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Abstract

Privacy policies have been known to be hard to read and understand by internet users and yet
users are obliged to accept these one-sided terms of usage of their data before they can effectively
use websites. Although research has been conducted into alternative representations of privacy
policies, it does not consider whether the website provider actually adheres to the data handling
practices outlined in the privacy policy. However, there has been significant research towards
achieving compliance of internal processing systems to access control policies that capture some
aspects of privacy policies, such as those related to confidentiality of collected information, the
time period of its retention, and its disclosure to third parties. Apart from the fact that these
access control policies may not be designed to be translatable to machine-readable or simplified
text policies, such systems suffer from two related drawbacks: first, they assume a large trusted
computing base (TCB) and in particular, the operating system is included within their TCB.
Secondly, as they are only aimed at achieving compliance of different internal data processing
systems to these access control policies, they do not seek to provide users of any proof of a
compliant system.

On the other hand, trusted hardware seeks to reduce the TCB on a remote machine that a user
needs to trust in order to run a program and obtain its results. Trusted hardware platforms provide
two novel security properties: they disallow a malicious operating system from learning secrets
from the program state and secondly, they allow the user to verify that the OS has not modified the
program before or while running it, as long as the user trusts the hardware platform. Our goal is to
design an architecture that uses an underlying trusted hardware platform to run a program, named
the decryptor, that only hands users’ data to a target program that has been determined to be
compliant with a privacy policy model. As both of these programs are run on a trusted hardware
platform, users can verify that the decryptor is indeed the correct, unmodified program. Most
importantly, in our architecture, we provide trustworthy information about the verifier program
used on the server side to a client program such that it can ensure that the target program has
been checked for compliance with a privacy policy model by a valid verifier program. Such a
verifier program should be made open-sourced so that it can be checked by experts. Our second
contribution lies in implementing this architecture on the Intel SGX hardware platform, using
a shim layer, namely the Graphene-SGX library. Finally, we also evaluate our system for its
efficiency and find that it has a very small overhead in comparison with a setup that does not
provide such guarantees.
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Chapter 1

Introduction

Internet users have been habituated to click on a checkbox when they register an account on a
website. Doing so implies that they acknowledge that they have read and understood a privacy
policy, which details how the website provider processes and disseminates their data and possibly
what forms of metadata are collected. However, these privacy policies are lengthy and written
with legalese-filled jargon, as McDonald and Cranor [MC08] found. Users cannot be expected
to have read and understood such a text that is aimed at a specialist audience, namely lawyers,
thereby leading users to a Kafkaesque interface.

Towards this end, Cranor et al. [CLM+02] proposed a machine-readable XML privacy policy
format known as the Platform for Privacy Preferences Project (P3P), which was set as a W3C
standard. P3P was intended in order to support users in specifying certain simple policies. These
policies encapsulated choices on the collection, dissemination, and retention of users’ data and
metadata. The user’s P3P policy would be matched against that of the website that they visited for
compatability and users would be alerted to incompatible sites; that is, ones whose P3P policy
involved the collection of more data or metadata than the user wishes or which retained data
longer than the user desired. Despite these desirable properties, P3P had limited deployment
and remains as an obsolete W3C standard at the time of this writing. The current P3P W3C
standard document [CLM+02] reports that website admins often used P3P policies that were
not reflective of their actual practices, as there were no consequences to doing so. We can see
that simply trusting the server-side code on website providers’ machines to handle data as per
the privacy policy does not work. Such a trust assumption also applies to companies that claim
to provide seals or certifications on the privacy practices of website providers. Any audits or
checks that the company performs on the website providers cannot be proven to a user: users
simply have to trust that this company did indeed perform some checks on the website provider’s
infrastructure.
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Indeed, this trust assumption is widely misplaced in today’s internet: for instance, in the
Cambridge Analytica scandal [Mer18], a smartphone app obtained users’ personal information
and detailed psychological profiles, and on the server side, linked each user’s profile with in-
formation from Facebook profiles of their friends, to result in a large repository of personal
information and preferences of the general population that would then be exploited for showing
microtargeted ads for political campaigns. On account of such poor data handling practices, it is
reasonable for a user to not trust web application code, including the server-side code, in terms
of achieving compliance with the goals stated in the privacy policy. For example, one server-side
script may output users’ personal information to a file that is then sent to a third party. This
example is not unrealistic: data that users enter into websites or apps has been known to be sold
or transmitted to third parties [SWH+16] [ZWZ+17] and data brokers [RBO+14]. It therefore
illustrates that a website user may potentially consider any server-side website code as malicious
or privacy invasive.

Additionally, recent literature on achieving compliance of source code with internal or ex-
ternal policies [SGD+14] [EMV+16] trusts the website providers’ machines, possibly including
the operating system itself, to be completely secure or free of any vulnerable code. Vulnerable
components in web applications, such as servers, libraries and even operating systems, remain
a major risk factor for the security of web applications [Pod17] as well as a major root cause of
data breaches today [Whi19]. Although patching vulnerable code is the recommended approach
and is orthogonal to our work, the existence of any vulnerable code can lead to an exploit. Such
an exploit may result in the dissemination of users’ data or its usage for an uintentional purpose
and thus, the problem of vulnerable server-side machines cannot be ignored. Given that web-
site providers could possibly be running vulnerable operating systems and applications on their
machines, they ought to confirm compliance of their source code with privacy policies.

A few years after the deployment of P3P, Ashley et al. [AHK+03] proposed the fine-grained
Enterprise Authorization Policy Language (EPAL). EPAL was an access control langauge to as-
sist enterprises develop an enterprise-wide internal privacy policy, exploiting common specifics
of data processing implementations throughout enterprises. Systems that use access control
mechanisms to encapsulate privacy preferences on the confidentiality and dissemination of data,
as well as to implement these within organizations, continue to be developed today. For instance,
Sen et al. [SGD+14] develop a first-order logic to encapsulate modern privacy policies, named
Legalease, and bootstrap an information flow analysis tool, Grok, to implement an internal ac-
cess control mechanism based on this logic. Thoth by Elnikety et al. [EMV+16] improves on
Grok in that it enables implementing user-specified privacy settings through an access control
mechanism, using a reference monitor within the kernel of server-side machines. Thoth seeks to
reduce the trusted computing base from all applications that operate on users’ data, to simply the
operating system, its reference monitor, and a kernel module. While developing mechanisms to
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implement privacy policies, whether user-specified or established internally, is important, a com-
mon downside of such systems is that they have not been designed with a view towards proving
or demonstrating their efficacy to users.

We improve on existing work in fulfilling the two aforementioned requirements: namely, we
check compliance of server side code to a privacy policy in the face of an untrusted operating sys-
tem on the remote machine and demonstrate a proof of a successful compliance check to users.
This problem is conceptually similar to the secure remote computation problem, which is to run
a given program on a remote computer and obtain its results, in the face of an untrusted remote
operating system that may attempt to modify the program or learn secrets based on the program
state. The security research community has focused on ways to solve the secure remote compu-
tation problem for many years; trusted hardware platforms are one proposed mechanism. These
platforms involve establishing trust in a small part of the CPU in the remote host machine, while
treating the rest of the hardware and the operating system of the remote host as untrusted and
compromised. This part consists of a set of hardware-infused keys and microcode. Traditionally,
the trusted hardware was in the form of a separate physical module [BJG+18], but it has recently
been integrated into CPU chips. Trusting this hardware allows a client to run a program on the
remote host within the trusted hardware platform, while obtaining confidentiality of the program
state and integrity of the program. A client can also conduct an attestation protocol to verify that
the desired program, and not a modified version of it, is being run on the remote host. Korba
et al. [KK03] propose a design based on trusted hardware platforms, which have been marketed
as Digital Rights Management (DRM) tools, towards the problem of compliance of source code
with privacy policies.

Our main insight lies in using a trusted hardware platform to narrow down the trusted com-
puting base (TCB) of a compliance mechanism running on the remote, server-side machines of
a website provider. Effectively, we narrow down the TCB from one that includes all of the oper-
ating system and hardware, as in Thoth, to only a trusted hardware chip and relevant supporting
libraries. Our design is applicable to websites run on any trusted hardware platform; for our
proof-of-concept implementation, we use the Intel Software Guard Extensions (SGX) platform
as our trusted hardware platform. Additionally, we use the attestation property of this platform
to assist the user in verifying that the program that performs the compliance check has not been
modified. We therefore overcome the drawback of internal compliance assurance systems by de-
signing our system such that the user can verify the compliance check. This work aims to prove
the following thesis statement:

It is possible to build a system that can provide a verifiable guarantee to a user that the
personal data that they submit to a website can only be processed by code that has been verified
to be compliant with the website’s privacy policy. The guarantee is verifiable in that the user can
verify the integrity of the code that does this compliance check.
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1.1 Contributions and roadmap

We start with a discussion of the basics of trusted hardware platforms, privacy policy models,
and website source code analysis tools in Chapter 2. This provides us with the foundation to
demonstrate how we achieve the above thesis statement through the following four contributions
that are substantiated in the subsequent chapters.

1. We discuss the advantages of our approach as compared to other related work within the
domain of achieving compliance of source code with a privacy policy model (Chapter 3).

2. We provide a cryptographic design that securely uses underlying trusted hardware platform
primitives to provide the guarantee claimed in the thesis statement (Chapter 4).

3. We describe a proof-of-concept implementation of the above cryptographic design on the
Intel SGX trusted hardware platform (Chapter 5).

4. We evaluate our proof-of-concept implementation, in terms of overheads on an identical
setup that runs on an untrusted operating system and does not provide the above privacy
guarantee. We perform this evaluation in Chapter 6.

Our proof-of-concept implementation is named Mitigator. Future versions of Mitigator are
intended to be deployed by organizations and individuals who wish to assure their websites’ users
that they process the users’ data in a privacy-compliant manner. These organizations may have
differing incentives for doing so, such as compliance with legislation, expanding their user base
to privacy-conscious individuals, or simply to reassure their users. Mitigator provides the above
guarantee even in the face of malicious programs on the organization’s machines and vulnerable
operating systems.
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Chapter 2

Background

In this chapter, we lay out concepts and related work in literature that are used in our design and
implementation. We start with related work in forming models out of natural language privacy
policies in Section 2.1, as any privacy policy text to be used with Mitigator needs to be converted
into an appropriate model that can be used for checking compliance of the source code. We then
discuss approaches and tools that can be used for the latter; that is, to check the source code for
compliance or alternatively, for privacy violations, in Section 2.2. We proceed to describe trusted
hardware platforms and the guarantees provided by a major trusted hardware platform that we
use within Mitigator’s proof-of-concept implementation, in Section 2.3. In this section, we also
discuss recent literature on systems that support complex applications on these platforms, one
of which is used to develop Mitigator. Finally, Mitigator needs to ensure that users’ plaintext
data is encrypted to a remote host running on a trusted hardware platform, without any dynamic
webpage scripts or other extensions obtaining the plaintext data or tricking users into believing
that it is being encrypted when it is not. We thus discuss secure user-to-browser interfaces in
Section 2.4.

2.1 Modelling natural language privacy policies

Many techniques from the fields of requirements engineering and natural language process-
ing have been applied to extract various models out of textual privacy policies. Breaux and
Schuab [BS14] sought to decrease the cost of experts manually annotating privacy policies and to
do so, they formulated and validated a partially crowdsourced system. A crowdsourced worker
would obtain a paragraph of a particular privacy policy and would be asked to identify action
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verbs from a known list. If they identified certain action verbs, they would then be asked to spec-
ify information types on which the action verbs apply, the purposes for conducting this action
and in case of transfers of data, intended sources and targets. A crowdsourced workers’ annota-
tion result would be considered for renumeration as long as it agreed with a minimum threshold
of other workers.

In contrast with Breaux and Schaub’s crowdsourcing approach to annotate privacy policies,
Wilson et al. [WSD+16] engaged experts in a discussion process over encodings of a small set of
privacy policies. The experts established a set of ten data categories, with each data category con-
taining mandatory1 and optional attribute-value pairs, known as data practices, to further specify
it. Each paragraph in the rest of the dataset of privacy policies would be annotated with data
categories and data practices from the above set by skilled annotators, using a grounded theory
approach, wherein an annotation that at least two annotators agreed on would be considered as
ground truth.

ToS;DR [JBR+12a] is an online crowd sourcing-based platform that was created by experts to
allow internet users to grade privacy policies among different topics, culminating in a final grade
or class for each privacy policy. Interestingly, these topics [JBR+12b] are more general than the
ones generated through the aforementioned expert or controlled crowdsourcing processes. They
include grades for specification of applicable jurisdictions, data portability, account suspension or
censorship, transfer of data to law enforcement and government requests, ownership or copyright
licenses, right to leave the service, and so on. Zimmeck and Bellovin [ZB14] propose a browser
extension named Privee that retrieves the ToS;DR grade for the URL that a user has visited.
In absence of a ToS;DR grade, it automatically provides a score based on practices related to
the following six categories: collection of data, encryption, limited retention, profiling, tracking
through ads, and disclosure of personal information through ads. When it is first loaded, the
extension is initialized with a small sample set of training policies and it then sets up a binary
ML classifier to determine whether the given privacy policy allows an operation for each of the
above six categories or not. We can thus see that Privee conducts a coarse-grained analysis of the
privacy policy: Privee’s grade is not influenced by the types of information under consideration
in the privacy policy.

Harkous et al. [HFL+18] present a browser extension named Polisis that conducts a scalable,
significantly more fine-grained analysis of websites’ privacy policies. Polisis preprocesses pri-
vacy policies into semantically complete segments and then passes these segments as inputs to a
set of heirarchical multi-label classifiers that predicts the probability that a given high-level data

1Mandatory attributes for data practices were also obtained as an output of the expert discussion process. Each
data practice has a mandatory attribute whose value is the text which it corresponds to or condenses. This helps
analysis by other human experts or systems.
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category label in Wilson et al.’s [WSD+16] model is present in the input. If a data category label
is more likely than not to be present in the segmented input, then for that input, a lower-level
classifier predicts the probability of each possible value for each attribute in the data category.
About half of Wilson et al.’s [WSD+16] annotated privacy policies are used to train these classi-
fiers, whereas the rest are used to test them. The authors report a high average F1 score of 0.84
across all data categories. Harkous et al.’s classifiers could be made to support synthesizing other
models of the privacy policy. For instance, Sen et al.’s [SGD+14] first-order logic representation
of privacy policies, named Legalease, uses finite lattices to represent values — Polisis can be
extended to automatically generate Legalease representations.

Harkous et al. also design a bot named Pribot to automatically answer free-form queries
for privacy policies; these are particularly useful for conveying privacy information to users
on devices without screens, such as smart IoT devices. They test it against a curated dataset
of Twitter questions that were aimed at companies’ official data handles and contained privacy-
relevant terms. For the ground truth, the authors followed a grounded theory approach to annotate
data category labels in the corresponding privacy policies for each of the questions. They found
that the annotators’ label was present in the top of the list of output data category labels for 68%
of all Twitter questions and it was in the top 4 elements of the list for 87% of all questions.
Harkous et al. also design privacy icons based on Polisis: a label with a red, yellow, or green
colour is assigned based on whether the privacy policy provides no choice, opt-out choice, or,
opt-in choice for a specific category and an attribute in that category, such as first-pary collection
for advertising purposes.

In general, Mitigator needs a model of the privacy policy that can be used to configure a
source code analysis tool to check the source code. Polisis can be adapted to form a model of the
privacy policy text that contains information types and operations at a sufficient granularity to
configure the source code analysis tool. Mitigator’s signal of compliance can be used to augment
these privacy icons, as these icons do not consider whether the source code is compliant with the
privacy policy.

2.2 Detecting privacy violations in source code

We first analyze two recent works that form models of smartphone apps’ privacy policies and
compare the source code of these apps against these models, in order to identify privacy vio-
lations. We discuss possible extensions of these systems in the context of Mitigator and the
repercussions of the authors’ findings for website privacy policies and privacy violations. We
then proceed to the context of websites and discuss back-end source code analysis tools that
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have been used to detect security vulnerabilities within websites. Finally, we discuss the obser-
vation that Mitigator’s source code compliance check can be formulated in terms of a problem
of source code analysis.

2.2.1 Analyzing smartphone apps for privacy violations

Slavin et al. [SWH+16] identify apps that send device-specific information or directly collected
information across the network when the privacy policy either does not specify it (a “strong”
violation in the authors’ terms) or specifies a generic term for the given information type (a
“weak” violation). They first form two sets of annotations, wherein a given term is mapped into
one or more privacy-relevant words by expert human annotators; Breaux and Schuab’s [BS14]
framework for crowdsourcing experts’ annotations is used to facilitate this. Expert annotators
form the first set by annotating each method within the Android SDK, based on the natural
language description of the method and its input and output parameters. They form the second
set of annotations by annotating a small number of mobile privacy policies for device-specific
information and for directly collected information. When deduplicated, this second set gives rise
to a small set of 368 privacy-relevant information types. Slavin et al.’s novel contribution lies
in forming an ontology that relates these sets of annotation terms through an inclusion relation
as follows: each Android SDK method forms a leaf in the ontology and its annotations and the
privacy policy’s annotations form non-leaf nodes. In other words, their ontology allows forming
a list of natural language terms, going from most specific terms to most general ones, that can be
used to describe data that an Android SDK method operates on. As browser extensions expose
a limited API for dynamic Javascript and HTML code, this technique can be extended to the
website domain to identify whether client-side code running within a browser violates its privacy
policy.

Using an existing dynamic taint analysis tool and a pre-defined list of taint sink methods that
send data across the network, the authors automatically analyze each app to identify whether it
contains Android SDK methods that send data over the network and if so, determine the infor-
mation types sent over the network. Then, for each leaf node in the ontology, which identifies an
Android SDK method that sends data in the code, they form a set of all nodes in paths to the root
of the ontology. If none of the nodes in this set are present in an automated annotation of the pri-
vacy policy, then effectively, the privacy policy does not list that this information type, whether
in a general or a specific form, is being sent across the network and this is taken to constitute a
strong violation for that leaf-node method. Whereas, if the privacy policy annotation contains a
non-leaf node other than the first non-leaf node in this path, then the privacy policy effectively
contains a generalized description of the information type that is sent across the network and it
is taken to have a weak violation for that method.
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Zimmeck et al. [ZWZ+17] form a set of requirements that the content of privacy policies
should meet, if they were subject to privacy-relevant laws in the United States. These require-
ments include the following: presenting a privacy policy, informing users of changes in this
policy, of any personally identifiable data that is being collected and/or possibly shared with
third parties, as well as including mechanisms to access, edit and delete their information. The
authors use Wilson et al.’s [WSD+16] set of annotated privacy policies for identifying terms for
various privacy-relevant operations. They then use a combination of natural language processing
and machine learning techniques to form a model of the privacy policy text with respect to the
above requirements. They perform static analysis of a test set and a full set of popular Android
applications, to identify which Android system API calls are being called by each application
and also determine the names of any third-party libraries2 that perform these calls.

The authors find that a significant percentage of apps without privacy policies collect (87%)
and share (62%) contact information with third-party libraries. 50% and 63% of apps that do
present privacy policies are found to be inconsistent in stating that they collect and share contact
information, whereas much smaller, but non-negligible fractions of such apps are inconsistent
in stating the collection and sharing of location information (41% and 17%). Zimmeck et al.
and Slavin et al.’s experimental results provide evidence for inconsistencies between smartphone
privacy policies and their app implementations. They provide us with reasonable grounds to
believe that such inconsistencies would also exist for desktop versions of websites. As we men-
tioned above, browser extensions are another relevant context wherein Slavin et al. and Zimmeck
et al.’s source code annotation and analysis techniques can be applied to identify non-compliant
Javascript code. Mitigator focuses on the processing of users’ data on server-side machines using
back-end languages, as opposed to client-side machines. In fact, even though back-end languages
do not explicitly deal with as many explicit APIs to collect different information types as smart-
phone SDKs do, these approaches can be extended to the server side as well, by annotating the
source code with data type that it is processing, as was done by Sen et al. [SGD+14] for Grok.
Sen et al. and Slavin et al. use dynamic source code analysis tools, whereas Zimmeck et al. use
a static source code analysis tool. Mitigator has been currently designed to conduct static source
code analysis of back-end website code to provide gurantees of compliance.

2.2.2 Source-code analysis of web applications

We proceed to discussing security vulnerabilities that can be detected through the use of taint
analysis tools. Security vulnerabilities such as SQL injection and XSS attacks occur due to a

2They manually verify that correct usage of these libraries’ relevant API calls does result in sharing of personally
identifiable data, such as contacts or location data.
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lack of validation of user-specified input. Specifically, an XSS attack occurs when unvalidated
user-specified inputs find their way into the output of any server or client-side script, whereas
SQL injection attacks occur when user-specified input is not validated before it is entered as a
part of an SQL query. Information flow analysis has been used by security researchers to analyse
server-side PHP scripts to detect such vulnerabilities. Jovanovic et al. [JKK06] propose Pixy, an
open-source PHP taint analysis tool for automatically identifying vulnerabilities due to a lack of
sanitization, including SQL injection and XSS attacks, in server-side PHP code.

We briefly describe how taint analysis of back-end scripts, such as PHP scripts, can be used
to find code vulnerable to XSS attacks. Any PHP script can obtain data sent to a webpage
hosting it, through any HTTP request method, including GET and POST, in the form of arrays of
values. Cookies and session values are also accessible to all PHP scripts in a similar way. Pixy
marks these array values as tainted and it allows developers to configure a list of sanitization
functions that remove potentially malicious characters for SQL queries (SQL code injection) or
for Javascript code (XSS attacks), as well as a blacklist of output functions that print passed
inputs into HTML and could potentially be exploited for the above attacks. Taint analysis is used
to ascertain whether tainted input arrays are passed to an output function, without being passed
through XSS or SQL sanitization functions. If they are, then the source code is reported to be
vulnerable to the respective attacks. Pixy runs on individual PHP source code files as inputs and
outputs a binary result, corresponding to whether the code is vulnerable or not.

Most recently, Backes et al. [BRS+17] proposed PHP-Joern to conduct scalable, automated
analysis of PHP scripts to detect a wider range of security vulnerabilities, such as control flow-
related vulnerabilities. They construct novel graphs that combine information from control flow,
data flow analyses and abstract syntax trees of the PHP script and store these in graph databases.
Developers are to define vulnerabilities in terms of graph traversal problems over these graphs
and query these graph databases for vulnerable nodes. Owing to its simplicity and ease of in-
tegration into Mitigator’s implementation as a simple stand-alone unit, we currently use Pixy
within Mitigator to analyze PHP source code files. However, other taint analysis tools can be
extended to support a compliance analysis, as we discuss in Chapter 5.

We have seen the use of taint analysis tools to determine privacy policy violations in Slavin
et al. and Zimmeck et al.’s work above; for instance, the flow of users’ data to functions that
send data across networks could constitute a privacy policy violation, depending on whether the
privacy policy model includes information about this transfer or not. We modify Pixy to support
identifying a simple privacy-relevant violation: passing users’ data unencrypted to files; that is,
not encrypting users’ data at rest. Our implementation currently uses Pixy’s configuration setup
for listing sanitizing and output functions as a simplified a privacy policy model. This is not a
limitation of our design; as we mentioned previously, other tools like Harkous et al.’s [HFL+18]
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Polisis could be used to automatically extract relevant models that can be used to configure source
code analysis tools for compliance checking.

2.3 Trusted hardware platforms

Trusted hardware platforms have been designed to solve the secure remote computation problem:
a developer wishes to run a program on a remote untrusted machine and obtain an assurance of
the confidentiality of the program state and integrity of the program. Two prominent trusted hard-
ware platforms include Intel’s Software Guards Extension (SGX) platform [Int19b] and AMD’s
Secure Encrypted Virtualization(SEV)/Secure Memory Encryption (SME) [Adv18].

The Intel SGX trusted hardware platform consists of a set of microcode instructions, a ded-
icated trusted memory region in RAM and a set of hardware-infused keys. We begin with a de-
scription the Intel SGX programming interface, based on Intel’s official documentation [Int19b].
We then briefly present the trusted hardware platform architecture, and specifically, how it pro-
vides the aforementioned guarantee to this interface, based on a very short summary of Costan
and Devdas’ detailed study [CD16] of the Intel SGX platform. We note that although we focus
on the Intel SGX trusted hardware platform, our design can be implemented on other trusted
hardware platforms, such as AMD’s SEV/SME. To this end, we outline desirable properties of
a trusted hardware platform for it to be used to implement our design. We conclude with a brief
summary of known classes of attacks against trusted hardware platforms.

The Intel SGX programming interface involves partitioning native C/C++ applications into
trusted and untrusted executables. Specifically, C-style functions in the application that may
perform confidential operations or whose integrity needs to be guaranteed should be included
in a trusted executable known as the enclave. The developer compiles and links the enclave
executable in a special manner, which we detail below. The developer can deterministically
compute a specific hash of the enclave executable, known as the enclave measurement. Other
attributes of the enclave can also be specified in a configuration file. For instance, different
versions of the same codebase or product have the same Product ID (ISVPRODID). Similarly, a
Security Version Number (ISVSVN) attribute is used to demarcate versions that contain updates
to address security vulnerabilities. The developer then signs over this enclave measurement and
any attributes of the enclave specified in the enclave configuration file, to produce a signature
token. The enclave executable and the signature token are then sent to an untrusted remote host.
The developer can also easily compute a hash of the verification key corresponding to the signing
key used to sign the enclave; this value is known as the signer measurement.

