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Abstract

We present a new multilevel method for hierarchical co-clustering. The fast multilevel
co-clustering method (FMCC) implements a bi-coarsening process on the bipartite graph
induced by the feature matrix. It does so in a recursive manner, producing a hierarchy of
overlapping co-clusters and their connections to each other, as encoded in the co-cluster
membership matrices and the coarse feature matrices that are obtained in the graph coars-
ening procedure. FMCC is inspired by principles of the algebraic multigrid (AMG) method
for solving linear equation systems, which uses heuristic grouping criteria that are based
on strength of connection in the operator matrix and are fast and scalable. Compared with
other co-clustering algorithms, FMCC has the following advantages: it is computationally
efficient (almost linear in the data size); there is no need to specify the number of clusters
since FMCC finds it automatically; and the clustering gives hierarchical structure for both
the row and the column variables. FMCC produces interpretable co-clusters on several
recursive levels along with information on how they are connected, and thus allows to in-
vestigate the potential multilevel co-cluster structure of complex real data. The method
is accurate, fast and scalable, as demonstrated by numerical tests on co-clustering prob-
lems with synthetic and real data from the fields of gene expression data and online social
networks.
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Chapter 1

Introduction

Clustering is a classification problem which seeks to group data points according to the
proximities between point pairs. These problems are prevalent from finding groups of
friends in daily life to classifying the categories of massive online information. Though it
is not hard for humans to detect the communities of small data sets, clustering is far from
trivial for computers and for large-scale data sets. This research paper is on the algorithms
for clustering.

Generally, there are two kinds of clustering problems according to the difference of data
types. One kind can be described by a graph in which each node corresponds to a data
point and the adjacency matrix describes the proximities between node pairs. Then a
clustering seeks to find the node groups that have strong internal connections but sparse
external ones. Researchers have proposed different measures, such as modularity [25],
conductance[15] and saliency[18], based on the original graph to judge how community-
like these groups are. As a result, they can develop algorithms to find proper clustering
simply by optimizing those measures.

Another line of clustering problems is given in the form of data points with corresponding
feature vectors , which is also called point-feature matrix. For example, the document-word
data use each row to describe the frequency of each word, and clustering seeks to group the
documents using their feature vectors. This kind of data can be reduced to the above one
by computing point pair proximities from the feature matrix. However, the point-feature
data can further have their own clustering algorithms. For example, the well-known K-
means algorithm [11] seeks K centers among those data points that minimize the square
sum of the Euclidean distances from the points’ feature vectors to their nearest centers.

Modern development has imposed more difficulties on clustering. Besides accuracy, many
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applications are seeking richer clustering structures; for example, some data can be de-
scribed by the hierarchical clustering structures, but gene expression data prefer bi-clustering
(or co-clustering). In addition, given that the K-means is NP-hard [1] and those optimization-
based algorithms could also have high time cost, researchers are developing highly efficient
algorithms to deal with massive Internet information. As a result of the above facts,
researchers have shown an explosion of interest in clustering and have developed many
different kinds of clustering algorithms.

1.1 Clustering Methods

In this chapter, we introduce and briefly compare different kinds of clustering methods.

1.1.1 Hard versus Soft

A hard clustering is a partition of data points, that is, every data point entirely belongs
to exactly one cluster. Soft, or overlapping, clustering can assign one point to different
clusters. Fuzzy clustering is a special kind of soft clustering that assigns a point to different
clusters with different membership intensities (usually sum up to 1). Fuzzy clustering can
be converted to a hard one by simply assigning the points to the groups in which they have
maximum memberships.

1.1.2 Partitional versus Hierarchical

A partitional clustering method finds clusters at a single level. For example, it groups
the faculty at a university into two clusters, i.e., the Art faculty and Science faculty.
A hierarchical clustering is a nested sequence of clustering which finds the multi-level
memberships between clusters at different levels. For example, a hierarchical clustering
would further find the Mathematics, Physics and Computer Science faculties within the
above Science faculty, and find the Applied Math, Pure Math faculties within the above
Mathematics faculty, and so on. Finally, a clustering tree is produced to describe the
relations between clusters at neighboring levels.

Generally, there are two kinds of hierarchical clustering, namely divisive and agglomerative
hierarchical clustering. A divisive hierarchical clustering method starts from the whole data
set and classifies it into big groups, then divides the big groups into smaller ones, and so
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on. Conversely, an agglomerative hierarchical clustering starts from individual data points
and merges the closest points iteratively into a group, which will be regarded as a new
individual point at higher level. During this process, the algorithm needs a proper way
to define the proximity between the original points and the new-generated points, i.e., the
groups of points.

1.1.3 One-side clustering versus Co-clustering

Assume we are given a data set with points and their feature intensities (usually in the form
of a matrix F ). One-side clustering finds the clusters only for the points, while co-clustering
(or bi-clustering) finds the clusters for both the points and features simultaneously. Note
that if the data only has points and their proximities, it can only use one-side clustering.

Bioinformatics and text data mining are two popular applications for co-clustering. Many
co-clustering algorithms have been developed to classify the gene expression data in bioin-
formatics. Prelić et al [28] gives a systematic comparison of some well-known co-clustering
algorithms, such as Cheng and Church’s block clustering algorithm [6] and the order pre-
serving submatrix algorithm, OPSM [2]. In text data mining, researchers are interested in
finding the clusters for both documents and words by co-clustering algorithms, for exam-
ple, the bipartite graph partition algorithm in [8] and the information-theoretic algorithm
in [9]. The non-negative matrix factorization (NMF), a recently proposed method, also
shows its competitive ability in co-clustering for both gene expression data [5, 16] and text
data [38].

1.2 Challenges in Clustering

Although well developed, clustering is still an explosive research field with many challenging
problems.

One of the challenges in clustering problems is to compare and measure clustering results.
Since the actual classes of data points (usually in very large size) are not known, there
is not a way to compare the results with ground truth or that of the other algorithms
using real data sets. To show the algorithm performances most papers have to test their
algorithms on artificial data or some standard data sets with human-generated “ground
truth”.

Another challenge is to find the number of clusters. Most of the powerful clustering algo-
rithms need to specify a proper number of clusters K beforehand, e.g., the K-means, NMF
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and information-theoretic algorithm in [9]. However, given a initial data set, it is far from
trivial to decide the proper K due to a lack of prior knowledge of the data. Actually, there
is a whole field of research focusing on finding a proper K. One may refer to [26] for an
overview on different methods.

Finally, some difficulties are posed by the wide spread applications and large online data
sets. The main problem of clustering algorithms is that the cannot be standardized. Al-
gorithm developed may give best result with one type of data set but may fail or give
poor results with data set of other types. This limits the spread of clustering algorithms
in different applications. In addition, some sophisticated clustering algorithms have high
computational complexity, e.g., K-means and NMF. This limits their applications in the
large scale online data which unfortunately happens to be the main application area of clus-
tering. So efficient and scalable clustering algorithms, even with a little loss in accuracy,
are becoming more attractive in modern applications.

1.3 Overview

This research paper considers the following problem:

Problem. Let X = {x1, ..., xm} and Y = {y1, ..., yn} be two different element sets. F ∈
Rm×n is the feature intensity matrix, which captures the relations between X and Y . For
simplicity, we call F the x− y feature matrix. For example, X, Y could be the document
and word set, respectively, and fij, an entry of F , describes the frequency of the word
yj in the document xi; or X, Y could be the LinkedIn user and the professional skill set,
respectively, and fij is the intensity at which user xi masters skill yj. We are interested in
simultaneously find the hierarchical clustering of X and Y based on F .

We propose a hierarchical co-clustering framework that is inspired by methods of Alge-
braic Multigrid (AMG). AMG was originally developed as an iterative solution method
for linear systems that arise from discretizing elliptic Partial Differential Equation (PDE)
problems on unstructured grids [3, 4]. Discretized PDE matrices on unstructured grids
can be interpreted as weighted graph matrices (with the graph edges corresponding to the
grid edges), and this analogy opens the door to applying ideas from multilevel numerical
methods for PDEs on unstructured grids to graph problems. In the context of AMG, this
was first done by Brandt and co-workers for problems in image segmentation [30, 31] and
in clustering and manifold detection [19]. In this approach, components from the standard
AMG algorithm that include coarsening and interpolation based on strength of connection
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in the operator matrix, and so-called variational coarse operator definition [3, 4], can be
applied directly to graph problems to create hierarchical overlapping groupings of graph
nodes (nested image segments or graph clusters) in a graph coarsening process, and to
detect salient groupings. These clustering methods, which are based on heuristic strength-
based grouping criteria that are fast and scalable, have proven highly attractive due to
their speed and inherent scalability, and ability to reveal multilevel structure, which is
used to improve accuracy for difficult segmentation and clustering problems [19, 30, 31]. It
would be desirable to develop AMG-inspired algorithms for co-clustering that enjoy these
beneficial properties, but applying AMG principles to co-clustering incurs new challenges
and has not been attempted yet.

This research paper formulates new AMG-inspired multilevel methods for hierarchical co-
clustering based on heuristic strength-based grouping criteria that are fast and scalable.
When applying AMG principles to the co-clustering problem, a first important challenge
that needs to be addressed is to find proper ways to define coarse/fine (C/F) splittings for
the rectangular feature matrices F , in which both the columns and rows of F are coars-
ened. Here, the C-points are seed points for clusters on the next coarser level, and the
F-points belong to C-clusters in an overlapping fashion based on their connection strength
to the C-points in the graph. We propose two approaches. The first approach effec-
tively approximates the products FF T and compute correlations (or distances) between
the row variables, and F TF to compute correlations between the column variables, and
then coarsens the row and column variables separately based on these correlation strengths
using standard AMG C/F-splitting techniques [3, 4]. A similar approach was used in [35]
to coarsen rectangular matrices for computing the singular values and singular vectors of
rectangular matrices using AMG techniques. The second approach for C/F-splitting we
propose is novel: C/F-point selection alternates between row and column variables, based
on the connection strength between row and column variables as encoded directly in the
feature matrix F. It can be seen as a coarsening process on the bipartite graph induced by
the feature matrix F. This approach avoids the (costly) computation of FF T and F TF ,
and instead groups row variables indirectly based on their connections to column variables
(and vice versa). This novel method has great potential significance: it directly uses the
correlation information encoded in the feature matrix F, and is thus faster and more scal-
able than basing cluster grouping on computation of FF T and F TF , which makes it an
attractive candidate coarsening algorithm for large co-clustering problems. A second chal-
lenge in applying AMG principles to co-clustering lies in properly defining interpolation
matrices and coarse feature matrices. Here also we consider two alternatives: the first is
based on row-column and column-row interpolation, and the second is based on row-row
and column-column interpolation. Further challenges we address include issues of scaling
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and normalization. The resulting novel fast multilevel co-clustering (FMCC) algorithm
produces a multilevel hierarchy of overlapping co-clusters and their connections to each
other as encoded in coarse feature matrices. It is important to note that the method
produces interpretable co-clusters on many recursive levels along with information on how
they are connected, and thus allows to investigate the potential multilevel co-cluster struc-
ture of complex real data. The method is accurate, fast and scalable, as demonstrated by
numerical tests on co-clustering problems with synthetic and real data from the fields of
gene expression data and online social networks.

