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Abstract

Clustering aims to group together data instances which are similar while simultaneously
separating the dissimilar instances. The task of clustering is challenging due to many
factors. The most well-studied is the high computational cost. The clustering task can be
viewed as an optimization problem where the goal is to minimize a certain cost function
(like k-means cost or k-median cost). Not only are the minimization problems NP-hard
but often also NP-hard to approximate (within a constant factor). There are two other
major issues in clustering, namely under-specificity and noise-robustness. The focus of this
thesis is tackling these two issues while simultaneously ensuring low computational cost.

Clustering is an under-specified task. The same dataset may need to be clustered in
different ways depending upon the intended application. Different solution requirements
need different approaches. In such situations, domain knowledge is needed to better define
the clustering problem. We incorporate this by allowing the clustering algorithm to inter-
act with an oracle by asking whether two points belong to the same or different cluster. In
a preliminary work, we show that access to a small number of same-cluster queries makes
an otherwise NP-hard k-means clustering problem computationally tractable. Next, we
consider the problem of clustering for data de-duplication; detecting records which corre-
spond to the same physical entity in a database. We propose a correlation clustering like
framework to model such record de-duplication problems. We show that access to a small
number of same-cluster queries can help us solve the ‘restricted’ version of correlation clus-
tering. Rather surprisingly, more relaxed versions of correlation clustering 1 are intractable
even when allowed to make a ‘large’ number of same-cluster queries.

Next, we explore the issue of noise-robustness of clustering algorithms. Many real-world
datasets, have on top of cohesive subsets, a significant amount of points which are ‘unstruc-
tured’. The addition of these noisy points makes it difficult to detect the structure of the
remaining points. In the first line of work, we define noise as not having significantly large
dense subsets. We provide computationally efficient clustering algorithms that capture all
meaningful clusterings of the dataset; where the clusters are cohesive (defined formally by
notions of clusterability) and where the noise satisfies the gray background assumption.
We complement our results by showing that when either the notions of structure or the
noise requirements are relaxed, no such results are possible. In the second line of work,
we develop a generic procedure that can transform objective-based clustering algorithms
into one that is robust to outliers (as long the number of such points is not ‘too large’). In
particular, we develop efficient noise-robust versions of two common clustering algorithms
and prove robustness guarantees for them.

1We refer to it as promise correlation clustering.
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Chapter 1

Introduction

Clustering is a term used to describe a wide variety of unsupervised learning algorithms.
One popular definition of clustering is that it attempts to partition a given dataset into
subsets (or clusters) such that similar points share the same cluster and dissimilar points
are separated into different clusters. Clustering is a very challenging task and in this thesis
we examine three such challenges.

The first challenge that we address is computational complexity. This is one of the
most well-studied challenges of clustering. Clustering is commonly posed as an optimiza-
tion problem where the goal is to minimize a certain cost function. For many common
cost functions such as k-means or k-median or k-center it is known that the optimization
problem is NP-hard [Dasgupta, 2008], [Megiddo and Supowit, 1984].

The second challenge that we examine is the issue of under-specificity. The basic
definition of clustering requires an algorithm to partition the dataset into coherent subsets
which are ‘well-separated’. On a closer look, we see that this definition is problematic.
Consider a set of (say n) points on a straight line where each pair of adjacent points have
a small distance (say α) between them. If we impose the requirement that each pair of
similar points should share a cluster then all the points would end up in a single cluster.
This would violate the second requirement as dissimilar points would also share the same
cluster. Similarly, if we require that all the dissimilar instances be separated then we would
end up separating similar pairs of points as well. This example is shown in Fig. 1.1

Hence, different algorithms ‘focus more’ on different aspects of the clustering definition.
For example, single-linkage tries to put similar points in the same cluster. However, it may
end up having dissimilar points in the same cluster as well. On the other hand, the Lloyd’s
algorithm tries to separate dis-similar points but may end up separating similar points as

1
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Figure 1.1: An example of n points on the real line separated by a small distance α.
This figure highlights that it is not always possible to satisfy the two requirements from
clustering algorithms.

well. The basic definition of clustering does not have enough information to resolve this
conflict. Thus, we say that the clustering problem is under-specified. The fundamental
question that we ask here is that ‘how do we prefer one clustering algorithm over another?’

We address the problem of under-specificity by incorporating domain knowledge into
the clustering problem. The clustering algorithm is allowed to interact with an oracle (or
an expert) by asking whether two points should belong to the same or different clusters.
The oracle replies either ‘yes’ or ‘no’ to the same-cluster query depending upon whether the
two points belong to the same or different clusters. In this case, the goal of the clustering
algorithm is to recover the clustering which the oracle has in its ‘mind’.

In the first part of the thesis we simultaneously address the challenges of under-
specificity and computational cost. We study the computational and query complexity
of various clustering problems in this framework. Consider the following simple observa-
tion. Given any clustering instance, if the algorithm is allowed to make n2 (where n is the
size of the dataset) queries to the same-cluster oracle then recovering the true or target
clustering is trivial. In this dissertation, one of the important questions that we examine
is the following. Is it possible to efficiently solve (in polyniomial time) an otherwise in-
tractable clustering problem while making a ‘small’ number of same-cluster queries to the
oracle?

Now, we discuss the third challenge; namely the issue of noise-robustness of clustering
algorithms. The basic definition of clustering says that the goal is to partition a dataset
into clusters such that similar points share a cluster while dissimlar points are separated
into different clusters. This definition makes sense when the given dataset has a cohesive
structure. That is, the dataset can be partitioned into groups or clusters which have some
inter-cluster separation. However, real-world datasets, on top of this structure, have a
significant subset of points which are unstructured. The addition of these noisy points
makes it difficult for the clustering algorithm to detect the structure of remaining points.
The precise definition of ‘unstructuredness’ or noisy points varies depending upon the
structure that the clustering algorithm is trying to detect. In this dissertation, we consider
two definitions of noise and develop efficient noise-robust clustering algorithms in each
case.

2



We address all the challenges of clustering under a formal framework. The goal is to
have a framework which can be mathematically analyzed and is also relevant to practi-
tioners. Obviously, the exact framework varies depending upon the clustering problem we
are considering. To analyze these issues in a formal framework, we will be mostly relying
on mathematical theorems and proofs. But in some cases (where applicable), we have also
complemented our results with experiments and simulations.

1.1 Our Contributions

As we alluded to before, our contributions can be divided into two categories. One is dealing
with under-specificity and the second related to noise robustness of clustering algorithms.
In this next sub-sections, we go into more details of each of these and outline our objectives
and contributions made.

1.1.1 Under-specificity

The first main contribution is to develop a formal framework to incorporate domain knowl-
edge into the clustering problem. We introduce a semi-supervised clustering framework.
The learner is allowed to interact with a domain expert (or an oracle) by asking whether
two data instances belong to the same or different cluster (same-cluster query). The oracle
has a target clustering in its mind and responds by answering either ‘yes’ or ‘no’ (depend-
ing upon whether the two points belong to the same or different clusters according to the
target clustering). We assume that the oracle is perfect and has complete knowledge of
the ground truth clustering. Hence, given any pair of points it always gives the correct
response. We consider two clustering problems under this framework.

Clustering with advice (k-means)

We consider a setting where the oracle conforms to a center-based clustering with a notion
of margin. That is, the target clustering has the following property. Every cluster-center
is ‘more’ closer (γ-times closer) to points in its own cluster than to points in a different
cluster. Larger values of γ imply greater separation between different clusters.

Under this framework, we study the query and computational complexity of recovering
the target clustering. We provide an algorithm which runs in O

(
kn log n) time and makes

O
(
k log n + k2 log k) same-cluster queries to the oracle and succeeds in recovering the

3



oracle’s clustering with high probability. Here n is the size of the dataset and k is the
number of clusters.

We also consider the case when the oracle conforms to the optimal k-means cluster-
ing under γ-margin. Then, our query-based algorithm can find the optimal solution in
polynomial time. Interestingly, we prove that even when the optimal k-means clustering
satisfies margin conditions, without queries, finding that solution is NP-hard. Thus having
access to relatively few oracle queries can allow efficient solutions to otherwise intractable
problems.

Correlation clustering with advice

We consider the problem of correlation clustering under the semi-supervised clustering
framework. Correlation clustering is very useful for modelling the record de-duplication
problem; the task of detecting multiple records that correspond to the same real-world
entity in a database. Here the goal is to put records corresponding to the same physical
entity in the same cluster and putting records corresponding to different physical entities
into different clusters.

Formally, given a complete graph G with the edges labelled 0 and 1, the goal of cor-
relation clustering is to find a clustering that minimizes the number of 0 edges within a
cluster plus the number of 1 edges across different clusters. In other words, the goal is to
find a clustering which minimizes the correlation loss w.r.t the graph G.

Promise correlation clustering

The optimal clustering C∗ can also be viewed as a complete graph G∗ (unknown to the
clustering algorithm) with edges corresponding to points in the same cluster being labelled
1 and other edges being labelled 0. If it is known that the edge difference between G and
G∗ is zero, then finding C∗ is easy (find the connected components of G). We consider a
variant of this problem where it is promised that the edge difference between G and the
unknown G∗ is “small”. The goal is to find the clustering which minimizes the correlation
loss w.r.t G.

We now wish to analyze the computational and query complexity of the promise cor-
relation clustering (PCC) problem. We prove that the promise version is still NP-hard.
Rather surprisingly, we further prove that even with access to a same-cluster oracle, the
promise version is intractable as long as the number queries to the oracle is o(n) (the proof
assumes the Exponential Time Hypothesis; n is the number of vertices).
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Restricted correlation clustering

Given these negative results, we consider a restricted version of correlation clustering.
First observe that in the standard version, the goal is to find a clustering over the class
of all possible clusterings of the dataset. Here, we restrict ourselves to a given class F of
clusterings. Another difference is that we want to minimize the correlation loss w.r.t the
unknown target clustering C∗ rather than a graph G.

We now wish to analyze the query and computational complexity of this problem.
We offer an algorithmic approach (using same-cluster queries) and prove that the query
complexity is upper bounded by a term that depends only on the VC-Dim(F) and is
independent of the dataset size. We also provide computationally efficient algorithms for
a few common classes of clusterings.

1.1.2 Noise-robustness

We now describe our framework to address the issue of noise in clustering algorithms.
We are given a dataset X which is made up of two parts. The first is the structured
or clusterable component S. Mathematically, this is captured by introducing notions of
‘clusterability of data’. Intuitively, these notions say that the set S is composed of k
different clusters and the clusters are ‘well-separated’ from each other. In this thesis, we
consider two such notions, center-proximity and center-separation. Each of them formalize
the idea of well-separatedness in a different way. The second component of the dataset is
the noisy or unstructured part N . The clustering algorithm receives X as its input. It
does not have any knowledge about S (or its substructure) or N . The goal is to partition
X into components so that the structure of S is preserved. Any algorithm which achieves
this goal is said to be noise-robust.

Detecting cluster structure in the presence of sparse noise

We consider the problem of detecting the structure of S when the noisy part N is sparse.
That is, the only restriction about the noisy part of the data is that it does not create
significantly large clusters. We introduce efficient algorithms that discover and cluster
every subset S of the data with the following property. S has a meaningful structure (as
captured by a notion of clusterability) and its complement is structureless or sparse. We
say that our algorithm is robust to sparse noise. Notably, the success of our algorithms do
not depend on any upper bound on the fraction of noisy data. We complement our results
by showing that when either the notions of structure or the noise requirements are relaxed,
no such results are possible.
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Detecting cluster structure in the presence of outliers

We propose a generic regularization-based method that transforms any center-based clus-
tering objective into a noise-robust one. We use our procedure to obtain regularized ver-
sions of two common clustering algorithms based on the k-means objective function. We
prove that these regularized algorithms are robust to outliers (under clusterability assump-
tions and mildness properties of the noisy points).

1.2 Reading the thesis

This dissertation is composed of two components. The first addresses the problem of under-
specificity in clustering and is covered in Chapters 2 and 3. The second part is about the
issue of noise-robustness of clustering algorithms and is covered in Chapters 4 and 5. The
two parts are independent of one another and the reader can start with whichever one
he/she is more interested in.

We have ensured that each chapter is self-contained. Note that the thesis does not
have a dedicated chapter on related work or on notation/preliminaries. Rather these are
included in the relevant chapters. Some of the missing proofs can be found in appendices
at the end of the corresponding chapters.

1.3 Technical background

Some of the proofs in the thesis use the following classical results from learning theory
literature. Readers who are unfamiliar with result can also refer to the standard texts on
this subject, for example, [Shalev-Shwartz and Ben-David, 2014].

1.3.1 Learning theory results

Theorem 1.1 (Vapnik and Chervonenkis [Vapnik and Chervonenkis, 2015]). Let X be a
domain set and D a probability distribution over X. Let H be a class of subsets of X of
finite VC-dimension d. Let ε, δ ∈ (0, 1). Let S ⊆ X be picked i.i.d according to D of size
m. If m > c

ε2
(d log d

ε
+ log 1

δ
), then with probability 1− δ over the choice of S, we have that

∀h ∈ H ∣∣∣∣ |h ∩ S||S| − P (h)

∣∣∣∣ < ε
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Theorem 1.2 (Fundamental theorem of learning [Blumer et al., 1989]). Here, we state
the theorem as in the book [Shalev-Shwartz and Ben-David, 2014]. Let H be a class of
functions h : X → {0, 1} of finite VC-Dimension, that is VC-Dim(H) = d < ∞. Let
D be a probability distribution over X and h∗ be some unknown target function. Given
ε, δ ∈ (0, 1). Let errD be the {0, 1}-loss function err : H → [0, 1]. That is errD(h) =
P
x∈D

[h(x) 6= h∗(x)]. Sample a set S = {(x1, y1), . . . , (xm, ym)} according to the distribution

D. Define errS(h) =
∑m

i=1

1[h(xi)6=h∗(xi)]
m

. If m ≥ ad+log(1/δ)
ε2

, then with probability at least
1− δ over the choice of S, we have that for all h ∈ H

|errD(h)− errS(h)| ≤ ε

where a is an absolute global constant.

1.3.2 Concentration inequalities

Some of the proofs use the following concentration inequalities.

Theorem 1.3 (Sum of geometric random variables [Brown, 2011]). Let X = X1 + . . .+Xn

be n geometrically distributed random variables such that E[Xi] = µ. Then

P[X > (1 + ν)nµ] ≤ exp

( −ν2µn

2(1 + ν)

)
Theorem 1.4 (Generalized Hoeffding’s Inequality (e.g., [Ashtiani and Ghodsi, 2015])).
Let X1, . . . .Xn be i.i.d random vectors in some Hilbert space such that for all i, ‖Xi‖2 ≤ R

and E[Xi] = µ. If n > c log(1/δ)
ε2

, then with probability at least 1− δ, we have that∥∥∥µ− 1

n

∑
Xi

∥∥∥2

2
≤ R2ε

Theorem 1.5 (Multiplicative Chernoff bound [Mitzenmacher and Upfal, 2005]). Let

X1, . . . , Xn be i.i.d random variables in {0, 1} such that µ = E[Xi]. Let X =
∑
Xi
n

. Then
for any 0 < ε < 1

P
[
X > (1 + ε)µ

]
≤ exp

(−ε2µn
3

)
Theorem 1.6 (Multiplicative Chernoff bound [Mitzenmacher and Upfal, 2005]). Let

X1, . . . , Xn be i.i.d random variables in {0, 1} such that µ = E[Xi]. Let X =
∑
Xi
n

. Then
for any 0 < ε < 1

P
[
X < (1− ε)µ

]
≤ exp

(−ε2µn
2

)
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Chapter 2

Clustering with same-cluster queries

Clustering is an under-specified task. Given a dataset, there is no unique or ‘correct’
solution. The solution of choice varies with the intended application. In the absence of
knowledge of the desired application, clustering problem is usually not well-defined. We
need to incorporate domain expertise to better define the clustering problem. At the same
time, performing clustering under many natural models of computation is computationally
intractable.

In this chapter, we take a new approach to alleviate these two issues in clustering.
We first allow the clustering algorithm to be semi-supervised (through access to answers
of natural queries). This makes the clustering problem better defined. We then ask the
following question. Can semi-supervision help relax the computational burden of clustering?

Aside from trial and error, one principled approach to supervision in clustering is
through link/do-not-link constraints [Basu et al., 2002, Basu et al., 2004, Kulis et al., 2009].
In this case, besides the usual input, the clustering algorithm also receives a set of pairs
which should always share the same cluster and a set of pairs which should always be
separated into different clusters. Our approach combines the user-friendliness of link/do-
not-link constraints with the advantages of interactiveness. We call it same-cluster queries.
That is, the algorithm can interact with a domain expert (or an oracle) by asking whether
two elements belong to the same cluster or not. The oracle responds by answering ‘yes’ or
‘no’ depending upon whether the two points share a cluster or are separated into different
clusters.

The general setting in this chapter is the following. Let X be a set of elements that
should be clustered and d a distance metric over it. The oracle (e.g., a domain expert) has
information about a target clustering C∗ in its mind. That target clustering satisfies some
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predefined clusterability condition (which we call γ-margin). The notion says that each
cluster center is γ times closer to the points in its own cluster than to points in different
clusters. The clustering algorithm has access to (X, d) and can also ask same-cluster queries
about C∗. The goal of the algorithm is to efficiently recover the target clustering C∗ while
making a ‘small’ number of same-cluster queries to the oracle.

We provide a polynomial time algorithm for clustering with queries, that succeeds (with
high probability) under the assumption that the input satisfies the γ-margin condition for
γ > 1. This algorithm makes O

(
k2 log k + k log n) same-cluster queries to the oracle and

runs in O
(
kn log n) time, where k is the number of clusters and n = |X|.

We also consider the following special case. The target C∗ (in the oracle’s mind) is
the optimal solution of the k-means clustering problem and also satisfies the clusterability
condition. In this case, the query-based algorithm succeeds with high probability as long
as γ > 1. On the other hand, we show that without access to a same-cluster oracle, k-
means clustering is NP-hard even when the optimal solution satisfies γ-margin property
for γ =

√
3.4 ≈ 1.84 and k = Θ(nε) (for any ε ∈ (0, 1)). This shows that access to a small

number of same-cluster queries can provide an efficient algorithm for an otherwise NP-hard
problem. This is an interesting trade-off between query complexity and computational
complexity in the clustering domain.

2.1 Related Work

This work combines two directions of research. The first is clustering under semi-supervision
and the second is computational complexity of clustering.

The most common framework to convey supervision in clustering is through a set of
link/do-not-link constraints [Basu et al., 2002, Basu et al., 2004, Kulis et al., 2009]. Here,
the clustering algorithm is provided a list of pairs which should share the same cluster
and a list of pairs which should be separated into different clusters. Here, the supervi-
sion is non-interactive. On the interactive side, Balcan et al. [Balcan and Blum, 2008]
introduced the notion of split/merge queries. In their framework, the domain expert (or
oracle) receives a clustering of the given dataset. Given a clustering, the oracle responds
by suggesting either to merge two clusters or to split a cluster. For each query, the oracle
should evaluate a clustering of the entire dataset. Another example of supervision is clus-
tering was introduced by Ashtiani and Ben-David [Ashtiani and Ben-David, 2015]. Here,
the oracle receives a small subset of the dataset and responds by outputting the ‘correct’
clustering of that subset. Our approach combines the user-friendliness of link/do-not-link
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constraints (as opposed to requiring the oracle to answer queries about the whole data set
or to cluster subsets of the data) with the advantages of interactiveness.

The computational complexity of clustering is very well studied problem. Clustering is
usually posed as an optimization problem where the goal is to minimize a given objective (or
cost) function. k-means and k-median are two popular objective functions. However, many
of the results are negative. For example, minimizing the k-means objective is NP-hard.
Moreover, it is NP-hard even for k = 2 [Dasgupta, 2008], or even in a two-dimensional
plane [Vattani, 2009, Mahajan et al., 2009]. Similarly, minimizing the k-median objective
is also NP-hard. Despite these negative results, clustering algorithms are routinely and
successfully applied in practice. To explain this gap between theory and practice, notions
of data niceness under which clustering becomes easy have been considered. The hypothesis
is that real-world datasets are not worst-case and often have nice properties which makes
clustering tractable. [Ben-David, 2015] has an extensive survey of such notions.

The notion of α-center proximity introduced by Awasthi et al. [Awasthi et al., 2012]
is most related to our notion of margin (a comparison between the two can be found in
Appendix A.2). In the restricted scenario (i.e., when the centers of clusters are selected
from the data set), their algorithm efficiently recovers the target clustering for α > 3.
Balcan and Liang [Balcan and Liang, 2012] provide a different algorithm and prove that
recovery is possible for α >

√
2 + 1. Ben-David and Reyzin [Ben-David and Reyzin, 2014]

show that this problem is NP-hard for α < 2. Variants of these proofs for our γ-margin
condition yield the feasibility of k-median clustering (centers of clusters are selected from
the input) when the input satisfies the condition with γ > 2 and NP hardness when γ < 2.

2.2 Problem Formulation

Let X be a subset of some Euclidean space, Rd. A k-clustering of the set X partitions it

into k disjoint subsets C = {C1, . . . , Ck}. We say x1
C∼ x2 if x1 and x2 belong to the same

cluster according to C. Also, n := |X|. We say that a clustering C is center-based if there
exists centers µ = {µ1, . . . , µk} ⊂ Rd such that C corresponds to the Voronoi diagram over
these centers. Namely, for every x in X and i ≤ k, x ∈ Ci ⇔ i = arg minj d(x, µj).

Next, we introduce our data niceness property or our notion of clusterability of a data
set.

Definition 2.1 (γ-margin). Let X be set of points in a metric space (M,d). Let C =
{C1, . . . , Ck} be a center-based clustering of X induced by centers µ1, . . . , µk ∈ M . We
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say that C satisfies the γ-margin property if the following holds. For all i ∈ [k] and every
x ∈ Ci and y ∈ X \ Ci,

γd(x, µi) < d(y, µi)

We now introduce our notion of a same-cluster oracle and same-cluster queries. For a
clustering C∗ = {C∗1 , . . . C∗k}, a C∗-oracle is a function O : X → {true, false} that answers
queries according to C∗. We can think of the oracle as a human or domain-expert that has
knowledge about the desired clustering and can answer the clustering algorithm’s queries.
The clustering algorithm then tries to recover C∗ by querying O.

Definition 2.2 (Same-cluster Query). Given a clustering instance X and a C∗-oracle O.
A same-cluster query asks whether two instances x1 and x2 belong to the same cluster, i.e.,

O(x1, x2) =

{
true if x1

C∗∼ x2

false o.w.

2.3 Clustering using same-cluster queries

In this section we provide an efficient algorithm for clustering with queries. The setting
is the one described in the previous section. In particular, it is assumed that the oracle
has a center-based clustering in his mind which satisfies the γ-margin property. The space
is Euclidean and the center of each cluster is the center of mass of the instances in that
cluster. The algorithm not only makes same-cluster queries, but also another type of query
defined as below.

Definition 2.3 (Cluster-assignment Query). A cluster-assignment query asks the cluster
index that an instance x belongs to. In other words OC∗(x) = i if and only if x ∈ C∗i .

Note however that each cluster-assignment query can be replaced with k same-cluster
queries (see appendix A.1). Therefore, we can express everything in terms of the more
natural notion of same-cluster queries, and the use of cluster-assignment query is just to
make the representation of the algorithm simpler.

Our algorithm works in two phases. In the first phase, it approximates the center of
one of the clusters. It does this by asking cluster-assignment queries about a set of points
sampled uniformly at randomly, until it has a sufficient number of points from at least
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one cluster (say Cp). It uses the mean of these points µ′p as an approximation of the true
cluster center µp.

In the second phase, the algorithm recovers all of the instances belonging to Cp. In
order to do that, it first sorts all of the instances based on their distance to µ′p. The margin
assumption ensures that all of the points in Cp lie inside a sphere centered at µ′p (which
does not include points from any other cluster). It then tries to find the radius of this
sphere by doing binary search using same-cluster queries. After that, the elements in Cp
will be located and can be removed from the data set. The algorithm repeats this process
k times to recover all of the clusters. The details of our approach is in Algorithm 1. Note
that β is a small constant1.