We briefly summarize relevant details from Costan and Devdas’ study [CD16] in order to de-
scribe how Intel SGX securely loads enclaves and securely computes the above measurements.
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A part of the DRAM, known as the Processor Reserved Memory (PRM), is made inaccessible
to the OS, kernel, and peripherals, as it is passed through an encrypt-then-MAC function that
uses a hardware-bound SGX key. The PRM hosts a small Enclave Page Cache (EPC) that stores
enclave pages for multiple enclaves. The EPC contains a special page that the system software
cannot map enclave pages into. This page stores metadata about enclaves, in an SGX Enclave
Control Structure, or SECS. The trusted hardware platform loads the executable and the signa-
ture token into enclave pages in the EPC on the remote host. Enclave and signer measurements
are initialized correctly by trusted microcode instructions within the SECS. In other words, as
the untrusted OS cannot modify the SECS of the enclave, the platform provides the following
guarantees to a developer in the secure remote computation context: unless the unmodified en-
clave is loaded, the trusted hardware platform on the remote machine will not report the correct
enclave measurement. Secondly, unless the enclave’s signature can be verified by the verification
key in the signature certificate, the trusted hardware platform will not produce the correct signer
measurement.

We can now proceed to understanding the programming interface in depth and the complex
properties that can be obtained by trusting the SGX platform. Functions within an enclave are
known as ecalls. Importantly, the enclave designer may not call any system calls within an ecall
definition as these are handled by the untrusted kernel and are therefore not trusted to provide a
correct return value or return arguments. However, the enclave logic may require calling system
calls in order to perform I/O or network interactions. For this purpose an ecall may contain
calls to functions defined outside the enclave, that is, within the untrusted executable. Functions
defined within the untrusted executable that may be called into from within the enclave are known
as ocalls.

A key security aspect relevant to this partitioning of code into the enclave and the untrusted
application involves guarding pointers to arrays that are passed as input or output arguments to
ecalls and ocalls. The programming interface requires the programmer to specify sizes of all
input and output pointers. An SGX SDK sgx edger8r program adds wrapper functions to
ecalls and ocalls to ensure that:

1. Arrays referenced by pointers to untrusted memory that are passed as input arguments to
ecalls or as output arguments to ocalls are copied to the enclave’s EPC. This ensures that
the enclave obtains one consistent copy of the variables and avoids time-of-check-to-time-
of-use (TOCTTOU)3 attacks.

3This class of attack stems from a race condition that allows an attacker to change data after it has been checked
but before it has been used. In this context, if the array in untrusted memory were copied into the EPC each time it
was referred to, or, even worse, if it were not copied at all and just referenced directly from untrusted memory, then
the attacker could change the array between consecutive accesses.
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2. As an untrusted application cannot observe enclave memory, arrays referenced by pointers
to the enclave’s EPC that are passed as output arguments to ecalls or as input arguments to
ocalls are copied to untrusted memory.

The reader may refer to pages 7–18 of Intel’s official documentation for SGX [Int19b] for further
details about the programming model for Intel SGX and the pipeline for developing enclaves.

In addition to the above guarantee over the correctness of enclave and signer measurements,
the Intel SGX trusted hardware platform provides the following guarantees, which we use to
provide Mitigator’s main guarantee.

1. Sealing: An enclave can save long-term secrets to disk such that the untrusted OS cannot
obtain the plaintext secrets or modify them without being detected by the enclave, in a
process known as sealing.

2. Local attestation: An enclave A wishes to attest to a target enclave B that it is indeed an
SGX enclave that is specified by its enclave and signer measurements and is running on the
same machine. This attestation is done in the presence of an untrusted OS that can observe
and modify messages between enclaves.

3. Remote attestation: An enclave A wishes to attest to a developer that it is indeed an
SGX enclave that is specified by its enclave and signer measurements and is running on a
remote machine. Again, this attestation is done in the presence of an untrusted OS that can
observe and modify messages between the developer’s machine and the remote enclave.

In fact, Mitigator can be implemented on any trusted hardware platforms that provide features
equivalent to the above three features. We proceed to discuss sealing; the reader may refer
to Appendix A for details on how local and remote attestation are implemented within SGX.
Sealing is done by performing an encrypt-and-MAC operation on the plaintext data, using a
hardware-derived sealing key. Inputs to the sealing key can come from attributes of the enclave
in its SECS page and a hardware-infused key. We briefly summarize design choices relevant
to the sealing key [Int19b, pp. 28–32]; for further information on inputs to the sealing key, the
reader may refer to §5.7.5 of Costan and Devadas’s report [CD16]. The enclave designer may
specify, as inputs to the sealing key, the enclave measurement or signer measurement or both.
This choice controls the set of enclaves that can successfully decrypt or unseal this data. If the
enclave measurement is specified as an input to the sealing key, then the sealed data can only
be unsealed by other enclaves that have the same code. Such enclaves may be signed with a
different key from the one used to sign the enclave that sealed the data. On the other hand, if the
signer measurement is used as input to the sealing key, then the sealed data can only be unsealed
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by an enclave that has been signed with the same key as that used to sign the enclave that sealed
the data. Such an enclave may have a different enclave measurement; that is, different code.
To allow an enclave that has been updated recently for a security vulnerability and thus has a
different SVN, to unseal data that was sealed by it previously, the developer is allowed to specify
the SVN of the enclave, as input to the sealing key. Any version of the original enclave whose
SVN is greater than or equal to the one specified in the signature token can then unseal the data.

Finally, we observe that the Intel SGX platform has been repeatedly shown to be vulnerable
to side-channel attacks. For instance, Lee et al. [LSG+17] show that an adversarial OS can infer
enclave memory by inferring branches that have been executed in enclave code. Van Bulck et
al. [BWK+17] show that an adversarial OS can infer accesses to enclave memory based on page
table attributes and unprotected pages in its page tables. Van Bluck et al. [VMW+18] show
that simply out-of-order execution of enclave instructions, along with side effects in caches, can
be efficiently exploited by an adversarial OS to infer enclave memory. Defenses against side-
channel attacks on the Intel SGX platform remain an active area of research amongst the security
research community. For instance, Oleksenko et al. [OTK+18] propose restricting the adversarial
OS from sharing CPU resources on cores that are used to run enclaves. To defend against a class
of page-fault based and shared resource based attacks, Sasy et al. [SGF18] presents ZeroTrace,
which is a memory controller to ensure that accesses to outside memory from within an enclave
cannot be exploited to reveal data within the enclave.

Costan et al.’s Sanctum [CLD16] has been designed to minimize the attack surface and com-
plexity inherent in the design of the Intel SGX platform and to specifically protect against cache
and page-table based side channel attacks. Subramanyan et al. [SSL+17] present a formal ab-
straction of trusted hardware platforms and formally verify it to provide the core confidentiality,
integrity properties and a property to ensure secure measurement of enclaves. The Keystone
enclave project [LKS+19] is aimed at making open-source enclave designs that are resistant to
physical and software-based side-channel attacks and are formally verified. Our threat model
would be strengthened from research in defending enclaves against side-channel attacks. Fi-
nally, we remark that our design is general and can be implemented on other trusted hardware
platforms in the future. We use the Intel SGX platform for our proof-of-concept implementation.

2.3.1 Supporting complex applications in Intel SGX enclaves

Several tools have been proposed to support running complex applications within Intel SGX
enclaves. Arnautov et al.’s Scone [ATG+16], Tsai et al.’s Graphene-SGX [TPV17], Shinde et
al.’s Panoply [SLTS17] and Lind et al.’s Glamdring [LPM+17] are all intended to run complex
applications, in different frameworks in Intel SGX enclaves.
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Supporting complex applications within Intel SGX enclaves, while continuing to provide
guarantees of integrity of the code and confidentiality of the program state comes with two ma-
jor challenges: first, placing a large application into an enclave directly will drastically increase
the trusted computing base of the enclave, as a developer on a remote machine within the secure
remote computation context now has to trust that all code within an enclave is free of vulnerabili-
ties that can be exploited by an attacker to subvert the above guarantees. Therefore, applications’
source code should be partitioned into untrusted main application code and trusted enclave code.
Scone, Graphene-SGX, Panoply and Glamdring provide different programming models, some of
which support automatically partitioning an application into trusted and untrusted code. The sec-
ond main challenge in supporting complex applications within Intel SGX enclaves is to support
system calls without breaking the aforementioned confidentiality and integrity guarantees and to
do so while minimizing the TCB. To implement a system call, an ocall needs to be made to exit
the enclave and this ocall can then call the relevant system call within an implementation of a C
library. Graphene-SGX, Scone, and Panoply differ in the specific system calls that they support,
the size of the C libraries that they refer to for the system calls, if at all, and consequently, their
trusted computing base (TCB). We proceed to discuss these systems in detail with respect to how
they address each of these two main challenges.

Graphene-SGX has been designed to support running unmodified applications within Intel
SGX enclaves and therefore, all Graphene-SGX enclaves effectively contain only one ecall into
the starting point of the application. Consequently, sanitization routines to ensure input argu-
ments to an arbitrary ecall, like that included by the Intel SGX edger8r tool, are not included
within the Graphene-SGX setup. However, if developers decide to partition their application by
hand, then they need to manually [Tsa18a] include or reimplement such routines. Graphene-
SGX enclaves include all dynamic libraries that the application depends on. They also include
a manifest file which contains enclave configuration and security-relevant options. Graphene-
SGX essentially builds support for Intel SGX enclaves on top of the Graphene library OS, which
implements the Linux API by including system call wrappers over system calls exposed by the
standard C library (glibc). As it includes a modified version of the standard C library within each
enclave, Graphene-SGX has the largest TCB as compared to Panoply and Scone. A Graphene-
SGX enclave can be configured to mount file systems and to access files within the mounted
filesystem. Authenticated files are supported on Graphene-SGX by requiring the enclave devel-
oper to compute a hash of the file safely on their machine, mark the file as a trusted file within
the manifest, and include its hash within the manifest. Graphene-SGX’s system call wrapper for
opening a file loads a trusted file into the enclave memory, computes its hash and ensures that it
is the same as that in the manifest. The manifest can also contain files that are marked as allowed
files, implying that their integrity is not checked at runtime. Graphene-SGX includes a somewhat
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secure4 implementation for the fork and exec system calls and supports enclaves that launch a
predetermined number of threads, as was the case with the first version of the Intel SGX SDK.
We remark that shared memory[Tsa18b] is not supported in the current version. In its current
version, Graphene-SGX also does not provide support for local or remote attestation [Tsa17] and
sealing [Isa18] for enclaves.

Similar to Graphene-SGX, Scone is intended to run unmodified applications within an SGX
enclave. The authors intend for it to be used in a microservice-based architecture [Sco19a],
wherein a large application consists of partitioned, single-process components in the form of
several smaller microservices that interact with each other. They do not include any auto-
mated partitioning tools within their system. Dynamic libraries that are classified as protected
are integrity-checked at runtime, similar to trusted files in Graphene’s manifest. They provide
sealing-based file encryption [Sco19b] as well as a centralized service, known as Configuration
and Authentication Service (CAS) [Sco19c], to conduct local attestation with microservice en-
claves and thereafter, to grant these enclaves with certificates to authenticate themselves to a
developer on a remote machine. Their current design does not support [Sco19d] the developer
in conducting remote attestation with the CAS in order to authenticate it; instead, the developer
authenticates it based on the X.509 certificate shown as a part of the TLS connection to it. In this
case, the developer needs to trust that the CAS does not exfiltrate the TLS private key outside of
its enclave. Like Graphene-SGX, Scone supports up to a predetermined number of threads, but
also efficiently multiplexes application-level threads such that they incur minimal latency while
waiting for system call returns. Scone does not support the fork-related system calls.

Glamdring and Panoply both work within the model of the native Intel SGX platform with
an untrusted application and trusted enclaves. Shinde et al. and Lind et al. [LPM+17] propose
somewhat different automated ways to partition a large application’s codebase using developers’
annotations and static source code analysis to identify relevant functions and variables that should
be put within the enclave. Shinde et al.’s partitioned enclaves are known as microns. Microns
can be configured to share memory amongst each other and can be created on demand in order
to support a dynamic number of enclave threads, even though the native Intel SGX SDK only
supports a static number of threads. Shinde et al. do not include the C library within their TCB at
all, as they intercept calls to the standard C library. They do include support for securely forking
an enclave and as they work within the native SGX platform, the Intel SGX SDK libraries for
local and remote attestation and sealing can be used by microns to implement these SGX-specific
functionalities. As illustrated in their case study for porting the OpenSSL library to Panoply, parts
of dynamic libraries can be run as microns, and the invoking application code can be modified

4The current implementation[Kuv18] of the fork system call transfers the image of the parent process to another
enclave over an insecure channel and later authenticates the enclave.
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Table 2.1: Comparison of platforms that support running complex applications within Intel SGX:
- indicates no support, indicates partial support, and indicates full support.

Feature Scone Graphene-SGX Panoply
Unmodified applications -
Fork -
Threads
Local attestation -
Remote attestation - -
Sealing -

slightly to use Panoply’s API to securely obtain the results of running functions within the library
micron.

Importantly, support for running system calls as ocalls outside an enclave opens up the pos-
sibility that a malicious OS could tweak the return values of system calls to any other values,
which can in turn lead to arbitrary code execution5 Checkoway and Shacham [CS13] discovered
this general class of attacks; they are known as Iago attacks. As Checkoway and Shacham illus-
trate, an adversarial OS could pass a pointer to a stack location instead of a heap location as a
return value to a malloc call, resulting in arbitrary code execution. A defence against Iago attacks
would require checking the returned values to ensure that a malicious return value is prevented
from adversarially manipulating the control flow of the application. In Glamdring, the authors
simply check the return value of the system calls against statically inferred return values. This
does not protect against memory system call-based Iago attacks. Graphene-SGX, Panoply, and
Scone include shields for system calls that return static as well as dynamic values, but do so for
different fractions of the exposed system call interface. We summarize all design and security
features that we have discussed so far for Scone, Graphene-SGX, and Panoply in the table below.

As we can see from Table 2.1, Panoply supports all of the relevant features, other than running
applications without requiring any modifications. Additionally, as we remarked earlier, it has the
smallest trusted computing base (TCB). We chose to use Graphene-SGX for Mitigator as we
wanted to run multi-process unmodified applications within SGX. As we discuss in Chapter 5,
we found that adapting Intel SGX SDK’s libraries for local attestation and sealing was relatively
feasible. Moreover, avenues remain open for adapting Panoply, Scone, and other platforms with
lower TCB and/or more support for general-purpose applications with threads or forks, to work
in future versions of Mitigator’s implementation.

5It can also, of course, not respond to a system call and cause a denial-of-service on the running code. As
mentioned in Section 4.1, providing availability is outside Mitigator’s threat model.
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2.4 Secure browser-to-user interfaces

Mitigator encrypts plaintext form field values to a verified server-side enclave. Other privacy-
preserving browser extension systems also encrypt form field values to minimize the amount of
plaintext data collection by websites, such that only other trusted or verified code can decrypt
them. He et al. [HAJ+14] proposed a browser extension, named ShadowCrypt, to provide en-
crypted textual inputs to client web applications, effectively minimizing the amount of plaintext
data that can be used by these applications to profile the user or to send to unauthorized third
parties. Krawcieka et al. [KKP+18] propose SafeKeeper, which encrypts users’ passwords to a
trusted enclave on the server side. Users of such systems should be able to securely provide input
to these fields in the face of untrusted scripts on the webpage or in malicious browser extensions.
First of all, such untrusted scripts should not obtain the plaintext form field data. Secondly, in
case the system is under attack, the attack should be detected and the webpage should not be
changed to appear as if it was safe to enter form field data into. This avoids users from being
misled into a false sense of security. We proceed with an analysis of the user interface designs
proposed by these two systems, their drawbacks as presented in recent literature, and finally, the
state-of-the-art approaches to overcome these drawbacks.

In both Krawcieka et al. and He et al.’s designs, symmetric keys used for encryption were
stored within the extension and as browsers sandbox extensions and webpages separately, these
keys could not be accessed by dynamic Javascript code on the website. He et al. used a new
W3C standard was designed at that time, known as Shadow DOM, to enforce a boundary be-
tween users’ plaintext data and the corresponding ciphertext, such that the former could only
be accessed by the extension or, alternatively, that webpage scripts could only access cipher-
text. ShadowCrypt’s design involved making changes to the webpage for two purposes: to cap-
ture users’ plaintext data securely and to provide feedback back to the user about this through
changes in the website’s appearance. Freyberger et al. [FHA+18] presented an attack on Shad-
owCrypt which demonstrated that changing the webpage for these purposes was insecure, in that
untrusted scripts on the webpage could capture users’ plaintext data and also mimic changes in
the appearance of the webpage to mislead users into believing that they were providing inputs to
the genuine ShadowCrypt extension. Their attack worked even in case the Shadow DOM bound-
ary worked as intended. We proceed to discuss He et al.’s ShadowCrypt design features; that is,
the Shadow DOM and the user interface, and Freyberger et al.’s attack.

A Shadow DOM is used to encapsulate the Document Object Model of a given element’s
subtree, in the form of a Shadow DOM tree. The Shadow DOM tree is attached to the given
element, which is now known as a Shadow host. We remark that the browser renders the inner,
encapsulated shadow DOM element in place of the shadow host. Secondly, a shadow DOM tree
object can be prevented from being accessed by the shadow host, by setting relevant properties
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at the time of its construction. He et al. use these two features of Shadow DOMs as follows: they
detect text input elements on a webpage form and attach a Shadow DOM to each such element,
thereby making the element a shadow host. Due to the first feature, users will see the shadow
DOM tree object. Users are expected to ensure that they see a genuine shadow DOM tree field,
based on its appearance, such as the border colour, highlight, small icons next to it, and if so,
they are to enter plaintext data into it. Using the second feature, the plaintext form field data is
made inaccessible to webpage scripts; the latter only obtain ciphertext data.

One of the aspects that Freyberger et al.’s attack relied on was the lack of complete mediation
of all text input fields, which Freyberger et al. agree is difficult to provide. In particular, this
allowed an untrusted webpage script to place a transparent text input field, which would not be
detected by ShadowCrypt, over the Shadow DOM tree field in order to steal the users’ data. Sec-
ondly, any changes in the appearance of the shadow DOM tree field can be replicated or imitated
over the untrusted field. It is evident from Freyberger et al.’s user study on the stealthiness of this
attack, that expecting a user to confirm that the browser extension functions correctly, through
aforementioned in-page visual indicators, is not viable.

It is evident that a design that allows untrusted scripts on the original webpage to somehow
overlay form fields over the intended ones in order to capture plaintext data and mimic their
behaviour is potentially suseptible to Freyberger et al.’s attack. For instance, Freyberger et al.
discuss utilizing sandboxed iframes6 to present form fields to capture users’ plaintext data, and
remark that untrusted scripts on the webpage can spawn new iframes that can transparently over-
lay on top of the existing iframes and thereby steal users’ data.

Krawcieka et al. propose a user interface design that is similar to He et al.’s in that it involves
overlaying a form field over the original field to capture users’ plaintext and as they rightly
observe, is susceptible to an attack like Freyberger et al.’s. They also present another design to
overcome this drawback, that requires the user to click on the browser extension’s icon, which
then results in opening up a pop-up browser extension window, where the user can enter the
plaintext form field data. With the user-initiated interaction with the browser extension icon, an
untrusted webpage script or an untrusted extension cannot observe whether the user has clicked
on the SafeKeeper icon, or, observe or modify the plaintext form fields that the browser extension
scripts on the pop-up receive. Most importantly, the webpage script cannot overlay a field over
the browser extension pop-up, therefore rendering Freyberger et al.’s attack, in its current form,
useless against their design. However, in this design, users would need to be trained to only
enter plaintext data in SafeKeeper’s browser extension pop-up and this pop-up would not have

6Iframes are HTML tags that open another window within the current window, in order to load content from
another website. Using sandboxing, a new iframe can be loaded with the same URL as that of the original webpage
and yet made to appear as if it came from a different origin.
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the same look and feel as the original webpage. We use Krawcieka et al.’s design within the
Mitigator implementation, as we discuss in Chapter 5.

2.5 Summary

In this section, we have discussed existing natural language processing-based tools for privacy
policies and shown how they can be used within Mitigator to obtain a privacy policy model.
We have also examined how source code analysis tools have been used in conjunction with the
above tools to identify privacy policy violations on smartphone apps and can similarly be used to
detect privacy violations for websites. Our discussion of trusted hardware platforms in general
and the Intel SGX platform in particular has laid down concepts necessary to understand other
systems aimed at addressing similar problems as ours, as well as our design. We conclude with
observations from recent literature on implementing secure browser-to-user interfaces, which we
apply later on in Mitigator.
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Chapter 3

Related work

In this chapter, we discuss several systems that have been proposed to assess whether companies’
source code is compliant to its internal standards or to external standards, such as legislation, pri-
vacy policies, or user-specified settings. We begin with an analysis of trust-based compliance,
that is, trusting that an organization does what it claims to do by having a trusted third party ver-
ify its data handling practices in Section 3.1. We proceed to describe the P3P machine-readable
privacy policy model and analyze its drawbacks, which emphasize the need for systems that en-
sure compliance of server-side code with the advertised privacy policy or privacy policy model.
We then discuss systems that organizations may deploy to ensure compliance of applications run-
ning on its machines to internal or external standards. We finally describe systems that perform
privacy-relevant operations, such as the aforementioned compliance check, on trusted hardware
platforms, and use architectures that provide feedback to users of successful execution of pro-
gram(s) that perform these operations. We conclude with thorough comparisons of these systems
to Mitigator.

3.1 Trust-based compliance — internet seals

Various organizations grant verifiable icons known as seals to websites that fulfill their security
or privacy standards, in order for the latter to assure website users of the security of their data or
of the website providers’ data handling practices. We start with a brief description of the current
systems used by one of the most prominent internet-seal granting companies and then proceed
to summarize shortcomings of seals, going by its historical failings, economic analyses by other
experts, comparison of its seals with other representations derived from the natural language
privacy policy, and importantly, its (mis)interpretations by users.
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TrustArc, previously known as TRUSTe, provides a seal known as Enterprise Privacy Cer-
tification [Tru19b] to enterprises through a three-stage assessment, certification, and monitor-
ing procedure. The current assessment procedure engages human experts, rather than any au-
tomation, to help an existing team identify the flow of users’ information. Secondly, a pro-
gram [Tru19a] aimed to guarantee that a website is compliant with privacy regulations, only
monitors the customers’ website through scans for trackers, cookies, and so on. In other words,
it does not mandate analysis of the source code before issuing the seal for this program.

Historically, internet-seal issuing businesses have often granted seals without performing
stringent checks on organizations. For instance, TrustArc (under its previous TRUSTe name)
gave such a privacy seal to the Choicepoint data broker service, which trades personally identifi-
able information of thousands of people and organizations with businesses and law enforcement
agencies. Choicepoint then suffered a data breach [McW02], when an internal database was
released online without any authentication. Dangerously, TrustArc has relied on its customers’
claims of compliance to their standards, whilst issuing seals, and thereby to relevant legislation.
Consider the case of websites that are marketed towards children: these should not contain any
online trackers or perform any behavioural advertising as these actions would be in violation of
the Children’s Online Privacy Protection Act (COPPA) of the United States. TrustArc’s then
informal process for its Children Privacy Program included ensuring that both of these compo-
nents were absent from its customers’ websites. However, its scans were malformed and did not
check most or all webpages of its customers organizations and additionally, in some instances,
TrustArc failed to make results of such checks available to its customer enterprises [Lew17].
Such a history of internet-seal issuing businesses illustrates that seals issued by such businesses
may not be trustworthy in contemporary times.

In fact, Greenstadt and Smith [GS05] posit that as internet seal-issuing organizations are
for-profit organizations that charge fees for granting seals to organizations, seals suffer from
the economic phenomenon of capture. They explain that such a business is disincentivized to
place more checks on an online business’ data practices in order to obtain a seal, as existing
online businesses would refuse to continue their business contract with the seal business, thereby
reducing the latter’s customer base. This has been recognized by Greenstadt and Smith as a dis-
incentive for seal-issuing organizations from increasing the stringency of its standards. Harkous
et al. [HFL+18] design privacy icons by extracting and interpreting privacy-relevant natural lan-
guage clauses from the privacy policy and compare these with similar icons assigned by TRUSTe
and Disconnect [Dis14] for the same websites around the same time. Both sets of icons contained
one of three colours: red, yellow, or green. The results of their comparative study can be seen as
substantiating Greenstadt and Smith’s hypothesis: they found that the distribution of icon colours
for their icons match those assigned by TRUSTe only when they assigned safer (green) labels
for very permissive interpretations of the privacy policy clauses. Therefore, such seal-granting
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businesses can be considered to be too lax in the standards that they expect their customer busi-
nesses to follow and as a consequence of this, seals may easily mislead users into a false sense
of security.

In particular, not only have seal-granting businesses been found to follow lax policies in
granting seals, users have been found to have misconceptions about the interpretations of seals.
Kirlappos et al. [KSH12] conducted a study wherein participants were to browse a small set
of shopping websites, which were split into two sets containing original websites and modified
ones with additional seal images, for a particular item in a short time duration. They were to then
assign ratings to these websites, corresponding to how much they trusted the websites to buy the
item. The authors found that about a third did not notice seals on any of the websites and out of
those that did, none verified their integrity. They found a positive, significant correlation overall
between ratings for a website with a seal, versus for the website without the seal. Following the
study, when participants’ attention was drawn to the seals and when they were asked about their
interpretations of the seals, about 12% of participants described seals as indicating that a website
was legitimate, as they had seen other websites with such seals. The authors highlighted that
”spillover” of trust leaves users vulnerable to mimicry attacks, wherein untrustworthy websites
simply place such seals to trick users into believing that they are trustworthy. Therefore, it is
evident that users may hardly notice seals and alternatively, they may consider a website as
being trustworthy as it contained a seal that was also present on another, possibly more popular
website (spillover of trust).