The rest of the paper is organized as follows. Chapter 2 gives the description of the novel
framework of hierarchical co-clustering. Chapter 3 lists some details in the algorithms of
FMCC. We analyze the computational complexity of FMCC in Chapter 4. The system-
atical experimental tests are reported in Chapter 5. We conclude the paper in Chapter 6,
while leave a brief review of clustering measures to the Appendix.
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Chapter 2

The Fast Multi-Level Co-Clustering
Framework

In this chapter, we formulate a novel framework called Fast Multi-Level Co-Clustering
(FMCC) that is inspired by Algebraic Multi-Grid (AMG). We assume that F is the only
given information, and all the rows and columns of F have at least one non-zero entry. For
discrimination, we call the points in X x-points, and y-points in Y . We are interested in
the hierarchical clustering for both X and Y .

2.1 Basic Ideas

One may imagine the x-points and y-points as nodes in a graph. A key observation here
is that any entry fi,j of F can be viewed as the connection strength between xi and yj.
So the following (m + n) × (m + n) symmetric matrix captures the connection strength
between all the points in X and Y :

A =

[
0m×m Fm×n

(F T )n×m 0n×n

]
(2.1)

in which the first m rows (or columns) correspond to x-points while the other n rows
correspond to y-points.

The matrix in 2.1 shows that the x-points do not have explicit connections to other x-points,
neither do y-points. So A can be viewed as a weighted adjacency matrix of a bipartite
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Figure 2.1.1: From the feature matrix F to the weighted bipartite graph

graph with the set X and Y as two parts. Actually, any feature matrix F describes a
weighted bipartite graph; an illustrative example is given in Figure 2.1.1.

From this perspective, a simultaneous clustering ofX and Y can be viewed as a clustering of
the weighted bipartite graph induced by F . The conflict here is that we need the connection
relations within x-points or y-points, but only the connection strengths between x-points
and y-points are known. So we have to uncover the x-point relations according to their
interactions with y-points and vice versa. In addition, to find the multi-level clustering
structure, we need to construct properly the feature matrices on the coarse levels and do
clustering iteratively.

As a result, the hierarchical co-clustering framework will execute the following two phases
iteratively. Given the level r adjacency matrix A[r],

• C,F-Coarsening Phase: find the “representative” x-points and y-points at level r,
which we call C-points (i.e., coarse points);

• Interpolation Phase: construct the interpolation matrices, coarse adjacency matrix
A[r+1] as well as the membership matrices between fine and coarse points.

Each C-point could be viewed as a representative of (but not equivalent to) a clustering
group that becomes a seed point in the coarse level. All the points left become F-points
(i.e., fine points) whose connections are merged into the coarse-level seed points by weighted
aggregation. The seed points at each level, together with the membership matrices between
them, give the hierarchical clustering.

Before going to the detailed descriptions of these two phases, we first describe some nota-
tions. Without loss of generality, we take a virtual angle of the current level and aim at
the construction of the coarse (next) level.
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Notations: Cx and Fx are the sets of x-points that are C-points and F-points, respectively.
While xc/xf denotes an individual x-point that is C/F-point. Similarly, Cy/Fy is the C/F-
coarsening for the y-points, while yc/yf denotes an individual y-point. F is the x−y feature
matrix and GF is the bipartite graph induced by matrix F . A is the adjacency matrix of
GF . Mx and My are the membership matrices for x-points and y-points, respectively. F c

and Ac are the x− y feature matrix and adjacency matrix at coarse level, respectively. fij,
Fi, F j denote the (i, j) entry, i’th row, j’th column of F , respectively.

2.2 C,F-Coarsening Phase

The C,F-coarsening phase aims to find the representatives of the clusters that become seed
points at coarse level. Our construction starts from the concept of “strong connection”.

Definition 1. Given a threshold θ, for any xi ∈ X and yj ∈ Y , xi is strongly connected
to yj if either fij ≥ θ(maxk fkj) or fij ≥ θ(maxk fik).

We use a binary strength matrix S ∈ {0, 1}m×n to record the strong connections, in which
Sij = 1 means xi is strongly connected to yj, and zero otherwise. Viewed from the per-
spective of graph, S defines an unweighted bipartite graph GS by deleting the “weak”
connections in GF . We have the following proposition from definition 1.

Proposition 2. If all the rows and columns of F have at least one non-zero entry, then
Definition 1 guarantees that each x-point (or y-point) is strongly connected to at least one
y-point (or x-point), i.e., GS is connected.

From now on, let’s think about the set X and Y in a bipartite graph, in which any edge
indicates a strong connection. Based on this view, we propose two different algorithms to
uncover the C-points.

Perhaps, the most natural way for coarsening is to compute the products FF T and F TF as
the distances between x-points and y-points, respectively. Then one can use the standard
AMG C,F-splitting techniques like [30, 31]. However we note that the directly computed
inner product distances have several drawbacks. Let’s assume for illustration a special
case of three x-points with noisy features F1 = (10, 10, 10, 1, 1, 1, ..., 1) ∈ R1000, F2 =
(10, 10, 10, 0, 0, 0, ..., 0) ∈ R1000 and F3 = (1, 1, 1, 10, 10, 10, 1, ..., 1) ∈ R1000 (those 1’s are
noises). Then the inner product gives (F1, F2) = 300 and (F1, F3) = 1030. However, as
distances, these computed inner products are not proper because F1 shares all its strongly
connected features with, therefore should be closer to, F2, but the inner products are
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Algorithm 2.1 Separate C,F-splitting
Input: S, position parameter ρ ∈ [0, 1], overlap ratio αx, αy ∈ (0, 1]
Output: Cx, Fx, Cy, Fy

1. Create the increasing ordered lists for both x, y-points according to how many strong
connections they have.

2. Initialize all x-points to be unassigned.

3. Choose an x-point at position ρ in the unassigned and ordered list, say xc, and assign
xc to Cx; for any unassigned point xi, if (Si,Sxc )∑

j Sij
≥ αx, assign xi to Fx.

// “at position ρ” here means at position dρ× length of the liste of the list.

4. Repeat step 3 until all the x-points are assigned.

5. Repeat steps 2 to 4 for y-points.

6. Output Cx, Fx, Cy and Fy.

dominated by the noise unfortunately. What’s more, this computation is expensive because
(F1, F3) needs 1000 multiplications, most of which are brought by noises.

As a result, instead of looking at F TF and F TF , we turn to the products SST and STS.
Recalling that S is binary and is sparser than F , so its multiplications are cheaper than
those of F . More importantly, the inner product (Si, Sj) has a proper interpretation,
which is the number of shared strongly connected features between xi and xj, and can
better describe the proximity. These inspire our design of Algorithm 2.1, the Separate
C,F-Splitting algorithm.

Further explanations of Algorithm 2.1:

1. (Si,Sxc )∑
j Sij

≥ α in step 3 means that xi shares more than α of its strongly connected
features with xc. Note that

∑
j Sij has already been computed in step 1, and (Si, Sxc)

can be computed in advance by the multiplication SST .

2. The parameter ρ properly decides which C-point should be chosen as the representa-
tive at each step. When ρ = 1, the point with most connections is picked as C-point.
But we should notice that the point with most connections is not necessarily repre-
sentative in practice, for example, some popular words (e.g., “the”, “is”) in document
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clustering, or some popular skills (e.g., “C”, “Matlab”) in the clustering of people’s
professions.

Algorithm 2.1 shares similar intuition from the standard AMG C,F-splitting techniques
except that it has a more effective construction of the distances of point pairs. We now
describe a novel C,F-splitting algorithm, namely Alternating C,F-Splitting (Algorithm 2.2),
which is new even to the literature of the AMG-based algorithms. This algorithm avoids
the costly computation of distances (i.e., the inner products) within X or Y , instead we
directly use the x−y point connections encoded in the feature matrix F and decide similar
x-points according to their interactions with y-points and vice versa.
The Alternating C,F-Splitting algorithm is inspired by the following intuition: if xi is
strongly connected to yj, and yj strongly connects several other x-points {xi1 , ..., xik},
then {xi, xi1 , ..., xik} might be in the same group (because they share a strongly connected
feature yj). Similarly, all the other y-points that strongly connects xi, say {yj1 , yj2 , ..., yjs},
might be in the same cluster as yj. As a result, only one of those x-points (or y-point)
should be a C-point.
Further explanations of Algorithm 2.2:

1. The algorithm executes steps 2,3 and 4 in an alternating fashion, in order to bal-
ance the numbers of coarse x-points and coarse y-points. This is why it is called
"alternating C,F-splitting”.

2. Step 3 is executed to guarantee that each coarse x-point strongly connects to at
least one coarse y-point. We will show later that this is crucial to guarantee proper
constructions of membership matrices and F c.

Algorithm 2.1 construct Cx and Cy separately, while Algorithm 2.2 has an interactive con-
struction. The key difference between these two algorithms lies in the usage of information.
In particular, algorithm 2.2 decides similarity based on only one shared feature, while algo-
rithm 2.1 considers all the shared features between each point pair. As a result, Algorithm
2.2 is expected to have lower complexity but induce less accurate matches, which is also
proved by our later complexity analysis and experiments.

2.3 Interpolation Phase

In this section, we describe how to build the coarse adjacency matrix Ac by the AMG-
like interpolations. The constructions of the feature matrix F c as well as the membership
matrices Mx and My will also be discussed.

11



Algorithm 2.2 Alternating C,F-splitting
Input: S, position parameter ρ ∈ [0, 1]
Output: Cx, Fx, Cy, Fy

1. Create the increasing ordered lists for both x-points and y-points according to how
many strong connections they have. Initialize all x, y-points to be unassigned.

