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Abstract 

Detailed Monte-Carlo simulation of a complex system is the benchmark method used in probabilistic analysis 

of engineering systems under multiple uncertain sources of failure modes; such simulations typically involve a 

large amount of CPU time. This makes the probabilistic failure analysis of complex systems, having a large 

number of components and highly nonlinear interrelationships, computationally intractable and challenging. 

The objective of this thesis is to synthesize existing methods to analyze multifactorial failure of complex 

systems which includes predicting the probability of the systems failure and finding its main causes under 

different situations/scenarios. Bayesian Networks (BNs) have potentials in probabilistically representing 

complex systems, which is beneficial to predicting the systems failure probability and diagnosing its causes 

using limited data, logic inference, expert knowledge or simulation of system operations. Compared to other 

graphical representation techniques such as Event Tree Analysis (ETA) and Fault Tree Analysis (FTA), BNs 

can deal with complex networks that have multiple initiating events and different types of variables in one 

graphical representation with the ability to predict the effects, or diagnose the causes leading to a certain 

effect. This thesis proposes a multifactor failure analysis of complex systems using a number of BN-based 

approaches. In order to overcome limitations of traditional BNs in dealing with computationally intensive 

systems simulation and the systems having cyclic interrelationships (or feedbacks) among components, 

Simulation Supported Bayesian Networks (SSBNs) and Markov Chain Simulation Supported Bayesian 

Networks (MCSSBNs) are respectively proposed. In the latter, Markov Chains and BNs are integrated to 

acquire analysis for systems with cyclic behavior when needed. Both SSBNs and MCSSBNs have the 

distinction of decomposing a complex system to many sub-systems, which makes the system easier to 

understand and faster to be simulated. The efficiency of these techniques is demonstrated first through their 

application to a pilot system of two dam reservoirs, where the results of SSBNs and MCSSBNs are compared 

with those of the entire system operations simulation. Subsequently, two real-world problems including failure 

analysis of hydropower dams and nuclear waste systems are studied. For such complex networks, a bag of 

tools that depend on logically inferred data and expert knowledge and judgement are proposed for efficiently 

predicting failure probabilities in cases where limited operational and historical data are available. Results 

demonstrate that using the proposed SSBN method for estimating the failure probability of a two dam 

reservoir system of different connections/topologies results in probability estimates in the range of 3%, which 

are close to those coming from detailed simulation for the same system. Increasing the number of states per 

BN variables in the states’ discretization stage makes the SSBN results converge to the simulation results. 

When Markov chains are integrated with SSBN (i.e. MCSSBN), the results depend on the MCSSBN approach 

that is used according to the scenarios of interest that need to be included in the BN representation. Evidence 

of system failure can be used to diagnose the main contributors to the failure (i.e. inflow, reservoir level, or 

defected gates). This posterior diagnostic capability of the BN is distinctive for the real world case studies 

presented in this thesis. In Mountain Chute Dam that is operated by Ontario Power Generation, the main 

contributors to system failure, according to the logically inferred data and expert knowledge, are inadequate 

discharge capacity of the sluiceway, electromechanical equipment failure, head gates failure, non-safe ice 

loading, high inflow, high rain/precipitation, sluice gate failure, and high water pressure. While for the 

Nuclear Waste Management system, the main contributors to system failure according to the known and 

assumed data are due to high pressures and bentonite failures. In summary, modelling, validating, and 

developing appropriate modifications of the BN method for applications in complex systems failure analysis is 

the major contribution of this thesis. 

 



vi 
 

Acknowledgement 

 

Firstly, I would like to thank my God; ALLAH; for his graces and gifts. 

EGYPT, my home country, I hope to be one of the contributors in creating your better future. 

I would like to express my special appreciation and thanks to my supervisor Prof. Kumaraswamy 

Ponnambalam (Ponnu), you have been a tremendous mentor for me. I would like to thank you for 

encouraging my research and for allowing me to grow as a research scientist. Your seamless 

support, advice, and guidance have been priceless.  

I would also like to thank my committee members, Prof. Keith W. Hipel, Prof. Shi Cao, and Prof. 

Bryan Tolson for serving as my committee members. Special thanks to Prof. Slobodan P. 

Simonovic for being my external examiner. I also want to thank you for letting my defense be an 

enjoyable moment, and for your brilliant comments and suggestions, thanks to you.  

I would especially like to thank Prof. Alcigeimes B. Celeste (Geimes), and Prof. S. Jamshid 

Mousavi for their academic guidance during their visiting professorship at the University of 

Waterloo. 

Many thanks to my research team mates, Dr. Jorge A. Garcia, Shankai Lin, Vimala 

Madhusoothanan, and Mythreyi Sivaraman, for sharing me their thoughts and data for the NWM 

case study. 

I really appreciate the effort that Andrea Verzobio, International Visiting Graduate Student at 

UWaterloo during Fall 2018, spent with me in getting some valuable results for the case study of 

Mountain Chute Dam. 

Special thanks to both, Ontario Power Generation (OPG), and Nuclear Waste Management 

Organization (NWMO), and their executives, for their support.  

A special thanks to my father and mother, father-in-law and mother-in-law. Words cannot 

express how grateful I am to you for all of the sacrifices that you’ve made on my behalf.  

My precious and dear wife, Reham, you have always been my support in the moments when there 

was no one to answer my queries. Thank you for your patience, and for taking care of our 

beloved kids: Basel, Jasmine, and Tarek. 

 



vii 
 

Dedication 

 

To 

The inspirational soul of my Grandfather, sorry for not completing this work before you can see it, 

TAREK; my supportive DAD, 

HANAA; my bright MOM, 

REHAM; my lovely WIFE, 

My beloved kids; BASEL, JASMINE, and TAREK Jr., 

And my godfather; Prof. MOHSEN……. 

 

 

 

 

 

 

 



viii 
 

Table of Contents 

    Page no.  

List of Figures………………………………………………………………………………xi 

List of Tables………………………………………………………………………………..xv 

List of Abbreviations……………………………………………………………………….xvi 

List of Symbols and Units………………………………………………………………….xvii 

CHAPTER 1: Introduction, Problem Definition, and Hypothesis……………………….  1                                       

1.1 Introduction          2 

1.2 Problem Definition          3 

1.3 Hypothesis and Proposed Methodology        4 

CHAPTER 2: Literature Review…………………………………………………............  6 

2.1 Introduction            7 

2.2 Nuclear Waste Management (NWM)         7 

2.3 Factors Affecting the NWM System Failure       11 

2.3.1 Temperature Effect (Geothermal Gradient) 

2.3.2 Pressure Effect (Geostatic and Lithostatic Gradient) 

2.3.3 Relative Humidity and Water Saturation 

2.3.4 Bacterial (Microbial) activity 

2.3.5 Corrosion and Welding Corrosion of the Used Fuel Containers (UFCs) 

2.3.6 Bentonite Clay (Buffer Boxes, Gap Fills, and Back Fills) 

2.4 Safety of Hydropower Dams (SHPD)        20 

2.4.1 Factors Affecting the SHPD System Failure 

2.4.1.1 Hydrological Factors 

2.4.1.2 Structural and Design Factors 

2.4.1.3 Climatic Factors 

2.4.1.4 Mechanical and Electromechanical Factors 

2.4.1.5 Economic and Human Factors 

2.4.1.6 Safety Management Factors 

2.4.2 Dependability Approaches for Representation of Dam Failures 



ix 
 

2.5 Risk, Reliability, and Uncertainty        27 

2.6 Bayesian Networks (BNs)         30 

2.7 Advantages of BN Over Other Network Representation Techniques   34 

2.8 Summary           39 

CHAPTER 3: Bayesian Network Approach for Nuclear Waste Management  

in Canada…………………………………………………………………………………..  40 

3.1 Introduction            41 

3.2 System Assumptions           41 

3.2.1 Pressure 

3.2.2 Temperature 

3.2.3 Relative Humidity (RH), Water Saturation, Salinity, and Microbial Activity 

3.2.4 BN Representation 

3.2.5 Numerical Evaluations 

3.2.6 Numerical Results and Conclusions 

3.3 Summary           60 

CHAPTER 4: Simulation Supported Bayesian Networks (SSBNs) for Failure  

Prediction of Hydropower Dams………………………………………………………….. 61 

4.1 Introduction          62 

4.2 Probabilistic Failure Analysis of Hydropower Dams      62 

4.3 Simulation Supported Bayesian Network (SSBN)     66 

4.3.1 Simulation 

4.3.2 Integration of BN and Simulation for Uncertain Complex Systems 

4.4 SSBN: Application, Methods, and Results      75 

4.5 Summary           88 

CHAPTER 5: Markov Chain Simulation Supported Bayesian Network (MCSSBN)  

Concept for Probabilistic Failure Analysis……………………………………………….. 89 

5.1 Introduction          90 

5.2 Cyclic and Acyclic Graphical Representations      90 



x 
 

5.3 Markov Chain Analysis         91 

5.4 Markov Chain Simulation Supported Bayesian Network (MCSSBN)   93 

5.4.1 First Approach of MCSSBN 

5.4.2 Second Approach of MCSSBN 

5.5 Methods of Applying MCSSBN to a System of Three Dam Reservoirs   103 

5.5.1 MCSSBN First Approach  

5.5.2 MCSSBN Second Approach  

5.6 MCSSBN First Approach for Two Series Reservoirs     108 

5.7 MCSSBN Second Approach for Two Series Reservoirs     117 

5.8 Summary           127 

CHAPTER 6: A Real-World Case Study: Mountain Chute Dam……………………….. 129 

6.1 Introduction          130  

6.2 BN of Mountain Chute         130 

6.3 Quantifying the BN Using Available Data and Logic Inference     133 

6.3.1 BN Input Data and Results 

6.4 Expert Judgement for Quantifying the BN of Mountain Chute Dam   143 

6.5 Summary, Comments, and Recommendations      151 

CHAPTER 7: Conclusions, Recommendations, and Future Work……………………… 153  

7.1 Conclusions          154 

7.2 Recommendations          155 

7.3 Limitations          156 

7.4 Future Work           157 

References……...………………………………………………………………………...... 158 

Appendices…………………………………………………………………………………. 166 

Appendix 1 

Appendix 2 

Appendix 3       



xi 
 

List of Figures 

Figure                                                                                                           Page no. 

Fig.1: Final Disposal Facility for spent nuclear fuel (High Level Waste HLW) [14]……...  9 

Fig.2: ACR-1000 FUEL Bundle (~ 20 kg) [16]…………………………………………… 10 

Fig.3: The conceptual container design for the disposal of Canadian high level  

nuclear waste [12]……………………………………………………………….... 11 

Fig.4: Schematic representation of the proposed Canadian Deep Geological  

Repository (DGR) [12]………………………………………………………….... 11 

Fig.5: Geological Regions of Canada [28]……………………………………………….... 14 

Fig.6: Spent fuel container and its coating [33]…………………………………………… 18 

Fig.7: Bentonite Buffer box [33]…………………………………………………………... 19                

Fig.8: Placement Room Concept [33]…………………………………………………....... 19 

Fig.9: Placement Room (side view)……………………………………………………….. 20 

Fig.10: Progressive headcutting breach of a cohesive soil embankment [43]…………….. 22 

Fig.11: An example of FTA with different dam failure modes [60]……...……………….. 27 

Fig.12: Risk management process [64]……………………………………………………. 28 

Fig.13: Types of reasoning in BNs [77]…………………………………………………… 31 

Fig.14: An example of BN with seven variables [78]…………………………………....... 32 

Fig.15: Bayesian network of earthquake-triggered landslides [79]………………………... 32 

Fig.16: The BN structure of the IEEE-RTS system [83]………………………………...... 34 

Fig.17: BN of two series dependent dams/reservoirs…………………………………....... 37 

Fig.18: BN of two parallel dependent dams/reservoirs……………………………………. 37 

Fig.19: ETA of two dependent dams/reservoirs………………………………………....... 38 

Fig.20: Used Fuel Container Manufacturing Process [85]……………………………........ 42 

Fig.21: Copper Coated Used Fuel Container [85]………………………………………… 43 

Fig.22: Underground Repository Layout [85]…………………………………………….. 43 

Fig.23: Placement Room Geometry (Vertical Section) [85]………………………………. 44 

Fig.24: Current Nuclear Fuel Waste Major Storage Locations in Canada [86]…………… 44 

Fig.25: Probability of having active SRB as a function of dry density…………………… 48 

Fig.26: Proposed BN of NWM systems…………………..……………………………… 50 

Fig.27: BN determining the main factors contributing in a failure, given a  

failure took place…………………………………………………………………. 58 

Fig.28: Posterior probability of failure given the evidence of pressure less than  

45 MPa and high density bentonite……………………………………………… 59 

Fig.29: Example of a Dam System Model [88]…………………………………………… 63 

Fig.30: Variables involved in diagnosing distresses associated with overtopping  

of dams [7]……………………………………………………………………….. 64 



xii 
 

Fig.31: Causal network for diagnosing distresses associated with seepage  

erosion–piping of dams [7]………………………………………………………. 64 

Fig.32: Probability calculation for diagnosing distresses of dams using Hugin  

Lite program [7]………………………………………………………………….. 65 

Fig.33: Dynamic Bayesian network for predicting water availability in a  

water distribution network [96]…………………………………………………... 67 

Fig.34: Proposed Methodology of SSBN…………………………………………………. 68 

Fig.35a: A 23 node BN using Hugin software……………………………………………. 69 

Fig.35b: A 23 node BN decomposed to 6 sub-entities ready to be simulated…………….. 70 

Fig.36: Bayes-Markov chain [98]…………………………………………………………..71 

Fig.37a: BN for probabilistic failure analysis of Mountain Chute Dam………………….. 72 

Fig.37b: BN of Mountain Chute Dam decomposed to sub-entities ready  

to be simulated………………………………………………………………….. 72 

Fig.38: Downstream of the Mountain Chute Dam (including roads, a bridge,  

and electric transmission lines)…………………………………………………… 73 

Fig.39: Penstock and Power House of Mountain Chute Dam……………………………... 74 

Fig.40: Probabilistic Analysis for Safety of Mountain Chute Dam……………………….. 74 

Fig.41: GoldSim simulations of two reservoirs of different configurations for  

estimating the probability of spill………………………………………………… 79 

Fig.42 : BNs of two reservoirs having different configurations ………………………….. 80 

Fig.43: BN of two reservoirs in series with dependent inflows…………………………… 81 

Fig.44: BN of two reservoirs in series with independent inflows………………………… 82 

Fig.45: BN of two reservoirs in parallel with dependent inflows…………………………. 82 

Fig.46: BN of two reservoirs in parallel with independent inflows……………………….. 83 

Fig.47: Probabilistic data and results of the BN of two reservoirs in series  

with dependent inflows…………………………………………………………… 85 

Fig.48: A cycle with n vertices [99]……………………………………………………….. 90 

Fig.49: Directed Acyclic Graph (DAG)…………………………………………………… 91 

Fig.50: Directed Acyclic Graph (yellow) of Directed Cyclic Graphs (blue)……………… 91 

Fig.51: Markov Chain of three states S1, S2, S3............................................................. 93 

Fig.52: A BN with a hidden Markov model [101]……………………………………….. 94 

Fig.53: A BN structured hidden Markov model [101]…………………………………… 95 

Fig.54a: A 23 node BN……………………………………………………………………. 97 

Fig.54b: A 23 node BN being decomposed to 4 BN sub-networks……………………….. 97 

Fig.55: Markov Chain of a three scenario BN sub-network………………………………. 98 

Fig.56: Markov Chain of a two scenario BN sub-network……………………………….. 98 

Fig.57a: A 17 node BN……………………………………………………………………. 100 

Fig.57b: A 17 node BN, with every node includes two states (at least)…………………... 101 

Fig.57c: A 17 node BN, with every node includes a two state Markov Chain……………. 101 

Fig.58: Two state Markov Chain for every node………………………………………….. 102 



xiii 
 

Fig.59: A BN of a three reservoir system…………………………………………………. 103 

Fig.60: Three reservoir system BN decomposed to four sub-networks…………………… 104 

Fig.61: General three reservoir BN, decomposed to four sub-networks………………….. 105 

Fig.62: Markov Chain of a three scenario reservoir BN sub-network  

(Overtopping, Sliding, or Seepage)………………………………………………. 106 

Fig.63: BN of a three reservoir system, with every node includes a lower level  

Markov Chain…………………………………………………………………….. 107 

Fig.64: Higher level Markov Chain for the three reservoirs BN, MCSSBN  

second approach………………………………………………………………….. 108 

Fig.65: BN of two series reservoirs of independent inflows decomposed to  

three sub-networks……………………………………………………………….. 109 

Fig.66: An example of a Markov Chain for a five scenario BN  

sub-network of the first reservoir………………………………………………… 111 

Fig.67: Randomly generated Markov Chain for the five scenario BN  

sub-network of the first reservoir………………………………………………… 112 

Fig.68: An example of a Markov Chain for a seven scenario BN  

sub-network of the second reservoir……………………………………………… 112 

Fig.69: Randomly generated Markov Chain for the seven scenario  

BN sub-network of the second reservoir…………………………………………. 113 

Fig.70: Higher level BN for two reservoir system with three sub-networks……………….113 

Fig.71: Higher level BN for two reservoir system in Hugin Lite………………………….. 114 

Fig.72: The higher level BN given the evidence that system failure took place………….. 116 

Fig.73: BN of two series reservoirs of independent inflows………………………………. 117 

Fig.74: Randomly generated Markov Chain for the three state inflow of the  

first dam…………………………………………………………………………... 118 

Fig.75: Randomly generated Markov Chain for the four state inflow of the  

second dam……………………………………………………………………….. 119 

Fig.76: Randomly generated Markov Chain for the three state reservoir level  

(storage) of the first dam………………………………………………………….. 119 

Fig.77: Randomly generated Markov Chain for the three state reservoir level  

(storage) of the second dam………………………………………………………. 120 

Fig.78: BN with failure probabilities of a system of two series independent  

reservoirs using MCSSBN second approach……………………………………... 123 

Fig.79: Main contributors to system failure of a system of two series reservoirs  

using MCSSBN second approach………………………………………………… 124 

Fig.80: Posterior probability of system failure given some evidences in a system  

of two series reservoirs using MCSSBN second approach………………………. 124 

Fig.81: Higher level scenario (combination of states) for the entire network……………. 125 

Fig.82: An example of higher level Markov Chain showing  

dynamic scenarios (combinations of states) for the entire network……………… 126 



xiv 
 

Fig.83: BN of Mountain Chute dam and generating station……………………………… 131 

Fig.84: BN of Mountain Chute dam after compilation on Hugin Lite……………………. 141 

Fig.85: BN of Mountain Chute given the evidence that main dam failed………………… 142 

Fig.86: BN of Mountain Chute given the evidence of normal/safe operating conditions…. 143 

Fig.87: Mountain Chute Dam and Generating Station (sluiceway and sluice  

gates to the left)………………………………………………………………….. 144 

Fig.88: Side view of the sluiceway and sluice gates of Mountain Chute dam…………….. 144 

Fig.89: Collecting point of drainage in the main dam body……………………………….. 145 

Fig.90: Controlled vegetation around the main concrete dam…………………………….. 145 

Fig.91: One of the earthen block dams (behind the trees)…………………………………. 146 

Fig.92: BN of Mountain Chute dam using expert engineering judgement  

for quantification…………………………………………………………………. 149 

Fig.93: Contribution in main dam failure of Mountain Chute dam when  

using expert judgement…………………………………………………………… 150 

Fig.94: Sluice Gate node decomposed to its sub-BN and sub-components……………….. 151 

Fig.95: BN of Mountain Chute decomposed to four sub-networks……………………….. 152 

 

 

 

 

 

 

 

 

 



xv 
 

List of Tables 

Table                                                                                                             Page no. 

Table 1: Different types of radionuclide with their half-lives [13]………………………. 8 

Table 2: Geological Regions in Canada………………………………………………….. 14 

Table 3: Comparison of BN, ETA, FTA, and Simulation………………………………… 35, 36 

Table 4: Average seasonal temperature difference between surface and 500m depth…… 47 

Table 5: Selected values of bentonite dry density versus probability of  

               bacterial activity………………………………………………………………… 48 

Table 6: Change in RH from surface to 500 m depth in different seasons……………….. 49 

Table 7: BPTs and CPTs for the proposed BN………………………………….... 54, 55, 56, 57 

Table 8: Simulation results for two reservoir system with different configurations……… 78 

Table 9: BPTs and CPTs for the BN representation of two reservoirs in series  

               with dependent inflows, using probability estimates from simulation…………. 84 

Table 10: BN results for a two reservoir system with different configurations, fed  

from simulation (SSBN)………………………………………………………… 85 

Table 11: Effect of increased number of states on the SSBN results for a system  

                 of two dams……………………………………………………………………. 86 

Table 12: Predicting failure probabilities for future time periods from SSBN steady  

state estimates…………………………………………………………………… 87 

Table 13: Scenarios of the first dam reservoir…………………………………………….. 110 

Table 14: Basic and Conditional Probability Tables for the higher level BN  

for two dam reservoirs………………………………………………………….. 115 

Table 15: BPTs and CPTs of MCSSBN second approach for two series  

                 dam reservoirs of independent inflow ………………………….……............121, 122 

Table 16: Comparing probability of system failure using different  

 methods: simulation, SSBN, and MCSSBN………………………………….. 127 

Table 17: BPTs and CPTs of the BN of Mountain Chute dam…………….......135, 136, 137, 138 



xvi 
 

List of Abbreviations 

 

ASCE: American Society of Civil Engineers 

BN: Bayesian Network 

BNA: Bayesian Network Analysis 

BPT: Basic Probability Table 

CPT: Conditional Probability Table 

CNSC: Canadian Nuclear Safety Commission 

DAG: Directed Acyclic Graph 

DGR: Deep Geological Repository 

DSM: Dam Safety Management 

ETA: Event Tree Analysis 

FTA: Fault Tree Analysis 

FMEA: Failure Modes and Effects Analysis 

GHGs: Green House Gases 

GSC: Geological Survey of Canada 

HCB: Highly Compacted Bentonite 

HLW: High Level radioactive Waste 

HRT: Head Race Tunnel 

IAEA: International Atomic Energy Agency 

ICOLD: International Commission on Large 

Dams 

IDF: Inflow Design Flood 

IRB: Iron-Reducing Bacteria 

LOL: Loss of Life 

 

MA: Markov Analysis 

MCS: Monte Carlo Simulation 

MCMC: Markov Chain Monte Carlo 

MCSSBN: Markov Chain Simulation Supported 

Bayesian Network 

NSDF: Near Surface Disposal Facility 

NWM: Nuclear Waste Management 

NWMO: Nuclear Waste Management 

Organization 

OPG: Ontario Power Generation 

PAR: Population at Risk 

PDF: Probability Density Function 

PFA: Probabilistic Failure Analysis 

PMP: Probable Maximum Precipitation 

PRA: Probabilistic Risk Assessment 

RH: Relative Humidity 

RoR: Run of the River 

SSBN: Simulation Supported Bayesian Network 

SHPD: Safety of Hydropower Dams 

SRB: Sulphate-Reducing Bacteria 

TRT: Tail Race Tunnel 

TPM: Transition Probability Matrix 

UFC: Used Fuel Container 

 



xvii 
 

List of Symbols and Units 

 

 

Unit Symbol 

 

Name 

 

Quantity 

 

 

Sv  

 

Sievert 
 

Equivalent/ Effective Radiation Dose 

 

Bq  

 

Becquerel 

 

Radioactivity 

 

°C 

 

Degree Celsius 

 

Temperature  

 

°F 

 

Degree Fahrenheit 

 

Temperature 

 

kg 

 

Kilogram 

 

Mass  

 

km 

 

Kilometer 

 

Length  

 

S 

 

Second 

 

Time  

 

m
3 

 

cubic meter 

 

Volume  

 

Pa 

 

Pascal 

 

Pressure  

 

MPa 

 

Mega Pascal 

 

Pressure 

 

N 

 

Newton 

 

Force 

 

kW 

 

Kilo Watt 

 

Electric Power 

 

MW 

 

Mega Watt 

 

Electric Power 

 

kWh 

 

Kilo Watt hour 

 

Electric Energy 

 

MVA 

 

Mega Volt Ampere 

 

Apparent Electric Power 

 

 



1 
 

 

 

 

 

 

 

 

CHAPTER 1 

Introduction, Problem Definition, and Hypothesis 

 

 

 

 

 

 

 

 

 

 



2 
 

1.1 Introduction 

Failure analysis is an important and challenging aspect of the study of complex systems. A 

system is defined to be consisting of components, sub-systems, inputs and outputs within system 

boundaries. The inputs provide physical resources and information to the sub-systems, which are 

interacting among each other to produce some outputs. All interactions are assumed to take place 

within system boundaries. A complex system can be defined as a system structure that is 

composed of many components that have complex interactions, [1]. Any failure in performing 

the required interactions among system components or any failure in getting the expected 

output/result is considered to be contributing to system failure, [2]. Thus, analysis of a system 

with its components is a crucial step in determining the difficulties and complexities that the 

system will experience at any stage. However, in the real world, performance of both inputs and 

sub-systems is affected by probabilistic uncertainty, and hence a failure may come with an 

associated probability. Probabilistic uncertainty due to randomness of events or values and 

limited knowledge are considered main sources of uncertainty in systems introduced in this 

thesis, [3, 4]. The main goal of this research is to evaluate the probability of failure of complex 

systems, while finding the failure causes, and hence the analysis is called the probabilistic failure 

analysis (PFA). For any given system with its inputs and sub-systems, probabilistic failure 

analysis depends on finding the probability of not getting the required or estimated output of that 

system. The required output may be the effect that is produced from certain causes (i.e. 

prediction reasoning), or the determination of the cause responsible for certain results and effects 

(i.e. diagnostic reasoning). Thus, determining the cause-effect relation is an important first step 

in the probabilistic failure analysis, which allows for better understanding to enhance the system 

reliability and take decisions for mitigating the negative effects or better enhancing the causes.   

In this research, the concept of probabilistic failure analysis is applied to two main real-world 

case studies: 1- Nuclear Waste Management (NWM), and 2- Safety of Hydropower Dams 

(SHPD). The type and complexity level varies in these two case studies; however, both can be 

analysed as “Complex Systems”. For each case study, relevant literature is reviewed to 

understand the problem, study existing solutions, and determine system factors, parameters, and 

variables. As a result, the system can be represented graphically. Lastly, probability measures are 

applied to each system’s graphical network to estimate the probability of failure for given 

scenarios/situations. In this thesis, the graph representation of both systems is conducted using 

Bayesian Networks (BNs) which allow for representing marginal, conditional, and joint 

probability measures affecting system components. Representing systems of engineering 

applications using BNs is affected by multiple factors that affect the probabilistic quantification 

process. The aim of this thesis is to develop approaches that facilitate the probabilistic 

quantification of BNs, and hence, facilitate prediction of system failures, as follows: 

1- Incorporating simulation of the entire system with the BN representation, given that 

simulation may be challenging especially for very complex systems that include a huge 

number of system variables. This approach is named “Simulation Supported Bayesian 

Network (SSBN)” in this thesis. In this approach, simulation is used as a source of 

probabilistic information that is used to quantify the basic nodes and conditional relations 

among system nodes/variables, and  

2- Incorporating Markov Chains to the SSBN approach, named “Markov Chain Simulation 

Supported Bayesian Network (MCSSBN)” in this thesis. This approach is supposed to 

overcome the limitation of being acyclic in the BN representation of the system. This 

https://en.wikipedia.org/wiki/System
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allows for cyclic system analysis for different system scenarios/situations, and easy 

update for the system in case any new data becomes available. 

 

 

1.2 Problem Definition 

Failure analysis of complex engineering systems is challenging for different reasons. Most of the 

complex systems include multiple factors and variables of different natures (i.e. technical and 

non-technical). These factors are mostly associated with probabilistic measures which lead to the 

requirement to represent marginal, joint, and conditional probabilities of the events contributing 

to any system failure, resulting in probabilistic uncertainty. Current practices use exhaustive 

simulation models, which may be computationally intensive when dealing with any complex 

system of a huge number of system components, complex interrelations, and/or nonlinear 

governing equations. This makes the probabilistic representation for system failure analysis not 

easy to interpret. Failure analysis of these systems is important in the sense that how likely they 

will reach a failure state (probability of failure) and what will be the consequences of failure in 

terms of expected loss or other probabilistic measures quantifying those consequences, e.g. 

vulnerability, reliability and resilience. Estimating the probability of failure in such systems 

could be hard because the state of the systems is a vector of multiple stochastic variables having 

a huge number of possible values in a multidimensional state space. Particularly, when a failure 

state results from multiple factors, this means that the probability of failure would be a joint 

probability function of multiple variables and events. Knowing that the relationships between 

input and output vectors of variables is complex, it would be practically impossible to determine 

the joint probability function of output vector analytically even if the probability function of 

input vectors are simply Gaussian and statistically independent, whereas in general the 

distributions are non-Gaussian and dependent. Hydropower dams and nuclear waste management 

using deep geological repository systems may be good examples of complex systems that have 

multiple interrelated factors. Dam systems are complex systems having a huge number of 

interacting factors and components. The deep geological repository system is also complex in 

terms of the interactions among system components and the lack of operational data for such 

future projects. In such systems, exhaustive simulations are challenging while predicting any 

system failure, and while diagnosing the causes of such failure.  Decision makers in charge of 

such systems need a multifactor representation to overcome the challenges of current practices 

and to facilitate interpreting the interrelations among system components while predicting the 

failures or diagnosing the failure causes in terms of probability estimates during different 

situations/scenarios. Data scarcity is one major factor that makes the risk analysis of such 

systems challenging. A rational framework to analyze failures and risks of these systems is 

crucial in both the short terms and the long terms and BN provides the foundation for such 

framework. It is shown later in this thesis that Bayesian Networks (BNs) have potentials that 

help solving such problems. Bayesian Network provides a graphical representation of any system 

using basic probabilities, for system inputs, and conditional (transition) probabilities, for sub-

systems and their mutual interactions. There are some advantages and limitations in using BNs. 