Mitigator enables providing users a guarantee based on the source code that operates on
users’ data, thereby bypassing the economic problem of capture faced by for-profit seal organi-
zations. In general, any open-sourced program that can check the source code of the website,
from a model derived from its privacy policy, can be used in Mitigator. In other words, Mitigator
derives a signal of compliance that is only influenced from the source code of websites.

Secondly, Mitigator does not indicate this signal of compliance by embedding it within the
webpage itself and it thereby avoids the simple mimicry attack which involves placing a Miti-
gator “seal” within a non-compliant webpage. Instead, Mitigator indicates this signal through
a browser extension that we specifically design — based on current state-of-the-art research in
secure user-to-browser interfaces — to not be mimicked even by other untrusted scripts on the
webpage, let alone by other websites. In other words, if users see a prominent website as being
supported by Mitigator and another less prominent website as also being supported by Mitiga-
tor, then the latter website must, indeed, be supported by Mitigator as it cannot have forged
Mitigator’s signal of compliance from the former website.
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3.2 P3P: Machine-readable privacy policy models and
the need for ensuring compliance

P3P [CLM+02] was deployed to be a format for machine-readable privacy policies that were
to be processed by users’ browsers. Users were to configure their own P3P policy within their
browser and the browser would ensure that a website that a user visited had a privacy policy that
was at least as restrictive as the user’s. The browser that deployed P3P would block the website
from setting cookies on the user’s machine if its privacy policy was not as restrictive as the
user’s. Since P3P was developed, much research has gone into alternate forms of representation
of privacy policies: for instance, Kelley et al.’s [KBCR09] nutrition labels, and various proposals
for privacy icons, such as Harkous et al.’s [HFL+18] icons based on Polisis and Raskin et al.’s
proposal for privacy icons for Mozilla [Ras10].

P3P has had a low adoption rate among websites at the time of its deployment and as Cra-
nor found, it suffered from several deployment-relevant setbacks [Cra12, pp. 296–299]. For
instance, the Internet Explorer browser did not check the syntactical correctness of P3P poli-
cies and simply disallowed policies based on certain terms in its blacklist. To prevent cookie
blocking, website owners would copy syntactically incorrect P3P policies from other websites
and blogposts in order to force P3P user agents in browsers to accept their policies. As Cannor
concluded and as noted in the W3C standard for P3P, it was impossible to enforce that web-
sites’ P3P policies are representative of the websites’ actual practices. She notes this as a reason
why P3P’s “privacy-by-policy” paradigm, which required website owners’ diligence in posting
accurate P3P policies, had to be complemented with a “privacy-by-architecture” paradigm that
ensured only anonymized data would reach website servers or that most users’ data would be
processed locally on their own machines.

For instance, He et al.’s [HAJ+14] Shadowcrypt, which we discussed in Section 2.4, falls
neatly in Cranor’s classification as a “privacy-by-architecture” approach. It is based on the ob-
servation that web applications that provide text-editing and sharing services such as calendar
tools, document and spreadsheet-sharing services, etc., do not need to know the data that users
enter into text fields. Therefore, in their browser extension, they simply encrypt plaintext data
entered by users into text fields to the extension itself. While this approach may minimize the
amount of plaintext data available to such websites, it cannot be generalized to websites that
operate on users’ data, such as shopping or search websites. Mitigator supports such websites
as well, by ensuring that the operations that their source code performs on plaintext data are
compliant with a privacy policy model, before handing over this plaintext data to the source
code.
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It can be said, therefore, that Mitigator represents a design point in the middle of Cranor’s two
paradigms: website companies can, and should, work towards minimizing data collection. How-
ever, Mitigator provides guarantees even if the website provider collects and processes users’
data on their server-side machines. Even though implementing privacy-enhancing tools within
their website back end is complementary to Mitigator, Mitigator supports demonstrating to a user
that the company is provably implementing such tools, as long as their correct functionality can
be checked statically. Therefore, even though both P3P and Mitigator give users control over
whether to send their personal data to a website, P3P bases the decision on whether the website’s
claimed privacy policy matches the user’s preference, whereas Mitigator bases the decision on
whether the website’s backend source code matches its claimed privacy policy.

3.3 Systems for internal compliance

The Enterprise Policy Access Language (EPAL) [AHK+03] was designed to ensure compliance
of programs that processed users’ personal data within an organization with internal policies that
were not known to users. They were also designed to ensure compliance when the data was
transferred to third parties. We discuss two systems that have been developed since the proposal
of EPAL to ensure compliance of programs running within an organization’s servers to either a
privacy policy model [SGD+14] or user-specified privacy-relevant settings [EMV+16].

Sen et al. [SGD+14] present Legalease, a first-order representation of privacy policies. Pred-
icates in Legalease are over lattice encodings of user data types and operations, such as usage
for a given purpose or sharing. Legalease can be used within Mitigator to encode textual pri-
vacy policies to a model. The authors follow a partially manual process to annotate data items
with their types and scripts with the operations that they perform on users’ data. This partially
manual annotation then enables them to instrument an existing big data processing system for
the search engine Bing, with an information flow tracking tool named Grok. Grok outputs the
results of its data flow analysis across the entire distributed system to a policy checker. The
policy checker then compares this output against the Legalease encoding of the privacy policy to
report scripts that violate the privacy policy. Mitigator and Grok are similar in that they intend
to achieve compliance of source code with a privacy policy model and to identify code that does
not comply with the privacy policy. Elnikety et al. present Thoth [EMV+16], a reference monitor
to mediate all system calls for files, that enables implementing access control policies derived
from user-specified settings. Giffin et al. present Hails [GLS+12], a web framework that ex-
tends the Model-View-Controller paradigm with mandatory access control, implemented using
type constraints native to the functional programming language Haskell. Their framework allows
implementing privacy policy constraints over Model-View-Controller web framework programs
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in the form of access control policies. Thoth and Hails are similar in that they remove the
programmers’ burden of maintaining access control-like policies scattered throughout different
programming languages that implement the website (Thoth) or various source code units of one
language (Hails) and instead group all such policies into a separate, configurable unit.

In contrast with both Grok and Thoth, Mitigator does not involve any runtime checks on
users’ data. Similar to Mitigator, Hails effectively implements static checks on the program. Im-
portantly, in contrast with Grok, Thoth and Hails, Mitigator has a stricter threat model, namely
that of an adversarial OS and therefore, a smaller trusted computing base (TCB). Thoth, for in-
stance, requires trusting the reference monitor, a kernel module, and the rest of the Linux OS.
Even though Hails checks the website’s source code files against the access control policies, a
successful check is only meaningful if the website source code is not somehow replaced with
malicious source code at runtime, thereby effectively requiring users to trust the programming
language interpreter and the entire server-side OS. Mitigator anchors trust in a subset of the hard-
ware and thus does not require trusting the OS. Finally, as it stands, users of a Grok/Legalease
or Thoth system do not know of its existence as these systems do not provide users feedback,
whereas Mitigator is designed such that users of a website that has deployed it can easily know
of its existence. Furthermore, we design Mitigator to also prove to users, basing trust on the
smaller TCB, that it is functioning correctly. Thus, the equivalent of the above file replacement
attack on a Hails-supporting system will be detected in Mitigator. We proceed to discuss other
related privacy-enhancing systems built with trusted hardware.

3.4 Trusted hardware platform-based compliance systems

Trusted hardware platforms, including Intel SGX, have traditionally been designed to implement
Digital Rights Management (DRM) tools that enforce restrictions on what consumers of digital
media can watch. Korba and Kenny [KK03] proposed appropriating a DRM system on the
server side to implement users’ preferences over the usage and transmission of their data through
a Privacy Rights Management (PRM) system. These two tasks are performed within a PRM
server, with the user being able to configure this component through a web interface.

More concretely, Maniatis et al. [MAF+11] propose Secure Data Capsules: data capsules
that contain data items along with a provenance log of operations conducted on them and a
set of policies that determine who can read, update, or declassify the data items. Maniatis et
al. conceptualize a Secure Execution Environment (SEE) unit on a trusted hardware platform
that consists of unmodified, legacy applications and a reference monitor to monitor system calls
made by the application to access or modify data. Users authenticate themselves to the SEE
through an authentication manager that is also run within the trusted hardware platform. The
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SEE reference monitor communicates securely with a capsule manager, based on attestation,
to request data items on behalf of the authenticated user. We have seen that Elnikety et al.’s
Thoth is a reference monitor-based information flow tracking system. Maniatis et al.’s Secure
Data Capsules envisions such a reference monitor-based information flow tracking system within
a trusted hardware platform. Mitigator differs from Secure Data Capsules in that it supports
privacy-policy compliant processing of users’ data in the context of websites, that is, when the
user does not directly interact with the trusted hardware platform and nevertheless, provides
users proof of only allowing privacy-policy compliant applications to access their data. Secondly,
rather than denying access to users’ data to an application at runtime, we check the application’s
source code for, and enforce compliance to, the privacy policy beforehand, through static source
code analysis.

Kannan et al. [KMC11] present Secure Data Preservers to allow users to process their data
with their own privacy-preserving programs, known as preservers on a virtual machine (VM) or
on a trusted hardware platform on server-side machines. They present several small programs,
among which one anonymizes users’ data by pooling it with data in other preservers. A user
can dictate a hosting policy that is required to hold true on a server side machine for it to be
able to instantiate and run the user’s preserver. In particular, the user communicates with a base
layer that is situated on a VM or a trusted hardware platform. If the user requires the server-
side machine to have a trusted hardware platform in its hosting policy and it does, then the base
layer on that machine performs remote attestation with the user and consequently, the user hands
over its preserver over the established secure channel. Interestingly, Kannan et al. also support
applying preservers as users’ data crosses organizational boundaries, as follows: the base layer
performs a two-sided remote attestation with a similar base layer that satisfies the user’s hosting
policy and transfers the preserver to it. The base layer is trusted to also implement user-defined
invoking policies, that determine who can invoke the preservers’ interfaces, thereby effectively
implementing an access control layer over them.

As Kannan et al.’s preservers are designed to be lightweight, they contribute little to the TCB
in comparison to the base layer. However, as a preserver is created for each user, this design
requires significant memory: for instance, following extensive deduplication of VM pages across
preserver VMs for users that share preservers, they found an example preserver to take about
10 MB. This is a significant barrier for preserver hosting policies that require trusted hardware
platforms like Intel SGX: as the EPC is very limited in size (90 MB), only a few preservers can be
run on the same machine. Moreover, in the absence of further experiments, the runtime latency
costs for instantiating and running a preserver on a trusted hardware platform as per the above
process, which involves the base layer, are unknown.

Most closely related to Mitigator in the context of privacy-preserving browser extensions is
Krawcieka et al.’s [KKP+18] SafeKeeper. Like Mitigator, through the use of an authenticated
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trusted hardware enclave on the server side, SafeKeeper provides evidence of its integrity to a
remote user. The authors cater to the problem of protecting passwords against compromised
servers, which may be susceptible to offline and online guessing attacks, as well as phishing
attacks. They run an enclave that establishes a secure channel with the SafeKeeper browser
extension through remote attestation. The browser extension may then verify SafeKeeper’s server
side enclave’s enclave and signer measurements from the remote attestation quote and thus assure
a user that a valid SafeKeeper enclave is running on the server side.

A SafeKeeper enclave accepts an encrypted password and a randomly generated salt as inputs
to an ecall that first decrypts the password with the remote attestation-based session key with the
client. It then computes a CMAC [Dwo16] over the plaintext password and the salt, using its
key. If the user wishes to set a password, then the CMAC output is stored in the password
database. Otherwise, it is compared to the CMAC for the corresponding salt in the database.
Therefore, SafeKeeper stores the CMAC key using a trusted hardware platform such that a rogue
or a compromised server cannot guess the passwords, while simultaneously assuring the user of
the existence of a valid SafeKeeper enclave through remote attestation. We observe, however,
that the passwords are modified in an irreversible manner, through the computation of the keyed
CMAC and desirably so. Mitigator generalizes SafeKeeper in the sense that general operations
on incoming encrypted data from clients are supported as long as these operations are compliant
with the displayed privacy policy.

Birrell et al.’s work [BGR+18] in the context of enforcing use-privacy is similar to Mitigator
in that they run the target application that processes users’ data and a trusted program to enforce
compliance of the target application with policies, within Intel SGX enclaves. Specifically, the
authors work within a model where the trusted program safeguards access to a data store. The
trusted program is a reference monitor that contains a predefined policy store, with a mapping
of each target application enclave, as defined by its enclave and/or signer measurement, to its
expected purpose of use of its inputs. Within the source monitoring model, the target enclave
requests a remote monitor for a specific data item d, for a claimed purpose of use P along with a
remote-attestation based quote q. The monitor first verifies the quote and then compares P and q
with the values specified within the use-based policy for that data item d.

Although Birrell et al.’s model may seem similar to ours at the first glance, there are funda-
mental differences: first, we enable mediation of users’ data as it is collected by a target website,
rather than after it has been consolidated into a data store. Their paradigm of use-privacy only
focuses on various uses of data, whereas we enable detecting privacy violations other than the
secondary use violation. Second, as described in the context of Secure Data Capsules, our sys-
tem’s design does not involve performing runtime checks on and tracking of data that flows into

28



an application or an enclave: instead of maintaining a policy store1 and a runtime monitor, we
offload the task of ensuring compliance of the target application to another enclave on the re-
mote machine. As long as static analysis based tools can detect all violations of the privacy
policy model, we present an approach that only involves a one-time check with each update in
the source code of the target application. To achieve compliance, developers need to state opera-
tions on users’ data in a privacy policy that is accessible to users and indirectly, to minimize the
amount of data collected in the first place. Finally, we support users in knowing that our system is
correctly functioning on the target website. We do so by providing the client enough information
to ensure that the users’ data is handled by a target enclave that is compliant with the displayed
privacy policy, as checked by a genuine, open-source program. On the other hand, Birrell et al.
do not include any mechanisms to provide feedback of the existence of their systems to a remote
user. We contrast elements of the design of their schemes against our design in Chapter 6.

3.5 Summary

In summary, we have described how trust-based compliance through internet seals are inadequate
in giving users reliable signals of compliance of organizations’ server-side applications with
the privacy policy. Through our summary of P3P and its drawbacks, as reported by experts
in related literature, we have established that machine-readable privacy policy models do not
mandate website providers to ensure compliance of their source code with the advertised privacy
policies. On the other hand, systems for ensuring compliance internally, within an organization,
to privacy policy models or privacy-relevant settings do not provide a feedback signal to users of
their existence or efficacy. Finally, we examine related work that anchor users’ trust in hardware
platforms to deploy privacy-preserving programs on their data on such platforms on the server
side.

1The policy store mappings need to be updated with the expected measurements of a given target enclave fol-
lowing each update in the latter, resulting in a high maintenance cost.
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Chapter 4

Model and design

Mitigator aims to provide a trustworthy guarantee to users that only website source code that
complies with its privacy policy can obtain access to their form data. Our utilization of the Intel
SGX trusted hardware module in Mitigator’s server-side components is central in providing this
guarantee. We begin this chapter with a bottom-up approach to motivate Mitigator’s server-side
and client-side architecture. We do so by beginning with a simple application of the guarantees
provided by a trusted hardware platform to our scenario of ensuring and illustrating compliance
of the website server code with its privacy policy.

We start with a program that given the privacy policy file and source code files for the target
website as inputs, checks the source code files for compliance with the privacy policy text. Inter-
nally, this program may convert the privacy policy text into an appropriate model, using one of
the methods outlined in Section 2.1. It may then provide this model as an input to a source code
analysis routine, such as the ones discussed in Section 2.2, that would check that the source code
files handle users’ data as per this model.

We now switch to the context of trusted hardware platforms and we start with reiterating
our trust assumptions. We assume confidentiality of the program state of a program running
within a trusted hardware platform and integrity of the program. In particular, evidence of the
integrity of the program is given through local or remote attestation. We assume that if the correct
enclave and signer measurements are reported through local or remote attestation, then only the
instructions of the intended enclave executable and no other instructions have been loaded into
the enclave.

The usual secure remote computation use case for trusted hardware platforms involves the
client as the enclave developer, who generates and signs over the enclave executable on a trusted
machine. We use the trusted hardware platform for a different use case: we wish to sign an

30



enclave, say enclave B, from within another enclave, say enclave A. Specifically, enclave B is
an enclave that runs the website server, which in turn runs some source code files and supplies
a privacy policy file. Enclave A runs the verifier program on these source code files and the
privacy policy model file. The verifier program is extended to produce a signature over the
aforementioned files and the website server executable only if it finds them to be compliant. We
assume that this verifier program is sound, but not complete. In other words, it will only produce
a signature over the target enclave if it is compliant with the privacy policy. As the verifier
program may be incomplete, it may wrongly deny signing valid target enclaves. We observe that
this affects the usability of our tool by developers as they will need to simplify or annotate the
target enclave source code or privacy policy model until the verifier program accepts the target
enclave as valid with respect to the privacy policy model. We start with a strawman scheme in
order to motivate our proposed design.

A strawman scheme: At this point, we have two programs running on the website pro-
vider’s untrusted machines; we refer to enclave A as the verifier enclave1 and enclave B as the
target enclave, such that the verifier enclave has signed the target enclave. The client computes
the enclave measurement of an open-source verifier enclave. It then performs remote attestation
with the verifier enclave and ensures that its enclave measurement, as reported in the quote, is
what it expects from the open-source version. In the secure channel established through remote
attestation, the verifier enclave sends the signer measurement of a target enclave, that is, it en-
crypts this signer measurement to the client using the symmetric key established through remote
attestation. A vulnerable or malicious program on the untrusted machine, or even the operating
system, cannot learn the remote attestation-based key as it will be stored within the verifier en-
clave. Without this key, these parties cannot modify this message without being detected by the
client.

Therefore, following this remote attestation with the verifier enclave, the client learns the ex-
pected signer measurement of a valid target enclave. The client then performs remote attestation
with the target enclave and ensures that its signer measurement is the same as that sent by the
verifier enclave. The client now sends the user’s form field data to the target enclave over this
channel. In other words, the client encrypts the form field data to the target enclave using the
symmetric key established through remote attestation. Again, as the untrusted operating system
on the remote machine cannot recover the symmetric key from within the target enclave, the
user can be assured that only a valid target enclave will process their form field data. Moreover,
based on the aforementioned soundness assumption, namely that the target enclave is assumed

1Even though we borrow terminology from the Intel SGX platform for programs running within a trusted hard-
ware platform, our design remains general across trusted hardware platforms that provide the aforementioned guar-
antees.
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to be compliant if the verifier enclave has signed it, the user can be assured that their data will be
processed (by a target enclave) in a manner compliant with the privacy policy.

We remark that the client must perform remote attestations with both verifier and target en-
claves before sending any form field data. If the client only performs attestation with the verifier
enclave, then the following stealthy attack is evident: the untrusted OS may simply sign and run
its own non-compliant website server enclave, which may perform privacy-invasive operations
on the user’s data, instead of the compliant target enclave that was signed by the verifier enclave.

Some inefficiencies: The above scheme is quite inefficient as it would require the client to
perform two remote attestation protocols with two server-side enclaves, before submitting any
form field data. We make the following observation that leads us to an improved design which
only requires the client to perform one remote attestation per website. Through the second remote
attestation, the client essentially authenticates the target enclave, based on its signer measurement
that it obtains from the verifier enclave through the secure channel established from the first
remote attestation with the latter. We can simply offload this task of authenticating the target
enclave to another enclave on the website provider, which we refer to as the decryptor enclave.
This leads us to our improved design.

Mitigator design: For both of the target and verifier enclaves, in case when the decryptor
enclave is on the same machine as the given enclave, it performs local attestation with that
enclave. Otherwise, it performs remote attestation with it. Guarantees provided by this design are
not dependent on whether the decryptor enclave is on the same machine as the other two enclaves
or not. For simplicity, we suppose that the verifier, target, and decryptor enclaves are all on the
same machine. In this case, the decryptor enclave performs local attestation with the verifier
enclave and obtains the expected signer measurement of the target enclave. It then performs
local attestation with the target enclave, and checks that the reported signer measurement is the
same as that sent by the verifier enclave. It follows that local or remote attestation results in a
secure channel between the two attesting enclaves — in this case, in between the decryptor and
the target enclave, as well as between the decryptor and the verifier enclave — but not between
the client and the decryptor enclave. Therefore, it is necessary in this revised design that the
client knows the expected enclave measurement of this decryptor enclave and performs remote
attestation with the decryptor enclave to check that its enclave measurement is what the client
expects it to be. Following the remote attestation, the client can use the shared secret established
through it, to encrypt the users’ form data to the decryptor enclave. As its name suggests, the
decryptor enclave simply decrypts the data and re-encrypts it to the target enclave.

Unlike the simple protocol, in the above protocol, the client does not need to conduct remote
attestation once before each time that the user visits a website and thus, we optimize it further,
as follows. The client may perform remote attestation with the decryptor enclave behind each
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Mitigator-supporting URL in an asynchronous manner, that is, independent of the time when the
user accesses it. The decryptor enclave sends a long-term verification key through the remote
attestation secure channel. The corresponding signing key may then be used to sign enclave-
generated or attested secrets that the decryptor enclave then passes to the target enclave to send
to the client with each HTTP response. In particular, the client needs to conduct this remote
attestation only when the aforementioned verification key changes. Assuming that the plaintext
key is not leaked outside of the enclave, this will happen only if the decryptor enclave is updated
or if it is run on a different machine. Furthermore, users can trust a privacy advocate organization
to perform the remote attestation, certify that they have verified this website’s decryptor enclave’s
enclave measurement is as expected and publish its verification key.

In our design, the decryptor enclave generates a short-term public key and concatenates it
with the verifier’s enclave measurement and a hash of the privacy policy. It signs the concate-
nated value with the long-term signing key. Signing over the enclave measurement allows the
client to decide if it wishes to communicate with a target enclave checked for compliance by the
particular server-side verifier enclave. Similarly, signing over a hash of the privacy policy lets the
client ensure that the privacy policy displayed on the website is indeed the one against which the
verifier has checked the compliance of the target enclave’s source code. Following a successful
verification of the signature over these three signed values from the decryptor enclave, the user
knows that the displayed privacy policy is the one against which a trusted verifier has checked
the source code of the website for compliance.

We have introduced three enclaves that form Mitigator’s server-side architecture: the verifier
enclave, the decryptor enclave, and the target enclave. As mentioned previously, for simplicity,
we assume that all of these enclaves are on the same machine. We have also referred to sev-
eral roles of the client, namely obtaining a signature by the decryptor enclave over three values,
verifying the signature and signed values, and using the key to encrypt content to the decryptor
enclave. These tasks are perfomed by a browser extension on the user’s machine. Before we go
into details of these four components, it is important to elucidate the threat model that Mitigator
is based on. We proceed to detail the threat model in Section 4.1. We describe our system design
in detail in Section 4.2 and then in Section 4.3 we illustrate how our system defends against the
adversary defined in the threat model. Finally, we discuss the repercussions of adopting alterna-
tive choices for certain elements of our design in light of how they affect the above analyses in
Section 4.4.
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4.1 Threat model

Mitigator does not require users to trust the server-side machines, other than a small trusted
hardware module. In particular, employees of the website provider on the server-side machines
may run privileged or unprivileged processes in an attempt to undermine the guarantees provided
by Mitigator. We encapsulate this by treating the operating system itself as a privacy policy-
violating adversary whose intent is to obtain the user’s plaintext form field data and use it in
violation of the privacy policy. The adversary may also attempt to mislead the user into believing
that the verifier enclave checked the source code for compliance with a more restrictive privacy
policy. If it succeeded in doing so, then the user may be deceived into a false sense of security
about the website’s data handling practices. We remark that we limit the adversary’s intent
to only performing attacks that result in the users’ data being used for different purposes or
disseminated to unintended recipients. An adversary who intends to spam the user with any
material in violation of the privacy policy may be thwarted with a small change to the decryptor’s
design, as we describe later on.

Our privacy policy-violating OS can observe any unencrypted communication between pro-
cesses or replay encrypted messages. As the TLS connection may reasonably be terminated
outside the enclave,2 the OS can modify any unencrypted HTML content as well as replay any
encrypted content to the target enclave. It can also manipulate the file system and return values
of system calls to whatever it desires. For instance, it can modify or delete files, or insert new
files. Similarly, in performing a system call to write to a socket, it can modify values before
writing them. The kernel can also manipulate its data structures to facilitate an attack that would
undermine Mitigator’s guarantees.