2. If all the x-points are assigned, go to step 4;

Otherwise: choose the x-point at position ρ in the unassigned and ordered list, say
xc, and assign it to the set Cx; Assign all the unassigned y-points that are strongly
connected to xc to the set Fy.

// “at position ρ” here means at position dρ× length of the liste of the list.

3. If xc is not strongly connected to any yj ∈ Cy, then pick the y-point at position ρ
in the ordered list of {yj|Sxcj = 1}, say yc. Then, re-assign yc to Cy; Assign all the
unassigned x-points that are strongly connected to yc to the set Fx.

4. If all the y-points are assigned, go to step 5; Otherwise, repeat step 2 and 3, but
exchange the role of x and y.

5. Repeat steps 2 to 4 until all the x, y-points are assigned. Output Cx, Fx, Cy and Fy.

2.3.1 Constructions of the Clustering Membership Matrices

LetMx ∈ Rm×mc andMy ∈ Rn×nc in whichmc and nc are the numbers of coarse x, y-points,
respectively.

Recalling that we use Fi and F j to denote the row i and column j of F , so F can be
written in the following forms:

F =

 F1
...
Fm

 =
[
F 1, · · · , F n

]
Define the following two matrices:
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1. Let Px→y ∈ Rm×nc be the submatrix of F that consists of all the columns F j,∀j ∈ Cy;
(2.2)

2. Let Py→x ∈ Rn×mc be the transpose of the submatrix of F that consists of all the rows Fi,∀i ∈ Cx;
(2.3)

We note that Py→x can be viewed differently from the following three aspects (so does
Px→y): i. Py→x is the connection strength matrix between all the y-points and those coarse
x-points; i.i. Py→x is the adjacency matrix of the bipartite graph which has Cx and Y as
two parts; i.i.i. last but not least, (Py→x)

T is the feature matrix of coarse x-points.

Since we have the feature vectors of all the points, naturally, the basic idea to construct
membership matrices is to compute the distances between the F-points and C-points. In
principle, any proper metric could be a choice. We choose the inner product due to its
simplicity and low-cost computation. This results in the following simple construction
forms of Mx and My:

Mx : i. Mx = FPy→x; ii. linearly normalize each row of Mxto sum up to 1

My : i. My = F TPx→y; ii. linearly normalize each row of Myto sum up to 1

Here all the inner product computations are combined together as a matrix multiplication;
normalization gives the probabilities (sum to 1) that a fine point belongs to each C-point.

One potential problem during the construction is that Mx or My might have rows in which
all the elements are zero. This is an ill case which means a fine point does not belong to
any cluster (i.e., C-point). Fortunately, we can show that both Separate and Alternating
C,F-splitting can guarantee that Mx and My will not suffer from such ill case.

Theorem 3. If all the rows and columns of F have non-zeros, then all the rows and
columns of Mx or My have non-zeros under Separate C,F-Coarsening (Algorithm 2.1).

Proof. We only show the conclusion for Mx. The reasoning for My is similar.

Without loss of generality, we consider the initial construction of Mx = FPf→x without
normalization. For any xi ∈ X, if xi is a C-point, then (Mx)i,i = FiF

T
i 6= 0 because the

13



row vector Fi has non-zeros according to the assumption, therefore the i’th row as well
as its corresponding column of C-points have non-zeros; otherwise, xi is a F-point, and
Algorithm 2.1 guarantees that there exists a coarse x-point xc such that (Si,Sxc )∑

j Sij
≥ αx > 0.

So (Mx)i,xc = (Fi, Fxc) > 0 will be a nonzero term in the i’th row of Mx.

Similarly, we have the following theorem for Algorithm 2.2.

Theorem 4. If all the rows and columns of F have non-zeros, then all the rows and
columns of Mx or My have non-zeros under Alternating C,F-Coarsening (Algorithm 2.2).

Proof. We still only prove for Mx and assume Mx has not been normalized.

For any xi ∈ X, if xi is a C-point, then (Mx)i,i = FiF
T
i 6= 0 because the row vector Fi has

non-zeros according to the assumption, therefore the i’th row as well as its corresponding
column of C-points have non-zeros; Otherwise, xi is a F-point, proposition 2 shows that it
strongly connects to at least one coarse y-point, say yc, and the step 3 of Algorithm 2.2
guarantees that yc strongly connects to at least one coarse x-point, say xc, then (Mx)i,xc =
FiF

T
xc 6= 0 because i and xc share a common y-point, i.e., yc. These show that any row or

column of Mx has at least one non-zero.

Note that till now, the membership matrices we constructed are between two neighboring
levels. To compute the membership matrix between any two levels l1 and l2 (> l1), we
simply aggregate the memberships of these middle levels.

Definition 5. The membership matrix between two levels l1 and l2 (> l1) is constructed
as follows:

M [l1,l2] = M [l1,l1+1]...M [l2−1,l2] (2.4)

in whichM [r,r+1] denotes the membership matrix between level r and r+1, andM is either
Mx or My.

One can show that if each of M [r,r+1] is a membership matrix, so does M [l1,l2]. Specifically,

Lemma 6. If every M [r,r+1] are non-negative (entry-wise) and each row sums up to 1.
M [l1,l2] constructed in 2.4 is also non-negative (entry-wise) and each row sums up to 1.
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Proof. The proof is by induction. We only need to prove M [r−1,r+1] = M [r−1,r]M [r,r+1] has
the desired property.

It’s easy to see that any entry of M [r−1,r+1] is non-negative. We prove that any row of
M [r−1,r+1] sums up to 1. Assume M [r,r+1] ∈ Rmr×mr+1 , so M [r−1,r+1] ∈ Rmr−1×mr+1 . For
any row i of M [r−1,r+1], we compute the sum of the i’th row of M [r−1,r+1] as follows:

mr+1∑
j=1

M
[r−1,r+1]
ij =

mr+1∑
j=1

mr∑
k=1

M
[r−1,r]
ik M

[r,r+1]
kj

=
mr∑
k=1

M
[r−1,r]
ik (

mr+1∑
j=1

M
[r,r+1]
kj )

=
mr∑
k=1

M
[r−1,r]
ik = 1.

2.3.2 Constructions of Ac and F c

AMG has a standard form to construct Ac, i.e., Ac = P TAP in which P is the interpolation
matrix and essentially captures each point’s memberships in the C-points. The rationality
under this construction is to merge all the points to those C-points according to their
memberships. This intuition has been used in some applications, e.g., the multi-level
image segmentation [31, 30].

Our construction also follows this formulation, but we expect Ac to have some further
properties in our co-clustering case. Firstly, we hope that Ac has similar anti-diagonal
structure as A; and furthermore, the right-upper side sub-matrix of Ac should be able to
be interpreted as the coarse feature intensity matrix.

Based on these requirements, it turns out that there are also at least two ways to construct
Ac, essentially two different ways to define P .

Case 1. Anti-Diagonal P :

P =

[
0 P1

P2 0

]
∈ R(m+n)×(mc+nc) (2.5)
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in which P1 ∈ Rm×nc indicates the connection strengths between fine x-points
and coarse y-points, while P2 ∈ Rn×mc indicates the connections between fine
y-points and coarse x-points. Therefore, a natural choice of P1 would be the
matrix Px→y in 2.2. Similarly, P2 would be the matrix Py→x in 2.3. In this case

Ac has the form
[

0 F c

(F c)T 0

]
in which F c = (Py→x)

TF TPx→y.

Case 2. Diagonal P :

P =

[
P3 0
0 P4

]
∈ R(m+n)×(mc+nc) (2.6)

in which P3 ∈ Rm×mc indicates the relations between fine and coarse x-points,
while P4 ∈ Rn×nc indicates the relations between fine and coarse y-points.
Therefore, a natural choice of P3 would be Mx, while P4 would be My. In

this case Ac has the form
[

0 F c

(F c)T 0

]
in which F c = (Mx)

TFMy.

Please note that in these cases we only need to build and store F c instead of Ac in practice,
which makes the computation and storage cheaper.
One important requirement during the construction is that any row or column of F c should
have non-zeros. The following theorems guarantee the validity of the above constructions.

Theorem 7. If all the rows and columns of F have non-zeros, then all the rows and
columns of F c = (Py→x)

TF TPx→y constructed in the anti-diagonal case (Case 1) also have
non-zeros, if Separate/Alternating C,F-Splitting is used.

Proof. We have shown in Theorem 3 and 4 that each row or column of FPy→x has non-
zeros. Note that, for any k ≤ nc, the k’th column of F c = (FPy→x)

TPx→y is a linear
combination of the columns of (FPy→x)

T where the weights come from the k’th column of
Px→y. Since any row or column of F has non-zeros, so the k’th column of Px→y has at least
one non-zero, i.e., ∃j, such that (Px→y)j,k > 0. Since all the entries here are non-negative,
we have:

k′th column of F c ≥ j’th column of (FPy→x)
T × (Px→y)j,k

where “≥” means entry-wise bigger or equal.
Since j’th column of (FPy→x)

T has non-zeros, so does k’th column of F c. This shows that
any column of F c has non-zeros.
Similarly, one can show each row of F c has non-zeros by viewing any row of F c as a linear
combination of the rows of F TPx→y.
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Theorem 8. If all the rows and columns of F have non-zeros, then all the rows and
columns of F c = (Mx)

TFMy constructed in the diagonal case (Case 2) also have non-
zeros, if Separate/Alternating C,F-Splitting is used.

Proof. We have shown in theorem 3 and 4 that any row or column of Mx or My has non-
zeros. Similar to the proof of theorem 7, one can easily show any row or column of (Mx)

TF
has non-zeros, and so does F c.

Till now, we have given a detailed description about the whole picture of the novel FMCC
framework. The C,F-Coarsening phase and Interpolation phase will be executed iteratively,
until some stop rules are satisfied, e.g., only one point left or the number of coarse points
does not decrease anymore.

Since the C,F-Coarsening phase is completely independent of the coarse level construction
phase, so the FMCC framework provides us four algorithm versions for clustering: either
Algorithm 2.1 or 2.2 for C,F-Coarsening combined with either anti-diagonal or diagonal
case for constructing P (and Fc).

17



Chapter 3

Further Algorithm Details

In the former chapter, we formulated the general FMCC framework, however the clustering
problems are usually complicated in practice, e.g., has big noise or unbalanced cluster sizes.
In this section, we explain some important details within the formerly described general
framework, which can be expected to make the algorithms work better for real problems.