One of the main advantages is that BNs can integrate all types of data (e.g. social, environmental, 

technical, etc.) because of the probabilistic nature of the BNs, as everything is represented as a 

probability. Data must also be available to be able to estimate probabilities. This is not feasible 

for systems which are still under research or will be applied in the future. However, BN analysis 
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allows for integrating subjective probabilistic information and/or simulations, which can be 

improved with additional data updates, when available. The main limitation is the acyclic 

behaviour of the BN that doesn’t allow for analysis of systems with cyclic behavior that is 

needed in some applications. When the system is fully represented by BN, the failure probability 

could be estimated using Bayesian inference. Alternatively, BNs may be used to evaluate the 

performance of the system components and their interactions to get some information about the 

failure causes. If the post failure analysis stage is taken into consideration, determination of 

causes and mitigation or treatment actions should be considered in order to improve the 

performance and limit the overall system failure that the system may experience in the future. In 

this research, two case studies are used to develop Probabilistic Failure Analysis (PFA) for 

complex systems: 1- is for high level radioactive Nuclear Waste Management (NWM), which is 

still a future project under development, and 2- is to analyse Safety of Hydropower Dams 

(SHPD), whose risks of failure include failure probability, and consequences of failure. For the 

purpose of this thesis, we are focussing mainly on the first part (i.e. failure probability) with 

some extensions to be provided for the second part (i.e. consequences) in the future. The two 

case studies are totally different in terms of application, but they are both complex systems and 

can be represented probabilistically, but the main challenge is the data type. In NWM, which is 

still a blue print, only partial data for this system or its components are available and requires 

detailed simulations, which are outside of the scope of this thesis. On the other hand, SHPD is a 

known problem with known technical databases but with a significantly larger number of 

components than NWM, thus having large data requirements. In this thesis, the BN is used as a 

multifactor representation for complex systems in order to predict system failures and diagnose 

failure causes. In case of data scarcity, BN representation may integrate simulation and/or 

subjective probabilistic information to facilitate the failure analysis. This research presents 

methodologies utilizing Simulation and Bayesian and Markovian Networks for predicting 

probabilities of failures of complex systems, using information of system components and their 

interconnections. 

 

1.3 Hypothesis and Proposed Methodology 

In this research, failure is analyzed for two complex systems: 

1- NWM (Nuclear Waste Management) using deep geological repository for high level 

radioactive waste (spent nuclear fuel) management, and 

2- SHPD (Safety of Hydro Power Dams), a pilot study of a two dam reservoir system is 

identified for applying the proposed methodologies. Then, a real-world case study for one 

of the dams operated by Ontario Power Generation (OPG) is used to apply the proposed 

methodology, with the restriction of availability of operational data. 

Firstly, in Chapter 2, the literature explaining both systems and their problems are reviewed. 

Then, the different factors affecting the system failure in both of them are illustrated. Knowing 

the different components, factors, parameters, and sub-systems for any system will facilitate the 

task of constructing a graphical representation for the specified system. As Bayesian Networks 

(BNs) have shown some advantages in representing any system as a probabilistic graphical 

network, BNs are used extensively in this research. Chapter 3 uses the data available for the 

different components of NWM case study to build the system’s BN. Once the graph of the 
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system is constructed, the data available are used to quantify the probabilities of the BN nodes 

and their interactions (basic and conditional probabilities). Depending on different scenarios, or 

change in data from location to another (in case of the deep geological repository), or from time 

to time (for the operation of dams in different seasonal conditions), the probabilities may change 

resulting in increasing or decreasing the failure probability. Thus, there is a need to compile the 

BN of such systems to obtain the joint and marginal probabilities related to certain situations or 

events. To facilitate this task, Hugin Lite software was found to help in the representation of the 

BN and its compilation [5, 6, 7]. So, the BN is constructed and all the data and scenarios are 

inserted in order to start the compilation of cause-effect probabilistic analysis, resulting from 

interrelating system components, and affecting the failure. While the BN representation for 

failure prediction is dependent on available data in both applications, it is shown that failure 

prediction is challenging. Probabilistic quantification relies on different sources of data, i.e. 

expert judgement, logic inference, elicitation, empirical models, and simulation, which result in 

different levels of inaccuracy in the estimated failure probability, which may be used for decision 

making. In Chapter 4, the approach of incorporating simulation to the BN (SSBN) is introduced 

and applied to a pilot two reservoir system. The decompositional approach used for simulating 

complex systems – proposed in this thesis – is introduced as a part of the SSBN method. SSBN 

is expected to reduce the limitation of exhaustive simulation that may be computationally 

expensive in some applications. In Chapter 5, another approach that uses Markov Chains to be 

incorporated with simulation and BNs to better quantify the probabilities of the system nodes and 

their conditional relationships is introduced and applied to the same two reservoir system. 

Markov Chain Simulation Supported Bayesian Networks (MCSSBNs) are proposed to make the 

analysis cyclic and more dynamic while introducing different system scenarios/situations, and 

allow for seamless update of the system with any new available information/data that could 

affect the prediction process of system failure. As data and mathematical models are not fully 

available for the real-world case study, as may be expected in most cases today, Chapter 6 

illustrates how the elicitation of expert judgement and logic inference is used for quantifying the 

BN of Mountain Chute Dam and Generating Station, operated by OPG, to predict its probability 

of failure. Finally, in Chapter 7, conclusions are presented regarding the proposed 

methodologies and their potentials and limitations in representing complex systems and 

predicting their failure probabilities. Some recommendations are also suggested. The main focus 

of the proposed research in this thesis is on the stage of failure prediction. In addition, the work 

proposed in this research may help in identifying causes of failures by using diagnostic 

capabilities of BN analysis. 
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2.1 Introduction 

This chapter provides a review of literature for the case studies used in this research. For the first 

case study-Nuclear Waste Management (NWM) system, different factors that affect the system 

are discussed. A brief description is also provided for the second case study of this research-

Safety of Hydropower Dams (SHPD) system. This chapter also provides an introduction to risk, 

reliability, and uncertainty. The concept of Bayesian Networks is explained in details. Then a 

comparison between BNs and other techniques, used for representing systems, is conducted.  

 

2.2 Nuclear Waste Management (NWM)  

Disposal is the final stage of the radioactive waste management by which the wastes are isolated 

from biosphere in the repositories. For the disposal of radioactive solid wastes, multi-barrier 

approach may be followed. If suitable engineered barriers, backfill materials and the 

characteristics of the geo-environment of the repository site are properly selected, safety against 

radionuclide migration will be achieved. Disposal of radioactive solid wastes depends on the 

nature and type of radionuclide present in the wastes (longevity) and its concentration. Thus, the 

repository can be near-surface or in deep geological formations. For long lived high level 

radioactive wastes, deep geological repository (DGR) is the option, for disposal of used nuclear 

fuel and high-level radioactive waste, which has received world-wide attention and may be the 

best known method to do that permanently without putting a burden of continued care on future 

generations. The option of Near Surface Disposal Facilities (NSDF) is preferred for low and 

intermediate level radioactive wastes with comparatively large volumes, which arise during 

nuclear power plant operation, and from radionuclide applications in hospitals and research 

establishments. At NSDF, wastes are normally disposed in a depth around 50 meters 

(intermediate depth). In NSDF, sub-surface evaluation is carried out systematically by geological 

and geo-hydrological investigations. Testing of full scale engineered barriers should be 

conducted for bentonite clay buffers and clay sand as backfill materials in both deep geological 

repositories and near surface disposal facilities. It is believed that setting up dependency 

relationships among the geological, hydrological, and ecological aspects will reduce the sources 

of uncertainty in this area of research [8, 9, 10, 11]. 

Canada, like many nuclear nations, has been investigating geological disposal of nuclear waste, 

which is the approach that offers the best passive safety system for permanent disposal, since the 

early 1970s. The internationally accepted design of a deep geologic repository (DGR) involves 

the following [12], see Fig.1: 

1. At depth of 500 meters below ground surface in a suitable location of dense intact rock, 

used fuel will be disposed. 

2. Nuclear spent fuel will be sealed in a corrosion resistant used fuel container (UFC). This 

container should withstand anticipated hydrostatic, lithostatic and glaciation loads. The 

original Canadian UFC, which is dual-walled with an inner iron (or steel) vessel to 
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provide strength, and a separately fabricated 3 mm-thick copper coated outer shell 

corrosion barrier, was designed to contain about 48 CANDU fuel bundles.  

3. As an additional barrier, compacted bentonite clay will be surrounding the UFC. 

Compacted bentonite clay swells on contact with moisture. This will tightly seal the 

system with allowing very little chemical diffusion to occur. 

In [10], a full explanation of the definitions and decrees (by Finnish government), regarding the 

disposal of nuclear waste, is discussed. Spent nuclear fuel (which is considered high level 

radioactive waste), along with low and intermediate level wastes are accumulated during the 

operation and decommissioning of nuclear power plants. Spent nuclear fuel is intended to be 

disposed in deep geological repositories, inside the bedrock, after being encapsulated. Selecting 

and characterising the disposal site, developing disposal technology, collecting necessary data 

for long term safety, excavation works, packaging the wastes and transferring the packages to 

emplacement rooms, and the engineered barriers installation, are required stages in the disposal 

process. According to Finnish government decrees, disposal facility shall be designed to have the 

average annual dose to the most exposed individuals of the population not to exceed 0.01 mSv 

during normal operation of the facility, with maximum of 5 mSv in the event of certain 

accidents. Also in [10], exact and detailed definitions are given to: Low level waste (activity 

concentration not more than 1 MBq/kg.), Intermediate level waste (1 MBq/kg –10 GBq/kg), 

High level waste (>10 GBq/kg), Short-lived waste (less than 100 MBq/kg after 500 years), 

Long-lived waste (more than 100 MBq/kg after 500 years), disposal facility, disposal site, and 

barrier (engineered or natural). In [13], some definitions and management actions regarding 

radioactive wastes are provided. The radioactive properties of radioactive wastes contains the 

type of radionuclides, the radiation emitted (alpha, beta, gamma), the activity level (number of 

atomic nuclei disintegrating per unit time, expressed in becquerels), and the radioactive half-life 

(i.e. time taken by a radioactive sample to lose half of its activity). Short-lived radioactive waste 

contains radionuclides with a half-life of less than 31 years, while long-lived radioactive waste 

contains radionuclides with a half-life of over 31 years. See Table1. 

 

Radionuclide Half-life 

Cobalt-60 5.2 years 

Tritium 12.2 years 

Strontium-90 28.1 years 

Caesium-137 30 years 

Americium-241 432 years 

Radium-226 1,600 years 

Carbon-14 5,730 years 

Plutonium-239 24,110 years 

Neptunium-237 2,140,000 years 

Iodine-129 15,700,000 years 

Uranium-238 4,470,000,000 years 

Table 1: Different types of radionuclide with their half-lives [13] 
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The following engineered barriers should be considered in planning the waste disposal [10]: 

1- The waste matrix; 

2- The waste package; 

3- The buffer surrounding the waste packages; 

4- The backfilling of emplacement rooms; and 

5- The closing structures of the disposal facility. 

 

The bedrock of the disposal site is considered to be a natural barrier that lends support to safety 

functions, but, there are also some factors that indicate the unsuitability of a disposal site [10]: 

1- Proximity to natural resources; 

2- High rock stresses; 

3- High seismic or tectonic activity; and 

4- Adverse groundwater characteristics,  

 

 
Fig.1: Final Disposal Facility for spent nuclear fuel (High Level Waste HLW) [14] 

 

In Canada, Nuclear Safety and Control Act (2000) created the Canadian Nuclear Safety 

Commission (CNSC), Canada’s single nuclear regulator to regulate all nuclear-related facilities 

and activities, from cradle to grave. CNSC, which is an independent commission, makes 

continuous updates for its regulations regarding nuclear activities including regulations of safe 

spent fuel and radioactive waste management. Nuclear Fuel Waste Act (2002), which established 

a framework for national long-term management solution respecting Canada’s spent fuel, created 

the Nuclear Waste Management Organization (NWMO) as a not-for-profit corporation funded 

by waste producers. In the Government of Canada Radioactive Waste Policy Framework (1996), 

both the federal government and waste producers and owners have responsibilities towards the 

radioactive waste problem, [15]. Full details for nuclear waste management program in Canada 
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are provided in [16], with understanding the fact that high level radioactive waste can stay in the 

wet storage (in pools) for 7-10 years, and in dry storage for up to 70 years before being disposed 

into deep geological repository (DGR). International Atomic Energy Agency (IAEA) provides 

all the safety standards, in the disposal of radioactive waste, for protecting people and the 

environment. Emplacing radioactive waste in a facility or location with no intention to retrieve 

the waste is called “disposal” of radioactive waste. The lack of intention to retrieve wastes 

doesn’t mean that retrieval is not possible. This is different than the term “storage”, which means 

the retention of the radioactive waste with having retrieval intention. Both, disposal and storage, 

aim at containing the waste and isolating it from accessible biosphere. Thus, waste storage is 

considered a temporary stage followed by future actions of conditioning, packaging, and final 

disposal [17]. 

 

 

Figures 2, 3, and 4 give a representation for the problem under study. The used fuel bundle 

(Fig.2) is placed in the container shown in Fig. 3. The container should contain an assembly of 

48 fuel bundles. These bundles generate both radioactive heat and mass that can be transferred to 

the surrounding and needs to be shielded. For that reason, the used fuel container is made of 

steel, with an outer corrosion barrier of copper. Then, the container is placed in a buffer box 

made of bentonite clay as another barrier. Many buffer boxes are placed in placement room 

(Fig.4) in the repository, which is 500 meters deep, and separated by backfill material as an 

additional barrier. Then the whole placement room is filled with gap fill material to fill the gap 

with the rocks of the placement room. 

 

 

 

 
Fig.2: ACR-1000 FUEL Bundle (~ 20 kg) [16] 
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     Fig.3: The conceptual container design                                                             Fig.4: Schematic representation of the proposed          

     for the disposal of Canadian high level                                                           Canadian Deep Geological Repository (DGR) [12] 

                         nuclear waste [12]                    

 

Failure in nuclear systems is related to the emissions of radioactive nuclides, or possible 

accidental releases of radioactivity, like the ones described in ref [18]. From the nuclear aspect, 

risk can be defined to be an exceeding expectation of the magnitude of undesirable radioactive 

releases (i.e. the product of probability of an accident/failure, and the consequence of this 

accident). In probabilistic risk assessments, uncertainty measures arise due to both, lack of the 

knowledge and stochastic features of system components. So, complex uncertainty propagation 

may result in future potential risks. In the next sections, Bayesian Network is shown to be a 

concept for reasoning complex uncertain problems, where network means a graphical model [9, 

18]. In [19] and [20], different and effective waste management policies are investigated with 

giving detailed explanation of the radioactive waste management process. An overview is given 

in [21] of the nuclear data required to make a correct prediction of the source of radioactive 

wastes, and the radiation doses in the different activities of: manufacturing, production, handling, 

transport, recycling, transmuting, and storing of radioactive, or fissionable, materials.  
 

 

2.3 Factors Affecting the NWM System Failure 

The operation of NWM Deep Geological Repository system is to keep the used nuclear fuel 

away from interacting with the surrounding environment by encapsulating the fuel bundles in 

used fuel containers. The system is considered to fail when the used fuel container fails to 

prevent any interaction between the nuclear bundles and the surrounding environment. In this 

section, the different factors that affect the NWM system operation and failure are explained in 

details. 
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2.3.1 Temperature Effect (Geothermal Gradient) 

Variation of surface air temperature, with the seasons and regional variations according to local 

weather conditions, is a known fact. Thus, ventilation of current temperature in underground 

openings may affect temperature variation [22]. In [23], the surface average temperatures in the 

Canadian cities all over the year are demonstrated, with giving the maximum and minimum 

annual temperatures based on weather data collected from 1981 to 2010. The numbers allow 

comparing the average daily high and low temperatures for the 33 largest Canadian cities. 

Temperature is known to increase with depth in the Earth influenced by the heat generated at 

depth and transferred through rocks and sediment layers. This is called terrestrial heat flow 

which is described by the following equation [24]: 

 

                                                               𝑸𝒛 =  
∆ 𝑻

𝛌 ∆𝐃
           Eqn. 2.1 

 

Where: 

Qz = Heat flow per unit area in the vertical direction, 

λ = Thermal conductivity, and 

∆T/∆D = Geothermal gradient (difference in temperature / difference in depth). 

 

Because of some data constraints in both heat flow and thermal conductivity, the principal basis 

for calculating geothermal gradients depends on bottom-hole temperatures measured in 

boreholes [24]:  

 

𝐺𝑒𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝐺𝑟𝑒𝑎𝑑𝑖𝑒𝑛𝑡 =
𝐹𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 𝑀𝑒𝑎𝑛 𝐴𝑛𝑛𝑢𝑎𝑙 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

𝐹𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐷𝑒𝑝𝑡ℎ
 

 

In Canada, geothermal favourability ranking, in areas with geothermal gradient data, is given in 

[25]. It can be concluded that geothermal gradient falls in the range between 30 – 55 (
°
C / km). 

In [26], Government of Canada (Environment Canada) provides Historical Climate Data for 

different Canadian Provinces by which monthly data reports for Canadian provinces and cities 

can be easily gotten. While [27] provides geothermal maps of Canada at different depths in 

different locations within the Canadian geological regions. Globally, the average geothermal 

gradient ranges between 25 – 29
°
C / km depth, with actual value of more than 55 

°
C / km depth 

in some regions. According to the above mentioned information, the surface temperature will 

affect the final temperature at the deep geological repository according to the average geothermal 

gradient. Accordingly, and because the average seasonal surface temperature data is available, in 

this research, the year is divided into three seasons: Winter (W), Spring Summer (SS), and Fall 

(F). Each season is assumed to have average weather conditions within its period. The maximum 

geothermal gradient that will be used in this study will be the 29
°
C / km depth (assuming that the 

repository will not be built in any of the regions that have extreme temperature and geothermal 

https://www.currentresults.com/Weather-Extremes/Canada/largest-canadian-cities-list.php
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conditions). However, for the post-closure processes in the repository, the surface temperature is 

not showing significant effect or significant change in the temperature of the repository from 

season to season. The reason behind that is because the radioactive decay coming from the used 

fuel will be much higher than the change in the surface temperature. The radioactive heat decay 

will be the most dominant temperature changing factor after closure of the repository. According 

to NWMO, there are studies for five locations (three crystalline rocks, and two sedimentary 

rocks) where the repository is supposed to be placed in one of them. The location that will be 

selected should have an average surface temperature of 5
°
C, with 16

°
C/km geothermal gradient; 

in order to have about 12
°
C temperature at the repository (500 m depth) resulted from the surface 

temperature. From another side, the maximum temperature at the surface of the used fuel 

container should be at maximum of 100
°
C at any time during the radioactive decay. This means 

that the radioactive decay may be responsible for more than 80
°
C of the temperature in the 

repository, or at least at the surface of used fuel container. 

 

2.3.2 Pressure Effect (Geostatic and Lithostatic Gradient) 

Pressure increases with depth in the earth due to the increasing mass of the rock overburden. The 

geostatic pressure at a given depth is the vertical pressure due to the weight of a column of rock 

and the fluids contained in the rock above that depth. Lithostatic pressure is the vertical pressure 

due to the weight of the rock only. Computing the pressure as a function of depth in a 

homogeneous crust is a straightforward calculation: 

 

                                                              𝐏 =  
𝛒 𝐕 𝐠

𝐀
=  𝛒 𝐠 𝐇 Eqn. 2.2 

Where: 

A (m
2
): surface area of the repository  

ρ (Mass (M) /Volume (V) = kg/m
3
): the density of rocks (in case of lithostatic pressure), or the 

summation of rock and water densities (in case of geostatic pressure), and M (kg) is the rock 

mass (in case of lithostatic pressure), or the summation of rock and water masses (in case of 

geostatic pressure), 

V (m
3
): volume of the repository = A (surface area) * H (depth),

 

g (9.81 m/s
2
): gravitational acceleration, and 

P (N/m
2
 = Pascal Pa): Lithostatic Pressure (in case of just rocks), or Geostatic Pressure (in case 

of both rocks and fluids). 

 

Higher rock densities will yield higher pressure gradients. The geostatic gradient changes with 

depth as the density increases. This is called crustal geostatic gradient. In that order, to calculate 

the pressure in the deep geological repository, it is important to know the densities of all the rock 

types all over the country. According to [28], Canada can be divided into six geological regions: 

The Canadian Shield, Interior Platform (Canadian Interior Plains including Hudson Bay Low 

Lands), Appalachian Orogen (East), Eastern Continental Margin (St. Lawrence Low Lands), 
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Innuitian Orogen (North Arctic Lands), and Cordilleran Orogen (Western Sedimentary Basin). 

Each geological region has specific characteristics and different mineral resources (see Fig.5 and 

Table 2). 

 

 

Fig.5: Geological Regions of Canada [28] 

 

 

Geological Region 

Percentage of 

Canada’s Area 

The Canadian Shield ~50% 

Interior Platform (Canadian Interior Plains including Hudson Bay Low Lands) ~22.5% 

Appalachian Orogen (East) ~3.6% 

Eastern Continental Margin (St. Lawrence Low Lands) ~1.8% 

Innuitian Orogen (North Arctic Lands) ~5.4% 

Cordilleran Orogen (Western Sedimentary Basin) ~16% 

Table 2: Geological Regions in Canada 

 

So, if the decision is not taken yet about the location of the repository, it will be impossible to 

calculate the maximum effect that comes from the pressure factor. Thus, this led to considering 

something else. The Earth crust contains both continental and oceanic parts. The oceanic crust 
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counts for the seas, oceans, rivers, and lakes, while the continental crust accounts for the rest. In 

Canada (9,984,000 km
2
), the continental crust counts for 92% of the Canadian Land, while the 

oceanic counts for about 8%. The average density of continental crust is known to range between 

2500-3000 kg/m
3
 (2.5-3 g/cm

3
) according to the rock type. While the oceanic crust average 

density ranges between 3-3.3 g/cm
3
 [29]. Accordingly, more realistic data can be estimated about 

the maximum pressure that could be faced in case of building the repository beneath rocks or 

under (or near) oceans and seas. Moreover, if there is ice accumulation at the location where the 

repository is built, ice pressure should be taken into account (ice loading). Another factor, that 

will affect the pressure in the repository, is the bentonite swelling pressure. The used fuel 

container will be emplaced in a Highly Compacted Bentonite (HCB) buffer box. If the bentonite 

is hydrated or gets wet at any time, it will swell to seal the buffer box and prevents any diffusion, 

form inside to the outside or vice versa, from taking place. The swelling pressure of the bentonite 

should be taken into consideration for calculating pressure on both the used fuel container, and 

the walls of the emplacement room. In the five location that are being tested by NWMO, the total 

of geostatic pressure and the bentonite swelling pressure should count for 15 MPa, while the ice 

loading will count for at most 30 MPa. That is 45 MPa in total maximum pressure in the 

repository.   

 

2.3.3 Relative Humidity and Water Saturation 

Relative humidity is the ratio of vapor pressure (mixing ratio) to the saturation vapor pressure 

(saturation mixing ratio). Given by another definition, Relative Humidity is the ratio of the actual 

amount of water vapor in a given volume of air to the amount which could be present if the air 

was saturated at the same temperature. It is expressed as a percentage (percentage of saturation 

humidity), and reaches 100% when the air is saturated with respect to water (the case of ice).  

                               𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚 =  
𝑨𝒄𝒕𝒖𝒂𝒍 𝑽𝒂𝒑𝒐𝒓 𝑫𝒆𝒏𝒔𝒊𝒕𝒚

𝑺𝒂𝒕𝒖𝒓𝒂𝒕𝒊𝒐𝒏 𝑽𝒂𝒑𝒐𝒓 𝑫𝒆𝒏𝒔𝒊𝒕𝒚
 × 𝟏𝟎𝟎%      Eqn. 2.3 

 

 

At a given vapor pressure (or mixing ratio), relative humidity with respect to ice is higher than 

that with respect to water. For unsaturated air, relative humidity is inversely proportional to the 

temperature. Since warm air will hold more moisture than cold air, the percentage of relative 

humidity must change with changes in air temperature. In that order, relative humidity doubles 

with each 20 degree (Fahrenheit) decrease, or halves with each 20 degree increase in 

temperature. Generally, as temperature goes up, relative humidity goes down and vice versa. Ref 

[23] also demonstrates the average relative humidity in the Canadian cities all over the year, and 

gives the morning and afternoon annual relative humidity averages based on weather data 

collected from 1981 to 2010. The numbers allow comparing the average daily high and low 

relative humidity for the 33 largest Canadian cities. It is obvious that the relative humidity 

average never exceeds 95% at the surface, with having most of the big cities below the 88%. 

https://www.currentresults.com/Weather-Extremes/Canada/largest-canadian-cities-list.php
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Relative humidity measures the actual amount of moisture in the air as a percentage of the 

maximum amount of moisture the air can hold (saturation). Accordingly, at the repository, while 

the temperature increases with going down in depth, the relative humidity should decrease. In the 

post-closure conditions, the changes in surface temperature will not have significant effect on the 

repository temperature, so, changes in surface relative humidity will not have significant effect 

on the repository conditions as well. From the humidity saturation point of view, the dominant 

factor in the post-closure case will not be the relative humidity, but rather, it will be the water 

saturation in the repository. Having wet, humid, or hydrated contents of the repository will affect 

the swelling conditions of the bentonite clay used to cover the used fuel containers, and may be 

considered a water diffusion in the repository. Water diffusion may be taking place because of 

the surrounding environment at the repository location, and may lead to corrosion factors for the 

used fuel container. One example for the water diffusion and water saturation is the groundwater 

in case it is present at any stage in the repository post-closure life time. The salinity level of the 

groundwater may affect the bacterial activity, and the corrosion factors of the used fuel 

containers. In summary, the water diffusion, which leads to swelling pressure, will affect the 

bentonite clay surrounding the containers (according to its density or compaction factors), and is 

affecting the bacterial activity levels around the containers. If bacterial activity is present in the 

repository, this leads to increasing sulphide levels, which is considered the main corrodent for 

the used fuel containers. Thus, proximity to hydrological resources is another measure that 

should be taken into consideration, means, how far the repository is from hydrological 

resources?  

Proximity to hydrological resources means that the probability of having water diffusion from 

outside the repository to its inside may take place because of the underground water resources 

(that is generated from sea, ocean, or precipitation infiltration). Groundwater flows through 

aquifers, which are geological formations made up of granular or fractured material from which 

a sufficient quantity of water can be extracted to serve as a water supply. According to [30], the 

first sub-question that should be asked in this case is “What current knowledge gaps limit our 

ability to evaluate the quantity of the resource, its locations and the uncertainties associated with 

these evaluations?”. Accurate estimates of the volume of groundwater in Canada were 

impossible to be identified. The Geological Survey of Canada (GSC) stated that, according to 

[30], “the amount of groundwater stored in Canadian aquifers and their sustainable yield and role 

in ecosystem functioning are virtually unknown”. In another meaning, the groundwater 

consumption in Canada is known, but the actual volume is unknown. Because of that, the 

proximity to hydrological resources will be determined from being located in or near to the 

regions having oceanic crust (which is about 8% of Canada). As a result, if the repository is 

located in a continental crust region, it may be assumed to be far away from underground 

hydrological resources. However, for the locations that are being tested by NWMO, precautions 

will be taken to locate the repository in an area that is known for low groundwater amounts, or to 

be far away from the groundwater aquifers. If the repository is chosen to be in a groundwater 
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existing location, it should be of low salinity levels and low concentration of potentially 

corrosive agents. 

 

2.3.4 Bacterial (Microbial) activity 

The sulfide content and salinity level of the bedrock, in which the repository will be located, 

represent a crucial factor. Sulfides and salinity are influencing the corrosion process of metals 

contained in the repository (spent fuel waste metal containers). Salinity level is different for 

every rock type, and may exist because of the water diffusion coming from groundwater, which 

have different salinity levels depending on the aquifers. Bacterial (or microbial) activity is 

affected by salinity, as with the salinity increases, the bacterial activity decreases, and vice versa. 

If bacteria are active, this will result in sulphide content, and sulphide is considered a corrodent 

to metals. Thus, in the bedrock, in which the repository will be located, the existence of 

microbial or bacterial activity affects the corrosion level of the metal containers. Moreover, if the 

salinity increases, the tendency of metals to corrode also increases. So, care should be taken 

when deciding which rock type and bedrock in which the repository will be built, as choosing a 

saline rock type will decrease the bacterial activity in the repository, but will increase the salinity 

level in the repository, and then, increases the metal tendency to corrode, and vice versa. 

Moreover, regular measures and field data should be available in order to realize the amount of 

activity of the microbes and bacteria, as the microorganisms’ life transform from phase to phase 

over time. In that order, the locations, which are being tested by NWMO, should be chosen to 

have low salinity levels and low concentration of potentially corrosive agents. And in order to 

achieve that, locations of low salinity levels will be chosen, along with limiting the bacterial 

activity with maintaining high pressure values in the repository in order to prevent the bacteria 

from being active, and thus, not producing sulphides. For that reason, the compacted bentonite 

clay used to surround the container should have high dry density, in order to reduce the bacterial 

activity in the dry phase. While in the wet case, when having humidity, water diffusion, or water 

saturation, the swelling pressure of the bentonite, of high dry density, will do the job of 

preventing the bacteria from being active, and limit the existence of free water (bacterial growth 

increases in free water). This will lower the sulphide contents in the repository, and thus, 

reducing the tendency of metal corrosion of the used fuel containers.  

 

2.3.5 Corrosion and Welding Corrosion of the Used Fuel Containers (UFCs) 

Corrosion of the containers, in which the spent fuel assemblies (which assemble the fuel 

bundles) are emplaced, is an important factor that may affect the diffusion analysis in case the 

failure happens. According to [12] and [31], at a depth of about 500 m in bedrock, where the 

spent fuel will be deposited in the repository, the waste canister provides safety during handling 

and emplacement of the waste in the repository. It also ensures complete isolation of the waste 

for a desired period of time (minimum of 500-1000 years) during which most of the important 

fission products will decay, and the heat generation (by radioactive decay) of the waste is most 
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important. This temperature rise will result in a low humidity environment in the vicinity of the 

container (lowering expectation of corrosion). After emplacing the canister in the emplacement 

room, the room will be sealed with bentonite clay mixture. The dimensions and waste load of 

each canister, which is double walled with thickness that acts as a radiation shield, have been 

chosen such that the temperature on the outer surface of the canister never exceeds 100° C. The 

external pressure in the repository may reach the value of 15 MPa resulting from a 5 MPa 

hydrostatic pressure and maximum of 10 MPa bentonite swelling pressure. In [31], corrosion is 

discussed deeply: corrosion by oxygen (aerobic corrosion), corrosion by sulfides (anaerobic 

corrosion), and other types of corrosion and how they may affect the canister and its welding 

over time. The sulphides, which act as the main corrodents, can be supplied from the buffer 

mass/backfill in deposition holes and tunnels as well as from the groundwater. In addition to 

these sources, it can also be produced from sulphates through microbial activity.  In order to face 

all these types of corrosion, copper was chosen to be the coating material of the canister, and 

presented as a reference canister material, because of its thermodynamic stability in pure water. 

In the Canadian repository, corrosion conditions will be taken initially to be aggressive and 

extreme until reaching a benign state [12]. Another aspect to be determined, what if the container 

is emplaced in the repository with a through-coating defect (in the copper coating or welding)? 

