicates a closer fit to
the specified distribution. AEM all refers to all AEM thickness measurements shown in
Figure 3.1, while AEM smooth FYI and AEM deformed FYI refer to the data in the black
and red boxes in Figure 3.1 respectively.

Distribution AEM all AEM smooth FYI AEM deformed FYI Cryosat Submarine

Gaussian 0.44 0.47 0.3 0.81 0.13

Laplacian 0.15 0.12 0.07 0.23 0.03

Generalized Gaussian 0.02 0.08 0.04 0.06 0.03

(a) Gaussian distribution (b) Laplacian distribution (c) Generalized Gaussian distribu-
tion

Figure 3.3: Q-Q plot of the data derivative field against Gaussian, Laplacian and general-
ized Gaussian distributions. The horizontal axes are the quantiles of the fitted distributions
and the vertical axes are the ordered values of the derivative field of AEM data. Departure
from the straight line indicates departure from the specified distribution.
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3.3 Data Assimilation Method

The data assimilation method used here is a regularization form of 3D-var data assimi-
lation. In image processing it has been shown that l1-norm regularization gives a better
performance when sharp edges need to be recovered [56]. The reason for the edge preserving
property of the l1-norm is that since edges in images lead to outliers in the regularization
term, unlike l2-norm, l1-norm does not penalize the edges. In addition, it has been shown
that with very high probability, the l1-norm regularization promotes sparsity in the solution
[30].

3.3.1 Application of l1-norm in Data Assimilation

The applicability of employing l1-norm regularization in a real data assimilation experi-
ment has been investigated by Ebtehaj et al. [31]. The motivation of their work was to
improvement the quality of rainfall estimation when the data comes with small-scale high-
intensity extreme features in case of having coarse resolution sensor observations. By using
Huber regularization in the derivative space of a precipitation data, the achieved results
were improved compared to the ones when the Tikhonov regularization is used. They used
the following cost function:

J(x0) =
1

2
‖x0 − xb‖2B−1 +

1

2
‖y −H(x0)‖2R−1 + λ‖Dx0‖Hub, (3.3)

with λ as the regularization factor. The Huber norm is also defined as

‖x‖Hub =
n∑

i=1

ρT (xi) (3.4)

where,

ρT (x) =

{
x2, |x| ≤ τ

τ(2|x| − τ), |x| > τ
. (3.5)

The Huber norm is a hybrid norm with similar behaviour to the l1-norm for values greater
than the τ and similar to the l2-norm for smaller values. Therefore, Huber regularization
is a smooth approximation of the l1 regularization.

The reason for using this type of norm was the claim that the choice of regularization
type in a regularization framework depends on prior knowledge about the underlying state
of interest. Ebtehaj reported that using the regularization term in an assimilation problem
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is statistically equivalent to the maximum a posteriori (MAP) estimator. Consequently,
using an l2-norm means assuming a Gaussian distribution as the prior probability model
of the desired state while using an l1-norm term means assuming a Laplacian distribution.
In a following test, the histogram of the rainfall derivatives with the fitted Gaussian and
Laplacian distribution was plotted where the shape of the histogram was in close agreement
with the fitted Laplacian distribution.

3.3.2 Mixed l1-l2-norm Regularization

In Section 2.3.2 it was shown that the cost function of the classic 3D-variational data
assimilation problem can be reformulated to the standard form of Tikhonov (l2-norm)
regularization as

J(z) = ‖CR
−1/2(y −Hxb)−CR

−1/2HCB
1/2z‖22 + µ2‖z‖22, (3.6)

Freitag et al. [40] proposed their mixed regularization framework with a cost function as

J(z) = ‖CR
−1/2(y −Hxb)−CR

−1/2HCB
1/2z‖22 + µ2‖z‖22 + δ‖Dx0‖1. (3.7)

where x0 = xb + CB
1/2z, ‖.‖1 indicates l1-norm (Laplacian distribution), and δ > 0 is

another regularization parameter and has to be chosen empirically. As δ increases, the
gradient of the solution will be more sparse. Details about how to set this parameter are
discussed in Section 3.4.3. In equation (3.7) the first order derivative can be approximated
by applying matrix D ∈ R(n−1)×n to the state vector, where D can be written as

D =


−1 1 0 ...
0 −1 1 0 ...

. . . . . . . . .

· · · 0 −1 1


(n−1)×n

. (3.8)

This operator corresponds to a first-order differencing, with equal spacing between data
points. Other approximations to the first order derivative operator were tested, but the
results were not found to be sensitive to this choice. This representation in equation 3.8 is
chosen for simplicity.

As discussed in Section 3.2 the ice thickness observations exhibit sparsity in the deriva-
tive domain and have a closer fit to both the Laplacian and generalized Gaussian distribu-
tion as compared with the Gaussian distribution. Even though the generalized Gaussian
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distribution with p = 0.8 is the best fit for these observations, assuming this distribution
for the regularization results in a non-convex optimisation, which might not converge eas-
ily. Therefore, assuming the Laplacian distribution as the prior model for the gradient field
is the approach taken in this study.

3.4 Experimental Method

To evaluate the advantage of using the mixed regularization framework, two different reg-
ularized variational data assimilation systems are evaluated. The first system, l2 regular-
ization, minimises the objective function given by equation (3.6), while the second system,
l1-l2 regularization, minimises the objective function described by equation (3.7). Note
that the l1-l2 regularization method when δ = 0 is equivalent to the l2 method. The
minimisation problems are reformulated to a quadratic programming using an approach
introduced by [41] and solved by Python CVXOPT package [4]. These two systems were
analysed by first carrying out a set of data fusion experiments, where the analysis is not
cycled through a model. The objective of the first set of experiments is to look at the
impact of the mixed regularization on the analyses, without the complications introduced
by model physics and resampling of the AEM data to the model grid. The data fusion
experiments are followed by a set of data assimilation experiments where a toy (1-D) sea
ice model is used (Appendix B).

For both the data fusion and data assimilation experiments the background error co-
variance matrix is defined as

B = ΣCBΣ (3.9)

where Σ is a diagonal matrix with diagonal elements that are the background error standard
deviation, σb, and CB is the background error correlation matrix. The error correlation
function is calculated based on the compactly supported fifth-order piecewise polynomial
correlation function proposed by [45]. Note that in this formulation the error correlation
function is an explicit function of the specified length scale and the spacing between points.
The observation error covariance matrix, R, is defined in the same way as the B matrix
using error standard deviation σo and the same correlation function. Both the l1 and
l1-l2 systems require calculation of the square root of the background error correlation
matrix. This is a computationally expensive operation, that scales as O(n3), where n is
the dimension of the problem. For the present study, n is small (n ≈ 400) and the square
root is computed using Cholesky decomposition, which takes about 5% of the total time
of an analysis cycle. For a larger, operational sea-ice data assimilation system, a method
to compute the background error correlation matrix square root using a diffusion equation
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Figure 3.4: The deformed FYI sequence of the AEM thickness data outlined in Figure 3.1
with red rectangle. The data points are spaced at 7m.

is described in [17]. A similar method could be used for the l1-l2 method described here.
An additional, potentially expensive, part of the algorithm is the inversion of the square
root of the observation error correlation matrix. Large scale systems typically assume a
diagonal observation error correlation matrix, which makes this operation trivial. Methods
for large scale systems utilising non-diagonal observation error correlation matrices are still
a topic of research in the operational data assimilation community.

The accuracy of the analyses is evaluated using six measures: (1) mean absolute er-

ror (MAE), (2) root mean squared error (RMSE), (3) kurtosis, KURT[xa] =
E[(x−E[x])4]

(E[(x−E[x])2])2
,

where E[·] represents the expectation operator, (4) MAE of the derivative field (DIFF MAE)
(5) RMSE of the derivative field (DIFF RMSE), and (6) kurtosis of the derivative field
(KURT[Dxa]). Kurtosis of the state is used to show tail of the state’s probability distri-
bution so that, an analysis with high kurtosis has retained more sharp features. Reported
results are averaged over 40 simulations where the additive random noise for background
and observation states are different for each simulation. Note that the background and ob-
servation error standard deviation ratio (µ) was held constant at µ = 1 for all experiments.
Details specific to the data fusion and data assimilation experiments are now given.
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3.4.1 Data Fusion Experiments

The deformed FYI subset of the AEM data shown in Figure 3.1 is selected as the true
state (xt ∈ Rn where n = 1800). This sample of the data, shown in Figure 3.4, was found
to include more sharp features as compared to the smooth FYI sample. The background
(xb ∈ Rn) and observations (y ∈ Rn), consist of the true state with additive random noise
sampled from a Gaussian distribution with mean zero and covariance matrix B and R
respectively. For both background and observation error covariance matrices, experiments
were carried out over a range of correlation length scales, measured in meters, corresponding
to L = {0, 20, 50, 100, 500} and a range of δ values. It was found the values of the error
measures (given below) increased with increasing δ for δ > 1. Hence the performance of
the l1-l2-norm regularization method is reported for a range of δ values between 0 and 1.

3.4.2 Data Assimilation Experiments

For the data assimilation experiments the initial true state was based on the entire set of
AEM ice thickness measurements acquired on April 20th, shown in Figure 3.1b. The data
points were averaged over segments of 1km in length. This was done to obtain a state at a
spatial resolution closer to that of interest in operational sea ice forecasting [7, 12, 100], in
addition to one where the continuum assumption used in the ice model should be valid [36].
When this true state was used to initialise the sea ice model it was found the ice did not
move very significantly over the 72h period. This was likely because the ice concentration
was close to 100% over the entire domain and the model was run with thermodynamics
off to simplify analysis of the results. This means the ice concentration can only change
by openings in the ice cover, which may be difficult to obtain due to the high ice pressure
when the ice concentration is close to 100% and the lack of solid boundaries in the domain.
To create open water regions in the ice cover the thickness everywhere was reduced by 0.5m
and the points with negative thickness were set to zero. This state was used to initialise
the ice model which was run forward in time to provide true states at t > 0, referred to
in this paper as the true model run (Appendix B). While this state differs from the actual
truth in part due to model error, such an approach should be sufficient for evaluating the
difference between l2 and l1-l2 regularization methods. Each of the experiments (truth,
l1-l2 and l2) was run with identical atmosphere and ocean states, which provide the forcing
to the sea ice model.

The data assimilation experiments were initialized with a background state consisting
of xb = xt + εb where εb is a sample generated from the B matrix described in the previous
section. Every 6h the model state was updated by assimilating a set of observations
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generated by perturbing the current state of the true model run at that time according
to y = xt + εo where εo is a sample generated from the R matrix described in Section 4.
Data assimilation experiments were carried out for background and observation correlation
length scales corresponding to 0 and 10km.

3.4.3 Choice of Regularization Parameter

Identifying an appropriate value of the regularization parameter is an important task in a
regularization problem. The method used to choose the parameter is typically problem-
dependent. There are several methods that find the value of the regularization parameter
assuming that the norm of the noise in observations is known [11, 49]. Conversely, there
are approaches that do not need the observation noise to be known explicitly [128], [1].

Here, we follow one of the latter approaches, known as the L-curve method. In this
method it is assumed that the objective function can be written in the form ‖y−Hx‖22 +
λ‖x‖22 with regularization parameter λ. The L-curve is the log-log plot of the norm of
the regularized solution, ‖xa‖22, versus the norm of the corresponding residual vector, ‖y−
Hxa‖22, evaluated at the minimisation solution, xa. In this method, the value corresponding
to the point of maximum curvature in the obtained L-shape curve is selected as the optimal
regularization parameter [55, 57, 84] because at this point there is a balance between the
norm of the solution vector and the fit to the observations.

For the problem studied here, a different choice of axes is made for the L-curve due to
the fact that the objective function has both l1 and l2 terms. Recalling the minimisation
problem in equation (3.7), the corresponding L-curve is defined as the plot of 1

2
log ‖Dx0‖1

versus 1
2

log (‖f −Gz‖22 + µ2‖z‖22). In this case, the point of maximum curvature represents
the balance between minimising the l1-norm of the solution in derivative space, and the
l2-norm for the Tikkonov regularization problem.