We consider an attack to be successful when a non-compliant website is falsely flagged by
Mitigator as a compliant one. However, we allow compliant websites to be wrongly marked
by Mitigator as non-compliant, without considering this as an attack on Mitigator. In other
words, Mitigator is assumed to be sound for illustrating compliance of compliant websites, but
it is not assumed to be complete. Finally, we restrict these attacks by an adversarial OS to
exclude all side-channel based attacks: as we mentioned in Section 2.3, much recent literature
surrounding trusted hardware is directed at preventing and mitigating these attacks. The privacy
policy-violating OS may attempt to simply prevent the system from running, by performing
denial-of-service (DoS) attacks on various enclaves or on communication between enclaves. As
mentioned in Chapter 1, we assume that the website provider has incentives to deploy Mitigator
such as ensuring that their website code complies with legislation or to reassure their users on the

2Although Aublin et al. [AKO+17] propose TaLoS to terminate TLS connections within the enclave, this requires
the TLS private key be generated within the enclave and not exported elsewhere. It remains to be seen whether
systems like TaLoS become widely deployed, considering this possible drawback.
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company’s transparency. We assume, therefore, that it is not their interests to perform such DoS
attacks on their own deployment of Mitigator and that in case the attacks occur due to unforeseen
circumstances, the organization will attempt to identify and stop them.

We also bound our adversary computationally; that is, we assume that the adversary is
bounded by the hardness of cryptographic problems such as the discrete log problem. In assum-
ing the existence of symmetric and asymmetric key cryptography, Mitigator’s design inherits the
hardness assumptions of the symmetric-key cipher, the signature scheme, and the Diffie-Hellman
key exchange method chosen for implementation. Similarly, we assume collision resistance of
standard cryptographic primitives. Trusted hardware modules similarly assume the hardness of
certain cryptographic assumptions. The weakest assumption of all assumptions in Mitigator’s
implementation and the trusted hardware module, will determine the computational bound for
our adversary.

Additionally, any tools on the client side, such as the browser extension, are assumed to be run
correctly. In particular, we assume that the browser extension is being run without any manipula-
tions of its source code in the browser. That is, an attacker cannot deceive a user by manipulating
the user’s machine into falsely displaying a non-compliant website as a Mitigator-approved web-
site. We detail the trusted computing base (TCB) for Mitigator in the implementation chapter as
it is dependent on the systems that we use to run the enclaves on the trusted hardware platform
and the tool that we use within the verifier enclave to verify compliance. We now proceed to
describe the functionalities of the four components of Mitigator.

4.2 System design

We start with briefly describing three chronological stages for Mitigator. The first two of these
stages involve Mitigator components at the server side. Specifically, the first stage is to be run
as the website’s source code is being developed and in this stage the verifier enclave checks
the given source code and privacy policy for compliance. In case of compliance, it outputs a
signed target enclave. In case of non-compliance, the developers are expected to modify their
source code and privacy policy and rerun the system until it passes as compliant. They are also
expected to continuously rerun it as the source code is updated. The second stage occurs once the
target enclave is ready to be deployed. In the second stage, the decryptor enclave conducts local
attestation with both enclaves. It maintains the local attestation derived key for the channel with
the target enclave for the third stage. The third stage refers to runtime interactions between the
client, target, and decryptor enclaves. In particular, in the third stage, the client passes encrypted
form field data to the target enclave, which in turn hands it over to the decryptor enclave over the
aforementioned secure channel. The first, second, and third stages are named the verification,
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the deployment, and the runtime stage respectively. We depict a high-level block diagram of our
system in Figure 4.1. We now go on to detail each of these three stages below.

Target

Decryptor Verifier

Client

Server-side enclaves

Figure 4.1: A high-level block diagram of our system. The component in the dotted box will
be online in the verification stage. The dashed arrows indicate interactions occurring in the
post-verification stage, which are detailed in Figure 4.3. The solid arrows indicate interactions
occurring in the runtime stage, which are detailed in Figure 4.4.

4.2.1 Verification stage

As this stage occurs concurrently with the development of the target enclave source code and the
privacy policy and involves the verifier enclave checking these, only the verifier enclave needs
to be online during this stage. The verifier processes its input, namely, a list of source code files
and the privacy policy. It passes these as inputs to the compliance-checking algorithm, which
returns a binary value for compliance. Preferably, in case of non-compliance, this algorithm
provides feedback for developers, including line numbers and other relevant information on non-
complying source code. If the source code is indeed compliant, the verifier obtains its long-term
keypair, as discussed below. It signs the target enclave with its long-term signing key, SKV . We
illustrate the verification stage in Figure 4.2.

The verifier enclave follows Algorithm 1 for obtaining a long-term signing-verification key-
pair (SKV ,VKV ). It first looks for a previously sealed keypair file on disk and attempts to unseal
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it. We note that we use the verifier enclave’s enclave measurement as one of the inputs to the
sealing key. If the keypair can be found and unsealed successfully, then it proceeds to use the
signing key SKV later to sign over the target source code files. If a keypair is not found on disk or
the unsealing is not successful, then it generates a new keypair (SKV ,VKV ). The unsealing may
not be successful if either the OS attempts to modify the keypair file or if the verifier enclave
has been updated and so it no longer has the same enclave measurement required to correctly
generate the sealing key. After generating a new keypair, the verifier enclave seals it to disk,
using its enclave measurement.

Figure 4.2: Mitigator verification stage — verifier block diagram
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Algorithm 1 Algorithm to obtain a long-term keypair. The algorithms for the
ecall generate and seal keypair and ecall unseal and set keypair functions are in Ap-
pendix B.

1: O This is an untrusted function.
2: function SET SIGNING KEYPAIR(keypair file path)
3: if file exists(keypair file path) then
4: sealed keypair ← read file at(keypair file path)
5: unseal successful← ecall unseal and set keypair(sealed keypair)
6: O File has been modified or enclave has been updated.
7: if unseal successful == False then
8: generate sealed keypair(keypair file path)
9: end if

10: else . File does not exist or adversarial OS performs a DoS.
11: generate sealed keypair(keypair file path)
12: end if
13: end function
14: O This is an untrusted function.
15: function GENERATE SEALED KEYPAIR(keypair file path)
16: sealed keypair ← ecall generate and seal keypair()
17: write to file path(keypair file path, sealed keypair)
18: end function

19: global variables . These variables are within the enclave.
20: verification key
21: signing key
22: end global variables
23: O This ecall unseals the signing-verification keypair passed as the input argument. If it is

successful in unsealing the keypair, it sets the signing key, verification key variables to
the signing and verification key respectively and returns True. Otherwise, it returns False.

24: function ECALL UNSEAL AND SET KEYPAIR(sealed keypair)
25: end function
26: O This ecall generates a signing-verification keypair and sets the signing key,

verification key variables to the signing and verification key respectively. It then returns
the sealed keypair.

27: function ECALL GENERATE AND SEAL KEYPAIR()
28: end function

38



Verifier Decryptor Target

(MREncV ,MRSigV )
Accept all
(MREncV ,
MRSigV )
Shared key kDV(MREncD,MRSigD)

Accept all
(MREncD,
MRSigD)
Shared key kDV

Local AttestationLocal Attestation

A = EnckDV
(D)P = Hash(VKV )

D = P‖Hash(PP )
DeckDV

(A) = D

(MREncT ,MRSigT )MRSigT
?
= P

Shared key kDT

(MREncD,MRSigD)
Accept all
(MREncD,
MRSigD)
Shared key kDT

Local attestationLocal attestation

B = EnckDT
(H)
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Figure 4.3: After the verifier enclave signs over a compliant target enclave with the keypair
(SKV ,VKV ), it initiates a local attestation request with the target enclave. The decryptor enclave
then communicates the token H to the target enclave over the secure channel established through
the attestation. Following this, the target enclave may conduct local attestation with the decryptor
enclave. The decryptor enclave sends a token B to the target enclave. These steps occur before
any client connects to the website and enable the target enclave to forward the token B to the
client.
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4.2.2 Deployment stage

In this stage, the verifier, decryptor, and target enclaves need to be online. The decryptor enclave
follows the same algorithm as the verifier enclave in every invocation to obtain its long-term
signing verification keypair. When the decryptor is run for the first time, it generates a long-
term signing-verification keypair (SKD,VKD). The decryptor then seals this keypair to disk,
using its enclave measurement as an input to the sealing key. It attempts to unseal this keypair
for its subsequent invocations. Mitigator’s browser extension obtains the verification keypairs
of decryptors of various Mitigator-supporting websites. The decryptor enclave should have a
remote attestation service open for clients to connect to it, so that clients can verify its enclave
measurement through remote attestation and consequently learn its verification key VKD over
the secure channel. After setting up its long-term signing-verification keypair and the above
service, the decryptor enclave starts listening for local attestation requests. A sequence diagram
of messages sent and received in this stage is shown in Figure 4.3.

Verifier enclave to decryptor enclave

After signing the compliant target enclave, the verifier enclave conducts local attestation as an
initiator with the decryptor enclave. The verifier enclave thereby forms a secure channel with the
decryptor enclave, through a symmetric encryption key kDV derived from the local attestation
shared secret. Over this channel, it shares the expected signer measurement over the source code
files, that is, a hash of the verification key, Hash(VKV ). Additionally, the verifier enclave also
signs and sends a hash of the privacy policy, Hash(PP ). This is because as the adversarial
OS can manipulate HTML content that is not encrypted to one of the three enclaves, or it may
attempt to replace the privacy policy HTML file against which the verifier checked the source
code with a more restrictive privacy policy file. As we mentioned in Section 4.1, we cannot allow
the adversary to mislead the user into believing that Mitigator checked the website source code
against a stricter privacy policy. Signing a hash of the privacy policy allows the client to detect
the above attack.

Suppose that as per the local attestation report sent by the verifier enclave to the decryptor
enclave, it has an enclave measurement MREncV and signer measurement MRSigV . The de-
cryptor enclave does not compare MREncV or MRSigV to any hard-coded values, but simply
stores MREncV . After the first successful local attestation, the decryptor expects the initiating
enclave to respond with two hashes encrypted to kDV . It treats the first hash as a signer mea-
surement of a compliant target enclave, that is, as Hash(VKV ). The second hash, Hash(PP ),
is stored along with the verifier’s enclave measurement MREncV and is treated as a hash of
the privacy policy against which the target enclave was checked for compliance. The decryptor
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enclave then terminates the secure channel with the verifier enclave and waits for a second local
attestation request.

Target enclave to decryptor enclave

The target enclave, with enclave and signer measurement values MREncT and MRSigT respec-
tively, initiates a local attestation request to the decryptor enclave. During the local attestation,
the decryptor enclave ensures that the initiating enclave’s signer measurement is the same as the
one it received from the verifier enclave, that is, hash(PKV ), and terminates in case it is not. If
this check succeeds, the decryptor enclave concludes this local attestation handshake to establish
the symmetric encryption key kDT with the target enclave. It also generates a short-term keypair
(pkD, skD) and a token M .

The token M consists of the enclave measurement of the verifier enclave concatenated with
a hash of the privacy policy that the verifier enclave sent and the decryptor’s short-term public
key: M = MREncV ||Hash(PP )||pkD. The decryptor enclave signs the token M using its
long-term signing key SKD and concatenates the token and the signature to form the token
H = M ||SigSKD

(M). It then encrypts the token H under kDT and sends it to the target enclave.
The decryptor now waits for further data along the secure channel with the signer measurement.

4.2.3 Runtime

In the runtime stage, the decryptor and target enclaves need to be online and one or more clients
may attempt to connect to the website deployed within the target enclave. First, the target enclave
sends the token H with each HTTP GET or POST request to a page with forms on the website.
With a page load, the client checks for and retrieves the token H and verifies its integrity. For
each Mitigator-supporting website, Mitigator’s client is responsible for encrypting form fields
to a decryptor enclave. It sends these encrypted fields to the target enclave. The target enclave
then sends these fields to the decryptor enclave over the secure channel established through local
attestation. The target enclave expects the decryptor enclave to return plaintext form fields over
the same channel. We discuss communication between the client and the target enclave in the first
subsection below and subsequently discuss communication between the target and the decryptor
encalve. We also illustrate the entire exchange of messages that occur in this stage in Figure 4.4.
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Figure 4.4: This figure captures the runtime stage of Mitigator. Prior to this stage, the target
enclave should have conducted local attestation with the decryptor enclave resulting in the sym-
metric key kDT being established between the two enclaves. The target enclave should have
obtained the signed token H from the decryptor enclave over the secure channel established with
it. This token has the form shown in Figure 4.3. We remark that the target enclave should send
the token H in the response header of all HTTP responses to requests for an HTML form page.
In order to verify the integrity of the token H , the client obtains the decryptor enclave’s long-
term verification key VKD from list L1 and the verifier enclave’s expected enclave measurement
from list L2.

42



Client to target enclave

The client performs three checks on the integrity of the signed token H as follows. First of all, it
checks that this token consists of another token M concatenated with a signature over M , such
that the signature can be verified using the decryptor’s long-term verification key VKD. If this
check fails, then the adversarial OS on the remote host would have modified the token in transit
or in general, sent an entirely different token and a signature over it with its own signing key. If
the check succeeds, then the client expects the internal token M to contain the following values
concatenated together: the verifier’s enclave measurement, a hash of the privacy policy, and the
decryptor’s short-term public key.

In the second check, the client verifies that the enclave measurement contained in that token
corresponds to that of a genuine open-sourced verifier enclave. If the second check fails, then the
adversarial OS has attempted to run a malicious or lazy verifier, which, for instance, simply signs
over the target enclave on the server side. In other words, the website source code cannot be said
to have been checked for compliance if the second check fails. Finally, the client should check
that the hash of the privacy policy displayed on the website is the same as that included in the
token M . Again, if this check fails, then the adversarial OS may have returned a different privacy
policy than the one that the verifier enclave checked the source code against. Specifically, the
adversarial OS may attempt to return a more restrictive privacy policy, which may in turn give
the users a false sense of security.

To facilitate the first two checks, the client contains two lists: a list L1 of hard-coded long-
term verification keys of decryptors for each Mitigator-supporting website URL, and a list L2 of
valid verifier enclave measurements. We describe in Section 4.2.4 how the client can obtain, in
a trustworthy manner, the expected enclave measurement of the verifier and decryptor enclaves
and the verification key of the decryptor enclave behind each Mitigator-supporting URL. The
last check, however, does not require any additional state to be maintained by the client. The
client may simply compute the hash of the displayed privacy policy and compare it to that in the
signed token. The client proceeds to securely obtain the users’ plaintext data and encrypt it to
the decryptor enclave only if all three of these checks succeed. The specific technique used to
securely obtain the users’ plaintext data may vary across implementations; we detail our specific
strategy in Section 5.6. If any check fails, then the client treats the website as if it did not support
Mitigator.

The client first generates its own short-term keypair, say (pkC , skC). It then uses the decryp-
tor’s short-term public key pkD and its own short-term private key skC to generate the shared
secret and derive a symmetric key kDC . This key is subsequently used to encrypt form field val-
ues, which may contain users’ personally identifiable information and are thus denoted by PII ,
whenever a user presses a button to submit the form. The client sends the resulting ciphertext
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values, say PII1, instead of the plaintext values in the subsequent HTTP request to the website.
The client also sends its newly generated short-term public key pkC in the above HTTP request.
This enables the decryptor to derive the shared secret and symmetric encryption key kDC .

Target enclave to decryptor enclave

The target enclave obtains the client’s short-term public key pkC with each HTTP GET or POST
request by the client for pages with form fields. It also obtains HTML form field data after
performing decryption with the TLS session key, as usual. However, for Mitigator-supporting
websites, these HTML form fields are not plaintext data. They are ciphertexts that are encrypted
to the decryptor’s short-term public key for each client, pkD. The target enclave then prepends
each of the form fields with pkC and encrypts the resulting data block to the decryptor’s symmet-
ric key that was established with the decryptor enclave at the time of local attestation, namely
kDT . It sends this ciphertext, say PII2, to the decryptor enclave and waits for a response from
the decryptor enclave.

Upon obtaining any data from the target enclave, the decryptor enclave removes the first
layer of encryption, using the symmetric key kDT . It then obtains the ciphertext form fields
sent by the client (PII1), along with its short-term public key, pkC . The decryptor enclave first
generates the shared secret and derives the symmetric encryption key kDC , using its own private
key skD and the client’s public key pkC . Using this key, it decrypts the ciphertext field PII1 to
obtain the plaintext form field PII . Finally, the decryptor enclave re-encrypts each such form
field to the target enclave, using the key kDT . It sends the resultant ciphertext, say PII3 to the
target enclave. Upon receiving the ciphertext PII3 from the decryptor enclave, the target enclave
simply decrypts it using the key kDT to obtain the plaintext form field data. We remark that all
encrypted messages between enclaves (PII2, PII3) as well as between the decryptor enclave
and the client (PII1) are IND-CCA2 (AEAD) authenticated encryptions.

4.2.4 Verifying the integrity of enclaves from the client

The protocols shown in Figures 4.3 and 4.4 do not require the verifier’s or the decryptor’s signer
measurement value to be compared with another value on the server or client-side components.
This allows the enclaves to be signed by the website provider and consequently, would make the
process convenient for deployment on the server side. In other words, they do not need to be
signed by a trusted third party. Given that these enclaves can be signed by the website provider,
we proceed to explain below how the client can, nevertheless verify their integrity.
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Verifying the integrity of the decryptor enclave

The client needs to establish the decryptor’s long-term verification key to populate its list L1. To
do this, it must first establish a secure channel with the decryptor enclave, authenticate it and then
obtain the verification key over this secure channel. In order to establish a secure channel with
each such decryptor enclave, the client needs to perform remote attestation with it and ensure that
its enclave measurement in the remote attestation quote matches that obtained by compiling the
open-sourced version. After doing so, the client can obtain its long-term verification key over the
secure channel established through the attestation. The client needs to perform remote attestation
with the decryptor enclave behind each Mitigator-supporting website each time the verification
key changes. We repeat that the verification key should change infrequently; in fact, it should
only change when the decryptor enclave is updated or if it is moved onto another machine.

The task of regularly performing remote attestation and maintaining the most recent verifica-
tion key from every Mitigator-supporting website can consume a non-trivial amount of computa-
tional resources and network bandwidth for a Mitigator client. The client may therefore delegate
this task to a privacy advocate organization. The organization can simply publish a list of web-
sites and the verification key VKD behind each Mitigator website. The client now simply fetches
this list each time it fails to verify the signature in the header token H and attempts to re-verify
it with an updated verification key, if any.

Verifying the integrity of the verifier enclave

Assuming that the trusted Intel SGX hardware would compute the enclave measurement of any
enclave correctly, the enclave measurement of a lazy or malicious verifier enclave would be
distinct from that of a correct verifier. Therefore, the client would detect a malicious verifier
from its enclave measurement value, in the signed token H . Mitigator expects any valid verifier
enclave to be made open-source as this enables experts to go through the source code and ensure
that it actually performs relevant checks on the website’s source code. This also implies that
the client in Mitigator does not need to place implicit or unfounded trust in the verifier. The
expected enclave measurement for the open-sourced verifier enclave can then be computed by
compiling the source code for the remote platform on which the verifier enclave for the given
website runs. A privacy advocate organization can be delegated to compile such open-source
verifier enclaves for various platforms and maintain a list of valid verifier enclave measurements.
The client populates its list L2 from such a list. In doing so, the client trusts the privacy advocate
organization to publish the source code of various verifier enclaves online and ensure that experts
appropriately check the soundness of the verifier enclave in checking the compliance of the
source code with the privacy policy.
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4.3 Security analysis

As mentioned in Section 4.1, our threat model includes an adversarial OS who wishes to perform
operations on users’ data that are not permitted as per the privacy policy. In this subsection, we
explore such attacks. We remark that this is not a formal proof of security, which is beyond
the scope of this work. We show that they may either be detected by Mitigator or that the OS
is only limited to performing denial-of-service (DoS) attacks on its own Mitigator deployment.
As the organization hosting these machines has incentives to deploy Mitigator, we presume that
it would identify and eliminate sources of these DoS attacks. First, we argue that deploying a
lazy or malicious decryptor enclave to perform local attestation with genuine verifier and target
enclaves amounts to DoS attacks. For instance, a simple DoS attack could proceed as follows:
the adversarial OS makes the verifier enclave perform local attestation with and send the signer
measurement to a lazy or malicious decryptor enclave. However, following remote attestation
with the decryptor enclave, the client would detect that its enclave measurement is not what the
client expects it to be and this thus results in a DoS attack. Similarly, if the target enclave were
to perform local attestation with a lazy or malicious decryptor enclave, then as the client would
detect such an enclave from its enclave measurement following remote attestation, it would not
encrypt any plaintext data to it.

We argue how Mitigator provides its guarantee that the decryptor enclave only allows target
enclaves that have been signed by the verifier enclave to obtain clients’ plaintext data. In the
case when the genuine verifier enclave has not been run successfully to completion even once,
we discuss the following attacks. Suppose that the OS attempts to sign the non-compliant target
enclave with its own keypair, say (SK′

V ,VK′
V ). As the decryptor does not authenticate the

first enclave that successfully performs local attestation, an adversarial OS may then attempt
to run a lazy verifier enclave. This lazy verifier enclave simply performs local attestation with
the decryptor enclave and passes it the signer measurement of the non-compliant target enclave.
However, the enclave measurement of this malicious enclave will be different than that of a
genuine verifier enclave as the latter contains different code. As we discussed in section 4.2, the
client checks that the enclave measurement reported in the signed token M , which is sent by the
target enclave on behalf of the decryptor enclave, is that of a genuine verifier enclave. Therefore,
when Mitigator is under the above attack, the client would detect the attack as it would obtain an
enclave measurement MREnc′V that is not equal to that of a genuine verifier enclave. To evade
detection, the adversary is left with only one choice: to let the decryptor enclave conduct local
attestation with a genuine verifier enclave.

The OS may attempt to run the genuine verifier enclave once until it finishes local attestation,
and then attempt to modify the ciphertext signer measurement sent by it, to an encryption of the
signer measurement of the non-compliant target enclave. Within our threat model, the adversarial
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OS cannot break assumptions for public key cryptography to obtain the corresponding shared
secret between the decryptor and the verifier enclaves, or, to modify the message without the
decryptor enclave detecting the attack. Finally, in the case when the verifier enclave has been
run once until it writes a sealed keypair to disk, the adversarial OS may attempt to unseal this
keypair and sign the non-compliant target enclave with it. We note that if the OS can successfully
do so, then it can obtain the client’s plaintext data and misuse it, without the decryptor enclave or
the client detecting this attack. These systems would be under the impression that the compliant
target enclave is being run as the enclave measurement of the target enclave is not used in our
protocols. We explain in the sealing subsection below so as to how any attempts to unseal the
keypair will only result in, at most, a denial of service attack against Mitigator.

We have discussed how an adversarial OS cannot spawn a non-compliant target enclave to
obtain client’s plaintext data. It could, however, attempt to obtain client’s ciphertext data before
it reaches the target enclave, modify or replay it. This is possible only if the TLS connection was
terminated outside the enclave. We discuss below how the adversarial OS cannot gain anything
from doing so. Moreover, the adversarial OS cannot modify encrypted messages from the target
enclave to the decryptor enclave for the same reason that it cannot modify messages between the
verifier and the decryptor enclave, which we discussed above. Finally, it cannot gain anything
from replaying these messages, as we discuss below. We conclude this section with an analysis
of how the security guarantees of our design hold as the enclaves are being updated.

4.3.1 TLS termination

The current target enclave design allows a TLS master certificate to be generated by the untrusted
operating system. The TLS master private key can be kept outside the enclave and therefore, the
TLS termination itself could occur outside the enclave. In case there is no secure channel between
the Apache server enclave and untrusted code that does TLS termination, or, when an adversarial
OS can also decrypt the TLS connection, then the adversarial OS can obtain, manipulate and
replay ciphertext form fields and the client’s short-term public key. We first discuss what happens
when the OS tries to modify these fields.

In case the adversarial OS generates a keypair (skM , pkM) and replaces the client’s key pkC
with the public key pkM , then the decryptor enclave will return incorrect plaintext upon decryp-
tion of the ciphertext fields. Similarly, as the adversarial OS cannot break the assumptions for
the symmetric key cryptography algorithm used to encrypt data after local attestation, it cannot
modify the ciphertext sent by the client, PII1 to another one without also modifying the corre-
sponding tag and thereby alerting the decryptor enclave. Therefore, for a successful attack, it
must present data that has also been encrypted under a shared secret derived from the private
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key of one of the enclaves and the public key of the other. As we assume that the browser has
not been modified to exfiltrate the client’s short-term private key skC , the adversarial OS cannot
obtain it. Secondly, as the EPC of the remote machine on which the decryptor enclave is being
run, is isolated from the OS, the OS cannot obtain skD. Under our adversarial model, without
either of these, the OS cannot obtain the shared secret as we assume that it cannot break public
key cryptography primitives. Therefore, the OS cannot obtain the client’s plaintext PII , modify
it to PII ′, and re-encrypt it to the target enclave. Of course, modifying random bits in the ci-
phertext can easily be detected by the target enclave as the tags would not match. In other words,
the adversarial OS is only left with a possible replay attack of a public key and corresponding
ciphertext data that were sent by a client previously. An adversarial OS whose intent is to replay
the same ciphertext to initiate a false transaction on behalf of the user is out of our threat model.
However, the decryptor enclave may protect against such an attack by recording all ciphertexts
(PII1) that it received and rejecting any repeated ciphertexts.

4.3.2 Sealing

Sealing is used in Mitigator to store the long-term signing-verification keypairs, generated by the
verifier and the decryptor enclaves, to disk. If an adversary can access the plaintext of a keypair
file sealed by the verifier enclave, then it can generate a signature over other malicious enclaves.
Our threat model does not permit an adversarial operating system to simply obtain an unsealed
file. It can, however, attempt to run an enclave that then attempts to unseal the keypair file and
exfiltrate the keypair. We discuss this attack, a file deletion attack, and a file replay attack below.