3.1 Parameter Explanations

1. filter threshold θ for strong connections. θ ∈ [0, 1] is used to decide the an x-point is
strongly connected to a y-point or not. In our experiments, θ is always picked from
the interval [0.5, 0.8] according to different data sets. For example, a greater value of
θ would be preferable in a people-skill data set, because people typically have many
skills, but only those they are very good at can be descriptive on their professions.
In practice, one may need to observe several data points before setting the value of
θ.

2. Position ratio ρ. ρ ∈ [0, 1] is used to pick up a C-point according to their connections.
ρ = 1 means picking the most connected one. We found that [0.5, 0.8] could be a
good interval for picking values for ρ in practice. It might be improper to pick a ρ
close to 1 because the most connected point might not be representative, for example,
the popular words like “the” or “is”; it’s also improper to pick a very small ρ because
a less connected point will not have enough features to capture the features of the
whole group, therefore easily lose group members when picking F-points.
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3. Overlap ratio αx and αy in Algorithm 2.1. These two parameters are not necessarily
equal. In our experiments, we found [0.4, 0.7] is a good interval for those ratios, but
one still needs to choose them according to experience and specific situations. For
example, in a people-skill data where people are represented by the setX, αx indicates
how many skills two person should overlap if their professions are considered to be the
same, while αy indicates how many common people two skills should overlap if they
are considered to be the same kind of profession skills. These knowledge depends on
experience as well as our observation on the data.

Finally, we point out that all these three kinds of parameters could influence the speed of
the aggregation, as well as the height of the hierarchical clustering tree. For example, a
greater θ would induce less strong connections, therefore slower aggregation of those points
as well as higher clustering trees; a greater ρ would pick a more connected C-point which
labels more F-points in return, therefore increases the aggregation speed.

3.2 Noise Filtering

In this section, we describe an important rule, especially in dealing with the high di-
mension and big noise data, to filter the noise using a relative threshold value. Let’s
recall the construction of Mx (or My). We first compute Mx = FPy→x and then nor-
malize each row to sum up to 1. The rationality under this construction is that inner
products of the x-points’ features describe their proximities. However, if the data is of
high dimension and with a lot of noise, these noise could ruin the meaning of the inner
products. Take the following special case as an illustrative example. Assume the fea-
ture vector of xi is Fi = (10, 10, 10, 1, 1, 1, ..., 1) ∈ R1000 with 997 1’s, and assume two
coarse x-points, xc1 and xc2, with feature vectors Fxc1 = (10, 10, 10, 0, 0, 0, ..., 0) ∈ R1000

and Fxc2 = (1, 1, 1, 10, 10, 10, 1, ..., 1) ∈ R1000. Naturally, i should be a member (at least
with high probability) of xc1 group in a reasonable classification, because all it’s strongly
connected features matches xc1’s. However, due to the high dimension noise, i.e., those
1’s, the inner product gives (Fi, Fcx1) = 300 while (Fi, Fcx2) = 1054. This means the noise
dominates the inner products, as a result, makes them meaningless.

To deal with this issue, we apply a filtering procedure to F before computing Mx and
My. The filtering rule is similar to the construction of strong connections. That is, given
a threshold λ, ∀i, j, fij is filtered as zero, if fij < λ(maxk fkj) and fij < λ(maxk fik).
Basically, we intend to filter out those noises and set them as zeros. Note that we will not
filter Fx→y or Fy→x, because we want to keep all the information of those C-points. After
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the filtering, the feature of xi would become Fi = (10, 10, 10, 10, 0, 0, ..., 0) ∈ R1000, while
Fxc1 and Fxc2 are kept. Now the inner products reflect their connections more properly:
(Fi, Fxc1) = 300 and (Fi, Fxc2) = 0.

In practice, the value of λ could be decided by observing the data and noise level.

3.3 Rescaling

Even with filtering procedure, the algorithm could still meet problems, especially on the
hierarchical data, when constructing Mx and My.

Let’s assume the feature vector of xi as Fi = (10, 10, 10, 7, 7, 7, 1..., 1) ∈ R1000, and assume
three coarse x-points, xc1, xc2 and xc3, with feature vectors Fxc1 = (10, 10, 10, 7, 7, 7, 0, ..., 0) ∈
R1000, Fxc2 = (7, 7, 7, 10, 10, 10, , ..., 1) ∈ R1000 and Fxc3 = (1, 1, 1, 1, 1, 1, 10, 10, 10, 1, 1, ..., 1) ∈
R1000. This could be a typical part of the hierarchical data in which xi belongs to xc1’s
group in the second level, and the groups of xc1 and xc2 are combined in the next clustering
level.

Now assume we are on the finest (first) level and want to find clustering at the second level.
After the filtering procedure in subsection 3.2, we have (Fi, Fxc1) = 447, (Fi, Fxc2) = 420
and (Fi, Fxc3) = 0. The inner products clearly reflect the relation between xi and xc3, but
xc1 and xc2 almost equally share xi’s membership after normalization.

Since this is the second level, we expect that xc1 holds more memberships of xi. So we
reallocate the memberships by applying the exponential rescaling. Specifically, to construct
Mx, we rescale the row i of FPy→x as follows: i. find the maximum and minimum of row i of
FPy→x; i.i (FPy→x)ij is rescaled to (FPy→x)ijexp(γ

(FPy→x)ij−min
max

), where γ is a parameter
to adjust the rescaling scale. Here (FPy→x)ij is multiplied before exponent to keep the
zero entries.

By combining subsection 3.2 and 3.3, we describe the actual constructions of Mx and My

in Algorithm 3.1.

3.4 Normalization

One potential problem in constructing F c is the unbalanced cluster sizes, since any entry of
the coarse feature matrix is the aggregation of its corresponding cluster members therefore
bigger clusters will have bigger entry values. In this section, we describe how to normalize
the matrix entries by the cluster sizes.
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Algorithm 3.1 Construction of Mx and My

Input: F ∈ Rm×n, Fx→y ∈ Rm×nc , Fy→x ∈ Rn×mc , filtering threshold λ, rescaling scale γ
Output: Mx, My

1. Filter F : ∀i, j, fij = 0 if fi,j < λ(maxk fkj) and fi,j < λ(maxk fi,k).

2. Mx = FPy→x; My = F TPx→y.

3. for i = 1 : m

max← maxj (Mx)ij ; min← minj (Mx)ij;

for j = 1 : mc

(Mx)ij = (Mx)ijexp(γ
(Mx)ij−min

max
);

endfor

endfor

4. for i = 1 : n

max← maxj (My)ij ; min← minj (My)ij;

for j = 1 : nc

(My)ij = (My)ijexp(γ
(My)ij−min

max
);

endfor

endfor

5. Linearly normalize each row of Mx and My to sum up to 1.

3.4.1 F c Construction: Anti-Diagonal Case

We firstly consider the anti-diagonal case where F c = (Py→x)
TF TPx→y. This direct con-

struction has following drawbacks: firstly, the scale of F c will grow fast when going to coarse
levels; secondly, this construction doesn’t have a clear interpretation; thirdly, those more
connected C-points will get higher feature intensity values (because they aggregate more
points), therefore a higher feature intensity might not result from a stronger connection
but a bigger group, i.e., F c is not descriptive on the clustering property any more.

As a result, the original constructions need some further adjustments. Indeed, instead
of F TPx→y, we use directly My (with filtering and rescaling applied). Recall that Py→x
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describes all the y-points featured by coarse x-points, so F c = (Py→x)
TMy constructs all

the coarse y-points featured by coarse x-points by aggregating the memberships of fine
y-points captured by My. To balance the cluster sizes, we further divide each column by
its total memberships of y-points. Formally, the actual F c is constructed as follows:

F c : i. F c = (Py→x)
TMy; ii. Divide the j’th column of F c by

n∑
k=1

(My)kj (3.1)

Note that this construction is not symmetric–one may also use the form F c = (Mx)
TPx→y.

Experiments show that these two ways do not have obvious difference. One may also use
the form F c = [(Mx)

TPx→y + (Py→x)
TMy]/2 to make it symmetric. Our experiments on

the anti-diagonal case construct F c using the form in 3.1.

3.4.2 F c Construction: Diagonal Case

The construction of F c = (Mx)
TFMy has proper rationality which is from interpolation.

However, similar to the discussion in section 3.4.1, different cluster sizes could still ruin the
descriptiveness of the coarse feature matrix. To balance the influence of the cluster size,
we also use the following normalization:

F c : i. F c = (Mx)
TFMy; ii. Divide (F c)ijby [

m∑
k=1

(Mx)ki][
n∑
k=1

(My)kj] (3.2)
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Chapter 4

Complexity

One reason that AMG-like algorithms are efficient is that the problem size becomes smaller
and smaller as the grids are coarsened. This makes the cost at the coarsen levels negligible
compared with that at the first level. As easily seen, the main computation burden of
FMCC lies on the first level. In this chapter, we exam the complexity of FMCC at the
first level in details.
We start our analysis from the following simple conclusion which may be considered folk-
lore. It can also be found in [39].
Theorem 9. ([39]) Let A ∈ Rm×l and B ∈ Rl×n, let ci denote the number of non-zeros in
the i’th column of A while ri denote the number of non-zeros in the i’th row of B. Then
computation of AB can be implemented in time O(

∑l
i=1 = ciri).

Note that theorem 9 is not the best lower bound of the complexity of sparse matrix mul-
tiplication. For example, [39] presented a sophisticated algorithm for n× n sparse matrix
multiplication with complexity O(N0.7n1.2 +n2+o(1)) in which N is the number of non-zeros
in the sparse matrix. However, the complexity in theorem 9 can be easily implemented and
the conclusion is not limited to square matrices. So in our analysis, we use this conclusion
for generality sake.
In practice, the original feature intensity matrix F is usually sparse, so we include this
property in our analysis. Assume F ∈ Rm×n, ri and cj are the numbers of the non-zeros
of the i’th row and j’th column of F , respectively. Let r = maxi≤m ri, c = maxj≤n cj
and N =

∑
i≤m ri =

∑
j≤n cj be the number of total non-zeros in F and the coarsened

intensity matrix F c ∈ Rmc×nc . The construction of the strong connection matrix S can
be implemented in O(N) time simply by comparing those non-zeros. We now analyze the
computation complexity for other different parts of FMCC in the following sections.
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4.1 Complexity of Alternating C,F-Splitting

In alternating C,F-splitting (Algorithm 2.2): step 1 can be implemented inO(N+m log(c)+
n log(r)) time (using radix sort [12] with complexity O(m log(c) + n log(r))) which can be
further bounded by O(N) by assuming m log(c) ≤ N and n log(r) ≤ N for simplicity; step
2 and 3 visits all the x, y-points and therefore has complexity O(m+n). Since there are mc

coarse x-points and nc coarse y-points, step 2-4 will be executed for at most max(mc, nc)
times, so the the complexity of Algorithm 1 is bounded by O(max(mc, nc)× (m+n) +N).