The L-curve is shown in Figure 3.5a for Lb = 0m and for two different observation
error correlation length scales, Lo = 0m, Lo = 20m where the analysis used to evaluate the
functions comprising the L-curve were obtained following the data fusion experimental set-
up described in Section 4.2. The corresponding curvature plots are shown in Figure 3.5b,c.
Based these results, it was decided δ ≈ 0.4 must be chosen for the l1-l2 regularization
method for the data fusion experiments, since this value corresponds to the maximum
curvature in the L-curve.

Since in these experiments we have a known true state, the validity of the L-curve
results could be verified by comparing the analysis states resulting from different δ values.
Using the RMSE between the true state (taken as the data from the deformed FYI in
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Figure 3.5: Using maximum curvature of L-curve to find regularization parameter, δ. Panel
(a) shows L-curve of two cases for which Lb = 0m. In panel (b) Lo = 0m and in panel
(c) Lo = 20m. The top axis of panels (b) and (c) shows the corresponding δ values for
curvature points.
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Figure 3.6: Analysis RMSE of the data fusion experiment over a range of δ values when
(a) Lo = 0m and Lb is changing and (b) Lb = 0m and for a range of Lo values.

Figure 3.1) and the analyses as the error measure (see section 5.1 for further details). Two
sets of experiments were carried out. In the first set, the observation error covariance
matrix was diagonal (Lo = 0m) while Lb was varied over the range of 0m to 500m, and
in the second set, the background error covariance matrix was diagonal (Lb = 0m) and Lo

was varied over the range 0m to 500m. Note that the spacing of the analysis grid is 7m,
hence these length scales range from 0 to 70 times the analysis grid spacing. Results are
represented in Figure 3.6. In both cases the benefit of using the l1-l2 approach as compared
to l2 can be seen for the shorter length scales (i.e. when Lb or Lo is lower than 50m) for δ
values in the range of 0.3 < δ < 0.7, consistent with the results from the L-curve.

For the data assimilation experiment, similar to the data fusion experiments, δ values
of δ = 0.01, 0.05, 0.08, 0.1, 0.2, 0.4, 0.5 were tested. The optimal δ value was found to be
0.05, hence results using this value are shown here.

3.5 Results and Discussions

3.5.1 Results from Data Fusion Experiments

The analysis for the data fusion experiments corresponding to the case when both back-
ground and observation errors are uncorrelated is shown in Figure 3.7a. The l1-l2 anal-
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ysis is less noisy than that from l2 and the sharp features in the true state are captured
more accurately. The analysis for the case when the background error is uncorrelated and
Lo = 500m is represented in Figure 3.7b. Again, in Figure 3.7b, the analysis from the l1-l2
method is less noisy than that from the l2 method and the sharp features are captured
more accurately. However, a benefit is no longer visibly apparent when the background
error correlation length scale is Lb = 500m, as in Figure 3.7c and Figure 3.7d.

Table 3.2 represents the analysis errors measures described in section 5 when δ = 0.4.
Note the kurtosis of the true state, KURT[xt], and its derivative, KURT[Dxt], were 3.12
and 10.58 respectively. Kurtosis is higher when the tails of the probability distribution are
fatter which can be interpreted as sharp features in the state when kurtosis is computed
on the derivative field of the state. If kurtosis of the analysis derivative is less than the
true state derivative kurtosis, it shows that sharp features have been damped. Results
presented in Table 3.2 confirms that when the background error is uncorrelated, the l1-
l2-norm method outperforms the l2-norm method in all terms of error measures. This
is similar to what has been illustrated in Figure 3.7. This improvement for the MAE
and RMSE measures is about 25% while the improvement is more than 40% for the ice
thickness derivative fields (DIFF MAE and DIFF RMSE). In addition, the kurtosis shows
that when the background error is uncorrelated, the l1-l2 method retains sharp features in
the analysis better than l2 method. When the observation error length scale increases, the
kurtosis of both methods approaches the true state however, the l1-l2 method is always
better. When Lb = 20m, the l1-l2 method is slightly better than the l2 method regardless
of the observation error correlation length scale. However, when the background error
correlation length scale is Lb = 500m, the resulting analysis states are relatively smooth
and DIFF MAE and DIFF RMSE are almost zero for all cases. Finally, it should be
noted that while the kurtosis of the analysis states for both methods are similar, in all
cases kurtosis of the analysis derivative is always better for the l1-l2-norm method, which
shows the ability of this method in retaining the sharp features in ice thickness.

3.5.2 Results from Data Assimilation Experiments

The root-mean-squared (RMS) ice thickness errors from the data assimilation experiments
are shown in Figure 3.8 for various combinations of background and observation error
correlation length scales. In all cases the errors are reduced when l1-l2 is used as compared
with l2. Time traces of the data assimilation states (see Figure 3.13 and Figure 3.14)
showed that this growth in errors, which is also seen in the ice concentration and ice
velocity (Figure 3.9) is related to the development of openings in the ice cover, which are
better captured with l1-l2 than l2.
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Figure 3.7: Data fusion analysis states for l2-norm (blue), l1-l2-norm (red) and true state
(black) for different background and observation error correlation length scales for δ = 0.4.
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Table 3.2: Data fusion analysis errors for different background and observation error corre-
lation length scales (Lb and Lo) when δ = 0.4, KURT[xt] = 3.12 and KURT[Dxt] = 10.58.
The best results are in bold font.

Lb(m) Lo(m) regularization method MAE RMSE KURT[xa] DIFF MAE DIFF RMSE KURT[Dxa]

0

0
l2-norm 0.16 0.20 3.00 0.22 0.28 1.69

l1-l2-norm 0.10 0.14 3.06 0.11 0.15 8.46

20
l2-norm 0.14 0.18 3.02 0.15 0.19 3.8

l1-l2-norm 0.11 0.14 3.08 0.09 0.12 8.67

500
l2-norm 0.05 0.06 3.11 0.01 0.01 10.54

l1-l2-norm 0.04 0.05 3.11 0.01 0.01 10.60

20

0
l2-norm 0.15 0.19 3.01 0.17 0.21 2.95

l1-l2-norm 0.13 0.17 3.04 0.15 0.19 4.08

20
l2-norm 0.16 0.20 2.94 0.15 0.18 3.71

l1-l2-norm 0.14 0.18 2.95 0.13 0.16 5.11

500
l2-norm 0.06 0.07 3.13 0.00 0.01 10.60

l1-l2-norm 0.06 0.07 3.15 0.00 0.01 10.58

500

0
l2-norm 0.05 0.06 3.14 0.00 0.00 10.59

l1-l2-norm 0.05 0.06 3.10 0.00 0.00 10.51

20
l2-norm 0.06 0.08 3.08 0.00 0.00 10.55

l1-l2-norm 0.06 0.08 3.08 0.01 0.00 10.60

500
l2-norm 0.15 0.19 2.96 0.01 0.00 10.50

l1-l2-norm 0.15 0.19 2.93 0.01 0.00 10.57
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Histograms of the analysis states (ice thickness) and their derivative fields at each
analysis time are presented in Figure 3.10 and Figure 3.11 respectively for the case where
Lb = 0km and Lo = 0km. In both figures, the first row illustrates the histogram of the
true state. In addition, for better comparison, the histogram of the true state is overlayed
on the histograms of the data assimilation method. In Figure 3.10 (top row) it is difficult
to see substantial differences between the ice thickness histograms, although the derivative
fields in Figure 3.11, show that for the l1-l2 method, there is a higher level of sparsity on
the derivative field of analysis as compared to the l2 method. This is consistent with the
expected results, since the presence of the l1 term on the ice thickness derivative should
result in more zeros in this field.

A representative result from the data assimilation experiments is shown in Figure 3.12.
This result is obtained at t = 64h for Lb=0km and Lo=0km. Figure 3.12 shows that the
reduction in ice concentration at spatial index 389 is captured more accurately for l1-l2 as
compared to l2. The time trace of model states for this spatial index is shown in Figure
3.13. Note the states are in agreement when the ice is thick and the concentration is
high, but differences develop as the ice thins and the concentration drops. A similar result
is shown in Figure 3.14, where the reduction in ice concentration and thickness, is better
captured with the l1-l2 regularization. Note also that both time traces show the ice velocity
is also in better agreement with the true state for l1-l2.

Similar results were found for other background and observation error length scales and
also for the case when the ice cover was consolidated (although these events were observed
less frequently for the consolidated ice cover). In general, openings in the ice cover and
related changes in the ice velocity are better captured with l1-l2 than l2. This may be due
to the relationship between ice thickness, ice strength and bulk viscosity, and the role this
plays in the momentum equation (see Appendix B). The exact details of this interaction
are complicated and will depend on the chosen parameters and numerical methods used.
This will be investigated in a future study.

3.6 Summary

In this chapter it was demonstrated that sea ice thickness exhibits a sparse representa-
tion in the derivative domain. This has been demonstrated using (i) sea ice thickness
measurements from an airborne electromagnetic (AEM) sensor over the Beaufort Sea; (ii)
submarine upward looking sonar data; and (iii) sea ice thickness from Cryosat. To re-
tain this feature when using sea ice thickness data in a data fusion or data assimilation
scheme, the use of an additional term in the objective function to constrain sparsity on

43



10 20 30 40 50 60 70
t(h)

0.135

0.140

0.145

0.150

0.155

R
M
SE

l2-norm
l1-l2-norm

(a) Lb = 0km and Lo = 0km

10 20 30 40 50 60 70
t(h)

0.135

0.140

0.145

0.150

0.155

R
M
SE

l2-norm
l1-l2-norm

(b) Lb = 10km and Lo = 0km

10 20 30 40 50 60 70
t(h)

0.135

0.140

0.145

0.150

0.155

R
M
SE

l2-norm
l1-l2-norm

(c) Lb = 0km and Lo = 10km

Figure 3.8: RMSE of the data assimilation ice thickness [m] states when (a) Lb = 0km
and Lo = 0km, (b) Lb = 10km and Lo = 0km and (c) Lb = 0km and Lo = 10km for the
72 hour data assimilation experiment. Data are assimilated every 6 hours.
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Figure 3.9: RMSE of the (a) ice velocity, (b) ice concentration and (c) ice thickness deriva-
tive when Lb = 0km and Lo = 0km for the 72 hour data assimilation experiment. Data
are assimilatied every 6 hours.
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Figure 3.10: Histograms of the analysis states (ice thickness [m]) from the data assimilation
when Lb = 0km and Lo = 0km. Each column shows the analysis state at the indicated
time. The top row shows the true model, and the second and third rows show l2-norm and
l1-l2-norm results respectively. Histogram from the true state is overlayed by red colour in
the second and third rows.
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Figure 3.11: Histograms of the derivative of analysis states (ice thickness derivatives [-])
from data assimilation when Lb = 0km and Lo = 0km. Each column shows a different
time step of the model. The top row shows the true model, and the second and third rows
are showing l2-norm and l1-l2-norm results respectively.
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Figure 3.12: An example of data assimilation states at t=64.0(h) when Lb = 0km and
Lo = 0km. The shaded regions indicate the locations at which time traces (shown in
Figure 3.13 and Figure 3.14) are taken.
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Figure 3.13: Model states from a single realisation of the data assimilation experiment for
Lb = 0km and Lo = 0km at index=389 (indicated by vertical line in Figure 3.12) The
decrease in ice concentration and thickness is overestimated for l2.
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Figure 3.14: Model states from a single realisation of the data assimilation experiment for
Lb = 0km and Lo = 0km at index=245 (indicated by vertical line in Figure 3.12). The
opening in the ice cover is predicted better for the l1-l2 method than for the l2 method.
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the derivative of the ice thickness state, is evaluated. This l1-l2 formulation is compared
with the standard l2 regularization first using data fusion, and then by carrying out data
assimilation experiments using a toy sea-ice model.

For data fusion a clear benefit to the l1-l2 formulation is seen when the background
correlation error length scale is small (on the order of twice the analysis grid spacing).
Based on previous studies [17], it can be expected that in the vicinity of a sharp feature
(e.g. ice edge) the background error correlation length scale may be in this range. This
data fusion result could be relevant for the generation of merged sea ice products, where
sharp features are desired (see for example the ice concentration used at the lower boundary
in [7]).