Suppose that the adversarial OS attempts to run an enclave A in order to exfiltrate the veri-
fier’s keypair. We remark that the keypair files are sealed using the enclave measurement of the
respective enclaves as input to the sealing key, rather than the signer measurement. Therefore,
only enclaves that contain the same code as the given Mitigator enclave can successfully unseal
the keypair. Therefore, for enclave A to successfully unseal the keypair and obtain it in plaintext
form, it must contain the same code as the verifier enclave. Given that the verifier enclave only
outputs the keypair in a ciphertext form by sealing it under its enclave measurement, enclave A
cannot be executed in any way to exfiltrate the keypair.

This also implies that, for instance, enclave A cannot execute code that reseals the keypair
under its signer measurement, because if this code was included in its executable then it would
have a different enclave measurement. Therefore, in turn enclave A would fail to unseal the
keypair in the first place. Additionally, as enclave A is bound to contain the same code as the
verifier enclave, it would only sign the target enclave and conduct its local attestation handshake
with the decryptor enclave if the compliance check succeeds. In this case, the local attestation
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handshake would be identical to that of the verifier enclave, except possibly with the signer
measurement of enclave A being different than that of the verifier enclave. However, the signer
measurement of the verifier enclave is not used within the protocol shown in Figure 4.3 and thus
cannot affect its correctness. Moreover, enclave A can only at most attempt to send the correct
signer measurement of the target enclave to the decryptor enclave. An identical argument can be
made for this attack on the decryptor enclave: the malicious OS-spawned decryptor enclave can
only contain code that is identical to a genuine decryptor enclave. It will therefore, only send the
enclave measurement of a valid verifier enclave, if the verifier enclave attested to it.

We have therefore established Mitigator’s security in face of the above attack where a mas-
querading enclave attempts to unseal a Mitigator enclave’s sealed keypairs. We proceed to dis-
cuss file deletion and replay attacks against the sealed keypair files. The verifier enclave is
designed to generate and seal a new keypair each time it is updated. This keypair is then used
to sign the target enclave. If the verifier enclave’s keypair file is repeatedly deleted by the adver-
sarial OS, then in each execution, the verifier enclave simply generates a new signing keypair to
sign the target enclave. On the other hand, when a malicious operating system replaces a newer
keypair with an old keypair, we have a file replay attack. When the verifier enclave is under a
file replay attack, it now signs the target enclave with an old key and communicates the signer
measurement of the target enclave, based on this old key, to the decryptor enclave.

Similar to the verifier enclave, the decryptor enclave also generates and seals a new keypair
each time it is updated. This keypair is used to sign the token H to be sent to the client. If
the sealed keypair file of the decryptor enclave is repeatedly deleted and replaced with a new
one, then the enclave simply keeps generating and sealing new keypairs. The most successful
attack simply results in a DoS: if the most recent verification key is not reflected in the browser
extension’s list L1, then the extension would not be able to verify the authenticity of the token
H , thereby leading to the user rejecting Mitigator’s support for the website. Whereas, if the
extension does obtain the most recent key, then the rest of the protocol works as in the case when
the system is not under attack. When the decryptor enclave is under a file replay attack, it signs
the token H with an old key. If the browser extension has the new key, then it would again fail
to verify the token H , resulting in a DoS attack on Mitigator. If it has the older key, then the rest
of the protocol functions as usual.

Therefore, both file deletion and replay attacks against the decryptor enclave may, at best,
result in the rejection of an authentic target enclave by the browser extension and therefore, poor
user experience. Importantly, none of these attacks against the verifier or target enclave result
in a non-compliant target enclave obtaining user data; that is, Mitigator is sound in the face of
these attacks. As we assume that the old signing key may not leak outside the enclave, we do
not consider file replay attacks in our threat model. Ultimately, these attacks are a form of a
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denial-of-service attack and we do not defend against this general class of attacks in our threat
model; a certificate revocation scheme can be used to address this.

4.3.3 Security while updating enclaves

Updating the target enclave

Following any update to the website server source code, an adversary would require a signature
over the updated target enclave, with the verifier’s long-term signing key SKV . This is because
an authentic decryptor enclave would check that the signer measurement of a target enclave
matches the hash of VKV , before handing over plaintext client data. Now, any adversary, other
than the verifier enclave with the correct enclave measurement value, cannot unseal the keypair.
Therefore, it can not produce a signature over the target enclave that passes the check by the de-
cryptor enclave. Therefore, following each update to the website server source code, the verifier
must verify and resign the target enclave, before it can obtain users’ plaintext form field data.

Updating the verifier enclave

We foresee updates to the verifier enclave being pushed from a central online repository and
the website provider now needs to update their target enclave source code such that it passes
a check by the updated verifier enclave, within a reasonable time interval T of an update in the
verifier’s source code. (Alternatively, the verifier enclave measurements may be published on this
repository with an expiry date, such that any verifier enclave measurements which are expired are
considered as invalid, thereby resembling a certificate PKI system.) Thus, the browser extension
may be expected to only accept a token H that contains the enclave measurement of an updated
enclave and not of an older one. The decryptor enclave generates this signed token using the
enclave measurement of the enclave that conducts the first successful local attestation. It is
therefore necessary that after each update in the verifier’s source code, it should recheck the
compliance of the target enclave’s source code, even if it has not been updated. Following a
successful check, it should perform local attestation with the decryptor enclave as usual.

Second, with every update in the verifier’s source code, the contents of the message that it
sends to the decryptor enclave following local attestation will change, as we explore below. As
mentioned previously, the long-term verification keypair (SKV ,VKV ) of the verifier enclave is
sealed to disk using its enclave measurement. Consequently, in normal operation such a sealed
keypair would not be accessible after any update to the verifier source code. We remark that
when sealing under the enclave measurement, following any modifications to the enclave code,
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including any security updates that result in a changed Security Version Number (SVN), unseal-
ing is not successful. Whenever the long-term keypair cannot be unsealed successfully, a new
keypair is generated. Therefore, with every update in the verifier source code, a new long-term
keypair will be generated and used to sign the target enclave. Consequently, whenever the verifier
enclave conducts local attestation with the decryptor enclave following an update in the verifier’s
source code, it will send a hash of the new verification key. In turn, this enables the decryptor
enclave to correctly verify a resigned target enclave.

Therefore, following any updates to the verifier enclave, as long as the website provider
reruns the verifier and the target enclaves, such that by time T after the verifier enclave update,
both of the following tasks occur, then any clients who send requests to the target enclave after
that time will obtain the updated token H . Both verifier and target enclaves are to perform local
attestation with the decryptor enclave3 and the latter must send the updated token to the target
enclave, within time T after the verifier enclave update. In other words, an update in the verifier
will be reflected in an updated token after Mitigator goes through another run of the setup shown
in Figure 4.3.

Updating the decryptor enclave

As was the case with the verifier enclave, we observe that as the decryptor’s long-term keypair
is sealed to disk using its enclave measurement value as input to the sealing key, it cannot be
unsealed after an update in the decryptor’s source code. This keypair is therefore resampled with
every such update. Therefore, following a remote attestation with an updated decryptor enclave,
the client would always obtain a new verification key. Finally, since the decryptor enclave simply
waits for local attestation following a successful generation of its long-term keypair, effectively
an update in the decryptor will also require the verifier and target enclaves to perform local
attestation with it again.

Second, the Mitigator client or a trusted privacy advocacy organization should perform re-
mote attestation with the decryptor enclave, authenticate it and obtain the updated verification
key VKD over the resulting secure channel. We remark that in case the browser extension does
not obtain the updated verification key, then it may reject a genuine, updated decryptor enclave,
thereby degrading the user’s experience of a Mitigator-supporting website. It does not, however,
lead the extension to falsely accept any malicious decryptor enclave as a genuine one.

3In our implementation, the decryptor enclave must be restarted in order to allow the verifier and target enclaves
to perform local attestation with the decryptor enclave. A more sophisticated implementation can support the local
attestation facilities without requiring a restart and without compromising the guarantee that we show in Section 5.1
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4.4 Design choices

In this section, we discuss some design choices that are relevant to the deployability of Mitigator
and to achieving security within its threat model.

4.4.1 Distributing enclaves across server-side machines

We note that all guarantees provided by Mitigator will be preserved in case the decryptor enclave
is on a different machine as compared to both the verifier and the target enclave. The only
difference to the architecture would be that the decryptor enclave would perform local attestation
with these enclaves in case it is on the same machine as them and remote attestation in case it
is not. The verifier and the target enclaves may be on different machines, as long as the verifier
can access the website source code files and it contains or is passed enough input arguments
to compile an enclave image for the machine on which the target enclave is to be executed.
Additionally, we observe that the current design of Mitigator assumes a single target enclave
process, in that the decryptor enclave stops listening for local attestation requests after obtaining
the second such request, which would correspond to the target enclave. However, if it were to
continue listening for other local attestation requests, the decryptor enclave can establish a secure
channel with multiple target enclaves, through the local attestation. Each decryption request from
an authenticated target enclave process would then be treated independently of requests from
other such processes.

4.4.2 Choice of sealing key input

In Section 4.3.2 we discussed the security of Mitigator against an attack wherein an adversarial
OS runs another enclave to extract keypair files that have been sealed by a genuine Mitigator
enclave. The fact that the keypairs were sealed to disk using the enclave measurement and not
the signer measurement limits the code that our adversarial OS can run from within the enclave
to exfiltrate the keypair to that of a genuine Mitigator enclave. If the signer measurement of the
verifier enclave was used, instead of its enclave measurement, as input to the sealing key, then
the following masquerading attack goes undetected by the browser extension. We observe that
two relevant choices in Mitigator’s current design enable this attack: first, the decryptor sends
the verifier’s enclave measurement value to the browser extension and second, the verifier and
decryptor enclaves could be signed by the website provider.

An adversarial OS simply generates and signs a malicious or lazy verifier, Vm, using (SKA,
PKA) and it has two target enclaves: a compliant one and a non-compliant one. The malicious
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and the genuine verifiers differ in their enclave measurement values, as they have been compiled
from different source code, but have the same signer measurement value as they have been signed
using the same key. The genuine verifier Vg is run with the compliant target enclave source code
as input. It creates and seals a long-term signing, verification keypair to disk, say (SKV ,VKV ),
using its signer measurement value, namely the hash of PKA, as input to the sealing key. It then
signs over the compliant target enclave and then conducts local attestation with the decryptor
enclave to notify it of the hash of the verification key VKV . Upon execution of the malicious
verifier, say Vm, it successfully unseals this keypair as it was sealed using its signer measurement,
which would again be the hash of PKA. It is passed a copy of the non-compliant website source
code as input and it signs over it, using SKV . Now, the non-compliant target enclave is executed:
it will pass the authentication check by the decryptor enclave as it would also have been signed
by SKV . The decryptor will send in the enclave measurement of the authentic verifier enclave Vg
to the browser extension and therefore, the extension will not detect this attack. The adversarial
OS succeeds if it gets access to the long-term signing key SKV of the verifier enclave, which
it can easily do in case this key is sealed with the verifier’s signer measurement instead of its
enclave measurement. Furthermore, there is no way to prevent this attack unless the website
provider is trusted to not reuse the key that is used to sign the verifier enclaves to also sign other
possibly malicious enclaves, which may simply extract the key SKV .

This attack is stealthy as the decryptor enclave sends to the client a measurement that is the
same across both malicious, genuine verifier enclaves (signer measurement) and not one which
differs across the two (enclave measurement). Therefore, it is evident that in a scheme wherein
the sealing keys for keypair files for the verifier and decryptor enclaves are derived from the
signer measurement, in order to detect the above attack, the enclave measurement of the verifier
enclave be sent to the client in the signed token H . Consequently, the client is then required to
trust the key used by the website provider to sign the Mitigator enclaves. The attack cannot be
prevented unless this website provider is restricted from using this key to sign other enclaves.
This is because allowing the verifier and decryptor enclaves to be signed by the website provider,
that is, an adversarial OS and sealing their keypair files to disk under the signer measurement,
effectively allows the OS to use the keypair used to sign these enclaves to then sign malicious
enclaves that can also unseal such keypair files. It may be unreasonable to simply trust the
website provider to follow this restriction.

4.4.3 Comparison to related work

As discussed in Section 3.4, Birrell et al.’s [BGR+18] use-privacy-based trusted hardware plat-
form scheme is similar to ours in its aim. With an understanding of our proposed design, we
proceed to contrast their designs with ours. Their delegated monitoring scheme differs from their
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source-based monitoring scheme, which we described in Section 3.4, in that instead of having
the reference monitor placed on the same machine as the data source and mediating multiplexed
requests from multiple applications, it is placed on the same machine as the target application
and it relays requests on behalf of target applications to the data source. Their inline monitoring
scheme involves modifications to the target application to request for data items from the data
source. Thus, our design is closer to their delegated monitoring scheme than their source mon-
itoring scheme: our decryptor enclave plays the roles of both the data source and the reference
monitor, but in our current design, only responds to requests for decryption of client cipher-
text data from a single target enclave. In comparison to their inline monitoring scheme, which
involves changing the target application source code when it requires data to interact with an
extended API for their reference monitor, our target enclave only needs to be modified slightly to
request for client data from the decryptor enclave. We provide a very small interface (currently
one function) for performing this request. Thus, their delegated monitoring scheme is closest to
our design. However, there are some significant differences.

Importantly, in the absence of further specifications, it is unclear whether the data source
authenticates the monitor based on its enclave measurement or its signer measurement and there-
fore, as we have seen in Section 3.4, the corresponding trusted computing base required for the
monitor to work correctly in the face of an untrusted OS, is unclear. In Mitigator, the users do
not need to trust that the website provider owns any additional keypairs as the remote enclaves,
in our design, could be signed with any keys. Furthermore, in Section 4.4 we include an analysis
of the repercussions of using enclave and signer measurements as input to the sealing key for
remote enclaves in our design.

Second, the monitor authenticates the untrusted application and not the target enclave, to
use the data and then hands over the plaintext data to this application. The monitor mediates
messages between the untrusted application and the target enclave, to authenticate the enclave
before it obtains any user data; this check still allows the untrusted OS to observe the plaintext
user data that the application obtained from the monitor and thereby defeats the purpose of using
the trusted hardware platform. Similarly, the specification of the design of the source monitor-
ing scheme does not include whether data items are encrypted back to the target enclave or not.
However, the system allows for this possibility.4 In contrast, in our design, an untrusted applica-
tion never obtains plaintext data: we ensure that only the target enclave obtains users’ data from
the decryptor enclave, as the latter encrypts it to a key derived from a local attestation shared
secret with the former.

4Assuming that the target enclave includes a public key in its quote, the monitor may send back a public key and
encrypt the data item to the enclave, using symmetric-key encryption.
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4.5 Summary

In this chapter, we have presented our main design. Our design consists of a verifier enclave that
checks the source code of the target enclave for compliance with the privacy policy and if the
target is found to be compliant, the verifier enclave signs it and informs another decryptor enclave
of the expected signer measurement of the target enclave through attestation. The decryptor
enclave verifies the identity of the target enclave through its attested signer measurement and
ensures that only legitimate target enclaves can obtain the clients’ form field data. We have
also outlined the threat model that we seek to defend against, namely that of an adversarial OS.
We have presented a security analysis of our system against this adversary and in particular, we
describe how we provide the client a guarantee that their data will only be handled by code that
is compliant with the displayed privacy policy, as checked by a valid verifier enclave. Finally, we
have also emphasized the implications of certain design choices in achieving the above guarantee
in the presence of our adversary and have discussed how our design compares to the closest
related work.
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Chapter 5

Implementation

In this chapter, we proceed to discuss how we implement the design proposed in Chapter 4.
We begin with an in-depth analysis of the decryptor enclave implementation for both the post-
verification and the runtime stages, and present the guarantees that it provides, in Section 5.1.
We then outline how we modify the Graphene-SGX tool to support our design, and in particular,
to run the verifier and target enclaves, in Section 5.2. We present the main algorithm followed by
the verifier enclave, in Section 5.3. Here we describe how it uses an adapted source code analysis
tool to check the target enclave source code and in turn, how the target enclave needs to be set
up within the Graphene-SGX platform in order to support the above check. We also discuss how
the verifier enclave generates a signature over the target enclave in that section. We proceed to
describe how we adapted the Pixy source code analysis tool to conduct the above compliance
check in Section 5.4. At runtime, our design involves interactions between the decryptor enclave
and the target enclave, as well as between the target enclave and the client-side extension. There-
fore, we discuss how the target enclave implements its interactions with the Mitigator’s browser
extension and the decryptor enclave in Section 5.5. We conclude with a brief description of how
Mitigator’s browser extension performs the requisite functionalities on behalf of the client at
runtime in Section 5.6.

5.1 Decryptor enclave

The decryptor is executed as a native Intel SGX enclave. It consists of an untrusted decryptor
application and a decryptor enclave. The decryptor enclave maintains state corresponding to the
global variables shown in Algorithm 5.1. Apart from local attestation and sealing-related calls,
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Table 5.1: Internal state maintained in the decryptor enclave. The last six variables are initialized
to arrays of zeros of length given by the key sizes of the symmetric key cipher (lines 5–6), the
asymmetric key cipher (lines 7–8), and the signature scheme (lines 9–10).

1: global variables . Enclave global variables for ecalls for the decryptor enclave
2: successful la count← 0
3: verifier mr enclave← [0]32

4: target mr signer ← [0]32

5: verifier session key
6: target session key
7: short term private key
8: short term public key
9: verification key

10: signing key
11: end global variables

the decryptor enclave also consists of three other ecalls. The ecall process verifiers message
ecall processes a message from the first enclave that is successfully authenticated and is described
in Algorithm 4. This ecall changes the internal state of the enclave, but does not return any values
to the application. Next, the ecall create and encrypt mitigator token H ecall returns the
token H from Figure 4.3 encrypted to the target enclave, and is shown in Algorithm 5. Finally,
the ecall process targets message ecall processes a message from the second enclave that is
successfully authenticated and generates a response to that message; it is depicted in Algorithm 6.
We note that the decryptor enclave maintains internal state corresponding to the variables shown
in Table 5.1, but these variables are not accessible by the untrusted main application.

The untrusted main application follows the algorithm presented in Algorithm 2. This algo-
rithm calls two wrapper functions; the local attestation as responder function calls ecalls to
obtain or process local attestation messages. As the decryptor enclave acts as a responder en-
clave in its local attestation with both the verifier and the target enclaves, it contains ecalls to
generate the first, third messages, and to process the second one. The ecall to process the second
message, which contains the peer enclave’s report, taps into the internal enclave function call
verify and set key, shown in Algorithm 3, to authenticate the peer enclave based on its re-
port. Local attestation messages themselves are passed over the given IPC channel. The second
wrapper function, namely decryptor set signing keypair follows Algorithm 1 and consists of
ecalls to unseal an existing keypair and/or to generate and seal a new keypair.

We begin with a discussion of the algorithm followed by the untrusted main application.
The untrusted application first calls an untrusted wrapper, shown in Algorithm 1, that calls
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Algorithm 2 Main algorithm for local attestation and secure communication with the verifier
and decryptor enclaves

1: O This is an untrusted application call.
2: function DECRYPTOR UNTRUSTED MAIN(decryptor keypair path)
3: O Untrusted wrapper that calls into ecalls for setting up the enclave’s long-term keypair.
4: set signing keypair(decryptor keypair path)
5: O Untrusted wrapper that calls into ecalls for conducting local attestation as a responder

enclave.
6: successful verifier la← local attestation responder(verifier ipc channel)
7: if successful verifier la 6= True then
8: return 0
9: end if

10: ciphertext← receive message(verifier ipc channel) . Untrusted call.
11: ecall process verifiers message(ciphertext)
12: successful la with target← local attestation responder(target ipc channel)
13: if successful la with target 6= True then
14: return 0
15: end if
16: encrypted token H ← ecall create and encrypt mitigator token H()
17: send message(encrypted token H, target ipc channel) . Untrusted call.
18: while True do
19: input ciphertext← receive message(target ipc channel)
20: output ciphertext← ecall process targets message(input ciphertext)
21: send message(output ciphertext, target ipc channel)
22: end while
23: end function

into ecalls for setting up the decryptor enclave’s state of its long-term signing and verification
keypair. The untrusted application then waits for a local attestation request from the verifier
enclave. Upon obtaining a request, it completes the local attestation handshake through the
local attestation responder untrusted wrapper function (line 3). If the local attestation hand-
shake and authentication is successful (lines 4–6), the main application proceeds to wait for and
receive a ciphertext message from the verifier enclave (line 7). It then processes this message
through the ecall process verifiers message ecall (line 8).

The application then waits for a local attestation request from the target enclave and responds
to it, through the local attestation responder untrusted wrapper function (line 9). Follow-
ing a successful local attestation handshake with the target enclave (line 10–12), it then ex-
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Algorithm 3 Algorithm for an internal enclave functions that authenticates the peer enclave that
performs local attestation, based on its enclave and signer measurements.

1: O This is an internal enclave call.
2: function VERIFY AND SET KEY(mr enclave,mr signer, session key)
3: if successful la count = 0 then . Take this to be the verifier enclave
4: verifier mr enclave← mr enclave
5: verifier session key ← session key
6: successful la count← 0
7: else
8: for i← 1, 32 do
9: if target mr signer[i] 6= mr signer[i] then

10: return 0
11: end if
12: end for
13: target session key ← session key
14: successful la count← 1
15: end if
16: return 1
17: end function

ecutes the ecall ecall create and encrypt mitigator token H to obtain the ciphertext token
encrypted token H (line 13). The main application then sends this token to the target enclave
along an IPC channel (line 14). It then keeps waiting for further messages from the target enclave
(line 16), processes any received message through the ecall ecall process targets message to
get a response output ciphertext (line 17). It sends the response message back to the target
enclave (line 18). This exchange of messages goes on until the application is stopped and corre-
sponds to the decryptor enclave decrypting client’s ciphertext form fields and re-encrypting the
plaintext to the target enclave.

We have discussed the expected order of execution of ecalls by the main application, but since
it is untrusted, it may perform these ecalls in an arbitrary order or a different number of times. We
need to demonstrate that by doing so, the untrusted main application cannot subvert the intended
functionalities of the decryptor enclave. To this end, we proceed with a brief description of the
internal enclave function and each of the ecalls, in order to explain how each of these functions
cannot be subverted in either of the two aforementioned ways. For each function, we conclude
with a simple enumeration of guarantees that it provides.
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verify and set key: This internal enclave call, which is shown in Algorithm 3, authen-
ticates the peer enclaves in a local attestation handshake based on their enclave, signer measure-
ments and stores corresponding session keys for later use. First, it is important to note that this
function will only be called by trusted enclave ecalls and in particular, it will be called with gen-
uine measurements of a peer enclave, as per a verified report, and the session key for that peer
enclave. In other words, it will only be called with genuine arguments, as many times as valid
(possibly identical) reports are being presented in a local attestation handshake.

This function uses the successful la count enclave global variable to keep track of the num-
ber of times it has been called. It does not compare its input arguments to any hard-coded val-
ues the first time it is being called. It instead stores the input enclave measurement into the
verifier mr enclave variable for use by other ecalls. It authenticates the second and subse-
quent enclaves to call this function by checking that its signer measurement is the same as that
in the target mr signer variable. It also sets the verifier session key variable to the session
key of the first enclave and the target session key variable to the session key of subsequent
enclaves. The successful la count variable and the verifier mr enclave variables are not set
elsewhere in the code. Thus, it is evident that the following properties hold true:

1. The successful la count variable correctly refers to the number of successful authenti-
cations of attesting enclaves. That is, it is 1 only after one enclave has been authenticated
successfully and it is 2 only after two enclaves have been authenticated successfully.

2. The second enclave that has been successfully authenticated has a signer measurement that
is equal to the target mr signer variable.

3. If the successful la count variable is 1 or more, then the verifier mr enclave variable
refers to the enclave measurement of the first enclave to call this function during local
attestation.

4. If the successful la count variable is 1 or more, the verifier session key variable refers
to the session key of the first enclave that has been authenticated successfully.

5. If the successful la count variable is 2 or more, the target session key variable refers
to the session key of the latest enclave that has been authenticated successfully.

ecall process verifiers message: This ecall first ensures that it is being called when
the value of the successful la count variable is 1 (line 2); that is, after a successful authentica-
tion of the verifier enclave has taken place. (If this is not the case, then the ecall does nothing.) It
decrypts its input argument with the session key established with the verifier enclave, namely the
key in the verifier session key variable (line 3). It expects the resulting plaintext to contain
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Algorithm 4 Algorithm for an ecall to process a message from the verifier enclave.

1: function ECALL PROCESS VERIFIERS MESSAGE(ciphertext) . This is an ecall.
2: if successful la count == 1 then
3: (decrypt status, plaintext)← decrypt(verifier session key, ciphertext)
4: if decrypt status 6= True then
5: return “Error in decrypting: OS might have modified the message”
6: end if
7: (target mr signer, privacy policy hash)← plaintext
8: end if
9: end function

two hashes: the target enclave’s expected signer measurement and a hash of the privacy policy
files on which the compliance check was performed. It sets the variables target mr signer and
privacy policy hash to these values. In other words, as long as statements 1 and 4 are correct,
then we obtain the following:

6. Only after one enclave has been successfully authenticated, the target mr signer variable
is set to a part of the plaintext content of the first message sent by that enclave.

7. Only after one enclave has been successfully authenticated, the privacy policy hash vari-
able is set to a part of the plaintext content of the first message sent by that enclave.