4.2 Complexity of Separate C,F-Splitting

Separate C,F-splitting (Algorithm 2.1) has vector dot product in step 3, we first imple-
ment SST and STS beforehand whose complexity is bounded by O(

∑
i r

2
i +

∑
j c

2
j) =

O(N max(r, c)) (theorem 9). Then the complexity analysis at each step is as follows:
step 1 has complexity O(N); step 2 has complexity O(m); step 3 has complexity O(m)
since (Si, Scs) and

∑
j Sij have been computed in advance. Step 2,3 will be executed for mc

times, so it needs O(mmc) time to separate x-points, and similarly O(nnc) time to separate
y-points. So the complexity of Algorithm 2 is bounded by O(N max(r, c) +mmc + nnc).

4.3 Complexity of Membership Matrix Constructions

Now we consider the coarse level construction phase. Mx and My are constructed in
Algorithm 3.1 in which: step 1 has complexity O(N); step 2 has a complexity bounded
by O(

∑
j cjmc +

∑
i rinc) = O(N max(mc, nc)) (theorem 9); step 3,4,5 together has a

complexity bounded by O(mmc+nnc). Since N ≥ max(m,n), Algorithm 3 has complexity
O(N max(mc, nc)).

4.4 Complexity of F c Constructions

For generality, we simply assumeMx andMy are dense matrices. The complexity of the con-
struction of F c is bounded by O(

∑n
j=1 njmc) = O(Nmc) in the anti-diagonal case . In the

diagonal case, there are two ways to compute F c, i.e., [(Mx)
TF ]My which has complexity

O(
∑m

i=1 mcri) +O(
∑n

j=1mcnc) = O(Nmc + nncmc) or (Mx)
T [FMy] which has complexity
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O(
∑n

j=1 nccj) +O(
∑m

i=1 mcnc) = O(Nnc +mncmc). One can easily choose by comparison
a more efficient way of which the complexity could be bounded by O(N max(mc, nc) +
min(m,n)mcnc).

4.5 Algorithm Complexities

Now we combine all these complexities. Note that the constructions of Mx and My, which
has a complexity of O(N max(mc, nc)), is common for any version of FMCC. As a result,
we conclude the complexity analysis for different FMCC versions as follows:

1. FMCC with Separate C,F-Splitting (Algorithm 2.1) and Anti-diagonal Case (Case
1): O(N max(r, c,mc, nc)).

2. FMCC with Alternating C,F-Splitting (Algorithm 2.2) and Anti-diagonal Case (Case
1): O(N max(mc, nc)).

3. FMCC with Separate C,F-Splitting (Algorithm 2.1) and Diagonal Case (Case 2):
O(N max(r, c,mc, nc) +mcnc min(m,n)).

4. FMCC with Separate C,F-Splitting (Algorithm 2.2) and Diagonal Case (Case 2):
O(N max(mc, nc) +mcnc min(m,n)).

To conclude, Separate C,F-Splitting is at least as expensive as Alternating C,F-Splitting
and it becomes more expensive when r or c has big value; the diagonal case is more
expensive than the anti-diagonal case because it needs one more matrix multiplication,
but it has the same complexity order as the anti-diagonal case unless mcnc min(m,n) has
higher order than N max(mc, nc).

In practice, mc,nc are usually very small compared with m,n and can be regarded as
constants. In such case, the FMCC using Algorithm 2.2 is linear to N and that using
Algorithm 2.1 has complexity O(N max(r, c)), which is also proved by our experimental
results.
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Chapter 5

Experimental Results

In this chapter, we report the experimental results of FMCC as well as the comparisons
with other clustering algorithms.

Since FMCC has 4 versions, from now on, we always use “A” and “S” to denote Alternating
and Separate C,F-Coarsening, respectively, while “aD” and ”D” to denote the anti-diagonal
case which constructs F c using form 2.5 and the diagonal case which constructs F c using
form 2.6 in subsection 2.3.2, respectively. So the FMCC with separate C,F-Coarsening and
anti-diagonal case is simply denoted as “FMCC_S&aD. The others are similarly denoted.

5.1 Toy Data

To give the readers an intuitive understanding of a hierarchical data as well as the basics of
our algorithms, we start our experiments from a toy data which describes 10 people’s skill
intensities on 9 different professional skills (the left matrix in Figure 5.1.1). The structure
of this data is actually general, we endowed it a specific scenario for a more straightforward
understanding.

The data has three clusters of people: Computational Mathematicians (id: 1,2,3), Pure
Mathematicians (id: 4,5,6) and Computer Scientists (id: 7,8,9,10). Computational and
Pure Mathematicians have some common knowledge on the basic math subjects, e.g., Func-
tional Analysis and Real Analysis, and they are supposed to belong to a bigger group, i.e.,
Mathematicians. Skills basically have four groups: Computational Math skills (Numerical
Analysis, Numerical PDE), Pure Math skills (Abstract Algebra, Algebraic Geometry), ba-
sic math skills (Functional Analysis, Real Analysis), and Computer Science skills (Systems,
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Figure 5.1.1: The feature intensity matrices of the toy data. Left: original feature matrix; Right:
coarse feature matrices by FMCC_S&aD
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Figure 5.1.2: Left: tree of people with ids; Right: tree of skills. (FMCC_S&aD with filter
threshold=0.65)

Networking, Database). Certainly, these math skills are supposed to have some overlap
and belong to a bigger group, i.e., the math skill group.

We expect FMCC to find those hierarchical structures. Note that since all the 4 versions of
FMCC give similar clustering on the toy data, we only show the results of FMCC_S&aD
in this section to avoid redundancy. The systematic comparisons between these 4 versions
are left to to the later sections. The right side of Figure 5.1.1 are the coarsened matrices
found by FMCC during the execution (row or column labels are the C-point of that group).
As we see, the hierarchical structure of the data is clearly uncovered by FMCC, ending at
the fourth level with two big groups for both people and skills.

Figure 5.1.2 shows the hierarchical clustering trees. We plot only the strong connections
with a filter threshold 0.65 (similar to the construction of S) on the membership matrices
Mx and My. Green line in the plots means this point becomes a C-point in the next level.
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As we see that, the 3 groups of people and 4 groups of skills are found at level 2 and all
math skills are combined at level 4.

Figure 5.1.1 and 5.1.2 provide some execution details of FMCC and also show its perfor-
mance in hierarchical co-clustering. In the next sections, we will compare the performance
of the different versions of FMCC with some well-known clustering methods in literature.

5.2 Artificial Hierarchical Data

In this subsection, we design artificial data to systematically test the performance of FMCC
and compare with the well-known non-negative matrix factorization (NMF).

Given a feature matrix F ∈ Rm×n, NMF tries to find the nonnegative matrices W ∈ Rm×k

and H ∈ Rn×k which minimizes the difference ||F −WHT ||2. Researchers have found that
very good co-clustering results can be recovered from the matrix W and H. Basically, the
normalization of each row of W (H) will give us the fuzzy clustering of the row (column)
points. Here, k corresponds to the number of clusters which has to be specified beforehand.
Massive experiments have shown that this factorization provides satisfactory results in
many clustering applications, e.g., document classification [38], gene expression data co-
clustering [5, 16] and image segmentation [20].

However, NMF has some key limitations. Firstly, NMF is computationally expensive.
[37] shows that it’s NP-hard to compute the exact NMF, e.g., globally minimize ||F −
WHT ||2. Some iterative algorithms have been developed to approximate the distance of
the difference. Secondly, NMF cannot find the the number of clusters k directly, so it
has to be specified beforehand. However, the problem is that it is usually hard to decide
a proper k in practice. Thirdly, NMF is a one-level clustering method and cannot find
hierarchical clustering structures. In these aspects, FMCC is more “intelligent” than NMF
in the sense that it found the whole hierarchical structures automatically. Finally, NMF
has a key shortcoming when dealing with co-clustering, that is the number of clusters of
row points has to be the same as that of column points. This greatly restricts NMF’s
function in co-clustering. It meets problems even on the toy data we used in subsection
5.1.

To make the comparison fair, we design the artificial hierarchical data which are particularly
suitable for NMF. That is, the artificial data has the same number of row and column
clusters. Figure 5.2.1 shows the color maps of an ordered artificial data we constructed
and its randomized version, in which deeper color means higher intensity. The artificial
data has two cluster levels with 16 small clusters (8 x, y-points in each small block) and
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Figure 5.2.1: Color Maps of Feature Matrices. Left: ordered version; Right: randomized
version. δ= 1.

4 big ones for either row or column. Every four small clusters belong to a big one. The
construction of the feature matrices is described as follows by taking the left map as an
example. Let’s say the map have three kinds of regions: dark, grey, light (from deep to
light), and each region has a “basic intensity”: 10 for dark, 5 for grey and 0 for light.
Then the intensities in a specific region is randomly chosen as any i ∈ {0, 1, ..., 10} with

a probability proportional to the Gaussian distribution form e−
(i−b)2

2σ2 where b is the “basic
intensity” in that region and the variance σ is a parameter to adjust the noise level. The
randomized feature matrix is constructed by randomly permuting all the rows and columns
of the ordered one.

We apply FMCC to the above randomized matrix in Figure 5.2.1 and try to recover the
ordered structure according to the clustering results. Figure 5.2.2 shows the recovered
structure by two versions of FMCC. The algorithms almost perfectly recover the hierar-
chical structures except that both maps have a little flaw in one small block (note that the
block order does not influence the comparisons).

In Figure 5.2.3 and 5.2.4, we also show the hierarchical clustering trees of the randomized
data in Figure 5.2.1. Both of the two versions end correctly with 3 levels. Figure 5.2.4 shows
that FMCC_S&aD correctly found the hierarchical structure: 16 small groups with each
four of them enter a big one. However, the FMCC_A&aD in Figure 5.2.3 has some flaws,
i.e., 18 small groups for both x, y-points. This result is consistent with our expectation,
since alternating C,F-coarsening is not as accurate as separate version. But, in a word,
both of the versions give reasonable clustering, though not perfect sometimes.