Algorithm 1: Algorithm for γ(> 1)-margin instances with queries

Input: Clustering instance X, a C∗-oracle O, the number of clusters k and a
parameter δ ∈ (0, 1)

Output: A clustering C of the set X

C = {}, S = X and η = β log k+log(1/δ)
(γ−1)4

while S 6= φ do

Phase 1
Let l = kη + 1
Draw l points from S uniformly at random
Let St = {x ∈ S : O(x) = t}. where the oracle answers cluster-assignment
queries about the members of S
p = arg maxt |St| and µ′p := 1

|Sp|
∑

x∈Sp x.

Phase 2
Sorts elements of {x : x ∈ S} in increasing order of d(x, µ′p).
Binary search over S, to find i such that bi ∈ Cp and bi+1 6∈ Cp. (This step
involves making same-cluster queries to the oracle O).
C ′p = {x ∈ S : d(x, µ′p) ≤ d(bi, µ

′
p)}.

Delete C ′p from S and C = C ∪ {C ′p}
end

Theorem 2.6 shows that if γ > 1 then our algorithm recovers the target clustering with
high probability. Next, we give bounds on the time and query complexity of our algorithm.

1It corresponds to the constant appeared in generalized Hoeffding inequality bound, discussed in The-
orem 1.4 in appendix 1.3.2
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Theorem 2.7 shows that our approach needs O(k log n + k2 log k) queries and runs with
time complexity O(kn log n).

Lemma 2.4. Given a clustering instance X ⊆ Rd. Let C = {C1, . . . , Ck} be any center-
based clustering of X that satisfies the γ-margin property. Let µi be the set of centers
corresponding to the centers of mass of Ci. Let µ′i be such that d(µi, µ

′
i) ≤ r(Ci)ε, where

r(Ci) = maxx∈Ci d(x, µi) . If γ ≥ 1 + 2ε then

∀x ∈ Ci,∀y ∈ X \ Ci ⇒ d(x, µ′i) < d(y, µ′i)

Proof. Fix any x ∈ Ci and y ∈ Cj. d(x, µ′i) ≤ d(x, µi) + d(µi, µ
′
i) ≤ r(Ci)(1 + ε). Similarly,

d(y, µ′i) ≥ d(y, µi) − d(µi, µ
′
i) > (γ − ε)r(Ci). Combining the two, we get that d(x, µ′i) <

1+ε
γ−εd(y, µ′i).

Lemma 2.5. Let the framework be as in Lemma 2.4. Let Sp, Cp, µp, µ
′
p and η be defined

as in Algorithm 1, and ε = γ−1
2

. If |Sp| > η, then the probability that d(µp, µ
′
p) > r(Cp)ε is

at most δ
k
.

Proof. Define a uniform distribution U over Cp. Then µp and µ′p are the true and empirical
mean of this distribution. Using a standard concentration inequality (Thm. 1.4 from
Appendix 1.3.2) shows that the empirical mean is close to the true mean, completing the
proof.

Theorem 2.6. Given a clustering instance X ⊆ Rd. Let C∗ = {C∗1 , . . . , C∗k} be center-
based clustering of X that satisfies the γ-margin property. Given δ ∈ (0, 1) and γ > 1 and
a C∗-oracle, with probability at least 1− δ, Algorithm 1 outputs C∗.

Proof. In the first phase of the algorithm we are making l > kη cluster-assignment queries.
Therefore, using the pigeonhole principle, we know that there exists cluster index p such
that |Sp| > η. Then Lemma 2.5 implies that the algorithm chooses a center µ′p such that

with probability at least 1 − δ
k

we have d(µp, µ
′
p) ≤ r(Cp)ε. By Lemma 2.4, this would

mean that d(x, µ′p) < d(y, µ′p) for all x ∈ Cp and y 6∈ Cp. Hence, the radius ri found in the
phase two of Alg. 1 is such that ri = max

x∈Cp
d(x, µ′p). This implies that C ′p (found in phase

two) equals to Cp. Hence, with probability at least 1 − δ
k

one iteration of the algorithm
successfully finds all the points in a cluster Cp. Using union bound, we get that with
probability at least 1− k δ

k
= 1− δ, the algorithm recovers the target clustering.

Theorem 2.7. Let the framework be as in theorem 2.6. Then Algorithm 1
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• Makes O
(
k log n+ k2 log k+log(1/δ)

(γ−1)4

)
same-cluster queries to the oracle O.

• Runs in O
(
kn log n+ k2 log k+log(1/δ)

(γ−1)4

)
time.

Proof. In each iteration (i) the first phase of the algorithm takes O(η) time and makes η+1
cluster-assignment queries (ii) the second phase takes O(n log n) times and makes O(log n)
same-cluster queries. Each cluster-assignment query can be replaced with k same-cluster
queries; therefore, each iteration runs in O(kη+n log n) and uses O(kη+log n) same-cluster

queries. By replacing η = β log k+log(1/δ)
(γ−1)4

and noting that there are k iterations completes
the proof.

2.4 Hardness of k-means with Margin

Finding k-means solution without the help of an oracle is generally computationally hard.
In this section, we will show that solving Euclidean k-means remains hard even if we know
that the optimal solution satisfies the γ-margin property for γ =

√
3.4. In particular, we

show the hardness for the case of k = Θ(nε) for any ε ∈ (0, 1).

In Section 2.3, we proposed a polynomial-time algorithm that could recover the target
clustering using O(k2 log k + k log n) queries, assuming that the clustering satisfies the γ-
margin property for γ > 1. Now assume that the oracle conforms to the optimal k-means
clustering solution. In this case, for 1 < γ ≤

√
3.4 ≈ 1.84, solving k-means clustering

would be NP-hard without queries, while it becomes efficiently solvable with the help of
an oracle 2.

Given a set of instances X ⊂ Rd, the k-means clustering problem is to find a clustering
C = {C1, . . . , Ck} which minimizes f(C) =

∑
Ci

min
µi∈Rd

∑
x∈Ci
‖x − µi‖2

2. The decision version

of k-means is, given some value L, is there a clustering C with cost ≤ L? The following
theorem is the main result of this section.

Theorem 2.8. Finding the optimal solution to Euclidean k-means objective function is
NP-hard when k = Θ(nε) for any ε ∈ (0, 1), even when the optimal solution satisfies the
γ-margin property for γ =

√
3.4.

2To be precise, note that the algorithm used for clustering with queries is probabilistic, while the lower
bound that we provide is for deterministic algorithms. However, this implies a lower bound for randomized
algorithms as well unless BPP 6= P
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This result extends the hardness result of [Ben-David and Reyzin, 2014] to the case of
Euclidean metric, rather than arbitrary one, and to the γ-margin condition (instead of the
α-center proximity there). In the subsequent sections, we provide the proof of the main
result.

2.4.1 Overview of the proof

Our method to prove Thm. 2.8 is based on the approach employed by [Vattani, 2009].
However, the original construction proposed in [Vattani, 2009] does not satisfy the γ-
margin property. Therefore, we have to modify the proof by setting up the parameters of
the construction more carefully.

To prove the theorem, we will provide a reduction from the problem of Exact Cover by
3-Sets (X3C) which is NP-Complete [Garey and Johnson, 2002], to the decision version of
k-means.

Definition 2.9 (X3C). Given a set U containing exactly 3m elements and a collection
S = {S1, . . . , Sl} of subsets of U such that each Si contains exactly three elements, does
there exist m elements in S such that their union is U?

We will show how to translate each instance of X3C, (U,S), to an instance of k-means
clustering in the Euclidean plane, X. In particular, X has a grid-like structure consisting of
l rows (one for each Si) and roughly 6m columns (corresponding to U) which are embedded
in the Euclidean plane. The special geometry of the embedding makes sure that any low-
cost k-means clustering of the points (where k is roughly 6ml) exhibits a certain structure.
In particular, any low-cost k-means clustering could cluster each row in only two ways; One
of these corresponds to Si being included in the cover, while the other means it should be
excluded. We will then show that U has a cover of size m if and only if X has a clustering
of cost less than a specific value L. Furthermore, our choice of embedding makes sure that
the optimal clustering satisfies the γ-margin property for γ =

√
3.4 ≈ 1.84.

2.4.2 Reduction design

Given an instance of X3C, that is the elements U = {1, . . . , 3m} and the collection S, we
construct a set of points X in the Euclidean plane which we want to cluster. Particularly,
X consists of a set of points Hl,m in a grid-like manner, and the sets Zi corresponding to
Si. In other words, X = Hl,m ∪ (∪l−1

i=1Zi).
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Figure 2.1: Geometry of Hl,m. This figure is similar to Fig. 1 in [Vattani, 2009]. Reading
from left to right, each row Ri consists of a diamond (si), 6m+ 1 bullets (ri,1, . . . , ri,6m+1),
and another diamond (fi). Each rows Gi consists of 3m circles (gi,1, . . . , gi,3m).

The set Hl,m is as described in Fig. 2.1. The row Ri is composed of 6m + 3 points
{si, ri,1, . . . , ri,6m+1, fi}. Row Gi is composed of 3m points {gi,1, . . . , gi,3m}. The distances
between the points are also shown in Fig. 2.1. Also, all these points have weight w, simply
meaning that each point is actually a set of w points on the same location.

Each set Zi is constructed based on Si. In particular, Zi = ∪j∈[3m]Bi,j, where Bi,j is
a subset of {xi,j, x′i,j, yi,j, y′i,j} and is constructed as follows: xi,j ∈ Bi,j iff j 6∈ Si, and
x′i,j ∈ Bi,j iff j ∈ Si. Similarly, yi,j ∈ Bi,j iff j 6∈ Si+1, and y′i,j ∈ Bi,j iff j ∈ Si+1.
Furthermore, xi,j, x

′
i,j, yi,j and y′i,j are specific locations as depicted in Fig. 2.2. In other

words, exactly one of the locations xi,j and x′i,j, and one of yi,j and y′i,j will be occupied.
We set the following parameters.

h =
√

5, d =
√

6, ε =
1

w2
, λ =

2√
3
h, k = (l − 1)3m+ l(3m+ 2)

L1 = (6m+ 3)wl, L2 = 4m(l − 1)wh2, L = L1 + L2 −mα,α =
d

w
− 1

2w3

In order to start, we first need to establish some properties about the Euclidean em-
bedding of X.

Definition 2.10 (A- and B-Clustering of Ri). A-Clustering of row Ri is a clustering in
the form of {{si}, {ri,1, ri,2}, . . . , {ri,6m−1, ri,6m}, {ri,6m+1, fi}}. B-Clustering of row Ri is
a clustering in the form of {{si, ri,1}, {ri,2, ri,3}, . . . , {ri,6m, ri,6m+1}, {fi}}.

Definition 2.11 (Good point for a cluster). A cluster C is good for a point z 6∈ C if
adding z to C increases cost by exactly 2w

3
h2
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Figure 2.2: The locations of xi,j, x
′
i,j, yi,j and y′i,j in the set Zi. Note that the point gi,j is

not vertically aligned with xi,j or ri,2j. This figure is adapted from [Vattani, 2009].

Given the above definition, the following simple observations can be made.

• The clusters {ri,2j−1, ri,2j}, {ri,2j, ri,2j+1} and {gi,j} are good for xi,j and yi−1,j.
• The clusters {ri,2j, ri,2j+1} and {gi,j} are good for x′i,j and y′i−1,j.

Definition 2.12 (Nice Clustering). A k-clusteirng is nice if every gi,j is a singleton cluster,
each Ri is grouped in the form of either an A-clustering or a B-clustering, and each point
in Zi is added to a cluster which is good for it.

It is straightforward to see that a row grouped in a A-clustering costs (6m + 3)w − α
while a row in B-clustering costs (6m+ 3)w. Hence, a nice clustering of Hl,m ∪ Z costs at
most L1 + L2. More specifically, if t rows are group in a A-clustering, the nice-clustering
costs L1 +L2− tα. Also, observe that any nice clustering of X has only the following four
different types of clusters.

(1) Type E - {ri,2j−1, ri,2j+1}
The cost of this cluster is 2w and the contribution of each location to the cost (i.e.,

cost
#locations

) is 2w
2

= w.

(2) Type F - {ri,2j−1, ri,2j, xi,j} or {ri,2j−1, ri,2j, yi−1,j} or {ri,2j, ri,2j+1, x
′
i,j}

or {ri,2j, ri,2j+1, y
′
i−1,j}. The cost of any cluster of this type is 2w(1 + h2

3
) and the

contribution of each location to the cost is at most 2w
9

(h2 + 3). This is equal to 16
9
w

because we had set h =
√

5.
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(3) Type I - {gi,j, xi,j} or {gi,j, x′i,j} or {gi,j, yi,j} or {gi,j, y′i,j}
The cost of any cluster of this type is 2

3
wh2 and the contribution to the cost of each

location is w
3
h2. For our choice of h, the contribution is 5

3
w.

(4) Type J - {si, ri,1} or {ri,6m+1, fi}
The cost of this cluster is 3w (or 3w− α) and the contribution of each location to the
cost is at most 1.5w.

Hence, observe that in a nice-clustering, any location contributes at most ≤ 16
9
w to the

total clustering cost. This observation will be useful in the proof of the lemma below.

Lemma 2.13. For large enough w = poly(l,m), any non-nice clustering of X = Hl,m ∪ Z
costs at least L+ w

3
.

Proof. We will show that any non-nice clustering C of X costs at least w
3

more than any
nice clustering. This will prove our result. The following cases are possible.

• C contains a cluster Ci of cardinality t > 6 (i.e., contains t weighted points)
Observe that any x ∈ Ci has at least t − 5 locations at a distance greater than 4 to
it, and 4 locations at a distance at least 2 to it. Hence, the cost of Ci is at least
w
2t

(42(t − 5) + 224)t = 8w(t − 4). Ci allows us to use at most t − 2 singletons. This is
because a nice clustering of these t + (t − 2) points uses at most t − 1 clusters and the
clustering C uses 1 + (t − 2) clusters for these points. The cost of the nice cluster on
these points is ≤ 16w

9
2(t − 1). While the non-nice clustering costs at least 8w(t − 4).

For t ≥ 6.4 =⇒ 8(t − 4) > 32
9

(t − 1) and the claim follows. Note that in this case the
difference in cost is at least 8w

3
.

• Contains a cluster of cardinality t = 6
Simple arguments show that amongst all clusters of cardinality 6, the following has the
minimum cost. Ci = {ri,2j−1, ri,2j, xi,j, yi−1,j, ri,2j+1, r2j+2}. The cost of this cluster is
176w

6
. Arguing as before, this allows us to use 4 singletons. Hence, a nice cluster on these

10 points costs at most 160w
9

. The difference of cost is at least 34w.
• Contains a cluster of cardinality t = 5

Simple arguments show that amongst all clusters of cardinality 5, the following has the
minimum cost. Ci = {ri,2j−1, ri,2j, xi,j, yi−1,j, ri,2j+1}. The cost of this cluster is 16w.
Arguing as before, this allows us to use 3 singletons. Hence, a nice cluster on these 8
points costs at most 16w 8

9
. The difference of cost is at least 16w

9
.

• Contains a cluster of cardinality t = 4
It is easy to see that amongst all clusters of cardinality 4, the following has the minimum
cost. Ci = {ri,2j−1, ri,2j, xi,j, ri,2j+1}. The cost of this cluster is 11w. Arguing as before,
this allows us to use 2 singletons. Hence, a nice cluster on these 6 points costs at most
32w

3
. The difference of cost is at least w

3
.
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• All the clusters have cardinality ≤ 3
Observe that amongst all non-nice clusters of cardinality 3, the following has the mini-
mum cost. Ci = {ri,2j−1, ri,2j, ri,2j+1}. The cost of this cluster is 8w. Arguing as before,
this allows us to use at most 1 more singleton. Hence, a nice cluster on these 4 points
costs at most 64w

9
. The difference of cost is at least 8w

9
.

It is also simple to see that any non-nice clustering of size 2 causes an increase in cost
of at least w.

Lemma 2.14. The set X = Hl,n ∪ Z has a k-clustering of cost less or equal to L if and
only if there is an exact cover for the X3C instance.

Proof. The proof is identical to the proof of Lemma 11 in [Vattani, 2009]. Note that the
parameters that we use are different with those utilized by [Vattani, 2009]; however, this
is not an issue, because we can invoke our lemma 2.13 instead of the analogous result in
Vattani (i.e., lemma 10 in Vattani’s paper). The sketch of the proof is that based on lemma
2.13, only nice clusterings of X cost ≤ L. On the other hand, a nice clustering corresponds
to an exact 3-set cover. Therefore, if there exists a clustering of X of cost ≤ L, then there
is an exact 3-set cover. The other way is simpler to proof; assume that there exists an
exact 3-set cover. Then, the corresponding construction of X makes sure that it will be
clustered nicely, and therefore will cost ≤ L.

Lemma 2.15. Any k-clustering of X = Hl,n ∪Z with cost ≤ L has the γ-margin property
where γ =

√
3.4. Furthermore, k = Θ(nε).

Proof. As argued before, any nice clustering has four different types of clusters. We will
calculate the minimum ratio ai = d(y,µ)

d(x,µ)
for each of these clusters Ci (where x ∈ Ci, y 6∈ Ci

and µ is mean of all the points in Ci.) Then, the minimum ai will give the desired γ.

(1) For Type E clusters ai = h/1 =
√

5.

(2) For Type F clusters. ai =

√
4+16(h2−1)

3

2h/3
=
√

17
5
≈ 1.84.

(3) For Type I clusters, standard calculation show that ai > 2.

(4) For Type J clusters ai =
2+
√
6

2√
6

2

> 2.

Furthurmore, |X | = (12lm+ 3l − 6m)w and k = 6lm+ 2l − 3m. Hence for w =poly(l,m)
our hardness result holds for k = |X |ε for any 0 < ε < 1.
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Lemmas 2.14 and 2.15 together show that X has a k-clustering of cost ≤ L satisfying the
γ-margin property (for γ =

√
3.4) if and only if there is an exact cover by 3-sets for the

X3C instance. This completes the proof of our main result (Thm. 2.8).

2.5 Conclusions and Future Directions

In this work we introduced a framework for semi-supervised clustering with same-cluster
queries. Those queries can be viewed as a natural way for a clustering mechanism to gain
domain knowledge, without which clustering is an under-defined task. The focus of our
analysis was the computational and query complexity of such problems, when the input
data set satisfies a clusterability condition – the γ-margin property.

Our main result shows that access to a limited number of such query answers (loga-
rithmic in the size of the data set and quadratic in the number of clusters) allows efficient
successful clustering under conditions (margin parameter between 1 and

√
3.4 ≈ 1.84) that

render the problem NP-hard without the help of such a query mechanism.

Subsequently, the framework of same-cluster queries have been applied to other clus-
tering problems as well. [Ailon et al., 2017] considered the problem of k-means clustering
without the margin assumption. They provide an efficient algorithm which finds an ap-
proximate solution using same-cluster queries. We can observe that even for this problem
same-cluster queries can help us tackle an otherwise computationally intractable problem.
[Mazumdar and Saha, 2017] considered the case of noisy oracles, where the experts’ an-
swers are correct with probability p. In the next chapter, we study a different clustering
problem where same-cluster queries can be useful.
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Chapter 3

Semi-supervised clustering for
deduplication

Modern businesses generate a tremendous amount of data. These are stored in large
databases which are then used to make many critical decisions. Therefore, ensuring the
quality of these datasets becomes extremely important. As the data accumulates from
multiple sources over time, many errors creep into the data. For example, many records
end up having duplicate entries. Record de-duplication is a central task in managing large
scale databases. The goal is to detect records in a database that correspond to the same
real word entity.

The problem of data de-duplication can be viewed as a clustering task. Here, the
goal is to put records corresponding to the same physical entity in the same cluster while
separating the records corresponding to different entities into different clusters. Clustering
for de-duplication has many characteristics which are different from standard clustering
problems. Many popular clustering algorithms like k-means or k-median receive as input
the value k, that is the number of clusters to output. This information is unknown in de-
duplication applications. In any dataset, the number of different-cluster pairs (i.e. different
entity pairs) is order of magnitude greater than the number of positive or same-cluster pairs
(i.e. same entity pairs). Hence, common machine learning tools of classification prediction
(learning a binary classifier over the set of pairs of instances) do not automatically transfer
to this domain as the dataset is heavily skewed towards the negative pairs.

The framework of correlation clustering is very natural for modelling the problem of
data de-duplication [Bansal et al., 2004]. Here, de-duplication is viewed as an optimization
problem over graphs. More formally, given a dataset X and a complete graph G over the
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set. The edges of the graph are labelled 0 or 1. An edge label of zero indicates that the
corresponding vertices have been deemed to be in different cluster while an edge label of
one indicates that the corresponding vertices should be in the same cluster. The motivation
for edge labelling is the following. Often the practitioner can design a pairwise similarity
function over the pairs of points. The pairs whose similarity is above a certain threshold
are deemed as positive (or same-cluster) and the remaining pairs are deemed to be negative
(or different-cluster). Sometimes, the similarity metric is also learned from training data.

Given the graph, the goal of correlation clustering is to find a clustering of the dataset
which correlates ‘as much as possible’ with the given edges. In other words, find a clustering
which minimizes the correlation loss w.r.t the given edges. Correlation loss is defined as the
sum of the number of zero edges within a cluster plus the number of one edges across differ-
ent clusters. However, solving this optimization problem is NP-hard [Bansal et al., 2004].

In this chapter, we offer a formal modelling of such record de-duplication tasks. Our
framework is the same as correlation clustering but with the added promise that the input
graph edges E is ‘close to’ the optimal correlation clustering of the given dataset. We
analyse the computational complexity of this problem and show that even under strong
promise, correlation clustering is NP-hard. Moreover, the problem remains NP-hard (as-
suming the ETH hypothesis) even when we are allowed to make queries to a human expert
(or an oracle) as long as the number of queries is not too large (sub-linear in the number
of points in the dataset).

Given these negative results, we introduce the framework of restricted correlation clus-
tering (RCC). This framework has two important differences from the standard (and
promise) correlation clustering formulation. Firstly, the optimization problem is restricted
over a given class F of clusterings. Secondly, the goal is to find a clustering which correlates
as much as possible with the unknown target (or ground truth) clustering C∗. That is, C∗

is the clustering where only records corresponding to same entity are in the same cluster.
We offer an algorithmic approach (which uses the help of an oracle) with success guarantees
for the restricted version. The ‘success guarantee’ depends on the complexity of the class F
(measured by VC-Dim(F)) as well as the ‘closeness’ of the distance (or similarity) metric d
to the target clustering. We complement our theoretical results by carrying out extensive
experimental evaluation of our framework on a diverse class of clustering algorithms and
across multiple real world datasets.
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3.1 Related Work

The most relevant work is the framework of correlation clustering that we discussed in
the previous section [Bansal et al., 2004]. Other variations of correlation clustering have
been considered. For example [Demaine et al., 2006], consider a problem where the edges
can be labelled by a real number instead of just 0 or 1. Edges with large positive weights
encourage those vertices to be in the same cluster while edges with large negative weights
encourage those points to be in different clusters. They showed that the problem is NP-
hard and gave a O(log n) approximation to the weighted correlation clustering problem.
[Charikar et al., 2005] made several contributions to the correlation clustering problem.
For the problem of minimizing the correlation clustering loss (for unweighted complete
graphs), they gave an algorithm with factor 4 approximation. They also proved that the
minimization problem is APX-Hard.

More recently, [Ailon et al., 2018] considered the problem of correlation clustering in
the presence of an oracle. If the number of clusters k is known, they proposed an algorithm
which makes O(k14 log n) queries to the oracle and finds a (1 + ε)-approximation to the
correlation clustering problem. They showed that the problem is NP-hard to approximate
with o

(
k

poly log k

)
queries to an oracle. In this work, we obtain similar results for the promise

correlation clustering problem.

Supervision in clustering has been addressed before. For example, [Kulis et al., 2009,
Basu et al., 2004, Basu et al., 2002] considered link/don’t-link constraints. This is a form
of non-interactive clustering where the algorithm gets as input a list of pairs which should
be in the same cluster and a list pairs which should be in different clusters. The framework
of interactive clustering was developed by [Balcan and Blum, 2008] where the supervision
is provided in the form of split/merge queries. The algorithm gives the current clustering
to the oracle. The oracle responds by telling the which clusters to merge and which clusters
to split.