We note that this function can be called multiple times with the same or different ciphertext
messages. It is evident that subsequent runs of the function with identical inputs result in identical
results as the first run. Given that the verifier enclave only sends one valid message to the
decryptor enclave in each run of the post-verification stage of our system, the adversarial OS
does not have any other valid messages to replay for that run. Any messages that were not
encrypted to the shared secret result in a decryption failure (line 2) and consequently, do not
result in a change of the internal state of the enclave.

ecall create and encrypt mitigator token: This ecall first ensures that it is being
called after two successful authentications have taken place, that is, the successful la count
variable is at least 2 (line 2). The ecall generates a short-term private-public keypair. It then con-
catenates the newly generated public key short term public key with the two global variables
verifier mr enclave and privacy policy hash to form the variable token M . It signs the re-
sulting token M with its long-term signing key to obtain the token H . Finally, it encrypts the
token H using the target enclave’s session key, namely target session key. Therefore, given
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Algorithm 5 Algorithm for an ecall to encrypt the signed tokenH to the target enclave.
1: function ECALL CREATE AND ENCRYPT MITIGATOR TOKEN H() . This is an ecall.
2: if successful la count ≥ 2 then
3: (short term private key, short term public key)← create keypair()
4: token M ← short term public key‖verifier mr enclave‖privacy policy hash
5: token M signature← sign(long term signing key, token M)
6: token H ← token M‖token M signature
7: encrypted token H ← encrypt(target session key, token H)
8: return mitigator encrypted token H
9: else

10: return “INVALID ECALL”
11: end if
12: end function

the pseudocode for this function, we obtain the following statement on the basis of statements 3
and 7 above, or, alternately, on the basis of statements 1, 3, and 4:

8. Only after at least two enclaves have been successfully authenticated, the token H vari-
able, which is sent later to the client, contains the enclave measurement of the first enclave
to attest to the decryptor enclave and the privacy policy hash, which was in the first mes-
sage sent by that enclave, signed with the decryptor enclave’s long-term signing key.

We observe that if this function is called multiple times, then it must be called after two at-
testing enclaves have successfully been authenticated (line 2) for the function to return with a
new token. The enclave measurement of the first enclave to be successfully authenticated and
the privacy policy hash do not change between the first and subsequent calls to this function, as
per statements 2 and 7 above. Therefore, the tokens returned in the first and subsequent calls
only differ in the short-term public key variable, which is desirable as this key is supposed to be
ephemeral.

Finally, we observe that the untrusted wrapper set signing keypair and the resulting ecalls
can be called at any point before the above ecall create and encrypt mitigator token H ecall
is called. Not calling this wrapper at all or calling it after the above ecall has been called would
result in a failure in the construction of a token H and thus would simply result in a DoS attack
on our design.

ecall process targets message: This ecall first ensures that it is being called after
two successful authentications have taken place; that is, the successful la count variable is at
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Algorithm 6 Algorithm for an ecall to process a message from the target enclave and to respond
to it with another message

1: function ECALL PROCESS TARGETS MESSAGE(input ciphertext) . This is an ecall.
2: if successful la count == 2 then
3: (decrypt status,message)← decrypt(target session key, input ciphertext)
4: if decrypt status 6= True then
5: return (“Error in decrypting main message”, input ciphertext )
6: end if
7: (client public key, ciphertext form data)← split message(message)
8: client session key ← derive key(short term private key, client public key)
9: (decrypt status, plaintext form data)← decrypt(client session key,

ciphertext form data)
10: if decrypt status 6= True then
11: O Return back the same data that was encrypted to it.
12: plaintext form data← ciphertext form data
13: end if
14: output ciphertext← encrypt(target session key, plaintext form data)
15: return output ciphertext
16: else
17: return “Invalid ecall”
18: end if
19: end function

least two. This ecall implements the target enclave’s processing of client data in Figure 4.4. That
is, it decrypts its input argument using the target enclave’s session key, establishes a shared key
with the client, decrypts the form field data with this shared key and then re-encrypts it with the
session key for the target enclave. Thus, we arrive at the following statement on the basis of
statements 1, 2, 5, and 6 above:

9. The client’s form field data is encrypted to an enclave whose signer measurement was sent
by the first enclave to attest to the decryptor enclave.

We remark that in case the decryptor enclave cannot successfully decrypt the client’s ciphertext
form data (line 10), it re-encrypts this data to the target enclave and returns it. This could occur
if the client erroneously sent plaintext form field data or used the wrong public key. Finally,
we observe that if a valid target enclave passes valid client ciphertext form field data, it always
obtains the users’ plaintext data. In particular, if the target enclave’s form webpage displays
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user’s plaintext data, possibly following modifications, back to them in a webpage, it is essential
that the decryptor enclave should not have a reference monitor-like design in that it should not
refuse to decrypt any data requested by a valid target enclave. Designs of the decryptor enclave
that allow it to refuse decryption of ciphertext client data, say sent from specific webpages, from a
valid target enclave face a significant usability problem. That is, the users will now unexpectedly
fail to view any data on other webpages that is derived from the filled-in form fields. We therefore
believe that such a reference monitor-like design will not be acceptable to end users.

Now, given that the client side extension is to check the enclave measurement included in the
token M that it receives is that of a valid verifier enclave, statement 8 implies that the extension
will ensure that the first enclave to attest to the decryptor enclave is a valid verifier enclave.
Therefore, statement 9 is equivalent to the following: the client’s form field data is encrypted to
an enclave whose signer measurement was sent by a valid decryptor enclave and thus, the former
enclave is a valid target enclave. Additionally, as the client side extension also checks that the
hash of the displayed privacy policy is the same as that included in the token H , the valid verifier
enclave would have checked the source code of the valid target enclave for compliance against
the same privacy policy as the one displayed to the user.

We note that this function can be called multiple times with replays of previous ciphertext
data that was sent by the client. In other words, as the TLS connection can terminate outside
the target enclave in our threat model and the adversarial OS can replay a client’s old public key
and ciphertext data to the target enclave. The target enclave would simply encrypt this data to
the decryptor enclave, resulting in this function being invoked. Of course, as within our current
design the decryptor enclave always decrypts all data that is sent to it, following a successful
authentication of the target enclave, the target enclave would have already obtained the plaintext
client data. It would simply obtain the same plaintext data again and as it was signed by a valid
verifier enclave, it would handle the data in a privacy-compliant way. We remark that we do not
protect against adversaries whose aim is not to obtain plaintext data but to repeat some privacy-
violating stateful action, such as sending spam email.1 Therefore, we have shown the security of
the decryptor enclave stands against an adversarial OS that attempts to call the enclave’s ecalls
in an arbitrary order and an arbitrary number of times.

1To protect against this attack, the decryptor enclave needs to maintain a list of hashes of values of the
client public key and ciphertext form data variables in Algorithm 6 and reject any incoming values of these
variables that are the same as the old ones.

64



5.2 Adapting the Graphene-SGX platform

It is evident that local and remote attestation and sealing are essential in our design: specifically,
we require the verifier and the target enclaves to be able to attest to the decryptor enclave. We also
need to seal the long-term signing key of the decryptor enclave to disk. If sealing is not available
on the trusted hardware platform, then the client would need to perform remote attestation with
the decryptor enclave each time that it wishes to access a website.2 However, as we described
in Chapter 2, Graphene-SGX, in its current form, does not support local or remote attestation. It
also does not support sealing or unsealing of content to disk.

We enable Graphene-SGX to support local attestation with a native Intel SGX SDK appli-
cation as follows. We include stripped-down versions of the native Intel SGX SDK libraries for
attestation-relevant functions within the target application and verifier’s Graphene-SGX manifest
as trusted files. Attestation-relevant functions are not modified themselves, but other functions
that are called by these functions are tuned to run on Graphene-SGX; that is, without references
to other SGX SDK libraries that are used within the native setup but not within Graphene-SGX.
Similarly, we support sealing for the verifier enclave on the Graphene-SGX platform by simply
linking the verifier executable against a modified version of the appropriate SGX library and
including it as a trusted file within the verifier’s manifest. To enable passing local attestation
messages between Graphene-SGX enclaves and native Intel SGX enclaves, we design Google
Protocol Buffers [Goo19] classes for these messages.

Within the native Intel SGX SDK setup, the untrusted application makes ecalls to the initi-
ating enclave, which then makes ocalls to an untrusted local attestation core object within the
untrusted binary. This core object then makes ecalls to the responding enclave. However, in our
use case, we have different applications, namely the verifier and the target enclaves, initaiting
local attestation to the decryptor. Therefore, we modify the Intel SGX SDK application for lo-
cal attestation to support this use case and to support Google Protocol Buffers for exchanging
messages.

5.3 Verifier enclave

The verifier enclave is responsible for verifying that the PHP source code files, which are to
be run within the target enclave, are compliant with a model of the privacy policy. Secondly,
in case the source code is found to be compliant with the privacy policy model, the verifier is

2The verifier enclave can be functional on a platform that does not support sealing: it would simply regenerate a
new keypair to sign the target enclave each time and inform the decryptor enclave of the same.
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Algorithm 7 Main algorithm followed by the verifier enclave
1: function VERIFIER MAIN(target enclave manifest path,

source code files paths,
privacy policy file path,
signature token path
verifier keypair path ) . This function is run within a Graphene-SGX enclave.

2: (analysis result, hashes)← source code analysis(source code files paths,
privacy policy model path)

3: if analysis result == False then
4: return 0
5: end if
6: O Initializes the signing, verification keypair variables from a sealed keypair on disk.
7: set signing keypair(verifier keypair path)
8: complete and sign manifest (target enclave manifest file path,

source code files paths,
hashes, signing key, signature token path)

9: target mr signer ← compute sha256 hash(verification key)
10: decryptor session key ← do local attestation(decryptor ipc channel)
11: ciphertext← encrypt(decryptor session key, target mr signer)
12: send message(decryptor ipc channel, ciphertext)
13: end function

also responsible for signing the target enclave, using a long-term signing-verification keypair
that is sealed to the disk. Finally, the verifier enclave should conduct local attestation with the
decryptor enclave and over the resulting secure channel, inform it of a hash of the verification
key, P = Hash(VKV ) and of a hash of the privacy policy against which the source code was
verified Hash(PP ).

The verifier enclave should take as inputs the source code files that are to be run by the target
enclave at runtime, and any other inputs that it needs to sign over to generate the target enclave’s
signature token. As the target enclave is run within Graphene-SGX, the target enclave’s manifest
file is also included within the signature. Therefore, as input arguments, the verifier enclave
takes in the paths to the target enclave’s manifest file, its PHP source code files, including the
privacy policy model file, and the path where the signature token should be written to disk. We
begin with a discussion of the main algorithm that the verifier follows, which is also depicted in
Algorithm 7.

The verifier enclave first initializes its long-term signing verification keypair by calling the
wrapper function set signing keypair() which was defined in Algorithm 1. It then runs the
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main source code analysis function with the path to the source code files and the privacy policy
model file. After verifying the source code files for compliance with the privacy policy model
file, this function returns a binary verification result and a list of hashes of all these files. We
discuss later on in this section so as to why we modify the source code analysis function to do
this. Following a successful verification result, the verifier obtains a signing-verification keypair
(line 5), through an implementation of the get signing keypair() algorithm, which is outlined
in Section 4.2.1. It then passes the signing key, the target enclave manifest file path, the hashes
that it obtained from the source code analysis tool, and the signature token path to the manifest-
signing Python script (line 6). This script has been modified to take into account the fact that
it generates the signature token for the target enclave, while being executed on an untrusted
website provider host machine, as we explain below. It writes the completed manifest file and
the signature token to disk.

After writing the signature token, the verifier computes a hash of the verification key (line
7). It then conducts local attestation with the decryptor enclave on a predefined inter-process
communication (IPC) channel (line 8). It does not authenticate the peer enclave: that is, it does
not check the enclave measurement or the signer measurement of the decryptor enclave. On the
secure channel established with the peer enclave through local attestation, the verifier enclave
sends the hash of the verification key along with a hash of the privacy policy model file (lines 9,
10). In other words, it encrypts these hashes using its symmetric session key that is shared with
the peer enclave, and sends them over the untrusted IPC channel.

Before we describe the source code analysis and the complete and sign manifest func-
tions, it is necessary to understand the configuration of the verifier’s manifest file, which is pre-
pared on a trusted machine. As we mentioned earlier, within Graphene-SGX, files can only
be set as either trusted files, implying that their hash is included within the manifest and it af-
fects the enclave measurement, or as allowed files, so that their hash does not affect the enclave
measurement and the content of these files could change between successive reads. First, the
verifier’s manifest should allow the verifier enclave to read its input arguments, namely the target
enclave’s manifest template file, its PHP source code files and the privacy policy file. It is evident
that the PHP source code files cannot be set as trusted files in the verifier’s manifest: we do not
wish the enclave measurement of the verifier enclave to be dependent on that of the files that
it verifies. We therefore set the source code files as allowed files within the verifier’s manifest.
Secondly, any libraries required to run the two aforementioned functions should be included as
trusted files within the manifest. This ensures that the verifier only executes code, through any
dynamic libraries that are loaded, whose integrity is checked at runtime.
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Algorithm 8 Algorithm for Graphene-SGX’s modified manifest-completion and signing script
1: global variables
2: target executable hash
3: dependency hashes . Hashes of all dependencies of target executable
4: graphene library hash
5: target executable info . Information about the target binary in order to compute the

enclave measurement and generate a signature
6: graphene library info
7: end global variables
8:
9: O This function is run within a Graphene-SGX enclave.

10: function COMPLETE AND SIGN MANIFEST(target enclave manifest file path,
source code files paths
source code privacy policy model hashes,
signing key, signature token path)

11: target manifest file← file open(target enclave manifest path)
12: (allowed files list, trusted files list) = parse file(target manifest file)
13: if allowed files list 6= Empty then
14: return 0
15: end if
16: if source code files paths 6⊂ trusted files list then
17: return 0
18: end if
19: append to file(target manifest file,

source code privacy policy model hashes,
target executable hash, dependency hashes,
graphene library hash)

20: signing material← compute signing material(target manifest file,
target executable info,
graphene library info)

21: signature token← sign(signing key, signing material)
22: write to disk(signature token, signature token path)
23: end function

complete and sign manifest: The main algorithm followed by the manifest comple-
tion and signing script is shown in Algorithm 8. This algorithm is passed the path of the target
enclave’s manifest file, hashes of the source code and privacy policy files, the long-term signing
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key and the disk path where the signature token should be written to. This function first opens
and parses the manifest template file (line 9,10) to extract the set of paths of trusted and allowed
files within the manifest. In order to stop arbitrary code from being executed in the target enclave,
this algorithm ensures that the set of allowed files is empty (lines 11–12). In other words, the
target enclave manifest file should only contain trusted files. Importantly, we note that this check
ensures that the integrity of the PHP source code files run within the target enclave is checked at
runtime.3

If the target enclave’s manifest file satisfies this check, then the PHP source code files could
either be set as trusted files or excluded entirely from the manifest template. In the latter case,
Graphene-SGX will not allow the target web server enclave to load its source code files at run-
time, leading to a denial of service attack. To detect if developers have erroneously left out
setting PHP source code files as trusted ones in the manifest template, this function reports an
error and halts if the list of paths of all trusted files does not contain the path of the source code
files, which is passed as an input argument (lines 13–14). After performing these two checks
over the content of the target enclave manifest, this function appends hashes of the source code
files, which were also passed as input arguments to the manifest file (line 15).

As mentioned previously, complete Graphene-SGX manifests include hashes of the target
executable and all libraries that the target executable depends on. Within our threat model, the
adversarial host OS can provide any view of the filesystem as it desires, and thus, it can provide
malicious, privacy-invasive versions of the above files to any system calls run within this func-
tion. As the verifier enclave does not verify the source code for the target executable or for its
dependencies, this script contains hard-coded values for the above hashes (lines 2–3). It appends
these hashes to the manifest file (line 15). Now, Graphene-SGX enclaves consist of the enclave
executable, a Graphene-SGX library and the enclave manifest. Consequently, the computation
of the enclave measurement for Graphene-SGX enclaves requires information about these files.
As the adversarial OS can provide inaccurate information about the enclave executable or the
Graphene-SGX library for the computation of the enclave measurement, this information is also
hard-coded into the script and used to compute the signing material (line 16). Finally, the script
signs the signing material, which includes the enclave measurement and other enclave attributes,
with the signing key that was passed to it as input (line 17) and writes the file to disk.

3If the PHP source code files are set as allowed files, then an adversarial operating system can perform a TOCT-
TOU attack that breaks the soundness guarantees of Mitigator. That is, the adversarial OS can easily replace a
verified version of the files that is signed by the verifier with a malicious version when the target enclave is being
run.
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Algorithm 9 Algorithm to use source code analysis tool
1: function SOURCE CODE ANALYSIS(source code files paths, privacy policy file path)

. This function is run within a Graphene-SGX enclave.
2: source code files← file open(source code files paths)
3: source code files content← file read(source code files)
4: privacy policy file← file open(privacy policy file path)
5: privacy policy file content← file read(privacy policy files)
6: hashes← compute hashes(source code files content,

privacy policy file content)
7: privacy policy model ← form privacy policy model(privacy policy file content)

. The following function performs the compliance check on the opened files.
8: verification result← compliance check(source code files content,

privacy policy model)
9: return(verification result, hashes)

10: end function

source code analysis : We illustrate the main algorithm followed by Pixy in Al-
gorithm 9. Note that the source code analysis function has been modified to compute
hashes over the source code and the privacy policy files, through the compute sha256 hashes
function (line 4). The reasoning behind this decision follows. We have seen that the
complete and sign manifest function includes hashes of the source code files and the privacy
policy file within the manifest. Furthermore, as we explained above, these files can only be set
as allowed files within the verifier manifest, and thus their integrity will not be checked when the
verifier enclave opens them at runtime. Next, it is evident that all of these files must be opened
in order to perform source code analysis. Opening and performing computations on these files
twice, without checking their integrity, leaves the OS with an opportunity to perform a TOCT-
TOU attack by providing a compliant copy of the files to the source code analysis function and
a non-compliant copy to the complete and sign manifest function. Thereby, the OS obtains
a signature over non-compliant source code files and in particular, this attack implies that even
if the original source code analysis function compliance check is sound, the verifier enclave
would not be sound. In order to prevent this attack, we first store the content of the file in en-
clave memory (lines 3,5), compute hashes over this content (line 7) and return these hashes to the
verifier main function (line 9), which then passes them to the complete and sign manifest
function for inclusion in the manifest. We use the content of the privacy policy file in enclave
memory to form the privacy policy model (line 6). Currently, this function is an identity func-
tion but it could use sophisticated natural language processing tools, such as those outlined in
Section 2.1, to derive the privacy policy model. The privacy policy model and the in-enclave
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source code files’ content is input to the compliance check function, which checks the com-
pliance of the source code (line 8). We remark that we thus always refer to the same copy of
the files throughout the source code analysis function. Given that we have described how the
compliance check function is used within the verifier enclave, we can proceed to discuss how it
is implemented using the Pixy taint analysis tool.

5.4 Adapting a source code analysis tool: Pixy

We described Pixy’s functionality as a PHP source code analysis tool in Section 2.2. We repeat
that Pixy uses input arrays to PHP scripts, such as POST or COOKIE arrays, as taint sources. It
also includes a configurable blacklist of output functions that it regards as taint sinks and another
configurable whitelist of functions that it regards as sanitization functions, which take in tainted
input and produce untainted output. We use Pixy within the verifier enclave to analyze the source
code of the target enclave’s PHP files. We recognize that our privacy compliance problem can be
phrased as a taint analysis problem as follows:

1. Incoming POST array values are tainted. However, these may be directly logged or shared,
as they are encrypted to the decryptor enclave. Marking code that does this as vulnerable
would then only increase the false positive rate of Mitigator. That is, it would affect the
completeness of the privacy compliance checking but not its soundness.

2. If a tainted incoming POST array value is passed into the target enclave’s method for
decrypting data, then the output of that function must also be tainted. That is, this function
should not be treated as a sanitization function. This is essential as otherwise, flows of the
plaintext data present in the output will no longer be tracked by Pixy and consequently, the
soundness of the privacy compliance checking is affected. (We remark that in an ideal case,
our source code analysis tool would not taint incoming POST array values but simply taint
the plaintext data that is output by this function. However, Pixy does not easily support a
configuration of function outputs as taint sources.)

3. The blacklist of output functions that is considered as taint sinks must include all functions
that the current privacy policy disallows. A blacklist that misses such functions will affect
Mitigator’s soundness.

We implement restrictions 2 and 3 above, using Pixy. We leave condition 1 for future work, as
it only affects the completeness but not the soundness of Mitigator. We observed that by de-
fault, for functions whose definitions are not in the source code file, Pixy marks the outputs of
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such functions as untainted, even if the inputs are tainted. That is, Pixy treats these functions as
not propagating taints from input parameters to the returned value. Mitigator’s target enclave’s
method for decrypting client-side data, which is abstracted as the php decrypt wrapper method
in Algorithm 10 is treated this way.4 We therefore modify Pixy to treat such functions as poten-
tially dangerous, that is, as if they do propagate taints from any input to the output. Note that
this is a more versatile option that simply hard-coding the specific function as a taint-propagating
one.

Currently, Pixy is designed to mark the same set of functions as output functions for inputs
coming from all different arrays (GET, POST, COOKIE, etc.). It can easily be customized to
implement a more granular policy for different arrays, such as the POST or the COOKIE array,
as well as for different elements in each array, which correspond to names of elements on form
fields for POST arrays and cookie names for COOKIE arrays. Finally, we observe that if Pixy
marks the target enclave source code as being non-compliant with the privacy policy model, then
developers should modify the source code so that it is compliant with the privacy policy model.
Alternatively, the privacy policy can be modified to reflect what the organization actually does
with the data, in terms of the source code. In case Pixy (as it is sound but incomplete) wrongly
marks compliant source code as non-compliant, the developers may simplify the source code so
that Pixy correctly perceives the source code as being compliant.

5.5 Target enclave—PHP Extension

Graphene-SGX allows us to run a native, unmodified web server within an Intel SGX enclave.
We use Graphene-SGX to run an Apache server that hosts PHP source code files. Mitigator’s
PHP extension acts on behalf of the target enclave and implements its functionalities outlined
in Section 4.2. It is responsible for three tasks. First of all, it should perform local attestation
with the decryptor enclave once when the server is set up. From the local attestation shared
secret, it should derive the key kDT . Secondly, after the PHP extension has performed local at-
testation, any PHP scripts should be able to call into the extension to obtain the token H that
is to be sent with every HTTP response. Finally, in Mitigator, the browser extension would
encrypt form field data to the decryptor enclave and send in the client’s public key pkC . The
PHP extension should enable any calling PHP scripts to pass this key, the client’s ciphertext data
and expect plaintext client form fields in response. Mitigator’s PHP-CPP extension provides

4Any methods linked at runtime in the PHP extension are treated as not propagating taints. As mentioned in
Section 5.5, a PHP extension is used to implement the target enclave’s functionalities. The php decrypt wrapper
method is linked at runtime to its definition in the PHP extension and is thus treated this way.
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an implementation of the interface shown in Algorithm 10, in order to perform the abovemen-
tioned three tasks. Specifically, it contains the functions local attestation and first message,
get mitigator public key token, and php decrypt wrapper, which we briefly outline below.

local attestation and first message: This function performs the first aforemen-
tioned task: it initiates a local attestation request to the decryptor enclave and conducts the rest
of the local attestation as the initiating enclave. The target enclave does not need to authenticate
the decryptor enclave and so the extension does not check the enclave and signer measurements
of the responding enclave. Following local attestation, the function derives a symmetric key
for future communication with the decryptor enclave. Additionally, it waits for the decryptor en-
clave to send an encrypted value for the token H . It decrypts the first message from the decryptor
enclave and stores the resulting plaintext.

get mitigator public key token: After the above function is executed once at PHP
startup time, any PHP scripts can call the get mitigator public key token function to retrieve
this token.5 The calling PHP script may then set the value of a custom header, known as the
Mitigator-Public-Key header, to that of the token H in HTTP responses to requests for
pages with forms.

php decrypt wrapper: PHP scripts on pages that obtain form data from the client may
similarly expect to obtain the client’s public key from the value of another custom header, say
Mitigator-Client-Public-Key. To process encrypted form fields sent by the browser
extension, such PHP scripts can pass the value of this header, which is the client’s short-term
public key pkC , and any ciphertext form fields to the function php decrypt wrapper. Internally,
the function encrypts the ciphertext form field values to the decryptor enclave, using the stored
symmetric key kDC and then sends them over an untrusted IPC channel to the decryptor enclave.
It proceeds to wait for a response from the decryptor enclave. On getting a response, the decryp-
tor enclave decrypts it using kDC and then returns the plaintext form fields to the invoking PHP
script.6

We note that exchanging the short-term public keys could be done through means other than
HTTP headers: the PHP extension can publish the token H on a designated page on its website,

5The reader may observe that the above pseudocode for the get mitigator public key token function returns
the same token throughout the lifetime of the decryptor enclave. In particular, it effectively returns the long-term
public key for the decryptor enclave. As long as the client-side extension generates a truly ephemeral keypair, the
shared secret kDC will differ for each client and the OS would not be able to decrypt the client’s ciphertext without
passing it to the decryptor. This function can be modified to obtain a new token each time by communicating with the
decryptor application and signalling it to call the ecall ecall create and encrypt mitigator token, which returns
a new token.