The above example shows some detailed clustering results given by FMCC, which also ex-
perimentally proves its performance. Now, we compare FMCC with NMF systematically
on massive artificial data. Since NMF can neither find the number of clusters nor the hier-
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Figure 5.2.2: Color maps recovered by FMCC. Left: FMCC_A&aD; Right:
FMCC_S&aD.

Figure 5.2.3: Hierarchical trees found by FMCC_A&aD. Left: tree of x-points; Right: tree
of y-points. filter threshold = 0.8.

Figure 5.2.4: Hierarchical trees found by FMCC_S&aD. Left: tree of x-points; Right: tree
of y-points. filter threshold = 0.8.

30



0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

sigma: noise level

av
e 

F
 m

ea
su

re

Average F−measures of clustering on 16 small groups

 

 

FMCC−A&aD
FMCC−S&aD
FMCC−A&D
FMCC−S&D
NMF

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

sigma: noise level

av
e 

F
 m

ea
su

re

Average F−measures of clustering on 4 big groups

 

 

FMCC−A&aD
FMCC−S&aD
FMCC−A&D
FMCC−S&D
NMF

Figure 5.2.5: F-measure Comparison with NMF. Left: small group clustering; Right: big
group clustering.

archical structures, we directly pick for NMF the correct number of clusters and compare
the clustering results level by level. To quantify the comparison, we use the well-known
F-measure ([34], see Appendix A.2.1 for the review). The fuzzy clusters of any algorithm
are converted to hard ones by taking the maximum membership of each point.

Figure 5.2.5 shows the performance of FMCC, as well as NMF, at different noise levels.
For each noise level, 10 feature matrices (144× 144) are randomly generated, and the final
F-measure is the average of the F-measures on those 10 matrices and on the clustering of
X and Y . We found that FMCC gives better clustering on low noise data, but NMF is
more stable on different noise levels. This is reasonable, because we always give NMF the
correct numbers of clusters for any noise data, but FMCC has to find them automatically
and therefore makes more mistakes as noise grows. The right figure shows that the F c

construction of anti-diagonal case (Case 1) has better performance than the diagonal case
(Case 2) on high noise data, while the left figure shows that Separate C,F-Splitting has
better performance on low noise data, but becomes worse than Alternating C,F-Splitting
when data noise grows bigger. The reason is that higher noise induces more wrong judg-
ments of strong connections, so when the percentage of the wrong judgments increases
over some threshold, Alternating C,F-Splitting, which picks C-points by only one strong
connection, will have a lower risk to make mistakes than Separate C,F-Splitting which
compares all the strong connections.

In these experiments, we intentionally construct the data that are suitable for NMF. We
note that it is actually easy for FMCC to beat NMF on the data in which number of
row clusters are different from number of column clusters. In Figure 5.2.6, we present the
color map (left) of a feature matrix which has 3 row clusters and 6 column clusters. When
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Figure 5.2.6: Left: ranked feature matrix (384 × 384,σ=3); Middle: average F-measures
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Figure 5.2.7: Performance on different data size. Left: average F-measure of small cluster
level; Middle: average F-measure of big cluster level; Right: time performance.

FMCC and NMF are applied on such kind of data (still, rows and columns are randomly
permuted), FMCC has better performance than NMF almost on every noise level.

We further test the stability and scalability of these algorithms on data size. We generate
similar data structure as Figure 5.2.1 with σ = 1, but increase the number of points in
each small cluster. To test the time performance, we use the algorithm developed in [17]
in 2008 which is based on alternating non-negativity constrained least squares and block
principal pivoting (NMF-BP), and is one of the fastest NMF iterative algorithms in current
literature. The MATLAB code of NMF-BP with recommended parameters is downloaded
from the authors’ online link. FMCC is also implemented in MATLAB. The processor
we used is 2.5 GHz Intel Core i5 with 16GB 1333 MHz DDR3 memory on OS X 10.8.3
(12D78).

In the experiments we found that NMF-BP needs more iterations to converge when data
size grows, so we use NMF-BP with two different stop criterion: iterate 100 times or the
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stopping tolerance (10−3) is achieved (NMF-BP-Ite) and iterate enough until the stopping
tolerance is achieved (NMF-BP-Tol). Figure 5.2.7 shows the performance of these algo-
rithms. We found that FMCC is stable on data size and the time performance also shows
experimentally that complexity of FMCC is linear to the data size N (in this data mc

and nc are small). However, the clustering performance of NMF decreases as data size
grows even when the stopping tolerance is achieved (NMF-BP-Tol). The log-time plot of
NMF-BP-Ite is almost parallel to FMCC asymptotically, this is because each iteration of
NMF-BP has the same complexity as FMCC (basically matrix multiplications), however
NMF-BP needs many iterations to converge. To sum up, FMCC beats NMF-BP in both
the clustering and time performance on the artificial data of large size.

5.3 Gene Expression Data

Bioinformatics and text data mining are two popular fields for co-clustering. In this section,
we compare FMCC with some well-known co-clustering algorithms in bioinformatics for
gene expression data.

[28] provides a systematic comparison of 7 co-clustering methods for gene expression data.
Those methods are: their own method Bimax [28]; Cheng and Church’s algorithm CC
[6]; Samba [36]; Order Preserving Submatrix Algorithm, OPSM [2]; Iterative Signature
Algorithm, ISA [13]; xMotif [24]; the standard hierarchical clustering method (HCL) in
MATLAB.

In the comparison, we use directly the Scenario 1 data and their clustering results of all
these methods (except FMCC) provided on the online supporting page of the paper [28].
Following [28], we also use the gene match score as the comparison measure, which is
defined as follows:

Definition 10. ([28]) Let M1, M2 be two sets of biclusters. The gene match score of M1

with respect to M2 is given by the function

S∗G(M1,M2) =
1

|M1|
∑

(G1,C1)∈M1

max
(G2,C2)∈M2

|G1 ∩G2|
|G1 ∪G2|

where G and C correspond to gene cluster and condition cluster, respectively.

Figure 5.3.1 shows the comparison of all the algorithms on different noise levels, while
Figure 5.3.2 shows the comparison on different overlap levels, i.e., clusters have overlapped
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Figure 5.3.2: average gene match score
on different overlap level.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.95

0.96

0.97

0.98

0.99

1

1.01

noise levels

A
ve

 M
at

ch
 S

co
re

 

 
FMCC−A&aD
FMCC−S&aD
FMCC−A&D
FMCC−S&D

Figure 5.3.3: Different Versions of
FMCC on Different Noise Levels.

0 50 100 150 200
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

noise levels

A
ve

 M
at

ch
 S

co
re

 

 
FMCC−A&aD
FMCC−S&aD
FMCC−A&D
FMCC−S&D

Figure 5.3.4: Different Versions of
FMCC on Different Overlap Levels.

members. On the noise data, FMCC almost gives perfect clustering like hcl and isa which,
however, have much worse performance than FMCC on the overlap data. These results
show that in the gene data set, FMCC is competitive even to the best of those tested
biclustering algorithms which are specifically designed for gene expression data.

We also compare different versions of FMCC on the Gene Expression Data in Figure 5.3.3
and Figure 5.3.4. These figures show that the F c construction of diagonal case achieves
better performance than that of anti-diagonal case on the noise data, while Alternating
C,F-Splitting achieves better performance than separate version on the overlap data.

5.4 Actual LinkedIn Data

We further apply FMCC to an actual LinkedIn data set and report the experimental
results in this section. Our data set is a 176× 47 matrix in which each row corresponds to
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Figure 5.4.1: Hierarchical trees found by FMCC_A&aD. Left: tree of users; Right: tree
of skills. filter threshold = 0.8

a LinkedIn user and each column corresponds to a skill listed on the homepage of the user.
This data set is suitable for hierarchical co-clustering, because both the LinkedIn users and
skills can be hierarchically classified according to their professions (see also section 5.1 toy
data).

The data is originally harvested by starting from randomly picked 3 seed users (in the
fields of Numerical Analysis, Physics and Computer Science, respectively) and then doing
breadth first search of all their endorsers until we can not visit an endorser’s homepage (note
that a common LinkedIn user can only visit the other users who are within 3 connections
to him). We collected all the users we have visited which consists of 1247 users and 7074
skills. However, many skills show up very rare or overlap with each other, and some users
have very few skills. To get a more compact data, we do the following filtering: firstly, the
skills are filtered if less than 70 of those 1247 users know them; then, the user are filtered
if they have less than 7 skills after the skill filtering phase. After the filtering, we get the
final 176× 47 data set.

Former experiments have shown that the clustering performance of the 4 versions of FMCC
does not have obvious difference, we only present the results of FMCC_S&aD in this
section to avoid redundancy. The algorithm ends with 6 levels in which level 4,5,6 show
meaningful community interpretation. Figure 5.4.1 shows the trees of users and skills found
by FMCC_S&aD, in which we list the user ids and skill names of the coarse points at the
top 3 levels. One may found that both of the trees seem to have a gap and be divided
into two parts. This is because we re-ordered the original users and skills according to
the clustering results of NMF with k = 2 by putting users (or skills) within one cluster
to one side when drawing the trees (but FMCC_S&aD is applied to the original data
without re-ordering). We can see from these two trees that the two clusters at the finest
level are almost the same as those found by NMF. However, the interesting observation is
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that the skill tree is more clearly separated into two parts than the user tree, one possible
explanation is that skills have clearer clustering structures than users, because people
can affiliate to different professions, which makes them simultaneously belong to different
profession clusters.

We further plot the skill memberships of the coarse skill points at different levels (Figure
5.4.2). Those plots show that the top memberships of the skill clusters differ from each
other and are well-separated. To show the details, we list the top 3 memberships of each
skill clusters in Table 5.1 which also interprets the clusters and hierarchical structures.

Figure 5.4.3 shows the user memberships of the coarse user points at different levels. They
are also well-separated. Since, the actual professions of the users are not known to us, the
user clusters cannot be interpreted simply by looking at their ids. Instead, we aggregate
the features of the user clusters according to their memberships. Table 5.2 lists the top
features of different user groups. We found that the user clusters at level 4 share some
common top features, because some features, e.g., Computer Science or Algorithms, are
so popular that most users have such skills whichever group they are in. We then turn to
look at the top “differentiating features1” which give us clear community interpretation of
different user clusters. Note that user clusters keep the same at level 5 and level 6, but
skill groups are merged from level 5 to 6.