Obviously, this situation can be avoided by proper inspection of the container prior to 

emplacement, but failure to detect defects will be considered [12]. So, this arouses the need to 

know the factors influencing the corrosion of weldments, which may be one or more of the 

following [32]: weldment design, fabrication technique, welding practice, welding sequence, 

moisture contamination, organic or inorganic chemical species, oxide film and scale, weld slag 

and spatter, incomplete weld penetration or fusion, porosity, cracks (crevices), high residual 

stresses, improper choice of filler metal, or final surface finish. This means that if the welding 

technology has any of the above problems, there may be some weak points present in the weld, 

which will definitely be followed by a failure in the canister. Fig.6 shows the UFC coating. 

 

 

 
Fig.6: Spent fuel container and its coating [33] 
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2.3.6 Bentonite Clay (Buffer Boxes, Gap Fills, and Back Fills) 

Canada, China, Belgium, France, Germany, Japan, Sweden, and many other countries have 

considered deep geological repository for high-level radioactive waste (HLW). In present design 

concepts, compacted bentonite-based materials are supposed to be used as sealing/buffer 

materials in the emplacement rooms of the deep geological repository of the high level 

radioactive wastes (nuclear spent fuel) due to their low permeability, high swelling capacity, and 

high radionuclide retardation capacity [34]. It is also supposed to use bentonite clay as a back fill 

material in the repository. A fundamental property of bentonite is that when it absorbs water, it 

expands. However, not all bentonites have the same absorption capacity. According to [35], 

thermal treatment of bentonite (up to 400°C) drastically reduces its swelling behavior. In [36], 

bentonite clay is evaluated as an alternative sealing material in oil and gas wells. As compared to 

cement, which has the tendency to shrink, bentonite shows superior sealing ability during 

hydration (as it swells and expands). Along with that, it has lower permeability, than cement, 

during hydration, with the ability to reshape itself and heal any cracks which may occur during 

subsurface movements. In [37], swelling test (swelling pressure test) and hydraulic conductivity 

test are performed for bentonite clay under the same conditions of deep geological repository. 

This work was conducted because the bentonite clay showed high swelling capacity, and good 

durability under disposal environment, so that the penetration of groundwater from the host 

environment can be minimized. After closing the emplacement rooms, under hydration 

conditions, bentonite will swell to fill the gaps among the bentonite bricks (i.e. buffer boxes), 

between the canister and the buffer box, between buffer box and the host rock, and fills the 

fractures in the host rock due to excavation. After that, the subsequent swelling is restrained by 

the host rock and swelling pressure is developed (this pressure must be lower than certain limits). 

Fig.7, Fig.8, and Fig.9 show the bentonite buffer box and the placement room. Thus, proper 

understanding of the behaviour of compacted bentonite-based materials during hydration is vital 

for determining short and long term performance of the deep geological repository, [34]. 

 

            Fig.7: Bentonite Buffer box [33]                                     Fig.8: Placement Room Concept [33] 
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Fig.9: Placement Room (side view) 

 

 

2.4 Safety of Hydropower Dams (SHPD) 

Dams are of different types and techniques of operation. In this research, many types of dams 

can be considered for the application of the proposed failure prediction approaches that are 

explained in the next chapters. However, embankment dams, which include both earthen and 

rockfill dams, are the main type that is reviewed in this section.  

In [38], a procedure for incorporating the risk of catastrophic failure in project evaluation is 

presented. The evaluation of risk depends mainly on estimating the probability of failure. So, the 

main challenge is how to determine the probability of failure of dams or dam systems. The 

different factors affecting the failure of dams are briefly explained in the next section. 

 

2.4.1 Factors Affecting the SHPD System Failure 

Dams are complex engineering structures that incorporate huge number of interacting system 

components. Failure in dam systems depends on failure in performing the required interactions 

among system components, and/or failure to achieve at least one of the required system 

outputs/results. In this section, the different factors, related to the SHPD system operation and 

failure, are reviewed. 

 

2.4.1.1 Hydrological Factors 

Dams are used for controlling and/or storing water for different purposes, which mean that water 

is the main factor affecting dams’ operation. The hydrological factors are mainly the inflow to 

the dam, the water storage, and the outflow from the dam. The water inflow to any dam is 

affected by upstream events, i.e. precipitation, flood, or connection to any upstream dams. 

Depending on the inflow rate to the dam, water is stored in the dam reservoir and/or released to 

the downstream of the dam by water management techniques (i.e. gates). If the water inflow 

results in exceeding the maximum capacity that the reservoir can hold, there is a requirement to 
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spill, and the extra amounts of water should be released using spillway gates. In hydropower 

dams, water is also released from the hydropower turbines after generating electric power using 

the head difference between upstream and downstream water levels. Failure in dam reservoir 

operations is considered a failure of the dam system. 

 

2.4.1.2 Structural and Design Factors 

Dams are of different types like embankment dams, arch dams, gravity dams, saddle dams, 

buttress dams, coffer dams, and diversion dams, amongst other types. In every type, there are 

different designs and different operating conditions. The type of the dam, its design, and the 

structural aspects play an important role in dam failure. This section presents a review of some 

literature on structural and design aspects that affect the failure of dams, especially embankment 

dams, as they are the most widely used dams in the world involved in the most historical dam 

failure events, including breaching.   

For dam failures, the input breaching characteristics, which are dependent on breach formation 

mechanisms, are presented in references [39] and [40]. 

In general, amounts of data reported for dam failures are minimum, which limits the assessment 

studies (qualitative and quantitative) for dam breaches and failures. One type of the important 

data is the embankment dam characteristics, which includes size and shape of the embankment, 

cohesion of embankment material,  embankment zoning (zones’ type, size, and number), and 

foundation geology [39, 41]. Availability, or prediction, of this data about dam breach 

characteristics, dam characteristics, and reservoir geometry, is crucial in evacuation planning and 

safe management of reservoir operations. In [40], analytical models for dam breach erosion are 

developed, with discussing their advantages and disadvantages, and evaluating their 

applicability. Ref [42] tries to quantify the factors leading to breach and erodibility of dam 

materials based on historical data put in a database. In [43], existing prediction models for 

estimating embankment dam breaching parameters are summarized. 

For an earthen dam, breaching process often has two phases ([43], see Fig.10): 

 Breach initiation phase, with breach initiation time defined as the time spent from the 

first flow over the dam (in case of overtopping), or the first erosion to form a seepage 

pipe (in case of piping), and starting the erosion in the downstream face of the dam, to the 

point of lowering of the upstream embankment crest of the dam or forming a seepage 

pipe. Breach initiation time is important in determining downstream hazard, warning 

time, and evacuation planning. 

 Breach formation phase, with breach formation time defined as the time spent from the 

point of lowering of the upstream embankment crest of the dam, or forming a seepage 

pipe, until the breach is fully formed (the point at which the upstream slope of the dam is 

fully eroded to the entire depth of the dam).  

 



22 
 

 
Fig.10: Progressive headcutting breach of a cohesive soil embankment [43] 

 

 

Dam overtopping, which is one of the major causes of dam failures, is also reviewed in [44]. 

Reservoir overtops the dam if the inflow exceeds the capacity of the reservoir storage and 

spillway outflow system. The main challenge is how to predict the performance of the dam in 

advance of any failure.  

 

Failure of dams can be attributed to a large hydrologic event and the combination of several 

factors, not only breaching, like [45]: 

 Inadequate spillway design,  

 Lack of emergency spillway gates,  

 Loss of permanent reservoir capacity due to long time of sedimentation, 

 Seepage piping failure due to poor dam maintenance, and 

 Human factors such as failure to act, wrong procedures, among others. 

 

The most widely used dams in the world, involved in the most historical dam failures, are 

earthen and rockfill dams. Failure of noncohesive dams, in which materials are removed in layers 

by tractive stresses, is different than that of cohesive ones, where breaching takes place by 

headcutting that initiates at the toe of the downstream slope and migrates to the upstream face of 

the dam. Cohesive embankments rarely have seepage pipes because of the low permeability. On 

the contrary, seepage pipes take place in granular embankments on the downstream slope 

resulting in surface slips. Seepage piping is the progressive erosion of particles by percolating 

water, leading to the development of seepage channels that allow water to flow through the 

embankment or its foundation, [46].  

In the absence of sediment management in many dams, storage capacity loss, which is a long-

term progressive process, makes the dam increasingly vulnerable to failure during large flood 

events. This results in terminating the usefulness of dams and reservoirs, and converting a dam 

from an asset to a flood control liability [45]. Study of dam failures and flash floods requires 

modelling the loss of life (LOL), which depends on the time taken by the population at risk 
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(PAR) to evacuate, that may result due to number of reasons. Ref [47] recommends the 

following: 

 To estimate the benefits of structural modifications and designs that would prevent an 

existing dam from failure, 

 Costs of potential dam failures should be considered in construction decisions, 

 To consider the benefits of warning systems that may be installed at dams, and to 

calculate the expected reduction in fatalities due to these warning systems. 

In [41], results of a statistical analysis of failures and accidents of embankment dams are 

described based on the historic performance of dams.  According to [41], the International 

Commission on Large Dams (ICOLD) has carried out extensive surveys of dam incidents 

(ICOLD 1974, 1983, 1995).  

Management procedures related to safe operation of dams has significant, complex and uncertain 

social, economic, and environmental factors. The increasing risk posed by failure of dams 

aroused the need for rehabilitation of current dams. Changes to hydrological safety requirements, 

changes in downstream of rivers after building dams, and the modified priorities of watershed 

management are all parts of the risk and should be taken into consideration. Moreover, lack of 

knowledge of the effects of dams on floods downstream and the worldwide dam accidents puts 

an additional factor of uncertainty. As a result, and with increasing population and greater 

development downstream, the overall number of high-hazard dams is increasing. Thus, 

rehabilitation and/or re-design of aged dams is a must, [48].  

Prevention and mitigation processes of dam failures depend on dam risk analysis. So, a 

quantitative analysis of the dam failures must be conducted.  

 

2.4.1.3 Climatic Factors 

Climate conditions affect the dam operation. Winds, precipitation, tornados, and winter ice 

loading may affect the inflow rates, the reservoir water level, and the operation of different dam 

components. In [49], the safety of current dams is assessed according to whether or not the effect 

of the future possible climate changes was taken into account while building them. Climate 

change may provide increased precipitation and river flows that exceed the capacity of existing 

reservoirs. Thus, there is a current need in some countries to update the design flood calculations, 

required for safety assessments which are done every 15-20 years, for their dams. In order to 

classify dams according to their damage potentials, dams have five classes on a 0 – 4 measure 

where Class 0 is for dams with minor failure consequences, and Class 4 is for dams with the 

highest consequences. The design flood is the factor that dams should pass without failure. 

Design flood for class 2 – 4 dams is required to have a return period of at least 1,000 years, and 

is 500-year for class 1 dams. Class 0 dams have no specific requirement for design flood, but it is 

recommended to have a 200 year return period of flood. The dams are also required to withstand 

a safety check flood, which must be bypassed without causing failure, while some damage may 
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be accepted. The safety check flood for class 1 and class 2 dams is given to be 1.5 of the design 

flood, [49].  

 

 

2.4.1.4 Mechanical and Electromechanical Factors 

Dams include number of gates for different purposes. Gates are considered mechanical 

equipment in any dam. Spillway gates, head gates, and service gates are different types of gates 

that are used in dams. Spillway gates are responsible for releasing water if there is a requirement 

to spill and in order to prevent overtopping failures. Head gates are used in hydropower dams for 

generating electrical power from the hydropower turbines by letting the water to flow through 

penstocks. Service gates are used during maintenance actions. Any failure in operating the gates 

may result in a failure in the dam operation. Failure may happen due to different reasons, 

including electric supply problems, ice loading during winter periods, remote control 

connectivity issues, or manual control problems.  

Hydropower turbines are considered electromechanical equipment responsible for generating 

electric power for different purposes. 

Mechanical and electromechanical equipment should have efficient monitoring and maintenance 

plans in order to reduce their tendency to fail, because this may be responsible for the entire 

system failure. 

 

2.4.1.5 Economic and Human Factors 

The global boom in dam construction reveals that dams are important economic assets that affect 

people’s lives. These assets are supposed to be operated, monitored, and maintained properly in 

order not to be a liability and a risk for people’s lives. Successful operation and maintenance of 

dams depends on affording economic funds. And if calculating the risk depends of the failure of 

the system and its consequences, the consequences here are not only economic, but they are 

about lives of hundreds, if not thousands, of people. Economics are crucial in maintaining proper 

operation and limiting the failures which may lead to more expensive effects, beside the 

expected loss of lives.  

In the same direction, human factors are important in limiting the failures of dam projects. The 

humans are operating the dams on site or remotely. They are taking decisions regarding 

management of dam components (i.e. electric power generation, gates management, and water 

storage, amongst others). If the human operators of any dam failed to take the right decisions at 

any time, the dam will have a higher possibility to fail in performing at least one of its 

operations. 

It is also important to mention the economic, social, and societal impacts on people. The aim of 

[50] is to unify scholarly understanding of dams' social impacts using the analysis of various 

frameworks. References [51], [52], and [53] present the average need for electric power per 

person globally, and how some countries are investing in dams to provide economic and societal 
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development and environmental improvement inside and outside their borders. Although the 

public opposition to hydropower projects because of the risks resulted from the reservoirs 

impounded by large dams, these projects may play an important role in the future world energy. 

In [54], break down/failure of the engineering process (which includes planning, design, 

construction, and operation) is discussed. Three causes are identified: absence of data or 

theoretical knowledge, ignorance of prevailing practice, and rejection of current technology. It is 

obvious that the human factor is part of these causes. In [55], two modes of hydropower dams 

are explained:  1- Reservoir based dams, and 2- Run of the River (RoR) mode. In storage or 

reservoir based project, the dam may be capable of holding water for sufficient time, in case of 

flooding, to use it in power generation or other water demands. This also gives some time for 

people on the downstream side to evacuate before any disaster may take place (warning time). 

From another point of view, huge reservoirs act like “water bombs” in case of any dam failure, 

affecting human lives and properties on the downstream side. RoR projects lack the storage 

advantage, and in case of any emergency due to floods or breakdowns, less time will be available 

for warning on the downstream side. The strength of RoR projects lies in the fact that they have 

small reservoirs (or don’t have reservoirs at all), which prevents people from water bombs, [55]. 

 

 

2.4.1.6 Safety Management Factors 

A statistical analysis of dam failures from 43 countries in [56] indicated that earth-rock dam 

failures included 49% due overtopping, 28% due to seepage in dam body, and 29% due to 

seepage in foundation. Modern dam safety management (DSM) system involves regulations, 

guidance system, and risk analysis system, safety monitoring system, danger control and 

reinforcement system, early warning system, and emergency plan system. Two main methods for 

studies of dam-break process are dam-break experiments and mathematical modeling, [56]. 

Typically, reasons for dam failures are of two types [56]: 

 Natural causes, like heavy rains, hurricanes, and earthquakes, as external natural causes. 

And aging of materials, dam body defects, and foundation defects, as internal natural 

causes. 

 Human attributes, like global warming (increased precipitation rates), terroristic attacks, 

inappropriate design (like putting large number of dams on the same river to form system 

of dams or a flood control system), construction problem, or operational problem.  

The purpose of the study in [57] is to investigate the primary causes of the dam failures and the 

effect of failure of one or several dams on the safety of other dams in a flood control system. 

Important lesson to be understood from this failure is that powerful warning and emergency 

response system must be available. Moreover, although flood control system of dams enhances 

the control mechanism, it poses higher risk during extreme events (e.g. if a dam on the upstream 

fails). Small dam safety assurance policy benchmarks, that are available from international 

literature, are reviewed and synthesised in [58] to determine their applicability in developing 

countries. In [59], the formation and failure of natural dams is discussed. Natural dams are 
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formed from landslides, glacial ice, and late neoglacial moraines after an excessive rainfall, 

snowmelt, or earthquake. Landslide dams are formed due to mass movements of rock and debris 

avalanches; rock and soil slumps and slides; and mud, debris, and earth flows. Many landslide 

dams fail shortly after formation, which should be taken into consideration while designing 

safety monitoring systems and danger control systems. 

 

2.4.2 Dependability Approaches for Representation of Dam Failures 

Dam failures incorporate many different factors. Technical problems in dam construction or 

operation may lead to environmental and societal problems from one side, or catastrophic events 

of dam failures from another side. The main concern in this research is to better predict dam 

failures according to different types of causes, and how to reduce the probability of that failure. 

Generally, the primary causes of dam failures come from structural failures, inoperable gates, 

control system errors, operator errors, mechanical failures, or power supply failure. Representing 

the dam system as cause-effect relation representation is crucial in this case. 

Failure prediction is related to the problem of dam aging in the dam safety dilemma, ref [60] 

mentioned that while dam systems involve multiple failure modes, conventional assessment and 

prediction models often neglect the correlations among failure modes. Accordingly, the 

remaining service life of dams predicted by these methods is relatively approximate and could be 

overestimates. So, there is a certain need for a better method in predicting the remaining service 

life time for dams, with taking the correlations of different system components and modes of 

operation into consideration, to predict the risks that might exist. Ref [60] proposes a prediction 

model of remaining service life for gravity dam systems based on the illustrated correlation 

analysis and time-varying theory. As an example, in Fig.11, the failure of a dam is viewed as a 

system and analysed based on Fault Tree Analysis (FTA) technique. FTA is one of many types 

of dependability analysis techniques that are used for dependency modelling of system 

components. Ref [61] explains the different types of dependability analysis techniques. 

Generally, all these techniques share the distinction of being able to represent the cause – to – 

effect relationships among system components. The principal dependability approaches that are 

widely used in similar dam studies are: failure modes and effects analysis (FMEA), event tree 

analysis (ETA), and fault tree analysis (FTA). Ref [7] has provided list of advantages and 

disadvantages of the three typical methods versus the Bayesian network analysis (BNA). 

Although still a new approach for engineering applications, Bayesian Networks are found to be 

suitable for studying complex systems with multiple elements and their interrelationships. 

Disadvantages of other methods can be overcome by applying the Bayesian network technique, 

[7]. 
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Fig.11: An example of FTA with different dam failure modes [56] 

 

 

The BN may be considered as a multidisciplinary approach that includes the probability of 

failure of the geotechnical, hydrological, and structural sub-systems of a dam. Therefore, it 

provides a promising framework for an integrated system failure analysis in a more global and 

holistic way, [62] and [63]. 

 

 

2.5 Risk, Reliability, and Uncertainty 

There are many definitions of risk. Two common definitions of risk are: (i) probability of failure 

and (ii) the product of the probability of an undesired outcome (failure) and the consequences of 

that outcome [3, 64, 65, 66, 67, 68, 69, 70, 71, and 72]. Here in this thesis we generally refer to 

(i) and occasionally to (ii) depending upon the context. The development of risk estimates or the 

determination of risks in a given context is called Risk Analysis, while Risk Assessment is the 

process of evaluating the risks and determining the best course of action. Uncertainty of 

outcomes is a common concept in all definitions of risk. Uncertainty may be defined as the state 

of having limited knowledge surrounding existing events and future outcomes, or imperfect 

ability to assign a character state to a process that forms a source of doubt, [3]. Thus, uncertainty 

is an intrinsic property of risk and is present in all aspects of risk management (see Fig.12) 

including risk analysis and risk assessment. Generally, risk analysis is a systematic tool that 

facilitates the identification of the weak elements of a complex system and the hazards that 

mainly contribute to the risk. In [73], hazard analysis is described as “investigating an accident 

before it occurs”, with the aim of identifying potential causes of accidents that can lead to losses.  
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Fig.12: Risk management process [64] 

 

 

According to [61, 71, 72, and 74], availability is the ability of a component or system to function 

at a specified interval of time. This is closely related to what is called “Reliability”, which 

describes the ability of a system or component to function under stated conditions for a specified 

period of time. Reliability engineering is a sub-discipline of systems engineering that emphasizes 

dependability in the lifecycle management of a product. In reliability engineering programs - 

where reliability plays a key role in the cost effectiveness of systems - testability, 

maintainability, and maintenance are parts of these programs. In reliability engineering, 

estimation, prevention, and management of high levels of lifetime engineering uncertainty and 

risks of failure are common areas to be dealt with.  Theoretically, reliability is defined as the 

probability of success (Probability of success =1-Probability of failure). Sometimes, probabilistic 

stability analysis is referred to as “reliability analysis”. During failure probability estimation, 

reliability analysis cannot be used solely, and the results of such analysis must be moderated 

using engineering judgment and appropriate models as useful tools in estimating conditional 

probabilities.  

Generally, according to [4, 66, 72, and 75], uncertainty – which is a common concept for 

expressing inaccuracies - means that a number of different values can exist for a quantity, while 

risk means the possibility of loss as a result of uncertainties. Accordingly, any uncertain variable, 

which can take various values over a range, should be provided with an uncertainty analysis that 

is used to assess output uncertainty and to identify the most efficient ways to reduce that 

uncertainty according to the contributing variables. Hence, in terms of statistical concepts, 

uncertainty can be thought about as a statistical variable and can be calculated using well verified 

statistical procedures. In a broad sense, the value reported for a measurement describes the 
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central tendency (mean); while the uncertainty describes the standard deviation (deviation from 

the mean). Ideally, this measure of uncertainty is calculated from repeated trials, or to be taken 

from estimates in whole or part in many engineering tests or research experiments. Thus, risk 

analysis forces the engineer to confront uncertainties directly and to use best estimates and 

predictions, especially, while taking decisions regarding the safety of large technological 

(complex) systems. Increasingly, such decisions are being based on the results of probabilistic 

risk assessments (PRAs), which must be associated with adequate quantification of the 

uncertainties. Uncertain parameters can be treated as random variables with appropriate 

probability distributions. Such distributions are assigned on the basis of available data (which is 

often scarce), combined with the judgement of experts (which can vary widely), adding another 

element of uncertainty into the uncertainty analysis itself. This means that there might be 

different sources of uncertainty due to data available, limited knowledge, and subjective 

judgement, and uncertainty here is assumed to be available in probabilistic terms either from data 

or from expert judgement or logical inference, [3, 4].  

For any given system including inputs and sub-systems, probabilistic failure analysis depends on 

finding the probability of not getting the required or estimated output of that system. The 

required output may be the effect that is produced from the system causes (i.e. prediction 

reasoning), or the determination of causes responsible for certain results and effects (i.e. 

diagnostic reasoning). Thus, determining the cause-effect relation is an important first step in the 

probabilistic failure analysis, which allows for better understanding to enhance the system 

reliability, and take decisions for mitigating the negative effects, or better enhancing the causes. 

A complex system can be defined as a system structure that is composed of a many components 

that have complex interactions, and may be represented as a network where the nodes represent 

system components and the edges (links) are their interactions. Given any complex system that 

includes inputs, outputs, sub-systems, and boundaries, it is reasonable to assume that all of these 

system components are interacting either directly with one another, or indirectly. In order to 

estimate the probability of failure for such system, the interactions should be represented 

mathematically including any probability measures. A full representation of the system facilitates 

its analysis from the failure point of view. The main obstacle in failure analysis of complex 

systems is how to represent the system components and their basic and conditional probabilities. 

Bayesian Networks (BNs) are found to solve this problem. Bayesian Network provides a 

graphical representation of any system using basic probabilities, for system inputs, and 

conditional probabilities, for sub-systems and their interactions. One of the main advantages of 

using BNs is the ability of integrating all types of data (social, environmental, technical, etc.) 

seamlessly in one representation. This is because of the probabilistic nature of the BNs, as 

everything is represented as a probability. The main challenge in BNs is that data must be 

available in order to estimate probabilities. When the system is fully represented, the failure 

probability could be estimated using Bayesian equations. An alternative use of the BN is to 

evaluate the performance of the system components and their interactions to get some 

information about the failure causes. If the post failure analysis stage is taken into consideration, 

https://en.wikipedia.org/wiki/System
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determination of causes and mitigation or treatment actions should be considered in order to 

improve the performance and limit the overall system failure. In the next section, Bayesian 

Networks are defined, with introducing their different types and their probabilistic calculations. 

 

  

2.6 Bayesian Networks (BNs) 

According to [5, 7, 9, 76, and 77], Bayesian networks (BNs), or belief networks, are probabilistic 

graphical models used to represent knowledge about an uncertain domain using a combination of 

principles from graph theory, probability theory, computer science, and statistics. In the graph, 

nodes (vertices) are representing random variables, and the edges (arcs) represent the 

interrelationships (conditional probabilistic dependencies) among these variables, which can be 

estimated using known statistical and computational methods. BNs can model the quantitative 

strength of the interrelationships among variables (nodes), allowing their probabilities to be 

updated using any new available data and information. BN is a graphical structure known as a 

directed acyclic graph (DAG), which is popular in some fields of learning (statistics, machine 

learning, and artificial intelligence). This means that a set of directed edges are used to connect 

the set of nodes, where these edges represent direct statistical dependencies among variables, 

with the constraint of not having any directed cycles (i.e. cannot return to any node by following 

directed arcs). Thus, the definition of parent nodes and child nodes is obvious. The directed edge 

is often directed from a parent node to a child node, which means that any child node depends on 

its parent node(s). BNs are mathematically rigorous, understandable, and efficient in computing 

joint probability distribution over a set of random variables, along with being useful in risk 

analysis. In BNs, there are two main types of reasoning (inference support): 1- Predictive 

reasoning (top-down or forward reasoning), in which evidence nodes are connected through 

parent nodes (cause to effect), and 2- Diagnostic reasoning (bottom-up or backward reasoning), 

in which evidence nodes are connected through child nodes (effect to cause). Firstly, the 

topology of the BN should be specified (structuring of graphical causality model), then, the 

interrelationships among connected nodes should be quantified, i.e. conditional probability 

distributions using conditional probability tables (CPTs). Also, the basic probabilities of basic 

(evidence) nodes should be determined using basic probability tables (BPTs). As the number of 

parent nodes, and/or their states, increases, the CPTs get very large. Fig.13 introduces the 

different types of reasoning in BNs. Nodes without any arrows directed into them are called root 

nodes and they have prior (basic) probability tables, while nodes without children are called leaf 

nodes. Nodes with arrows directed into them are called child nodes, while nodes with arrows 

directed from them are called parent nodes. The prior basic probability tables, for the root nodes, 

and the conditional probability tables, for the parent and child relationships, may be obtained 

from historical database currently available, which can be updated in case of having any new 

data or information. Generally, quantifying BNs depends on four sources of data: statistical and 

historical data, judgment based on experience (i.e. expert judgement), existing physical models 

(or empirical models), and logic inference. Where no such sufficient data exist, either subjective 
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probabilities from experts or detailed simulation models can be used to estimate conditional 

probabilities, which is discussed in details later in this thesis.  

 

 

 

 
Fig.13: Types of reasoning in BNs [77] 

 

 

 

 

An example of BN with seven variables is shown in Fig.14. The joint probability function of 

random variables in a Bayesian network can be expressed as shown in equation 2.4: 

 

 

𝑃(𝑥₁, … … , 𝑥𝑛) =  ∏ 𝑃[𝑥ᵢ|𝑃𝑎 (𝑥ᵢ)]𝑛
𝑖=1                        Eqn. 2.4 

           

 

Where 𝑃(𝑥₁, … … , 𝑥𝑛) is the joint probability of variables x1, x2, x3,.. xn, and Pa (xi) is the parent 

set of xi. If xi has no parents, then the function reduces to the unconditional probability of P(xi). 

For more illustration of BNs and their applications, including mathematical relations and 

equations, see [5, 7, 9, 76, 77, 78, 79, 80, and 81]. 
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Fig.14: An example of BN with seven variables [78] 

 

In [79], another simple Bayesian network of earthquake-triggered landslides of five nodes (with 

their possible states) and five arcs is illustrated in Fig.15.  

 

 

 
Fig.15: Bayesian network of earthquake-triggered landslides [79] 

 

 

The marginal prior probability of B having no damage, P(B = B1) can be calculated through 

marginalization of equation 2.4 by equation 2.5: 

 

 𝑃(𝐵 = 𝐵₁) =  ∑ ∑ ∑ ∑ 𝑃(𝐵 = 𝐵₁, 𝑀 = 𝑀ᵢ, 𝐷 = 𝐷𝑗 , 𝑆 = 𝑆𝑘, 𝐿 = 𝐿𝑚)2
𝑚=1

2
𝑘=1

2
𝑗=1

2
𝑖=1    

 Eqn. 2.5 
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The joint probability can be derived according to equation 2.4, with the conditional probabilities 

are quantified using available information (e.g., statistical and historical data, expert judgement, 

and physical and empirical models), [79]. One of the features that BN allows is entering 

evidence as input, resulting in updating probabilities in the network when new information is 

available. This information will propagate through the network and the posterior probabilities 

can be estimated. An example of the posterior probability of B=B1, given that the evidence 

M=M1 and D=D2 already took place, is shown by equation 2.6: 

 

𝑃(𝐵 = 𝐵1| 𝑀 = 𝑀1, 𝐷 = 𝐷2) =  
𝑃(𝑀 = 𝑀1, 𝐷 = 𝐷2| 𝐵 = 𝐵1) 𝑃(𝐵 = 𝐵1) 

𝑃(𝑀 = 𝑀1, 𝐷 = 𝐷2)
 

=
𝑃( 𝐵 = 𝐵1, 𝑀 = 𝑀1, 𝐷 = 𝐷2) 

𝑃(𝑀 = 𝑀1, 𝐷 = 𝐷2)
 

=
∑ ∑ 𝑃(𝐵 = 𝐵₁, 𝑀 = 𝑀₁, 𝐷 = 𝐷2, 𝑆 = 𝑆𝑘, 𝐿 = 𝐿𝑚)2

𝑚=1
2
𝑘=1   

∑ ∑ ∑ 𝑃(𝐵 = 𝐵ᵢ, 𝑀 = 𝑀₁, 𝐷 = 𝐷2, 𝑆 = 𝑆𝑘, 𝐿 = 𝐿𝑚)2
𝑚=1

2
𝑘=1

2
𝑖=1

 

Eqn. 2.6 

 

 

 

 

    

                 𝑷𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓 𝑷𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚  =  
𝑳𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅 ∗  𝑷𝒓𝒊𝒐𝒓 𝑷𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚

𝑬𝒗𝒊𝒅𝒆𝒏𝒄𝒆
 

 
 

 

 

The concept of posterior probability allows for identifying the events which have higher 

contributing impacts on the undesired/failure event, and then the decision maker may pay more 

attention to these important factors, [82]. In BNs, the main concern is the cause-effect 

relationships, and deriving causal inferences from a combination of diverse assumptions. 

Generally, the use of Bayesian networks helps to answer queries even when no experimental data 

is available. 

 

The structure of a relatively complex BN of the IEEE-RTS system is shown in Fig.16. This 

shows how complicated the system interrelationships could be when represented as a BN, 

especially when large number of system components/nodes need to be represented. This also 

reveals that BN may be used to represent different applications due to its probabilistic nature. 
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Fig.16: The BN structure of the IEEE-RTS system [83] 

 

 

 

 

 

2.7 Advantages of BN Over Other Network Representation Techniques 

 

Network representation using sequence diagrams may not be an easy task for complex 

engineering applications. The two most commonly used sequence diagrams, for representing 

engineering applications, are Event Tree Analysis (ETA), and Fault Tree Analysis (FTA). This 

research proposes using Bayesian Networks (BNs) for representing complex systems. Detailed 

Simulation is another way of representing the engineering system when appropriate amount of 

data and models are available.  