For data assimilation a clear benefit is also seen to the l1-l2 regularization, although the
impact of the error correlation length scales on the difference between the l1-l2 method and
the l2 method is less clear. This may be due to the spatial averaging of ice thickness that
was required to increase the scale of the data, or it could be due to the model dynamics.
However, based on the results shown here, it can be noted that the l1-l2 method is superior
with regards to capturing openings in the ice cover than the conventional l2 method. This
was observed for a variety of error correlation length scales, values of the regularization
parameter (µ), and model initial conditions.
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Chapter 4

Ice/Water Classification Using
Neural Networks

4.1 Introduction

In this chapter, a neural network approach is proposed for the task of ice/water classifica-
tion from a dataset consisting of six years of SAR images. The chapter starts by reviewing
the concept of neural networks followed by the details of the proposed method. The results
of training and testing the method on pure ice and water samples as well as samples with
different ice concentrations are discussed. In addition, the performance of the neural net-
work approach was investigated for the case when the training set is limited to the samples
of one year. The results are compared with the logistic regression probability model that
has been recently proposed for the same dataset [76].

4.2 Neural Network Approach

Artificial neural networks (ANN) are a powerful machine learning tool. They have been
widely used to solve remote sensing problems, including sea ice applications, over the past
20 years. Neural networks are classified in the category of nonparametric machine learning
methods i.e., they do not require any specific assumption about the statistical distribution
of the data used for training.

An artificial neural network is constructed by elements called artificial neurons. Each
neuron receives an input and produces an output using their specified activation function.
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The network is constructed by feeding the outputs of one layer of neurons, as input, to
the next layer of neurons. Each connection in this network has a weight. For solving
the ice/water classification problem, multilayer perceptron (MLP), a form of feedforward
neural networks which is one of the most widely used ANN models [112], is used in this
thesis. An MLP is typically trained using the error backpropagation algorithm [59].

An MLP consists of three types of neuron layers: input layer, hidden layers and output
layer. Figure 4.1a illustrates an MLP with 2 hidden layers. Having a training sample
(x,y) where input x has n features, x = {x1, ...,xn}, and y is the sample’s label, the input
layer is constructed by associating one neuron to each feature. Each given input vector
propagates through the network layer by layer until it reaches the output layer. If the
value of neurons at layer l with m neurons are represented by ali, i = 1, 2, ...,m, the value
of neuron j of the next layer, al+1

j , is calculated as,

al+1
j = ψ

(
m∑
i

aliW
l
ij + bl

)
. (4.1)

This process is also shown in Figure 4.1b. In (4.1), W l
ij is the weight of connection between

neuron i and j, ψ is the activation function, and bl is the bias of layer l added to the
weighted sum. When the propagation gets to the output layer, the output of the network,
ŷ, is compared to the desired target, y, using a loss function and the error is calculated.
The resulting error is propagated back through the network until error associated with each
neuron in the hidden layers of the network has been calculated. Based on these calculated
errors, the value of each weight in the network is updated. This optimization technique
repeatedly performs the propagation process followed by weight update, until a stopping
criterion is satisfied.

Except for input layer, each neuron of an MLP is associated with an activation function
that maps the result of weighted sum to an output value for the next layer. This activation
function can be used to limit the amplitude of the output of a neuron. Sigmoid and rectified
linear unit (ReLU) are the two most commonly used activation functions. The sigmoid
function is defined as

f(x) =
1

1 + e−x
, (4.2)

and the ReLU function is
f(x) = max(0, x). (4.3)

The sigmoid function has domain of all real numbers, and generates outputs from 0 to 1
(Figure 4.2a) which is suitable for predicting probability as an output. The ReLU function
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(a) MLP (b) forward propagation

Figure 4.1: A typical multilayer perceptron (MLP). (a) Architecture of an MLP with 2
hidden layers. (b) An example of forward propagation in an MLP showing how neurons of
layer l generate neuron j of the next layer.
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Figure 4.2: Two samples of activation functions. (a) Sigmoid function, (b) ReLU function.
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is known as a sparse activation (Figure 4.2b) by turning all negative values to zero so they
do not propagate through to the next layer.

To calculate the error of the NN output, regression problems usually use a mean squared
error (MSE) loss function defined as

L(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)
2, (4.4)

where ŷi is the output of neuron i in the output layer, yi is its corresponding desired target
and n is the number of target labels equal to the number of neurons in the output layer.
In contrast, for the binary classification problems, binary cross-entropy is commonly used,
which is defined as

L(y, ŷ) = − 1

n

n∑
i=1

[yi log ŷi + (1− yi) log (1− ŷi)]. (4.5)

One popular optimization approach for updating network weights is gradient descent.
Using this approach, each weight is updated using the partial derivative of the loss function
with respect to the weight as

W l
ij = W l

ij − η
∂L(y, ŷ)

∂W l
ij

, (4.6)

where W l
ij is the weight of connection between neuron i in layer l to neuron j in layer

l+ 1, η is the learning rate and ∂L(y, ŷ)/∂Wij is the loss function gradient with respect to
weight point W l

ij. Equation (4.6) shows that the learning rate is a parameter that controls
the weights adjustments with respect the loss gradient. Using the chain rule the partial
derivative of equation (4.6) can be simplified as

∂L(y, ŷ)

∂W l
ij

= δl+1
j ali (4.7)

with

δl+1
j =

{
(al+1

j − yj)f
′(xj) if l + 1 is the output layer(∑n

k=1 δ
l
kW

l
kj

)
f ′(xj) if l + 1 is not the output layer

(4.8)

where k is the number of neurons in layer l and recalling that alj is the value of neuron j
at layer l, and f(xj) and f ′(xj) are the outputs of activation function and its derivative
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on neuron j. It should also be noted that, in (4.6), η ∈ [0, 1] is a small positive constant
that controls the size of step.

Finally, there are three different modes of training in the neural network training pro-
cess: batch mode, mini-batch mode, and stochastic mode. In all modes, one complete pass
through the whole dataset is called one epoch. In the batch mode, network weights are
updated after the whole dataset is passed through the network. In this case, the loss func-
tion is calculated based on the accumulated values from the whole dataset. In mini-batch
mode, a mini-batch of stochastically selected samples of the dataset is selected and network
weights are updated after each mini-batch has completely passed through the network. In
the stochastic learning, network weights are updated after each single training sample is
represented to the network. Among these modes, the batch training has the higher chance
to find the global minimum but it is very slow and loading the whole dataset is not always
feasible, especially for large datasets. Stochastic learning is the fastest one but the loss
updates do not always decrease from iteration to iteration and have high variance. In
addition, the final accuracy for this method is usually the lowest. Finally, the mini-batch
mode has reduced loss update variance and allows parallel computations, which makes it
very fast. However, batch size (number of samples per batch) is a hyper-parameter that
has to be defined.

For the ice/water classification problem, using MLP with different numbers of hidden
layers is investigated here. The sigmoid function is selected as the activation function of
the output layer while for hidden layers ReLU is selected. The hyperbolic tangent is also
used as an activation function of the output layer in some cases which is a shifted/scaled
version of the sigmoid function. For the optimization approach, Adam optimizer [75]
is chosen. Adam optimizer is similar to gradient descent but it considers an individual
adaptive learning rate for each parameter. The algorithm estimates first-order moment
and second-order moment of the gradient using exponential moving average, and corrects
the bias in these estimates. The final weight update is proportional to learning rate times
first-order moment divided by the square root of second-order moment. This characteristic
makes Adam a computationally efficient optimizer for problems with a large dataset or
a large model. Adam takes three hyperparameters: the learning rate, the decay rate of
first-order moment, and the decay rate of second-order moment [111].

4.3 Data

This section is dedicated to describe the dataset developed by Komarov et. al. [76], which
is employed in this study.
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Data Sources

The training and test features of the utilized dataset were extracted from RADARSAT-2
ScanSAR HH-HV images and global environment multiscale model (GEM) regional deter-
ministic forecasts of Environment and Climate Change Canada (ECCC). The verification
data were collected from corresponding CIS image analysis products. A detailed descrip-
tion of each source is provided in [76]. Details related to the present study are briefly
presented.

The RADARSAT-2 collection contains 15405 dual-pol images covering Alaskan, Cana-
dian, and West Greenland waters from November 1, 2010 to September 30, 2016. Each
image has a nominal spatial resolution of 50m×50m and covers a spatial region of approx-
imately 500km×500km with incidence angles from 20◦ to 50◦ [97]. Figure 4.3 shows the
covered regions with colors representing the month of SAR image acquisition.

The CIS image analyses are developed manually by ice specialists at the CIS. Since
these products are generated mainly based on RADARSAT-2 images, there is no time
difference between the images used in the dataset and the image analysis. Other sources
of information that might be used in the development process of image analysis based on
their availability include optical satellite images and visual observations acquired by ships
and aircrafts. Each image analysis is generally composed of contiguous polygons where
each polygon contains information about the total ice concentration, partial ice concentra-
tion, stage of development and form of ice [97]. The reported ice concentrations (total and
partial) are quantized with 10% increment. Here, the dataset used 5km resolution raster
version of image analysis products. These manual ice analyses are associated with obser-
vational and mapping errors [23]. Observational errors are mainly caused by ice specialists
mistakes due to lack of time while mapping errors are relevant to drawing and generaliza-
tion errors in the production. However, CIS image analysis are still the most popular data
source for quality assessment in ice concentration studies (e.g., [115, 130]).

Another source of information in the dataset is the 10m wind speed produced by the
regional version of the ECCC operational numerical weather prediction (NWP) using the
GEM model. The model wind speeds are produced every hour at ∼10km spatial resolution.

Dataset Features

To collect samples from SAR data, HH and HV images of RADARSAT-2 products were
first radiometrically calibrated and then a median filter of size 3×3 was applied to reduce
the speckle noise. Next, windows of size 41×41 pixels or 2.05km×2.05km were selected for

57



Figure 4.3: Map of region over which the SAR database samples were acquired. Colors
indicating the month of acquisition of the SAR imagery with 1-12 representing the months
sequentially from January to December. Due to the large number of images, samples were
thinned for clarity. The distribution of samples indicates that in the winter months most
images were acquired on the east coast of Canada, whereas in the summer they acquired
at higher latitudes.

feature extraction. Samples with land or image boundary within 161×161 pixels (8.05km×
8.05km) are not included in the dataset.

In this database, the following four features are extracted from the 41 × 41 sampling
windows:

1. SAR wind speed: For each pixel of sample window in SAR images, first the wind
speed is calculated using an approach proposed by Komarov et. al. [79] and then, the
average wind speed over the window is computed. The SAR wind speed calculated
based on this approach, is only valid over open water areas.

2. NWP wind speed: For each sampling window the corresponding NWP wind speed
is interpolated based on the location. Since the SAR wind speed is invalid over ice
regions, the difference between the SAR and NWP wind speed will be close to zero
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Table 4.1: Number of samples in each subset of ice/water dataset. From the time period
between November 1, 2010 and September 30, 2016, the samples of year 2013 where used
for testing and the rest for training.

Ice concentration [%] Samples in training set Samples in test set

0 6,325,869 1,490,240

100 4,871,680 990,638

>0 & <100 27,510,377 5,984,659

around open water areas and different from zero in ice-covered areas.

3. HH-HV spatial correlation: This correlation is calculated as:

cHH−HV =
cov(σ0

HH , σ
0
HV )

[cov(σ0
HH , σ

0
HH)cov(σ0

HV , σ
0
HV )]0.5

(4.9)

where cov(σ0
HH , σ

0
HV ) is the covariance between the HH and HV backscatters of the

sampling window.

4. Standard deviation of SAR wind speed: This is another feature calculated over each
sampling window. The spatial distribution of wind speeds should not exhibit signif-
icant variability over the 2.05km×2.05km scale, hence this feature is supposed to be
relatively small over open water. Even though the calculated SAR wind speed is not
valid over ice-covered areas, it is expected that this feature has large variability over
those regions which should help to distinguish ice from water.

To allow direct comparison with the previous study on this dataset [76], the same
training and test sets are used here. The samples of year 2013 were selected for the test set
and the remaining samples were used for training. Availability of samples from six years,
different seasons and regions, and various weather conditions in the training set, make the
dataset very comprehensive. Table 4.1 shows the number of samples for each of training
and test set for each ice concentration category.