[Ashtiani et al., 2016] developed the framework of same-cluster queries which we use
in this chapter. At any given instant, the clustering algorithm asks the same-cluster or-
acle about two points in the dataset. The oracle replies by answering either ‘yes’ or ‘no’
depending upon whether the two points lie in the same or different clusters.

On de-duplication side, most prevalent are approaches that are based on designing
a similarity measure (or distance) over the records, such that records that are highly
similar according to that measure are likely to be duplicates and records that measure
as significantly dissimilar are likely to represent different entities. For example, to han-
dle duplicate records created due typographical mistakes, many character-based similarity
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metrics have been considered. Examples of such metrics include the edit or levenshtein dis-
tance [Levenshtein, 1966], smith-waterman distance [Smith and Waterman, 1981] and jaro
distance metric [Jaro, 1980]. Token-based similarity metrics try to handle rearrangement
of words, for example [Monge et al., 1996] and [Cohen, 1998]. Other techniques include
phonetic-based metrics and numerical metrics (to handle numeric data). A nice overview
of these methods can be found in [Elmagarmid et al., 2007].

While the above approaches relied on designing a good similarity metric, some works
try to ‘learn’ the distance function from a labelled training dataset of pairs of records.
Examples of such works include [Cochinwala et al., 2001] and [Bilenko et al., 2003]. Clus-
tering for de-duplication has been mostly addressed in application oriented works. One
work assumes that the duplicate records are transitive [Hernández and Stolfo, 1995]. The
clustering problem now reduces to finding the connected components in a graph. An exten-
sive experimental evaluation of different graph-based clustering algorithms on a simulated
dataset of strings was carried out by [Hassanzadeh et al., 2009].

3.2 Preliminaries

Given X, a clustering C of the set X partitions it into k disjoint subsets or clusters. The
clustering C can also be viewed as a {0, 1}-function over the domain X [2] := {(x1, x2) : x1 6=
x2}. Here, C(x1, x2) = 1 iff x1, x2 belong to the same cluster according to C. Similarly, we
also view the edges of a graph G = (X,E) as a {0, 1}-function over X [2].

We allow a clustering algorithm to make queries to a human oracle in the following
way.

Definition 3.1 ( Same-cluster oracle [Ashtiani et al., 2016]). Given a set X and an un-
known target clustering C∗. A same-cluster C∗-oracle receives a pair (x1, x2) ∈ X [2] as
input and outputs 1 if and only if x1, x2 belong to the same cluster according to C∗.

From the perspective of de-duplication, a same-cluster oracle receives two records x1 and
x2. The oracle returns 1 if x1 and x2 correspond to the same real-world entity. Otherwise,
the oracle responds 0.

Definition 3.2 (Correlation loss[Bansal et al., 2004]). Given graph G = (X,E) where X
is the set of vertices (the given dataset to be clustered) and E is the set of edges. The
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correlation loss of a clustering C w.r.t the edges E is defined as

corrLE(C) = corrNE(C) + corrPE(C), where

corrNE(C) = |{(x, y) : C(x, y) = 1 and E(x, y) = 0}|,
corrPE(C) = |{(x, y) : C(x, y) = 0 and E(x, y) = 1}| (3.1)

A weighted version of the loss function places weights of w1 and w2 on the two terms and
is defined as

corrLwE(C) = w1 corrNE(C) + w2 corrPE(C) (3.2)

The goal of correlation clustering is to find a clustering which minimizes the (weighted)
correlation loss. We also consider the normalized version of this loss function w.r.t a target
clustering C∗ (rather than the edges E).

Definition 3.3 (Normalized correlation loss). Given domain X, a target clustering C∗

and a parameter µ. The loss of a clustering C w.r.t the target C∗ is defined as

LC∗(C) = µ LP+(C) + (1− µ) LP−(C), where

LP+(C) = P
(x,y)∼P+

[
C(x, y) = 0],

LP−(C) = P
(x,y)∼P−

[
C(x, y) = 1] (3.3)

where P+ is the uniform distribution over X
[2]
+ = {(x, y) : C∗(x, y) = 1} and P− is the

uniform distribution over X
[2]
− = {(x, y) : C∗(x, y) = 0}.

The normalized correlation loss measures two quantities for the clustering C. The first
is the fraction of the true positive pairs that C gets wrong (or loss over the positive pairs).
The second is the fraction of true negative pairs that C gets wrong (or the loss over the
negative pairs). It then obtains a weighted sum of the two losses.

Lets observe the relation between Defns. 3.2 and 3.3. Define γ0 := P[C∗(x, y) = 1],
that is the probability of true positive (or same-cluster pairs) in the dataset. Using the
notation of Defn. 3.2, we see that corrPC∗(C) = γ0|X [2]|LP+(C) and corrNC∗(C) =
(1 − γ0)|X [2]|LP−(C). Normalising by |X [2]| and choosing µ = w2γ0

w1(1−γ0)+w2γ0
gives us the

normalized version of the loss function.
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Definition 3.4. Given a metric space (X, d), a target clustering C∗ and a parameter λ.
We say that the metric d is (α, β)-informative w.r.t C∗ and λ if

P
(x,y)∼U2

[
d(x, y) > λ | C∗(x, y) = 1

]
≤ α (3.4)

P
(x,y)∼U2

[
C∗(x, y) = 1 | d(x, y) ≤ λ

]
≥ β (3.5)

Here U2 is the uniform distribution over X [2].

In deduplication applications, often the distance function is such that pairs with dis-
tance within a certain threshold are likely to be in the same cluster. The definition of an
informative metric formalizes this intuition. It says that most of the true positive pairs
have a distance of at most λ between them. Also, amongst all pairs with distance ≤ λ, at
least a β fraction of them belong to the same cluster.

Definition 3.5 (γ-skewed). Given X and a target clustering C∗. We say that X is γ-
skewed w.r.t C∗ if

P
(x,y)∼U2

[
C∗(x, y) = 1

]
≤ γ

In de-duplication applications, most of the pairs are negative (or belong to different
clusters). The above definition states this property formally. In the next section, we
introduce our framework of promise correlation clustering and discuss the computational
complexity of the problem both in the absence and presence of an oracle.

Definition 3.6 (VC-dimension). Given a domain X and a hypothesis class H. We say
that a set C ⊂ X is shattered by H if |HC | = 2|C|. That is, H restricted to C is the set of
all possible functions from C to {0, 1}. The vc dimension of H denoted by VC-Dim(H) is
the maximum size of C ⊂ X which can be shattered by H.

VC-Dim(H) = max
C⊂X

H shatters C

3.3 Promise Correlation Clustering

Definition 3.7 (Promise correlation clustering (PCC)). Given a clustering instance G =
(X,E). Let C∗ be such that

C∗ = arg min
C∈F

corrLE(C) (3.6)
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where F is the set of all possible clusterings C such that M(C) ≤ p (where that M(C) de-
notes the maximum size of a cluster in the clustering C). Given that E is (α, β)-informative
w.r.t C∗. Find the clustering C∗.

When the edges E correspond to a clustering C then β = 1 and α = 0. We show in
the subsequent sections that even for this ‘restricted’ class of clusterings (when the size of
the maximum cluster is at most a constant M) and given the prior knowledge, PCC is still
NP-hard. Furthermore, PCC is NP-hard even when we are allowed to make o(|X|) queries
to a C∗-oracle.

3.3.1 PCC is NP-hard

Theorem 3.8. Finding the optimal solution to the Promise Correlation Clustering problem
is NP-hard for all p ≥ 3 and for α = 0 and β = 1

2
.

To prove the result, we will use a reduction from exact cover by 3-sets problem which is
known to be NP-hard.

(X3C) Given a universe of elements U = {x1, . . . , x3q} and a collections of subsets
S = {S1, . . . , Sm}. Each Si ⊂ U and contains exactly three elements. Does there exist
S ′ ⊆ S such that each element of U occurs exactly once in S ′?

This decision problem is known to be NP-hard [Garey and Johnson, 2002]. We will
now reduce an instance of X3C to the promise correlation clustering problem using local
replacement described in Fig. 3.1. The details of the construction are as follows. For
every element x ∈ U , we add a corresponding vertex x ∈ V . For every three set Si =
{xi1, xi2, xi3}, we construct Bij for i ≤ t and j ≤ p. Here, t is a constant which will
be specified later. Each Bij is a clique of size p. The ‘connection’ between the different
blocks are specified in Fig. 3.1. Let A be an algorithm which solves the promise problem
described in Eqn. 3.6. Then, we can use this algorithm to decide exact cover by three sets
as follows.

If A outputs a clustering C such that all the clusters have size exactly p and EC makes
no negative errors w.r.t E (that is α(EC) = 0) then output YES. Otherwise, output NO.
Next, we will prove that this procedure decides X3C.

Let there exists an exact cover for the X3C instance. Let C be the clustering corre-
sponding to the exact cover. That is, the edges colored blue and black correspond to this
clustering and the corresponding vertices are in the same cluster (Fig. 3.1). Note that this
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xi1 xi2 xi3

...

...

...

...

B11

B21

Bt1

B1p

B2p

Btp

Figure 3.1: Part of graph G constructed for the subset Si = {xi1, xi2, xi3}. The graph is
constructed by local replacement for p = 4. The vertices labeled xij correspond to the
elements in the universe U . If Si is included in the exact cover then the edges colored
black and the edges colored blue represent the corresponding clustering of this part of the
graph G. If Si is not included in the exact cover then the edges colored red and the edges
colored black represent the clustering of this part of the graph.

clustering makes no negative errors. Furthermore, each point is in a cluster of size exactly
p. Thus, the positive error corresponding to any vertex is the degree of that vertex minus
p− 1. Since, the size of a cluster is at most p, this is the minimum possible positive error
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for any vertex. Hence, any other clustering strictly makes more positive errors than C.

It is easy to see from the construction that if A finds a clustering which has no negative
errors and all the clusters have size p, then this corresponds to exact cover of the X3C
instance and hence we output YES. If this does not happen then there does not exist any
exact cover for (U, S). This is because if there was an exact cover then the corresponding
clustering would satisfy our condition. Thus, A decides X3C. Since, X3C is NP-hard, no
polynomial time algorithm A exists unless P = NP .

In the construction, for each clause, we have p2t+ (p− 3) vertices and a vertex for each
of the variables. Therefore, |V | = m(p2t + (p − 3)) + 3q and |E| = pt(

(
p
2

)
+ p − 1) +

(
p
2

)
.

Consider a clustering C which places all the xi’s and ri’s in singleton clusters and places
rest of the points in clusters of size p. For t ≥ 2,

β =
pt
(
p
2

)
pt(
(
p
2

)
+ p− 1) +

(
p
2

) =
1

1 + 2
p

+ 1
pt

>
1

2
and α = 0

3.3.2 Hardness of PCC in the presence of an oracle

In the previous sections, we have shown that the PCC problem is NP-hard without queries.
It is trivial to see that if α = 0 then making β|X| queries to the same-cluster oracle allows
us to solve (in polynomial time) the Promise Correlation Clustering problem for all p. In
this section, we prove that the linear dependence on n = |X| is tight if we assume that the
exponential time hypothesis (ETH) is correct.

ETH is an assumption about computational hardness of the 3SAT problem. The non-
uniform version of ETH (which we will use in this section) posits that there does not exist
an algorithm that can solve 3-SAT in 2o(n) time. We prove that if the exponential time
hypothesis (ETH) holds then any algorithm that runs in polynomial time makes at least
Ω(n) same-cluster queries. The main idea is to reduce 3SAT to our problem. We do this
by the following sequence of reductions, 3SAT to 3DM to X3C to PCC. These reductions
show that (under ETH) the running time of PCC is 2o(n). Using a ‘simulation trick’ we
then prove that any query-based algorithm for PCC needs to make at least Ω(n) queries.

Theorem 3.9. Given that the Exponential Time Hypothesis (ETH) holds then any algo-
rithm for the Promise Correlation Clustering problem that runs in polynomial time makes
Ω(|X|) same-cluster queries for all p ≥ 3 and for α = 0 and β = 1

2
.

We will now prove the above theorem. We state the definition of the different problems
used in the reduction.
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Definition 3.10. 3-SAT.
Input: A boolean formulae φ in 3CNF with n literals and m clauses. Each clause has
exactly three literals.
Output: YES if φ is satisfiable, NO otherwise.

Definition 3.11. 3 Dimensional Matching (3DM)
Input: Sets W,X and Y and a set of matches M ⊆ W ×X × Y of size m.
Output: YES if there exists M ′ ⊆ M such that each element of W,X, Y appears exactly
once in M ′. NO otherwise.

We first reduce 3-SAT to 3-dimensional matching problem. 3DM is already known to
be NP-hard. However, the standard reduction of 3-SAT to 3DM constructs a set with
|M | ∈ Θ(m2n2). Hence, using the standard reduction, the exponential time hypothesis

would imply there does not exist an algorithm for 3DM which runs in Ω(m
1
4 ). Our reduction

is based on the standard reduction. However, we make some clever optimizations especially
in the way we encode the clauses. This helps us improve the lower bound to Ω(m).
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tf ′1

tf2

tf ′2
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Figure 3.2: Part of graph G constructed for the literal x1. The figure is an illustration for
when x1 is part of four different clauses. The triangles (or hyper-edge) (ai, bi, ci) capture
the case when x1 is true and the other triangle (bi, c

′
i, ai+1) captures the case when x1 is

false. Assuming that a clause Cj = {x1, x2, x3}, the hyper-edges containing tfi, tf
′
i and

t1, t
′
1 capture different settings. The hyper-edges containing t1, t

′
1 ensure that at least one

of the literals in the clause is true. The other two ensure that two variables can take either
true or false values.

Our gadget is described in Fig. 3.2. For each literal xi, let mi be the number of clauses
in which the literal is present. We construct a “truth-setting” component containing 2mi
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hyper-edges (or triangles). We add the following hyper-edges to M .

{(ak[i], bk[i], ck[i]) : 1 ≤ k ≤ mi} ∪ {(ak+1[i], bk[i], c
′
k[i]) : 1 ≤ k ≤ mi}

Note that one of (ak, bk, ck) or (ak+1, bk, c
′
k) have to be selected in a matching M ′. If

the former is selected that corresponds to the variable xi being assigned true, the latter
corresponds to false. This part is the same as the standard construction.

For every clause Cj = {x1, x2, x3} we add three types of hyper-edges. The first type
ensures that at least one of the literals is true.

{(ck[i], t1[j], t′1[j]) : x′i ∈ Cj} ∪ {(c′k[i], t1[j], t′1[j]) : xi ∈ Cj}

The other two types of hyper-edges (conected to the tfi’s) say that two of the literals can
be either true or false. Hence, we connect them to both ck and c′k

{(ck[i], tf1[j], tf ′1[j]) : x′i or xi ∈ Cj} ∪ {(ck[i], tf2[j], tf ′2[j]) : xi or x′i ∈ Cj}
∪ {(c′k[i], tf1[j], tf ′1[j]) : x′i or xi ∈ Cj} ∪ {(c′k[i], tf2[j], tf ′2[j]) : xi or x′i ∈ Cj}

Note that in the construction k refers to the index of the clause Cj in the truth-setting
component corresponding to the literal xi. Using the above construction, we get that

W = {ck[i], c′k[i]}
X = {ak[i]} ∪ {t1[j], tf1[j], tf2[j]}
Y = {bk[i]} ∪ {t′1[j], tf ′1[j], tf ′2[j]}

Hence, we see that |W | = 2
∑

imi = 6m. Now, |X| = |Y | = ∑
imi + 3m = 6m. And, we

have that |M | = 2
∑

imi + 15m = 21m. Thus, we see that this construction is linear in
the number of clauses.

Now, if the 3-SAT formula φ is satisfiable then there exists a matching M ′ for the 3DM
problem. If a variable xi = T in the assignment then add (ck[i], ak[i], bk[i]) to M ′ else add
(c′k[i], ak+1[i], bk[i]). For every clause Cj, let xi (or x′i) be the variable which is set to true
in that clause. Add (c′k[i], t1[j], t′1[j]) (or (ck[i], t1[j], t′1[j])) to M ′. For the remaining two
clauses, add the hyper-edges containing tf1[j] and tf2[j] depending upon their assignments.
Clearly, M ′ is a matching.

Now, the proof for the other direction is similar. If there exists a matching, then one
of (ak, bk, ck) or (ak+1, bk, c

′
k) have to be selected in a matching M ′. This defines a truth

assignment of the variables. Now, the construction of the clause hyper-edges ensures that
every clause is satisfiable.
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Theorem 3.12. If the exponential time hypothesis holds then there does not exist an algo-
rithm which decides the three dimensional matching problem 3DM and runs in time 2o(m).

Corollary 3.13. If the exponential time hypothesis holds then there does not exist an
algorithm which decides exact cover by 3-sets problem (X3C) and runs in time 2o(m).

Hence, from the discussion in this section, we know that X3C is not only NP-hard but
the running time is lower bounded by Ω(2m). Now, using the same reduction of X3C to
PCC as before, gives the same lower bound on the running time of PCC. Using this, we
can now lower bound the number of queries required by PCC.

For the sake of contradiction, let us assume that there exists an algorithm which solves
PCC in polynomial time by making o(n) same-cluster queries (n is the number of vertices).
Then by simulating all possible answers for the oracle, we get a non-query algorithm which
solves PCC in 2o(n). However, combining Cor. 3.13 with the reduction of X3C to PCC,
we get that any algorithm that solves PCC takes Ω(2n). Hence, no such query algorithm
exists.

3.4 Restricted Correlation Clustering

The results in the previous section show that even under strong promise, correlation clus-
tering is still NP-hard. Furthermore, it is hard even when given access to an oracle.

Observe that the requirement of correlation clustering is very demanding. The algo-
rithm is required to find a clustering over the set of all possible clusterings of the domain
X. In the restricted framework, we change the goalpost slightly. The algorithm is now
required to find a clustering C from a class F (of clusterings of X).

Definition 3.14 (Restricted correlation clustering (RCC)). Given a clustering instance
(X, d), an unknown target clustering C∗ and weighting parameter µ. Given a finite class
F of clusterings of the set X. Find C ∈ F such that

Ĉ = arg min
C∈F

LC∗(C) (3.7)

3.4.1 Relation to practical applications

Consider the following scenario from the practitioner’s point of view. The practitioner
wants to implement correlation clustering. However, he/she knows that the problem is NP-
hard. The practitioner has prior knowledge that one of the many hierarchical clustering
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algorithms (like single-linkage or max-linkage or average-linkage or complete-linkage) is
suitable for his/her dataset1. A hierarchical clustering algorithm outputs a clustering tree.
Every pruning of the tree is a clustering of the original dataset. He/she would now like
to know which amongst these clustering algorithms is suitable for his task. After having
fixed the algorithm, the practitioner would then like to know which amongst these many
prunings he/she should chose.

The framework of restricted correlation clustering is applicable in such scenarios. When
F = {T} where T is a hierarchical clustering of X, the goal of RCC is to find the pruning
from the tree T which has minimum normalized correlation loss. When F = {T1, . . . , Ts}
where each Ti is a hierarchical clustering of X. Then the goal of RCC is to find a pruning
with minimum loss amongst the prunings of all the s trees. Note that finding the pruning
of the tree is the same as choosing the stopping point criteria when running linkage-
based algorithms. Hence, the framework can help us choose the right stopping point for a
particular hierarchical clustering algorithm.

If F = {C1, . . . , Cs} where each Ci is a clustering of the set X then the goal is to find
a clustering with minimum loss. Note that F can be any of the examples as defined above
or a union of these or some other finite class.

3.4.2 Solution strategy

In the RCC framework, we wish to minimize the loss which depends on the unknown
target clustering C∗. However, in the absence of any information about C∗, there is no
hope to find a clustering that minimizes LC∗ . Hence, to solve the RCC problem we allow
the clustering (or learning) algorithm to make queries to a C∗-oracle.

Our goal is to calculate quantities LP+(C) and LP−(C) (Defn. 3.3) for each of the
clusterings C ∈ F and then choose the clustering with minimum loss. To calculate both
these quantities exactly, for each pair of points in our dataset, we would need to know
whether they belong to the same-cluster or different-cluster. In other words, we would
need access to the complete ground truth clustering C∗. Thus, instead of calculating these
two quantities exactly we want to estimate them from a small sample, sampled according
to the distributions P+ and P−.

One strategy to estimate LP+(C) (and LP−) could be the following. Sample a set S+

(and S−) of pairs using the distribution P+ (and P−). Compute the fraction of mistakes
made by each clustering C on S+ (and S−). Using the standard results from vc-dimension

1A nice overview of hierarchical clustering techniques can be found in [Maimon and Browarnik, 2009]
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theory (Thm. 1.2), it is known that using this procedure we can estimate LP+ for each of
the clusterings C ∈ F . Similarly, we could also estimate LP− . Using the two estimates,
we could then estimate the loss LC∗ for each of the clusterings in our class and choose the
clustering which has the smallest loss.

The main problem in this approach is that the distributions P+ and P− are unknown
(as the target clustering C∗ is not known). In Section 3.5, we discuss two approaches
which (approximately) sample according to these distributions. Then in Section 3.6, we
show how these sampling procedures can be used to estimate LC∗ for all the clusterings in
our class F .

3.5 Sampling for RCC

We first describe the procedure P0 which samples according to P−. Then we describe the
procedure P1 which samples approximately according to the distribution P+.

Algorithm 2: Procedure P0 for negative pairs

Input: A set X and a C∗-oracle.
Output: (x, y) such that C∗(x, y) = 0

1 while TRUE do
2 Sample (x, y) using U2

3 if C∗(x, y) = 0 then
4 Output (x, y)
5 end

6 end

P0 is a straightforward rejection sampling procedure. It samples a pair uniformly at
random. Then using the oracle it checks if the sampled pair is negative and terminates if
such a pair is found. If not then the process is repeated again.

Lemma 3.15. Given X and a C∗-oracle. The procedure P0 samples a pair (x, y) according
to the distribution P−.

Proof. The probability that a negative pair is sampled during a trial is U2(X [2]−) =: q.
Fix a negative pair (x, y) and let U2(x, y) = p. Hence, the probability that the pair (x, y)

is sampled = p+ (1− q)p+ (1− q)2p+ . . . = p
∑∞

i=0(1− q)i = p
q

= U2(x,y)

U2(X[2]−)
= P−(x, y).

34



Note that to sample one negative pair, procedure P0 might need to ask more than one
same-cluster query. However, since our input X is γ-skewed, we ‘expect’ the number of
‘extra’ queries to be ‘small’.

Lemma 3.16. Given set X and a C∗-oracle. Let X be γ-skewed and Let q be the number
of same-cluster queries made by P0 to the C∗-oracle. Then, E[q] ≤ 1

1−γ .

Proof. Let p denote the probability that a negative pair is sampled during an iteration.
We know that p ≥ (1− γ). Let q be a random variable denoting the number of iterations
(or trials) before a negative pair is sampled. Then, q is a geometric random variable.
E[q] = 1

p
≤ 1

1−γ .

Lemma 3.16 shows that for γ < 1
2
, to sample a negative pair, procedure P0 makes at

most two queries to the oracle in expectation. Moreover, the number of queries is tight
around the mean. Note that this sampling strategy is not useful for positive pairs. This
is because the fraction of positive pairs in the dataset is small. Hence, to sample a single
positive pair we would need to make ‘many’ same-cluster queries.

3.5.1 Sampling positive pairs for general metrics

Algorithm 3: Sampling procedure P11 for positive pairs (general metrics)

Input: A set X, a C∗-oracle and a parameter λ.
Output: One pair (x, y) ∈ X [2] such that C∗(x, y) = 1

1 Pre-compute: For all x ∈ X, compute Sx := {y : d(x, y) ≤ λ}.
2 while TRUE do
3 Sample x ∈ X with probability ∝ |Sx|.
4 Sample y uniformly at random from Sx.
5 if C∗(x, y) = 1 then
6 Output (x, y).
7 end

8 end

Given a clustering instance (X, d). Assume that the metric d is (α, β)-informative w.r.t
target C∗ and parameter λ. This means that ‘most’ of the positive pairs are within distance
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λ. Our sampling strategy is to “construct” a set K = {(x, y) ∈ X2 : d(x, y) ≤ λ} and then
sample uniformly from this set.

The sampling algorithm is described in Alg. 3. In the pre-compute stage, for all
points x we construct its set of ‘neighbours’ (Sx). We then choose a point with probability
proportional to the size of its neighbour-set and then choose the second point uniformly
at random from amongst its neighbours. This guarantees that we sample uniformly from
the set K.