Table 3 shows a detailed comparison, with the advantages and disadvantages of four techniques 

(methods) that can be used in representing systems. These four techniques are Simulation, 

Bayesian Network (BN), Event Tree Analysis (ETA), and Fault Tree Analysis (FTA), [7]. 
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Technique 

 

Advantages 

 

 

Disadvantages 

 

Simulation 

 

 Can represent any system with 

any number of variables, with 

detailed states’ definitions 

 

 

 

 

 

 

 

 

 Sampling problem (depends on 

the sample nature and its size). 

Sampling mainly depends on 

randomly generated data 

 Too complex with multiple 

number of system variables and 

their corresponding states. 

Relations among variables are 

complicated to be obtained. This 

may lead to misleading results 

 Takes much more time to 

estimate the results in case of 

huge number of system variables 

(good for estimation not for risky 

decision making) 

 Probability estimation may be 

computationally complicated  

 

 

BN 

 

 Depends on historical data and 

statistics, not on sampling 

 Can integrate different types of 

data due to probabilistic nature 

 It can represent a huge number of 

variables and states 

 Estimating probabilities in 

shorter times 

 Simplify any system to a number 

of nodes having 

interrelationships among each 

other (nodes and arcs) 

 Represents basic and conditional 

probabilities using basic and 

conditional probability tables 

(BPTs and CBTs), which 

facilitates the representation and 

makes it easier to interpret 

 Being acyclic makes it faster in 

solving problems that do not 

require cyclic representation 

 

 

 Results depend on connections 

and topologies used for 

representing the system as a BN. 

That is why relying on expert 

and domain knowledge in 

representing any system is 

required. If such knowledge is 

not available, estimating 

different configurations that 

define different scenarios (worst 

case, best case, and other cases) 

will be beneficial 

 Has acyclic behaviour, which is 

not suitable for dynamic 

situations which may include 

cycles 
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ETA 

 

 Simplifies the system in terms of 

“yes/no” steps to follow the 

events that the system may 

experience 

 Each step can be represented 

using probability (conditional 

probability) if there is a relation 

between the parent state and the 

child state 

 

 

 Not suitable for describing and 

representing multiple initiating 

events 

 Not suitable to represent 

dependency among different 

events with multiple number of 

states, or between any event and 

a new initiating event.  

 

FTA 

 

 

 

 

 

 

 

 Simple to understand and easy to 

implement 

 Qualitative descriptions of 

potential problems and 

combinations of events causing 

specific problems of interest 

 Lists recommendations for 

reducing risks 

 Displays information in a 

structured, graphic way that 

makes it easy to interpret and 

communicate 

 

 

 Risk of inaccurate information, 

which compromises the accuracy 

of the results (because it is 

mainly based on judgement and 

subjective opinions) 

 Can be a relatively time-

intensive and complex technique, 

especially with very large 

systems 

 Correlations between basic 

events are difficult to be 

modelled 

Table 3: Comparison of BN, ETA, FTA, and Simulation 

 

 

 

To show the difference between BN and ETA representations, an example of a two reservoir 

system is represented. Using BNs to represent two dams in series and in parallel, with dependent 

inflows, is shown in Fig.17 and Fig.18, respectively: 
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Fig.17: BN of two series dependent dams/reservoirs  

 

 

 
Fig.18: BN of two parallel dependent dams/reservoirs 
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Both dams in this case are represented by their inflows, reservoir levels, and the event of having 

excess water more than the reservoir capacity (named spill). If spill took place, and the spillway 

gates failed to open, the dam will fail due to overtopping. Then, the failures of both dams will 

represent the system failure probability. 

ETA, for example, can also be used to represent the same system of two dams, in series or in 

parallel, having two dependent inflows (see Fig.19). Both cases, series and parallel, will have the 

same representation using ETA, which is misleading in terms of the form of representation of the 

system under study. Moreover, if the two dams are in series, there should be an effect of the 

outflow and the failure of the first dam on the second one, which is hard to represent in this case. 

Similarly, for the parallel case, the outflows of both dams should be added to represent the total 

outflow of the system, which cannot also be represented while using ETA as a representation 

technique. 

 

 
Fig.19: ETA of two dependent dams/reservoirs 
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Accordingly, when the BN is used to represent the system, the network is found to be more 

readable and understandable than other representation methods. This facilitates the analysis part 

of the system, which leads to easier system quantification. Quantifying the sequence diagram 

depends on available data, expert judgement, logic inference, empirical models, or detailed 

simulation of the system. BNs need probabilistic quantification for the basic and conditional 

probability tables of the network, which allows for using the Bayesian inference in predicting the 

failure probability of any system under study. 

 

2.8 Summary 

In this chapter, the different factors affecting the Deep Geological Repository (DGR) disposal 

system have been reviewed. The diversity of the system’s different components needs to be 

unified in a single representation that includes all the interrelationships among these components. 

This research focuses mainly on the failure of the Used Fuel Container (UFC) that contains the 

nuclear fuel bundles. It is shown that there are different causes that may affect the failure of the 

UFC. The main goal is to limit the failure for such systems, which are not yet applied and don’t 

have any kind of historical databases. As the main purpose of this research is to predict the 

probability of failure, the way of representation should be probabilistic. BNs have the distinction 

to represent the different components of the system with their interrelationships, along with 

defining the different causes leading to certain effect(s) in a probabilistic representation. One of 

the main advantages of BNs is that they can incorporate any kind of data (pressure, temperature, 

relative humidity, etc.) because all of them are represented in terms of their probabilities of 

occurrence, not their values. Similarly, as dams incorporate a huge number of factors of different 

natures and characteristics (more than that of the NWM case); it would be crucial to have a 

simplified representation that includes all these factors. Like the NWM case, the different factors 

affecting dam failures are of different types (technical, man-made, economical, societal, etc.), 

and for that reason a probabilistic representation like the BN is useful. In the case of dams, BNs 

are supposed to use the historical databases to determine the different probabilities of the 

interacting system components and factors.  

Probabilistic uncertainty is one of the main sources of inaccuracy in probabilistic results. In 

complex systems’ representations that depend on probabilistic quantification, like BNs, 

uncertainty propagation is one of the main challenges. While BN is having more advantages over 

other sequence diagrams and dependability analysis techniques, it is still not mature in 

representing complex engineering networks having huge number of system variables. In BN 

representation, uncertainty comes from quantification sources, like expert judgement, logic 

inference, or empirical models. With that, BNs, as Directed Acyclic Graphs (DAGs), still have 

the ability to represent any network quantitatively (using probability measures), and 

qualitatively (using simple representation and dependency structure). The next chapters 

introduce different approaches of using BNs when dealing with different types of complex 

networks, i.e. NWM and SHPD. These proposed approaches try to make the BNs more mature in 

dealing with such complex networks. 
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3.1 Introduction  

This chapter applies the BN to study the Nuclear Waste Management (NWM) system. This 

future application includes a number of system components that have complex interrelations. 

According to the literature that has been reviewed, studies and analyses for system components 

and factors of this application are mostly done for each separate component/ factor. This thesis 

tries to address an analysis for the combination of most of the interrelated components/ factors of 

this system in order to predict/ estimate a combined outcome for system failure. 

In order to better analyze the system of Nuclear Waste Management (NWM) using Deep 

Geological Repository (DGR), BNs are used to represent the interrelationships among different 

system components. Due to the nature of this system as a future project, limited data available 

and lack of knowledge are the main obstacles in representing the system and its interacting 

components, which adds some complexity to the system. This chapter focuses on analysing the 

system, explaining the underlying assumptions, and studying all the related variables and 

components of the DGR system that will help in predicting the system failure. Moreover, the 

main contributors to system failure can be estimated in order to better design the project.  

 

3.2 System Assumptions 

In the NWM case study, the following key attributes are assumed for the hypothetical site [84, 

85]: 

1- High- level (HL), long-lived nuclear waste. 

2- High volume of spent fuel wastes. Thus, a deep geological repository (DGR) concept is 

applied (500 m depth). 

3- The repository is located at a depth of 500 m, with sufficient volume of rock and depth to 

host the repository. 

4- Groundwater at repository depth provides a chemically reducing environment and a low 

concentration of potentially corrosive agents. 

5- The host rock is capable of withstanding mechanical and thermal stresses. 

6- Seismic activity and the risk of volcanism are low. 

7- Host rock formation does not contain economically exploitable natural resources at 

repository depth. 

8- Designs are according to the Canadian standards (CANDU fuel bundles, waste container, 

and bentonite clay buffer boxes). 

9- The repository contains a network of placement rooms that are assumed to hold 4.6 

million used fuel bundles encapsulated in about 100,000 long-lived used fuel containers, 

which is the total reference used fuel inventory projected over the expected lifetime of the 

current fleet of Canadian CANDU power reactors. See Fig.22 and Fig.23 for the layout of 

the repository and the placement room geometry. 
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10- The container design consists of an outer corrosion-resistant material (copper), and an 

inner supporting material (steel), which provides strength for the container to withstand 

expected hydraulic and mechanical loads. See Fig.20 and Fig.21 for the copper coated 

used fuel container and its manufacturing process. 

11- Used fuel bundles are at least 30-years old at time of placement in the repository. 

12- Repository operation (i.e., filling of repository rooms) lasts for 38 years (about 120,000 

fuel bundle per year). 

13- The post-operation monitoring period, with access tunnels open, lasts for 70 years. 

14- Final decommissioning/closure takes up to 30 years. 

15- Main goal is to calculate or to estimate the probability of failure of the spent fuel 

container placed in the repository after the DGR is closed (post closure). This facilitates 

management and improvement actions in the design stage in order to minimize the 

failure, and to estimate the main contributors to system failure. 

16- Different scenarios are taken into consideration regarding groundwater at repository 

depth to be of either high or low salinity. 

17- Extreme conditions of causal factors such as pressure, water, chemical, biological, and 

thermal pollutions, can be taken into consideration in probabilistic modeling. 

18- The copper coated used fuel containers have a design requirement for a minimum 

functional life of not less than 100,000 years. 

19- Future impacts are assessed over a one-million-year baseline. 

 

 

 

 

 

 
Fig.20: Used Fuel Container Manufacturing Process [85] 
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Fig.21: Copper Coated Used Fuel Container [85] 

 

 

 

 

 

 

 
Fig.22: Underground Repository Layout [85] 
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Fig.23: Placement Room Geometry (Vertical Section) [85] 

 

 

 

 

As of June 30, 2017, a total of approximately 2.8 million used CANDU fuel bundles were in 

storage at the reactor sites (see Fig.24 for major storage locations in Canada). The Nuclear Waste 

Management Organization (NWMO) has a legal obligation to manage all of Canada’s used 

nuclear fuel, which exists now and that will be produced in the future. The NWMO continually 

monitors new developments to be prepared to assume its legal responsibility to manage used 

nuclear fuel, [86]. 

 
 

 

Fig.24: Current Nuclear Fuel Waste Major Storage Locations in Canada [86] 
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3.2.1 Pressure 

The used fuel containers (UFCs) are designed to be corrosion resistant and robust, with an inner 

steel vessel that is designed to sustain a maximum external isotropic pressure of 45 MPa 

(including the pressure of a 3 km thick ice sheet above the repository site). Thus, the containers 

are expected to have a long lifetime. However, there is still a possibility of having unexpected 

events in the future that could lead multiple containers to fail in the repository, [84]. The UFC 

incorporates a steel core for structural strength (46 mm thickness to sustain a maximum external 

isotropic pressure of 45 MPa) and an exterior copper coating for corrosion protection (3 mm 

thickness), with a capacity of 48 used CANDU fuel bundles for a fuel mass of about 1200 kg. 

Under repository conditions, corrosion of the copper barrier is predicted to be much less than 2 

mm over a period of one million years, which is approximately the time required for the 

radioactivity of the used CANDU fuel to decay to levels comparable to those of natural uranium 

deposits, [85]. The total external pressure in the repository accounts for three components: 

hydrostatic pressure, ice glacial load pressure, and bentonite swelling pressure. The swelling 

pressure of bentonite backfill is expected to be about 7.1 MPa (maximum of 10 MPa). Major 

increases in the pressure on the UFC arise during the glaciation period. The bounding limit of the 

ice sheet loading is the pressure of a 3 km ice sheet thickness above the repository, which counts 

for about 30 MPa. The UFC will also be exposed to an initial hydrostatic pressure of 5 MPa (at 

500m depth). While glaciation will be a significant load, the earliest site coverage due to an ice 

sheet would be thousands of years in the future (at least another 60,000 years from present), [85]. 

The basics of calculating the pressure in the repository has been introduced by Eqn. 2.2, where 

(H) is 500 m depth, and (g) is assumed to still be 9.81 m/s
2
 at that depth. It is obvious that the 

probability of having oceanic pressure in Canada is 8%, with a maximum density of 3300 kg/m
3
 

of oceanic crust, which leads to a maximum pressure of 16,186,500 N/m
2
 or Pa (161.865 bar) at 

500 m deep in the repository. It is also understood that the probability of having continental 

pressure in Canada is 92%, with a maximum density of 3000 kg/m
3
 of continental crust, which 

leads to a maximum pressure of 14,715,000 N/m
2
 (147.15 bar) at 500 m deep in the repository. 

According to NWMO, the bentonite swelling pressure may result in maximum of 10 MPa (100 

bar), it means that the total maximum external pressure, without glacial load pressure (maximum 

of 30 MPa), in the repository may reach 262 bars (26.2 MPa) in oceanic case, or 248 bars (24.8 

MPa) in continental crust. And according to NWMO [33], with having the external pressure test 

on the containers, there was no evidence of damage in the container at 450 bars (design pressure 

is 45 MPa), and the container started to buckle at 57 MPa. So, with an ice glacial load pressure of 

30 MPa, that is supposed to take place in 60,000 years from present, the total maximum external 

pressure exerted on the container will result in maximum of 56.2 MPa (worst case scenario). For 

the locations that are being tested by NWMO, the repository is supposed to be built in a saturated 

rock mass that exerts a maximum of 5 MPa hydrostatic pressure on the repository. One of the 

main problems is that pressure in the repository may result in increasing the diffusion rate from 

outside the container to its inside in case of any failure or damage took place in the container. 
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3.2.2 Temperature 

While dealing with temperature, there are two separate temperature factors affecting the DGR:  

1- Surface temperature: that may affect the repository through the geothermal gradient in the 

pre-closure processes, and 

2- Radioactive decay temperature: that results from the nuclear radioactive heat decay 

coming from the used fuel bundles in the containers. This one is dominant during the 

post-closure conditions. 

This research is focusing on the post-closure conditions of the repository. So, the temperature 

coming from radioactive decay will be the most dominant one in the repository, and the effect of 

surface temperature should be neglected. However, all the temperature calculations for surface 

temperatures in Canada - for worst case scenarios - are included in this section. This is to give a 

general idea about the geothermal gradient concept in the pre-closure conditions, which may also 

affect the bacterial impacts. In [84, 85], the repository layout is designed such that the 

temperature remains less than 100ºC at the exterior surface of the UFCs, or in a minimum of 30 

cm layer of the buffer surrounding the container. The container surface temperature is expected 

to initially increase to a peak value of about 120ºC  in less than 100 years, decreases relatively 

rapidly to about 80ºC, moving  to 70ºC over about 10,000 years, and then decreases to reach 

ambient temperatures (~14°C) at about 100,000 years after closure. These values of temperature 

are determined by thermal modelling, which includes thermal properties of the rock, engineered 

barrier materials and the heat generated by the fuel, [84]. Thus, temperatures within the 

repository are anticipated to range from ambient (10 - 20°C) to about 100°C (adjacent to a 

container). This temperature range will have impact on the culturability (activity) of the 

microbes, as the microbial activity is reducing with higher temperatures (close to container). 

Besides, the dry density of the buffer material affects the microbial activity, which will be 

discussed later in this chapter, [85]. According to NWMO, the outer surface of the fuel container 

should be kept at a temperature less than 100°C.  

To model and quantify the temperature basic probabilities in the BN in the post-closure 

conditions, three states for the temperature node are considered: 1- Higher than 100°C (low 

probability in the first 100 years), 2- Lower than 100°C and higher than ambient (within the first 

100,000 years), 3- Ambient temperature (starting 100,000 years after closure and lasts until 

1,000,000 years). For surface temperature calculation (during pre-closure conditions), it is 

assumed that the year is split into three seasons:  

1- Winter (W) from December – March (12, 1, 2, 3) = 4 months (4/12 = 0.333333) 

2- Fall (F) from September – November (9, 10, 11) = 3 months (3/12 = 0.25) 

3- SpringSummer (SS) from April – August (4, 5, 6, 7, 8) = 5 months (5/12 = 0.416667) 

From [23], historical data of average annual temperatures are given for the largest 33 cities in 

Canada until 2010. To determine the worst case and getting the extreme conditions, our concern 

is the morning higher temperatures not the lower ones. According to section 2.3.1, the average 

geothermal gradient ranges between 25 – 29
°
C / km depth, with actual value of more than 55 

°
C / 

km depth in some regions. Generally, in this research, the higher average value of geothermal 
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gradient (i.e. 29
°
C / km = 14.5°C / 500 m) is used. The average monthly surface temperatures, 

their corresponding average seasonal surface temperatures, and the average seasonal 

temperatures in the repository at 500 m depth, are given in Table 4 (calculated from [23]): 

 

Average Monthly surface 

temperature 

(°C) 

Average seasonal surface 

temperature 

(°C) 

Average seasonal temperature 

in the repository 500 m deep 

(°C) 

Avg. December ≈ -0.4  

 

(W) = -0.6 

 

 

(W) = -0.6 + 14.5 = 13.9 
Avg. January ≈ -3 

Avg. February ≈ -1.2 

Avg. March ≈ 2.3 

Avg. April ≈ 11  

(SS) = 20.24 

 

 

(SS) = 20.24 + 14.5 = 34.74 

 
Avg. May ≈ 17.6 

Avg. June ≈ 22.4 

Avg. July ≈ 25.2 

Avg. August ≈ 25 

Avg. September ≈ 19.7  

(F) = 12.8 

 

(F) = 12.8 + 14.5 = 27.3 Avg. October ≈ 13.2 

Avg. November ≈ 5.4 

Table 4: Average seasonal temperature difference between surface and 500m depth 

 

According to NWMO site selection criteria, the repository will be built in a location with an 

average of 5°C surface temperature, and about 16°C/km geothermal gradient. 

 

3.2.3 Relative Humidity (RH), Water Saturation, Salinity, and Microbial Activity 

In sedimentary and crystalline shield environments, the fluid (groundwater) density/salinity can 

vary by more than 25%. Fluid density and viscosity are functions of groundwater total dissolved 

solids (TDS) concentrations, which typically increase with depth, [84]. In the repository 

introduced in [84], microbial activity is suppressed by the presence of very saline groundwater. 

In [85], three groundwater systems are considered: shallow, intermediate, and deep, where the 

depth is affecting the TDS concentrations, which affect the density /salinity. The nutrients 

required for microbial/bacterial growth include N, P, S, K, Mg, Na, Ca and Fe. The dominant 

species in a given environment tend to be those bacteria that generate the most energy from the 

available nutrient sources. Acetogens, iron-reducing bacteria (IRB), sulphate-reducing bacteria 

(SRB), and methanogens, are often the dominant components of the population in Canadian 

Shield groundwater. In crystalline rock environments, oxygen concentrations have been shown 

to decrease with depth due to microbial processes, [85]. Another factor affecting the microbial 

activity is the dry density of the bentonite buffer. The higher the density of the bentonite, the 

lower the activity of the bacteria. High dry density will prevent the bacteria from being free to 

grow or move, even if nutrients are available in the host rock, or the bentonite, or carried by 

groundwater. Jorge Garcia (PhD candidate at the University of Waterloo, Design Optimization 

under Uncertainty Group, March 2018) has estimated the probability of bacterial activity (SRB) 

as a function of the dry density of the bentonite buffer in Fig.25 and Table 5. The higher the 
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compaction of the bentonite (i.e. higher dry density), the lower the bacterial activity (i.e. lower 

sulphide concentrations, and longer container life time). 

Fig.25: Probability of having active SRB as a function of dry density [87] 
 

 

 

 

Dry density ρD in 

[g/cm
3
] 

P(SRB) 

1 1 

1.1 0.477420198 

1.2 0.227929436 

1.3 0.108817216 

1.4 0.051950497 

1.5 0.024801111 

1.6 0.011839414 

1.7 0.005651223 

1.8 0.002696848 

1.9 0.001286367 

2 0.000612973 

2.1 0.00029148 

2.2 0.000137992 

2.3 6.47142E-05 

2.4 2.97296E-05 

2.5 1.30272E-05 

2.6 5.05312E-06 

2.7 1.24613E-06 

2.76 0 

Table 5: Selected values of bentonite dry density versus probability of bacterial activity [87] 

 

 

With any water diffusion and saturation in the repository at any time, the bentonite buffer will 

swell, resulting in a swelling pressure that should suppress the microbial activity more and more 

(compared to the initial dry density before water saturation). But, the amount of nutrient sources, 

carried by the water diffused, and salinity level of water, are other factors in affecting the 
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microbial growth and activity in the repository. Thus, the relative humidity, in pre-closure 

conditions, or water diffusion and saturation, in post-closure conditions, is related to the activity 

of bacteria/microbes in the repository environment. Since the focus in this research is on the 

post-closure conditions, the relative humidity should not be taken into consideration while 

quantifying the BN. However, calculations of the relative humidity values in Canada, which are 

related to the surface temperatures, are discussed in this section in order to provide a general idea 

about the concept of relative humidity and its relation to surface temperatures. The historical data 

in [23] is used to estimate the average annual surface relative humidity (RH) over the largest 33 

Canadian cities until 2010. In order to take the extreme conditions into account, the main focus 

should be on the early morning RH, which is higher than that in the afternoon. The average 

annual surface relative humidity (RH), over the 33 cities, is about 68.3% in the morning, and 

51.2% in the afternoon, with maximum of 95% in some cities during sometimes in the year. If 

the temperature increases according to the average geothermal gradient, which is taken to be 

29
°
C / km = 14.5°C / 500 m, then RH is supposed to decrease with temperature increase when 

going deeper. As explained previously, relative humidity doubles with each 20 degree 

(Fahrenheit) decrease, or halves with each 20 degree increase in temperature. Table 6 

determines the change in RH from surface to 500 m depth according to the temperature 

differences illustrated in section 3.2.2. 

 

Change in temperature in 

Winter (W) 

From surface to 500 deep 

 

Change in temperature in 

Fall (F) 

From surface to 500 deep 

Change in temperature in 

SpringSummer (SS) 

From surface to 500 deep 

 

-0.6°C to 13.9°C 

 

 

12.8°C to 27.3°C 

 

 

20.24°C to 34.74°C 

 

 

Increase of 27°F, then RH almost 

halves 

 

 

Increase of 26°F, then RH almost 

halves 

 

Increase of 26°F, then RH almost 

halves 

Table 6: Change in RH from surface to 500 m depth in different seasons 

 

Accordingly, if the maximum RH (95%) is reached at the surface, this means that RH will never 

exceed 47.5% (<50%) at a depth of 500 meters with the temperature increase due to geothermal 

gradient. In the NWMO site selection process, it is recommended to choose the site, where the 

repository will be built, to have a lower average value of surface relative humidity in order to 

have minimal effect in the repository during the operation, monitoring, and decommissioning 

time (about 150 years to repository closure). 

 

3.2.4 BN Representation 

The Nuclear Waste Management Organization (NWMO) is responsible for the implementation 

of plans for safe long-term management of Canada’s used nuclear fuel, which depends on 

placing the nuclear fuel within a deep geological repository in a suitable rock formation. A deep 
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geological repository is a multi-barrier system designed to protect people and the environment in 

the long term. Even though the total radioactivity will increase with placing more used fuel in the 

repository, it will start to decrease due to radioactive decay with the help of the durable barriers 

(i.e. corrosion resistant containers, engineered sealing materials, and the surrounding geosphere). 

After the decommissioning period of the repository, the post-closure period, which may last for 

1,000,000 years, starts. In [85], the post-closure period is described in four main timeframes: 

1- Up to 1,000 years 

2- 1,000 - 60,000 years 

3- 60,000 - 1,000,000 years 

4- 1,000,000 years and beyond 

 

 

According to the analysis in the above sections, the proposed Bayesian Network for the NWM 

case study is shown in Fig.26. Hugin software (www.hugin.com) can be used to help in 

representing systems as Bayesian Networks, and quantifying their probability tables according to 

data available in order to use the Bayesian inference in determining the required probability (i.e. 

probability of failure in this research). 

 
 

 

 
Fig.26: Proposed BN of NWM systems 

 

http://www.hugin.com/
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This BN consists of 8 nodes, which is relatively not complex in terms of representation. But one 

source of complexity is that each node may include many other internal factors that may act like 

a nodal sub-network. Another complexity issue is the interrelationships among these nodes. It is 

not just a series of events that happen consecutively to predict the failure, but rather, it needs a 

better understanding of the dependability of each node over the others. Every node has states for 

the event occurrence; the more states the network has, the more accurate the results are. In order 

to better understand this BN, a description of the BN nodes/events, and their possible states, is 

provided as follows: 

 

1- Temperature at Container Surface: the temperature resulted from the radioactive heat 

decay from the nuclear bundles inside the container. This is the most dominant 

temperature factor when dealing with post-closure conditions. The temperature node 

affects two other nodes: Bacterial Activity and Sulphide Generation, and Corrosion and 

Welding Corrosion of the container. When the temperature increases, the culturability of 

microbes/bacteria tends to decrease, so, the bacterial activity decreases, and thus, less 

sulphide is generated. Moreover, if the temperature increases above design limit (100
o
C 

at container surface), the welding of the container may be affected in case of any cracks 

or defects in the welding, and the whole container may fail due to the new 

unexpected/undesigned high temperature factors. This node includes three states: higher 

than 100
o
C, less than 100

o
C but higher than ambient temperature, and ambient 

temperature (starting 100,000 years after closure). 

2- Hydration and Water Saturation: during the post-closure conditions, there might be 

sometimes that hydration or water diffusion takes place in the repository. This will affect 

mainly four other factors: Bacterial Activity, Corrosion and Welding Corrosion, Pressure, 

and Bentonite Failure. The water diffused in the repository, with a certain salinity level, 

may be a carrier of bacterial nutrients. In this case, this may help the bacteria to be more 

active and generate sulphides that help in corroding the container. Moreover, with the 

high temperature from radioactive decay, the oxygen in the water may contribute in 

maintaining an oxic condition that contributes in corroding the container. For the 

bentonite buffer, whenever it is hydrated, it swells and resulting in high swelling pressure 

(of about 10 MPa). So, hydration, if happens, is a main contributor to the amount of 

pressure that will be present in the repository, and applied mainly on the UFC. Along 

with that, the dry density of the bentonite plays an important role in bentonite failure (i.e. 

failure to perform the operation that it is designed for). The dry density has also an effect 

on the bacterial activity. If the bentonite is of lower dry density, the bacterial activity is 

higher, and vice versa. But here, only the bentonite failure is considered. If the bentonite 

buffer is of low dry density, which means not compacted with the correct process, it will 

have sealing problems in case of hydration/ water saturation. This may cause water 

seepage, and water could reach the container resulting in a new corroding factor, besides, 

being in contact with groundwater of the surrounding environment (i.e. possible nuclear 
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contamination). If hydration took place, the bentonite will swell trying to seal all the gaps 

and protect the UFC. With low dry density, along with water diffusion, the bacteria could 

be more active, generating more sulphides to be carried with the water diffused, and the 

bentonite may fail to perform the desired task (i.e. failure to safely surround the container 

and limit its contact with surrounding environment). This node includes two states: 

hydrated (saturated), and dry. 

3- Salinity Level: is a property of the intact rock and the groundwater in the surrounding 

environment of the repository. It may be seen that the groundwater is a carrier of the rock 

salinity. This depends on the geological region and the rock type. In the DGR, salinity 

affects both Bacterial Activity, and Container Corrosion and Welding Corrosion. With 

the salinity goes higher, the bacterial activity is lower, and thus, reducing corrosion 

possibilities, and vice versa. But in the opposite side, salinity- coming from groundwater 

if water diffusion and seepage found their way to the container, or found in the host rock 

or the bentonite buffer - will be one the main contributors in the container corrosion and 

welding corrosion. In the BN, Salinity node includes three states: High Salinity, 

Intermediate Salinity, and Low Salinity. 

4- Pressure: pressure in the repository accounts for three components; ice/glacial load, 

hydrostatic/geostatic pressure, and bentonite swelling pressure (in case of hydration). 

With the pressure increase in the repository, the bacteria/microbes will also be subjected 

to that pressure. This will limit the activity of the microbes and reduce their culturabilty 

(in addition to the other factors). Hence, more pressure in the repository results in lower 

bacterial activity (i.e. sulphide generation). The second node to be affected, by pressure, 

is the bentonite. The bentonite will fail to perform its operation (i.e. sealing the gaps, and 

limiting water seepage and bacterial activity) if it has low dry density. If more pressure is 

present in the repository, with having lower dry density of the bentonite (less compacted), 

bentonite buffer box may tend to have cracks or weak points that may be the path for 

water diffusion to the container. Moreover, if the pressure on the container reached a 

certain limit (57 MPa), the container will buckle and fail to safely encapsulate the used 

fuel bundles, and this is considered a container failure. The UFC is designed to sustain 45 

MPa, and it starts to buckle at 57 MPa. For that reason, the pressure node in the BN 

includes three states: Less than 45 MPa, Higher than or equal 45 MPa (and less than 57 

MPa), Higher than or equal to 57 MPa. 

5- Bacterial Activity and Sulphide Generation: in the BN, all the above parent nodes are 

affecting the bacterial/microbial activity in the repository. Bacterial activity is responsible 

for generating sulphide, which is considered the main corrodent for the UFC in the DGR. 

With the higher pressure, higher temperature, higher salinity levels in the groundwater, 

non-existence of nutrients carried by groundwater (in case of hydration), and higher dry 

density in the bentonite buffer, the microbial culturability is reduced, and the activity of 

microbes/bacteria tends to decrease, and thus, sulphide generation is lower. This will also 

lower the tendency of the UFC, and its welding, to corrode. Bacterial Activity node 
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includes three possible states: Lower Activity (lower sulphide generation), Intermediate 

Activity, and Higher Activity (higher sulphide generation). 