4.4 Results and Discussion

The performance of the neural network approach discussed in Section 4.2 is evaluated
on the dataset described in Section 4.3. For that purpose, the neural network setup is
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described first.

4.4.1 Neural Network Setup

To investigate the impact of MLP architecture on the ice/water classification, three differ-
ent network architectures are examined: shallow network (1 hidden layer with 100 neurons),
mid-size network (5 hidden layers with 100-500 neurons in each layer), and a deeper net-
work (10 hidden layers with 100-500 neurons in each layer). The number of neurons in
each layer were set empirically, however, there are several studies on how to set the number
of neurons in hidden layers [117]. In addition, all architectures are evaluated with three
and four input features. The logistic regression method proposed by Komarov used three
features including: SAR-NWP wind speed, HH-HV spatial correlation, and standard devi-
ation of SAR wind speed. The neural network approach trained on three features uses the
same features. However, the four feature network uses SAR wind speed and NWP wind
speed as two separate features instead of using their difference. Table 4.2 represents the
values of MLP parameters. It should be noted that during the initial experiment, batch size
of 2048 and 256 were both tested but based on time efficiency and classification accuracy,
batch size of 2048 was fixed for all the models. The training data set was split further into
two sets, with 70% of the data used for training the NN directly (i.e., used in minimization
of the loss function) and 30% used as validation data. The training procedure was stopped
if the validation loss does not decrease after five epochs or the maximum number of epochs,
which is 30, is reached.

For measuring the accuracy of each model, six statistical parameters are evaluated
and reported: 1) training loss; 2) rate of correctly classified pure ice samples denoted
as ice accuracy, 3) water accuracy, as the rate of correctly classified water samples; 4)
total accuracy, derived by rate of correctly classified samples from both classes; 5) total
misclassified; and 6) rate of unknown samples.

4.4.2 Results on Pure Ice and Water Samples

As the first set of experiments, the three different MLP models were trained once with
three features and once with four features. Figure 4.4 shows the training and validation
set loss value over the 30 epochs for the MLP with four features and one hidden layer. The
loss curves are similar for other network configurations.

After training, the model accuracy was tested against the test dataset which consists of
pure ice and water samples of year 2013. Labeling of the samples based on the predicted
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Table 4.2: Parameters of the MLP approach with their values.

MLP parameters Parameter value

Number of input features 3,4

Number of hidden layers 1,5,10

Loss function Binary cross-entropy

Batch size 2048

Optimizer Adam optimizer

Initial learning rate 0.001

Decay rate of 1st-order moment 0.9

Decay rate of 2nd-order moment 0.999

Number of epochs 30
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Figure 4.4: The value of cross-entropy loss function for training and validation set at each
epoch during the training process of an MLP with four features and one hidden layer. The
MLP training is stopped after 30 epochs.
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Figure 4.5: The training loss of MLPs trained with three and four features and different
hidden layers. The training process of MLP with three features and 10 hidden layers has
converged in fewer epochs (12) and MLP trained on four features and five hidden layers
has the lowest training error.
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probabilities is done with the same approach as Komarov [76]. If this probability is above
95%, the samples is labeled as ice and if the probability is less than 5%, it is labeled as
water. If the model predicted probability for a sample is between 5% and 95%, this sample
is labeled as unknown. This was done to ensure only samples with high ice and water
probability will be used in future data assimilation applications.

Figure 4.5 represents the training loss of all MLP models trained on pure ice and water
samples. The figures shows that except for the MLP models with one hidden layer, the
other MLP models stopped training before reaching epoch 30. Among these MLP models
MLP trained with three features and 10 hidden layers converged in fewer epochs (12) and
the MLP trained on four features and five hidden layers has the lowest training error.
Table 4.3 displays the accuracy of the discussed models along with their training time and
the accuracy of the logistic regression method[76]. The table shows that having the same
number of features, increasing the number of hidden layers in the neural network, does not
change the accuracy of the model significantly. However, with increasing of the number
of hidden layers, the accuracy of the MLP models trained on three features decreases
from 80.51% to 78.25. This accuracy reduction is mainly due to the decrease in water
classification accuracy. While the classification accuracy of the ice class in this case has
variance of 1%, the water class accuracy decreases by 5% based on the number of hidden
layers. In addition, the rate of unknown samples is 0.4% and 2.3% less than three features
models with 5 and 10 hidden layers respectively. Despite the superiority of one hidden
layer network, its total misclassification rate is 0.03% higher than the other two models
due to having higher ice misclassification rates.

In contrast to three feature MLP models, when the number of hidden layers is increased,
the accuracy of networks trained with four features increases from 85.86% to a maximum
of 86.20%. However, for the four feature MLPs, changing the number of hidden layers
makes a difference of less than 1% in classification accuracy of each class. This is the
same case for misclassification and unknown rates. However, the idea of separating the
NWP and SAR wind speeds is shown to increase the accuracy in terms of all measures,
specifically the accuracy of water samples (6-12% improvement) which results in increasing
the overall accuracy by ∼5%. In addition, the rate of unknown samples has decreased by
almost ∼5%. Recalling the numbers of Table 4.1, ∼5% unknown reduction means about
124,000 samples. Comparing the results of MLP networks trained on four features with
the Komarov logistic regression method, the MLP approach significantly increases the
accuracy of water samples by ∼22%, leading to total accuracy improvement of about 14%.
Moreover, the misclassified rate of MLP method is ∼0.07% less than the logistic regression
method and the rate of the unknown samples are less than half.

The training time of each MLP model on NVIDIA Titan X GPU is also reported in
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Table 4.3: Accuracy of the models trained and tested on pure ice and water samples.
MLP ALL refers to MLP models trained with the whole training set.

Method
Number of

features

Number of

hidden

layers

Training

time

[min]

Ice

accuracy

[%]

Ice

misclassified

[%]

Water

accuracy

[%]

Water

misclassified

[%]

Total

accuracy

[%]

Total

misclassified

[%]

Unknowns

[%]

MLP ALL

3

1 6.0 85.37 1.49 77.28 0.17 80.51 0.70 18.79

5 10.2 86.24 1.42 76.21 0.20 80.22 0.69 19.10

10 27.5 86.22 1.25 72.95 0.20 78.25 0.62 21.13

4

1 6.0 89.05 1.08 83.74 0.17 85.86 0.53 13.61

5 15.5 90.17 1.03 83.03 0.22 85.88 0.54 13.58

10 45.5 89.40 1.10 84.07 0.19 86.20 0.55 13.25

Logistic

regression
3 - - 88.23 0.98 61.48 0.35 72.14 0.60 27.25

Table 4.3. Regardless of number of input features, networks with 1 hidden layer required
only 6 minutes in total to train while the deep networks required 27.5 and 45.5 minutes.
This means that the required training time of the deeper networks is 4.5 and 7.5 times
more than shallow networks for networks with 3 and 4 input features respectively.

Figure 4.6, shows how having four features in the MLP significantly increases the ac-
curacy of the open water class when the standard deviation of the SAR wind speed is in
the range of [1.5,1.55]. The MLP model for this comparison is the shallow network model
represented in Table 4.3 based on its training time efficiency and given that is has a total
accuracy close to the maximum accuracy reported in Table 4.3. For the comparison, the
water samples of the dataset that have been identified as unknown by the logistic regres-
sion, which the MLP model was able to classify correctly, are represented by the green
color in the scatter plot. The plot shows how the two classes are separable for the green
area using these two features while this is not the case for the logistic regression method
based on the scatter plot of the SAR-NWP wind speed versus the HH-HV correlation.
This is happening while the histogram of the distributions of the SAR-NWP wind speeds
that is represented below the x-axis of the bottom plot is illustrating two separable dis-
tributions. It should be noted that Komarov [79] did not force the SAR wind speed to
be positive in his wind retrieval approach to obtain wider range of SAR wind speed for
the classification. The negative SAR wind speeds mostly happen for smooth open water
regions with very low backscatter signals. In addition, this range of SAR wind speed’s
standard deviation is selected according to its distribution represented in Figure 4.7. The
peak of the distribution for both classes is in the range of [1.5,1.55].
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(a) MLP model

(b) Logistic regression

Figure 4.6: Cross section of an MLP model and the logistic regression method at the SAR
wind speed level of [1.5,1.55]. The MLP model is trained on four features with 1 hidden
layer (shown in Table 4.3). The MLP plot (top) shows scattering of samples in the space
of SAR and NWP wind speeds and the bottom plot shows the scattering in the space of
SAR-NWP wind speed and HH-HV correlation. The green area in both figures, denoted
as LR unknown, shows the water samples in the test dataset that have been identified as
unknown by the logistic regression and classified with MLP. Histogram of each feature for
the whole test dataset is projected on horizontal and vertical axes.
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Figure 4.7: Distribution of the standard deviation of SAR wind speed for samples in the
test set, which corresponds to data from 2013.
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(a) Logistic regression (b) MLP

Figure 4.8: Probability map of the logistic regression and MLP model when the standard
deviation of SAR wind speed is 1.5(m/s). The selected MLP model is trained on three
features with 1 hidden layer. The black rectangle indicates the training and test area.

Lastly, the probability map of logistic regression is compared to the one corresponding
to that from the MLP model trained on three features with one hidden layer. Figure 4.8
represents the cross section of probability maps when the standard deviation of SAR wind
speed is 1.5(m/s). The figure shows the non-linearity of the MLP decision boundary while
the logistic regression’s decision boundary is a cubic shape function. Since the bottom left
corner of the maps are out of the training and test feature space, there is a disagreement
between the compared methods in this region.

4.4.3 Training Using One Year Only

In the next set of experiments, the use of only one year of training data instead of all the
six years is investigated. This scenario is more realistic for operational implementation of
the method as a long time series of training data is not generally available. The purpose
was to see how does the accuracy changes by using the ∼24% of the whole training dataset.
The one year subset of all samples is more likely to cover the regions, seasons and weather
conditions of the full training dataset compared to drawing random samples from the entire
dataset. This context is also more relevant for applications where data may be collected
over a previous year, but there is insufficient storage or sensor continuity for longer periods.

The new training set is trained with the same parameters shown in Table 4.2 and Figure
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4.9 shows the loss function value over the 30 epochs of an MLP with four features and ten
hidden layers. Figure 4.10 represents the training loss of all MLP models trained on 2014
subset of training data. The figures shows that except the MLP models with 5 hidden
layers and four features, which has the highest training accuracy, the other MLP models
have stopped training before reaching epoch 30. Among these MLP models, the MLP
trained with three features and 10 hidden layers has converged in the lowest number of
epochs (12).

Table 4.4 shows the numerical results of the experiment evaluated in the same manner
as described in Section 4.4.1. While there is no specific relation between the number of
hidden layers and changes in the accuracy for networks with specific number of features,
the results show that MLP networks trained on four features have higher total accuracy
compared to the three feature models. MLP networks with 10 hidden layers have maximum
accuracy difference of 6.6% between the four feature and three feature case. In contrast,
the three feature MLPs with 5 hidden layers has higher total accuracy and generally, three
feature MLPs have much lower water misclassification. Comparing these results with those
of Table 4.3, since the training set has become smaller in the current setup, one epoch of
the training process will be much faster. As an example, the shallow MLP model would
need as low as 25 seconds to train using three features while the same network needs 6
minutes to train on the whole dataset and they both have similar performance. However,
the one by one comparison of the MLP networks in Table 4.3 and Table 4.4, shows slightly
higher accuracy for the models trained with the whole dataset. This could be because the
training set is smaller in this case or because the ice conditions in the two chosen years
(2013 and 2014) may differ more substantially from each other than those when the entire
dataset is chosen. Comparing the highest accuracy of the model derived with 2014 training
dataset with the best model obtained by all training set, the total accuracy of the latter is
only about 0.2% higher than the former. Moreover, the model of 2014 dataset has about
0.5% more unknown and 0.07% more misclassified samples. Accordingly, this new model
still significantly outperforms the logistic regression model trained on whole dataset as the
total accuracy is 14% higher.