Below we prove that the procedure P11 samples according to a distribution T which
approximates P+. The ideas used in the proof could actually be used to show that the total
variation distance between T and P+ is at most 2α. Thm. 3.17 could then be obtained
as a corollary of the more general theorem. However, for our purposes the result of Thm.
3.17 suffices and we don’t need the more general statement.

Theorem 3.17. Given set (X, d), a C∗-oracle and parameter λ. Let d be (α, β)-informative
w.r.t λ and C∗. Then the sampling procedure P11 induces a distribution T over X [2] such
that for any labelling function h over X [2] we have that∣∣∣ P

(x,y)∼P+

[
h(x, y) = 0]− P

(x,y)∼T

[
h(x, y) = 0]

∣∣∣ ≤ 2α.

Proof. Let K = {(x, y) : d(x, y) ≤ λ} and D be a distribution over K defined by D(x, y) :=
|Sx|∑
x′ |Sx′ |

. 1
|Sx| = U2(x,y)

U2(K)
. Let K+ = {(x, y) : d(x, y) ≤ λ and C∗(x, y) = 1}. Let T be the

distribution induced by P11. It’s easy to see that for (x, y) 6∈ K+, T (x, y) = 0. For
(x, y) ∈ K+, let D(x, y) = p and D(K+) = q. Then, T (x, y) = p + (1 − q)p + . . . = p

q
=

D(x,y)
D(K+)

= U2(x,y)
U2(K+)

. Using Defn. 3.4, we know that

1− α ≤ P
(x,y)∼U2

[d(x, y) ≤ λ | C∗(x, y) = 1]

=

P
(x,y)∼U2

[d(x, y) ≤ λ,C∗(x, y) = 1]

P
(x,y)∼U2

[C∗(x, y) = 1]
=

U2(K+)

U2(X [2]+)
(3.8)
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Now, we will use the above inequality to prove our result.

P
(x,y)∼T

[
h(x, y) = 0] =

∑
(x,y)∈K+

T (x, y)1h(x,y)=0

=
∑

(x,y)∈K+

U2(x, y)

U2(K+)
1h(x,y)=0 ≤

1

1− α
∑

(x,y)∈K+

U2(x, y)

U2(X [2]+)
1h=0

≤ (1 + 2α)
∑

(x,y)∈X2
+

P+(x, y)1h(x,y)=0 = (1 + 2α) P
(x,y)∼P+

[
h(x, y) = 0]

Now, for the other direction, we have that

P
(x,y)∼P+

[
h(x, y) = 0] =

∑
(x,y):X[2]+

P+(x, y)1h(x,y)=0

=
∑

(x,y)∈K+

U2(x, y)

U2(X [2]+)
1h(x,y)=0 +

∑
(x,y)∈X2

+\K+

U2(x, y)

U2(X [2]+)
1h=0

≤
∑

(x,y)∈K+

U2(x, y)

U2(K+)
1h(x,y)=0 +

∑
(x,y)∈X[2]+\K+

U2(x, y)

U2(X [2]+)
1h=0

≤ P
(x,y)∼T

[
h(x, y) = 0] +

∑
(x,y)∈X[2]+\K+

U2(x, y)

U2(X [2]+)
≤ P

(x,y)∼T

[
h(x, y) = 0] + α

Hence, we have shown that both the directions hold and this completes the proof of the
lemma. Note that this shows that our sampling procedure approximates the distribution
P+. It is easy to see that pre-computing Sx for all x takes |X|2 time. Once the pre-
computation is done, the sampling can be done in constant time.

Note that to sample one positive pair, procedure P11 might need to ask more than one
same-cluster query. However, since the metric d is β-informative, we ‘expect’ the number
of ‘extra’ queries to be ‘small’.

Lemma 3.18. Given set (X, d), a C∗-oracle and a parameter λ. Let d be β-informative
w.r.t λ and let q be the number of same-cluster queries made by P11 to the C∗-oracle. Then,
E[q] ≤ 1

β
.

Proof. Let p denote the probability that a positive pair is sampled during an iteration.
We know that p ≥ β. Let q be a random variable denoting the number of iterations
(or trials) before a positive pair is sampled. Then, q is a geometric random variable.
E[q] = 1

p
≤ 1

β
.
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3.5.2 Sampling positive pairs for LSHable metrics

The strategy in the previous section was to construct a set K = {(x, y) : d(x, y) ≤ λ} and
then sample uniformly from the set K till a positive sample is found. Since most of the
positive pairs have distance ≤ λ, this sampling procedure approximates P+ (the uniform
distribution over the set of true positives). However, constructing the set K requires
Θ(|X|2) pre-processing time. This can be prohibitive in many practical applications.

In this section, we show that if the metric d has some additional structure (is hashable)
then we can reduce the pre-processing time to O(|X|). We develop a sampling procedure
P12 using techniques from locality sensitive hashing (LSH) combined with rejection sam-
pling. We will show that P12 needs only linear pre-processing time (to build the hash
maps) and outputs a positive pair sampled approximately according to P+. Note that it is
still an open question whether this pre-processing time can be reduced further to o(|X|).

Locality Sensitive Hashing (LSH)

Before we describe our technique, we introduce some relevant notation. A hash function
h : X → N maps the set X onto the set of natural numbers. Thus, a hashing function
partitions the input of size n into m ≤ n different buckets (or blocks) B1, . . . , Bm where
each Bi = {x : h(x) = bi} for some bi. Given (X, d), a Locality Sensitive Hashing (LSH)
scheme w.r.t the distance metric d (or a similarity metric) aims to partition X into buckets
such that ‘similar’ items map to the same bucket with high probability and ‘dissimilar’
items end up in different buckets with high probability. For example, MinHash scheme
w.r.t Jaccard similarity measure [Broder et al., 2000, Broder, 1997] is a common LSH-
based hashing scheme. Another example is SimHash scheme w.r.t hamming similarity
measure [Charikar, 2002].

Definition 3.19 (LSH-based hashing algorithm). Given a set (X, d) and parameter s. An
LSH-based hashing algorithm (or scheme) A outputs s different partitions P1, . . . , Ps of X.
Denote Pi = {Bi1, . . . , Bini}. We say that A is (ε, ε′)-tight w.r.t d and λ, λ′ if

• If d(x, y) ≤ λ then P[b(x, y) = 1] > 1− ε

• If d(x, y) > λ′ then P[b(x, y) = 1] < ε′

where b(x, y) = 1 if and only if x, y are together in at least one of the blocks Bij.

Infact, we show that by choosing s (and other parameters) appropriately, we can con-
struct LSH schemes which are (ε, ε′ = s ln(1+ε))-tight w.r.t λ and λ′ = 2λ ln(1+1/ε). Thus,
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for simplicity of notation, we say that A is ε-tight w.r.t λ to mean that it is (ε, ε′)-tight
w.r.t λ, λ′ as chosen above.

Throughout the remainder of this section, we will assume that the hashing scheme satisfies
ε-tightness. In the appendix, we provide details about why this assumption is justified.
However, these results are orthogonal to the current discussion. Hence, we omit it here
and only include it in the appendix (Thm. B.3).

We now describe our sampling procedure. Let B := {P1, . . . , Ps} = {Bij : 1 ≤ i ≤ s, 1 ≤
j ≤ |Pi|} be the set of blocks outputted by the hashing scheme and let Q := {(x, y) ∈ Bij}.
We first choose a block B ∈ B with probability proportional to |B|2 (the number of pairs
in the block). Then we sample a pair uniformly at random from this block B. Note that
this strategy doesn’t give us a uniform sample from Q. This is because a pair (x, y) may be
present in multiple blocks. To get the uniform sample, we reject the pair with probability
inversely proportional to a(x, y) (the number of blocks in which x, y are together). This
approach based on rejection sampling ensures that we have a uniform sample from Q.

Next, we check if the pair satisfies d(x, y) ≤ λ. Note that the LSH-based scheme tries
to put similar points in the same bucket, hence the probability of success at this step is
‘high’. Finally, we check if C∗(x, y) = 1. Our sampling procedure P1 is described in Alg.
12.

Thm. 3.20 shows that with high probability the procedure P12 samples a pair according
to a distribution T which approximates P+.

Theorem 3.20. Given (X, d), a C∗-oracle and parameter λ. Let d satisfy (α, β)-informative
w.r.t C∗. Let the hashing algorithm A satisfy ε-tightness w.r.t λ. Then with probability at
least 1−exp(−2(ν(1−α)|X2

+|)2) (over the randomness in the hashing algorithm), P12 sam-
ples pairs (x, y) according to distribution T over X [2] such that for any labelling function
C : X [2] → {0, 1}, we have that

P
(x,y)∼P+

[
C(x, y) = 0]− α− ε− ν ≤ P

(x,y)∼T

[
C(x, y) = 0]

≤ (1 + 2ν)(1 + 2α) P
(x,y)∼P+

[
C(x, y) = 0]

Proof. Let Q := {(x, y) : b(x, y) = 1} = {(x, y) ∈ B2 : B ∈ B}. Let K = {(x, y) :
d(x, y) ≤ λ}, let KQ = K ∩ Q, let K+ := {(x, y) ∈ K : C∗(x, y) = 1} and finally let
K+
Q = {(x, y) ∈ KQ : C∗(x, y) = 1}. Note that the choice of Q depends upon the hashing

algorithm A. However, after the pre-compute stage, the set Q is fixed and the sampling
procedure samples from the set Q. Our procedure works in four steps.
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Algorithm 4: Sampling procedure P12 for positive pairs

Input: A set X , a hashing algorithm A, a C∗-oracle and parameter λ.
Output: (x, y) such that C∗(x, y) = 1

Pre-compute:
1 Use an LSH-based hashing scheme A to obtain partitions {P1, . . . , Ps}.
2 B := {P1, . . . , Ps} = {Bij : 1 ≤ i ≤ s, 1 ≤ j ≤ |Pi|}.

Sampling:
1 while TRUE do
2 Sample a block B from B with probability ∝ |B|2.
3 Sample (x, y) uniformly at random from B2.
4 Let a(x, y) = {(x, y) ∈ B2 : B ∈ B}.
5 Sample u uniformly at random from [0, 1].
6 if u > 1

|a(x,y)| then

7 continue.

8 end
9 if d(x, y) ≤ λ and C∗(x, y) = 1 then

10 Output (x, y).

11 end

12 end

S.1 P1 samples a point (x, y) from the set Q and induces a distribution D1 on Q.

D1(x, y) =
∑

B∈a(x,y)

|B|2∑
B′∈B |B′|2

1

|B|2 =
|a(x, y)|∑
B′∈B |B′|2

S.2 Next, we reject the sampled point with some probability thereby inducing another
distribution D2 on Q. Now, D2(x, y) satisfies the following recurrence

D2(x, y) = D1(x, y)
1

|a(x, y)| +
(

1−
∑

(x′,y′)∈Q
D1(x′, y′)

1

|a(x′, y′)|
)
D2(x, y)

The recurrence basically says that the probability that the pair (x, y) is sampled is
equal to the probability that it is sampled during the current round or nothing is
sampled during the current round and then (x, y) is sampled. Simplifying the above
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equation, we get that

D2(x, y) =

1∑
B′∈B |B′|2∑

(x′,y′)∈Q
1∑

B′∈B |B′|2
=

1

|Q|

S.3 We reject the sampled point if (x, y) 6∈ KQ. In this step, we induce a distribution D3

on KQ. It is easy to see that D3(x, y) = 1
|KQ|

S.4 Next, we reject the sampled point if (x, y) 6∈ K+
Q . After this step, we induce a

distribution D4 on K+
Q . T (x, y) := D4(x, y) = 1

|K+
Q |

Another observation, which will be useful later in the proof is that for any (x, y) ∈
K+, P[(x, y) 6∈ K+

Q ] < δ (Thm. B.3). Hence, hoeffding’s inequality we get that,

P
[
|K+ \K+

Q | < (δ + ν)|K+|
]
≥ 1− exp(−2ν2|K+|2)

Next, we will show that the distribution T is an approximation of P+. First, observe that
X satisfies µ-nazdeek property. Hence, we get that

1− α ≤ P[d(x, y) ≤ λ|C∗(x, y) = 1] =
|K+|
|X2

+|
(3.9)

Now, let h be any labelling function over X 2.

P
(x,y)∼T

[C(x, y) = 0] =
1

|K+
Q |

∑
(x,y)∈K+

Q

1[C(x,y)=0] ≤
1

|K+
Q |

∑
(x,y)∈X+

2

1[C(x,y)=0]

Now, with probability at least 1− exp(−2ν2|K+|2) ≥ 1− exp(−2ν2(1−α)2|X2
+|2) over the

randomness in A, we have that |K+
Q | > (1 − ν − δ)|K+|. Substituting this in the above

equation gives

P
(x,y)∼T

[C(x, y) = 0] ≤ 1

(1− ν)(1− δ)|K+|
∑

(x,y)∈X2
+

1[C(x,y)=0] ≤
P

(x,y)∼P+
[C(x, y) = 0]

(1− ν − δ)(1− α)

Now for the other direction, we have that

P
(x,y)∼P+

[C(x, y) = 0] =
1

|X2
+|

∑
(x,y)∈X2

+

1[C(x,y)=0]

≤ 1

|K+
Q |

∑
(x,y)∈K+

Q

1[C(x,y)=0] +
|X2

+ \K+
Q |

|X2
+|

≤ P
(x,y)∼T

[C(x, y) = 0] +
|X2

+ \K+|
|X2

+|
+
|K+ \K+

Q |
|K+| ≤ P

(x,y)∼T
[C(x, y) = 0] + α + ν + δ
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Now choosing, δ = ε gives the result of the theorem.

To sample one same-cluster pair, we might need to make more than one same-cluster
query to the C∗-oracle. Lemma 3.21 shows that with high probability, the number of
queries made by P12 to sample one positive pair is upper bounded by a small constant.

Lemma 3.21. Given set X, a C∗-oracle and parameter λ. Let d be (α, β)-informative
w.r.t λ and C∗. Let A satisfy ε-tightness w.r.t λ. Let q be the number of same-cluster
queries made by P12. Then with probability at least 1 − exp(−ν2(1 − α)2|X2

+|2) (over the
randomness in the hashing algorithm)

E[q] ≤ 1

β(1− ε− ν)

Proof. Let K,Q,K+, KQ and K+
Q be as defined in the proof of Thm. 3.17. Also, let the

distributions D1, D2, D3 and D4 be as defined in the same theorem. Also, from the analysis
in bullet S.4 in Thm. 3.17 with probability at least 1− exp(−2ν2(1− α)2|X2

+|2) we have

that
|K+
Q |

|K+| ≥ (1− ν − ε). Now, we have that X satisfies β-balanced property. Hence,

β ≤ P[h∗(x, y) = 1|d(x, y) ≤ λ] =
|K+|
|K| ≤

|K+|
|KQ|

Combining this we get that
|K+
Q |

|KQ| ≥
β|K+

Q |
|K+| ≥ (1− ν − ε)β. Thus, given that a same-cluster

query is made, the probability p that it succeeds is at least (1− ν − ε)β.

The pre-compute stage uses a hashing algorithm to obtain s different partitions. From
the discussion in the appendix (Thm. B.2), we its easy to see that this runs in O(n) time.
Next, we analyse the time taken to sample one same-cluster pair. Thm. 3.22 shows that
under reasonable assumptions, the time taken is upper bounded by a constant with high
probability.

Theorem 3.22. Given set X, a C∗-oracle and parameter λ. Let d be (α, β)-informative
w.r.t λ and C∗. Let A satisfy ε-tightness w.r.t λ.

Define λ′ = 2λ log(1 + 1
ε
) and ε′ = dlog(1

ε
)e(1 + log(1

ε
)). Let K = {(x, y) : d(x, y) ≤ λ}

is the set of all pairs of points with distance ≤ λ. Similarly, define sets K1 = {(x, y) : λ <
d(x, y) ≤ λ′} and K2 = {(x, y) : d(x, y) > λ′}. Let |K1| ≤ ρ1|K| and ε′|K2| ≤ ρ2|K|.
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Let t be the time taken to sample one point by procedure P12. Then with probability

at least 1 − exp
(
−ν2(1−ε)(1−α)|X2

+|
2

)
− exp

(
−ν2ρ2|K|

3

)
(over the randomness in the hashing

algorithm), we have that

E[t] ≤ s2(1 +
1

η
)

where η := (1−ν)(1−ε)β
(1+ν)(1+ρ1+ρ2)

.

Proof. Using Thm. B.2, we know that one iteration of the pre-compute stage of P1 runs
in O(nrsm(B)) = O(n log

(
2
ε

) −1
log(1−λ)

m(B)) = O(n). Next, we analyse the time taken to
sample one point.

Let Q,K+, K+
Q be as defined in the proof of Thm. 3.17. Let δ = ε

2
. Using Thm.

B.3, we know that if (x, y) ∈ K then P[(x, y) ∈ Q] > 1 − δ. Also, if (x, y) ∈ K2 then
P[(x, y) ∈ Q] < δ′. For the purposes of analysing the time complexity of the sampling
procedure, we can think of P1 as consisting of the following two steps.

T.1 P1 samples a pair (x, y) uniformly at random from Q. Thus, the probability of success
at this step is p1 = 1

a(x,y)
≥ 1

s
.

T.2 If the point also lies in K+, that is (x, y) ∈ K+ then it outputs that point. Thus,

probability of success at this step is p2 := |K+∩Q|
|Q| =

|K+
Q |
|Q| . Consider the following four

sets, K+, K ′ := K \K+, K1 and K2.

Using multiplicative chernoff’s bounds, we get that P[|K+
Q | > (1− ν)|K+|(1− δ)] ≥

1 − exp(−ν
2(1−δ)|K+|

2
). Similarly, we have that P[|K2 ∩ Q| < (1 + ν)|K|ρ2] ≥ 1 −

exp(−ν
2ρ2|K|

3
). Also, note that P[|K ′ ∩ Q| < (1 + ν)|K ′|] = 1 and P[|K1 ∩ Q| <

(1 + ν)|K1|] = 1. Using these results, we have that P[|K+
Q | > (1− ν)|K+|(1− δ) and

|(K+
Q)c ∩Q| < (1 + ν)(|K ′|+ |K1|+ |K|ρ2)] ≥ 1− exp(−ν

2(1−δ)|K+|
2

)− exp(−ν
2ρ2|K|

3
)

P

[ |K+
Q |

|(K+
Q)c ∩Q| >

(1− ν)|K+|(1− δ)
(1 + ν)(|K ′|+ |K1|+ |K2|δ′)

]
≥ 1− exp

(−ν2(1− δ)|K+|
2

)
− exp

(−ν2δ′|K2|
3

)
From the assumptions in the theorem, we get that |K1| ≤ ρ1|K|. Now, |K ′| =

|K| − |K+| ≤ (1 − β)|K|. Hence, (1−ν)|K+|(1−δ)
(1+ν)(|K′|+|K1|+|K|ρ2)

≥ (1−ν)(1−δ)β
(1+ν)(1−β+ρ1+ρ2)

. Define
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η := (1−ν)(1−δ)β
(1+ν)(1+ρ1+ρ2)

. Then we get that,

P

[ |K+
Q |
|Q| >

η

η + 1

]
≥ 1− exp

(−δ2|K+|
(1− δ)

)
− exp

(−δ2ρ2|K|
(1− δ)2

)
=: η′

Hence, we see that with probability at least η′ over the randomness in the hashing
procedure p2 ≥ η.

Using all the above, we get that p ≥ η
(η+1)s

. Recall that, p is the probability that the
current iteration terminates. Thus, expected number of iterations to sample one point is
≤ s

η
. Note that the one iteration takes Θ(s) time (computing |a(x, y)|). The expected time

to sample one point is ≤ s2(1 + 1
η
)

3.6 Sample and query complexity of RCC

In the previous section we saw how to sample (approximately) according to the distributions
P+ and P−. We sample a ‘small’ set of true positive (or same-cluster) and true negative (or
different-cluster) pairs using our distributions. We then choose the clustering Ĉ ∈ F with
the minimum number of mistakes on the sampled pairs. We prove that the true normalized
correlation loss LC∗(C) is close to the loss of Ĉ∗ (the clustering with minimum loss in F).
Thus, our solution strategy shows that by only having a small amount of information about
C∗ (making a small number of queries) we can find a clustering which is close (in terms of
loss) to the optimal clustering in F . We describe this procedure in Alg. 5.

Note that in this section, we have assumed that procedure P11 is used for sampling
positive pairs. Similar results can be obtained when instead procedure P12 is used for
sampling positive pairs. However, we include those results only in the appendix.

Thm. 3.23 analyses the sample complexity of our approach. That is, the number of
labelled positive and negative pairs our algorithm needs as input, so that the estimates
of the loss based on this sample are close to their true values. We show that as long as
the number of sampled pairs are in O(VC-Dim(F)

ε2
) then our algorithm finds a clustering Ĉ

which is close to the best clustering in F . Here, VC-Dim is a combinatorial property which
measures how ‘complex’ or rich the class of clusterings is. Note that the number of samples
needed is independent of the size of the dataset X.

For common classes, like F = {T1, . . . , Ts} where each Ti is a hierarchical clustering of
X, we also analyze their VC-Dim(F) and prove that it is in o(log2 s). Thus for such classes
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Algorithm 5: Empirical Risk Minimization

Input: (X, d), a set of clusterings F , a C∗-oracle, parameter λ and sizes m+ and
m−.

Output: C ∈ F
1 Sample a sets S+ and S− of sizes m+ and m− using procedures P11 and P0

respectively.
2 For every C ∈ F , compute

P̂ (C) =
|{(x, y) ∈ S+ : C(x, y) = 0}|

|S+|

N̂(C) =
|{(x, y) ∈ S− : C(x, y) = 0}|

|S−|

3 Define L̂(C) = µP̂ (C) + (1− µ)N̂(C).

4 Output arg minC∈F L̂(C)

a small number of samples suffice to find a clustering which is close to the best clustering
in F .

Theorem 3.23. Given metric space (X, d), a class of clusterings F and a threshold pa-
rameter λ. Given ε, δ ∈ (0, 1) and a C∗-oracle. Let d be (α, β)-informative and X be
γ-skewed w.r.t λ and C∗. Let A be the ERM-based approach as described in Alg. 5 and Ĉ
be the output of A. If

m−,m+ ≥ a
VC-Dim(F) + log(2

δ
)

ε2
(3.10)

where a is a global constant then with probability at least 1− δ (over the randomness in the
sampling procedure), we have that

LC∗(Ĉ) ≤ min
C∈F

LC∗(C) + 3α + ε

Proof. Let T0 be the distribution induced by P0 and T1 be the distribution induced by P11.
Denote by E(h) = P

(x,y)∼P+

[
h(x, y) = 0] and by G(h) = P

(x,y)∼P−
[
h(x, y) = 1].

Using Thm. 1.2, we know that if m+ > a
VC-Dim(F)+log( 1

δ
)

ε2
then with probability at least
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1− δ, we have that for all h

|Ê(h)− P
(x,y)∼T1

[h(x, y) = 0]| ≤ ε

=⇒ Ê(h) ≤ ε+ P
(x,y)∼T1

[h(x, y) = 0] ≤ ε+ 2α + E(h) and

E(h)− 2α− ε ≤ Ê(h) (3.11)

Note that we obtain upper and lower bounds for P
(x,y)∼T1

[h(x, y) = 0] using Thm. 3.17.

Similarly, if m− > a
VC-Dim(F)+log( 1

δ
)

ε2
, then with probability at least 1− δ, we have that for

all h,

|Ĝ(h)− P
(x,y)∼T0

[h(x, y) = 1]| ≤ ε

=⇒ Ĝ(h) ≤ ε+G(h) and G(h)− ε ≤ Ĝ(h) (3.12)

Combining Eqns. 3.11 and 3.12, we get that with probability at least 1− 2δ, we have that
for all C ∈ F

L̂(C) ≤ µ[ε+ E(h) + 2α] + (1− µ)(ε+G(h))

≤ L(h) + ε+ 2α

And L̂(C) ≥ µ(E(h)− ε− α) + (1− µ)(G(h)− ε)
≥ L(h)− ε− α

Now, let Ĉ be the output of A and let Ĉ∗ be arg minC∈F L(C). Then, we have that with
probability at least 1− 2δ

L(Ĉ) ≤ L̂(Ĉ) + α + ε ≤ L̂(Ĉ∗) + α + ε ≤ L(Ĉ∗) + 2ε+ 3α

Choosing ε = ε
2

and δ = δ
2

throughout gives the result of the theorem.