6- Bentonite Failure: bentonite failure, mainly due to lower dry density, is affected by two 

parent nodes/events: the pressure, and water diffusion/saturation. With lower dry density 

(less compaction), and with water diffusion to the emplacement rooms, the bentonite 

buffer tends to swell (i.e. swelling pressure) trying to seal the gaps in order to protect the 

UFC from any possible contact with the surrounding environment. Thus, if the dry 

density of the bentonite is low, with the increasing pressure from swelling, cracks and 

weak points may appear in the bentonite buffer, resulting in water seepage and water 

contact to the UFC. If this happens, the water may be of high salinity, and may contain 

sulphides (from microbial activity), which may result – with high radioactive heat decay 

temperatures – in corrosion of the container and the welding. Eventually, this may lead to 

container failure. There is another limited possibility that may affect the container failure 

in the case when the bentonite has higher dry density. In case of hydration, seismic, 

and/or volcanic events, the pressure on the buffer box, and container, may exceed the 

limit of 57 MPa, resulting in UFC buckling and failure, even with no failure in the 

bentonite. For these reasons, the possible states of the Bentonite Failure node are: Low 

Dry Density (Failure), and High Dry Density (No Failure). 

7- Container Corrosion and Welding Corrosion: Container corrosion takes place affected 

by hydration (water saturation) with high salinity levels, and bacterial/microbial activity 

that results in sulphide generation, in the case of having bentonite buffer of low dry 

density at high temperature (due to radioactive decay). Container corrosion will affect the 

failure of the container, which means a failure for the whole system (i.e. failure to keep 

the used fuel not in contact with the surrounding environment). This node includes two 

possible states: Corroded, and Not Corroded. 

8- Container Failure: UFC will fail to safely encapsulate the used fuel bundles in case 1- 

the pressure reaches 57 MPa, with bentonite buffer of high dry density when unexpected 

events take place (i.e. volcanic and/or seismic conditions), or due to 2- continuous 

corrosion of the container because of lower dry density of bentonite during water 

diffusion with high salinity levels and bacterial activity. This may be considered a failure 

for the entire system. This node contains two possible states: Failure, or No Failure. 

 

 

In the next section, the numerical quantification for this BN is presented, with possible scenarios 

that may take place in the repository in the post-closure conditions. 
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3.2.5 Numerical Evaluations 

The Basic Probability Tables (BPTs) and Conditional Probability Tables (CPTs) of the proposed 

BN are shown in Table 7. These are the probabilistic estimates that are logically inferred, or 

according to reviewed literature and the data available for the DGR system. 
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Table 7: BPTs and CPTs for the proposed BN 

 

 

For the nodes in the Bayesian network, the probabilistic quantification is estimated for a 

repository life time of 1,000,000 years. The probabilities in both BPTs and CPTs are quantified 

according to logic inference, and limited data available from literature and from NWMO experts. 

If the site selection procedure, lab tests, or simulation models (performed by NWMO and/or their 

partners) resulted in updated data and probability estimates, the BN tables can be updated by new 

probabilistic quantification values, which will help in better estimating the system failure. 

 

 

3.2.6 Numerical Results and Conclusions 

According to the probability tables in the proposed BN, the probability of container failure 

(system failure) is estimated using Bayesian inference to be 26.48% over 1,000,000 year life 

time of the repository. 

Other scenarios, probability estimates, or network connections may be proposed for different 

purposes. It is important to state that Bayesian inference can lead to the factors which are more 

contributing in the container failure (i.e. posterior probability of diagnostic inference). Given the 

evidence that system failure took place, it can be seen in Fig.27 that pressure of more than 45 

MPa, hydration (water saturation), and bentonite failure (of low dry density), are the three main 

contributors to system failure.  
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Using the concept of posterior probability in Bayesian inference, which can be compiled in 

Hugin software, the probabilities can be updated regularly whenever there are new available 

data, information, or knowledge, which is called evidence in this case. It is shown in Fig.28 that 

with the evidence of pressure of less than 45 MPa, and the bentonite is of high density and didn’t 

fail, the posterior probability of failure (container failure) [i.e. P(failure | Pressure < 45 MPa, 

Bentonite = High density with no failure)] is 0% over 1,000,000 years. 

 

 

 

 

 

 
Fig.27: BN determining the main factors contributing in a failure, given a failure took place 
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Fig.28: Posterior probability of failure given the evidence of pressure less than 45 MPa and high density bentonite 

 

 

Thus, all precautions should be taken into consideration during design, site selection, and 

construction to keep the pressure in the repository less than 45 MPa, and to use high dry density 

bentonite buffer that will sustain mechanical stresses and limit the diffusion of corrosive 

materials. This will keep the probability of system failure at its lowest values. 

 

It must be noted that the BN nodes can be represented in many different ways, and the 

interactions among system components may be re-connected (re-formulated) for different 

purposes in order to perform prediction or diagnosis for any event of interest. The nodes (i.e. 

system components) of the BN may also be decomposed to their sub-component nodes in order 

to represent more states in the network. The previous analysis may also be used to generate some 

scenarios that reflect different operating conditions of the Deep Geological Repository leading to 

the failure of the Used Fuel Container (UFC). Each scenario should be described by basic and 

conditional probabilities for different states.  

The results here are reflecting known and assumed input values and hence are only for 

demonstration purposes and not to be taken literally as representing the current design. 
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3.3 Summary 

In this chapter, related factors, parameters, and variables to NWM case study are explained in 

details. The BN of the NWM system is then represented and quantified with the currently 

available data, and with logic inference. The approach of using BNs in predicting system failure 

is illustrated. The diagnostic capability in the BN is used to diagnose the main contributors to 

NWM system failure in order to take precautions and mitigation actions into account in the 

design stage. 

 

In the next chapter, a proposed BN approach supported by simulation and decompositional 

capabilities is illustrated. Simulation Supported Bayesian Network (SSBN) method is used to aid 

the quantification of BNs in representing complex systems. SSBN is then applied to systems of 

dam reservoirs. 
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CHAPTER 4 

Simulation Supported Bayesian Networks (SSBNs) for 

Failure Prediction of Hydropower Dams 
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4.1 Introduction 

This chapter illustrates the proposed decompositional approach for failure prediction of complex 

systems using BN-Simulation integration, with some examples to demonstrate how to determine 

the complexity of engineering networks.  Then, Simulation Supported Bayesian Network 

(SSBN) method is applied to a simple two reservoir system of different configurations.  

 

4.2 Probabilistic Failure Analysis of Hydropower Dams  

Dams and reservoir systems are more complex than many civil engineering systems [88]. 

Studying safety of dams needs a comprehensive multidisciplinary analysis that should consider 

all the relevant factors and their interrelationships. It is shown in [88] and [89] how complex the 

decision making process is while dealing with the challenging problem of dam safety. Although 

past cases of dam failures are taken to diagnose the causes of failure; this is not enough for 

predicting other dams' failure probabilities as every dam is different in terms of human, 

environmental, design and technical influential factors. Some of the shortcomings associated 

with traditional risk analysis and assessment approaches are listed in [89].  The current available 

approaches such as Monte-Carlo simulation are computationally expensive as they require 

detailed exhaustive system simulations. Therefore, they are inefficient for complex systems 

having a large number of elements and highly nonlinear relationships, and any improved 

practical approach to dam safety analysis and prediction, not just diagnosis, is of significant 

value. In this line, a paradigm shift has been suggested in [90] and [91] to deal with disaster 

management by quantifying disaster resilience instead of the traditional risk-based techniques. 

With these new approaches, system analysis will continue to be a primary approach to 

understanding the system behaviour under uncertainty and other measures that need to be taken 

into consideration. This research attempts to address some of these shortcomings, especially in 

enhancing the way of predicting the probability of system failure using systems analysis while 

dealing with data scarcity in some engineering applications.  

It can be shown in Fig.29 that dam operation and control system models incorporate multiple 

interrelated sub-systems. High level decision makers may have difficulty in understanding such 

representations. Decision makers, as humans, focus on “what is important” when facing such 

complex systems in the case of lack of sureness [88]. They need a simplified system 

representation to include all the system components, variables, and sub-systems while 

accounting for different interactions. When they try to evaluate the risk situation and take a 

control/mitigation action, they become aware of the situation of other system components. This 

kind of system representation should be at high level, which allows for analysing the system to 

sub-networks having less number of states instead of dealing with the entire network 

components. And if needed, these sub-networks should have the ability to be disaggregated to its 

elemental components. BNs have shown potentials in this direction. 
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Fig.29: Example of a Dam System Model [88] 

 

A human risk analysis model is presented in [5] using BNs in order to estimate risks to people 

due to floods from dam-breaks, with the ability to take a large number of parameters and their 

interrelationships into account, along with their uncertainties. Thus, a BN predicting loss-of-life 

is constructed, along with using historical data, physical analyses, and existing models, in order 

to quantify the nodes and their interrelationships (arcs). The network proposed in [5] consists of 

four main sub-networks: evacuation, sheltering inside buildings, flood severity, and loss-of-life 

(LOL). The human risk analysis model presented in [5] is applied to evaluate the human risk in 

the landslide dam failure in [6]. In such studies, it is necessary to divide a flooded area into 

several subareas of similar parameters. At both the global level (multiple sources of 

information), and the local level (updating the prior probabilities), the uncertainties of the 

parameters and their interrelationships are studied. Moreover, there are some differences in the 

physical models between man-made dams and landslide dams. These differences are taken into 

consideration in [6]. In [7], dams are classified as follows: 

1- First-class dams, that are safe and function normally, 

2- Second-class dams, that are safe under controlling conditions and function almost 

normally, and 

3- Third-class dams, which are unsafe with various distresses and cannot function normally 

as designed (called distressed dams). 

As explained earlier, in dam safety studies, three principal approaches are widely used: failure 

modes and effects analysis (FMEA), event tree analysis (ETA), and fault tree analysis (FTA). 

Recently, BN analysis has drawn attention as another alternative for dam safety studies. Based 

on the information in [7], ref [92] attempts to extend the technique of BNs to the diagnosis of a 

specific distressed dam. The main objective of [7] is to develop a probability-based tool using 

BNs for the diagnosis of embankment dam distresses at the global level based on past dam 

distress data. Historical data for dam distresses is used to quantify the interrelations among 

system parameters. Dam distress is related to the increased potential of structural deterioration, 
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inadequate design, poor construction, poor operation and maintenance practices, or changing 

hydrological and environmental conditions as shown in Fig.30, Fig.31, and Fig.32. In Fig.31 and 

Fig.32, the proposed causal network for diagnosing distresses associated with seepage erosion–

piping of homogeneous–composite dams include the following nodes [7]: ARS: Abutment rocks 

or soils, ASS: Abutment seepage situation, CF: Cutoff at foundation, DEW: Designed 

embankment width, EBI: Embankment–abutment interface, EC: Embankment cracking, EM: 

Embankment materials, ESS: Embankment seepage situation, FD: Filtered drainage, FSS: 

Foundation seepage situation, SCF: Sludge cleaning at foundation, SEP: Seepage erosion or 

piping, SSC: Seepage situation around embedded culverts, and TB: Termite burrows.  

 

 

 
Fig.30: Variables involved in diagnosing distresses associated with overtopping of dams [7] 

 

 

 

 

 

 
Fig.31: Causal network for diagnosing distresses associated with seepage erosion–piping of dams [7] 
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Fig.32: Probability calculation for diagnosing distresses of dams using Hugin Lite program [7] 

 

 

It is obvious from the networks represented in [7] that only technical failures or causes are 

incorporated in these representations. The critical step in dealing with safety of dams is that the 

representation must include the technical factors besides, at least, the human factors. A lot of 

different environmental, economic, and operational factors are still remaining to be included in 

the representation. One huge example is what happened in Oroville dam, California in February 

2017, [93]. The dam suffered from some economic and operational problems which put the dam 

structure in a critical situation, and put lives of hundreds of thousands on the edge. It wasn’t a 

pure technical problem in the dam design, but rather, the operation plan and strategy performed 

by humans was part of the disaster. To better present such cases for future prevention, more than 

just technical factors should be considered in the failure analysis. 

A simple example for applying the BN representation on the safety of hydropower dams, to 

predict the failure probability, is what was illustrated in Fig.17 and Fig.18 (section 2.7). Two 

dams are connected in series or in parallel, and the inflows of both dams are statistically 

dependent (and can be independent in other configurations). The inflow and the reservoir level of 

each dam are affecting the spill event (i.e. to have excess water more than the reservoir capacity), 

and if the spillway gates failed to open at the spill event (due to any electromechanical failures), 

the dam will experience an overtopping failure, and affect the system failure according to the 

connection between both dams (serial or parallel). For this kind of systems, it is supposed to have 

the basic and conditional relations among system components/nodes from historical and 

operational data, if available, in order to feed the basic and conditional probability tables (i.e. 

BPTs and CPTs) of the BN to predict the failure probability. This can be used for the sake of 

prevention of any future failure that may affect the dams or the population at risk (PAR) living 

around dams. The two dam reservoir example is the main pilot case study for the purposes of this 

thesis. Different approaches that use BNs to represent engineering systems and predict their 

failure probabilities will be applied to this system with its different connections/topologies. The 
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two dam reservoir system will be used to provide a general case study that is used to demonstrate 

the methodologies developed in this thesis.  

The next section explains a novel approach that uses simulation to support BNs in probabilistic 

quantification and failure prediction, i.e. Simulation Supported Bayesian Network. 

 

 

4.3 Simulation Supported Bayesian Network (SSBN) 

This section introduces the Simulation Supported Bayesian Network (SSBN) decompositional 

approach for probabilistic failure analysis and quantifying risks of complex systems. Complex 

systems are reviewed to have different interacting factors and components. These interactions 

can be in the form of cause – to – effect relations, which defines all the causes and evidences that 

may lead to certain effects. The complexity of a system is determined by the number of 

interacting components and the interrelationships among causes and effects. Two case studies in 

nuclear and hydropower industries were explained. Both case studies are of complex systems, 

but with different complexity measures. The complexity in the nuclear waste management 

system lies in being a new project which is not yet applied in reality, while the hydropower dams 

are well-defined systems with a huge number of inputs. The aim of this research is to simplify 

the representation of such complex systems, to predict the failure probabilities of the systems, 

and to estimate the factors that are responsible for limiting the probability of failure in both 

systems. To simplify the representation of complex systems and their components, Bayesian 

Networks (BNs) are found to be useful in defining the interrelationships among system 

components depending on evidence basic probabilities, and conditional probabilities among 

system components (nodes). BNs are found distinctive in representing any kind of information as 

the representation is being done in a probability form. This section aims to build a probabilistic 

methodology for any complex system, whether pre-existing or to be constructed. As the network 

representation needs to be quantified, running system simulations is integrated to the 

quantification process. 

 

4.3.1 Simulation 

Simulation is defined in [94] as “the process of designing a model of a real-world process or 

system and conducting experiments with this model for the purpose either of understanding the 

behavior of the system or of evaluating various strategies (within the limits imposed by a 

criterion or set of criteria, e.g. time) for the operation of the system”. Any real-world process 

studied by simulation techniques is viewed as a system, which is, in general, a collection of 

entities that are logically related and are of interest to a particular application. While 

investigating a real-world system, detailed simulation model should include the entire system. 

This may be computationally expensive especially in systems having large number of variables. 

During simulation, system variables are sorted into two groups: 1- uncontrollable variables: 

which are considered as givens, and 2- controllable variables: that can be manipulated to find a 



67 
 

solution, [95]. In general, simulation enables the study of internal interaction of sub-systems 

within a complex system. A simulation model helps to gain knowledge about improvement of a 

system. Simulating different capabilities can help determining the requirements. These 

capabilities allow analysis and understanding of how individual elements interact and affect the 

simulated environment. In conclusion, simulation is a representation of the functioning of a 

system or process. Through simulation, a model may be implanted with unlimited variations, 

producing complex scenarios. However, simulation results may be – sometimes – difficult to 

interpret. 

 

4.3.2 Integration of BN and Simulation for Uncertain Complex Systems 

Complex systems in Engineering include unlimited disciplines, like hydropower dams, electric 

networks, nuclear power generation, nuclear waste management, water distribution networks 

(shown in Fig.33 as a dynamic Bayesian Network), and waste water management, among others. 

 

Fig.33: Dynamic Bayesian network for predicting water availability in a water distribution network [96] 

 

While BN represents the interrelationships among system components qualitatively through 

nodes and arcs (i.e. dependency structure), there is a quantitative part of the BN which is 

responsible for defining the probabilistic, uncertain, values. Quantifying the arcs of the BN with 

probability measures is the main challenge in this kind of system analysis. For some blue print 

projects (systems) like the one of nuclear waste disposal, there are no data for operations or any 

historical and statistical data. For this kind of systems, the decision makers may rely on expert 

judgement and logically inferred data, along with mathematically accepted empirical models. On 

the contrary, there are pre-existing complex systems that are operating for decades like 

hydropower dams, waste water sewage systems, or water supply piping systems. In this kind of 

systems, there are lots of operational, historical, and statistical data that can be estimated to 

quantify the BNs that represent these systems. The question is, can the simulation be used as 

another source of information to quantify the complex systems represented by BNs? 
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In [97], reassessment of dam safety events using BNs is illustrated. The BNs are built based on 

the event tree analysis, and were supplemented with Monte Carlo simulations. This combination, 

BN-Simulation, with enough number of sample runs, can be an effective tool to narrow down the 

range of probabilities, and may cover a wide range of uncertain events leading to failures. 

However, it can be seen in the approach of [97] that simulation is performed for relatively small 

networks (not that complex). Moreover, the basic data and statistics are known from the 

beginning for the system under study. So, if we are updating (reassessing) the network using 

simulation models, why not we provide the network with the probability estimates using 

simulation from the beginning? 

If sufficient historical and statistical data are available, there should be no need for simulation. 

Such data is not available in two cases: in future systems (i.e. blue print projects), or for 

networks that don’t have an efficient monitoring system to save the operational data with time. In 

both cases, relying on the logic inferencing, expert judgement, or empirical models may be 

misleading and may add another source of uncertainty, especially in very complex systems. That 

is why simulation may be integrated as a useful source of data. But the challenge is that 

simulating a very complex system may be computationally expensive for the purpose of 

identifying the probabilistic interrelationships among systems’ variables and sub-components. 

On the other hand, simulation results of decomposed sub-systems may provide the BN with 

probability estimates that are used to estimate probabilities of whole systems. The proposed 

methodology of this section - Simulation Supported BN (SSBN) for a complex system - is 

summarized in Fig.34. The simulation will be computationally complicated if performed for the 

entire network, especially in complex networks with huge number of states. For that reason, 

SSBN proposes to have the network decomposed to smaller sub-networks (sub-trees). Each sub-

network will have its own simulation according to the data available, or from random sampling 

in case only basic data are available (e.g. lower and upper bounds). For every sub-network, 

simulation results are all about probabilistic quantification of this sub-network’s BN. Thus, 

probability values are estimated from simulation and fed into the BN of the sub-network.  

 

 
Fig.34: Proposed Methodology of SSBN 
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Once all Bayesian sub-networks are probabilistically quantified with their basic and conditional 

probability values, the sub-networks are ready to be re-combined as one whole network 

representation. SSBN makes the complex system more readable for both the operators and 

decision makers. SSBN overcomes the following obstacles: 

 Complex, time consuming simulation models, 

 Complex representation of systems, 

 Propagation of uncertainty measures in a complex network, and 

 The integration among different sources of data, including simulation.  

 

As an example, in Fig.35a and Fig.35b, a 23 node BN is represented to show how complex 

system components can be interrelated. Each node includes at least two states, which means at 

least 2
23 

states in that system. The more states the nodes have, the more complex the system is. 

When the analysis of the system is enhanced using the SSBN method, rather than simulating the 

entire system (in Fig.35a), smaller sub-systems may be simulated instead. In Fig.35b, the BN is 

decomposed to six different sub-entities (sub-systems, sub-networks, or sub-trees). Each sub-

system is less complex than the whole system, which means less number of states. In general, a 

system of N nodes/components, two states each (i.e. 2
N
 possible states) can be decomposed to n 

sub-systems and the number of possible states becomes n*(2
N/n

), which is less than 2
N 

[i.e. if 

N=12, n=4, 2
N 

= 4096, and n*(2
N/n

) = 32]. The sub-system components are interrelated, and the 

sub-systems may also have interrelations among each other. By applying the SSBN concept, 

every sub-system is simulated separately, using the appropriate methods, to get the probability 

estimates needed for quantifying the BN.  

 
Fig.35a: A 23 node BN using Hugin software 
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Fig.35b: A 23 node BN decomposed to 6 sub-entities ready to be simulated 

 

In order to quantify the conditional interactions among sub-system decompositions, domain 

knowledge and expert judgement may be required. If this kind of judgement is not available, 

assuming different scenarios/states can be used instead. This means that different interactions 

among sub-system decomposition are quantified by assuming worst case scenarios, best case 

scenarios, and normal case scenarios in order to estimate the system failure probabilities in 

different situations.  

According to [93], in 2009, the American Society of Civil Engineers (ASCE) issued a report 

titled “Guiding Principles for the Nation’s Critical Infrastructure.” Risk management of critical 

infrastructure depends on four interrelated guiding principles, identified as follows: 

1. To quantify and communicate risk, 

2. To employ an integrated systems approach, 

3. To exercise leadership, management, and stewardship in decision-making processes, 

4. To adapt critical infrastructure in response to dynamic conditions and practices. 

This thesis focuses mainly on the first two guiding principles, which is of how to represent all 

interrelated system components in a combined representation (integrated systems approach), 

while enhancing the ability to quantify this kind of system representation in order to better 

predict the failures for many purposes (risk management, risk reduction, etc.).  
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Bayes-Markov chains introduced in [98], along with reassessment of safety events using BNs 

and supplemented with Monte Carlo simulations illustrated in [97], which are both proposed for 

relatively small networks, may assist in conceptualizing a new methodology. Fig.36 shows an 

overview of a Bayes-Markov chain, which integrates Markov Chains and decomposed BNs to 

acquire cyclic behaviour of the BNs. In Fig.36, the clear circles represent Markov states; and 

grey circles represent nodes of a BN.  

 

 
Fig.36: Bayes-Markov chain [98] 

 

BN-simulation integration (i.e. Simulation Supported Bayesian Networks (SSBNs)), presented in 

this chapter, has a distinction of being able to deal with large systems of large number of system 

components, unlike the relatively simple network presented in [97]. The sub-system 

decompositions are interrelated through conditional probabilities, unlike the one presented in 

[98], which deals with one BN decomposition, instead of a large BN, through Markov states. 

SSBN may also be integrated with Markov Chains to acquire cyclic behaviour of the BN. This is 

presented in details in Chapter 5 in this thesis. 

An example of a real-world case study is shown in Fig.37a and Fig.37b by representing the 

proposed BN for probabilistic failure analysis of Mountain Chute hydropower dam in Ontario, 

Canada, operated by Ontario Power Generation (OPG). In this network, there are 21 nodes 

representing system components for the purpose of analyzing the failure of this system. This 

includes Probable Maximum Precipitation (PMP), ice loading, earthquake and seismic actions, 

water pressure, geology and rock type, flood severity, adequacy of discharge capacity, sluice 

gates, drainage, vegetation control, seepage, and other components. If more than two states are 

defined for every node, the system will turn to be a huge complex network to analyze. However, 

the more states the system components have, the more accurate the results are. But, the main 

problem faced is having limited historical, operational, and monitoring data. Only basic data of 

lower and upper bounds of inflows, outflows, and flooding events may be available, along with 

expert opinions and logic inferencing, with using some accepted empirical models of reservoir 

system analysis. In such cases, mathematical modeling and simulation may be a first step to get 

probabilistic estimates. The distinction of the decompositional approach is obvious when dealing 

with such networks. Decomposing the system to new entities is shown in Fig.37b, and SSBN 

method can be applied. Accordingly, simulation results, logic inference, and expert judgement, 

may provide probabilistic data that can be fed to the re-composition of the entire network (in 

Fig.37a) to estimate/predict the probability of failure for the entire system. 
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Fig.37a: BN for probabilistic failure analysis of Mountain Chute Dam  

 

 

 
Fig.37b: BN of Mountain Chute Dam decomposed to sub-entities ready to be simulated 
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Mountain Chute main dam is 55 meters high (above its foundation), and almost 50 years old, 

having an electric power generation capacity of 150 MVA coming from two hydropower 

turbines. It doesn’t have an emergency spillway, and its inflow is controlled by another dam of 

Madawaska River System in its upstream. Although the sluiceway discharge capacity of 

Mountain Chute main dam covers less than 50% of its peak outflow, which should be considered 

a risk, the inflow is controlled by upstream dams in Madawaska River System of dams, which 

decreases the probability of failure. In this dam, there is leakage in the drainage gallery 

(inspection tunnel) of the main dam (which is a concrete dam). The Inflow Design Flood (IDF) 

for Mountain Chute dam may result in the Loss of Life (LOL) of 381 persons. IDF can’t be 

passed through sluice gates with the current deficiency and inadequacy in its discharge capacity.  

Fig.38 and Fig.39 are site pictures for the downstream and the penstock and power house of 

Mountain Chute dam, ON, Canada, taken in October 2017. Fig.40 also shows a proposed BN for 

probabilistic analysis of the safety of Mountain Chute dam [Population at Risk (PAR), & Loss of 

Life (LOL)]. 

 

 
Fig.38: Downstream of the Mountain Chute Dam (including roads, a bridge, and electric transmission lines) 
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Fig.39: Penstock and Power House of Mountain Chute Dam 

 

 

 

Fig.40: Probabilistic Analysis for Safety of Mountain Chute Dam  
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4.4 SSBN: Application, Methods, and Results 

 

In order to apply the concept of SSBN, a two dam reservoir system analysis is conducted. This 

system is a less complex system, which means that exhaustive simulation can be performed to 

the entire system without having any concerns regarding the random sampling problems, 

uncertainty propagation problems, or spending too much time to perform the simulation. This is 

because the system is relatively having a lower number of nodes/variables. The main purpose of 

using the two dam reservoir system is to compare the results from detailed simulation with the 

results that come from the BN when supported by simulation. If both results are similar or close 

to each other with no huge difference, it means that BN may use the simulation as a useful 

quantification source for less complex networks, and for large complex networks while applying 

decompositions. Using the SSBN concept, the complex system may be decomposed to smaller 

less complex networks; each is having a separate simulation in order to feed the BN with 

probability estimates, and in order to predict the failure probability for the entire BN of the 

complex system. This is expected to reduce the number of possible states to deal with while 

representing the system using BN. The specifications, characteristics, and underlying 

assumptions of the two reservoir system, being simulated, are as follows (see Appendix 1): 

 

 For each dam, dead (minimum) storage capacity, and maximum storage capacity of the 

reservoir are known. 

 The designed outflow from the dam is assumed to be the mean of the inflow in each year. 

 The inflow to the dam reservoir in each season is a uniformly distributed sampled random 

value using known lower and upper bounds. Of course, any other distribution can be 

used. 

 The dam is assumed to have a spillway gate that is to be opened or closed. If there is a 

spill (excess water more than the reservoir capacity) at any time, the gate should be 

opened, and there will be a spill release from the dam that can go to the same channel of 

the outflow, or to be diverted to any other channel. If there is a requirement to spill and 

the gate is closed (failed to open or to operate), the dam will fail due to overtopping over 

the dam crest. The state of the gate is a randomly generated value (0 or 1). 

 The dam failure is assumed to happen if the inflow is higher than certain limit, the 

storage state in the reservoir is high, which will result in having excess water more than 

the reservoir capacity (spill), and the gate is closed (failed to open) at the spill event. 

 The aim is to estimate the probability of failure of each dam (i.e. the probability that all 

the above events happen at the same time).  

 Then, each dam can be connected in series or in parallel with another same dam with the 

same characteristics and operational conditions, but with its inflow is dependent or 

independent on the inflow of the first dam. The outflow and spill release that are released 

from the first dam may also be added to the inflow of the second dam (according to the 

way of connection between the two dams).  
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 The system is assumed to fail if any dam fails or both dams fail at any time (in case of 

series connection), or if both dams fail (in case of parallel connection). 

The reservoir operation simulation model (mass balance and governing equations) used for 

simulating each dam operation/management, are presented and explained below: 

 

𝑈 = 𝑚𝑒𝑎𝑛(𝐼)    Eqn. 4.1 

 

𝑆(𝑡 + 1, 𝑚) =  𝑆(𝑡, 𝑚) + 𝐼(𝑡, 𝑚) − 𝑈(𝑚)     Eqn. 4.2 

Such That: 

𝑆𝑚𝑖𝑛 ≤  𝑆(𝑡 + 1, 𝑚)  ≤  𝑆𝑚𝑎𝑥 
 

 

𝑊𝑎𝑡𝑒𝑟_𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑡, 𝑚) = 𝑆(𝑡, 𝑚) + 𝐼(𝑡, 𝑚)    Eqn. 4.3 

 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑_𝑅𝑒𝑙𝑒𝑎𝑠𝑒(𝑡, 𝑚) ≤  𝑈(𝑚)

= {
𝑊𝑎𝑡𝑒𝑟_𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑡, 𝑚) − 𝑆𝑚𝑖𝑛            , 𝑊𝑎𝑡𝑒𝑟_𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑡, 𝑚) − 𝑈(𝑚) < 𝑆𝑚𝑖𝑛

𝑈(𝑚)                                                                                      , 𝑒𝑙𝑠𝑒
 

Eqn. 4.4 

 

𝑆𝑝𝑖𝑙𝑙(𝑡, 𝑚) =  𝑊𝑎𝑡𝑒𝑟_𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑡, 𝑚) −  𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑_𝑅𝑒𝑙𝑒𝑎𝑠𝑒(𝑡, 𝑚) − 𝑆𝑚𝑎𝑥   Eqn. 4.5 

 

𝑆𝑝𝑖𝑙𝑙_𝑅𝑒𝑙𝑒𝑎𝑠𝑒(𝑡, 𝑚) = {      
𝑆𝑝𝑖𝑙𝑙(𝑡, 𝑚)                        , 𝑆𝑝𝑖𝑙𝑙(𝑡, 𝑚) > 0  𝑎𝑛𝑑 𝐺𝑎𝑡𝑒(𝑡, 𝑚) = 1, 𝑆𝑢𝑐𝑐𝑒𝑠𝑠

           0                                      , 𝑆𝑝𝑖𝑙𝑙(𝑡, 𝑚) > 0 𝑎𝑛𝑑 𝐺𝑎𝑡𝑒(𝑡, 𝑚) = 0, 𝐹𝑎𝑖𝑙𝑢𝑟𝑒         
 

         Eqn. 4.6 

Where: 

t: season of the year {1,2,3,4}. The unit time in this simulation is one season. 

m: year {1,2,3,4,……..,1000} 

I: randomly generated inflow of the dam according to the lower and upper bounds known from 

historical data (uniformly distributed) [units of water volume/time]. 

I(t,m): inflow of the dam at a certain year (m) and season (t) [units of water volume/time]. 