4.4.4 Experiment on All Ice Concentrations

The previous section considered MLP performance with respect to ice/water classification
for samples corresponding to open water samples and samples with 100% ice concentration.
In general, it is desirable to be able to use the MLP to classify an entire SAR image
containing a range of ice concentrations. To achieve this goal, Komarov [76] has divided
the training set including samples with all ice concentrations into 13 ice concentration
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Figure 4.9: The training loss of the MLP trained with four features and 1 hidden layer on
the year of 2014 of the training set. The MLP training is stopped after 29 epochs.

Table 4.4: Accuracy of models trained on one year of training set (2014).

Method
Number of

features

Number of

hidden

layers

Training

time

[min]

Ice

accuracy

[%]

Ice

misclassified

[%]

Water

accuracy

[%]

Water

misclassified

[%]

Total

accuracy

[%]

Total

misclassified

[%]

Unknowns

[%]

MLP 2014

3

1 0.4 83.29 1.71 78.87 0.14 80.63 0.77 18.60

5 1.3 82.65 1.96 82.37 0.14 82.48 0.87 16.65

10 4.5 83.71 1.58 76.88 0.17 79.61 0.73 19.66

4

1 1.5 88.33 0.97 80.92 0.19 83.88 0.50 15.61

5 5.0 91.43 0.65 73.78 0.41 80.83 0.51 18.66

10 9.0 89.35 1.12 83.77 0.29 86.00 0.62 13.77

Logistic

regression
3 - - 88.23 0.98 61.48 0.35 72.14 0.60 27.25
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Figure 4.10: The training loss of MLPs trained on 2014 dataset. The training loss of MLP
with three features and 5 hidden layers has overlap with the one with 10 hidden layers and
converged faster (8 epochs). Moreover, MLP trained on four features and 5 hidden layers
has the lowest training error (0.09%).
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Figure 4.11: Ratio of ice/water samples from the MLP model predictions for each ice
concentration category of CIS image analyses in the test dataset of year 2013. The vertical
lines indicate the ice concentration value for the intersection of ratios. MLP ALL is the
MLP model trained on all training data and MLP 2014 is the model trained on samples
of year 2014.

categories. These categories are defined based on image analysis products provided by
CIS. Afterwards, samples of each ice concentration category were tested with the proposed
probability model and the ratio of samples identified as ice to total number of samples
identified as ice and water was computed, and the ratio of samples identified as water to
the total number of samples identified as ice and water, was also computed. To obtain a
threshold that can be used to provide an ice/water label to evaluate the MLP output, the
ice concentration value corresponding to the intersection of the two ratios was used.

The approach of obtaining an ice concentration threshold was carried out for test
dataset by selecting MLP models with highest accuracy from Tables 4.3 and 4.4 , de-
noted as MLP ALL and MLP 2014 respectively, and the result is represented in Figure
4.11. The figure shows that both MLP models have an ice concentration threshold of close
to 30%. Since it is ideally expected to have the threshold of 50%, the 30% MLP derived
thresholds can be considered more reasonable than 21% from the logistic model. In the
next step, the acquired ice concentration threshold is used to evaluate the test dataset
with all ice concentrations (of year 2013). The evaluation was performed by the best MLP
models (MLP ALL and MLP 2014) and the results along with Komarov accuracies are
reported in Table 4.5.
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Table 4.5: Accuracy of the models on all ice concentration test set using their corresponding
ice concentration threshold.

method
Number of

features

Number of

hidden layers

Ice

accuracy

[%]

Ice

misclassified

[%]

water

accuracy

[%]

water

misclassified

[%]

Total

accuracy

[%]

Total

misclassified

[%]

Unknowns

[%]

MLP All 4 10 81.70 4.61 82.54 2.09 82.31 2.77 14.92

MLP 2014 4 10 81.37 4.52 82.09 2.10 81.89 2.76 15.34

Logistic

Regression
3 - 79.41 4.60 65.72 1.90 69.65 2.67 27.68

Table 4.5 shows that while the accuracy of ice class for all the three models are quite
similar, MLP ALL model’s accuracy of water class and its total accuracy is slightly better
than MLP 2014 and outperforms the logistic regression method by 17% with 13% less
unknown samples. It should be noted that the accuracies in Table 4.5 are lower than
model’s accuracies reported in Table 4.3, because, the latter shows results of experiments
on pure ice and water samples while the former includes all ice concentration categories.
This is mainly due to the errors associated with the image analysis for mid-range ice
concentrations.

4.5 Summary

In this chapter a new method for the problem of ice/water classification is proposed.
This method is developed based on a dataset of 15405 RADARSAT-2 dual-polarization
SAR images with their corresponding NWP GEM regional wind speeds which are labeled
based on CIS image analysis. This unique dataset includes images from 6 years, different
locations, seasons and weather conditions.

The proposed classification method, inspired by the work of Komarov [76], uses 4
different features extracted from window sampling of the SAR images and the interpolated
NWP wind speeds. These features are: 1) SAR wind speed, 2) NWP wind speed, 3)HH-
HV correlation of the SAR backscatter signals and, 4) standard deviation of SAR wind
speed. While Komarov used logistic regression and probability models in his classification
method, the proposed approach take advantage of the MLP architecture utilized in popular
artificial neural network models. The performance of the model on the pure ice and water
samples has been investigated using different hidden layers in the MLP architecture and
also training the MLP models with four features and three features. Overall, MLP models
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accuracy was observed to improve 5-8% when it was trained with four features. The rate
of samples classified as unknown also decreased from 19% to 13% using the MLP approach
compared to the logistic regression method.

The idea of reducing the number of samples in the training set was also investigated by
utilizing only samples of year 2014 to train the MLP models. The total accuracy, at worst
case, was only 5% less than the model with similar architecture trained on full training
set. Using samples of the year 2014, the MLP with 4 input features and 10 hidden layers
outperformed the other models.

Finally, the samples belonging to all ice concentration categories were used for the
classification. The threshold of 30% ice concentration was obtained by applying Komarov’s
approach on the training set on the test set with all ice concentration categories (of year
2013) and the results were compared to his work. The overall accuracy of MLP models was
∼12% higher than the logistic regression method and the MLPs were able to have ∼12%
fewer unknown classified samples with a lower overall misclassification rate. It should be
noted that the performance of MLP model trained on 2014 training set was similar to the
MLP model trained on full dataset.
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Chapter 5

Uncertainty Estimation Using Neural
Networks

5.1 Introduction

This chapter is dedicated to illustrate and discuss uncertainty of neural network predic-
tions for the ice/water classification problem using the recent proposed approaches. The
modifications to estimate uncertainties are applied to selection of models from Chapter 4.
The experiments investigate the relationship between the estimated uncertainties and in-
put features as well as predicted probabilities. The impact of training the neural networks
with features of one year or subset of a year on the probabilities and uncertainties is also
evaluated in this chapter.

5.2 Uncertainty Estimation

A model is considered to be well-defined if it can make predictions about unobserved data
having been trained on observed data. However, any sensible model will be uncertain
when predicting unobserved data [46]. Estimating uncertainty of the machine learning
models is an often neglected, yet important, task to improve safety and trustworthiness of
the developed systems in order to be used practically in real world applications [3]. With
recent advances in deep learning, models should be able to predict their uncertainties in
addition to their regular predictions. This is also very useful in the field of remote sens-
ing as it helps both data producers and end users to find error characteristics for further
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improvements in data production and rational use of the data. The uncertainty estima-
tion approaches discussed in the deep learning community mainly consist of two types
of uncertainties[29]: 1)epistemic uncertainty that is related to uncertainty in the model
parameters, and 2)aleatoric uncertainty which is due to genuine stochasticity in the data
that results in variability in the outcome of experiments [43]. The epistemic uncertainty
is considered as either the variance of the model output for a regression problem or the
entropy of the probability distribution of the model output for a classification problem. In
the following, the approaches from the literature [73, 74] to estimate each of these uncer-
tainties are described. Since the epistemic uncertainty estimation method is motivated by
the introduction of dropout in the neural networks, the dropout method is described first.

5.2.1 Dropout Neural Network

Dropout is a popular approach in deep learning applications to reduce overfitting intro-
duced by Hinton et al. [61], and extended by Srivastava [121]. A dropout model is con-
structed as follows. For a given neural network with L hidden layers, for any layer 0 ≤ l ≤ L
of the dropout model with neurons al, a binary vector rl of the same size is generated by
sampling from a Bernoulli distribution with probability 1 − p, 0 ≤ p ≤ 1. The output of
layer l is multiplied element-wise with vector rl as

rli ∼ Bernoulli(1− p),
âl = al � rl,

(5.1)

where rli is the i−th element of vector rl. In this approach, p portion of outputs of layer l
are set to 0, which results in thinned outputs at layer l. This thinned output provides the
input for the next layer of the network. Using this approach for each given training case, a
sub-network is sampled from a larger network and the back-propagation updates weights
of the sub-network. During the test time, the sub-networks are combined by scaling the
weights of layer l as W l

test = pW l and the dropout layer is ignored.

5.2.2 Epistemic Uncertainty

In theory, epistemic uncertainty due to the model parameters (here, weights) can be mod-
eled by placing a prior distribution over the model’s weights and observing the change in the
network predictions given the data. Gal and Ghahramani have shown that adding dropout
after each layer of the neural network can be interpreted as approximate Bernoulli varia-
tional inference to infer the distribution of the weights in Bayesian neural networks [42].
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For classification problems, this can be implemented by maintaining the dropout layers
at test time, instead of ignoring the dropout layer, and evaluating the model prediction
by approximating the predictive posterior using Monte Carlo dropout. Afterwards, the
stochastic forward passes through the model are averaged. For a sample xi (1 ≤ i ≤ N) of
dataset X = {x1, ...,xN} with size N and labels Y = {y1, ...,yN} in a binary classification
problem, the model prediction is evaluated as

pi ≈
1

T

T∑
t=1

sigmoid(f Ŵt
i ). (5.2)

In equation (5.2), T is the number of passes, Ŵt is a sample of model weights, f Ŵt
i represents

the output of model for input xi and pi is the predicted probability. Then, the entropy of
the predicted probability can be used to calculate uncertainty of the weights as

H(pi) = −(pi log pi + (1− pi) log(1− pi)), (5.3)

where pi and 1 − pi correspond to ice and water probabilities, respectively. Figure 5.1
shows the entropy value for probabilities between 0 and 1. The figure shows that the
entropy is minimum when the probability is either close to 0 or 1, and it is maximum
when the probability is 0.5 which means the classifier predicts equal probability for each
class. When the distribution of classes in the features space is bimodal, having more data
is expected to reduce epistemic uncertainty [73].

5.2.3 Aleatoric Uncertainty

While epistemic uncertainty places a prior distribution over the networks weights to cap-
ture the uncertainty in these weights, aleatoric uncertainty is modeled by placing a dis-
tribution over the output of the model to capture uncertainty induced by having noisy
data, which results in similar features with multiple target labels. Unlike epistemic uncer-
tainty, aleatoric uncertainty does not decrease by additional data since it is assumed to
be caused by limitations in the dataset. There are two types of aleatoric uncertainty de-
fined: task-dependent or homoscedastic uncertainty and data-dependent or heteroscedastic
uncertainty. Homoscedastic uncertainty assumes constant observation noise for different
inputs of a problem while heteroscedastic uncertainty assumes a different value of the noise
for each input of the problem. The value of the noise for this case is an additional model
output, and learning this value is carried out in an unsupervised manner, through the
dependence of the predicted probability on the noise, and the propagation of this depen-
dence through the derivative of the loss function. Heteroscedastic uncertainty is very useful
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Figure 5.1: Entropy value for different probability values in a binary classification problem.
The maximum of entropy is at p = 0.5.

in remote sensing applications when data dependent observation noise is present due to
measurement conditions and numerical retrieval methods. In Bayesian neural networks
[28, 96, 101], this uncertainty can be learned by changing the loss function.

Heteroscedastic uncertainty for regression problems is attained by placing a Gaussian
(or Laplacian) prior over the network outputs and predicting the mean and variance of
the distribution for each given sample [86]. A similar approach is employed to calculate
homoscedastic uncertainty but the estimated variance is a single parameter that shows the
task-dependent noise [73].