Finally, we analyse the query complexity of our approach. That is the number of
queries that our algorithm makes to the C∗-oracle. Our algorithm makes queries during
the sampling procedure. We see that to sample m− negative and m+ positive pairs the
number of queries is ‘close’ to m+ + m− with very high probability. Thus, the number of
‘wasted’ queries is small.
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Theorem 3.24. [Query Complexity] Let the framework be as in Thm. 3.23. With prob-

ability at least 1 − exp
(
− ν2m−

4
) − exp

(
− ν2m+

4

)
over the randomness in the sampling

procedure, the number of same-cluster queries q made by A is

q ≤ (1 + ν)

(
m−

(1− γ)
+
m+

β

)
Proof. Let q+ denote the number queries to sample the set S+. We know that E[q+] ≤ 1

β
.

Given that the expectation is bounded as above, using Thm. 1.3, we get that q+ ≤ (1+ν)m+

β

with probability at least 1 − exp(−ν
2m+

4
). Similarly, we get that with probability at least

1− exp(−ν
2m−
4

), q− ≤ (1+ν)m−
(1−γ)

.

3.6.1 VC-Dimension of some common classes of clusterings

In the previous section, we proved that the sample complexity of learning a class of clus-
terings F depends upon VC-Dim(F). Recall that F is the class of labellings induced by
the clusterings in F . In this section, we prove upper bounds on the VC-Dimension for
some common class of clusterings.

Theorem 3.25. Given a finite set X and a finite class F = {C1, . . . , Cs} of clusterings of
X .

VC-Dim(F) ≤ g(s)

where g(s) is the smallest integer n such that B√n ≥ s where Bi is the ith bell number
[A000108, ].

Proof. Let n be as defined in the statement of the theorem. Let M2 ⊆ X 2 be a set of
size > n. Define M := {x : (x, y) ∈ M2 or (y, x) ∈ M2}. We know that |M | > √n. The
number of clusterings (partitions) on n elements is given by the nth bell number. Thus,
for s ≤ B√n there exists a clustering C ′ 6∈ F of the set X . Hence, lF can’t shatter any set
of size > n.

Note that B√n ∈ o(2n). Thus, the VC-Dim of a list of clusterings is in o(log s). Next, we
discuss another common class of clusterings, namely hierarchical clustering trees.

Definition 3.26 (Hierarchical clustering tree). Given a set X. A hierarchical clustering
tree T is a rooted binary tree with the elements of X as the leaves.
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Every pruning of a hierarchical clustering tree is a clustering of the set X. A clustering tree
contains exponentially many (in the size of X ) clusterings. Given F = {T1, . . . , Ts} consists
of s different hierarchical clustering trees, the following theorem bounds the VC-Dimension
of F .

Lemma 3.27. Let X be a finite set, S ⊆ X be a set of n points and T be any hierarchical
clustering tree of X . There exists a set C = {C1, . . . , Cs} where each Ci is a clustering of
S with the following properties

• |C| ≥ n!
bn/2c! 2bn/2c

• T contains at most one clustering from C.

Proof. Consider clusterings Ci of S of the following type. Each cluster in Ci contains
exactly two points (except possibly one cluster which contains one point if n is odd). One
such clustering along with a tree T is shown in Fig. 3.3. Let C be the set of all such
clusterings Ci. The number of such clusterings |C| is

n!

2
n−1
2

n−1
2

!
n is odd

n!

2
n
2
n
2
!

n is even

=
n!

2b
n
2
c(bn

2
c)!

For the sake of contradiction, assume that T is a hierarchical clustering tree T of X
which contains Ci and Cj. Since Ci 6= Cj, there exists points s1, s2 and s3 such that the
following happens. (i) s1, s2 are in the same cluster in Ci. s2, s3 as well as s1, s3 are in
different clusters in Ci. (ii) s1, s3 are in the same cluster in Cj. s2, s3 as well as s1, s2 are
in different clusters in Cj.

Now, T contains Ci. Hence, there exists a node v such that s1, s2 ∈ C(v) but s3 6∈ C(v).
T also contains Cj. Hence, there exists a node u such that s1, s3 ∈ C(u) and s2 6∈ C(u).
Both u and v contain the point s1. Hence, either u is a descendant of v or the other
way around. Observe that s2 ∈ C(v) but s2 6∈ C(u). Hence, v is not a descendant of
u. Similarly, s3 ∈ C(u) and s3 6∈ C(v) so u is not a descendant of v. This leads to a
contradiction. Hence, no such tree T can exist.

Theorem 3.28. Given a finite set X and a finite class F = {T1, . . . , Ts} where each Ti is
a hierarchical clustering over X . Then

VC-Dim(F) ≤ g(s)
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Ci

Figure 3.3: A hierarchical clustering tree of n = 9 points. This tree contains the clustering
Ci described in the proof of Lemma 3.27.

where g(s) is the smallest integer n such that
√
n!

b√n/2c! 2b
√
n/2c ≥ s

Proof. Let n be as defined in the statement of the theorem. Let M2 ⊆ X 2 be a set of size
> n2. Define M := {x : (x, y) ∈ M2 or (y, x) ∈ M2}. We know that |M | > n. Using
lemma 3.27, there exists a set of clusterings C = {C1, . . . , Cs′} of size s′ > n!

bn/2c! 2bn/2c ≥ s

such that each Ti ∈ F contains at most one Cj ∈ C. Thus, there exists a clustering Cj
which is not captured by any Ti ∈ F . Hence, lF can’t shatter any set of size > n2.

Using standard techniques it is easy to see that the VC-Dim of a list of hierarchical clus-
tering trees is in o(log2 s).

3.7 Computation complexity of RCC for common clus-

tering classes

Alg. 5 described the general ERM approach to find the ‘best’ clustering for any class
F of clusterings. Consider the case when F = {C1, . . . , Cs} (a finite list of clusterings).
Then to implement Alg. 5, we first sample a set S ⊆ X2 and then compute the error of
each clustering on this set S. Computing the error of a clustering on S takes Θ(|S|) time.
Hence, for finite F , the ERM approach can be implemented in time Θ(|F||S|).

Now, let’s focus on the case when F = {T1, . . . , Ts} (a finite set of clustering trees).
Each tree Ti can contain exponentially many clusterings. Hence, it is not clear if we can still
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Algorithm 6: ERM approach for a hierarchical clustering tree

Input: A set X, a set S ⊆ X2 labelled according to C∗. Given a clustering tree
T on Su = {x : (x, y) or (y, x) ∈ S}.

Output: A clustering Ĉ ∈ T which implements ERM over T .

1 Initialize e(ν) = a(ν) = 0 for all the leaf nodes ν.
2 for all non-leaf nodes ν (in a bottom-up manner) do
3 Let νl be left sub-tree and νr the right sub-tree.
4 Initialize sa = da = 0.
5 for (x, y) ∈ S do
6 if x, y ∈ nl(ν) and C∗(x, y) = 0 then
7 da = da + 1.
8 end
9 if !(x ∈ nl(νl) and y ∈ nl(νr)) and !(y ∈ nl(νl) and x ∈ nl(νr)) then

10 continue

11 end
12 if C∗(x, y) = 1 then
13 sa = sa + 1.
14 end

15 end
16 a(ν) = da
17 e(ν) = min{e(νl) + e(νr) + sa, a(ν)}
18 end

implement the ERM approach in polynomial-time. Consider the problem of implementing
the ERM approach when F = {T}. The goal is to find the pruning in the tree which
minimizes the loss L̂. Given tree T , the clustering with the smallest loss is either the
clustering which assigns all the points to a single cluster or the clustering with the best
loss in Tl (left subtree) concatenated with the clustering with the best loss in Tr (right
subtree). Before we describe our approach lets introduce a bit of notation.

For every node ν in the hierarchical clustering tree, let nl(ν) be the leaves which are
descendants of ν. For a leaf node ν, nl(ν) = {ν}. Let µ1 = µ|S−| and µ2 = (1 − µ)|S+|.
Let

e(ν) = arg min
C∈Tν

µ1|S+|P̂ (C) + µ2|S−|N̂(C)

where Tν is the tree T restricted to the descendants of ν. Let a(ν) = µ1|S+|P̂ (C) +
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simulated publications products I products II restaurants
Clustering true loss estimated loss true loss estimated loss true loss estimated loss true loss estimated loss true loss estimated loss

ArtPt 0.091 0.105 0.023 0.005 0.206 0.170 0.153 0.160 0.094 0.110
Star 0.052 0.060 0.100 0.050 0.207 0.190 0.231 0.170 0.041 0.045

ApproxCorr NA2 NA 0.180 0.145 0.380 0.310 0.373 0.340 0.094 0.065
Markov 0.011 0.000 0.017 0.010 0.159 0.130 0.125 0.085 0.045 0.030

NäıveDedup 0.397 0.365 0.497 0.495 0.413 0.405 0.394 0.380 0.094 0.080
C1 (single) 0.019 0.025 0.016 0.018 0.150 0.110 0.131 0.120 0.022 0.015

C2 (complete) 0.005 0.005 0.009 0.009 0.150 0.130 0.135 0.065 0.034 0.040
C3 (weighted) 0.002 0.000 0.005 0.006 0.110 0.110 0.107 0.070 0.019 0.020
C4 (average) 0.001 0.000 0.007 0.017 0.120 0.100 0.099 0.060 0.019 0.020

Mean loss difference 0.016 0.014 0.027 0.035 0.010

Table 3.1: True loss and the loss estimated by our framework.

25, 25 samples 100, 100 samples 500, 500 samples
Clustering true loss # queries estimated loss # queries estimated loss # queries estimated loss
C1 (single) 0.06107 51 0.06 204 0.025 1023 0.024

C2 (complete) 0.04177 50 0.02 210 0.005 1024 0.016
C3 (weighted) 0.03831 50 0.02 203 0.015 1027 0.016
C4 (average) 0.03489 52 0.02 207 0.020 1043 0.013

Table 3.2: Simulated dataset: Impact of number of samples on the loss of the clustering

µ2|S−|N̂(C) where C is the clustering which assigns all the descendants of ν to a single
cluster. We are now ready to describe our bottom-up approach in Alg. 6. Its easy to see
that the running time of the approach is Θ(|S||T |).

3.8 Experimental evaluation

We now present the evaluation of our framework on a simulated and four real world
datasets. In Section 3.8.2 we show that our framework is generic and can be used to
choose amongst many of the classes of algorithms for de-duplication. We also show that
our framework can always choose a clustering which is close to the best clustering (algo-
rithm) from a given class of clustering (algorithms) and our estimated loss for each of the
clustering is very close to the true loss of these clustering algorithms. In Section 3.8.3 we
show that our framework is robust to upto 10% of oracle mistakes, which far exceeds the
intended settings dealing with human experts. Finally, in Section 3.8.4 we show that in
our framework a relatively small number of samples are enough to accurately estimate the
loss of a clustering.
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25, 25 samples 100, 100 samples 500, 500 samples
Clustering true loss # queries estimated loss # queries estimated loss # queries estimated loss
C1 (single) 0.11075 51 0.08 208 0.055 1031 0.041

C2 (complete) 0.37172 50 0.34 204 0.315 1035 0.334
C3 (weighted) 0.29622 51 0.14 203 0.260 1037 0.239
C4 (average) 0.26877 50 0.20 204 0.195 1027 0.202

Table 3.3: Publications dataset: Impact of number of samples on the loss of the clustering
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Figure 3.4: Simulated dataset: Loss reported for every iteration of hierarchical clustering

3.8.1 Evaluation setup

Algorithms In our evaluation we use four graph based clustering algorithms: (1) Articu-
lation point clustering (ArtPt) [Cormen et al., 2009], (2) [Aslam et al., 2006] Star cluster-
ing (Star), (3) Approximate correlation clustering (ApproxCorr) [Bansal et al., 2004], (4)
Markov clustering (Markov) [van Dongen, 2000]. These graph based algorithms have been
used for de-duplication problems as shown in previous work [Hassanzadeh et al., 2009].
Hierarchical clustering algorithms are very effective and have been widely used to per-
form de-duplication. We consider 4 different linkage methods for hierarchical clustering:
single linkage (C1), complete linkage (C2), weighted linkage (C3), and average linkage
(C4). In addition to this we also implemented a heuristic based de-duplication algorithm
(NäıveDedup) where any two data points are considered similar if their distance is below
a certain threshold. The output of this algorithm is pairs of data points which are marked
similar.

Datasets For our evaluation we use five datasets. First dataset is a simulated dataset
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Figure 3.5: Impact of oracle mistakes

of ten thousand strings of length 20 where we simulate a clustering over the set of strings
and use it as our ground truth. We use Jaro distance [Jaro, 1980] as the distance metric for
strings. To simulate a clustering we generate some seed strings and then for each seed string
we generate multiple secondary strings by slightly editing the seed string. Each cluster of
strings resembles a single entity. Second dataset is a real-world bibliographical information
of scientific publications [pub, ]. The dataset has 1879 publication records with duplicates.
The ground truth of duplicates is available. To perform clustering on this dataset we first
tokenized each publication record and extracted 3-grams from them. Then, on 3-grams we
used Jaccard distance to define distance between two records. Next two datasets are lists
of E-commerce products: First dataset contains 1,363 products from Amazon, and 3,226
products from Google, and the ground truth has 1,300 matching products. Second dataset
contains 1,082 products from Abt, and 1,093 products from Buy, and the ground truth has
1,098 matching products. Both these products datasets are publicly available at [pro, ].
The fifth dataset is a list of 864 restaurants from the Fodor’s and Zagat’s restaurant guides
that contains 112 duplicates. This dataset is also publicly available at [res, ]. To perform
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Figure 3.6: Publications dataset: Loss reported for every iteration of hierarchical clustering

clustering on the products and restaurants datasets we normalized the records (product
or restaurant description) using standard techniques from natural language processing,
namely; denoising text, word tokenization, normalization, and stemming and lemmatiza-
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tion. Given a record, this process gives us a list of word tokens. For each token, we first
obtained a vector representation of the word using Global Vectors for word representations
(GloVe [Pennington et al., 2014]). We averaged this representation across word tokens to
obtain the representation of a single record. We use cosine similarity to define the distance
between two records. For the simulated and publications datasets, our distance metric was
Jaccard and hence we use the MinHash [Broder et al., 2000] as the hashing scheme. For
the rest of the datasets, we used SimHash [Charikar, 2002] as the hashing scheme. For all
the datasets we use ground truth as the oracle that can answer same-cluster queries. To
calculate the true loss of a clustering (i.e. LC∗(C)) we access all of the ground truth. Our
framework uses only a sample of the ground truth to estimate the loss of a clustering. To
judge the performance of our framework we compare the estimated loss L̂C∗(C) against
the true loss.

3.8.2 Clustering selection

In this experiment we demonstrate that our framework is generic and can be used to choose
the best clustering algorithm amongst any of the classes of algorithms for de-duplication.
We used our framework on all the algorithms mentioned in Section 3.8.1. The results
on five datasets are summarized in Table 3.1. For each dataset we report the loss of the
true-best clustering (LC∗(C)) and the estimated loss of the best clustering selected by our
framework L̂C∗(C). This experiment highlights two main features of our framework: (i)
our framework can always choose a clustering close to the best clustering algorithm from
a given class of clustering algorithms using only a small number of samples, which is 200
(100 positive samples, and 100 negative samples) for all datasets and all the algorithms
in Table 3.1. (ii) Our estimated loss for each clustering is very close to the true loss of
these clustering algorithms. At the bottom of the table we report the mean loss difference
between estimated loss and true loss computed over all the algorithms.

We would also like to emphasize that in our framework we sample only once for each
dataset and use that sample to estimate the loss of all the clusterings. In Figure 3.4 and
3.6 we show that our sample can very closely estimate the loss of every clustering generated
at each iteration of the hierarchical clustering. Similarly, for Table 3.1 we sampled only
once for each dataset and evaluated all the clusterings generated by each algorithm. Note
that, each of the graph based algorithms have a hyper-parameter, i.e. the threshold on the
edge weights. Edges with weights above this threshold represent dissimilar items and are
pruned from the graph. For each of the graph based clustering algorithm we applied our
framework on multiple values of the hyper-parameter and report only the ones with least
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true loss. However, for every choice of the hyper-parameter we observed that the estimated
loss was very close to the true loss.

3.8.3 Effect of oracle mistakes

In this experiment we show that our framework is effective in real-world scenarios where
the oracle may not be perfect and can make mistakes. Whenever the oracle classifies a
similar pair as dissimilar or a dissimilar pair as similar we count it as a mistake. In our
datasets we artificially introduce such mistakes and vary their ratio from from 0%, to 20%.
In Figure 3.5 we show that our framework can closely estimate the clustering loss up to
10% of oracle mistakes, which, in real-world far exceeds the intended settings dealing with
human experts. The Y-axis in Figure 3.5 reports the mean difference between true loss
and estimated loss over all the clusterings selected in Table 3.1.

3.8.4 Impact of sample size

In this experiment we show that even a small number of samples are enough to estimate
the true loss (LC∗(C)). We consider four different clusterings, each one picked at random
from the four hierarchical clustering methods (C1 - C4). Table 3.2 and 3.3 reports the
loss for simulated and publications dataset, respectively. For each dataset we increased
the number of positive and negative samples and measured the loss. The table also shows
the true loss of the clustering. It can be seen that the estimated loss calculated by our
framework is close to the true loss even with 25 positive samples and 25 negative samples.
In addition to this, the loss does not change much by increasing the number of samples.
Which means that there is no incentive to sample more. We also show that the number of
queries performed by our framework are close to the sample size (as claimed in Thm. B.5),
which are orders of magnitude less than O(|X|2). For example, in the simulated dataset
and single linkage clustering (C1) with 25 positive and 25 negative samples our framework
performed 51 queries, that means only one query was wasted. Similarly, 4 queries were
wasted for 100 positive and 100 negative samples, and so on.
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Chapter 4

Finding cluster structure amidst
background noise

Clustering is an umbrella term for a wide variety of unsupervised data processing tech-
niques. A relatively comprehensive description of clustering is that it aims to group to-
gether data instances that are similar, while separating dissimilar objects. Most of the
common clustering tools output a partitioning of the input data into groups, clusters, that
share some form of cohesiveness or between-cluster separation requirement1. However, in
many cases, real data sets, in particular large ones, have on top of such cohesive sepa-
rated groups, a significant amount of “background” unstructured data. Clustering in such
situations is the focus of this work. Maybe surprisingly, this topic has received relatively
little attention in the clustering research community, and even less so when it comes to
theoretical work.

The discussion of finding clustering structure in data sets that also contain subsets that
do not conform well to that structure usually falls under the terminology of noise robustness
(see for example, [Balcan and Liang, 2012],[Ackerman and Ben-David, 2009],[Dave, 1993],
[Cuesta-Albertos et al., 1997],[Garćıa-Escudero et al., 2008]). However, noise robustness,
at least in that context, addresses the noisy part of the data as either generated by some
specific generative model (like uniform random noise, or Gaussian perturbations) or refers
to worst-case adversarially generated noisy data. In this chapter we take a different ap-
proach. What distinguishes the noise that we consider from the “clean” part of the input
data is that it is structureless. The exact meaning of such a notion of structurlessness may

1The assignment to clusters can sometimes be probabilistic, and clusters may be allowed to intersect,
but these aspects are orthogonal to the discussion in this chapter.
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vary depending on the type of structure the clustering algorithm is aiming to detect in the
data. We focus on defining structurelessness as not having significantly large dense subsets.
We believe that such a notion is well suited to address “gray background” contrasting with
cohesive subsets of the data that are the objects that the clustering aims to detect.

The distinction between structured and unstructured parts of the data requires, of
course, a clear notion of relevant structure. For that, we resort to a relatively large
body of recent work proposing notions of clusterable data sets. That work was devel-
oped mainly to address the gap between the computational hardness of (the optimization
problem of) many common clustering objectives and the apparent feasibility of cluster-
ing in practical applications. We refer the reader to [Ben-David, 2015] for a survey of
that body of work. Here, we focus on two such notions, one based on the α-center-
proximity introduced by [Awasthi et al., 2012] and the other, λ-separation, introduced by
[Ben-David and Haghtalab, 2014].

Our approach diverges from previous discussions of clusterable inputs in yet another
aspect. Much of the theoretical research of clustering algorithms views clustering as an
optimization problem. For some predetermined objective function (or clustering cost), the
algorithm’s task is to find the data partitioning that minimizes that objective. In partic-
ular, this approach is shared by all the works surveyed in [Ben-David, 2015]. However, in
many practical situations the reality is different. Given a large data set to cluster, often-
times there is no way a user may know what is the cost of the optimal clustering of that
data, or how close to optimal the algorithm’s outcome is. Instead, a user might have a
notion of meaningful cluster structure, and will be happy with any outcome that meets
such a requirement. Consequently, our algorithms aim to provide meaningful clustering
solutions (where “meaningful” is defined in a way inspired by the above mentioned notions
of clusterability) without reference to any particular optimization objective function. Our
algorithms efficiently compute a hierarchical clustering tree that captures all such mean-
ingful solutions. One should notice that all of those notions of clusterability (those under
which it can be shown that an objective-minimizing clustering can be found efficiently)
assume that there exists an optimal solution that satisfies the meaningfulness condition
(such as being perturbation robust, or having significantly smaller distances of points to
their own cluster centers than to other centers). Under those assumptions, an algorithm
that outputs a tree capturing all meaningful solutions, allows efficient detection of the
cost-optimal clustering (in fact, the algorithms of [Balcan and Liang, 2012] also yield such
trees, for clean, noiseless inputs). Consequently, under the assumptions of those previous
works, our algorithms yield an efficient procedure for finding such an optimal solution.
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4.1 Related Work

The goal of clustering is to partition a set of objects into dissimilar subsets of similar
objects. Based on the definition of similarity, the optimal solution to a clustering task is
achieved by optimizing an objective function. Although solving this optimization problem
is usually NP-hard, the clustering task is routinely and successfully employed in practice.
This gap between theory and practice recommends characterizing the real world data
sets by defining mathematical notions of clusterable data. As a result, provably efficient
clustering algorithms can be found for these so called nice data.

In the past few years, there has been a line of work on defining notions of clusterabil-
ity. The goal of all these methods has been to show that clustering is computationally
efficient if the input X enjoys some nice structure. In [Bilu and Linial, 2012], a cluster-
ing instance is considered to be stable if the optimal solution to a given objective func-
tion does not change under small multiplicative perturbations of distances between the
points. Using this assumption, they give an efficient algorithm to find the max-cut cluster-
ing of graphs which are resilient to O(

√
|X|) perturbations. Using a similar assumption,

[Ackerman and Ben-David, 2009] considered additive perturbations of the underlying met-
ric and designed an efficient algorithm that outputs a clustering with near-optimal cost.

In terms of clusterability conditions, the most relevant previous papers are those ad-
dressing clsutering under α-center proximity condition (see Def. A.3). Assuming that the
centers belong toX (proper setting), [Awasthi et al., 2012] shows an efficient algorithm that
outputs the optimal solution of a given center-based objective assuming that optimal solu-
tion satisfies the (α > 3)-center proximity. This result was improved to (α =

√
2+1 ≈ 2.4)

when the objective is k-median [Balcan and Liang, 2012]. In [Ben-David and Reyzin, 2014]
it was shown that unless P=NP such a result cannot be obtained for (α < 2)-center prox-
imal inputs.

However, as mentioned above, these results apply only to the noiseless case. Few
methods have been suggested for analyzing clusterability in the presence of noise. For
example, [Balcan and Liang, 2012] consider a dataset which has α-center proximity except
for an ε fraction of the points. They give an efficient algorithm which provides a 1 +O(ε)-
approximation to the cost of the k-median optimal solution when α > 2 +

√
7 ≈ 4.6. Note

that, while this result applies to adversarial noise as well, it only yields an approximation
to the desired solution and the approximation guarantee is heavily influenced by the size
of noise.