U, U(m): designed outflow from the dam for steady river flow regulation. It is assumed that the 

designed outflow equals the mean of the dam inflow throughout one year (m) [units of water 

volume/time]. 

S: storage of the reservoir in a unit time [units of water volume] 
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S(t,m): storage of the reservoir in a unit time in the current season of the year [units of water 

volume] 

S(t+1,m): storage of the reservoir in a unit time in the next season [units of water volume] 

Smin: minimum storage limit of the dam reservoir (dead storage) [units of water volume] 

Smax: maximum storage limit of the dam reservoir [units of water volume] 

Water_Available: the water available at the reservoir at a unit time. This is the inflow at a unit 

time plus the stored amount of water at the reservoir [units of water volume]. 

Water_Available (t,m): the water available at the reservoir at a unit time in every season of the 

year. 

Controlled_Release: the actual release from the dam with gates control/management, to keep 

the storage levels of the dam reservoir above the minimum value (Smin) and in order not to go 

lower than this value. Controlled release should be less than or equal the designed value of the 

outflow (U) [units of water volume/time]. 

Controlled_Release (t,m): the controlled release at every season and year. 

Spill: the amount of water that exceeds the maximum storage level of the reservoir (Smax) at a 

unit time (one season) after releasing all the required release (controlled release) [units of water 

volume]. 

Spill (t,m): the spill amount at a certain season and year. 

Spill_Release: if the spillway gates are opened, the spill release will equal the amount of spill 

over the time (per unit time or season). If the gates are closed (failed to open), the spill release 

will equal to zero and an overtopping failure is taking place [units of water volume/time]. 

 

In simulation, more samples give more stable results. So, it is important to check different 

number of samples (years) in order to check at which number of samples the results will stabilize 

and reach steady state. Matlab simulations, for the two reservoir system, have shown more 

stabilized results at 1000 years sampling period. Thus, in order to get the steady state estimates, 

the simulations are conducted for 1000 years, four seasons each. 

 

Using the connection of both dams to each other (series or parallel), with the inflow dependency 

on each other (dependent or independent inflows), the simulation results for different 

configurations are shown in Table 8. Failure probability of the system of dams depends on the 

connection topology. In case of series connection, the failure is assumed to happen if any of the 

dams fail (dam1 fails or dam2 fails or both of them fail). In the parallel connection, the failure 

happens if both dams fail at the same time (dam1 fails and dam2 fails). It is also assumed that the 

inflows are highly correlated in the configurations having dependent inflows for both dams. 
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Simulation Results Dam 1 Probability 

of Failure 

Dam 2 Probability 

of Failure 

Probability of System 

Failure 

Series Connection , 

Dependent Inflows 

 

 

0.0123  

 

0.001  

 

0.013 

Series Connection, 

Independent Inflows 

 

 

0.0123  

 

0.0147  

 

0.027 

Parallel Connection, 

Dependent Inflows 

 

 

0.0123  

 

0.0022  

 

0.0018 

Parallel connection, 

Independent Inflows 

 

0.0123  

 

0.0112  

 

0.00025 
Table 8: Simulation results for two reservoir system with different configurations 

 

 

 

Different results may be obtained with different inflow rates, different initial conditions of the 

reservoirs (initial water levels in the reservoirs), and different spillway gates’ 

operation/management. 

  

 

It was important to make sure that our code in Matlab produced results that are comparable to a 

software that OPG and many others use. For that reason, the software focusing on the reservoir 

systems and their management/control was used “GoldSim simulation software”. While 

processing the same simulation using the same equations 4.1- 4.6, Matlab and GoldSim had 

exactly the same results for 1000 years, 4 seasons each. 

 

Fig.41 shows the simulations used to estimate the probability of having spill from the system of 

dams (two dams in this case) using GoldSim simulator software for all four configurations a) in 

series with dependent inflows, b) in series with independent inflows, c) in parallel with 

dependent inflows, and d) in parallel with independent inflows. Matlab software was also used to 

conduct the same simulation. Matlab and GoldSim had exactly the same results. See Appendix 2 

for more clear figures of GoldSim system representation. 
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Fig.41: GoldSim simulations of two reservoirs of different configurations for estimating the probability of 

spill 

 

 

 

To represent the two dam reservoir system using BN, Fig.42 shows the BN representations of 

different configurations of the two dam reservoirs used in the simulation, a) in series with 

dependent inflows, b) in series with independent inflows, c) in parallel with dependent inflows, 

and d) in parallel with independent inflows. This representation is conducted using Hugin 

software for BN representation and calculations. 
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Fig.42: BNs of two reservoirs having different configurations  

 

 

In these BNs, each dam is represented using five nodes/variables that include different states. 

These nodes and their states are explained as follows: 

 Flow node: the inflow of the reservoir. It includes two states, high inflow, or low inflow. 

The inflow, with the reservoir level, affects the spill event (excess water more than 

reservoir capacity) of each dam. The probability values of each state (high and low 

inflows) are defined and estimated from the simulation according to the proper system 

analysis. 

 Reservoir Level node: The level of water in the reservoir in every time step. It contains 

two states, high level, or low level. Definition of high state or low state depends on the 

system analysis, and the probability of each state can then be obtained from simulation. 

 Spill node: affected by the inflow and the reservoir level nodes, there would be a spill or 

deficit in the reservoir. But because the water level in the reservoir is governed/regulated 

to be higher than or equal the minimum value (Smin), the states for this node will be 

taken as spill, or no spill. This node determines the probability of having excess water 

more than the reservoir capacity, which needs to be released from behind the dam in 

order not to result in an overtopping failure. Given the states of both the inflow and the 
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reservoir level in every time step, the spill state depends on both parent nodes with 

conditional probabilities that can be determined from the simulation process. 

 Spillway Gate node: the spillway gates are supposed to open during the spill event in 

order to release the spill amount from behind the dam to avoid overtopping failures. If 

these gates fail to open for any reason during the spill event, a failure is assumed to 

happen. So, this node includes two states, open, or failed to open. According to the 

spillway gates maintenance schedules, there should be an estimate for the percentage of 

time during the year that the gates tend to fail or not operate, which may be conditioned 

on other conditions, for example,  reservoir water level. In simulation, random generation 

of 1’s and 0’s indicating the gates to be opened or closed, respectively, at every time step 

is helpful in determining the probability of dam failure according to the state of the gates 

during spill events. 

 Dam Failure: at the spill events, if the spillway gates failed to open, dam failure occurs. 

The two different states of this node are failure or no failure. 

Another node called “Dam System Failure” is added to the BN to predict the probability that 

the system of dams will fail according to the way of connection (series or parallel). Fig.43, 

Fig.44, Fig.45, and Fig.46, show the BN representations for different connections/topologies of 

the two dam reservoir system under study using Hugin software. 

 
 

 
 

Fig.43: BN of two reservoirs in series with dependent inflows 
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Fig.44: BN of two reservoirs in series with independent inflows 

 

 

 

 

 

 
Fig.45: BN of two reservoirs in parallel with dependent inflows 
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Fig.46: BN of two reservoirs in parallel with independent inflows 

 

 

 

 

 

 

When the probability estimates obtained from simulation are fed to the BNs represented in 

Fig.43, Fig.44, Fig.45, and Fig.46 through their probability tables, the probabilities of failure can 

be estimated using the Bayesian equations (i.e. equations 2.4 – 2.6). According to the work 

presented in this chapter, the simulation for this system, which is relatively of low complexity, 

resulted in failure probabilities that were close to those estimated from BNs when supported by 

simulation. Table 9 shows the Basic Probability Tables (BPTs) and Conditional Probability 

Tables (CPTs) for the BN representation of two reservoirs in series with dependent inflows using 

the probability estimates from the simulation stage. The results of failure probabilities, using 

BN-simulation integration (i.e. SSBN), are shown in Table 10 and Fig.47. 
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Table 9: BPTs and CPTs for the BN representation of two reservoirs in series with dependent inflows, using 

probability estimates from simulation 
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BN Results Dam 1 Probability 

of Failure 

Dam 2 Probability 

of Failure 

Probability of System 

Failure 

Series Connection , 

Dependent Inflows 

 

 

0.0105 

 

0.0032 

 

0.011 

Series Connection, 

Independent Inflows 

 

 

0.0105 

 

0.0162 

 

0.024 

Parallel Connection, 

Dependent Inflows 

 

 

0.0105 

 

0.001 

 

0.001 

Parallel connection, 

Independent Inflows 

 

0.0105 

 

0.0097 

 

0.0001 
Table 10: BN results for a two reservoir system with different configurations, fed from simulation (SSBN) 

 
 

 

Fig.47: Probabilistic data and results of the BN of two reservoirs in series with dependent inflows 

 

 

The difference in the probabilistic results is coming from the estimated definition of states’ 

margins in the BN (i.e. discretization of states). The detailed simulation is supposed to give the 

exact results. In simulation, for example, the inflow rate may be of intermediate value (neither 

very high nor low), and with a high storage level in the reservoir, spill may be taking place, and 

with the gates closed, failure occurs. But, when the states were defined in the BN, the 

intermediate state of the inflow was not considered (i.e. only high inflow and low inflow were 

considered). Accordingly, the probability of high inflow was obtained from simulation and fed 
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into the BN. However, there is another state called “intermediate inflow” that was not defined 

from the beginning because of the states’ discretization. This also applies to the storage reservoir 

level (High, Intermediate, and Low). In simulation, the more the number of random samples, the 

higher the accuracy of the simulation results. Similarly, for a better accuracy of BN results, a 

higher number of states for every event is expected to provide a higher accuracy of the BN 

results. So, the number of defined states per event/variable should be increased, and the 

probability of every state is estimated from the simulation stage. Then, the probabilities are fed 

to the basic and conditional probability tables of the BN for prediction of system failures. 

 

To test the effect of states’ discretization on the probability estimates from SSBN, the SSBN is 

conducted for both cases of independent inflows (i.e. parallel dams of independent inflows, and 

series dams of independent inflows). Three states are used for inflow of the first dam (i.e. high, 

intermediate, low) instead of two. The second inflow is of three states, in the parallel case, and 

four states, in the series case (i.e. low, intermediate, high, and very high). In the series 

connection, the outflow of the first reservoir affects the inflow of the second one, and this is why 

there is a fourth state called “very high”. For both reservoirs, the reservoir level has three states 

instead of two (i.e. full level, half level, and low level). Table 11 compares the probability 

estimates of system failure from Simulation, SSBN of two states per event, and SSBN of more 

number of states per event (i.e. 3-4 states). 

 

  

Probability of System 

Failure 

(Simulation) 

 

 

Probability of System 

Failure 

(SSBN, 2 states) 

 

Probability of System 

Failure 

(SSBN, 3-4 states) 

 

Series Connection, 

Independent Inflows 

 

 

0.027 

 

0.024 

 

0.025 

 

Parallel connection, 

Independent Inflows 

 

 

0.00025 

 

0.0001 

 

0.00014 

Table 11: Effect of increased number of states on the SSBN results for a system of two dams 

 

It is obvious from Table 11 that increasing the number of states affected the system failure 

probability. In the series connection, it is clear that the increased number of states led to an 

increase in the failure probability and reduced the difference between the results of simulation 

(i.e. exact results) and the SSBN results. In the parallel case, the probability of failure from 

simulation is 0.00025 over 4000 seasons (the system failure happens only in one season). This 

kind of low estimate makes it hard for the SSBN to converge to the simulation results unless a 

large number of discretized sates are used in the BN representation. However, the results are 

better with the increased number of states illustrated in Table 11. Accordingly, to have more 

accurate estimates from the SSBN, more number of states for every variable should be defined. 
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Here, the advantage of simulation over BN is clear, that is, there is no discretization error in 

simulation unlike in BN. 

The SSBN concept starts with decomposing the complex system/network to smaller less 

complex networks, like the one proposed in the two dam reservoir system. Once all the smaller 

networks are simulated and represented probabilistically, they are ready to be re-

composed/aggregated to the whole network for prediction of the system failure. And in worst 

cases, which is the one considered in this section, with defining only two states for every BN 

node (i.e. less accurate), the results of the simulation versus the SSBN are close.  

 

It must be noted that the probabilistic estimates from simulation or SSBN (in Table 8 and Table 

10) are steady state estimates that can be used in predicting failure probabilities in future time 

periods (e.g. 20, 50, 100, or 200 years). The following equation 4.7, which depends on binomial 

distribution, can be used for that purpose: 

  

                              P(failure)in n years
 
= 1 – [(1- P(failure)s.s)

n
]            Eqn. 4.7 

 

Table 12 shows the results of using the above equation to predict the probabilities of system 

failure in different future time periods using the steady state probability estimates of SSBN in 

Table 10. 

 Probability of 

System Failure 

(S.S) 

Probability of 

System Failure 

(20 years) 

Probability of 

System Failure 

(50 years) 

Probability of 

System Failure 

(100 years) 

Series Connection , 

Dependent Inflows 

 

 

0.011 

 

0.1985 

 

0.425 

 

0.6692 

Series Connection, 

Independent Inflows 

 

 

0.024 

 

0.385 

 

0.703 

 

0.912 

Parallel Connection, 

Dependent Inflows 

 

 

0.001 

 

0.0198 

 

0.0488 

 

0.0952 

Parallel connection, 

Independent Inflows 
 

0.0001 

 

0.001998 

 

0.004988 

 

0.00995 
Table 12: Predicting failure probabilities for future time periods from SSBN steady state estimates 
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4.5 Summary 

A proposed methodology for representing and quantifying complex engineering systems is 

developed based on simulation and BN techniques for the purpose of probabilistic failure 

analysis. The proposed methodology deals with the whole system as sub-entities that are 

analysed using simulation models, with the integration of other different sources of data. This 

methodology adds another potential in facilitating the way by which complex systems are 

represented and probabilistically quantified as BNs. The proposed SSBN concept has been 

applied to a pilot case study of two dam reservoirs, and results are compared to detailed 

simulation results in order to analyse the difference for a relatively small system, that may act or 

be presented as a BN sub-entity. It was shown that performing simulation for this system, which 

was relatively of low complexity, resulted in failure probabilities that were, in worst cases, close 

to those estimated from BN-simulation integration.  

It is also shown how the SSBN can be used to decompose a complex system to a number of less 

complex sub-systems (sub-networks) simulated together in the meantime. The BN of the entire 

system is then fed by the probabilistic information from simulations, resulting in a representation 

that can be used for failure analysis of complex systems (i.e. failure prediction and identification 

of causes).  

The acyclic behaviour is one limitation in the BN representation. Moreover, updating the 

networks when any new data becomes available is challenging especially in the intermediate 

nodes (i.e. neither root nodes nor leaf nodes). The update should be in both directions (i.e. top-

bottom, and bottom-top), which is not possible while using the BN, that only relies on one 

direction. In the next chapter, a novel concept is developed to overcome these obstacles using 

Markov Chains.   
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CHAPTER 5 

Markov Chain Simulation Supported Bayesian Network 

(MCSSBN) Concept for Probabilistic Failure Analysis 
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5.1 Introduction 

Simulation Supported Bayesian Network (SSBN) can help solve complex systems using a 

flexible decompositional method. But the BN has one limitation, that it is an acyclic graphical 

representation. In order to take decisions regarding any complex system that has many 

interrelationships among its components, different scenarios/states of the system should be 

represented. The scenarios/states of the system may be cyclic, and not only acyclic like in BNs. 

For the scenarios/states to be cyclic means having transitions from one scenario/state to a new 

one, with the chance to get to the first scenario/state again creating one cycle. To overcome only 

acyclic limitation of the BN, this chapter adds Markov Chain (Markov Analysis) to the SSBN to 

form the Markov Chain Simulation Supported Bayesian Network (MCSSBN). This is 

considered an approach that develops integration between cyclic (Markov Analysis) and acyclic 

(BN) networks. In this chapter, MCSSBN concept is explained in details by representing its 

different approaches. The MCSSBN will then be applied on a system of two series reservoirs of 

independent inflows, having the same constraints of the system used in the SSBN application 

procedure. There are mainly two approaches to apply MCSSBN, 1- First approach: low level 

BNs and high level Markov Chains, and 2- Second approach: low level Markov Chains and high 

level BNs.  

 

 

5.2 Cyclic and Acyclic Graphical Representations 

An acyclic graph is a graph without cycles, where a cycle is a complete circuit. When following 

the graph from node to node, the same node will never be visited twice, unlike the network in 

Fig.48, which shows a cycle for a number of nodes/vertices. 

 

 
Fig.48: A cycle with n vertices [99] 

 

A path in a directed graph can be described by a sequence of edges having the property that the 

ending vertex of each edge in the sequence is the same as the starting vertex of the next edge in 

the sequence. A path forms a cycle if the starting vertex of its first edge equals the ending vertex 

of its last edge. A directed acyclic graph is a directed graph, through direction of arrows/edges, 

which has no cycles. Bayesian Networks (BNs) are Directed Acyclic Graphs (DAGs). Fig.49 

shows a DAG for a number of nodes. 
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Fig.49: Directed Acyclic Graph (DAG) 

 

Accordingly, cyclic graphs are those which have complete cycles, means the same node can be 

visited twice. Fig.50 shows different directed cycles (blue) that are included in an upper layer of 

directed acyclic network (orange). 

 

Fig.50: Directed Acyclic Graph (orange) of Directed Cyclic Graphs (blue) 

 

The graphical representation in Fig.50 shows that for every node in the acyclic network (e.g. BN) 

there might be directed cycles for all the possible states within this node. Markov Chain Analysis 

is a mathematical probabilistic representation that can be used to describe these directed cycles. 

 

 

5.3 Markov Chain Analysis 

The Markov process is a random process in which changes occur continuously over a period of 

time, where the future depends only on the present state, and is independent of the past history. 

Markov Analysis (MA) is a probabilistic technique that provides probabilistic information about 

a decision situation that may help the decision maker, but without providing a recommended 

decision. It can be used to model system performance, dependability, availability, reliability, and 
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safety. So, Markov Analysis is a descriptive technique, not an optimization technique, which 

results in probabilistic information, and is applicable to systems that exhibit probabilistic 

movement from one state/condition to another, over time. MA may also be shown as a 

mathematical abstraction to model simple or complex concepts in a computable form. It is a tool 

for modeling complex system designs involving timing, sequencing, repair, redundancy, and 

fault tolerance, along with determining the system availability in order to identify the flow of the 

system and enumerate the failure rate (forward), repair rate (backward), and the probability of 

failure of the different components. Any Markov model can be graphically represented using 

Markov diagram, which consists of the states and transitions of the model. The transition 

probabilities, and transition rates, among the different states, within the system diagram, are of a 

great importance in the Markov Analysis. Transition rates represent the rate at which the Markov 

chain moves from one state to another. The transition rate from a working state to a failed state is 

represented by the failure rate, whereas the transition from a failed state to working state is 

represented by the repair rate.  The transitions are represented by the connections linking the 

circular states, with arrows indicating the transition direction (directed graph). 

In reliability analysis, MA has the following advantages: 

 The Markov model allows for modelling and investigating the system in terms of model 

parameters, along with assessing the probability of failure (probability of decreased 

performance), 

 Markov graphical representation helps in understanding the system behavior, 

 Modelling systems with their state diagrams, and in terms of the interdependencies of 

states, is more accurate in specific situations, 

 For observation purposes, MA allows for specifying different types of states and state 

groups. 

A Markov chain is a sequence of random variables X1,.., Xn such that, given the present state, the 

future and past are independent. It is formally written as follows in equation 5.1: 

Prob (Xn+1 = x | X1 = x1, X2 = x2,…, Xn = xn) = Prob (Xn+1 = x | Xn = xn)   Eqn. 5.1 

 

In other words, the conditional distribution of Xn+1 in future depends only upon the present state 

Xn. Usually, the chain is defined by specifying the probabilities of transitioning from one state to 

another. The state space may be considered to be continuous and sometimes discrete. For a 

continuous state space where a probability density can be defined, the transition probability can 

be written as P(x, y) = Prob (Xn+1 = y | Xn = x). For a discrete state space, the transition 

probability is a matrix and is written as Pxy, [100]. 

So, if the chain is currently in state si, then it moves to state sj at the next step with a probability 

denoted by pij, then, this probability does not depend upon which states the chain was in before 

the current state. The transitions among different states in the Markov Chain are represented by 

the Transition Probability Matrix (TPM). This matrix is also called the matrix of transition 
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probabilities, or the transition matrix. For a Markov Chain of three states, the Transition 

Probability Matrix (TPM) can be represented as follows (see Fig.51 for a three state Markov 

Chain showing their transition probabilities): 

 

 

TPM = (
𝑃11 𝑃12 𝑃13

𝑃21 𝑃22 𝑃23

𝑃31 𝑃32 𝑃33

) 

 

Where, for example, P22 is the probability that the variable is currently in the second state, and 

will remain in the second state in the next step. While P32 is the probability that the variable is 

currently at the third state and will move to the second state in the next step (moves to second 

state given that it was at the third state).  

 

Fig.51: Markov Chain of three states S1, S2, S3 

 

 

5.4 Markov Chain Simulation Supported Bayesian Network (MCSSBN)  

The decompositional approach conducted in [97] and [98], allowed the researcher in this thesis 

to conceptualize and formulate a new concept and methodology in dealing with BNs of complex 

systems. The concept of Simulation Supported Bayesian Networks (SSBNs), developed in this 

thesis, is expected to be an efficient method of applying decompositions to complex networks. 

Moreover, the Bayes-Markov (Cyclic-Acyclic) combination, proposed in [98], represents a way 

of supplementing Markov chains with additional low-level features taken from multiple sources, 

and are efficiently combined using Bayesian Networks. Since quantification of BNs depends on 

basic and conditional probabilities, and Markov Chains are represented by transition 

(conditional) probabilities among different states, the Markov-Bayesian combination is a 

probabilistically quantified representation. Adding Markov Chains, which may represent 

different scenarios, states, or events in a cyclic representation, to the BNs, of which the acyclic 
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nature may not be suitable for all complex structures, will result in a more generalized approach 

that fits most of the large complex system structures. Such structures, with their complex 

interrelations among system components, usually have slow processing for calculating failure 

probabilities. Bayes-Markov combination is estimated to reduce this problem in such systems.  

Now, with the decompositional approach, represented by SSBNs, the question is how to 

incorporate Markovian analysis to determine different scenarios, states, or events, which may 

take place at different times in the system network. In this section, the concept of Markov Chain 

Simulation Supported Bayesian Network (MCSSBN), cyclic-acyclic approach, is introduced.  

Hidden Markov Chains, and Markov Chain Monte Carlo (MCMC) models, are not new 

concepts/methods. Hidden Markov Chains are used in different applications to introduce the 

states’ transitions while taking time into consideration. Such models are known to be dynamic 

models because of the time representation. Differently, MCMC models are providing a 

combination of simulation results, and simulation updated results, to the Markov Chain to 

produce more efficient updated output results. See [99], [100], [101], and [102]. 

According to [101], hidden Markov model is a tool for representing probability distributions over 

sequences of observations in which time is incorporated. Fig.52 shows a BN with a hidden 

Markov model depending on output observations. 

 
𝑃(𝑆1:𝑇, 𝑌1:𝑇) = 𝑃(𝑆1)𝑃(𝑌1|𝑆1)ℿ𝑡=2

𝑇  𝑃(𝑆𝑡|𝑆𝑡−1)𝑃(𝑌𝑡|𝑆𝑡) 
 

Fig.52: A BN with a hidden Markov model [101] 

 

The combination of hidden Markov models and BNs may be called Dynamic Bayesian Network 

(DBN), which is simply a BN that models time series data. Fig.53 is for a BN structured hidden 

Markov model depending on input observations (X’s) and output observations (Y’s). It is shown 

that a number of Markov Chains may be required to represent this system. Every system variable 

is supposed to have its own Markov Chain, which makes the system representation more 

complex especially in large system structures. 
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Fig.53: A BN structured hidden Markov model [101] 

 

References [101] and [102] use hidden Markov models with Bayesian Networks to update 

information/data of the system network using any available evidences, with incorporating time 

dependent states into the network. Ref [99] is trying to mathematically prove a generalization for 

Bayesian Networks to allow directed cycles using the case of an isolated cycle. References [103], 

[104], [105], [106], and [107] show different methodologies to solve some problems using 

Markov Chains and/or Bayesian Networks from different perspectives for different engineering 

applications. 

There is a need for a general global methodology to be applied to all engineering applications for 

risk and reliability problems. It can be shown from the reviewed literature that the relation 

between Markov models, representing cyclic networks, and Bayesian Networks, representing 

acyclic networks, is still vague and needs clarification, especially for many complex networks of 

different engineering applications. The missing link between Markov Chains and BNs may be 

the simulation. The distinction of the concept proposed in this research is that it combines the 

three concepts together: BN, Simulation, and Markov Chains in one combination in order to be 

applied to almost all of the engineering applications. This forms the Markov Chain Simulation 

Supported Bayesian Network (MCSSBN) cyclic-acyclic approach in systems analysis. Like 

SSBN, the system is decomposed to smaller sub-networks to be simulated in smaller scale in 

order to estimate their probabilities. Then, they can be re-combined to the unified larger scale 

BN. In this section, combining Markov Analysis to the SSBN is of interest. Within the smaller 

scale sub-networks, that are being simulated, there might be some scenarios of interest, or time 

variant states/variables that need to be considered in the process of failure prediction 

(forecasting), or even in the decision making. The proposed MCSSBN methodology depends, 

theoretically, on two different approaches:  
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5.4.1 First Approach of MCSSBN  

In this approach, the system is represented with high level Markov Chains, and low level BNs, 

for different scenarios. The SSBN concept is the corner stone. Decomposing the BN to lower 

level BN sub-networks, with running simulations for them, according to available data, is the 

first step of this approach. Running the simulation for every sub-network makes it obvious that it 

may experience more than one scenario. Scenario is a combination of states for all the nodes 

included in every sub-network. According to that combination, the scenario is defined. So, the 

results from simulating every BN sub-network are used to define at which scenario the sub-

network is, or to define different scenarios that the sub-network may experience. Then, given the 

scenarios and simulation probabilistic results for all the sub-networks, sub-networks will be re-

combined/aggregated back to the higher level network. The Bayesian inference in the higher 

level, larger scale BN will result in the probabilistic output that is required (for example, the 

probability of failure). While the transition probabilities among different scenarios in every sub-

network are estimated from simulation, the most probable scenario to take place in the next time 

step can be predicted for every sub-network. Then, the probability of failure of the system can be 

predicted in the next time step. Moreover, the scenarios that have more contribution to the failure 

can be obtained, and the scenarios of sub-networks which result in higher failure probability can 

also be identified. Fig.54a and Fig.54b show a 23 node BN before and after being decomposed to 

four BN sub-networks, respectively. In this network, every BN sub-network should be simulated 

using its available data. By running simulations, different scenarios of every BN sub-network 

may be defined or identified with different states of the sub-network nodes. The probabilistic 

results of each scenario should be estimated from the simulation stage. Moreover, the transition 

probabilities among different scenarios should be obtained while simulating the sub-networks. A 

Markov Chain should then be built for every BN sub-network. Fig.55 and Fig.56 show Markov 

Chains having transition probabilities for a three scenario BN sub-network and a two scenario 

BN sub-network, respectively, which are parts of the BN shown in Fig.54b.  
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Fig.54a: A 23 node BN 

 

 
Fig.54b: A 23 node BN being decomposed to 4 BN sub-networks 
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Fig.55: Markov Chain of a three scenario BN sub-network 

 

 
Fig.56: Markov Chain of a two scenario BN sub-network 

 

In conclusion, in this approach, the processing steps for the system network are as follows: 

1- The BN of the system is decomposed to BN sub-networks, 
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2- Every BN sub-network is simulated according to its available data, or with random 

sampling. Simulation results in probabilistic information (basic and conditional 

probabilities) of the nodes and their interrelationships. Simulation is also used to identify 

different scenarios for every sub-network, steady state probability distribution of the 

scenarios, and the transition probabilities among these scenarios. At steady state, the 

relation between steady state probability distribution of Markovian states and the steady 

state transition probability matrix is given by the following equation 5.2: 

                                                                    ℿ TPMs.s = ℿ                                                 Eqn. 5.2 

where:  

TPMs.s is the steady state transition matrix, and ℿ is the row vector of steady state 

probability distribution of the Markovian states. 

3- The BN sub-networks are re-combined back to the entire system BN, and the probability 

of system failure can be predicted using Bayesian inference, 

4- Then, by using the transition probabilities from a scenario to another, for every sub-

network, the probability of failure can be predicted according to the new scenarios, and 

linked probabilistically, through transition probabilities, to the initial scenarios, 

5- With any evidence in the BN of the entire system, the posterior Bayesian inference 

facilitates determining the main contributing scenarios/states to the evidence (failure in 

this research). This will make it easier to determine which BN sub-network had more 

contribution in the failure, and which of its scenarios, represented by Markov Chains, is 

more contributing to the failure.  

In this approach of MCSSBN, the driving force is the BN sub-network simulation. The 

simulation results, according to different data inputs, identify at which scenario the sub-network 

is operating, and also reflect the transitions among different scenarios. In this case, MCSSBN 

can be seen as a clustered SSBN. Every cluster represents a sub-network, which has different 

scenarios linked through sequence of transitions.  

 

 

5.4.2 Second Approach of MCSSBN 

In this approach, the system is represented with low level Markov Chains and a high level BN. In 

this case, Markov states are the driving force for the probabilistic prediction process in the whole 

network. For every node in the BN, there are at least two states. The node’s states may be 

represented as a low level Markov Chain that controls the states every time step within the node. 

For example, in a reservoir problem, if the node of inflow of the dam is represented by three 

states, high, intermediate, or low inflows. The transitions among the three states may be known 
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from the historical data that, for example, the inflow is higher in the spring and fall than winter, 

and the inflow of fall is higher than that of the spring. The data available in this case defines the 

transition probabilities of this sequence. This means that every node takes its state from its own 

lower level Markov Chain. Running simulation is the start point. Decomposing the network to 

smaller sub-networks is used to facilitate the simulation process. Then, simulation is used to 

estimate the steady state probability distribution of the Markov states in every node and the 

transitions among Markov states within every node/variable. Fig.57a shows a 17 node BN, which 

has nodes that include two states each (at least), as shown in Fig.57b. Fig.57c shows the same 

network with a lower level two state Markov Chain (shown in Fig.58 with transition 

probabilities) for the states inside every state variable. At every time step, the state of the lower 

level Markov Chain will be reflected to be the state of the BN node. 