For classification problems, Kendall and Gal proposed an approach similar to that
used for regression to calculate the heteroscedastic uncertainty [73, 74]. For a binary
classification problem, the network predicts a unary fi for each input i and then this unary
is passed through a sigmoid function to produce the probability pi. The proposed method
for calculation of uncertainty places a Gaussian distribution over the unaries where the
distribution parameters (mean and variance) are predicted as the model outputs:

f ′i |W ∼ N (fWi , (σW
i )2),

p̂i = sigmoid(f ′i).
(5.4)

In equation (5.4), W represents the network parameters and fWi and σW
i are the network

outputs. For each sample i, output fWi is perturbed by Gaussian noise with variance (σW
i )2)
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and the resulting vector is passed through the sigmoid function to obtain probability vector
p̂i. In this case, the Monte Carlo approach can be used to define the total loss as

f ′i,t = fWi + εt, εt ∼ N (0, (σW
i )2)

L(p, p̂) =
n∑

i=1

1

T

T∑
t=1

[pi log p̂i,t + (1− pi) log (1− p̂i,t)],
(5.5)

where L(p, p̂) is the loss function, n is the total number of inputs indexed by i with
label pi, and T is the total number of Monte Carlo runs for Gaussian sampling indexed
by t. The loss function in equation 5.5 ideally would be close to zero when the model
predicts low noise variance σi and the sigmoid output fi yields its either limits (zero or
one) corresponding to the true classes. If the model predicts a wrong class because of its
logit value, then the variance will be increased to direct the logit value to the opposite
direction of the sigmoid function.

5.2.4 Combined Neural Network Model

By combining the method of epistemic uncertainty prediction described in Section 5.2.2
together with the heteroscedastic NN in Section 5.2.3, Kendall and Gal developed neural
network models for regression and classification that are able to estimate the epistemic and
aleatoric uncertainty at the same time [73, 74]. The combined uncertainty model adds a
dropout layer after each hidden layer and produces two outputs, which are the predicted
probability and variance. In this case, the combined model uses the Monte Carlo approach
twice: 1) during the training to estimate the probabilities along with their corresponding
logit variances as aleatoric uncertainty and, 2) during the test time to predict the epistemic
uncertainty.

The combined model introduced in this subsection is applied to the ice/water database
described in Chapter 4 to generate both epistemic and aleatoric uncertainty maps along
with the predicted probability.

5.3 Results and Discussions

5.3.1 Experimental Setup

The uncertainty estimation approaches discussed in this chapter are evaluated to assess
their ability to generate meaningful uncertainty maps for the ice/water detection problem
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described in Chapter 4 and their impact on the accuracy of the classification. Therefore,
the same dataset described in Section 4.3 is employed here as well. Experiments are divided
mainly in three parts: 1) experiments on pure ice and water samples, 2) experiments on
seasonal training of year 2014 and, 3) experiments on samples with all ice concentrations.
To keep the problem simple, these experiments only used the MLP models of Chapter 4
with 1 hidden layer.

To setup the experiments regarding the epistemic uncertainty, the dropout rate was
set to 5%. For big and deep networks the conventional dropout rate is 50%. However,
the networks introduced in Chapter 4 are shallow and small. The other parameter of the
epistemic uncertainty estimation is the number of forward passes of Monte Carlo (MC)
dropout, which was set to 100 for all the experiments here. Similarly, the heteroscedastic
aleatoric uncertainty, which will be referred to as aleatoric uncertainty, has also the MC
parameter, which is also set to 100. These parameters were set the same for the combined
uncertainty method.

Since the uncertainty estimation approaches required more epochs to converge, the
maximum number of training epochs was increased from 30 to 50. The early stopping
criteria and other parameters were kept the same. Also, all the variance values were
initialized to zero.

5.3.2 Results on Pure Ice and Water Samples

In the following, the results of epistemic uncertainty, aleatoric uncertainty and combination
of these two will be represented and discussed.

Epistemic uncertainty

As discussed earlier, the epistemic uncertainty can provide estimates of the uncertainty
of the classification output due to the uncertainty of the model weights. Table 5.1 rep-
resents the result of experiments on pure ice and water samples when the two types of
uncertainties are taken into account. The results of adding epistemic uncertainty to each
MLP show overall accuracy reduction by 1-2%. This is mainly due to the network size.
Since the number of weights to be trained is significantly less than the number of training
samples, adding further regularization by applying dropout will reduce their performance.
Likewise, increasing dropout ratio was observed to further decrease the overall accuracy.
The classification scores illustrate that some samples of water class were identified as un-
known samples, while the accuracy of ice class had small changes. However, the fraction of
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Table 5.1: Accuracy of the models trained and tested on pure ice and water samples.
Modeling uncertainty in the MLP models gives a slight degradation in total accuracy
while notably decreasing the percentage of misclassified samples. The numbers for models
with epistemic uncertainty and combined model are average of Monte Carlo runs.

Method
Number of

features

Number of

hidden layers

Ice

accuracy

[%]

Ice

misclassified

[%]

Water

accuracy

[%]

Water

misclassified

[%]

Total

accuracy

[%]

Total

misclassified

[%]

Unknowns

[%]

MLP 3 3 1 85.37 1.49 77.28 0.17 80.51 0.70 18.79

+Epistemic uncertainty 86.66 1.24 73.36 0.23 78.67 0.63 20.69

+Aleatoric uncertainty 86.80 1.20 72.65 0.22 78.30 0.61 21.09

+Epistemic & Aleatoric uncertainty 85.88 1.38 75.89 0.20 79.88 0.67 19.51

MLP 4 4 1 89.05 1.08 83.74 0.17 85.86 0.53 13.61

+Epistemic uncertainty 88.83 0.92 81.20 0.17 84.25 0.47 15.32

+Aleatoric uncertainty 89.64 0.90 80.73 0.19 84.29 0.47 15.24

+Epistemic & aleatoric uncertainty 88.73 0.92 80.96 0.17 84.06 0.47 15.48

MLP 2014 4 1 88.33 0.97 80.92 0.19 83.88 0.50 15.61

+Epistemic uncertainty 88.16 0.82 78.55 0.15 82.39 0.42 17.18

+Aleatoric uncertainty 89.65 0.77 76.94 0.24 82.02 0.45 17.53

+Epistemic & aleatoric uncertainty 89.21 0.58 72.47 0.20 79.15 0.36 20.49

Logistic

Regression
3 - 88.23 0.98 61.48 0.35 77.16 0.60 27.24
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Figure 5.2: The impact of probability thresholds used to define ice and water points on the
accuracy of ice and water class. The selected models are MLP with three features with and
without epistemic uncertainty. The 5% and 95% probability threshold for ice and water is
shown by a vertical line in each case.

misclassified ice samples decreases in all cases and for MLP 2014 the fraction of both mis-
classified ice and water decreases. This relationship between the accuracies and unknown
ratios is represented in more detail by Figure 5.2 where the accuracy of ice and water class
as well as their unknown percentage is plotted versus a variation of thresholds for MLP 3
with and without epistemic uncertainty. The figure shows that adding the epistemic un-
certainty changes the scores of water class more than ice class. In addition, the figure
illustrates that the choice of threshold has more influence on the water class rather than
the ice class as for the water thresholds below 2%, the majority of samples will be labeled
as unknown rather than correct water label. This means that the selected classification
models have more power in predicting close to 100% probability for the ice samples in the
test dataset rather than predicting 0% probability for the water samples.

Figure 5.3 visually represents the epistemic uncertainty and probability maps of the
results for the MLP 3 model when standard deviation of SAR wind speed is 1.5. The
figure also shows the HH-HV correlation and SAR-NWP wind speed scatter in the training
dataset when the std of SAR wind speed is 1.5± 0.02. As expected, the model uncertainties
are greater on the decision boundary and its extension into unobserved spaces of the feature
space.
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(a) Predicted probabilities (b) Estimated uncertainties

(c) Scatter plot of the training features

Figure 5.3: The probability (a) and model uncertainty (b) map of the MLP 3 model
trained on three features with epistemic uncertainty when the standard deviation of SAR
wind speed is 1.5. The scattering of the training dataset features when the std of SAR
wind speed is in the interval of [1.48-1.52] is represented in (c). The contour lines of
predicted probabilities are overlaid on panel (a) and (b). In panel (c) red dots indicate
ice points while grey dots indicate water. The white region is the unobserved region. The
model uncertainty is higher on the decision boundary and where this boundary extends
into unobserved regions.
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Aleatoric uncertainty

The results of employing aleatoric uncertainty in the MLP models are also shown in Table
5.1. Similar to epistemic uncertainty, adding aleatoric uncertainty slightly reduces the
water accuracy and total accuracy of the MLP models. The total accuracy for each MLP
model in this case is decreased by 2-4%. In addition, adding uncertainty in this case
increases the unknown ratio similar to the epistemic uncertainty. Despite these accuracy
reductions, for each MLP category and its variations of added uncertainty, the models with
added aleatoric uncertainty have lower ice misclassification rate and higher ice accuracy and
their overall accuracies are higher than those of logistic regression. The decision boundaries
of this model and MLP 3 model is illustrated in Figure 5.4. Figure 5.5 also represents the
distribution of the logits and their predicted variances for MLP 3 with added aleatoric
uncertainty. The vertical lines in panel (a) of the figure show how the misclassification rate
of ice class is higher than water class because the distribution for the ice samples crosses
into the region with probabilities less than 0.05, corresponding to water.

Combined uncertainty

The combined model takes the advantage of obtaining both model’s uncertainty as well
as input’s uncertainty at the same time. As expected, the accuracies reported in Table
5.1 show that the combined model modifications on the MLPs does not increase their
total accuracy and the results are similar to having only either aleatoric or epistemic
uncertainty. However, the ice and total misclassification rate of MLP 2014 is minimum
with the score of 0.58% and 0.36% respectively. These scores are almost half of logistic
regression misclassification scores.

5.3.3 Results on Subsets of a Year

In this part of the experiments, the training samples from the year of 2014 were divided
into 3 subsets based on their month of acquisition. For each subset, an MLP was trained
to see if it is possible to have reasonable outcomes if for any reason, we only have data
from a specific period of the year available for training. In addition, we wanted to see
how the epistemic and aleatoric uncertainties are able to meaningfully represent these
limitations. For simplicity, all the models are trained with 1 hidden layer and three features.
The MLP models are trained on subset of: 1) January to April (MLP JA), 2) May to
August (MLP MA),and 3) September to December (MLP SD). The distribution of training
samples for each subset along with the entire year of 2014 and the test dataset is displayed
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(a) MLP 3 (b) MLP 3 with aleatoric uncertainty

(c) Estimated uncertainty

Figure 5.4: The probability map of the MLP model trained on three features without
aleatoric uncertainty (a), and with aleatoric uncertainty (b) when the standard deviation
of SAR wind speed is 1.5. The aleatoric uncertainty map of the latter is shown in (c)
(logarithmic scale). The aleatoric uncertainty is in direct relation to the distance from the
center of feature spaces.
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(a) predicted logits (b) predicted variance

Figure 5.5: The distribution of predicted logits (a) and variances (b) for the MLP 3 model
trained with aleatoric uncertainty. The classification boundary of each class is shown by a
vertical line in panel (a).

in Figure 5.6. The histograms show that except for the period of May to August, the
remaining training data sets have similar distribution regarding each feature. Table 5.2
also shows the size of each subset and their results on the prediction of the test dataset.

The scores in Table 5.2 show that the portion of January to April (MLP JA) is able to
correctly classify ice samples better than other models with the highest score of accuracy
and lowest score of misclassification. However, the model trained based on these data
performs poorly on water samples as the water class accuracy is below 50%. In contrast,
MLP MA which is trained mostly on summer data, has the highest ice misclassifications,
which leads to the highest total misclassification scores. This is predictable based on the
PDFs displayed in Figure 5.6 where it shows the PDF of test dataset and other models are
different from MLP MA model is trained on different PDFs.