In a different line of work, [Ben-David and Haghtalab, 2014] studied the problem of
robustifying any center-based clustering objective to noise. To achieve this goal, they
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introduce the notion of center separation (look at Def. 4.7). Informally, an input has
center separation when it can be covered by k well-separated set of balls. Given such an
input, they propose a paradigm which converts any center-based clustering algorithm into
a clustering algorithm which is robust to small amount of noise. Although this framework
works for any objective-based clustering algorithm, it requires a strong restriction on the
noise and clusterability of the data. For example, when the size of the noise is 5

100
|X|, their

algorithm is able to obtain a robustified version of 2-median, only if X is covered by k unit
balls which are separated with distance 10.

In this work, we consider a natural relaxation of [Balcan and Liang, 2012] and
[Ben-David and Haghtalab, 2014], with the goal to capture more realistic domains con-
taining arbitrary amount of noise, assuming that noise is structureless (in a precise sense

defined below). For example, in [Balcan and Liang, 2012], the size of the noise |N | ≤ m(C)
8

(where m(C) is size of the smallest cluster). Our algorithms can handle much larger amount
of noise as long as they satisfy the structureless condition.

We define a novel notion of “gray background” noise. Informally, we call noise struc-
tureless if it does not have similar structure to a nice cluster at any part of the domain.
Under that definition (look at Def. 4.6), our positive, efficient clustering results, do not
depend on any restriction on the size of the noise.

Given a clusterable input X which contains structureless noise, we propose an efficient
algorithm that outputs a hierarchical clustering tree of X that captures all nice clusterings
of X. Our algorithm perfectly recovers the underlying nice clusterings of the input and its
performance is independent of number of noisy points in the domain.

We complement our algorithmic results by proving that under more relaxed conditions,
either on the level of clusterability of the clean part of the data, or on the unstructuredness
requirements on the noise, such results become impossible.

4.1.1 Outline

The rest of this chapter is structured as follows. In Section 4.2, we present our notation
and formal definitions. In Section 4.3 we show that the type of noise that we address in
this paper is likely to arise under some natural assumptions on the data generating process.
In Section 4.4, we present an efficient algorithm that, for any input set X which contains
structureless noise, recovers all the underlying clusterings of non-noise subset of X that
satisfies α-center proximity for α > 2+

√
7 ≈ 4.6. We complement these results by proving

that for α ≤ 2
√

2+3 ≈ 5.8 in the case that we have arbitrary noise and for α ≤
√

2+3 ≈ 4.4
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in the case of structureless noise, efficient discovery of all nicely structured subsets is not
possible.

In Section 4.5.1, we describe an efficient algorithm that, for any input X, recovers all the
underlying clusterings of X that satisfy λ-center separation for λ ≥ 3. We also prove that it
is NP-hard to improve this to λ ≤ 2. In Section 4.5.2, we consider a similar problem in the
presence of either arbitrary or structureless noise. We propose an efficient algorithm that,
for any input X which contains structureless noise, recovers all the underlying clusterings
of non-noise subset of X that satisfy λ-center separation for λ ≥ 4. We will also show
that this result is tight for the case of structureless noise. We complement our results by
showing that, under arbitrary noise assumption, no similar positive result can be achieved
for λ ≤ 6. Note that all our missing proofs can be found in the appendix.

4.2 Notation and definition

Let (M, d) be a metric space. Given a data set X ⊆M and an integer k. A k-clustering
of X denoted by CX is a partition of X into k disjoints sets. Given points c1, . . . , ck ∈M,
we define the clustering induced by these points (or centers) by assigning each x ∈ X to
its nearest center. In the steiner setting, the centers can be arbitrary points of the metric
space M. In the proper setting, we restrict our centers to be members of the data set X.
In this paper, we will be working in the proper setting.

For any set A ⊆ X with center c ∈ M, we define the radius of A as rc(A) =
maxx∈A d(x, c). Throughout the chapter, we will use the notation CX to denote the clus-
tering of the set X and CS to denote the clustering of some S ⊆ X.

Definition 4.1 (r(CX) , m(CX)). Given a clustering CX = {C1, . . . , Ck} induced by centers
c1, . . . , ck ∈M, we define m(CX ) = mini |Ci| and r(CX ) = maxi r(Ci).

Definition 4.2 (CX restricted to a set). Given S ⊆ X and a clustering CX = {C1, . . . , Ck}
of the set X. We define CX restricted to the set S as CX|S = {C1 ∩ S, . . . , Ck ∩ S}.
Definition 4.3 (CX respects CS). Given S ⊆ X, clusterings CX = {C1, . . . , Ck} and
CS = {S1, . . . , Sk′}. We say that CX respects CS if CX|S = CS.

Definition 4.4 (T or L captures CS). Given a hierarchical clustering tree T of X and
a clustering CS of S ⊆ X. We say that T captures CS if there exists a pruning P which
respects CS.

Similarly, given a list of clusterings L of X and a clustering CS of S ⊆ X. We say that
L captures CS if there exists a clustering CX ∈ L which respects CS.

61



Definition 4.5 (α-center proximity [Awasthi et al., 2012]). A clustering CX = {C1, . . . , Ck}
satisfies α-center proximity w.r.t. X and k if there exist centers c1, . . . , ck ∈M such that
the following holds. For all x ∈ Ci and i 6= j, αd(x, ci) < d(x, cj)

Next, we formally define our notion of structureless noise. Roughly, such noise should
be scattered sparsely, namely, there should be no significant amount of noise in any small
enough ball. Note that such a restriction does not impose any upper bound on the number
of noise points.

Definition 4.6 ((α, η)-center proximity). Given S ⊆ X, a clustering CS = {S1, . . . , Sk}
has (α, η)-center proximity w.r.t. X,S and k if there exists centers s1, . . . , sk ∈ M such
that the following holds.

� α-center proximity: For all x ∈ Si and i 6= j, αd(x, si) < d(x, sj)

� η-sparse noise: For any ball B, r(B) ≤ η r(CS) =⇒ |B ∩ (X \ S)| < m(CS)
2

Definition 4.7 (λ-center separation [Ben-David and Haghtalab, 2014]). A clustering CX =
{C1, . . . , Ck} has λ-center separation w.r.t. X and k if there exists centers c1, . . . , ck ∈M
such that CX is the clustering induced by these centers and the following holds. For all
i 6= j, d(ci, cj) > λr(CX )

Definition 4.8 ((λ, η)-center separation). Given S ⊆ X, a clustering CS has (λ, η)-center
separation w.r.t. X,S and k if there exists centers s1, . . . , sk ∈ M such that CX is the
clustering induced by these centers and the following holds.

� λ-center separation: For all i 6= j, d(si, sj) > λr(CS)

� η-sparse noise: For any ball B, r(B) ≤ η r(CS) =⇒ |B ∩ (X \ S)| < m(CS)
2

We denote a ball of radius r at center c by B(c, r). We denote by Pi(c) a collection of
i many points sitting on the same location c. If the location is clear from the context, we
will use the notation Pi.

4.3 Justification of sparse noise

In this section, we examine our sparseness condition. We will show that if the set of
points N are generated by a non concentrated distribution in a ball in Rd then with high
probability, as long as N is not too large (so as to“ drown” the original data set), it will
satisfy the sparse noise condition. The proof is based on the epsilon approximation theorem
for classes of finite VC-dimension, applied to the set of balls in Rd. The following, rather
natural, definition of non concentrated distribution was introduced in [Balcan et al., 2012].
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Definition 4.9. A distribution over the d-dimensional unit ball is non-concentrated if, for
some constant c, the probability density of any point x is at most c times its density under
the uniform distribution over that ball.

Theorem 4.10 (Noise by non concentrated distribution is sparse). Let X be a ball of
radius R in Rd and S ⊆ X. Let C be a clustering of S which satisfies α-center proximity
(or λ-center separation). Given parameters ε, δ ∈ (0, 1). Let N ⊆ X be picked i.i.d.

according to a non concentrated probability distribution. If |N | < c
(

R
r(C)η

)d
m(C) then

with high probability, S ∪ N satisfies (α, η)-center proximity (the (λ, η)-center separation,
respectively).

Proof. Let H = {B is a ball : B ⊆ X}. Observe that VC-Dim(H) = d+ 1. Let γ := r(C)
R

.
Since the noise-generating distribution P is c-concentrarted, for every ball B, P (B) ≤
c vol(B)

vol(X)
= cγd. Now, the fundamental ε-approximation theorem (Theorem 1.1) establishes

the result.

Note that Theorem 4.10 shows that the cardinality of the noise set, |N |, can be much
bigger than the size of the smallest cluster m(C).

4.4 Center Proximity

In this section, we study the problem of recovering (α, η)-center proximal clusterings of a
set X, in the presence of noise. The goal of our algorithm is to produce an efficient repre-
sentation (hierarchical clustering tree) of all possible (α, η)-center proximal nice clusterings
rather than to output a single clustering or to optimize an objective function. Here is a
more precise overview of the results of this section:

• Positive result under sparse noise - In Section 4.4.1, we give our main result under sparse
noise. If α ≥ 2 +

√
7 ≈ 4.6 and η ≥ 1; for any value of t, Alg. 7 outputs a tree which

captures all clusterings C∗ (of a subset of X) which satisfy (α, η)-center proximity and
m(C∗) = t.
• Lower bound under sparse noise - In Section 4.4.2, we show that if α ≤ 2 +

√
3 ≈ 3.7

and η ≤ 1 then there is no tree and no list of ‘small’ size (< 2k/2) which can capture
all clusterings C (of a subset of X) which satisfy (α, η)-center proximity even for a fixed
value of the size of the smallest cluster (m(C) = t).
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• Lower bound with arbitrary noise - In Section 4.4.3, we show that for a given value of
a parameter t, if α ≤ 2

√
2 + 3 ≈ 5.8 and the number of noisy points exceeds 3

2
t then

no tree can capture all clusterings C (of a subset of X) which satisfy α-center proximity
even for fixed m(C) = t. Identical result holds for ‘small’ (< 2k/2) lists if the number of
noisy points exceeds 3k

2
t.

4.4.1 Positive result under sparse noise

Given a clustering instance (X, d) and a parameter t, we introduce an efficient algorithm
which outputs a hierarchical clustering tree T of X with the following property. For every
k, for every S ⊆ X and for every k-clustering CS which satisfies (α, η)-center proximity
(for α ≥ 2 +

√
7 and η ≥ 1) and m(CS) = t, T captures CS. It is important to note that

our algorithm only knows X and has no knowledge of the set S.

Our algorithm has a linkage based structure similar to [Balcan and Liang, 2012]. How-
ever, our method benefits from a novel sparse distance condition. We introduce the algo-
rithm in Alg. 7 and prove its efficiency and correctness in Theorem 4.13 and Theorem 4.12
respectively.

Definition 4.11 (Sparse distance condition). Given a clustering C = {C1, . . . , Ck} of the
set X and a parameter t. Let B = B(p, d(p, q)) be a ball centered at p ∈ X and of radius
d(p, q) where q ∈ X. We say that the ball B satisfies the sparse distance condition w.r.t.
clustering C when the following holds.

• |B| ≥ t.
• For any Ci ∈ C, if Ci ∩B 6= ∅, then Ci ⊆ B or |B ∩ Ci| ≥ t/2.

Intuitively, Alg. 7 works as follows. It maintains a clustering C(l), which is initialized so
that each point is in its own cluster. It then goes over all pairs of points p, q in increasing
order of their distance d(p, q). If B(p, d(p, q)) satisfies the sparse distance condition w.r.t.
C(l), then it merges all the clusters which intersect with this ball into a single cluster and
updates C(l). Furthermore, the algorithm builds a tree with the nodes corresponding to
the merges performed so far. We will show that for all S ⊆ X which are (α, η)-proximal
t-min nice and for all clusterings CS which have (α, η)-center proximity, Alg. 7 outputs a
tree which captures CS.

Theorem 4.12. Given a clustering instance (X, d) and a parameter t. Alg. 7 outputs a tree
T with the following property. For all k, S ⊆ X and for all k-clusterings C∗S = {S∗1 , . . . , S∗k}
which satisfy (2+

√
7, 1)-center proximity the following holds. If m(C∗S) = t then T captures

CS.
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Algorithm 7: Alg. for (α, η)-center proximity with parameter t

Input: (X, d) and t
Output: A hierarchical clustering tree T of X.

1 Let C(l) denote the clustering X after l merge steps have been performed.

Initialize C(0) so that all points are in their own cluster. That is,
C(0) = {{x} : x ∈ X}.

2 Go over all pairs of points p, q in increasing order of the distance d(p, q). If
B = B(p, d(p, q)) satisfies the sparse distance condition then

3 Merge all the clusters which intersect with B into a single cluster.

4 Output clustering tree T . The leaves of T are the points in dataset X. The
internal nodes correspond to the merges performed.

Proof. Fix any S ⊆ X . Let C∗S = {S∗1 , . . . , S∗k} be a clustering of S such that m(C∗S) = t and
C∗S has (α, η)-center proximity. Denote by ri := r(S∗i ) and r = max ri. Define Y CB := {Ci ∈
C : Ci ⊆ B or |B ∩ Ci| ≥ t/2}. Note that whenever a ball B satisfies the sparse-distance

condition, all the clusters in Y C
(l)

B are merged together and the clustering C(l+1) is updated.
We will prove the theorem by proving two key facts.

F.1 If the algorithm merges points from a good cluster S∗i with points from some other
good cluster, then at this step the distance being considered d = d(p, q) > ri.

F.2 When the algorithm considers the distance d = ri, it merges all points from S∗i (and
possibly points from X \ S) into a single cluster Ci. Hence, there exists a node in
the tree Ni which contains all the points from S∗i and no points from any other good
cluster S∗j .

Note that the theorem follows from these two facts. Similar reasoning was also used in
proof of Lemma 3 in [Balcan and Liang, 2012]. We now prove both of these facts formally.

Proof of Fact. F.1 Let C(l) = {C1, . . . , Ck′} be the current clustering of X . Let l + 1 be
the first merge step which merges points from the good cluster S∗i with points from some
other good cluster. Let p, q ∈ X be the pair of points being considered at this step and
B = B(p, d(p, q)) the ball that satisfies the sparse distance condition at this merge step.

Denote by Y = Y C(l)

B . We need to show that d(p, q) > ri. To prove this, we need Claim 1
below.

Claim 1. Let p, q ∈ X and B, Y , S∗i and C(l) be as defined above. If d(p, q) ≤ r, then
B ∩ S∗i 6= ∅ and there exists n 6= i such that B ∩ S∗n 6= ∅.
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l+1 is the first step which merges points from S∗i with some other good cluster. Hence,
∃Ci ∈ Y such that Ci ∩ S∗i 6= ∅ and ∀n 6= i, Ci ∩ S∗n = ∅. Also, ∃Cj ∈ Y such that
Cj ∩ S∗j 6= ∅ for some S∗j and Cj ∩ S∗i = ∅.

Ci ∈ Y . Hence, Ci ⊆ B or |Ci ∩ B| ≥ t/2. The former is trivial. In the latter, for
the sake of contradiction, assume that B contains no points from S∗i . This implies that
B ∩ Ci ⊆ B ∩ {X \ S} and |B ∩ {X \ S}| ≥ t/2. This is a contradiction. The case when
Cj ∈ Y is identical.

Claim 2. Let the framework be as given in Claim 1. Then, d(p, q) > ri.

If d(p, q) > r, then the claim follows trivially. In the other case, from Claim 1, B contains
pi ∈ S∗i and pj ∈ S∗j . Let ri = d(ci, qi) for some qi ∈ S∗i .

d(ci, qi) <
1
α
d(qi, cj) <

1
α

[ 1
α
d(pi, pj) + 1

α
d(ci, qi) + d(pi, pj) + 2d(ci, qi)] This implies that

(α2 − 2α − 1)d(qi, ci) < (α + 1)d(pi, pj). For α ≥ 2 +
√

7, this implies that d(ci, qi) <
d(pi, pj)/2 which implies d(ci, qi) < d(p, q). [Balcan and Liang, 2012] also stated this result.

Proof of Fact F.2 Let C(l) = {C1, . . . , Ck′} be the current clustering of X . Let l + 1 be
the merge step when p = si and q = qi such that d(si, qi) = ri. We will prove that the ball
B = B(si, qi) satisfies the sparse-distance condition.

Claim 3. Let si, qi, ri, B and Y be as defined above. Then, B satisfies the sparse distance
condition and for all C ∈ Y , for all j 6= i, C ∩ S∗j = ∅.
|B| = |S∗i | ≥ t. Observe that, for all C ∈ C(l), |C| = 1 or |C| ≥ t.

• Case 1. |C| = 1. If C ∩B 6= ∅ =⇒ C ⊆ B = S∗i .
• Case 2. |C| ≥ t. C ∩B 6= ∅. Let h(C) denote the height of the cluster in the tree T .

◦ Case 2.1. h(C) = 1. In this case, there exists a ball B′ such that B′ = C. We know
that r(B′) ≤ ri ≤ r. Hence using Claim 2, we get that for all j 6= i, B′ ∩ S∗j = ∅.
Thus, |B′ \ S∗i | ≤ t/2 =⇒ |B ∩ C| = |C| − |C \ B| = |C| − |B′ \ S∗i | ≥ t/2. Hence,
C ∈ Y .

◦ Case 2.2. h(C) > 1. Then there exists some C ′ such that h(C ′) = 1 and C ′ ⊂ C.
Now, using set inclusion and the result from the first case, we get that |B ∩ C| ≥
|B ∩ C ′| ≥ t/2. Hence, C ∈ Y . Using Claim 2, we get that for all j 6= i, C ∩ S∗j = ∅.

Theorem 4.13. Given clustering instance (X, d) and t. Alg. 7 runs in poly(|X|).

Proof. Let n = |X|. Checking if B satisfies the sparse-distance condition takes O(n) time
and hence the algorithm runs in O(n3) time.
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Figure 4.1: X ⊆ R such that no tree can capture all the (α, η)-proximal clusterings.

4.4.2 Lower bound under sparse noise

Theorem 4.14. Given the number of clusters k and parameter t. For all α ≤ 2 +
√

3 and
η ≤ 1 there exists a clustering instance (X, d) such that any clustering tree T of X has
the following property. There exists S ⊆ X and clustering CS which satisfies (α, η)-center
proximity and m(CS) = t but T doesn’t capture CS.

Proof. Let X , B1, B2, B
′
1, B

′
2 be as shown in Fig. 4.1. Let t1 = t

2
+ 1 and t2 = t

2
− 2. For

α ≤ 2 +
√

3, clusterings CS = {B1, B2, B3, . . . , Bk} and CS′ = { B′1, B′2, B3, . . . , Bk} satisfy
(α, 1)-center proximity and m(CS) = m(C ′S) = t. Now, a simple proof by contradiction
shows that there doesn’t exist a tree T and prunings P and P ′ such that P respects CS
and P ′ respects CS′ .

Theorem 4.15. Given the number of clusters k and parameter t. For all α ≤ 2+
√

3, η ≤ 1
there exists (X, d) such that any list L (of clusterings of X) has the following property. If

|L| < 2
k
2 then there exists S ⊆ X and clustering CS which satisfies (α, η)-center proximity

and m(CS) = t but L doesn’t capture CS.

Proof. The clustering instance X is an extension of Fig. 4.1. Let G1 = {B1, B
′
1, B2, B

′
2}

be the balls as in Fig. 4.1. Now, construct G2 = {B3, B
′
3, B4, B

′
4} exactly identical to G1

but far. In this way, we construct k/2 copies of G1.

4.4.3 Lower bound under arbitrary noise

Theorem 4.16. Given the number of clusters k and a parameter t. For all α < 2
√

2 + 3
there exists (X, d) such that any clustering tree T of X has the following property. There
exists S ⊆ X and there exists clustering CS which satisfies α-center proximity such that
m(CS) = t and the following holds. If |X \ S| ≥ 3m(CS)

2
+ 5, then T doesn’t capture CS.
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Figure 4.2: X ⊆ R such that no algorithm can capture all the α-proximal clusterings.

Proof. Let X ⊆ R be as shown in Fig. 4.2. Let t′ = t
2
− 1 and let B1, B2, B3, B

′
1,

B′2, B
′
3, B

′′
1 , B

′′
2 and B′′3 be as shown in Fig. 4.2. For α ≤ 2

√
2 + 3, clusterings CS =

{B1, B2, B3, . . . , Bk}, CS′ = { B′1, B′2, B3, . . . , Bk} and C ′′S = { B′′1 , B′′2 , B3, . . . , Bk} satisfy
(α, 1)-center proximity. Also, m(CS) = m(C ′S) = m(C ′′S) = t. Arguing similarly as in
Theorem 4.14 completes the proof.

Theorem 4.17. Given the number of clusters k and parameter t. For all α ≤ 2
√

2 + 3
there exists (X, d) such that any list L (of clusterings of X) has the following property.
There exists S ⊆ X and there exists clustering CS which satisfies α-center proximity such
that m(CS) = t and the following holds. If |L| < 2

k
2 and |X \ S| ≥ k

2
(3m(CS)

2
+ 5), then L

doesn’t capture CS.

Proof. To prove the lower bound in the list model, instance constructed in Theorem 4.15
is a simple extension of the instance in Theorem 4.14. The instance for the proof of
Theorems 4.17 is similarly constructed as extension of the corresponding tree lower bound
instance (Theorems 4.16).

4.5 Center Separation

4.5.1 Center Separation without noise

In this section, we study the problem of recovering λ-center separated clusterings of a set
X, in the absence of noise. We do not want to output a single clustering but to produce an
efficient representation (hierarchal clustering tree) of all possible λ-center separated nice
clusterings. In Section 4.5.1 we give an algorithm that generates a tree of all possible
λ-center separated clusterings of X for λ > 3. In Section 2, we prove that for λ < 2, it is
NP-hard to find any such clustering.
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Algorithm 8: Alg. for λ-center separation

Input: (X, d)
Output: A hierarchical clustering tree T of X.

1 Initialize the clustering so that each point is in its own cluster.
2 Run single-linkage till only a single cluster remains. Output clustering tree T .

Positive result under no noise

Given a clustering instance (X, d), our goal is to output a hierarchical clustering tree T
of X which has the following property. For every k and for every k-clustering CX which
satisfies λ-center separation, there exists a pruning P of the tree which equals CX . Our
algorithm (Alg. 8) uses single-linkage to build a hierarchical clustering tree of X. We will
show that when λ ≥ 3 our algorithm achieves the above mentioned goal.

Theorem 4.18. Given (X, d). For all λ ≥ 3, Alg. 8 outputs a tree T with the following
property. For all k and for all k-clusterings C∗X = {C∗1 , . . . , C∗k} which satisfy λ-center
separation w.r.t. X and k, the following holds. For every 1 ≤ i ≤ k, there exists a node
Ni in the tree T such that C∗i = Ni.

Proof. We will show that C∗X has strong stability ([Balcan et al., 2008]) which will complete
the proof (Theorem 8 in [Balcan et al., 2008]). Let A ⊂ C∗i and B ⊆ C∗j . Let p ∈ A and
q ∈ C∗i \ A be points which achieve the minimum distance between A and C∗i \ A. If
ci ∈ A then d(p, q) ≤ d(ci, q) ≤ r. If ci ∈ C∗i \ A then d(p, q) ≤ d(p, ci) ≤ r. Hence,
dmin(A,C∗i \ A) ≤ r. Similarly, we get that dmin(A,B) > r.

Lower bound with no noise

We will prove that for λ ≤ 2, finding any solution for λ-center separation is NP-hard.
[Reyzin, 2012] proved that finding any solution for α-center proximity is NP-hard for α < 2.
Our reduction is same as the reduction used in Theorem 1 in [Reyzin, 2012] and hence we
omit the proof.

Theorem 4.19. Given a clustering instance (X, d) and the number of clusters k. For
λ < 2, finding a clustering which satisfies λ-center separation is NP-hard.
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4.5.2 Center Separation in the presence of noise

In this section, we study the problem of recovering (λ, η)-center separated clusterings of
a set X, in the presence of noise. Here is a more precise overview of the results of this
section:

• Positive result under sparse noise - In Section 4.5.2, we show that if λ ≥ 4 and η ≥ 1;
for any value of parameters r and t, Alg. 9 outputs a clustering which respects all
clusterings C∗ (of a subset of X) which satisfies (λ, η)-center proximity and m(C∗) = t
and r(C∗) = r.
• Lower bound under sparse noise - In Section 10, we show that, if λ < 4 and η ≤ 1 then

there is no tree and no list of ‘small’ size (< 2k/2) which can capture all clusterings C
(of subset of X) which satisfy (λ, η)-center proximity even for fixed values of the size of
the smallest cluster (m(C) = t) and maximum radius (r(C) = r).
• Lower bound with arbitrary noise - In Section 10, we show that for a given value of

parameters r and t, if λ ≤ 6 and the number of noisy points exceeds 3
2
t then no tree

can capture all clusterings C (of a subset of X) which satisfy λ-center separation even
for fixed m(C) = t and r(C) = r. Identical result holds for ‘small’ (< 2k/2) lists if the
number of noisy points exceeds 3k

2
t.