6The current implementation of these functions is not thread-safe. Graphene-SGX does not support shared
memory at the time of this writing and due to time constraints we did not implement signal-based mechanisms for
resource sharing to make these functions thread-safe.

73



from which the browser extension can be expected to retrieve the token. The browser extension
may also support setting up another secure channel to send its public key pkC . A main advan-
tage of using HTTP headers for communicating Mitigator-specific values between the client and
Mitigator’s server-side PHP extension is that retrieving and setting these headers is an integral
feature of all major server-side languages, such as PHP and Javascript. Additionally, Mitigator-
specific tokens piggyback on the same secure TLS channel used to receive and send these values
as the webpage itself, therefore requiring no additional communication overhead to set up a se-
cure channel. Moreover, no additional round trips to the server are incurred to retrieve these
values.
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Algorithm 10 The PHP extension implements these three functions and maintains state corre-
sponding to the global variables below. All of these functions are run within Graphene-SGX
enclaves.

1: global variables
2: decryptor session key
3: mitigator server header
4: end global variables

5: function LOCAL ATTESTATION AND FIRST MESSAGE() . This function conducts local at-
testation and sets the two global variables.

6: do local attestation as initiator(decryptor ipc channel)
7: ciphertext mitigator header ← receive message(decryptor ipc channel)
8: (decrypt status,message)← decrypt(decryptor session key,

ciphertext mitigator header)
9: if decrypt status 6= False then

10: return “Error in decrypting: OS might have modified the token”
11: end if
12: mitigator server header ← message
13: end function

14: function GET MITIGATOR PUBLIC KEY TOKEN()
15: return mitigator server header
16: end function

17: function PHP DECRYPT WRAPPER(client public key, client ciphertext) . This function
obtains client’s plaintext data, by communicating with the decryptor enclave.

18: ciphertext to decryptor ← encrypt(decryptor session key,
client public key‖client ciphertext)

19: send message(decryptor ipc channel, ciphertext to decryptor)
20: ciphertext from decryptor ← receive message(decryptor ipc channel)
21: plaintext client data← decrypt(decryptor session key,

ciphertext from decryptor)
22: return plaintext client data
23: end function
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Algorithm 11 The browser extension maintains state corresponding to the variables below. It
has the following interface of functions to encrypt form field data to the decryptor enclave and to
set the client’s header before sending HTTP submissions of forms.

1: global variables
2: valid verifier enclave measurements← L1

3: url verification key map← L2

4: url key map
5: end global variables
6: function ENCRYPT FORM FIELD(plaintext form field) . This function is called after the

user presses a button to encrypt its form field data.
7: decryptor session key ← url key map[url][“derived”]
8: ciphertext form data← encrypt(decryptor session key, plaintext form field)
9: return ciphertext form field

10: end function

11: function SEND OWN PUBLIC KEY HEADER(url) . This function is called to set the cus-
tom Mitigator-Client-Public-Key header before sending the headers for a request
from a page with forms.

12: own public key ← url key map[url][“own public”]
13: return “Mitigator-Client-Public-Key:own public key”
14: end function

5.6 Browser extension

In this section, we provide an overview of how the browser extension interacts with the target
enclave and how it securely obtains users’ inputs. First, the browser extension is responsible for
sending and receiving Mitigator-specific tokens to and from the PHP extension. As mentioned
in Section 5.5, custom HTTP headers are used to communicate public key-related information
between the decryptor enclave and the browser extension. Specifically, to send the decryptor’s
token H to the client, we use the Mitigator-Public-Key header. In the other direction,
the Mitigator-Client-Public-Key header is used to send the client’s public key to the
decryptor enclave. The latter header is set and sent through the send own public key function
in Algorithm 11.
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Algorithm 12 The browser extension has the following function to verify the decryptor enclave’s
header, to generate its own keypair and to derive a shared secret for future encryption of form
field data.

1: O This function is called if and as soon as the browser extension receives the
Mitigator-Public-Key header.

2: function VERIFY MITIGATOR PUBLIC KEY HEADER DERIVE KEY(url, header value)
3: (token, signature)← header value
4: verification key ← url verification key map[url]
5: signature valid← verify signature(verification key, signature, token)
6: if signature valid == False then
7: return False . Token was signed by an impostor decryptor enclave or the untrusted

OS.
8: end if
9: (decryptor public key, verifier mrenclave, privacy policy hash)← token

10: if verifier mrenclave 6∈ valid verifier enclave measurements then
11: return False . An invalid verifier enclave was used to conduct the compliance

check.
12: end if
13: displayed privacy policy hash← compute privacy policy hash(url)
14: if displayed privacy policy hash 6= privacy policy hash then
15: return False . Compliance was not checked against the displayed privacy policy.
16: end if
17: url key map[url][“decryptor public”]← decryptor public key
18: (own private key, own public key)← create keypair()
19: url key map[url][“own public”]← own public key
20: decryptor session key ← derive key(own private key, decryptor public key)
21: url key map[url][“derived”]← decryptor session key
22: return True . Success
23: end function

Second, the browser extension should verify the integrity of the server-side Mitigator token
that it receives. It does so by performing the three checks outlined in Section 4.2.3 over the
token. Mitigator’s browser extension currently contains hard-coded values for the lists of valid
enclave measurements (L1) and of verification keys corresponding to a decryptor enclave behind
each Mitigator-supporting website (L2) and it maintains them in its state corresponding to Algo-
rithm 11. (We discussed in Section 4.2.4 that owing to high network and computational costs to
establish these lists in a trustworthy manner, a user may reasonably delegate a privacy advocacy
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organization to populate these lists and make them publicly accessible on their website.)7 We il-
lustrate these series of checks in the function verify mitigator public key header derive key
function in Algorithm 12. If any of these checks fail, then the browser extension proceeds as if
the website does not support Mitigator. In other words, it does not derive a symmetric key to
encrypt its data to the decryptor enclave, as the authenticity of the Mitigator infrastructure on the
server-side machines cannot be verified. Additionally, the user interface is not changed to reflect
that Mitigator is supported unless all checks succeed. However, if the checks succeed, then after
Mitigator’s browser extension derives the symmetric key, its icon turns to a different colour, to
signal the user to press on it.

Finally, the browser extension should encrypt form field data to the server-side script and
send the ciphertext instead of plaintext form field data. Currently, the user simply enters their
form field data into the webpage itself. When the user finishes typing their text, they can press a
submit button that is at the bottom of this pop-up window, which results in the entered text fields
to be encrypted to the decryptor enclave for the given website. We encapsulate this through the
encrypt form fields function in Algorithm 11.

We remark that the current implementation can be subject to user interface attacks similar to
those pointed out by Freyberger et al. [FHA+18]. With some changes to the browser extension,
a design motivated from the final design discussed by Krawcieka et al. in SafeKeeper [KKP+18]
can be implemented, as follows.8 The user is expected to signal Mitigator’s browser extension
into a mode to securely enter their data by pressing on the Mitigator icon. When the user presses
on this icon, it produces a pop-up that replicates the functionality of the form but not its appear-
ance. Specifically, it contains a plain HTML form with the same number of text fields as in the
original form, in the same order and with the same labels, but does not contain any Javascripts
from the original webpage. Again, as the user presses the submit button, the entered text fields
are encrypted and sent to the website.

7We remark that Krawiecka et al. [KKP+18] present a zero round-trip remote attestation protocol for the case
wherein only one enclave needs to authenticate to the other. For our case, this becomes relevant as only the decryptor
enclave, behind a given Mitigator-supporting URL, needs to authenticate itself to the privacy advocacy organiza-
tion’s client or enclave. In other words, the latter does not need to authenticate itself to the decryptor enclave as we
expect any party to be able to verify the decryptor enclave’s identity. The privacy advocacy organization’s client can
include an implementation of SafeKeeper’s remote attestation protocol [Kur18] to efficiently verify the integrity of
Mitigator’s decryptor enclaves.

8We could not implement these changes on account of time constraints.

78



5.7 Summary

In this chapter, we have outlined the implementation of our design. In the verification stage,
the website provider runs the verifier enclave on Graphene-SGX with the target enclave source
code files and the target enclave’s Graphene-SGX manifest template as inputs. The verifier
enclave checks the compliance of the source code against the privacy policy file, which is a
simple configuration file for the Pixy source code analysis tool. We assume soundness of the
source code analysis tool; that is, if the source code is non-compliant then the tool will report
this non-compliance. We carefully design the verifier enclave such that given this assumption, it
cannot sign a non-compliant target enclave.

The verifier enclave then proceeds to the post-verification stage, wherein it performs local
attestation with the decryptor enclave, and importantly, it sends authentication information for
the target enclave that it has signed. At runtime, the target enclave handles messages from the
decryptor enclave and the client’s data from the browser extension through a PHP extension.
When started up, the target enclave performs local attestation with the decryptor enclave, and the
decryptor enclave sends it a token that it can then send to clients as a header. Mitigator’s browser
extension verifies the integrity of this token, encrypts data to the decryptor enclave using its
public key from the token and sends its own token as another header. This browser extension
is also responsible for performing remote attestation with the decryptor enclave to ensure its
authenticity and the client may delegate this task to a trusted privacy advocate organization. We
design the ecalls of the decryptor enclave such that given that the browser extension checks the
integrity of the token and the verifier enclave is sound, the client’s data will only be passed to a
compliant target enclave.
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Chapter 6

Performance Evaluation

As Goldberg [Gol07] remarks, for privacy-enhancing technologies to impact people’s lives, users
should want to use those technologies and observes that, for instance, users may turn off or stop
using systems that take longer to run than their non-privacy-enhancing counterparts. In order
to guage whether different users want to use Mitigator, a detailed user study is required. We
leave such a study to future work. Instead, we focus on the second aforementioned point: for
Mitigator to gain widespread adoption, it is desirable that it should not incur a large overhead
in comparison to an identical system without Mitigator, so as to not dissuade users through a
time overhead. We conduct a set of experiments to measure the latency of a website that runs
Mitigator at runtime in comparison to a website run without Intel SGX. We remark that the
verification stage incurs a small one-time latency overhead during the development process, and
thus do not test it further as it does not impact the runtime latency experienced by users. We
also compare the latency of a website with Mitigator to the latency of one run within Graphene-
SGX but without Mitigator. We highlight that the purpose of these experiments is to identify
and explain any sources of significant latency in comparison to the above systems, rather than to
optimize Mitigator to decrease its overall runtime latency.

We begin with a description of how our server-side and client-side components were set up in
order to conduct experiments in Section 6.1. We proceed with a description of how we instrument
these components in order to measure timestamps or time durations in Section 6.2. We measure
the latency of our server-side components through a series of experiments that we describe in
Section 6.3. Finally, we discuss experiments to measure the end-to-end latency of our system in
Section 6.4.
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6.1 Setup

We set up our server-side system on a four-core Intel i5-6500 CPU that supports Intel SGX. The
machine runs Ubuntu 16.04.4. We set up and installed the Intel SGX SDK and Graphene-SGX
on this machine. We ran the verifier enclave on valid target enclave source code and a sample
configuration file as the privacy policy file and it output a signed target enclave. The target
enclave runs an Apache server executable within Graphene-SGX which links to the Mitigator
PHP extension and serves three PHP files. This Apache server is known as the Mitigator server.
Once the target enclave has been signed, we run the decryptor and target enclaves through the
post-verification stage. Following the local attestations outlined in Figure 4.3, the target enclave
is ready to serve the PHP files.

The first PHP file displays a form and a link to the privacy policy file. Responses to HTTP
requests for this page include our custom Mitigator-Public-Key header whose value is
set to the token H . Upon receiving this HTML form page, the browser extension verifies the
value of this header. As we discuss below, for these performance experiments, we modified the
browser extension to automatically generate plaintext form field values that consist of random
plaintext characters, to encrypt these form fields, and send the resulting ciphertext form fields
to the second PHP file through an HTTP POST request, or to log them, in order to be sent
later. It also sends the value of the Mitigator-Client-Public-Key header in the same
request, or logs it, in order to enable the decryptor enclave to decrypt the ciphertext form fields.
This second PHP file passes the values of any POST array variables that it received, along with
the value of the Mitigator-Client-Public-Key header, to an implementation of the
php decrypt wrapper function, which is present in the PHP extension and was discussed in
Section 5.5, in order to obtain the plaintext form fields. The second PHP script then simply
prints the output of this function, namely, the plaintext form fields. We note that the browser
extension can send a variable number of form fields with data of variable length to the second
PHP script in an HTTP POST request as all of these POST array values are passed to the above
function.

Apart from running the target enclave, we also run another Apache server within Graphene-
SGX that does not load the PHP extension and differs in the second PHP file. This file just prints
the values of any POST array variables that it receives. We refer to this server as the Graphene-
SGX server. Finally, we run another Apache server outside of the SGX platform that does not
load the PHP extension, and we refer to it as the control server. We remark that we do not set up
any of the aforementioned three servers with TLS support, owing to time constraints; however,
we believe that our experiments can be replicated on servers with TLS support.

We now proceed to explain the modifications to the browser extension to conduct our tests.
First, we modified the browser extension to automatically generate readable plaintext characters
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as form field data and to encrypt each such form field value to the decryptor enclave. We support
generating requests with a variable number of ciphertext form field values or with variable size
of a single form field, as required for our experiments. (We remark that as this is a preliminary
evaluation, we only test the change in latencies with textual form fields; we leave the measure-
ment of latencies for encrypting other data types to future work.) Therefore, for instance, we can
generate n requests for each value of the control variable; that is, we send n requests for a given
number of form fields or for each form field size. We remark that we first send a single request
for each of the values of the control variable (form field length or number of form fields) and then
send another request and so on, until n requests are sent for each value of the control variable.
This is done to prevent the network lag or other variables from affecting the observed latencies
for one value of the control variable more than others. For the same reason, we send each such
request to each of the servers consecutively before sending another request with a different value
of the control variable rather than sending all requests first to the Mitigator server, then to the
Graphene server and then to the plain Apache server. Finally, in order to emulate sending such
requests from a client on the same network as the servers, wherein the client is headless, we also
modify the browser extension to log the ciphertext form fields, the expected plaintext form field
outputs and the value of the Mitigator-Client-Public-Key header.

6.2 Instrumentation

We instrument the servers, the server-side enclaves, and the browser extension to measure the
wall clock time that has passed during the execution of relevant functions, as follows. We instru-
ment the servers by simply obtaining timestamps at the start and at the end of the PHP scripts
for the second PHP page for each of the servers. The difference of these timestamps is equal to
the wall clock time that has passed in the execution of the PHP script. We instrument the target
enclave, that is, the PHP extension, to measure the time that it takes to generate a client’s plain-
text form field data, given the ciphertext and the client’s public key. Specifically, we modify the
php decrypt wrapper function in Algorithm 10 to obtain an initial timestamp before line 18 and
a final timestamp after line 21. The time duration defined by the difference of these timestamps
will include the time to encrypt the client’s ciphertext and public key to the decryptor enclave
(line 18), the time for the decryptor enclave to process the message and to generate a ciphertext
response, the time to decrypt the decryptor enclave’s response ciphertext (line 21) as well as
the time for any inter-process communication (lines 19, 20). We also instrument the decryptor
enclave to measure the time that it takes to process the target enclave’s ciphertext message and
return another ciphertext message. That is, we instrument the untrusted decryptor application,
which is shown in Algorithm 2, to measure the wall clock time after it receives a message from
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the target enclave (line 17) and after it sends a response to it (line 18). This thus includes the
wall clock time taken to run the ecall ecall process targets message, which internally com-
putes the session key for that client and performs two symmetric-key cipher decryptions and one
symmetric-key cipher encryption.

We remark that in our current implementation, the php decryptor wrapper function will be
called once for each form field value that is to be decrypted. Similarly, the aforementioned ecall
will be called once for each form field and the shared secret and session key will be recomputed
for form fields on the same page and sent by the same client. It is evident that the computation
of the shared secret for each form field is redundant and the implementation can be optimized to
modify the php decryptor wrapper function to accept all form field values instead of just one,
and encrypt all form field values in one ciphertext to the decryptor enclave. Similarly, the ecall
can be optimized to compute the shared secret only once and to decrypt all form field values
present in the ciphertext from the target enclave. We leave these optimizations for future work
but expect that they will result in a significant reduction in the runtime computational overhead
of the decryptor and target enclaves, as follows. First, instead of computing the shared secret
m times for m form fields, the decryptor enclave would only be computing it once. Similarly,
instead of exchanging m ciphertexts between the target and decryptor enclaves for m form fields,
these enclaves will only be exchanging one longer ciphertext that contains all m client ciphertext
form fields and one copy of the client’s public key. Thus, only one encryption and decryption of
an m times longer ciphertext will take place instead of m encryptions and decryptions of smaller
ciphertexts.

We instrument the browser extension to measure the time that it takes to encrypt a given
message; that is, we instrument encrypt form field function in Algorithm 11, to obtain a
timestamp before line 7 and after line 8. We also instrument the browser extension to record
a timestamp before sending a request and after obtaining a response, in order to measure the
end-to-end network round-trip time.

6.3 Server-side latency

First, we obtain an estimate of the server-side latency of our system by measuring the latency of
the Mitigator server’s responses to requests from the localhost interface on the servers’ machine
and contrasting these latencies in comparison to the latencies of responses by the Graphene-
SGX and control servers. Sending requests from the localhost interface eliminates the network
round-trip time and thereby allows us to precisely measure the server-side latency overhead of
using Mitigator. As we also instrument the decryptor and target enclaves, we obtain precise
breakdowns so as to how much latency overhead each server-side component contributes.
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We conduct two sub-experiments as follows. In the first sub-experiment, we run the browser
extension to generate requests with one form field of variable length and to record the expected
plaintext responses. The length of the form field in each request falls in the range 32, 64, ...1024.
The second sub-experiment differs from the first one only in that requests with a variable number
of form fields, such that each form field is of constant length, are generated in the browser
extension. The number of form fields in each request falls in the range 1, 2, 4, 8, ...128. In both
sub-experiments, n = 50 requests are sent for each value of the independent variable; that is, the
number of form fields or the length of a form field. We then send these requests from the localhost
interface of the servers’ machine to the second PHP page of the Mitigator, Graphene-SGX, and
control servers respectively using the curl tool. We record the total wall clock time taken to
obtain the complete HTTP response, as measured by that tool. The instrumented decryptor and
target enclaves output the wall clock time taken within relevant functions run for each of the form
fields. The instrumented Mitigator, Graphene-SGX, and Apache server PHP scripts allow us to
record the total wall clock time that has passed as the HTML response page was formed.

In Figure 6.1, we plot the averages and standard error bars for the following wall clock times
as the length of the single form field increases: the total network round-trip time for each of
the three servers, the time spent solely within the PHP script for the Mitigator server, the time
spent within the decryptor enclave, and the time spent within the PHP extension. In Figure 6.2
we plot the averages and standard error bars for the same six time measurements for the second
sub-experiment; that is, as the number of form fields increases. We remark that the wall clock
time measured in the PHP scripts for the Graphene and control servers was 0 in the scale of
microseconds and thus we do not plot it on the graphs below.

We draw the following conclusions from Figure 6.1:

1. The latencies and round-trip times are in the order of magnitude of milliseconds and are
thus very small in absolute terms. This is because the client is situated on the localhost
interface of the server machine. We remark that the increase in the average round-trip time
for all three servers for requests with a form field of length 1024 is because the HTTP
request is split over two TCP packets instead of just one.

2. The total network round-trip time of the Graphene-SGX server is at most about 2 times as
much as that of the control server. We remark that the round-trip time of the control server
is shown as 0 ms for all requests with form fields of all lengths other than 1024, as the curl
tool measures times to the precision of 1 ms and no less.

3. The decryptor enclave and the PHP extension times each consume at most 10% (0.25 ms
out of 2.5 ms) of the Mitigator round-trip time when the client is situated on the localhost
interface of the server’s machine.
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Figure 6.1: Measurement of server-side latency from the localhost interface as the size of a
form field increases: the length of a single form field was doubled in steps from 32 to 1024 and
we measured the round-trip times (RTT) from the localhost interface for each of the Mitigator,
Graphene-SGX, and control servers, and the averages, over 50 requests for each form field length,
are plotted in blue, orange, and green respectively. For the Mitigator server, we measured the
total wall clock time spent within the PHP script, the total time spent within the PHP extension
and the decryptor enclaves and the time spent within the decryptor enclave and the corresponding
averages are plotted in red, light purple, and brown respectively.
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Figure 6.2: Measurement of server-side latencies from the localhost interface as the number
of form fields increases: starting from 1, the number of form fields was doubled in steps up
to 128, and we measured the round-trip times (RTT) from the localhost interface for each of
the Mitigator, Graphene-SGX, and control servers, and the averages, over 50 requests for each
number of form fields, are plotted in blue, orange, and green respectively. For the Mitigator
server, we measured the total wall clock time spent within the PHP script, the total time spent
within the PHP extension and the decryptor enclaves, and the time spent within the decryptor
enclave and the corresponding averages are plotted in red, light purple, and brown respectively.
The standard error bars for this dataset are too small to be seen on this graph.
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4. The decryptor and target enclave times do not change significantly as the size of the form
field increases. This is to be expected as both enclaves simply perform symmetric-key
cipher operations on longer plaintexts or ciphertexts. In other words, as the length of the
client’s ciphertext increases, the target enclave encrypts longer ciphertexts to the decryptor
enclave. The decryptor enclave then decrypts the longer ciphertext, obtains the client’s
plaintext and re-encrypts the longer plaintext to the target enclave.

5. The difference in the total network round-trip time for the Mitigator server (blue) and
for the Graphene-SGX server (orange) is almost equal to the total computation time spent
within the PHP script (red), implying that we have correctly identified the major sources of
computational overhead within server-side Mitigator components: namely, the decryptor
and target enclaves and the PHP script.

It is evident from Figure 6.2 that observations 2 and 5 above also hold true as the number of
form fields in each request is changed. We draw the following observations from Figure 6.2:

6. If multiple form fields are sent, then the total computation time within enclaves (shown in
red) constitutes almost all of the total Mitigator round-trip time (shown in blue).

7. In contrast to observation 4 for Figure 6.1 above, the decryptor and target enclave times
both increase linearly with the number of form fields. This is to be expected; the decryptor
enclave implementation currently involves recomputing the shared secret for each form
field, as discussed above. The aforementioned optimizations effectively involves bundling
multiple form fields from the client together into a single long ciphertext message at the
target enclave and sending this one long message to the decryptor enclave. Thus, we expect
that if these optimizations were to be implemented, then the total computation time spent
within both enclaves would stay almost constant with an increase in the number of form
fields, similar to that observed for the first sub-experiment.

In light of observations 3 and 7 above, we hypothesize that under realistic network condi-
tions, the computational overhead due to Mitigator is very small in comparison to the network
overhead. To confirm our hypothesis, we repeat both aforementioned sub-experiments from an-
other machine in the CrySP RIPPLE Facility at the University of Waterloo, which we refer to as
remote machine 1.1 In other words, the HTTP requests are generated on the browser extension as
for the previous sub-experiments but are sent from this remote machine through the curl tool. We
measure and plot the same six time measurements as for the previous sub-experiments wherein
the requests were sent from the localhost interface of the servers’ machine.

1The round-trip time reported by the curl tool for an HTTP request from this machine to the control server
machine was found to be about 6 ms.
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Figure 6.3: Measurement of server-side latency from remote machine 1 as the size of a form field
increases: the length of a single form field was doubled in steps from 32 to 1024 and we measured
the round-trip times (RTT) from remote machine 1 for each of the Mitigator, Graphene-SGX, and
control servers, and the averages, over 50 requests for each form field length, are plotted in blue,
orange, and green respectively. For the Mitigator server, we measured the total wall clock time
spent within the PHP script, the total time spent within the PHP extension and the decryptor
enclaves and the time spent within the decryptor enclave and the corresponding averages are
plotted in red, light purple, and brown respectively. The standard error bars for most values in
this dataset are too small to be seen on this graph.
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Figure 6.4: Measurement of server-side latencies from remote machine 1 as the number of form
fields increases: starting from 1, the number of form fields was doubled in steps up to 128, and we
measured the round-trip times (RTT) from remote machine 1 for each of the Mitigator, Graphene-
SGX, and control servers, and the averages, over 50 requests for each number of form fields, are
plotted in blue, orange, and green respectively. For the Mitigator server, we measured the total
wall clock time spent within the PHP script, the total time spent within the PHP extension and
the decryptor enclaves, and the time spent within the decryptor enclave and the corresponding
averages are plotted in red, light purple, and brown respectively. The standard error bars for this
dataset are too small to be seen on this graph.

89



From Figure 6.3, we can observe that any increases in the total computation time within
enclaves for longer form fields are not significant with respect to even a small network overhead,
as is the case for a client on our remote machine in the RIPPLE facility. (We again observe that
as there are two TCP packets for HTTP requests with a form field of length 1024, the round-trip
times for all three servers increase significantly.) However, from Figure 6.4, one can see that as
the number of form fields increases, the corresponding increases in the total computation time
within enclaves (shown in light purple) contribute to a significant fraction of the total Mitigator
network round-trip time (shown in red). The total computation time within enclaves increases
linearly in the number of form fields, as was the case in Figure 6.2. Again, we expect that the
optimizations which we outline in Section 6.2 should render this computation time insignificant
with respect to the total network round-trip time.