5.3.4 Impact of Each Feature on Results

To investigate the impact of each feature on the predicted probabilities and uncertainties,
Table 5.3 and 5.4 are provided. Table 5.3 is based on predictions of the MLP 2014 and
MLP MA models, trained with epistemic uncertainty, on the test dataset. The main reason
of selecting MLP MA to compare with MLP 2014 is its different training distribution and
limited number of samples as shown in Figure 5.6 and Table 5.2. Table 5.3 shows the
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Figure 5.6: Distribution of ice and water samples for the 3 input features of the test dataset,
the entire year of 2014, and its three subsets.
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Table 5.2: Accuracy of the models trained on the year of 2014 and its 3 subsets each
covering 4 months. The models are tested on all pure ice and water samples.

Method Training size

Ice

accuracy

[%]

Ice

misclassified

[%]

Water

accuracy

[%]

Water

misclassified

[%]

Total

accuracy

[%]

Total

misclassified

[%]

Unknowns

[%]

MLP 2014 2,693,263 83.29 1.71 78.87 0.14 80.63 0.77 18.60

+Epistemic uncertainty 85.19 1.10 63.38 0.19 75.09 0.56 24.35

+Aleatoric uncertainty 88.33 1.06 68.43 0.22 75.58 0.55 23.87

MLP JA 1,091,675 89.27 0.44 46.82 0.55 63.77 0.50 35.72

+Epistemic uncertainty 87.97 0.47 49.19 0.40 64.67 0.43 34.89

+Aleatoric uncertainty 89.10 0.41 45.78 0.53 63.08 0.49 36.43

MLP MA 319,168 86.20 2.29 77.18 0.44 80.78 1.18 18.03

+Epistemic uncertainty 86.01 2.20 77.95 0.41 81.17 1.12 17.71

+Aleatoric uncertainty 87.55 2.09 74.25 0.65 79.56 1.21 19.22

MLP SD 1,282,420 82.66 1.83 79.47 0.12 80.74 0.80 18.45

+Epistemic uncertainty 81.41 1.87 79.87 0.10 80.48 0.81 18.71

+Aleatoric uncertainty 81.69 1.78 77.95 0.11 79.44 0.77 19.78
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predicted probabilities and epistemic uncertainty on the distribution of ice and water class
for each feature. The first two columns in each row represents the probability, while the next
two represent the uncertainty. Table 5.4 is provided in a similar way but using MLP 2014
and MLP MA models trained with aleatoric uncertainty so the uncertainty colorbars are
representing the logarithm of aleatoric uncertainty.

Table 5.3 shows that SAR-NWP wind speed is the feature causing the most misclas-
sifications as it has more green color on the left side of the ice distribution indicating a
low probability of ice. The number of ice misclassifications appears greater for MLP MA
as can be seen from the enhanced green region, consistent with Table 5.2. In addition,
Table 5.3 shows how having the big overlap in the distribution of SAR wind speed’s stan-
dard deviation in the training and test data, as shown in the last column of Figure 5.6,
is causing a wider region of high uncertainty. This uncertainty is higher for MLP 2014
comparing to MLP MA since the ice and water distributions of the training set in the
MLP MA are more separable. Table 5.4 implies similar conclusions about the predicted
probabilities of the models trained with aleatoric uncertainty. However, the uncertainty
color of MLP MA PDFs illustrate that uncertainty of both classes in this model are much
higher than MLP 2014, especially for the third feature. Additionally, Table 5.3 shows that
the aleatoric uncertainty is higher on the left side of ice distribution and right side of water
distribution in each case since these regions are close to unobserved space in the feature
space.

5.3.5 Results on All Ice Concentration

Table 5.5 shows impact of adding uncertainty to the MLP models when samples covering
all ice concentration values are used for testing. The predicted probabilities of MLP models
were converted to 0 and 1 labels using a 30% threshold obtained in Chapter 4. Similar
to the results on pure ice and water samples, adding uncertainty was observed to reduce
the overall accuracy of their original MLP models by about 2% but the misclassified rate
was also reduced in most cases with the cost of increasing the unknown labels in all cases.
Generally, the water class accuracy and overall accuracy of the MLP 4 was better than
other models with scores of 82.54% and 82.31% respectively.

While the misclassification rates for water samples have low variation from 1.30%
(MLP 2014) to 2.38% (MLP 4 with aleatoric uncertainty), the misclassification scores for
ice class are more variable. The maximum score is 5.58% for MLP 2014 and minimum
score is 3.38% for MLP 2014 when both uncertainties are added. The latter also has the
minimum overall misclassification score, 2.37%.
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Table 5.3: Impact of each feature on the misclassification and epistemic uncertainty of the
MLP 2014 and MLP MA trained on three features.
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wind speed
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Table 5.4: Impact of each feature on the misclassification and aleatoric uncertainty of the
MLP 2014 and MLP MA trained on three features.
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Table 5.5: Accuracy of the models on all ice concentration test set using the 30% ice
concentration threshold. The numbers for models with epistemic uncertainty and combined
model are average of Monte Carlo runs.

Method
Number of

features

Number of

hidden layers

Ice

accuracy

[%]

Ice

misclassified

[%]

Water

accuracy

[%]

Water

misclassified

[%]

Total

accuracy

[%]

Total

misclassified

[%]

Unknowns

[%]

MLP 3 3 1 78.93 4.38 75.03 2.22 76.08 2.81 21.10

+Epistemic uncertainty 79.73 4.05 72.64 2.33 74.56 2.79 22.64

+Aleatoric uncertainty 80.41 3.92 71.67 2.38 74.04 2.80 23.16

+Epistemic & Aleatoric uncertainty 79.20 4.24 74.35 2.28 75.67 2.81 21.53

MLP 4 4 1 81.70 4.61 82.54 2.09 82.31 2.77 14.92

+Epistemic uncertainty 80.18 4.21 79.95 1.88 80.01 2.51 17.48

+Aleatoric uncertainty 81.64 4.12 79.68 2.04 80.21 2.60 17.18

+Epistemic & aleatoric uncertainty 79.93 4.13 79.68 1.86 79.75 2.47 17.77

MLP 2014 4 1 77.81 5.58 80.43 1.30 79.68 2.53 17.79

+Epistemic uncertainty 79.36 3.86 77.70 1.81 78.15 2.37 19.48

+Aleatoric uncertainty 82.03 3.64 76.45 2.16 77.96 2.56 19.47

+Epistemic & aleatoric uncertainty 80.77 3.38 73.05 1.99 75.14 2.37 22.48

Logistic

Regression
3 - 79.41 4.60 65.72 1.90 69.65 2.67 27.68
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Figure 5.7: MLP 4 predicted ice concentration (a) and epistemic uncertainty (b) for each
ice concentration category. The blue line in (a) shows where the predictions are expected
to happen. Vertical lines of panel (b) indicate the standard deviations.

To show how the models predict the ice concentration according to each category, Fig-
ure 5.7 is presented for MLP 4 model as an example. For samples of each ice concentration
category on the ice chart, the average calculated ice concentration by the MLP 4 model
is plotted in Panel (a) and the average estimated uncertainty in Panel (b). The ice con-
centration in each category is calculated as the ratio of samples predicted as ice to the
total ice and water predicted samples in that category. In addition, the vertical bar for
each ice chart ice concentration category in panel (b) shows the standard deviation of the
estimated uncertainties for samples in the corresponding ice concentration category. Panel
(a) of the figure shows that almost for all ice concentrations the model overestimates the
ice concentration by about 20%. Panel (b) also shows that the peak of the uncertainty is
at 30% ice concentration and its decreasing on both side of this value.

Figure 5.8 represents an example of predictions made by logistic regression and MLP 4
with combined uncertainty for an image acquired on May 3, 2013 over the Labrador Sea.
While the logistic regression method has difficulties classifying the water samples correctly,
the combined MLP model is able to reduce the misclassified water samples. Moreover,
the combined model has the advantage of providing the model uncertainty as well as
input induced uncertainty. In addition, MLP model results preserve the high resolution of
logistic regression. As represented in Figure 5.9, the model has difficulties in classifying
water samples was due to the existence of negative SAR wind speed and high wind speed’s
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(a) Ground truth (GR) (b) 30% thresholding of GR

(c) Logistic regression (d) combined MLP 4

Figure 5.8: An example of ground truth and estimated probabilities for an image acquired
on May 3, 2013, over the Labrador Sea.
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standard deviation over open water areas shown in panels (a) and (d). The uncertainty
maps of the MLP 4 combined model are shown in Figure 5.9. The figure shows that the
regions with elevated uncertainty are correlated with high wind speed over open water
(aleatoric uncertainty) and the uncertainty due to the model (epistemic uncertainty) on
the boundary of ice and water can also be seen.

5.3.6 Uncertainty as a Measure of Accuracy

In all the experiments discussed so far, the model uncertainty, epistemic uncertainty, was
utilized to visually compare the uncertainty map with the prediction map and ground truth
or observe its impact on the classification accuracies. In this part, the correlation between
the estimated epistemic uncertainty of an image and its classification accuracy is being
investigated. If such a relationship exists, the uncertainty values can be used to estimate
the quality of predictions for operational applications without requiring any additional
data. The experiments of this section are based on the predictions produced by MLP 3
trained with epistemic uncertainty on the 2013 test dataset containing all ice concentration
categories. For each group of samples belonging to a single image of this dataset, the mean
of classification accuracy and uncertainty is calculated. Panel (a) of Figure 5.10 shows how
the mean accuracy of each image is strongly correlated with the mean epistemic uncertainty
of that image. The regressed line on the plot has an R-squared of 0.94 which means the
classification accuracy can be calculated based on the epistemic uncertainty with a high
precision. The red point of panel (a) corresponds to the SAR image discussed in Figures
5.8 and 5.9 with the mean accuracy of 85.37%. Also, the point with cyan color belongs to a
SAR image from East of Baffin Island with mean accuracy of 88.38%. The original ground
truth and its ice/water labels after applying a 30% threshold on the ice concentration
values are represented in panels (b) and (c) respectively. In addition, panel (d) shows the
estimated epistemic uncertainties and panel (d) represents the predicted probabilities for
this SAR image.

5.4 Summary

This chapter was dedicated to investigate the new approaches proposed in the neural net-
work community to capture the uncertainties induced by model weights and input features.
The epistemic uncertainty which captures the uncertainty of the model due to its weights,
adds dropout layers to the model and runs Monte Carlo simulation during test time to
calculate the uncertainty. The aleatoric uncertainty is derived by adding another output
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(a) SAR wind speed (b) NWP wind speed

(c) HH-HV correlation (d) std of SAR wind speed

(e) aleatoric uncertainty (f) epistemic uncertainty

Figure 5.9: Feature maps and uncertainty maps for the example shown in Figure 5.8
regarding the image acquired on May 3, 2013, over the Labrador Sea. Aleatoric uncertainty
is shown in logarithmic scale.
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(a) Uncertainty-accuracy correlation

(b) Ground truth (GR) (c) 30% thresholding of GR

(d) Epistemic uncertainty (e) predicted probability

Figure 5.10: Correlation between the epistemic uncertainty and accuracy of MLP 3 with
epistemic uncertainty (a). Each point of the panel (a) corresponds to average results of
samples from a single image of the 2013 dataset. The black line indicates the outcome
of linear regression with R-squared of 0.94. The red point corresponds to the SAR image
represented in Figure 5.8. The cyan point corresponds to a scene with prediction accuracy
of 88.3% represented in panels (b) to (e).
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to the network to predict the variance of logits. In this case, for each input 100 samples
are drawn from a Gaussian distribution with zero mean and variance corresponding to the
current estimate of aleatoric uncertainty and the average loss of these samples is used to
update the network parameters during the training. The proposed methods to capture
these uncertainties and their combination were tested on the ice/water classification prob-
lem discussed in the previous chapter. The results revealed that the added uncertainties
reduced the accuracies by 2-3% in all cases. However, the misclassification scores were also
reduced. The combined uncertainty models also have the benefit of generating maps of
both epistemic and aleatoric uncertainty along with predicted probability maps which can
be very useful for practical application. Lastly, the results indicates a strong correlation
between the mean accuracy and mean epistemic uncertainty when the mean is calculated
using samples from a single image. This indicates that uncertainty may be used to flag
individual images with low classification accuracy.