Positive result under sparse noise

We are given a clustering instance (X, d) and parameters r and t. Our goal is to output
a clustering CX which has the following property. For every k, for every S ⊆ X and for
every k-clustering CS which satisfies (λ, η)-center separation, the clustering CX restricted
to S equals CS.

In the next section, we propose a clustering algorithm (Alg. 9) and prove (Theorem 4.20)
that our algorithm indeed achieves the above mentioned goal (under certain assumptions
on the parameters λ and η). It is important to note that our algorithm only knows X and
has no knowledge of the set S.

Intuitively, Alg. 9 works as follows. In the first phase, it constructs a list of balls which
have radius at most r and contain at least t points. It then constructs a graph as follows.
Each ball found in the first phase is represented by a vertex. If two balls have a ‘large’
intersection then there is an edge between the corresponding vertices in the graph. We
then find the connected components in the graph which correspond to the clustering of the
original set X.
Theorem 4.20. Given a clustering instance (X, d) and parameters r and t. For every
k, for every S ⊆ X and for all k-clusterings C∗S = {S∗1 , . . . , S∗k} which satisfy (4, 1)-center
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Algorithm 9: Alg. for (λ, η)-center separation with parameters t and r

Input: (X, d), t and r
Output: A clustering C of the set X.

1 Phase 1
2 Let L denote the list of balls found so far. Initialize L to be the empty set.

L = ∅.
3 Go over all pairs of points p, q ∈ X in increasing order of the distance d(p, q).

Let B := B(p, d(p, q)). If |B| ≥ t and r(B) ≤ r then
4 L = L ∪B
5 Output the list of balls L = {B1, . . . , Bl} to the second phase of the algorithm.

6 Phase 2
7 Construct a graph G = (V,E) as follows. V = {v1, v2, . . . , vl}. If |Bi ∩Bj| ≥ t/2

then construct an edge between vi and vj.
8 Find connected components (G1, . . . , Gk) in the graph G.
9 Merge all the points in the same connected component together to get a

clustering C = {C1, . . . , Ck} of the set X.
10 Assign x ∈ X \ ∪iBi to the closest cluster Ci. That is, i := arg min

j∈[k]

min
y∈Cj

d(x, y).

Output C.

separation such that m(C∗S) = t and r(C∗S) = r, the following holds. Alg. 9 outputs a
clustering CX such that CX |S = C∗S.

Proof. Fix S ⊆ X . Denote by ri := r(S∗i ). Let CX = {C1, . . . ,
Ck} be the clustering outputed by the algorithm. Let L = {B1, . . . , Bl} be the list of balls
as outputed by Phase 1 of Alg. 9. Let G be the graph as constructed in Phase 2 of the
algorithm. Observe that B = B(si, ri) = S∗i ∈ L. WLOG, denote this ball by B(i) and the
corresponding vertex in the graph G by v(i). We will prove the theorem by proving two
key facts.

F.1 If Bi1 and Bi2 intersect S∗i then the vertices vi1 and vi2 are connected.
F.2 If Bi1 intersects S∗i and Bj1 intersects S∗j then vi1 and vj1 are disconnected in G.
Claim 4. Let L, G,B(i) and v(i) be as defined above. Let balls Bi1, Bi2 ∈ L be such that
Bi1 ∩ S∗i 6= ∅ and Bi2 ∩ S∗i 6= ∅. Then there exists a path between vi1 and vi2.

Assume that vi1 and v(i) are not connected by an edge. Hence, |Bi1 \ B(i)| ≥ t/2.
Since λ > 4, for all j 6= i, Bi1 ∩ S∗j = ∅. Thus, Bi1 \ B(i) ⊆ X \ S. which contradicts
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|Bi1 ∩ {X \ S}| < t/2.

Claim 5. Let the framework be as in Claim 4. Let Bi1 ∈ L be such that Bi1 ∩ S∗i 6= ∅ and
Bj1 be such that Bj1 ∩ S∗j 6= ∅. Then vi1 and vj1 are disconnected in G.

Assume that vi1 and vj1 are connected. Hence, there exists vertices vi and vn such that
vi and vn are connected by an edge in G and Bi ∩ S∗i 6= ∅ and Bn ∩ S∗n 6= ∅ for some n 6= i.
|Bi ∩ Bn| ≥ t/2. Now, λ ≥ 4, thus Bi ∩ {S \ S∗i } = ∅ and Bn ∩ {S \ S∗n} = ∅. Thus,
Bi ∩Bn ⊆ X \ S which contradicts the sparseness assumption.

Theorem 4.21. Given (X, d) and parameters r and t. Alg. 9 runs in poly(|X|).

Proof. Let n = |X|. Phase 1 of Alg. 9 runs in O(n2) time. Phase 2 gets a list of size l.
Constructing G and finding connected components takes O(l2) time. Hence, the algorithm
runs in O(n2) time.

Lower bound under sparse noise

Theorem 4.22. Given the number of clusters k and parameters r and t. For all λ < 4
and η ≤ 1, there exists a clustering instance (X, d) such that any clustering tree T of X
has the following property. There exists S ⊆ X and a k-clustering CS = {S1, . . . , Sk} which
satisfies (λ, η)-center separation such that m(CS) = t and r(CS) = r, but T doesn’t capture
CS.

Proof. The construction used is the similar to that in the proof of Thm. 4.14 with balls of
unit radius.

Theorem 4.23. Given the number of clusters k and parameters r and t. For all λ ≤ 4
and η ≤ 1 there exists a clustering instance (X, d) such that any list L (of clusterings of

X) has the following property. If |L| < 2
k
2 then there exists S ⊆ X and clustering CS which

satisfies (λ, η)-center separation and m(CS) = t and r(CS) = r, but L doesn’t capture CS.

Proof. The construction used is the similar to that in the proof of Thm. 4.15 with balls of
unit radius.
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Lower bound with arbitrary noise

The constructions are similar to the corresponding constructions for center proximity.

Theorem 4.24. Given the number of clusters k and parameters r and t. For all λ < 6,
there exists a clustering instance (X, d) such that any clustering tree T of X has the
following property. There exists S ⊆ X and there exists k-clustering CS which satisfies λ-
center separation such that m(CS) = t, r(CS) = r and the following holds. If |X\S| ≥ 3t

2
+5,

then T doesn’t capture CS .

Theorem 4.25. Given the number of clusters k and parameters r and t. For all λ ≤ 6
there exists (X, d) such that any list L (of clusterings of X) has the following property.
There exists S ⊆ X and there exists clustering CS which satisfies λ-center separation such
that m(CS) = t, r(CS) = r and the following holds. If |L| < 2

k
2 and |X \S| ≥ k

2
(3m(CS)

2
+5),

then L doesn’t capture CS.
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Chapter 5

Noise-robust k-means clustering

Clustering aims to group similar data instances together while separating dissimilar ones.
However, often many datasets have, on top of cohesive groups, a subset of “unstructured”
points as well. In such cases, the goal is to detect the structure while simultaneously
separating the unstructured data points. Clustering algorithms that achieve this goal are
said to be robust to noise.

The most common approach to clustering views it as an optimization problem. The
idea is to associate a cost (or objective) with each possible partition (into k subsets) of
the input dataset and then try to find a partition which has minimum cost. Examples of
common objective functions include k-means and k-median cost functions. However, it is
easy to see that even the presence of one outlier can cause significant damage to the centers
outputted by these methods.

In this chapter, we propose a generic method of regularization that can transform any
clustering objective which outputs k clusters to one that outputs k + 1 clusters. The
algorithm is now allowed to ‘discard’ points into an extra ‘garbage’ or noise cluster by
paying a constant regularization penalty. The intuition is that allowing the clustering
algorithm to discard a few points should make it easier to detect the structure in the
remaining non-noisy points. However, we prove that finding the optimal solution to the
regularized objective is NP-hard 1.

From a theoretical perspective, one common approach to dealing with such hardness
results is the following. (i) Consider a convex relaxation of the original objective function
(which can be efficiently solved using standard techniques). (ii) Prove that under cer-

1Throughout this chapter, we consider the standard and regularized versions of the k-means objective
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tain data niceness conditions the solution obtained by solving the relaxed objective func-
tion coincides with the optimal solution of the original objective function. For example,
[Peng and Wei, 2007] used this strategy to design an algorithm based on the sdp-relaxation
of the k-means objective function. [Awasthi et al., 2015] proved that under the ‘stochastic
ball assumption’, the solution of the sdp-based approach is indeed the optimal k-means
clustering.

One advantage of studying convex relaxations of clustering objectives over other clus-
tering heuristics (like the Llyod’s algorithm [Lloyd, 1982]) is that we can verify when
the output solution is optimal. There was been lot of work in analyzing clustering algo-
rithms under distributional and clusterability assumptions (see [Balcan and Liang, 2012],
[Awasthi et al., 2012], [Kalai et al., 2010], [Achlioptas and McSherry, 2005],
[Sanjeev and Kannan, 2001] and [Hsu and Kakade, 2013] and the references therein). How-
ever, often the algorithms are designed keeping the input conditions in mind. Convex
relaxations have an advantage that they are not specifically tailored to a particular distri-
bution. In this chapter, we use this approach (sdp relaxation of the regularized k-means
objective) to design an efficient and noise-robust clustering algorithm.

Our framework is the following. We are given an input dataset X made of two com-
ponents. The first is the clusterable subset I which satisfies a niceness property. Namely,
I is the union of k unit balls Bi each separated by a distance of at least δ. The second
is the unstructured or noise component N . Note that the clustering algorithm only sees
X and is not aware of I or N . The goal is to design an efficient clustering algorithm A
such that the output of the algorithm A(X) when restricted to I, is able to detect and
recover the structure of I (namely, the balls Bi). In this chapter, we consider two choices
for A. The first based on SDP relaxation of the regularized k-means objective and the
second based on the LP relaxation. For the noiseless case, [Awasthi et al., 2015] showed
that for δ > 2

√
2(1 + 1/

√
d) (where d is the dimension of the euclidean space) the al-

gorithm based on SDP-relaxation of the standard k-means objective recovers (with high
probability) the structure of I if the balls Bi are generated by an isotropic distribution
(stochastic ball model [Iguchi et al., 2015], [Iguchi et al., 2017], [Awasthi et al., 2015] and
[Nellore and Ward, 2015]).

In this chapter, we improve over previous results and give success guarantees in the
regime δ > 2(1 +

√
k/d) which is near-optimal for large d. In the presence of noise, we

prove that the algorithm based on the SDP-relaxation of the regularized objective recovers
the clustering of I for δ > 2(1+

√
ζ + k/d). Here ζ is a term which depends on the ratio of

number of noisy points and the number of points in the smallest cluster. We obtain similar
results for the LP based algorithm as well. However, in that the case both separation
requirement and the restrictions on noise are stronger.

75



Table 5.1: Known results for clustering under stochastic ball model. The columns show the
separation under which recovery guarantees hold. All these results are for the noise-less
case

Separation condition Reference

k-median LP δ > 3.75 Thm. 1 in [Nellore and Ward, 2015]

δ > 2 Thm. 7 in [Awasthi et al., 2015]

k-means LP δ > 4 Thm. 9 in [Nellore and Ward, 2015]

k-means SDP δ > 2
√

2(1 + 1√
d
) Thm. 11 in [Awasthi et al., 2015]

δ > 2 + k2

d
cond(γ) Thm. 2 in [Iguchi et al., 2015]

δ > 2 + k2

d
Thm. 9 in [Iguchi et al., 2017]

δ > 2 +
√

k
d

Thm. 5.7

We also conduct simulation studies where we examine the effect of λ, the number of
noisy pointsm, the separation δ and other parameters on the performance of our regularised
SDP-based algorithm. We also perform experiments on the MNIST dataset. We observed
that the regularised version performed better than k-means++ when the dataset had noisy
points. In the absence of noise, the performance of both these algorithms were similar.

5.1 Related Work

[Ben-David and Haghtalab, 2014] also studied the problem of robustifying a clustering ob-
jective function. They gave a generic procedure that can transform any clustering objective
with metric d to an objective function with metric d′, where d′ is a truncated version of the
original metric. More specifically, d′(x, y) = min(λ, d(x, y)). Then they show that if there
exists an algorithm which can solve the optimization problem under the truncated metric
then such an algorithm is robust to noise. [Georgogiannis, 2016] also studies breakdown
properties of the truncated objective function, that is the number of outliers which can
cause significant change in the estimates of any one of the centers. However, both these
papers do not make any comment about how one would solve the optimization problem
for both the standard or the truncated versions. In this work, we propose an efficient algo-
rithm based on convex relaxation of our regularized objective function and give robustness
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guarantees for the same.

The problem of recovering the underlying cluster structure in the presence and absence
of noise has been studied before both in distribution-free and distribution-based settings.
In the distribution-free setting, the goal is to prove that if the data has some structure
(is clusterable) then the (proposed or existing) clustering algorithm recovers that structure
in the presence or absence of noise. Such works, make no assumption on the distribution
that generated the data. Different works define different notions of ‘clusterable’ data. In
the current work, the separation requirement on the clusters was global. That is, the each
cluster was separated by at least δ times the maximum radius amongst all the clusters.
Another popular notion of clusterability is α-center proximity [Awasthi et al., 2012] which
requires that two clusters be separated relative to their radii. [Balcan and Liang, 2012]
consider a dataset which has α-center proximity except for an ε-fraction of points. They
propose an efficient algorithm which provides an 1 + O(ε) approximation to the optimal
k-median solution for α > 2 +

√
7.

In this work, we assume that the input satisfies the stochastic ball assumption. This
model was considered by [Nellore and Ward, 2015] in the context of LP relaxation of the
k-median objective function. They showed that if the separation between the clusters
δ > 3.75, then the lp relaxation finds the desired clustering. This bound was later improved
to δ > 2 in [Awasthi et al., 2015]. They also considered the LP relaxation of k-means objec-
tive and gave recovery guarantees when δ > 4. Along the same lines, [Awasthi et al., 2015]
considered the sdp relaxation of the k-means objective. They showed similar recovery
guarantees when δ > 2

√
2(1 +

√
d). This bound was later improved to δ > 2 + k2/d by

[Iguchi et al., 2017]. Table 5.1 contains a summary of the various results under the stochas-
tic ball model. These results however apply only to the noiseless case. In this chapter, we
consider the same framework but prove recovery guarantees even in the presence of a small
fraction of noisy points.

Another line of work, which has some similarities to the framework in this chapter
is estimating the parameters of a distribution in the presence of noise. [Lai et al., 2016]
considered the problem of mean estimation of a gaussian when ε fraction of the points are
corrupted by noise and propose an efficient algorithm that can estimate it with almost linear
samples. [Diakonikolas et al., 2016] acheive an error of O(ε

√
log ε) for mean estimation

which was later improved to O(
√
ε) [Diakonikolas et al., 2017], [Steinhardt et al., 2018].

[Charikar et al., 2017] and [Diakonikolas et al., 2016] considered the problem of recovering
a mixture of k gaussians with few adversaries. [Charikar et al., 2017] show that it is possible
to recover the means when the separation between the means is Ω̃(σ

√
k) where σ2 is

an upper bound on the variance of the k gaussians. [Diakonikolas et al., 2016] output a
distribution which is close to the target distribution in total variation distance. However,

77



their run-time is exponential in k. In this chapter our focus is on understanding the
robustness properties of convex-relaxation type algorithms (specifically those based on
relaxation of our regularized objective). Hence, these results our orthogonal to the current
discussion.

[Peng and Wei, 2007] formulated the k-means objective as a 0-1 SDP and proved equiv-
alence between the two formulations. They then relaxed the 0-1 SDP to a standard SDP. In
this work, we use a similar proof and relaxation technique but for the regularised k-means
objective.

5.2 Preliminaries and definition

Let (M, d) be a metric space. Given a finite set X ⊂M, a k-clustering C of X partitions
the set into k disjoint subsets C = {C1, . . . , Ck}. An objective-based clustering algorithm
associates a cost with each possible partition of X and then tries to find the clustering with
minimum cost. Throughout this section, f denotes a function on the nonnegative reals.

Definition 5.1 ((k, f)-objective algorithm). Given X ⊂ M and a distance function d, a
(k, f)-objective based algorithm A tries to find centers µ1, . . . , µk ∈ M so as to minimize
the following function

Cost(µ1, . . . , µk) =
∑
x∈X

f(d(x, µ(x))), µ(x) = arg min
µ∈{µ1,...,µk}

d(x, µ). (5.1)

Note that algorithm A may not find the optimal solution because for many common
functions f , solving the optimization is NP-hard. Thus, heuristics are used that can get
stuck at a local minimum. For example, when f(x) = x2, the above definition corresponds
to the k-means objective, and the Lloyd’s algorithm that is used to solve this objective can
get stuck at a local minima.

Definition 5.2 ((k, f)-λ-regularised objective algorithm). Given X ⊂ M and a dis-
tance function d, a (k, f)-λ-regularised objective based algorithm A′ tries to find centers
µ1, . . . , µk ∈M and set I ⊆ X so as to minimize the following function

Cost(µ1, . . . , µk, I) =
∑
x∈I

f(d(x, µ(x))) + λ|X \ I|, (5.2)

where µ(x) = arg minµi d(x, µi).
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The regularised objective allows discarding certain points into a “garbage” cluster at
the expense of paying a constant penalty. The intuition is that this will help the algorithm
better detect the structure of the remaining points. We will see in §5.3 that minimizing
this objective function is NP-hard for all k ≥ 1.

5.2.1 Robustification paradigms

Definition 5.3 (λ-Regularised Paradigm). The λ-regularised paradigm is a robustifica-
tion paradigm which takes as input a (k, f)-objective algorithm A and returns a (k, f)-λ-
regularised objective algorithm A′.

In this work, we focus on robustification of the k-means objective. Hence, it is useful to
define the regularised k-means objective as we will refer to it many times in the remainder
of the chapter.

5.2.2 Robustness measure

Given two clusterings C and C ′ of the same set X , we define the distance between them,
∆(C, C ′), as the fraction of pairs of points which are clustered differently in C than in C ′.
Given I ⊆ X , C|I denotes the restriction of the clustering C to the set I.

Definition 5.4 (γ-robust [Ben-David and Haghtalab, 2014]). Given X ⊂ M and clus-
tering algorithm A, let A′ be its robustified version obtained using any robustification
paradigm. Given I ⊆ X , we say that I is γ-robust w.r.t X \ I and A′ if

∆(A′(X )|I,A(I)) ≤ γ (5.3)

This measure tries to quantify the difference in the clustering of the set I after the
addition of ‘noisy’ points X \I. If A′ is indeed robust to noisy points, then the clusterings
should be similar.

5.2.3 Regularised k-means objective

Given a finite set X ⊂ Rd and an integer k, the regularised k-means objective aims to
partition the data into k + 1 clusters C = {C1, . . . , Ck, Ck+1} so as to solve

min
C1,...,Ck+1
c1,...,ck

k∑
i=1

∑
x∈Ci
‖x− ci‖2

2 + λ|Ck+1|. (5.4)
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Note that the first term of the objective depends on the l2 norm, while the second term
depends only on the cardinality of the “noise” cluster. In order to make our objective
function invariant to scaling, the regularization constant λ is added to the cost function.

Let m(X ) := minx 6=y∈X ‖x− y‖2
2 and N = |X |. Then, it is easy to see when λ ≤ m(X )

2
,

then (5.4) admits a trivial solution: each cluster Ci for i ≤ k has exactly one point and
all the remaining points are in Ck+1, leading to an objective λ(N − k). Indeed, for any
other clustering with |Ci| = ni its objective is at least

∑k
i=1(ni − 1)m(X )/2 + λnk+1 =

(n− nk+1 − k)m(X )/2 + λnk+1, where we have used the simple fact:

∀C ⊂ X , min
c

∑
x∈C
‖x− c‖2

2 =
1

2|C|
∑
x,y∈C

‖x− y‖2
2. (5.5)

Comparing the objectives we see the solution is indeed trivial when λ ≤ m(X )/2. Surpris-
ingly, for the interesting case when λ > m(X )/2, the problem suddenly becomes NP-hard,
as we prove below.

5.3 Hardness of regularised k-means

In this section, we present hardness results for the regularised k-means objective.

We consider the interesting case of the regularized 1-means problem. It is well-known
that 1-means can be solved in linear time [Bellman, 1973]. However, we will show by
reducing an instance of the MAX-CLIQUE problem to the regularised 1-means problem is
NP-hard. We give a proof sketch here. The technical details can be found in the appendix.

Theorem 5.5. For all λ there exists a clustering instance X ⊂ Rp such that λ > m(X)
2

but
finding the optimal solution to the regularized 1-means objective is NP-hard where recall
that m(X) := minx 6=y∈X ‖x− y‖2.

Proof sketch. The proof has two parts. We first show that for fixed λ the problem is NP-
hard. The proof works by reducing an instance of MAX-CLIQUE to the regularised 1-mean
instance. The idea is to define the distance between any pair of vertices as 1 if there exists
an edge between them. If not, then define the distance as 1 + ∆ for a suitably chosen ∆.
This construction guarentees that the problem is NP-hard for at least one λ > m(X )

2
. Our

result then follows using a scaling argument.

Note that the same argument (as in the appendix) infact works for k ≥ 2 where we
would reduce from the MAX-k-CLIQUE problem (cover maximum vertices by k cliques).
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Algorithm 10: SDP-based regularised k-means algorithm

Input: X ⊂ Rd, k, and hyperparameter λ.
Output: C ′ := {C1, . . . , Ck, Ck+1}.

1 Compute the matrix Dij = ‖xi − xj‖2
2.

2 Solve the SDP (Eqn. 5.6) using any standard SDP solver and obtain matrix Z
and vector y.

3 Use the rounding procedure (Alg. 11) to obtain the partition C ′.

We leave this proof as a simple exercise for the reader. Thus, we show that regularised
k-means is hard for all k ≥ 1.

5.4 The regularised k-means SDP-based algorithm

In the previous section, we showed that the regularised k-means objective is NP-hard to
optimize. Hence, we cannot hope to solve the problem exactly unless P = NP . In this
section, we develop an algorithm based on semi-definite programming relaxation of the
regularised objective.

[Peng and Wei, 2007] developed an algorithm A (Alg. 10 with λ = ∞) which tries
to minimize the k-means objective. They obtained a convex relaxation of the k-means
objective and solved it polynomially using standard solvers. In this section, we use the
same technique to obtain and efficiently solve the convex relaxation of the regularised k-
means objective. Our algorithm A′ (Alg. 10) is the robustified version of A using the
λ-regularised paradigm. In §5.4.1, we give the details of how we transform the regularised
objective into an SDP. §5.4.2 has our main results where we give robustness guarentees for
A′.

5.4.1 The SDP-based algorithm

The SDP relaxation of the regularised k-means objective is obtained in two steps. Using
similar technique to that of [Peng and Wei, 2007], we translate Eqn. 5.4 into a 0-1 SDP
(Eqn. 5.6). We then prove that solving the 0-1 SDP exactly is equivalent to solving the
regularised k-means problem exactly. Then, we relax some of the constraints of the 0-1 SDP
to obtain a tractable SDP which we then solve using standard solvers. We then describe
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the rounding procedure which uses the solution of the SDP to construct a clustering of the
original dataset.

0-1

SDP



minZ,y Tr(DZ) + λ〈1, y〉
s.t. Tr(Z) = k

Z · 1 + y = 1

Z ≥ 0, Z2 = Z,ZT = Z

y ∈ {0, 1}n

relaxed−−−−→ SDP



minZ,y Tr(DZ) + λ〈1, y〉
s.t. Tr(Z) = k

(
Z+ZT

2

)
· 1 + y = 1

Z ≥ 0, y ≥ 0, Z � 0

(5.6)

Theorem 5.6. Finding a solution to the 0-1 SDP (5.6) is equivalent to finding a solution
to the regularised k-means objective (5.4).