1A skill is differentiating to a user cluster if it holds the greatest intensity in this user cluster and the
intensity difference between the first and second greatest is bigger than the intensity difference between
the second and third greatest.
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Figure 5.4.2: Skill Memberships at different levels
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Figure 5.4.3: User Memberships at different levels
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level nodeID Top Memberships Interpretations n_member
Databases Techniques

6 1 Latex 31.2
Matlab

Management Consulting Business
6 2 Change Management 15.8

Social Media
Mathematical Modeling Mathematics

5 1 Data Mining 16.1
Numerical Analysis

Management Consulting Business
5 2 Change Management 15.7

Social Media
Cloud Computing Computer

5 3 Distributed Systems Science 15.2
HPC
Java Software

4 1 Software Engineering Engineering 9
Python

Data Mining Data
4 2 Business Intelligence Mining 2.6

Data Analysis
Business Development Entrepreneur

4 3 Start-ups 6.6
Team Building
Public Speaking Management

4 4 Project Management and Media 10
Business Analysis
Cloud Computing High Performance

4 5 HPC Computing 3.7
Distributed Systems

Databases Industrial Data
4 6 Matlab Science Skills 8.1

Programming
Numerical Analysis Numerical

4 7 Scientific Computing Skills 7
Mathematical Modeling

Table 5.1: the top memberships and interpretations of coarse skill groups at different levels
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level nodeID Top Features Differentiating Features Interpretation n_member
Business Strategy Business Strategy Business

6 1 Strategic Planning Strategic Planning People 55.7
Entrepreneurship Entrepreneurship

Algorithms Algorithms Technical
6 2 Computer Science Computer Science People 120.3

HPC HPC
Business Strategy Business Strategy Business

5 1 Strategic Planning Strategic Planning People 54.4
Entrepreneurship Entrepreneurship

Algorithms Algorithms Technical
5 2 Computer Science Computer Science People 121.6

HPC HPC
Business Strategy Business Strategy Business

4 1 Strategic Planning Strategic Planning People 54.8
Entrepreneurship Entrepreneurship

HPC Software Development Software
4 2 Algorithms Computer Science Developer 52.8

Software Development C++
Algorithms Machine Learning ML and Data

4 3 Machine Learning Data Mining Mining People 22.4
Scientific Computing Research
Scientific Computing Scientific Computing HPC

4 4 HPC HPC People 4.8
Algorithms Numerical Analysis
Algorithms Algorithms Data

4 5 Computer Science Java Scientists 41.2
Machine Learning Matlab

Table 5.2: the features and interpretations of coarse user groups at different levels
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Chapter 6

Conclusion

In this paper, we presented a AMG-inspired multilevel framework for hierarchical co-
clustering. The fast multilevel co-clustering (FMCC) framework implements a bi-coarsening
process recursively on the bipartite graph induced by the feature matrix, producing a hi-
erarchy of overlapping co-clusters and their connections. Within the general framework,
two C,F-splitting algorithmes and two fashions of coarse feature matrix construction are
proposed, respectively. Compared with other co-clustering algorithms, FMCC algorithms
have the following advantages: they are computationally efficient (almost linear in the data
size); there is no need to specify the number of clusters since FMCC finds it automatically;
and the clustering gives hierarchical structure for both the row and the column variables.
FMCC algorithms produce interpretable co-clusters on several recursive levels along with
information on how they are connected. Those algorithms are accurate, fast and scalable,
as demonstrated by numerical tests on co-clustering problems with synthetic and real data
from the fields of gene expression data and online social networks.
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Appendix A

A Review of Clustering Measures

In this section, we give a brief literature review about the measures to compare different
clustering results. We found that there have not been widely-used co-clustering measures
in literature, so all these reviews are simply for clustering.

A.1 Weighted Graph Measures

Let A ∈ Rn×n be the weighted adjacency matrix of a graph G(V,E). The element of A
is denoted by ai,j. For example, A can be obtained from the x − y feature matrix F by
A = FF T . This subsection reviews the graph clustering measures that directly compare
the clusters with the original graph information, without known clustering groundtruth.

A.1.1 Measures for one Single Hard Cluster

Let node subset C ⊆ V be a single cluster. We are interested in the prominence of the
cluster C. For simplicity, let C̄ denote the complementary set V \ C, i.e., C ∪ C̄ = V and
C ∩ C̄ = ∅.

For a better interpretation, let ic =
∑

i∈C,j∈C
ai,j be the sum of the interior weights within

cluster C, bc =
∑

i∈C,j∈C̄
ai,j be the sum of the weights between cluster C and C̄.

• Modularity
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Modularity is originally proposed for unweighted graph ([25]), however the definition can
be naturally generalized for a weighted one.

For any i ∈ V , let di be the weighted degree of node i, i.e., di =
∑

j∈V aij. Let m be
the sum of total weighted edges, so

∑
i∈V di = 2m. The modularity of weighted graph is

defined as follows:
φ(C) =

1

2m

∑
i∈C,j∈C

(ai,j −
didj
2m

)

A bigger modularity φ(C) means a more community-like cluster C. A very loose bound
for φ(C) is [−1, 1].

• Conductance [15]

φ(C) =

∑
i∈C,j∈C̄

ai,j

min(
∑

i∈C,j∈V
ai,j,

∑
i∈C̄,j∈V

ai,j)
=

∑
i∈C,j∈C̄

ai,j∑
i∈C,j∈C̄

ai,j + min(
∑

i∈C,j∈C
ai,j,

∑
i∈C̄,j∈C̄

ai,j)
=

bc
bc + min(ic, ic̄)

A smaller conductance φ(C) means a more community-like cluster C. φ(C) ∈ [0, 1] and
φ(C) = φ(C̄). φ(C) = 0 means no edges between C and C̄, while φ(C) = 1 means C or C̄
has no edges inside.

• Normalized Cut [32]

φ(C) =

∑
i∈C,j∈C̄

aij∑
i∈C,j∈V

aij
+

∑
i∈C,j∈C̄

aij∑
i∈C̄,j∈V

aij
=

bc
ic + bc

+
bc

ic̄ + bc

A smaller conductance φ(C) means a more community-like cluster C. φ(C) ∈ [0, 2] and
φ(C) = φ(C̄). φ(C) = 0 means no edges between C and C̄, while φ(C) = 2 means both C
and C̄ have no edges inside.

• Saliency

[18] proposed the following saliency measure:

φ(C) =

∑
i∈C,j∈C̄

aij∑
i∈C,j∈C

aij
=
bc
ic
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Normalized Saliency is defined as follows ([14]):

φnorm(C) =

(
∑

i∈C,j∈C̄
aij)/(

∑
i∈C,j∈C̄

sgn(aij))

(
∑

i∈C,j∈C
aij)/(

∑
i∈C,j∈C

sgn(aij))

where sgn(x) = 0 when x = 0, otherwise sgn(x) = 1.

A smaller saliency (or normalized) means a more community-like cluster C.

A.1.2 Generalization to Multiple Clusters

The above cluster measures can be naturally generalized to the case of multiple clusters.
Given G(V,E), now assume we have K hard clusters C = C1, ..., CK with Ci∩Cj = ∅,∀i 6= j
and ∪iCi = V .

• Modularity:

φ(C) =
1

2mK

K∑
k=1

∑
i,j∈Ck

(ai,j −
didj
2m

)

where di =
∑

j∈V aij and
∑

i∈S di = 2m.

• Conductance:

φ(C) =
1

K

K∑
k=1

∑
i∈Ck,j∈C̄k

ai,j∑
i∈Ck,j∈V

ai,j

• Normalized Cut:

φ(C) =
1

K

K∑
k=1

(

∑
i∈Ck,j∈C̄k

aij∑
i∈Ck,j∈V

aij
+

∑
i∈Ck,j∈C̄k

aij∑
i∈C̄k,j∈V

aij
)

• Saliency:

φ(C) =
1

K

K∑
k=1

∑
i∈Ck,j∈C̄k

aij∑
i∈Ck,j∈Ck

aij
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A.1.3 Generalization to Soft Clusters

Now we generalize the clustering measures to soft clusters. Given G(V,E), assume we have
K soft clusters C = C1, ..., CK . For any i ∈ V , pi,ck is the probability that i is in cluster Ck.

• Generalized Modularity

φ(C) =
1

2mK

K∑
k=1

∑
i∈Ck,j∈Ck

(pi,ckpj,ckai,j −
didj
2m

)

where di =
∑

j∈V aij and
∑

i∈S di = 2m.

Note that the above definition will degenerate naturally to the hard clustering case when
pi,ck ∈ {0, 1}.
An interesting observation is that the soft clustering problem using φ(C) can be formulated
as an optimization problem as follows:

max
pi,ck ,K

1

4mK

K∑
k=1

|V |∑
i,j=1

(pi,ckpj,ckai,j −
didj
2m

)

s.t
K∑
k=1

pi,ck = 1, ∀i

pi,ck ≥ 0

Recalling that the hard community detection using modularity is NP-hard due to the
discrete nature of hard clustering. The above formulation can be regarded as a relaxation
of the original hard clustering. This relaxed optimization problem can be solved efficiently.

This potentially could be an interesting topic.

• Generalized Conductance

The generalized conductance could be defined as following:

φ(C) =
1

K

K∑
k=1

|V |∑
i,j=1

pi,ck(1− pj,ck)ai,j

|V |∑
i,j=1

pi,ckai,j
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Again, this is a relaxation of the original conductance definition. When it’s a hard clus-
tering, it degenerate to the original conductance definition. It can also be formulated as
an optimization problem, too.

• Generalized Normalized Cut:

φ(C) =
1

K

K∑
k=1

(

|V |∑
i,j=1

pi,ck(1− pj,ck)ai,j

|V |∑
i,j=1

pi,ckai,j

+

|V |∑
i,j=1

pi,ck(1− pj,ck)ai,j

|V |∑
i,j=1

(1− pi,ck)ai,j
)

• Generalized Saliency:

φ(C) =
1

K

K∑
k=1

|V |∑
i,j=1

pi,ck(1− pj,ck)ai,j

|V |∑
i,j=1

pi,ckpj,ckai,j

A.2 Cluster Measures

In this subsection, we review the measures which measure the difference between two
clustering. These measures usually are used with groundtruth (or well-clustered results)
to compare the difference between a clustering and the groundtruth.