97



Chapter 6

Conclusion

Motivated by the need to have more accurate predictions of the sea ice cover, this thesis
has explored data-driven approaches with the overarching goal of improving the quality of
predictions in a sea ice data assimilation system. Two different investigations were carried
out. The first examined an alternative cost function designed to enable sharp features to
be retained in the analysis of the data assimilation system. The second examined a neural
network approach to extract ice/water observations and their uncertainties from SAR sea
ice imagery. Even though these approaches can be applied to any sea ice information that
meets the specified assumptions, the current research was conducted on real observations
of ice thickness (Chapter 3) and ice/water samples (Chapter 4,5). A summary of the thesis
contributions is given in the following section followed by a section discussing future work.

6.1 Summary of Contributions

Traditional data assimilation schemes are not usually able to retain sharp features in the
observational information. This may be due to spatial averaging of high resolution infor-
mation or background error correlations, which spread observational information spatially.
This latter aspect depends on the details of the background error correlations. In Chapter
3, it is demonstrated, for the first time, that sea ice thickness exhibits a sparse represen-
tation in the derivative domain. This has been demonstrated using (1) sea ice thickness
measurements from an AEM sensor over the Beaufort Sea; (2) submarine upward looking
sonar data; and (3) sea ice thickness derived from Cryosat.

Sharp features in the sea ice thickness states are similar to sharp edges in the image
processing problems. When the distribution of the image spatial derivative is sparse, this
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implies the distribution is sharply peaked at zero and only a small portion of the elements
corresponding to edges are non-zero. Chapter 3 introduces and evaluates the use of an
additional term in the objective function to constrain sparsity on the derivative of the ice
thickness state to retain sharp features when using sea ice thickness data in a data fusion
or data assimilation scheme. This l1-l2 formulation is compared with the standard l2 reg-
ularization first using data fusion, and then by carrying out data assimilation experiments
using a toy sea-ice model. For data fusion, a clear benefit to the l1-l2 formulation is ob-
served when the background correlation error length scale is small (on the order of twice
the analysis grid spacing). It can be expected that in the vicinity of a sharp feature (e.g.,
ice edge) the background error correlation length scale may be in this range [17]. This data
fusion result could be relevant for the generation of merged sea ice products, where sharp
features are desired [7].

For data assimilation, a clear benefit is also attributed to the l1-l2 regularisation, al-
though the impact of the error correlation length scales on the difference between the l1-l2
method and the l2 method is less clear. This may be due to the spatial averaging of ice
thickness that was required to increase the scale of the data, or it could be due to the
model dynamics. However, based on the preliminary results, the l1-l2 method is superior
with regards to capturing openings in the ice cover than the conventional l2 method. This
was observed for a variety of error correlation length scales, values of the regularisation
parameter, and model initial conditions.

In Chapter 4, the problem of providing accurate ice and water observations for data
assimilation systems and improving the quality of automated SAR-based ice/water clas-
sification, was investigated using a class of neural networks, MLPs. The result of this
study was compared with a previous study on the same dataset using logistic regression
approach for classification. This study is based on a unique database provided by Envi-
ronment and Climate Change Canada consisting of four features including SAR retrieved
wind speed, NWP wind speed, HH-HV correlation and standard deviation of SAR wind
speed, from 15405 RADARSAT-2 HH-HV ScanSAR images with their corresponding CIS
Image Analysis information. The database covers the period of time between November
1, 2010 and September 30, 2016. To utilize only samples with high probabilities in future
data assimilation applications, only samples with probabilities greater than 95% and less
than 5% were labeled as ice and water respectively and the remaining samples were labeled
as unknown. The logistic regression approach is developed on three features of this dataset
where the difference between SAR and NWP wind speeds are employed as one feature
instead of using them separately. The comparison between the three feature version of
MLPs with logistic regression results revealed that the MLP models were able to classify
water samples with higher accuracy and lower misclassifications and overall reduced rate
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of unknown labels. However, the total misclassification rate was higher in MLPs. More-
over, increasing the number of hidden layers toward a deep network was observed not to
significantly impact the accuracy of the trained models. In all cases, that differences were
noted between the two approaches in particular for the water class. The MLP classifiers
were able to reduce the ratio of unknown samples by 50% in some cases in comparison to
the logistic regression using the same fixed thresholds for probability. It should be noted
that Environment and Climate Change Canada is planning to use a developed version of
this logistic regression approach where the results are slightly improved [77].

In Chapter 5, the recently proposed uncertainty estimation approaches in the area of
neural networks, was employed on the ice/water classification problem of Chapter 4 to
produce uncertainty maps in addition to ice/water labels for the first time. The modi-
fied MLPs could predict the uncertainty induced by model parameters (weights) as well
as noise inherent in the input features. Models were investigated where these two types
of uncertainty were considered separately, and also simultaneously in a combined model.
The experimental results from the models including uncertainty indicated slightly reduced
misclassification rate and increased unknown rates. In this chapter, the impact of each
feature on the misclassification rate and uncertainties of each class was also investigated.
The visual comparison of the probability and uncertainty maps with the CIS Image Analy-
sis chart implies that the predicted uncertainties may be useful to flag regions in the MLP
predictions that should be checked manually by an analyst. The lower misclassification
rates that are achieved when uncertainty is included in the model also suggests that these
ice/water observations may be useful for data assimilation.

As a summary, the contributions of the dissertation can be listed as:

• Demonstrating the sea ice thickness sparse representation in the derivative domain
using data from different observing systems,

• Evaluating the use of l1-regularization in data fusion and data assimilation experi-
ments with different observation and background error correlation length scales to
retain sparsity of sea ice thickness data,

• Improving the ice/water classification accuracy of logistic regression using neural
network approaches,

• Providing model and input uncertainty maps with the classification products and
investigating their relationship with the input features.

100



6.2 Future Work

The work presented in this dissertation will provide a foundation for future studies on
regularized sea ice data assimilation and uncertainty estimation. This research can be
pursued in several possible paths that are presented in the following.

1. Using the l1-l2-norm regularization approach to fuse ice thickness observations from
multiple sources such as CryoSat and SMOS.

2. Evaluate the l1-l2-norm regularization approach on a data assimilation experiment
with an operational sea ice model such as Los Alamos sea ice model (CICE) which
is currently being used in Environment Canada regional ice-ocean prediction system
(RIOPS).

3. Using convolutional neural networks (CNNs) to directly train high resolution SAR
images of the ice/water classification problem instead of training MLPs on pixel
samples with a tabular format. The recent studies have shown that CNNs can be
very useful when there is a relationship between spatial features in the input data
and the target labels which is the case for ice and water regions in the SAR images.
Moreover, the high resolution CNN outputs can be used to extract ice concentrations.

4. The relationship between the epistemic and aleatoric uncertainties and the classifi-
cation errors needs additional quantitative investigations. Additionally, it might be
interesting to study the link between the uncertainties and quality of the training
samples by training the models with all ice concentrations instead of 0% and 100%
ice concentration categories, or the link between uncertainties and training size. Use
of another measure to quantify epistemic uncertainty instead of entropy can also be
explored.
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ness retrieval from SMOS brightness temperatures during the Arctic freeze-up period.
Geophysical Research Letters, 39(5), 2012.

[67] R. E. Kalman. A new approach to linear filtering and prediction problems. Journal
of Fluids Engineering, 82(1):35–45, 1960.

[68] R. E. Kalman and R. S. Bucy. New results in linear filtering and prediction theory.
Journal of Fluids Engineering, 83(1):95–108, 1961.

107



[69] E. Kalnay. Atmospheric modeling, data assimilation, and predictability. Cambridge
University Press, 2003.

[70] J. Karvonen. C-band sea ice SAR classification based on segmentwise edge features.
In Geoscience and remote sensing new achievements. InTech, 2010.

[71] J. Karvonen. A comparison of two c-band sar ice/open water algorithms. In SeaSAR
2010, volume 679, 2010.
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Appendix A

Generalized objective function

In Section 3.3, the objective functions in equations 3.6 and 3.7 are formulated assuming the
background and observation error variances are spatially homogeneous. A more general
formulation allowing nonhomogeneous error variances is explained in this Appendix.

We start by considering the l2 objective function given earlier in equation (3),

J(x) = (x− xb)
TB−1(x− xb) + (y −H(x))TR−1(y −H(x)) (A.1)

Following [17] we introduce a change of variable ξ = B−
1
2 (x − xb), which means x =

xb + B
1
2 ξ. By substituting x into J we arrive at the following objective function:

J(ξ) = ξT ξ + ‖R−
1
2 (~y −H(xb))−R−

1
2 HB

1
2 ξ‖22 (A.2)

By defining f = R−
1
2 (y −H(xb)) and G = R−

1
2 HB

1
2 we can write equation (A.2) as

J(ξ) = ‖f −Gξ‖22 + ‖ξ‖22, (A.3)

For the l1-l2-norm method an objective function can be defined that is the same as that
for l2 but with the additional regularisation term,

J(ξ) = ‖f −Gξ‖22 + ‖ξ‖22 + δ‖Dx0‖1. (A.4)

This objective function has the same form as that used in the present study, although
optimal values of δ would be different since the scaling of the problem is different.
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Appendix B

Toy sea ice model

The sea ice model used in the present study is based on the model introduced by [60],
and uses a viscous-plastic (VP) rheology. Although some authors have recently proposed
new sea ice rheologies (e.g. [47]), almost all current sea ice models are based on the VP
rheology. With the VP constitutive law, the ice behaves as a very viscous fluid when the
state of stress is inside the yield curve while it deforms plastically when the state of stress
reaches the yield curve. The viscous coefficients are capped when the ice is in the viscous
regime. The minimum delta value is 2 × 10−9 s−1. This value is so small that the ice is
basically modelled as an ideal plastic material.

In 2D, the standard VP elliptical yield curve leads to strong resistance in compression,
significant resistance in shear and small resistance in tension. As in [5, 80, 90, 91], the
1D model is obtained by assuming that the v component of the ice velocity and spatial
gradients ∂/∂y are zero. The 1D model is a simplification of the 2D model as one can
not simulate failure in shear. However, it still allows one to simulate and study interesting
aspects of the VP rheology such as free drift, landfast ice and failures in compression and
tension.

The toy sea ice model used in this study solves a momentum equation that can be
written:

ρiceah
∂u

∂t
=

ρaaCaua|ua|+ ρoaCo(uo − u)|uo − u|+
∂

∂x

(
(ζ + η)

∂u

∂x
− P

2

)
,

(B.1)

where ρice represents the ice density, Ca represents the ice-atmosphere drag coefficient, ua
represents the wind velocity, Co represents the ice-ocean drag coefficient, uo represents the
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ocean current velocity and ρa, ρo are the air of air and water respectively. The velocity
of the water and air were obtained from shallow water models that are coupled to the ice
model. The variables in the ice stress term, which is a 1-D version of the stress tensor
defined in [60] are

ζ =
P

2∆
η = ζe−2

∆ =

∣∣∣∣∂u∂x
∣∣∣∣ (1 + e−2)

P = P ∗h exp (−C(1− a)),

(B.2)

where P represents the ice strength, and P ∗, C, and e are empirically-derived constants.
In addition to the ice momentum equation, there are transport equations for ice thickness
and concentration [60]:

∂a

∂t
= −∂ua

∂x
+ Sa

∂h

∂t
= −∂uh

∂x
+ Sh

(B.3)

where Sa and Sh are thermodynamic terms governing the ice growth. For the current
application both Sa and Sh are zero.

The sea ice equations were discretized using a central differencing scheme with velocity
grid points at locations staggered from the thickness, concentration, and viscosity. Atmo-
spheric and oceanic boundary conditions were provided by one-layer shallow water models,
tuned to produce qualitatively realistic velocity fields. Periodic boundary conditions were
used for the sea ice momentum, concentration and thickness equations as well as for the
forcing. Values used for the constants are P ∗ = 8000N/m, Ca=0.0015, Cw=0.0015, e = 2,
ρa=1.3kg/m3 and ρi=910kg/m3 and ρo=1035kg/m3. Note that ζ was constrained to be
within the range of ζmin = 4× 108kgs−1 and ζmax = 2.8× 108P to avoid singularities that
can occur for small ∆ values and reduce numerical instabilities that can occur for small
viscosities [60, 88]. For further details about the ice model see [122].
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