 

 

 
Fig.57a: A 17 node BN 
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Fig.57b: A 17 node BN, with every node includes two states (at least) 

 

 

 
Fig.57c: A 17 node BN, with every node includes a two state Markov Chain 
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Fig.58: Two state Markov Chain for every node 

 

 

In conclusion, in this approach, the processing steps for the system network are as follows: 

1- The states of every node in the BN are defined. A Markov Chain is constructed for the 

states in every node, with defining transition probabilities from available data (or from 

the simulation stage), 

2- The decompositional SSBN approach is applied using available data, or using randomly 

generated samples. The purpose of applying SSBN is to determine the probability 

estimates of all the states in all the nodes included in the BN. In that order, the whole BN 

is decomposed to smaller sub-networks that are simulated separately to estimate the 

required probabilistic information for all possible states, and to identify the transition 

probabilities among states in every node, 

3- Now, every Markov state is defined by its steady state probability, and the transition 

probabilities among different states within the same node, are also identified using 

equation 5.2. 

4- All the probabilistic information are combined to the entire high level network in order to 

estimate the probability of failure (the required probability),  

5- At every time step, the failure probability of the system’s entire BN can be estimated, and 

linked probabilistically, through transition probabilities, to the initial states. For the next 

time step, the most probable state to take place in every node can be predicted using the 

transition probabilities of Markov Chains within system nodes. Then, the required 

probability (i.e. failure probability) of the BN is dynamically estimated at this point. 
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5.5 Methods of Applying MCSSBN to a System of Three Dam Reservoirs 

In this section, the two approaches of MCSSBN are applied, theoretically, on a system of three 

series reservoirs, with three independent inflows. The purpose is to show that the method can be 

expanded to more number of system components. The aim is to estimate the probability of 

failure of the whole system according to the operating conditions/events of the three dams. 

Fig.59 shows a BN for three dam reservoirs connected in series. 

 
Fig.59: A BN of a three reservoir system 

 

The specifications, characteristics, and underlying assumptions of the three reservoir system, are 

similar to those reservoirs defined in section 4.4. The three dam reservoirs, of the same 

characteristics and operational conditions, are connected in series, with their inflows to be 

independent. The controlled outflow (actual outflow) and spill release, which are released from 

the first dam according to the gates management, may also be added to the inflow of the second 

dam, and so forth for the third dam. In this case, the system fails if any of the dams fails at any 
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time (i.e. Dam1 or Dam2 or Dam3 or all fail), as it is a series connection. In the BN of this 

system, each dam is represented using five nodes/variables that include different states. These 

nodes and their states are explained in section 4.4. The node that is named “Dam System 

Failure” is added to the BN to predict the probability that the system of dams will fail according 

to the way of connection (series in this case). The proposed MCSSBN concept can be applied, 

theoretically, on this three reservoir system, using both MCSSBN approaches, in the next 

sections. 

 

5.5.1 MCSSBN First Approach 

By applying the first approach of MCSSBN, the BN of the three dams can be decomposed to 

four BN sub-networks as shown in Fig.60. It can be seen that every dam reservoir is taken as one 

BN sub-network. The last sub-network is for the dams’ failure and the system failure. 

 

 
Fig.60: Three reservoir system BN decomposed to four sub-networks 

 

From Fig.55 and Fig.56, it can be seen that a Markov Chain can be constructed for different 

scenarios of every sub-network. The system shown here, in this section, is for the overtopping 

hazards, so, each scenario is considered a combination of states that results in an overtopping 
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failure with higher or lower probability. For example, the first scenario (i.e. combination of 

states) may be with high inflow, intermediate reservoir level, and the spillway gates are closed, 

while the second scenario is for high inflow and high reservoir level, with the spillway gates 

closed, and so forth. Different scenario for every dam will result in a different scenario for the 

system failure. Then, the BN sub-networks are used to construct a high level BN for the system 

as shown in Fig.61.  

This approach may also be generalized for dam failure events. In a more general BN, the first 

scenario for each dam may be overtopping, the second is sliding, and the third scenario is 

seepage piping, and these scenarios may be represented by a three state Markov Chain as shown 

in Fig.62. 

 

 

 
Fig.61: General three reservoir BN, decomposed to four sub-networks 
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Fig.62: Markov Chain of a three scenario reservoir BN sub-network (Overtopping, Sliding, or Seepage) 

 

 

 

 

5.5.2 MCSSBN Second Approach 

For the three reservoir system in Fig.59, the second approach of MCSSBN can be applied as 

shown in Fig.63, where each node or state variable in the BN may include a lower level Markov 

Chain with at least two states. The Markov Chain takes the decision for the state of every 

node/variable. When the states change at every time step the output results from the BN will also 

change.  
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Fig.63: BN of a three reservoir system, with every node includes a lower level Markov Chain 

 

As an example, assume that at a certain time, the first dam is of low inflow, low reservoir level, 

with open gates, and the second dam is of high inflow, low reservoir level, with closed gates, 

while the third dam is of high inflow, high reservoir level, and open gates. For this case, failure 

probabilities will be totally different than another combination of states of the entire network 

after a number of time steps. It can be seen that this approach takes the combination of states to 

produce a scenario for the entire network, not for just a sub-network like in the first approach. 

The sub-networks here are only used for simulations to identify probabilistic information for the 

nodes and their states.  

In conclusion, the system is decomposed to four sub-networks, shown in Fig.60, to be simulated 

in order to get all the probabilistic information for all the possible states of the nodes. When the 

transition probabilities among states in the lower level Markov Chains are defined, at every time 

(i.e. t-1, t, t+1, etc.) the state of every node can be predicted. Thus, at any time, the states of the 

nodes, their probabilities, and transition probabilities from previous states, are defined. This 

information is combined to the entire network to estimate the probability of failure of the system 

of the three dams. A higher level Markov Chain may be constructed for the entire network to 

show the transitions among different BN cases/scenarios as shown in Fig.64 for the BN of Fig. 

60. In Fig. 64, the combination of states of the state variables of the BN (i.e. scenario/state for 
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the entire network) changes at every time step. In other words, at every time step, there is a 

different situation that the entire network experiences. Markov Chain represents the transitions 

among different situations/scenarios (i.e. Markov states) for the entire network. In the next time 

step, the entire network may remain in the same scenario (Markov state), or make a transition to 

another scenario (Markov state). 

 

 
Fig.64: Higher level Markov Chain for the three reservoirs BN, MCSSBN second approach  

 

 

 

5.6 MCSSBN First Approach for Two Series Reservoirs  

In this section, the first approach of MCSSBN, i.e. low level BNs, high level Markov Chains, 

and higher level BN, is applied to a system of two series reservoirs of independent inflows. In 

order to apply the MCSSBN concept with this approach, the following steps are followed: 

1- The two reservoir system is decomposed to three sub-systems (sub-networks), the first 

reservoir sub-system, the second reservoir sub-system, and the system failure sub-system, 

as shown in Fig.65 
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Fig.65: BN of two series reservoirs of independent inflows decomposed to three sub-networks 

 

2- The system is simulated according to the system constraints (minimum and maximum 

reservoir capacities) and with randomly generated data for inflows and the states of the 

spillway gates over a period of 4000 seasons. 

3- While simulating each dam, it is obvious that the dam failure may happen at different 

states of inflows and reservoir levels. So, combinations of these states are taken into 

consideration.  

4- In this simulation, inflow of the first dam is supposed to have three different states (low, 

intermediate, and high), and reservoir level of the first dam is also having three different 

states (low, intermediate, and high). Combination of states means, for example, to have a 

combination of high inflow with intermediate reservoir level with a failed gate at the spill 

event. 

5- While defining the states of the first dam in the simulation stage, we may have five 

combinations of states (i.e. scenarios) of interest for the first dam. These five scenarios, 

which are all counting for the failure probability of the first dam, are defined as follows 

in Table 13:  
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 Inflow Reservoir Level Gates 

Scenario 1 Low Low Failed to open 

Scenario 2 Intermediate Intermediate Failed to open 

Scenario 3 High High Failed to open 

Scenario 4 Intermediate High Failed to open 

Scenario 5 High Intermediate Failed to open 

Table 13: Scenarios of the first dam reservoir 

6- For these combinations of states (scenarios), a Markovian Transition Probability Matrix 

(TPM) should be constructed for the first dam scenarios, and steady state probability 

distribution, of possible scenarios of interest, should also be estimated. In real world, 

TPM can be concluded from the operation of the dam, or from its exact simulation. It is 

also possible to mimic the possible scenarios by randomly generating the Markov TPM 

for the first dam with five Markovian states. Fig.66 shows an example of a five state 

Markov Chain for the scenarios of interest of the first dam. Fig.67 also shows a randomly 

generated Markov Chain for the five scenarios of interest of the first dam. 

7- The steady state probability distribution of the five different states of Dam1 (Dam1 

scenarios, or combinations of states) is estimated from simulation and fed into the BN 

representation of the first dam. This accounts for the steady state probabilities of 

occurrence of each of the five scenarios for the first dam. 

8- For the second dam, the same procedure is followed to simulate the dam, and to estimate 

or randomly generate the Transition Probability Matrix for its possible scenarios of 

interest. But, this dam will contain seven scenarios (combinations of states) of interest, as 

the inflow of this dam depends also on the outflow of the first dam, which may add two 

more states of interest with the increased inflow rate. Fig.68 shows an example of a seven 

state Markov Chain for the scenarios of interest of the second dam. Fig.69 also shows a 

randomly generated Markov Chain for the seven scenarios of interest of the second dam. 

9- At this point, the simulation results of both dams and the steady state probability 

distributions of the scenarios of interest (combinations of states) of both dams are ready 

to be fed into the higher level simplified BN shown in Fig.70 and Fig.71 to start 

predicting system failure.  

10- The simulation results, and steady state probability distribution of Markovian states 

(estimated from simulation) are the main sources of quantifying the basic and conditional 

probability tables of the higher level BN shown in Fig.71, see Table 14 for basic and 

conditional probability tables of the higher level BN. Quantification is about determining 

the probabilities of occurrence of the states (scenarios) at which the first dam fails, the 

probabilities of occurrence of the states (scenarios) at which the second dam fails, and the 

probabilities of occurrence of the states (scenarios) at which both dams fail. 

11- According to the simulation procedure that was followed, and the randomly generated 

Markov Chain Probability Matrices, the probability of system failure estimated from 

the higher level BN is 0.42%. This probability value is different than what was estimated 
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from the SSBN approach because of the use of randomly generated Markov Transition 

Probability Matrices. These randomly generated data add another source of uncertainty 

that affects the final results. If more data is available about probability distribution and 

actual transitions among states, instead of the randomly generated Markov Chains, more 

accurate results will be obtained from the MCSSBN. The use of randomly generated 

Markov Chains here mimics the dependence on logic inference and/or expert judgement 

that may affect the results by adding sources of uncertainty that may lead to 

overestimates or underestimates. 

12- Till this point, a low level BN was represented and decomposed to sub-networks [Fig.65]. 

The decomposed sub-networks are simulated; a high level Markov chain is constructed 

for every decomposed sub-network to represent different scenarios of interest 

(combinations of states) [Fig.66 and Fig.68]. A higher level BN is represented for the 

entire system and fed from simulation of both dams, and Markov Chains (which should 

also be estimated from simulation) [Fig.70 and Fig.71]. 

 

 

 

 
Fig.66: An example of a Markov Chain for a five scenario BN sub-network of the first reservoir 
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Fig.67: Randomly generated Markov Chain for the five scenario BN sub-network of the first reservoir 

 

 

 
Fig.68: An example of a Markov Chain for a seven scenario BN sub-network of the second reservoir 
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Fig.69: Randomly generated Markov Chain for the seven scenario BN sub-network of the second reservoir 

 

 
Fig.70: Higher level BN for two reservoir system with three sub-networks 
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13- In the higher level BN in Fig.71 and with the evidence that the system has failed, the 

states of both dams that are more contributing to the system failure can be identified. 

Knowing the main contributors to the system failure, and going back to the simulation 

and state definition stage, will let the decision maker know more information about the 

contributors to system failure. In Fig.72, it can be seen that, with the evidence of system 

failure, and according to the randomly generated transition probability matrices, the main 

contributors to system failure are STATE 3 (high inflow, and high reservoir level) in the 

first dam of more than 38% probability, and STATE 7 (very high inflow, and high 

reservoir level) in the second dam of more than 38% probability. 

14- If any new data are available and the system is required to be updated, the sub-network of 

the dam that was affected by the change will be re-simulated, not the entire network. This 

will allow for building a new TPM for the dam (sub-network) having updated data, and 

getting all updated probabilistic results from its simulation. Then, the new probabilistic 

data is fed to the higher level BN for updated prediction of system failure. It is up to the 

decision makers, according to their expertise, to re-simulate the system sub-networks 

every season, every year, or even every month, to have more updated data and more 

accurate and reliable prediction results. 

 
Fig.71: Higher level BN for two reservoir system in Hugin Lite 
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Table 14: Basic and Conditional Probability Tables for the higher level BN for two dam reservoirs 
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Fig.72: The higher level BN given the evidence that system failure took place 

 

15- To compare the MCSSBN and SSBN results while using probability estimates from 

exact simulations, the steady state probability distributions of the different scenarios of 

interest of Dam1 and Dam2 are estimated from the simulation stage, and used to quantify 

the BN probability tables. It is found that the system failure probability under the 

same operational conditions is about 1.21%, which is almost half what was obtained in 

the SSBN case. The main difference is that only the scenarios (combinations of states) of 

interest are used in the BN representation of MCSSBN, which makes a downsizing for 

the results to be within the scenarios of interest taken by the decision maker. It is up to 

the decision maker to include as much scenarios of interest as possible to study and 

analyze the system failure. Increasing the number of scenarios of interest will result in 

more accurate estimates, and approaching the same results of SSBN. The distinction of 

the MCSSBN over the SSBN is having the ability to predict the system failure with 

different operation scenarios using transition probability matrices. 
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5.7 MCSSBN Second Approach for Two Series Reservoirs 

In this section, the second approach of MCSSBN, i.e. low level Markov Chains, high level BNs, 

and higher level Markov Chain, is applied to a system of two series reservoirs of independent 

inflows shown in Fig.73. 

 
Fig.73: BN of two series reservoirs of independent inflows 

 

In this approach, the following steps are followed to apply the MCSSBN concept: 

1- The two reservoir system is decomposed to three sub-systems, the first reservoir sub-

system, the second reservoir sub-system, and the system failure sub-system. See Fig.65 

2- The system is simulated according to the system constraints (minimum and maximum 

reservoir capacities) and with randomly generated data for inflows and the states of the 

spillway gates over a period of 4000 seasons. 

3- While simulating each dam, it is obvious that the dam failure may happen at different 

states of inflows and reservoir levels.  

4- In this simulation, inflow of the first dam is supposed to have three different states (low, 

intermediate, and high), and reservoir level of the first dam also has three different states 
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(low, intermediate, and high). While for the second dam, the inflow is supposed to have 

four states (low, intermediate, high, and very high), and its reservoir level is of three 

states (low, intermediate, and high). The fourth state of the inflow comes from the fact 

that the inflow of the second dam is affected by the releases of the first dam (because 

they are connected in series in this case). 

5- In this approach, instead of having combinations of states (i.e. scenarios) for each dam 

like the first approach, the node of every state variable will have its own lower level 

Markovian states and chain. The state variables in this case are the inflow rate of the first 

dam, the reservoir level of the first dam, the inflow rate of the second dam, and the 

reservoir level of the second dam. 

6- For every state variable, a Markovian Transition Probability Matrix (TPM) should be 

constructed. In real world, TPM can be estimated from the operation of the dam, or from 

its exact simulation. The Markov TPM may also be randomly generated for each of the 

four state variable nodes. See Fig.74, Fig.75, Fig.76, and Fig.77 for randomly generated 

Markov Chains for the inflow for the first dam, the inflow of the second dam, reservoir 

level of the first dam, and reservoir level of the second dam, respectively.  

 

 
Fig.74: Randomly generated Markov Chain for the three state inflow of the first dam 
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Fig.75: Randomly generated Markov Chain for the four state inflow of the second dam 

 

 

 

 
Fig.76: Randomly generated Markov Chain for the three state reservoir level (storage) of the first dam 
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Fig.77: Randomly generated Markov Chain for the three state reservoir level (storage) of the second dam 

 

 

7- The steady state probability distributions of the different states of the four state variables 

are estimated from simulation in order to be fed into the BN representation of the two 

reservoir system. The Markov transition probability matrices may also be obtained for the 

states of all four state variables. 

8- At this point, the simulation results of both dams and the steady state probability 

distributions of the four state variables in the system are ready to be fed to the BN of the 

system, shown in Fig.73, to start predicting the system failure.  

9- The low level Markov Chains of the state variables (obtained from simulation), along 

with the simulation results, are the main sources of quantifying the basic and conditional 

probability tables of the BN of the system shown in Table 15, which is considered a high 

level BN in this approach (as it contains lower level Markov Chains). Quantification is 

about determining the probabilities of occurrence of the states at which the first dam fails, 

the probabilities of occurrence of the states at which the second dam fails, and the 

probabilities of occurrence of the states at which both dams fail. 

10- According to the simulation procedure that was followed, and the randomly generated 

Markov Chain Probability Matrices, the probability of system failure estimated from 

the high level BN is 0.26% as shown in Fig.78. This probability estimate is different than 

what was estimated from the SSBN approach because of the use of randomly generated 

Markov Transition Probability Matrices. These randomly generated data add another 

source of uncertainty that affects the final results. If more data is available about 

probability distribution and actual transitions among states, instead of the randomly 
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generated Markov Chains, more accurate results will be obtained from the MCSSBN. 

The use of randomly generated Markov Chains here mimics the dependence on logic 

inference and/or expert judgement that may affect the system results by adding sources of 

uncertainty that may lead to overestimates or underestimates. 
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Table 15: BPTs and CPTs of MCSSBN second approach for two series dam reservoirs of independent inflows 
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Fig.78: BN with failure probabilities of a system of two series independent reservoirs using MCSSBN second 

approach 

11- Till this point, low level Markov Chains were represented, while a high level BN, which 

is decomposed to sub-networks shown in Fig.65, is simulated. Having the evidence that 

system has failed, and by using the Bayesian inference, the main contributors to system 

failure can be identified. Knowing the main contributors to system failure, and going 

back to the simulation and state definition stage, will let the decision maker know more 

information about the contributors to system failure. In Fig.79, it can be seen that, with 

the evidence of system failure, and according to randomly generated transition 

probability matrices, the main contributors to system failure are STATE 3 of the inflow 

of the first dam (high inflow rate), STATE 3 of the reservoir level of the first dam (high 

reservoir level), STATE 4 of the inflow of the second dam (very high inflow rate), and 

STATE 3 of the reservoir level of the second dam (high reservoir level). 

12- At every time step, the high level BN is used to predict the system failure during different 

combinations of states (scenarios) for the entire network, not for every dam like in the 

first approach, depending on the transition probabilities among states of the state 

variables. For example, in Fig.80, with the evidence that the first dam has an intermediate 

inflow, while its reservoir has a high level storage, and this happens when the second 

dam has a very high inflow, while its reservoir level is at low storage, the posterior 

probability of system failure, given this combination of evidences, is estimated to be 

0.14%. 
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Fig.79: Main contributors to system failure of a system of two series reservoirs using MCSSBN second 

approach 

 

 

 
Fig.80: Posterior probability of system failure given some evidences in a system of two series reservoirs using 

MCSSBN second approach 
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13- Now, the entire system can be represented with a higher level Markov Chain that shows 

the dynamic scenarios for different combinations of states for the entire system network 

in different time steps. Many combinations of states for the four state variables can be 

defined. These combinations will result in different states of excess water over reservoir 

capacity (spill or no spill) for both dams, along with the randomly generated states for 

spillway gates. Thus, the system failure, depending on Dam1 failure and Dam2 failure, 

will have different probabilities for different combinations of states. Fig.81 shows that the 

entire network can be represented as one scenario (combinations of states). This means 

that dynamic scenarios; or combinations of states, for the whole system network can be 

used to construct a new higher level Markov Chain for different scenarios at different 

time periods according to the operation of all system components. Fig.82 shows a higher 

level Markov Chain constructed for the scenarios of the entire network. At every time 

step, the entire network will experience a scenario (i.e. combination of states or a Markov 

state). In the next time step, the entire network may remain in the same situation/scenario, 

or experience a transition to another situation/scenario (i.e. Markov state) through 

transition probabilities. 

 

 

Fig.81: Higher level scenario (combination of states) for the entire network 

14- If any new data is available and the system is required to be updated, the sub-network of 

the dam that was affected by the change will be re-simulated, not the entire network. This 
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will allow for building new TPMs for the state variables that have updated data, along 

with getting all updated probabilistic results from simulation. Then, the new probabilistic 

data is fed into the high level BN for updated prediction of system failure. It is up to the 

decision makers, according to their expertise, to re-simulate the system sub-networks 

every season, every year, or even every month, to have more updated data and more 

accurate and reliable prediction results. 

 
Fig.82: An example of higher level Markov Chain showing dynamic scenarios (combinations of states) for the entire 

network 

15- To compare the MCSSBN and SSBN results while using probability estimates from 

exact simulations, the steady state probability distributions of the different states of the 

four state variables are estimated from the simulation, and used to quantify the BN 

probability tables. It is found that the system failure probability under the same 

operational conditions is about 2.5%, which is close or similar to what was obtained in 

the SSBN stage. The main difference is that the states’ discretization used in MCSSBN 

includes more states for the inflow and the reservoir level nodes for both dams, which 

makes the results more accurate and converging to the simulation results. The distinction 

of the MCSSBN over the SSBN is having the ability to predict the system failure with 

different operation scenarios using transition probability matrices.  
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5.8 Summary 

Cyclic/acyclic representation may facilitate the prediction process for the system during its 

operation. The transition probabilities among the Markovian states will facilitate the 

determination of the new state of the system in order to predict the probability of failure – in this 

research – under the new conditions, which is supposed to save more time and effort. If there is a 

global change for all - or most of – system variables, re-simulating the entire system will be 

important to probabilistically update the system. The decompositional approach – decomposing 

the system into sub-systems – will then be useful for simulation. MCSSBN concept has been 

explained in details, with possible approaches that can be used to apply the concept to most of 

the engineering applications. This concept is showing potential in updating the network with 

different scenarios, which may be taken into consideration for failure prediction. MCSSBN 

concept was applied, in this chapter, to systems of series dam reservoirs of independent inflows. 

The first and second approaches of MCSSBN were used to apply the concept, and to compare 

the probabilistic results with exact simulations and SSBN results, conducted in the previous 

chapter. The following Table 16 compares the probability of system failure for a system of two 

dam reservoirs connected in series and having independent inflows using different methods, i.e. 

simulation, SSBN using only two states per state variable, SSBN with three to four states per 

variable, and MCSSBN with three to four states per variable in three cases, MCSSBN first 

approach with scenarios of interest (five for the first dam and seven for the second dam), 

MCSSBN first approach with all possible scenarios for dam 1 and dam 2, and MCSSBN second 

approach. It is expected that increasing the number of states per variable in the states’ 

discretization stage will allow for converging to the simulation results.  

 

Method Probability of System Failure  

Simulation 2.7% 

SSBN (two states/variable) 2.4% 

SSBN (3-4 states/variable) 2.5% 

 

MCSSBN 1
st
 approach 

1.21% (scenarios of interest) 

2.5% (all scenarios) 

MCSSBN 2
nd

 approach 2.5% 

Table 16: Comparing probability of system failure using different methods: simulation, SSBN, and MCSSBN 



128 
 

Both MCSSBN approaches are distinctive in representing system dynamics acquiring cyclic 

representation within the acyclic BN graph. However, the MCSSBN first approach helps the 

decision makers when certain possible scenarios, of the network sub-systems, are of interest. 

Experts, according to their experience, may choose to analyze the system with some scenarios of 

interest that are most probable to happen. The first approach is also distinctive in overcoming the 

obstacle of BN of being directed graph. If new marginal data is available for any intermediate 

system node, there is a problem in updating the BN in both directions (bottom-top, and top-

bottom). In the MCSSBN first approach, the sub-network, of which the update belongs to, is re-

simulated with the new marginal evidence in order to get probabilistic estimates for the 

combinations of states (scenarios) of the sub-network, not for the system nodes. So, the 

aggregation of system nodes into sub-networks in the higher level BN representation overcomes 

this problem. The second approach of MCSSBN is more distinctive in the cases that data for 

state variables and system components are estimated in the lower levels. However, the MCSSBN 

second approach is expected to be complicated in very large complex systems in which the 

Markov Chain representation will be for a huge number of system variables. Moreover, updating 

the high level BN is challenging in this approach when new marginal data is available for 

intermediate nodes. Accordingly, this approach may be more efficient for future forecasting and 

determination of different scenarios, but not for decision making. 

It can be concluded that supporting the BN with both simulation and Markov Chains makes the 

Bayesian analysis more mature for complex engineering networks. MCSSBN is a higher level 

concept for the decomposition based system analysis. 

In the next chapter, a real-world case study of Mountain Chute Dam, operated by Ontario Power 

Generation (OPG), is represented. As the data available for this dam are limited, it is shown how 

elicited logic inference and expert judgement can be used to quantify the system’s BN for failure 

analysis purposes.  
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CHAPTER 6 

A Real-World Case Study: Mountain Chute Dam 
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6.1 Introduction 

This chapter deals with a real-world case study of Mountain Chute Dam in Ontario. In this 

system, a number of system variables, nodes, and interactions among system components is 

introduced. Such a system is considered to be complex according to the number of components 

that it includes, and the complex interrelations among these components. Estimating failure 

probability of this system may be challenging using simulation, especially that this system has 

very limited data available, which is an obstacle in probabilistic failure analysis of the system. 

Accordingly, any proposed methodology that relies on simulation like SSBN and MCSSBN 

methods to simulate system decompositions is challenging when data is scarce. Using logically 

inferred data and eliciting information from experts may assist in quantifying the BN of the 

system. This may facilitate the prediction of system failure and identifying the main contributors 

to system failure that may be taken care of in the future. The results from these two information 

sources are compared. Using these sources of information may also help in estimating some 

scenarios of operation for the system under study which may help in identifying the main 

contributors to system failure in different scenarios/situations. 

 

6.2 BN of Mountain Chute 

In section 4.3.2, Mountain Chute Dam and Generating Station are briefly explained. Mountain 

Chute Dam is a part of Madawaska River System of Dams, and has four main structures: main 

concrete dam of 55m high having a power generating station, a weir (Mackie creek weir), and 

two earthen block dams (North dam and White Fish Draw dam). System components were 

illustrated in order to build the BN for this dam, which is shown is Fig.37a in section 4.3.2. 

However, the BN of Mountain Chute is modified in this section to give more details on the 

interdependencies among system components and nodes. The new constructed BN for Mountain 

Chute dam and generating station is represented as follows in Fig.83 (see Appendix 3 for a larger 

scale figure). The nodes in this BN represent: rain/precipitation, inflow, flood severity, 

earthquakes/seismic events, ice loading, efficiency of the weir, water pressure, geology and rock 

type, spill event, electromechanical equipment including hydropower turbines, head gates, 

sliding of the main dam, stability of the earthen dams, seepage in the earthen dams, drainage in 

the main dam, sluice gates of the main dam, overtopping of the main dam, capacity adequacy of 

the sluice way, generated electric power, vegetation control around the earthen dams,  animal 

burrows control around the earthen dams, main dam failure, and earthen dams failure. 
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Fig.83: BN of Mountain Chute dam and generating station 

 

To better understand this BN, it can be analysed as follows: 

1- This BN consists of 24 nodes (events, components, or variables, explained next), and 

combining such multiple factors is the major advantage of the proposed BN based 

method. 

2- The main purpose of this BN is predicting the probability of failure of the main dam 

from overtopping, seepage, or sliding. Moreover, it determines the probability of 

failure of the earthen block dams, controlling the reservoir of Mountain Chute, 

resulting from the threats of seepage or sliding. The posterior capability of the BN 

may also allow for identifying the main contributors to any evidence in the network. 

3- The basic events are rain, ice loading limits, earthquakes, geological and rock 

stability, vegetation control of earthen dams, and control of animal burrows in earthen 

dams (as the main dam is concrete). 

4- The amount of rain affects the inflow to the Mountain Chute Dam. The inflow is 

considered a flood if it exceeded certain limits. This flood may be severe or of less 

severity. 
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5- Flood severity is also affected by the seismic actions and earthquakes. 

6- The flood, with certain severity level, is controlled by Mackie Creek Weir. 

Controlling the inflow is to reduce the river flow rate and prevent severe floods from 

reaching the dam reservoir. The weir may be efficient or not, depending on the flood 

severity. 

7- After passing the weir, the water is blocked by two earthen block dams, and the main 

concrete dam with its generating station, and ready to be controlled by the dam head 

gates. This means there is water pressure behind the dams that may affect their 

stability. 

8- The geological and rock stability for the structure of the three dams should be 

considered as it affects the sliding of the dams. Sliding is one of the causes of dam 

breach failure. 

9- Ice loading, water pressure, and flood severity are connected to the electromechanical 

equipment (including turbines). For example, the ice loading is affecting the failure of 

the mechanical equipment, and with a severe flood and high water pressure, this 

could result in a failure in operating the mechanical components, which leads to dam 

operation failure. 

10- For the electric power generation, the head gates are opened to let the water flow 

through the penstock to generate electricity from hydropower turbines. If the head 

gates failed to open, this is considered a major factor of failure of the main dam, 

especially, if the water pressure is high in the upstream side of the dam, and this may 

affect the dam stability. And for sure, this will affect the amount of power generated 

by the turbines. 

11- The flood severity, the weir efficiency in controlling the inflow to the reservoir, and 

the water pressure, are all affecting the probability to have spill in the main dam. The 

spill is the amount of water that exceeds the reservoir maximum capacity limit. This 

amount should be released from the upstream side to the downstream side through the 

spillway (sluiceway) gates, or an overtopping failure will take place. 

12- The amount of water spill is also related to the capacity of sluiceway, which may not 

be adequate for that amount of water to be discharged, and the condition of the sluice 

gate (open, or failed to open due to electromechanical failure). If there is a 

requirement to spill while there is no way for the water to be released from behind the 

main dam because of the inadequate capacity of the sluiceway, or because the sluice 

gate failed to open, there is an increasing probability (risk) of overtopping failure. 

13- For the main dam, severe floods with increased water pressure increases the 

possibility to have seepage in the body of the main dam. If the seepage is not 

controlled and monitored through a drain system with a drain inspection tunnel, this 

could result in an increasing risk that reduces the remaining life time of the dam. 

Seepage may also result in dam breaching failure. 
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14- For the earthen dams in Mountain Chute, seepage may take place because of 

uncontrolled vegetation and animal burrows and holes in the vicinity of the dams. 

Seepage is an increasing risk for seepage piping and dam breach failure.  

 

6.3 Quantifying the BN Using Available Data and Logic Inference 

In case only limited data are available for nodes/variables of the network, and running 

simulations is complicated for such networks, the data available along with expert judgement and 

logic inference may be used for quantifying the basic and conditional probability tables (BPTs 

and CPTs) of the BN. This section focuses on using the logic inference in quantifying the BN 

and predicting the probability of failure of Mountain Chute dam. And the next section focuses on 

improving the results using expert judgement. 