6.4 End-to-end latency

In the set of experiments in Section 6.3, we measured the average runtime latency for server-
side Mitigator components; that is, for the decryptor and target enclaves. However, a typical
user running Mitigator may face significant latencies due to Mitigator’s client-side components.
We now proceed to measure the end-to-end latency of Mitigator; this includes the latency on
account of encryption of the form fields in the browser extension in addition to the network and
server-side latencies. For the set of experiments in this subsection, we generate and send form
field requests from a browser extension that runs on another remote machine, which we refer
to as remote machine 2.2 As discussed in Section 6.1, we modified the browser extension to
send these requests to the Mitigator, Graphene-SGX, and control servers and as we described
in Section 6.2, we instrumented it to measure the encryption time and the total round-trip time,
which starts from when the extension sends a request to the second PHP page for the respective
server and ends when it obtains a complete response.

We repeat subexperiments 1 and 2 as in Section 6.3 and from the browser extension on remote
machine 2, we send n = 10 requests for each value of the independent variable; that is, the size
of the form field sent in a request or the number of form fields sent per request. We arrange
the timestamps recorded in the browser extension and in the server-side components for each
request in a chronological order and subtract the client’s encryption start timestamp from every
other timestamp. We then sort each run of the experiment for a given value of the independent
variable by the last timestamp for each run; that is, the time when remote machine 2 receives the
complete response. We choose the median run for each value of the independent variable as a

2The round-trip time reported by the curl tool for an HTTP request from this machine to the control server
machine was found to be about 10 ms.
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Figure 6.5: Distribution of time in median runs as the length of a single form field sent in the
request varies: on doubling the length of the form field sent in each request, the client-side
encryption time (lightest grey) and time spent in each of the Mitigator server-side components
(darker shades of grey) are plotted for the median run for the given length of the form field.
The median runs for the Graphene-SGX and control servers are also plotted in purple and teal
respectively.

91



Figure 6.6: Distribution of time in median runs as the number of form fields sent in the request
varies: on doubling the number of form fields sent in each request, the client-side encryption time
(lightest grey) and time spent in each of the Mitigator server-side components (darker shades of
grey) are plotted for the median run for the given number of form fields. The median runs for the
Graphene-SGX and control servers are also plotted in purple and teal respectively.
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representation of the latency that a user may expect to experience. In Figure 6.5 we plot the time
spent in the browser extension and in each server-side component of Mitigator in a median run
for each value of the form field size. We remark that due to the instrumentation of the browser
extension, the network latency includes the time spent within the browser extension to prepare
the request and to send it but does not include the latency for rendering an HTML response page.
In Figure 6.6 we plot the same value for each value of the number of form fields sent in a request.

It is evident from Figure 6.5 that the client-side encryption time is very small in comparison to
the total network overhead for Mitigator as the length of a form field increases. From Figure 6.6,
this overhead remains small as the number of form fields to be encrypted increases up to 64
form fields. This observation further substantiates our claim that Mitigator does not incur large
overheads for a remote client. The total round-trip time for requests to the Mitigator server is
approximately the same as that for requests to the Graphene-SGX server as the length of the
form field increases. However, from Figure 6.6, this round-trip time increases significantly as
the number of form fields increases.

6.5 Summary

We have conducted experiments to determine the runtime latency of Mitigator as a significant
runtime latency could deter usability. We found that the total round-trip time for a Mitigator-
supporting server is significant in comparison to a Graphene-SGX or plain Apache server only
if the network latency is very low. Under reasonable network latencies, as is to be expected for
a remote client, we found that the difference in the round-trip time for a Mitigator-supporting
server versus a Graphene-SGX server is minimal. However, about twice as much latency over-
head is incurred with respect to a control server which is not run within the Intel SGX platform.
In particular, although the overhead with respect to the Graphene-SGX and control servers does
not increase linearly with longer form fields, it does increase linearly with a higher number of
form fields. We propose a simple optimization in the implementation to eliminate this linear
overhead. We leave this optimization to future work. We have thus measured and determined the
primary sources of latency in our implementation, as per our goal for this chapter.
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Chapter 7

Future work

There are many aspects of our design and implementation that can can be improved upon in
future work and there are some implementation aspects that can be extended or generalized.

We begin with a discussion of systemic improvements to the design and implementation of
server-side enclaves in each of the three verification, post-verification, and runtime stages. First,
as we have only implemented simple privacy policy statements in the static code analysis tool
within the verifier enclave, further work needs to be done to understand what kinds of state-
ments can be checked using a static analysis tool. Additionally, we have only used a hard-coded
configuration file of the static code analysis tool as the privacy policy for our proof-of-concept
implementation and in this sense, such a privacy policy is not reflective of the complexities in
real-world textual privacy policies. Therefore, another avenue of future work is to explore how
to use the output privacy policy model from existing and future automatic privacy policy natural
language processing tools to configure the static code analysis tool in the verifier enclave. On the
other hand, our work also opens up an interesting possibility of using the output of a static source
code analysis tool to guide developers to forming a fine-grained privacy policy that reflects the
source code. For the post-verification and runtime stages, hosting multiple decryptor and target
enclaves, possibly behind a load balancer, may be beneficial to website providers as it would
decrease the fraction of the total client traffic that each target and decryptor enclave processes.
Therefore, extending our design and proof-of-concept implementation to a distributed setting,
that is, to cater for multiple decryptor and target enclaves on different machines, would make
Mitigator more robust and deployable in real-world organizations.

In terms of extensibility, our work benefits significantly from research into running applica-
tions within trusted hardware platforms. Shim libraries that provide support for features listed in
Table 2.1 can be used to deploy server-side enclaves. In more general terms, our design is not
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limited to Intel SGX and thus further research into implementing our design on trusted hardware
platforms that provide attestation and sealing-like properties would mean that website providers
can deploy a Mitigator-like system on top of any existing trusted hardware platforms that they
possess.

Last but not least, as we mentioned earlier, it is very important for privacy-enhancing tech-
nologies to be developed and deployed such that users want to use them. Conducting a thorough
usability study to determine whether different users want to use Mitigator’s browser extension,
and if so, if the extension is usable or user-friendly, is thus a relevant line of future work. Our
system has been designed to provide users guarantees that the processing of their data on server-
side code is in compliance with the privacy policy, without revealing the source code to users or
third parties. However, modern websites use dynamic Javascript code to process users’ data on
their machines; assuring compliance of client-side code is not within our problem statement but
remains a very relevant adjacent problem, especially for the usability of our tool. In other words,
users may reasonably expect a tool like ours to also provide guarantees over client-side code.
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Chapter 8

Conclusion

In this work, we sought to enforce compliance of a website’s source code with its privacy policy
and signal the presence of this compliance in a trustworthy manner to users. We aimed to show
that:

It is possible to build a system that can provide a verifiable guarantee to a user that the
personal data that they submit to a website can only be processed by code that has been verified
to be compliant with the website’s privacy policy. The guarantee is verifiable in that the user can
verify the integrity of the code that does this compliance check.

In this thesis, we have provided a design and outlined a proof-of-concept implementation,
Mitigator, for the system we claimed could be built in the thesis statement. We have discussed
relevant design choices for the security of our system and have detailed our reasoning for the
correctness of our implementation of each of our server-side and client-side components. Ad-
ditionally, we have evaluated the performance of our system and identified relevant sources of
latency. Finally, we have described avenues of future work that are relevant to furthering the
scope and applicability of our work.

We hope that Mitigator opens up further opportunities for research and development of pro-
totypes to ensure that source code that processes users’ data is compliant with written guarantees
that are provided to users.
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Appendix A

Attestation in Intel SGX

We briefly describe local and remote attestation within Intel SGX.

A.1 Local attestation

We begin with a discussion of a one-sided local attestation for enclave A to enclave B, based
on Costan and Devdas’ report [CD16] and the Intel SGX SDK codebase [Int19a]. We refer to
enclave A as the attesting enclave and enclave B as the target enclave. For local attestation, the
attesting enclave A can generate a report that attests to its enclave and signer measurements to
the target enclave B, such that enclave B can only verify the report if it is on the same machine.
Figure A.1 shows the series of SGX instructions that enclave A executes to generate the report
and enclave B executes to verify it.

A local attestation report consists of a keyed block-cipher-based message authentication code
(CMAC [Dwo16]) over the attesting enclave’s enclave and signer measurements, its other SECS
attributes, and a user-specified string D, which is known as the report data within the SGX SDK
documentation. To ensure that only a target enclave on the same machine can verify the CMAC
over the report, the key to the CMAC, known as the report key, is derived from hardware secrets
as well as attributes in the SECS of the target enclave. In particular, the expected enclave mea-
surement, ISVSVN, and ISVPRODID for the target enclave B are to be included in generation
of the report key. Collectively, these SECS fields are referred to as the target information. The
target enclave executes the SGX microcode EREPORT instruction with null values in its input
registers to retrieve its own target information, which it can later send to any attesting enclave.
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Enclave A Enclave B

TB

get target info()

EREPORT (∅, ∅) :
TB = MREncB‖AttrB
Return TB

get report(TB,D)

EREPORT (TB, D) :
KB = KDF (TB,S)
TA = MREncA‖AttrA
RBA = D‖TA‖MRSigA
RA = RBA‖CMACKB

(RBA)
Return RA RA

verify report(RA)

EGETKEY:
TB = MREncB‖AttrB
KB = KDF (TB,S)
Return KB

Verify (CMACKB
(RBA), KB)

Figure A.1: Enclave A attests, with a data item D as the report data, to enclave B. At the end of
this asymmetrical exchange, enclave B obtains an SGX report that attests to the enclave, signer
measurements, and other attributes of enclave A, and contains the data item D. Both enclaves
execute the EREPORT SGX instruction, whereas only the target enclave executes the EGETKEY
SGX instruction. We remark that the EGETKEY SGX instruction invocation simply returns the
report key. The report key is then passed to the enclave and used within an SGX SDK function to
recompute the expected CMAC on the report and compare it to the one sent alongside the report.
Notation: All operations performed within the enclaves, including the execution of these instruc-
tions, are encapsulated into one of three functions: get target info(), get report(),
and verify report(). These functions are used as building blocks later on. AttrA refers to
the SECS attributes of enclave A that are included in the generation of the report key, other than
the enclave measurement. It therefore includes the ISVSVN and the ISVPRODID. S refers to
machine-specific secrets that are burned into the CPU at manufacturing time and are passed as
inputs to the derivation of the report key.
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We denote this particular invokation of the EREPORT instruction with null arguments as the
get report() call.

The attesting enclave A then uses the target information TB that was sent to it as the first
message to generate a report targeted towards the target enclave B, as follows. It executes the
EREPORT instruction, by passing the target information (TB) and the report data D to its input
registers. Internally, when executed with the above inputs, this instruction uses the target infor-
mation and internal hardware-infused secrets, denoted by S , to derive the report key KB targeted
towards enclave B. It then concatenates the report data D with the following attributes from its
SECS page: the enclave measurement (MREncA), other attributes, such as the ISVSVN and
ISVPRODID (encapsulated as AttrA), and the signer measurement (MRSigA). Finally, it com-
putes a CMAC over the resulting data block, known as the report body, with the report key KB

to form the report RA. We denote this particular invokation of the EREPORT instruction as the
get report() call.

The target enclave B then executes the EGETKEY instruction to retrieve the report key KB.
This instruction uses hardware secrets as part of the inputs to derive the key. Thus, this instruction
will return the same key as the one used by the EREPORT instruction to generate the report on the
attesting enclave, namely KB, only if the target enclave is being run on the same machine as the
attesting enclave (implying that S is the same). This instruction also uses the target information
for the invoking enclave, that is, target enclave B, based on its SECS page attributes (TB) as
inputs to the derivation of the report key. The target enclave then uses the returned key KB to
recompute the CMAC over the data block RBA in report RA and to check that it is the same
as the one in that report. We encapsulate the extraction of the report key and the verification
of the report through the verify report() function. Through the exchange of messages
in Figure A.1, the target enclave obtains the correct enclave and signer measurements of the
attesting enclave in the report body RBA, and report data D for future usage. The target enclave
B may authenticate the attesting enclave A based on these measurements. It may expect data item
D to be of a certain form and therefore, proceed to verify it before using it. We refer the reader
to §5.8.1 of Costan and Devdas’ report for details on the EREPORT and EGETKEY instructions
for local attestation.

We now proceed to discuss how a two-sided local attestation handshake can be used to estab-
lish a shared secret and therefore, a secure channel between two enclaves on the same machine.
We base this discussion on the design in Intel SGX SDK’s codebase for local attestation [Int19a].
We start with an initiator enclave B and a responder enclave A, which generate the short-term
keypairs (b, gb) and (a, ga) respectively at the start of this protocol. The initiator enclave first
executes get target info() to obtain its target information, say TB. It can execute this
function before generating its keypair and can reuse it for all responder enclaves. It then sends
its public key gb and the target information Tini as the first message M1.
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Responder (A) Initiator (B)

Generate (a, ga) Generate (b, gb)

M1

Tini = get target info()
M1 = gb‖Tini

KLA = KDF ((gb)a)

Dresp = H(ga‖gb)
Rresp = get report(Tini, Dresp)
M2 = ga‖Rresp M2‖CMACKLA

(M2)

KLA = KDF ((ga)b)
Verify CMACKLA

(M2)
verify report(Rresp)

Verify Dresp
?
= H(ga‖gb)

Dini = Dresp

Rini = get report(Tresp,
Dini)

M3 = Rini

Verified (MREncresp,MRSigresp)
Local attestation-derived key KLA

M3‖CMACKLA
(M3)

Verify CMACKLA
(M3)

verify report(Rini)

Verify Dresp
?
= Dini

Verified (MREncini,MRSigini)
Local attestation-derived key KLA

Figure A.2: Two-sided local attestation-based key exchange protocol used in Intel’s SGX SDK
and in Mitigator that shows how trusted Intel SGX instructions can be used to perform a
bidirectional local attestation resulting in a secure channel between enclaves. The functions
shown in typewriter font are executed through trusted SGX instructions, as shown in
Figure A.1. As per the output of the get report() function in that figure, the reports Rini

and Rresp always include information about their own SECS page in their report bodies, that is,
Tini‖MRSigini and Tresp‖MRSigresp respectively.
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Upon receiving the first message, the responder enclave uses the initiator enclave’s public key
gb in that message and its own private key a to compute the shared secret gab. It consequently
derives a symmetric key KLA from the shared secret. It then computes a cryptographic hash over
a concatenation of its own and the initiator’s public key to generate the report data, Dresp, for
its report to the initiator enclave. Including the initiator’s public key gb in the report data for
a responder enclave’s report ensures that the untrusted OS cannot simply replay back an older
report, that was also targeted towards the initiator enclave, in the second message. In other words,
it ensures freshness of the report in the second message. The responder enclave obtains a report
for the initator enclave by calling the get report() function with the target information of
the target enclave, Tini, which it obtained in the first message, as input arguments, and report
data Dresp. Finally, the responder enclave generates a message M2 that consists of its own public
key and the report and computes a CMAC over it, using the key KLA. It concatenates the CMAC
to the message and sends it to the initiator enclave.

The initator enclave uses the responder enclave’s public key ga in the second message M2 to
generate the shared secret and derive the symmetric key, KLA. It performs three integrity checks
over the message before proceeding to generate its own report for the resonder enclave. First,
it ensures that the first message was not altered by the untrusted OS, by verifying the CMAC
over the message using key KLA. In other words, if the target information of the responder
enclave were to be modified from Tresp to some Tresp′ and/or if the responder enclave’s public
key were to be modified from ga to ga

′ , then the initiator enclave would find that the CMAC
cannot be verified. Secondly, the initiator enclave verifies that the report Rresp was generated by
another enclave on the same machine by calling the verify report function over it. This
check would succeed only if the initator enclave was on the same machine as the responder
enclave (implying that the hardware secrets used in the derivation of the initiator’s report key
are the same) and if the responder enclave obtained and used the correct target information Tini.
Finally, following a successful result of the above function, the initiator enclave ensures that the
report data is a hash of the concatenation of both enclaves’ public keys: this ensures that the
responder enclave indeed included both keys in the computation of the report data and detects
attacks wherein the untrusted OS changes both enclaves’ public keys (ga and gb) such that the
same derived key KLA is obtained, as the hash will differ if any of the keys differ. This concludes
the verification of the second message.

The initiator enclave generates and sends a report in the last message of this protocol. The
report data Dini for this report is the same as that included in the report sent by the initiator
enclave and so Dini = Dresp. The target information for the responder enclave, namely Tresp,
is within the report body of the responder enclave’s report, namely Rresp. The initiator enclave
therefore generates the report Rini by calling the get report function with Dini and Tresp as
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inputs. It consequently sends the report Rini and a CMAC over it, using the derived key KLA, as
the third message.

Upon receiving the third message, the responder enclave performs the same three verifica-
tions over the message M3 as the initiator enclave did upon receiving the second message M2.
In other words, it ensures the integrity of the third message and that it has obtained a fresh report
from a responder enclave on the same machine. At the conclusion of the handshake, both en-
claves have a verified report that attests to the other enclave’s enclave and signer measurements.
They have also established a symmetric key KLA for further secure communication.
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Client (C) Enclave (E) Quoting enclave (QE)

Generate (b, gb) Generate (a, ga)

Attestation key AK

M1 = ga

KLA = KDF ((ga)b)

M2 = gb‖H(ga‖gb) M2‖CMACKLA
(M2)

KLA = KDF ((ga)b)
Verify CMACKLA

(M2)
Verify:

M2
?
= gb‖H(ga‖gb)

DE = H(ga‖gb)
Quote q

q = SigAK(DE‖TE‖MRSigE)

Quoting Local AttestationQuoting Local Attestation

M3‖CMACKLA
(M3) M3 = q

Verify CMACKLA
(M3)

Verify q

Verify DE = H(ga‖gb)
Use remote attestation-

derived key KRA

Figure A.3: An overview of the remote attestation protocol with a focus on the messages exchanged between the
client and the enclave. The client verifies q by sending it to Intel to verify the signature and thereby obtains a
verified signature over the enclave E’s enclave and signer measurements (MREncE,MRSigE). The quoting local
attestation exchange between the enclave and the quoting enclave is shown in Figure A.4.
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Enclave (E) Quoting enclave (QE)

RE‖r

DE = H(ga‖gb)
TQE = get qe target info()
RE = get report(TQE, DE)
Nonce r

verify report(RE)
(DE‖TE‖MRSigE)← RBE

q = SigAK(RBE)
DQ = H(q||r)
RQ = get report(TE, DQ)

RQ‖q
verify report(RQ)
Verify TQ = TQE

Verify DQ = H(q||r)

Figure A.4: This sequence diagram shows a custom local attestation protocol between the enclave E and another
enclave with a special interface, known as the Quoting Enclave (QE), which occurs during remote attestation.
The Quoting Enclave signs the report body of a local attestation report with an attestation key AK, such that the
client can query Intel to verify the signature on the report body. We remark that the report body RBE in the
report RE contains the report data DE as well as the enclave and signer measurements and other enclave attributes
(T E‖MRSigE). The signed report body is known as a quote and is denoted by q in this diagram. We use the three
functions shown in Figure A.1 and introduce another function named get qe target info(), which returns
the target information of the quoting enclave to the calling enclave.



A.2 Remote attestation

In the case of remote attestation, the client trusts the trusted hardware platform provider and
wishes to ensure that their code is being run in an enclave on a trusted hardware platform. The
trusted hardware platform provider acts as a root of trust to verify an enclave’s report, known
as a quote, that is passed to the client from the trusted hardware that hosts the remote enclave.
A quote is simply a signature over a report generated on the given machine, with an attestation
key. A special enclave known as the quoting enclave is used to provide quotes over reports.
The attestation key is known to a remote attestation service hosted by Intel SGX, known as a
provisioning service. Further information on the key derivation process for the report key and
the verification of the report may also be obtained in §5.8.2 of Costan and Devdas’ [CD16] report.
We base the discussion below on the sample remote attestation code and libraries in Intel’s SGX
SDK codebase [Int19a]. We show the remote attestation in two diagrams for clarity and ease of
reading: in Figure A.3 we focus on the interaction between the client and the enclave, whereas
in Figure A.4 we focus on the interaction between the enclave and the quoting enclave.

The sample remote attestation protocol shown in Figure A.3 involves a simple Diffie-Hellman
key exchange, as was the case in Figure A.2. The enclave and the client possess the keypairs
(a, ga) and (b, gb) respectively. In the first message M1, the enclave sends its public key to the
client. The client computes the shared secret and derives the symmetric key KLA. It then forms
the second message M2 by concatenating its own public key with a hash of both public keys, to
ensure freshness of its generated message M2 with updates in the enclave’s public key ga. The
client then computes a CMAC over M2 with the symmetric key KLA. It sends M2 concatenated
with the above CMAC to the enclave over some (possibly insecure1) channel. Upon receiving
the second message, the enclave first generates the shared secret and derives the symmetric key
KLA. It proceeds to verify the CMAC in the message using this key. Finally, the enclave ensures
that the second message is not a replayed one by confirming that the rest of M2 is a hash of both
parties’ public keys.

We note that until this point, no Intel SGX specific instructions have been executed and thus
the client could inadvertently have established a channel with the untrusted OS. In the series of
steps shown in Figure A.4, the enclave conducts local attestation with the Quoting Enclave (QE)
in order to obtain a quote q that it then includes in the third message. We note that any enclave
can obtain the target information of the quoting enclave, in order to generate a local attestation
report targeted to it, which is encapsulated in Figure A.4 through a get qe target info()
function.

1The entire exchange between the client and the enclave could occur over TLS but as long as the TLS session
key or certificate private key is known to the adversarial OS, this channel is an insecure channel for our case.
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The enclave sets the report data DE for the report to the quoting enclave to the hash of the
concatenation of both parties’ public keys and obtains the target information of the target enclave
TQE by executing the get qe target info() function. The enclave passes TQE and DE as
inputs to the get report function and obtains the report RE . It also generates a random nonce
r to ensure freshness of the report generated by the quoting enclave. It sends the report RE

concatenated with the nonce r to the quoting enclave.

The quoting enclave verifies the report RE through the verify report() function call, as
any other target enclave for a local attestation report would. It then generates a quote q by signing
over the body of the verified report RBE with the attestation key AK. It proceeds to generate
the report data for its report to the given enclave, namely DQ, by concatenating the quote q and
the random nonce r, thereby ensuring that the report data changes in each response to a local
attestation request from the same enclave (r) and that the report differs for different requesting
enclaves and different clients (q). It generates a report by calling the get report() function
with the target information of the given enclave TE , which is present in the verified report RE ,
and the report data DQ. It returns the quote q and the generated report RQ to the requesting
enclave.

The enclave first verifies the report, by calling the verify report() over it. Following a
successful verification, it performs two checks on the report body. First, it ensures that the report
has been generated by the genuine quoting enclave on the same machine, by ensuring that the
target information in the report body, namely TQ, is the same as that which it obtained earlier as
the return value of a call to the get qe target info function. Secondly, it ensures that the
report data is a hash of the quote q that it received from the QE and the random nonce r that it
sent to the QE. Therefore, if the untrusted OS modified either the random nonce or the quote,
then the enclave would detect this attack as the above check would fail. This concludes the local
attestation of our given enclave with the quoting enclave. The enclave then sends the quote q,
along with a CMAC computed over it using the key KLA, to the client in the final message of the
handshake with the client.

Upon receiving the third message from the enclave, the client first verifies the CMAC in this
message, using the derived key KLA. Secondly, the client verifies the quote q through Intel’s
remote attestation service. In an older version of Intel SGX, the client simply sends the request
to this service and obtains a response. In an updated version [Int18], the attestation key AK is
not bound to hardware secrets but can be generated randomly within any enclave that can provide
the interface for a quoting functionality. A hash of the attestation key is placed in the quoting
enclave report, which is in turn signed by a “Provisioning Certification Enclave” (PCE). The
PCE has access to hardware-fused secrets for remote attestation that Intel can vouch for. In this
new version, the client obtains a certificate chain that contains the quote q and that terminates at
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a self-signed certificate for the PCE. The client also obtains an identifier that allows it to verify
the certificate chain from Intel and thereby, it verifies the quote.

The client then ensures that the report data in the quote is equal to the hash of both enclaves’
public keys. Effectively, this binds the quote to the current session of the Diffie-Hellman key
exchange, thereby assuring the client that it is communicating with a genuine Intel SGX enclave,
with the enclave and signer measurements MREncE,MRSigE , which have been verified by a
genuine quoting enclave.
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Appendix B

Sealing-relevant algorithms

In this brief appendix, we expand on Algorithm 1 to list the algorithms for sealing a long-term
keypair to disk and for unsealing such a keypair from the disk. One of these two functions is
executed whenever the verifier or the decryptor enclave attempts to obtain its long-term keypair.

Algorithm 13 Algorithm for sealing a keypair.
global variables . These variables are within the enclave.

verification key
signing key

end global variables

function ECALL GENERATE AND SEAL KEYPAIR()
(signing key, verification key)← create keypair()
plaintext keypair ← (signing key, verification key)
O This is an internal call to a function in the SGX SDK to seal any data.
sealed keypair ← sgxsdk seal(plaintext keypair)
return sealed keypair

end function
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Algorithm 14 Algorithm for unsealing a keypair.
function ECALL UNSEAL AND SET KEYPAIR(sealed keypair)

O This is an internal call to a function in the SGX SDK to unseal any data.
(unseal status, plaintext keypair)← sgxsdk unseal(sealed keypair)
if unseal status == False then

return False
end if
(signing key, verification key)← plaintext keypair
return True

end function
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