A.2.1 Hard Cluster Measures

Let D be the data set of n points, C = C1, ..., CK0 is a hard clustering of D, i.e., Ci ∩Cj =
∅,∀i 6= j and ∪iCi = D. Let C ′ = C ′1, ..., C

′
K1

be another clustering of D. We are interested
in the measures to compare the difference between C and C ′. Let nk be the number of
elements in cluster Ck, while n′k is the number of elements in cluster C ′k.

• Confusion Matrix

Following matrix N ∈ RK0×K1 is the so-called confusion matrix:

nk0k1 = |Ck0 ∩ C ′k1|
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Confusion matrix is the most direct way to compare two clustering. But the disadvantage
is that there are no standards for the comparison, i.e., no quantitative measure values.
This is why the following standard measures are proposed. In a word, they are used for
standardizing human’s judgements.

• Matching Sets

Let π be any map, mapping a cluster Ck0 ∈ C to a cluster C ′k1 ∈ C
′. Meila and Heckerman

([23]) computed the criterion which is the proportion of the shared elements between C
and C ′:

φ(C, C ′) = 1− 1

n
max
π

∑
k

nk,π(k)

in which “max
π

” chooses the best mapping.

The smaller φ(C, C ′) is, the closer C and C ′ are. This measure is not symmetric. A zero
distance means C completely determines C ′, or C ′ is determined by merging some clusters
of C.

• Mutual Information

Firstly, we define entropy of a clustering C. Given any point i ∈ D, the probability of i
being in cluster Ck is nk/n. So the entropy is defined as following:

H(C) = −
∑
k

nk
n
log

nk
n

Naturally, the mutual information between two clusters C and C ′ is defined as following:

I(C, C ′) =
∑
k0

∑
k1

nk0k1
n

log
nk0k1/n

(nk0/n)(n′k1/n)

Intuitively, entropy describes the information a clustering has, while mutual information
describe the common information two clustering share. Here are some properties of mutual
information:

1. non-negativity and symmetric:

I(C, C ′) = I(C ′, C) ≥ 0
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2. a more intuitive representation:

I(C, C ′) = H(C) +H(C ′)−H(C,C ′)

3. mutual information is less than entropy:

I(C, C ′) ≤ min(H(C),H(C ′))

Equality occurs when one clustering completely determines the other. For example,
if C ′ is obtained from C by merging two or more clusters.

Normalized mutual information can be defined by either of the following two ways [21]:

Inorm(C, C ′) =
I(C, C ′)

max(H(C),H(C ′))

or ([7])

Inorm(C, C ′) =
2I(C, C ′)

H(C) +H(C ′)

• Variation of Information [22]

Variation of information (VI) is defined as following:

V I(C, C ′) = H(C) +H(C ′)− 2I(C, C ′) = H(C|C ′) +H(C ′|C)

Intuitively, VI is the information which is not shared by C and C ′. Here are some properties
of VI:

1. VI is a metric between C and C ′, satisfying symmetry, non-negativity and V I(C, C ′) =
0 if and only if C = C ′, and the following triangle inequality:

V I(C1, C2) + V I(C2, C3) ≥ V I(C1, C3)

2. the upper bound: V I(C, C ′) ≤ log n

3. if C ′ is obtained by splitting Ck ∈ C (with nk points) into Ck1, ..., Ckl, then:

V I(C, C ′) =
nk
n

(
l∑

m=1

nkm
nk

log
nkm
nk

)
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The normalized VI is given by following form ([21]):

V Inorm(C, C ′) =
H(C|C ′)
H(C)

+
H(C ′|C)
H(C ′)

• F-measure ([34])

F-measure is defined based on recall and precision. Specifically, assume C be the groundtruth
class and C ′ be any cluster. For any cluster C ′k1 ∈ C

′ and class Ck0 ∈ C:

Recall(Ck0 , C
′
k1

) = nk0k1/nk0

Precision(Ck0 , C
′
k1

) = nk0k1/n
′
k1

The F-measure of cluster Ck0 and class C ′k1 is given by:

F (Ck0 , C
′
k1

) =
2 ∗Recall(Ck0 , C ′k1) ∗ Precision(Ck0 , C

′
k1

)

Recall(Ck0 , C
′
k1

) + Precision(Ck0 , C
′
k1

)
=

2nk0k1
nk0 + n′k1

Note that F (Ck0 , C
′
k1

) is symmetric. Then F-measure of cluster C ′ and class C is given by
the following weighted sum:

F (C, C ′) =
∑
k0

nk0
n

max
k1
{F (Ck0 , C

′
k1

)}

F (C, C ′) ∈ [0, 1]. F (C, C ′) = 1 if and only if C and C ′ are exactly the same. Note that F
measure is not symmetric, that is F (C ′, C) 6= F (C, C ′) generally. Usually, C is used as a
groundtruth.

A.2.2 Generalization to Soft Clustering

Now we generalize C = C1, ..., CK0 and C ′ = C ′1, ..., C
′
K1

to soft clustering case. For any
i ∈ V , let pi,ck0 and pi,c′

k′1
be the probabilities that i is in Ck0 and C ′k1 , respectively. Let

nk0 =
∑|V |

i=1 pi,ck0and n
′
k1

=
∑|V |

i=1 pi,c′k1
. |V | = n.
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• Generalized Confusion Matrix

Following matrix N ∈ RK0×K1 is the generalized confusion matrix:

nk0k1 =
n∑
i=1

pi,ck0pi,c′k1

where nk0k1 denotes the number of elements that Ck0 and C ′k1 share.

This degenerates to the original definition when p ∈ {0, 1}. Note that we still have∑
k0,k1

nk0k1 = n.

• Generalized Matching Sets

Let π be any map, mapping Ck0 ∈ C to C ′k′1
∈ C ′. The following is a generalized set

matching measure:

φ(C, C ′) = 1− 1

n
max
π

∑
k

nk,π(k)

• Generalized Mutual Information and VI

Entropy and mutual information have exactly the same forms as the original one, in which
nk and nk0k1 use the generalized expressions. Entropy:

H(C) = −
∑
k

nk
n
log

nk
n

The mutual information between two clusters C and C ′:

I(C, C ′) =
∑
k0

∑
k1

nk0k1
n

log
nk0k1/n

(nk0/n)(n′k1/n)

Variation of information (VI) is defined as following:

V I(C, C ′) = H(C) +H(C ′)− I(C, C ′) = H(C|C ′) +H(C ′|C)

• Generalized F-measure
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The recall and precision for any soft class C ′k1 ∈ C ′ and cluster Ck0 ∈ C are defined as
follows:

Recall(Ck0 , C
′
k1

) =

∑
i min(pi,ck0 , pi,c′k1

)∑
i pi,ck0

Precision(Ck0 , C
′
k1

) =

∑
i min(pi,ck0 , pi,c′k1

)∑
i pi,c′k1

Then the F measure is:

F (C ′, C) =
∑
k0

nk0
n

max
k1

F (Ck0 , C
′
k1

)

The generalized F measure is still in [0,1]. F (C ′, C) = 1 if and only if C and C ′ are the
same.

A.3 Measures for Hierarchical Clustering

We surveyed two kinds of measures for hierarchical clustering. One way is to directly
compare the whole clustering tree, while another is to compare level by level. The limitation
of those measures is that they only apply to the dendrogram tree, i.e., a tree with |V | − 1
levels and number of cluster decreases by 1 between each neighboring level. More generally
speaking, they only apply to the case that two hierarchical clustering have the same number
of levels and the same numbers of clusters in each level.

Given data D with n data points, let H1 and H2 be two dendrograms, we now describe
these two kinds of measures.

A.3.1 Whole Dendrogram Measure

We firstly need a mathematical way to represent the whole dendrograms. Dissimilarity
matrix is introduced for this purpose. Dissimilarity matrix M is an n × n symmetric
matrix, in which each index corresponds to a data point.

Two approaches have been employed to compute the elements of dissimilarity matrix cor-
responding to a given hierarchical clustering. [33] proposed to set Mij = Mji equal to the
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Figure A.3.1: Points between node 1 and 3 in dendrogram

level in which i and j are firstly merged to the same cluster. The diagonal of M is set as
0.

A second way ([27]) is to setMij = Mji as the number of nodes of the dendrogram between
i and j. An example of M14in a dendrogram is given in figure 5.1, in which the 5 circled
nodes are between node 1 and 4. Therefore, M14 = 5 in this case.

One can easily see that the dendrogram can be uniquely recovered from any of these two
kinds of dissimilarity matrix.

After we have the dissimilarity matrix, say M1and M2, for two dendrogram H1 and H2.
The rest of the task is to find ways to compare these two matrices. Generally there are
many ways and some are listed as follows:

∆ =
∑
|M1 −M2| (A.1)

∆µ = (
∑
|M1 −M2|1/µ)µ/(

∑
|M1|1/µ)µ (A.2)

r =
∑

(D1 − D̄1)(D2 − D̄2)/[
∑

(D1 − D̄1)2
∑

(D2 − D̄2)2]1/2 (A.3)

For more matrix comparison measures, one may refer to the Table 5 in [29].
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A.3.2 Level-wise Measure

Comparing hierarchical clustering by levels seems more straightforward. The basic idea in
[10]is to plot the point (k, φ(k)) for k = 1, ..., n− 1, in which φ(k) is a measure describing
the distance between clustering at level k.

Generally, φ(k) can be any measure described in subsection 5.2. [10] also proposed a new
measure for φ(k):

φ(k) = Tk/
√
PkQk

where Tk =
∑k

i=1

∑k
j=1 n

2
ij − n, Pk =

∑k
i=1 n

2
i − n (for H1) and Qk =

∑k
i=1(n′i)

2 − n (for
H2).

Note that in the above formula, nij is the number of shared points between cluster i of H1

and cluster j of H2 at level k.

The φ(k) defined above has some good properties. φ(k) ∈ [0, 1]. φ(k) = 1 if and only if
the clusters of H1and H2 at level k are identical. φ(k) = 0 when each nij is 0 or 1, so that
every pair of points that appear in the same cluster in H1are assigned to different clusters
in H2. Furthermore, Tk has a good interpretation:

Tk =
k∑
i=1

k∑
j=1

n2
ij − n =

k∑
i=1

k∑
j=1

n2
ij −

k∑
i=1

k∑
j=1

nij = 2
k∑
i=1

k∑
j=1

(
nij
2

)

which is the number of point pairs that are in the same cluster both in H1 and H2.
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