According to the data available from Ontario Power Generation (OPG), who are the dam 

operators for Mountain Chute Dam and Generating Station, the following probabilistic 

information are estimated: 

 Over a range of 84 years in the area of Mountain Chute Dam (even before construction), 

the rain depth can be classified as low (less than 60 mm), or high (more than 60 mm) 

with the following probabilities: 

P(rain depth = low < 60 mm) = 429/1204 

P(rain depth = high > 60 mm) = 775/1204 

These data are concluded from monthly data over 84 years, and it can be useful in 

determining the probability of having severe flood, or flood with less severity. It is 

important to mention that low and high rain depths are assumed discretized states to help 

quantifying the BN of the system. For more accurate results, more discretized states can 

be assumed for this node. 

 Mountain Chute has two hydro power turbines (units 1 & 2), with capacity (rating) of 75 

MVA each. For each turbine, the electric output (in MW) is assumed to be LOW if it is 

less than 30 MW, INTERMEDIATE if it is less than 60 MW, and HIGH electric output if 

higher than or equal 60 MW. According to OPG analysis for the relation between 

different head levels and the electric output from each turbine depending on the discharge 

in the penstock of each unit, the following probabilistic information were estimated for 

all different possibilities: 

P(low electric output)= 360/1006 

P(intermediate electric output)= 360/1006 

P(high electric output)= 286/1006 

P(low elec. output | low head) =  120 /317 

P(Intermediate elec. output | low head) =  120 /317 

P(high elec. output | low head) =   77 /317 

P(low elec. output | intermediate head) =  120 /335 
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P(intermediate elec. output | intermediate head) = 120 /335 

P(High elec. output | intermediate head) =  95 /335 

P(Low elec. output | high head) =  120 /354 

P(intermediate elec. output | high head) =  120 /354 

P(high elec. output | high head) =  114 /354 

 

The maximum discharge per turbine was found to be about 220.8 CMS. This value is the 

maximum discharge that each penstock can withstand. The three states of electric output 

and water head levels (i.e. low, intermediate, and high) are assumed discretized states to 

help quantifying the BN of the system. For more accurate results, more discretized states 

can be assumed for this node. 

 The efficiency of Hydro Power turbines (unit 1 & 2) is 50 %. This means that unit 1 is 

available for 50% of the time while unit 2 is out (for forced outage, scheduled outage, 

sudden outage, maintenance, or any other reason), and vice versa. So, it is considered that 

only one turbine is operating at any time.  

 

6.3.1 BN Input Data and Results 

In this section, the BN of Mountain Chute Dam is quantified using the limited data available, 

logically inferred data, and assumed data. The data available are limited to the data that was 

provided by OPG and discussed in section 6.3. The logically inferred data are inferred according 

to the understanding of the system components discussed in section 6.2.  

The following Basic Probability Tables (BPTs) and Conditional Probability Tables (CPTs) 

shown in Table 17 are considered for determining the states of each node of the BN, where the 

probabilistic quantification depends on the data available, logic inferencing, and assumed data. 

Probabilistic data in these tables represents an estimated 100 years operation of Mountain Chute 

Dam.  
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Table 17: BPTs and CPTs of the BN of Mountain Chute dam 

 

Quantification of the above tables, according to available data, and logic inference, is explained 

as follows: 

 Rain/Precipitation is either LOW or HIGH state. According to the available data of 

rain depth, LOW is about 0.36 probability, while HIGH is about 0.64 probability.  

 For earthquakes/seismic events, it is supposed that the dam is built in an area with 

limited seismic activity. So, the probability to have severe earthquakes is limited. 

 Ice loading could be considered as NOT SAFE only during the winter season, which 

counts for about 5 months per year. For the rest of the year, ice loading is not taken 

into consideration. 
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 Inflow states may be high, intermediate, or low depending on the rain/precipitation. 

Depending on logic inference, if the rain depth is low, the inflow is assumed to be 

low with 0.9 probability, and intermediate by 0.1, while if the rain depth is high, the 

inflow is assumed to be 0.75 probable to be high, 0.2 probable to be intermediate, and 

0.05 low. 

 Mackie Creek Weir is assumed to be efficient for 70% of the time in controlling the 

flood flow rate (logically inferred). 

 If Mackie Creek Weir is not efficient in controlling the flood, there is an increased 

probability to have higher water pressure. 

 For Geology and rock type stability, it is logically inferred that the dam is already 

constructed in a geologically stable area. Thus, the probability of having stable 

geological formation is assumed to be 0.7. 

 The probability of having excess water more than the reservoir capacity (i.e. spill) 

increases with severe floods and lack of efficiency of the weir to control the flood 

flow rate, which will also affect the water pressure (low, normal, or high). If the weir 

is not efficient during a severe flood, resulting in an increased water pressure, the 

probability to have excess water would be 100%.  The spill probability decreases with 

less severe floods, increased efficiency of the weir, and less water pressure. 

 Failure of electromechanical equipment of the main concrete dam is affected by the 

non-safe ice loading limits, severe floods, and high water pressures.  

 The head gates are assumed to operate for 50% of the time it is required to operate, 

and fail to operate for the other 50% of the time. Thus, the probability of failure 

(failed to open) of the head gates is taken to be 0.5 (this is an assumption because the 

data of maintenance/outage schedules is not available). 

 Water pressure and stability of geological and rock formations affect the stability of 

the three dams (main concrete dam, and the two block dams). 

 It is concluded from the dam’s data that the sluiceway capacity is not adequate for the 

peak outflow of the maximum design flood (Probable Maximum Flood, PMF). Thus, 

the probability to have inadequate sluiceway capacity (i.e. discharge capacity 

adequacy node) is assumed to be 0.8 (logically inferred). 

 The state of the sluice gates to be opened or closed (failed to open) depends on the 

state of the electromechanical equipment. If the electromechanical equipment has 

failure, it means that the sluice gates fail. 

 The electric power generation depends on the state of the penstock head gates (open 

or failed to open). The hydropower turbines may also experience outage for different 

reasons during that time, which means that no electric output from the turbines can be 

generated. So, there is low or no electric power generation if the head gates of the 

penstock failed to open, or the turbines – which are electromechanical equipment – 

experience failure to operate because of forced or scheduled outages. 
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 The overtopping failure is assumed to take place in two events: 1- If there is excess 

water more than the reservoir capacity and the sluice gates failed to open (closed), 

even if the sluiceway discharge capacity is adequate for releasing the spill, 2- If there 

is excess water more than the reservoir capacity and the sluiceway discharge capacity 

is not adequate for releasing the spill, even if the sluice gates are opened. 

 Seepage/leakage in the main dam depends on the water pressure and the flood 

severity. It is logically inferred that the dam is under a monitoring and inspection 

system that ensures no more than 0.2 probability to have leakage in the dam body 

with the highest water pressure and the most severe flood. Seepage/leakage is 

considered to be a risk of failure as it reduces the remaining service life of the dam. 

 Main dam failure considers the failure of any part of the main dam sub-system. Thus, 

overtopping failure, instability/sliding of the main dam, leakage/seepage in the main 

dam body, failure in operating head gates, or any failure in electromechanical 

equipment, are considered cases for main dam failure. This means that any failure 

which makes the main dam unable to operate properly as designed, or fail to do one 

of its operations, is considered a failure. 

 For the two earthen block dams, the vegetation and animal burrows are assumed not 

to be efficiently controlled by a 0.7 probability (0.3 probability of being controlled), 

which is an assumption because data about monitoring and maintenance schedules are 

not available. Inefficient control of vegetation and animal burrows/holes in the 

vicinity of the block dams may increase the probability of seepage piping in both of 

them. 

 Earthen dams’ failure considers the instability of any of the two dams, or existence of 

seepage piping in any of the dams. 

 System failure happens if the main dam fails, or earthen dams fail, or both fail. 

 

When the network is compiled using Bayesian inference on Hugin Lite software, while using the 

limited data available and logic inference to quantify the probability tables of the BN, it can be 

seen in Fig.84 that, in the life time of 100 years, the probability of the main dam failure is about 

77%, and the earthen dams fail with a probability of about 68%. These probabilities are 

considered very high, which means that quantifying the network with logically inferred data may 

not be accurate for prediction results that should help the decision maker while taking decisions. 

It is obvious that logically inferred data is considered a source of uncertainty in predicting the 

system failure, as it contains limited knowledge which needs to be improved by other data 

sources, i.e. expert engineering judgement. 
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Fig.84: BN of Mountain Chute dam after compilation on Hugin Lite 

 

From another perspective, it can be seen from the BN in Fig.85 that – given the evidence that the 

main dam has failed - the main contributors to the Main Dam Failure are: inadequate discharge 

capacity of the sluiceway of 81% probability, electromechanical equipment failure of 39% 

probability, head gates failure of about 65% probability, non-safe ice loading of 46.6% 

probability, 48.9% probability of high inflow, 64.7% probability of high rain/precipitation, about 

39% probability of sluice gate failure, and 36% probability of high water pressure. 
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Fig.85: BN of Mountain Chute given the evidence that main dam failed 

 

 

If these main contributors to the main dam failure are controlled to be within normal/safe 

operating conditions, the evidence can be set in the Bayesian equations to calculate the updated 

posterior probability for the main dam failure given these evidences. The same procedure can 

also be applied to the earthen dams. In Fig.86, it is shown that while setting the evidence to have 

most of the network nodes operating at normal/safe operating conditions, the probability of 

failure of the main dam falls to 5.7% probability of failure, and zero probability of failure of the 

earthen block dams with the efficient inspection, monitoring, and control of both of them.  

This means that with the proper inspection, monitoring, control, and maintenance of the dam 

system, the probability of failure can be kept at lower limits (i.e. 5.7 % and 0%), even if the 

whole dam system is at risk (i.e. 77%, and 68%). 
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Fig.86: BN of Mountain Chute given the evidence of normal/safe operating conditions 

 

6.4 Expert Judgement for Quantifying the BN of Mountain Chute Dam 

On October 11
th

, 2018, a site visit was made to Mountain Chute Dam and Generating Station to 

meet Dr. Dehai Zhao, Technical (Civil) Production Supervisor, Plant Engineering Services - 

Eastern Operations, Ontario Power Generation. Andrea Verzobio, an International Visiting 

Graduate Student to University of Waterloo, and PhD student in the Department of Civil and 

Environmental Engineering at University of Strathclyde, Glasgow, Scotland, was also helping in 

defining a methodology for elicitation of required data for such complex networks through 

engineering expert judgement. Dr. Zhao was the expert who provided some information 

regarding dam operation. This information was beneficial in updating basic and conditional 

probabilities of the BN. It is important to note that all the expert judgement data used to quantify 

the BN, in this section, are assumed to be for 100 years of operation of Mountain Chute dam. 

Fig.87 and Fig.88 are site pictures to show Mountain Chute main dam and its sluice way, 

respectively, while Fig.89, Fig.90, and Fig.91 show a drainage collecting point in the main dam, 

vegetation control around the main dam, and one of the earthen block dams, respectively. 
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Fig.87: Mountain Chute Dam and Generating Station (sluiceway and sluice gates to the left) 

 

 
Fig.88: Side view of the sluiceway and sluice gates of Mountain Chute dam 
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Fig.89: Collecting point of drainage in the main dam body 

 

 

 
Fig.90: Controlled vegetation around the main concrete dam 
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Fig.91: One of the earthen block dams (behind the trees) 

The aim is to propose a methodology for populating BNs in the case where the topology of the 

BN has already been defined, i.e. starting from a graphical model with all the variables 

described. In this case, the elicitation process is then required to extract and quantify the 

subjective judgments about the uncertain quantities, which are mainly the conditional 

probabilities that represent the interrelationships among connected nodes. In the literature, there 

are various protocols for probability elicitation; the methodology used here is based mainly on 

the one that seems the most suitable, i.e. the SRI (Stanford Research Institute) model, [108], 

[109], and [110]. 

The process for eliciting expert judgment is composed by seven stages: motivating the experts 

with the aim of the elicitation process, structuring the uncertain quantities in an unambiguous 

way, conditioning the expert’s judgement to avoid cognitive biases, encoding the probability 

distributions, verifying the consistency of the elicited distributions, aggregating probabilities 

from different experts, and discretizing continuous probability distributions. To conduct an 

elicitation process, at least two characters are necessary: a subject, i.e. the expert, and an analyst, 

i.e. the interviewer. The first one provides expertise, i.e. “a person who has substantive 

knowledge about the events whose uncertainty is to be assessed” [108], while the second one is 

who take responsibility for designing and developing the process and the evaluation procedures. 

Starting from this protocol and according to the specific requirements of a BN, a four-stage 

structured methodology was developed to support the elicitation meaningfully. Each stage is 

presented in details by defining each phase of the process and presenting the roles of the key 

personnel along with highlighting all the potential biases, as follows: 

 Stage 1: To start, the analysts have to study carefully the project and the proposed BN, to 

understand which kind of expertise is required. It is fundamental to ensure coverage of all the 

different perspectives of the problem, so more than one expert is usually necessary. So, the 

analysts should identify the essential and desired characteristics of experts and build up 
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profiles of experts who may be able to answer these questions. For the number of required 

experts, it is variable and depends on the variability of expertise per domain. From a 

theoretical perspective, adding as many experts as possible would seem beneficial; however, 

too many experts can be problematic too, depending on the type of elicitation process chosen.  

 Stage 2: Individual interviews between the analysts and the selected experts are conducted. 

The initial part of the interview has two purposes; to introduce the expert to the encoding task 

as well as identifying and addressing motivational biases, such as management and expert 

bias. Management bias is where an expert provides goals rather than judgments (e.g. the dam 

will not fail), and expert bias is where an expert becomes overly confident.  During this 

initial part of the interview, the BN should be explained, indicating the uncertain variables 

that will be elicited and explaining how this process can be useful towards the resolution of 

the overall problem. The second part of this stage focuses on structuring the variables. Each 

quantity of interest that will be quantified needs to be specified so that a measurement scale 

can be determined. Even if the topology of the BN has already been defined, it is 

fundamental to review with the experts the definitions of the variables and their states, in 

order to structure the uncertain quantities in an unambiguous and meaningful way, before 

starting the encoding phase. Each variable must have a clear definition that will be 

understood without any possibility of misunderstanding by the expert. Depending on the 

experience of the expert, it may be appropriate to disaggregate the variable into more 

elemental variables. This can be very useful in the case of the BN, because each node might 

depend on several aspects and it can be easier for the expert to evaluate these secondary 

probabilities. This technique also allows the analyst to combat motivational biases and to 

reduce some cognitive biases by increasing the level of details.  

 Stage 3: Information which is relevant to estimating uncertainties is discussed in this stage to 

minimize cognitive biases by conditioning the expert’s judgments [111]. In particular, biases 

such as anchoring, i.e. when the evaluation is conditioned by an initial assessment, and 

availability, i.e. when the evaluation is based on the ease of which relevant instances come to 

mind, have to be investigated. Thus, the interviewers should ask some specific questions to 

test the experts. In addition, probability training should be provided to calibrate the experts, 

where a brief review of basic probability concepts may be helpful, beside some training 

questions which can help the experts to become familiar with the elicitation process itself. 

Experts should be trained on problems relevant to the questions on which they will be 

providing judgement. Different training questions are necessary for instance in the cases of a 

frequent event or a very rare event. When the training is completed, the encoding stage 

commences. During the interview, the same question can be asked in various ways, to find 

potential inconsistencies. 

 Stage 4: This final stage starts by verifying the consistency of the elicited probabilities. First 

of all, the analysts should verify that each expert has provided a reflection of their true 

beliefs. If the results are not satisfactory, the previous stage should be repeated. In the case 

that the same conditional probabilities have been elicited from different experts, the analysts 
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should then develop an aggregation technique to obtain one final result; see [112] for a 

performance-based approach or [113] for a behavioral based approach. Once each elicited 

probability has been verified and aggregated, the analysts should solve the overall BN to 

achieve the conclusive results. 

 

Following the above mentioned stages, the following data and information have been provided 

by the expert of Mountain Chute Dam: 

 Vegetation is controlled and monitored around the main dam, and both of the earthen 

block dams. Trees are cut regularly according to a designed schedule. See Fig.90. 

 Animal holes and burrows, of the earthen dams, are also monitored and maintained 

regularly. 

 Both earthen dams have elevation more than the main concrete dam; thus, there is no 

high risk of overtopping in both of them. Overtopping is considered a risk for only the 

main concrete dam.  

 There are collecting points for the drainage water in the main dam body. All the drainage 

is discharged to the drainage inspection tunnel in order to monitor the amount of water 

drainage before being released to the tail race of the main dam. See Fig.89. 

 Water pressure on the main concrete dam is also monitored, and if exceeded certain 

limits, the gates (head gates and sluice gates) are used to release water to get the water 

pressure back to its acceptable limits.  

 The ice loading affecting the hoists of sluice gates and head gates is controlled by using 

heaters. If the heaters failed for any reason, there is another mechanism called “water 

bubbler” that prevents ice from accumulating on the mechanical parts of the gates. 

 The sluiceway capacity was also a matter that has been discussed with the expert. 

However the sluiceway capacity is inadequate for the maximum design flood, there is a 

weather monitoring plan that allows the dam operators to take decisions within 48 hours 

before any flood hits the dam. This plan depends on releasing the water by operating all 

the gates (sluice gates, head gates, and all service gates). So, there is a limited risk of 

overtopping. 

 For the stability of the main dam, horizontal and vertical movements are also monitored 

in all dams of the Madawaska river system, including Mountain Chute. No movements 

were reported since the beginning of operation of the dam. 

 Since dams are considered to be Water Mountains, constructing any dam may change the 

seismic activity in the area around the dam. While performing an experiment for ice 

accumulation in the reservoir and its effect on the main dam, Mountain Chute dam 

operators made sure that the dam is designed to withstand up to 1.45 Ib/ft of earthquake 

effect. Since the dam didn’t experience any destructive or severe earthquake, this value is 

not representable for such seismic actions. So, there is still limited probability of facing a 

destructive earthquake that the dam can’t withstand. 
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BPTs and CPTs of the proposed BN of Mountain Chute dam are updated using data elicited from 

expert engineering judgement, which are 18 probability estimates. This judgement considers 

minimum risks to take place and claims that all dam components are working properly and 

within the safe and normal operating conditions. Accordingly, it can be seen from the BN in 

Fig.92  that the failure probability of the main dam falls to 1.33%, and the failure probability of 

the earthen dams falls to 1.28% over 100 years of operation. 

 

 

 

 
Fig.92: BN of Mountain Chute dam using expert engineering judgement for quantification 

 

 

By setting the evidence that the main dam failure is 100%, the main contributors to main dam 

failure can be identified from Fig.93 as high rain/precipitation, high inflow, sluice gate failure, 

and leakage of water in the main dam body. 
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Fig.93: Contribution in main dam failure of Mountain Chute dam when using expert judgement 

 

If sluice gate failure, for example, is considered one of the main contributors in the failure with 

almost 25% probability, it is required to do more causal analysis in the sluice gate component. 

Sluice gate itself can be represented as a sub-BN having sub-components as shown in Fig.94. 

This means that every component in the BN can be represented with a lower level sub-BN that 

can be analyzed, according to available data, logic inference, and expert judgement, and may be 

with simulation, in order to find the probability of failure of the higher level component, which is 

the sluice gate failure in this case. If the sluice gate component/node is 

decomposed/disaggregated to its sub-BN and sub-components, it can be seen in Fig.94 that if a 

tornado took place in the area of Mountain Chute dam, it may affect the generation of electricity 

coming from turbines by affecting the transmission lines. Any disturbance in the electricity 

generation will affect the operation of the sluice gates, which are electrically supplied by this 

source. As a backup, there is a diesel generator that is placed near the sluice gates to supply 

heaters and the on-site control board of the sluice gates with electricity in the case of any 

emergency. If tornado took place, there is a higher risk that this diesel generator is blown away, 

and thus, sluice gates may lose all kinds of electric supply to allow their operation. In the 

meanwhile, the remote operation of the sluice gates by the control station may have trouble in 

connectivity that blocks the control station from operating the gates remotely. If any mechanical 

problem happens at this time, there is a higher probability of failure of the gates, and they may 

not operate/open at the required time in order to release certain amounts of water in case any 

flood took place. BPTs and CPTs of this new sub-BN of the sluice gates can be built and 
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quantified with available data, expert judgement, logic inference, or from simulation, in order to 

predict the probability of failure of the sluice gates. Once the predicted probability is available, 

this probability can be used to quantify the sluice gate node in the higher level BN, i.e. in Fig.83.  

 

 
Fig.94: Sluice Gate node decomposed to its sub-BN and sub-components 

 

6.5 Summary, Comments, and Recommendations 

In this chapter, it can be shown that there is a significant difference in the failure probabilities 

when the BN is quantified by expert judgement than the case that uses logic inference in 

quantifying the BN; once again showing the importance of adequate data collection and their 

availability for analysis. Adding expert engineering judgement resulted in more specific 

estimates for the safe operation of the dam. The two cases of using logic inference (in section 

6.3) and using expert judgement (in section 6.4) can be considered as two different scenarios that 

may be helpful for the decision maker. The worst case scenario may be the one that uses 

logically inferred data, and the safe operating scenario is the one that uses data from expert 

judgment.  

It is obvious that there is a need for a Dam Safety Program that defines different scenarios of 

dam operation in order to help decision makers and dam operators. The dam safety program 

should define all the interrelationships and mathematical models that relate different dam 

components, which will be helpful to monitor, inspect, operate, and predict the states of these 

components. It will also be helpful in designing maintenance schedules and maintenance actions 
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until the end-of-life of the dam, and defines the need of rehabilitation or decommissioning of the 

dam. 

 

In conclusion, there is a need to quantify the Bayesian Network more accurately with reducing 

the uncertainty measures arising from limited knowledge and/or any false data. Detailed 

simulation may be the solution. Simulation Supported Bayesian Network (SSBN) and Markov 

Chain Simulation Supported Bayesian Network (MCSSBN) may be two more accurate ways of 

quantifying the BN that enables entering available data from one side, and randomly generating 

data within certain ranges from the other side. MCSSBN allows for updating the network with 

new available data more smoothly, especially when having cyclic nature in the network. If 

simulation is to be performed for Mountain Chute Dam, the decompositional approach, i.e. 

decomposing the system to smaller sub-networks, should be applied to the system’s BN as 

shown in Fig.95. The same procedures for SSBN and MCSSBN that were followed in the two 

reservoir system may also be applied to this network. However, this network is more complex as 

there are many variables to be included in the network, and the relational (conditional) 

mathematical equations and models are not easy to obtain.  

 

 

Fig.95: BN of Mountain Chute decomposed to four sub-networks 
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CHAPTER 7 

Conclusions, Recommendations, and Future Work 
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7.1 Conclusions 

Failure analysis of complex systems having a huge number of interacting system components is 

challenging, especially while having probabilistic events that affect the systems performance. A 

probabilistic multifactor representation that represents different types of factors (i.e. technical 

and non-technical) and events may be helpful in performing failure analysis of complex systems. 

In this thesis, it can be concluded that the engineering complex systems have many ways to be 

represented, however, BNs have shown advantages in representing such systems in terms of 

defining the interrelationships among system components. The quantification of BNs depends on 

different sources of data like logic inference, expert engineering judgement, empirical 

mathematical models, historical and operational data, and/or detailed simulation. The aim of this 

thesis is to facilitate the process of predicting the probability of failure of complex systems, like 

Nuclear Waste Management (NWM), or Safety of Hydropower Dams (SHPD), using BN 

probabilistic representation. The posterior capability of the BN may also be helpful in identifying 

the main contributing components to system failure. This may be useful in the design, operation, 

or decision making stages. 

In this thesis, the different factors affecting the failures of NWM and SHPD systems are 

reviewed. The BN of NWM problem is then represented and quantified according to available 

data and logically inferred data. The diagnostic capability of the BN has been used to know the 

main contributors to system failure. As the NWM is still a blue print and not yet a real-world 

application, any new data when available during design and site selection processes will be 

helpful in updating the probabilistic estimates of failure. On the contrary, hydropower dams are 

pre-existing structures operating for decades, and they are prone to failure according to large 

number of different factors and system variables.  

For the SHPD problem, a real-world case study of Mountain Chute dam is explained, and the 

system is represented by a BN while using different ways of quantification, i.e. logic inference, 

and expert judgement. In this case study, data are limited and not fully available for this complex 

engineering system. The importance of finding a new procedure to easily quantify the BN 

representation using simulation became obvious to overcome the uncertain data sources (i.e. 

logic inference, or expert judgement).  

Two BN based methodologies, i.e. SSBN and MCSSBN, are developed for that purpose. Both 

methodologies rely on the decompositional approach of decomposing the complex network, 

represented by BN, into less complex sub-networks to be simulated separately. This 

decomposition helps in avoiding the complications that may arise when dealing with exhaustive 

simulation of large complex networks. 

A simple two dam reservoir system was used to demonstrate the SSBN and MCSSBN methods.  

For SSBN, simulating decomposed sub-systems of the entire system is used as a quantification 

source for the BN. Using the two dam reservoir system of different configurations, the SSBN 

results are shown to be close to the simulation results. However, there is a difference between the 

results in both cases because of the states’ discretization that was defined for the different BN 

states. It is also shown that increasing the number of states for every BN node lead to 
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convergence to the simulation results. The steady state estimates of the SSBN can be used to 

predict the probability of system failure and diagnose the main contributors to system failure by 

using the posterior capabilities of BN. 

For MCSSBN, Markov Chains are integrated with both simulation and BNs to acquire cyclic 

property for the BN that is limited to only acyclic representation. Markov Chains are used to 

define combinations of states (i.e. scenarios) for the sub-systems or for the entire system that 

helps the decision maker in predicting the probability of system failure. Moreover, the system 

can be updated more easily if any updated data becomes available for any system node. The 

system analysis is proposed to be more dynamic while integrating the SSBN with Markov 

Chains. MCSSBN method has been demonstrated using two different approaches on the two dam 

reservoir system. Each of the two approaches has some potential and some limitations.  

For considering the feedbacks, in simulation, feedback is introduced and simulation deals with 

continuous variables. When the probability estimates are obtained from simulation and fed into 

the BN, the variables lose their time stamp, as there is no time stamp in probability, and the BN 

is a probabilistic representation. So, in BN, there is no time stamp and feedback can’t be 

introduced as normally considered in detailed simulations of systems. In order to overcome that 

limitation, MCSSBN that uses SSBN and Markov Chain integration is proposed to use Markov 

transition probabilities to reflect any feedback from different situations, scenarios, or operational 

conditions to the system failure analysis that is required to be considered. From another point of 

view, in SSBN and MCSSBN, the BN is supported by simulation which inherits the feedbacks 

among system components. The simulation is the main source for probability estimates in SSBN 

and MCSSBN. So, when the probabilities are estimated from simulation, they already have the 

effect of feedbacks while being fed into the BN representation. This means that BN encapsulates 

most of the features of the simulation including feedback in the case of SSBN and MCSSBN 

methods. In addition, BN facilitates representing systems scenarios according to different 

evidences.   

 

 

7.2 Recommendations 

This thesis gives the following recommendations for operators and decision makers of complex 

engineering systems: 

 A simplified probabilistic representation using BN is very competitive when dealing with 

complex networks. BN has many advantages over the other probabilistic representation 

techniques, i.e. sequence diagrams and dependability analysis techniques. 

 In order for the BN to be mature for such complex networks, a safety program for any 

complex network should be available. Safety programs define the interrelationships 

among system components, the mathematical models that relate different variables and 

the different operational scenarios for the system at different times within the life time 
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period of the system. The safety program will be useful in setting criteria for all variables 

in the system, their lower and upper bounds, and their risk situations. This will be useful 

in updating the BN of the system when any new data becomes available, but with certain 

limitations.  

 SSBN methodology is recommended to be used for probabilistic analysis of complex 

systems in which acyclic nature of BN representation is not an obstacle. In other words, if 

the system is static and minimal changes and updates in data take place, SSBN is 

expected to have a huge contribution in probabilistic analysis. If any change or update 

took place in the system, simulation should be re-performed for the sub-network having 

the change, if the change is local, or for the entire network, if the change is global. This 

will take more time and effort to estimate results during any risky situation. 

 MCSSBN methodology is recommended to be used for dynamic system analysis. In such 

cases, transitions among system components may be cyclic and not acyclic. Different 

scenarios, i.e. combination of states, are defined for the sub-networks or for the entire 

network. The probability estimates from simulation are the corner stone in this concept. 

System simulations can be performed for updating the system states/scenarios according 

to different events or situations, e.g. climate change and change in weather conditions. 

Markov Chains can then be used to predict the most probable events to happen in the next 

time period through the transition probability matrices.  

 

7.3 Limitations 

The following limitations are associated with the proposed methodologies: 

 Like any other approach, data availability is a challenge for quantifying the BN 

representation of systems 

 Acyclic limitation of the BN. Although BNs are restricted to account for just acyclic 

dependencies, this feature could be an advantage from another point of view making 

them much faster to solve class of problems in which cyclic relationships are not 

important, especially when such relationships have been included in probabilistic 

information. 

 BN representation of systems is problem-dependent and there is no generic 

representation applicable in different systems as every system has its own influential 

factors and cause and effect relationships.  

 In the SSBN approach, there is no unique way of system decomposition, and the number 

of decomposed sub-systems and their boundary conditions depend on the 

interrelationships among system components, data availability and computational 

resources.  
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7.4 Future Work  

Depending on the methodologies explained in this thesis, there is potential to do the following 

tasks in the near future: 

 Optimization of different scenarios in case of MCSSBN, 

 Using fuzzy logic in BN states’ definition, 

 Using expert judgement to have a global mathematical modelling for conditional 

relations among different system variables, 

 Setting criteria for a Dam Safety Program that can be used for dams in Madawaska River 

System. 
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Appendix 1:  

 

Input data for the two reservoir case study used in this thesis: 

 

 

 

Minimum storage capacity of 

each reservoir 

 

 

2 m
3 

 

Maximum storage capacity of 

each reservoir 

 

 

3 m
3 

 

Average inflow 

 

 

0.5 – 1.5 m
3
/season, uniformly distributed 

 

 

Designed outflow 

 

 

Mean of the inflow in each year (over 4 

seasons) 

 

 

Spillway gate failure 

 

 

Randomly generated value of 0 (failure) or 1 

(success) according to certain gate operation 

management. For the results presented in this 

thesis, the gates are managed to operate for 

50% of time it is required to operate, and fail 

for 50% of time it is required to operate. 

Other gate management policies will result in 

different estimates and numerical results. 
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Appendix 2:  

GoldSim simulation for a system of two dam reservoirs 

 
Two dams in series having dependent inflows 

 



169 
 

 
Two dams in series having independent inflows 
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Two dams in parallel having dependent inflows 
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Two dams in parallel having independent inflows 
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Appendix 3:  

BN of Mountain Chute dam and generating station 

 