Equation 5.6 shows our 0-1 SDP formulation. The optimization is NP-hard as it is
equivalent to the regularised k-means objective. Hence, we consider a convex relaxation
of the same. First, we replace Z2 = Z with Z � 0. In addition, we relax y ∈ {0, 1}n to
y ≥ 0, as the constraint y ≤ 1 is redundant. Using these relaxations, we obtain the SDP
formulation for our objective function.

We solve the SDP using standard solvers [Yang et al., 2015] thereby obtaining Z, y.
The proof of Thm. 5.6 showed that the optimal solution of 0-1 SDP is of the following
form. Z is a n× n block diagonal matrix of the form diag(ZI1 , . . . , ZIk , 0), where n = |X |
and ZIi = 1

|Ci|1 1T . Thus, given Z, we can extract the set of cluster centers C = ZX
which is an n× d matrix. Each row Ci contains the cluster center to which data point xi
belongs. For the points xj assigned to the noise cluster, the corresponding row Cj is zero
and yj = 1. The SDP solver does not always return the optimal solution, as the relaxation
is not exact. However, we expect that it returns a near-optimal solution. Hence, given
Z and y returned by the solver, we use Alg. 11 to extract a clustering of our original
dataset. The threshold parameter indicates our confidence that a given point is noise. In
our experiments, we have used a threshold of 0.5.

5.4.2 Robustness guarantees

Assume that we are given a set I of k well-separated balls in Rd. That is, I := ∪ki=1Bi

where each Bi is a ball of radius at most one and centered at µi such that ‖µi − µj‖ ≥ δ.
On top of this structure, points are added from the set N . Let A and A′ be the SDP

82



Algorithm 11: Regularised k-means rounding procedure

Input: Z ⊂ Rn×n, y ⊂ Rn, X , and threshold ∈ [0, 1].
Output: C ′.

1 If yi > threshold then
Delete zi and zTi from Z. Put xi in Ck+1.
Delete xi from X.

k-cluster the columns of XTZ to obtain clusters C1, . . . , Ck.
Output C ′ = {C1, . . . , Ck, Ck+1}.

based standard and regularised k-means algorithm respectively (as defined in the begining
of §5.4). We will show that I is 0-robust w.r.t A′ and N under certain conditions on δ and
mildness properties of the set N . To show this, we need to compare the clusterings A(I)
and A′(X )|I . We first prove recovery guarentees for A in the absense of noisy points.

Theorem 5.7. Let P denote the isotropic distribution on the unit ball centered at origin
in Rd. Given points µ1, . . . , µk such that ‖µi − µj‖ > δ > 2. Let Pi be the measure P
translated with respect to the center µi. Let each Bi is drawn i.i.d w.r.t the distribution Pi.

Given a clustering instance I ⊂ RN×d and k where I := ∪ki=1Bi. Define n :=
mini∈[k] |Bi| and ρ = N

nk
. If

δ > 1 +

√
1 +

2θρk

d

(
1 +

1

logN

)2

where θ = E[‖xpi − cp‖2] < 1, then there exists a constant c > 0 such that with probability
at least 1 − 2d exp( −cNθ

d log2N
) the k-means SDP (Alg. 10 with λ = ∞) finds the intended

cluster solution C∗ = {B1, . . . , Bk}.

Thm. 5.7 improves the result of Thm. 11 in [Awasthi et al., 2015]. Under the stochastic
ball assumption, they showed that the k-means SDP finds the intended solution for δ >
2
√

2(1 + 1√
d
). For k � d, which is the case in many situations our bounds are optimal in

terms of the separation requirement of the clusters. [Iguchi et al., 2015] obtained similar
results but for δ > 2 + k2

d
cond(I). However, the condition number (ratio of maximum

distance between any two centers to the minimum distance between any two centers) can
be arbitrarily large. [Iguchi et al., 2017] improve the separation requirement to δ > 2 + k2

d
.

Asymptotically, as d goes to ∞ their bound matches our result. We also have a better
dependence on the number of clusters k while they have a better dependence on the
dimension d.
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Next, we analyse the recovery guarentees for A′ in the presence of noisy points N . We
decompose the noisy points into two disjoint sets N1 and N2. The set N2 consists of all the
points which are far from any of the points in I. The set N1 consists of points which are
close to at least one of the clusters. We also require that any point in N1 has an α-margin
w.r.t to the centers of the balls B1, . . . , Bk. That is the difference of the distance between
any point in N1 to a cluster center is at least α. Now, we will show that if N has the
aforementioned properties then I is robust w.r.t the regularised SDP algorithm A′.

Theorem 5.8. Let P denote the isotropic distribution on the unit ball centered at origin
in Rd. Given centers µ1, . . . , µk such that ‖µi − µj‖ > δ > 2. Let Pi be the measure P
translated with respect to the center µi. Let Bi is drawn i.i.d w.r.t the distribution Pi.

Given a clustering instance X ⊂ RN×d and k. Let X := I ∪N where I := ∪ki=1Bi. Let
N = N1 ∪ N2 have the following properties. For all n ∈ N1 and for all i, j, we have that
|‖n−µi‖2−‖n−µj‖2| ≥ α. For all n ∈ N2 and for all x ∈ I, ‖n−x‖ ≥ ν ≥

√
(δ − 1)2 + 1.

Note that N1 ∩N2 = φ. Let n = mini |Bi| and ε = |N1|
n

and ρ = |I|
nk

. If

• δ > 2 +
√
O(ε) + 2ρkθ(1+1/ log(|I|))2

d

• α ≥ O(ε) + 2ρkθ(1+1/ log |I|)2
d

• |N2|
n
≤ δ2−2δ−O(ε)

λ

then there exists a constant c2 > 0 such that with probability at least 1−2d exp( −c2|I|θ
d log2 |I|) the

regularised k-means SDP (Alg. 10) finds the intended cluster solution C∗ = {C1, . . . , Ck,N2}
where Bi ⊆ Ci when given X and δ2 + 2δ ≥ λ ≥ (δ − 1)2 + 1 as input.

The proof of both the Thms. 5.7 and 5.8 use the following ideas. We construct a dual
for the SDP. We then show that when the conditions of our theorems are satisfied then
there exists a feasible solution for the dual program. Moreover, the objective function
value of primal and dual sdp program are the same. Hence, the solution found is indeed
optimal. We use similar techniques as in the proof of Thm. 11 in [Awasthi et al., 2015].
However, our analysis is tighter which helps us to obtain better bounds. The details are
in the appendix.

We have also developed a regularized version of the k-means LP based algorithm. The
details and the robustness guarantees for the LP-based algorithm are in the appendix.
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5.5 Experiments

We ran several experiments to analyse the performance of our regularised k-means algo-
rithm. The first set of experiments were simulations done on synthetic data. The second
set of experiments were done on real world datasets like MNIST where we compared the
performance of our algorithm against other popular clustering algorithms like k-means++.
All our experiments were run on Matlab. We solved the SDP formulation using the Matlab
SDPNAL+ package [Yang et al., 2015]. To run k-means++ we used the standard imple-
mentation of the algorithm available on Matlab.

5.5.1 Simulation studies

The goal of these sets of experiments was to understand the effect of different parameters
on the performance of the regularised SDP algorithm. Given the number of clusters k, the
separation between the clusters δ, the dimension of the space d, the number of points in
each cluster n and the number of noisy points m. We generate a clustering instance X
in Rd as follows. We first pick k seed points µ1, . . . , µk such that each of these points are
separated by at least δ. Next we generate n points in the unit ball centered at each of the
µ′is. Finally we add m points uniformly at random.

We analyse the performance of the regularised SDP algorithm as the parameters change.
The most crucial amongst them is the separation between the clusters δ, the regularization
constant λ and the dimension d. Fig. 5.1 shows the heatmap under different parameter
values. For each setting of the parameters, we generated 50 random clustering instances.
We then calculated the fraction of times the regularised sdp was able to recover the true
clustering of the data. If the fraction is close to one, then its color on the plot is light.
Darker colors represent values close to zero.

We see an interesting transition for λ. When λ is ‘too small’ then the probability of
recovering the true clustering is also low. As λ increases the probability of success goes up
which are represented by the light colors. However, if we increase λ to a very high value
then the success probability again goes down. This shows that there is a ‘right’ range of λ
as was also predicted by our theoretical analysis.

Another parameter of interest is the dimension of the space d. Note that from our
theoretical analysis, we know that both the probability of success and the separation depend
on d. Fig. 5.1 shows that for very low dimension, the regularised sdp fails to perfectly
recover the underlying clustering. However, as the dimension grows so does the probability
of success. For these two simulations, we fixed the number of points per cluster n = 30,
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Figure 5.1: Heatmap showing the probability of success of the k-means regularised sdp al-
gorithm. Lighter color indicates probability closer to one while darker indicates probability
closer to zero.

k = 8 and the number of noisy points m = 30. We have similar plots for (δ, n) and (δ, k)
and (δ,m) and (n,m). These plots very mostly light colored as long as the number of noisy
points was not too large (m

n
≤ 5). Hence, due to space constraints, we have included them

only in the appendix.

5.5.2 Results on MNIST dataset

We compare our regularised SDP algorithm against k-means++ on the MNIST dataset.
MNIST is a dataset of images of handwritten digits from zero to nine. It contains 60,000
training images and 10,000 test images. We choose k = 4 different classes and randomly
sample a total of N = 1, 000 images from these classes. We then run both our regularised
SDP algorithm and the k-means++ algorithm on this dataset. We repeat this process for
10 different random samples of MNIST. We measure the performance of the two algorithms
in terms of the precision and recall over the pairs of points in the same cluster. Given a
clustering C and some target clustering C∗. Define the precision p of C as the fraction
of pairs that were in the same cluster according to C∗ given that they were in the same
cluster according to C. The recall r of C is the fraction of pairs that were in the same
clustering according to C given that they were in the same cluster according to C∗. We
finally measure the f1 score of the clustering C as the harmonic mean of its precision and
recall. f1 = 2pr

p+r
.

Note that the regularised algorithm outputs k + 1 clusters. Hence, to make a fair
comparison, we finally assign each point in the noisy cluster (Ck+1) to one of the clusters
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C1, . . . , Ck depending upon the distance of the point to the clusters. Another point is that
the f1 measures are sensitive to the choice of the k digits or classes. For some choice of k
classes, the f1 measures for both the algorithms are higher than compared to other classes.
This shows that some classes are more difficult to cluster than other classes. Hence, we
only report the difference in performance of the two algorithms.

We report the performance on datasets with and without noisy points. The first is
when there are no outliers or noisy points. In this case, the difference in the f1 values was
about 4.34% in favor of k-means++. We then added noisy points to the dataset. In the
first case, we added images from different datasets like EMNIST (images of handwritten
letters). In this case, the difference was 2.54% in favor of the regularised algorithm. In
the second case, besides images from different datasets, we also added a few random noisy
points to the MNIST dataset. In this case, the difference increased further to about 6.9%
in favor of the regularised algorithm.

5.6 Conclusion

We introduced a regularisation paradigm which can transform any center-based clustering
objective to one that is more robust to the addition of noisy points. We proved that reg-
ularised objective is NP-hard for common cost functions like k-means. We then obtained
regularised versions of an existing clustering algorithm based on convex (sdp) relaxation
of the k-means cost. We then proved noise robustness guarentees for the regularised algo-
rithm. The proof improved existing bounds (in terms of cluster separation) for sdp-based
standard (non-regularised) k-means algorithm. Our experiments showed that regularised
sdp-based k-means performed better than existing algorithms like k-means++ on MNIST
especially in the presence of noisy points.
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Appendix A

Clustering with same-cluster queries

A.1 Relationships Between Query Models

Proposition A.1. Any clustering algorithm that uses only q same-cluster queries can be
adjusted to use 2q cluster-assignment queries (and no same-cluster queries) with the same
order of time complexity.

Proof. We can replace each same-cluster query with two cluster-assignment queries as in
Q(x1, x2) = 1{Q(x1) = Q(x2))}.

Proposition A.2. Any algorithm that uses only q cluster-assignment queries can be ad-
justed to use kq same-cluster queries (and no cluster-assignment queries) with at most a
factor k increase in computational complexity, where k is the number of clusters.

Proof. If the clustering algorithm has access to an instance from each of k clusters (say
xi ∈ Xi), then it can simply simulate the cluster-assignment query by making k same-
cluster queries (Q(x) = arg maxi 1{Q(x, xi)}). Otherwise, assume that at the time of
querying Q(x) it has only instances from k′ < k clusters. In this case, the algorithm can
do the same with the k′ instances and if it does not find the cluster, assign x to a new
cluster index. This will work, because in the clustering task the output of the algorithm is
a partition of the elements, and therefore the indices of the clusters do not matter.
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Table A.1: Known results for α-center proximity

Euclidean General Metric

Centers
from data

Upper bound :
√

2 + 1
[Balcan and Liang, 2012]
Lower bound : ?

Upper bound :
√

2 + 1
[Balcan and Liang, 2012]
Lower bound : 2
[Ben-David and Reyzin, 2014]

Unrestricted
Centers

Upper bound : 2 +
√

3
[Awasthi et al., 2012]
Lower bound : ?

Upper bound : 2 +
√

3
[Awasthi et al., 2012]
Lower bound : 3
[Awasthi et al., 2012]

A.2 Comparison of γ-Margin and α-Center Proximity

In this paper, we introduced the notion of γ-margin niceness property. We further showed
upper and lower bounds on the computational complexity of clustering under this as-
sumption. It is therefore important to compare this notion with other previously-studied
clusterability notions.

An important notion of niceness of data for clustering is α-center proximity property.

Definition A.3 (α-center proximity [Awasthi et al., 2012]). Let (X , d) be a clustering
instance in some metric space M , and let k be the number of clusters. We say that a
center-based clustering C = {C1, . . . , Ck} induced by centers c1, . . . , ck ∈ M satisfies the
α-center proximity property (with respect to X and k) if the following holds

∀x ∈ Ci, i 6= j, αd(x, ci) < d(x, cj)

This property has been considered in the past in various studies [Balcan and Liang, 2012,
Awasthi et al., 2012]. In this appendix we will show some connections between γ-margin
and α-center proximity properties.

It is important to note that throughout this paper we considered clustering in Euclidean
spaces. Furthermore, the centers were not restricted to be selected from the data points.
However, this is not necessarily the case in other studies.

An overview of the known results under α-center proximity is provided in Table A.1.
The results are provided for the case that the centers are restricted to be selected from
the training set, and also the unrestricted case (where the centers can be arbitrary points
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Table A.2: Results for γ-margin

Euclidean General Metric
Centers
from data

Upper bound : 2 (Thm. A.4)
Lower bound : ?

Upper bound : 2 (Thm. A.4)
Lower bound : 2 (Thm. A.5)

Unrestricted
Centers

Upper bound : 3 (Thm. A.6)
Lower bound : 1.84 (Thm. 2.8)

Upper bound : 3 (Thm. A.6)
Lower bound : 3 (Thm. A.7)

from the metric space). Note that any upper bound that works for general metric spaces
also works for the Euclidean space.

We will show that using the same techniques one can prove upper and lower bounds for
γ-margin property. It is important to note that for γ-margin property, in some cases the
upper and lower bounds match. Hence, there is no hope to further improve those bounds
unless P=NP. A summary of our results is provided in A.2.

A.2.1 Centers from data

Theorem A.4. Let (X, d) be a clustering instance and γ ≥ 2. Then, Algorithm 1 in
[Balcan and Liang, 2012] outputs a tree T with the following property:

Any k-clustering C∗ = {C∗1 , . . . , C∗k} which satisfies the γ-margin property and its cluster
centers µ1, . . . , µk are in X, is a pruning of the tree T . In other words, for every 1 ≤ i ≤ k,
there exists a node Ni in the tree T such that C∗i = Ni.

Proof. Let p, p′ ∈ C∗i and q ∈ C∗j . [Balcan and Liang, 2012] prove the correctness of their

algorithm for α >
√

2 + 1. Their proof relies only on the following three properties which
are implied when α >

√
2 + 1. We will show that these properties are implied by γ > 2

instances as well.

• d(p, µi) < d(p, q)
γd(p, µi) < d(q, µi) < d(p, q) + d(p, µi) =⇒ d(p, µi) <

1
γ−1

d(p, q).

• d(p, µi) < d(q, µi)
This is trivially true since γ > 2.
• d(p, µi) < d(p′, q)

Let r = maxx∈C∗i d(x, µi). Observe that d(p, µi) < r. Also, d(p′, q) > d(q, µi) −
d(p′, µi) > γr − r = (γ − 1)r.
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Theorem A.5. Let (X , d) be a clustering instance and k be the number of clusters. For
γ < 2, finding a k-clustering of X which satisfies the γ-margin property and where the
corresponding centers µ1, . . . , µk belong to X is NP-hard.

Proof. For α < 2, [Ben-David and Reyzin, 2014] proved that in general metric spaces, find-
ing a clustering which satisfies the α-center proximity and where the centers µ1, . . . , µk ∈ X
is NP-hard. Note that the reduced instance in their proof, also satisfies γ-margin for
γ < 2.

A.2.2 Centers from metric space

Theorem A.6. Let (X, d) be a clustering instance and γ ≥ 3. Then, the standard single-
linkage algorithm outputs a tree T with the following property:

Any k-clustering C∗ = {C∗1 , . . . , C∗k} which satisfies the γ-margin property is a pruning
of T . In other words, for every 1 ≤ i ≤ k, there exists a node Ni in the tree T such that
C∗i = Ni.

Proof. [Balcan et al., 2008] showed that if a clustering C∗ has the strong stability property,
then single-linkage outputs a tree with the required property. It is simple to see that if
γ > 3 then instances have strong-stability and the claim follows.

Theorem A.7. Let (X , d) be a clustering instance and γ < 3. Then, finding a k-clustering
of X which satisfies the γ-margin is NP-hard.

Proof. [Awasthi et al., 2012] proved the above claim but for α < 3 instances. Note however
that the construction in their proof satisfies γ-margin for γ < 3.
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Appendix B

Semi-supervised clustering for
deduplication

B.1 Locality Sensitive Hashing

The technique of locality sensitive hashing was introduced by [Gionis et al., 1999] to solve
the problem of approximate nearest neighbour search. The LSH-based hashing schemes try
to put similar points into the same bucket. Hence, to search for points which are ‘similar’
to a given point x ∈ X, one only needs to search within the same hash bucket instead of
searching within the whole set X. Next, we describe a generic hashing based algorithm.

Definition B.1 (LSH [Charikar, 2002]). Given a set X and a similarity function f :
X ×X → [0, 1]. Given a class of hash functions H = {h1, h2, . . .}. An LSH w.r.t X and
f is a probability distribution over H such that for each x, y ∈ X ,

P
h∈H

[h(x) = h(y)] = f(x, y)

Some common examples of an LSH schemes are minhash scheme w.r.t jaccard similar-
ity measure [Broder et al., 2000, Broder, 1997], simhash scheme w.r.t hamming similarity
measure [Charikar, 2002]. We describe a generic locality sensitive hashing procedure in
Alg. 12. Observe that, Alg. 12 outputs s different partitions of X. Assume without loss
of generality, that a point x lies in the blocks B11 ∈ P1, B21 ∈ P2, . . . , Bs1 ∈ Ps. Now, to
search for points y which are similar to x, we only need to search within the blocks Bi1.
We say that these points lie in the same ‘bucket’ as x. We say that b(x, y) = 1 if and only
if x and y lie together in the same block in at least one of the partitions.
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Algorithm 12: A generic LSH based hashing algorithm [Indyk and Motwani, 1998,
Charikar, 2002]

Input: A set X, a similarity function f , a class of hash functions H over X,
integers r, s and a perfect hash function p over the domain Nr.

Output: Partitions P1, . . . , Ps of the set X.

1 Let D be a distribution over H which satisfies Defn. B.1 and let k = rs.
2 Sample hash functions h1, . . . , hk iid using D.
3 Group the hash functions into s bands. Each band contains r hash functions.
4 For all x and 1 ≤ i ≤ s, let gi(x) = (h(i−1)s+1(x), . . . , hir(x)). That is, gi(x)

represents the ith signature of x.
5 For all 1 ≤ i ≤ s, obtain partitions Pi of X . That is, Pi = {Bi1, . . . , Bimi} where

each Bij = {x : p(gi(x)) = bij} for some bij.
6 Output {P1, . . . , Ps}.

Hence, to search for points which are similar to x, we need to search over y such that
b(x, y) = 1. Our sampling procedure will sample pairs from the set Q := {(x, y) : b(x, y) =
1} (details in the next section). Hence, a requirement from the hashing scheme is that we
should be able to construct the set Q in linear time. Thm. B.2 shows that this is indeed
the case.

Theorem B.2. Given X, a similarity function f , a class of hash functions H, integers
r, s and perfect hash function p. Alg. 12 runs in O(|X|rsmaxij |Bij|).

Proof. Let n = |X|. Sampling k different hash function takes rs time. Computing the
signatures for all x takes nrs time. Obtaining the different partition takes ns time. Now,
computing Rx for all x takes time t =

∑b
i=1

∑mj
j=1 |Bij|2. Now, we know that for all

i,
∑mj

j=1 |Bij| = n. Hence,
∑mj

j=1 |Bij|2 ≤ maxj Bij

∑mj
j=1 |Bij| = nmaxj Bij. Hence,

t ≤ nsmaxij |Bij|.

We see that the running time is dependent upon the block sizes. If the maximum block
size is a constant then the hashing scheme runs in linear time. Even when the block
sizes are bounded by log n, then the scheme runs in O(n log n). Next, we show that a if
d(x, y) ≤ λ then (x, y) ∈ Q with very high probability. Also, if d(x, y) > O(2λ) then with
high probability (x, y) 6∈ Q.

Theorem B.3. Given a set X, a distance function d : X × X → [0, 1], a class of hash
functions H, threshold parameter λ and a parameter δ. Let the similarity function be
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f(x, y) := 1− d(x, y) and let A be a generic LSH based algorithm (Alg. 12) which outputs
partitions P1, . . . , Ps. Let b(x, y) = 1 iff x, y are together in at least one of these partitions.
Choose r, s such that 1

2λ
< r < 1

− ln(1−λ)
and s = d2.2 ln(1

δ
)e. Define δ′ := s ln(1 + δ). Then

for (x, y) ∈ X 2

• If d(x, y) ≤ λ then

P
h∈H

[ b(x, y) = 1] > 1− δ

• If d(x, y) > 2λ ln
(
1 + 1

δ

)
then

P
h∈H

[ b(x, y) = 1] < δ′

Proof. Observe that

P[b(x, y) = 0] = P [∩s
i=1
gi(x) 6= gi(y)]

=
∏
i

(
1−

r∏
j=1

P[h(i−1)r+j(x) = h(i−1)r+j(y)]
)

=
s∏
i=1

(1−
r∏
j=1

f(x, y)) = (1− f(x, y)r)s

Consider the case when d(x, y) ≤ λ. From the choice of s, we know that s ≥ 2.2 ln(1/δ) =⇒
s ≥ ln(1/δ)

1−ln(e−1)
⇐⇒ 1 − 1

e
≤ δ1/s. From the choice of r, we know that r < 1

− ln(1−λ)
⇐⇒

r ln( 1
1−λ) < 1 ⇐⇒ (1 − λ)r > 1

e
. Hence, then we have that P[b(x, y) = 0] = (1 − (1 −

d(x, y))r)s ≤ (1− (1− λ)r)s < δ. This proves the first part of the theorem.

For the second part, consider the case when d(x, y) > λ′ where λ′ is such that ln(1 +
1/δ) = λ′

2λ
.

1

2λ
< r ⇐⇒ ln(1 + 1/δ)

λ′
< r. Now, λ′ ≤ ln

( 1

1− λ′
)

. Hence,

=⇒ ln(1 + 1/δ)

ln( 1
1−λ′ )

< r ⇐⇒ r ln(1− λ′) < ln(
δ

1 + δ
)

⇐⇒ 1− (1− λ′)r > e− ln(1+δ) = e−δ
′/s > (1− δ′)1/s

=⇒ P[b(x, y) = 0] > (1− (1− λ′)r)s > 1− δ′
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Now, the only thing that remains to be shown is that we can choose an integer r satisfying
the conditions of the theorem. Consider the function f(x) = − 1

2x
− 1

ln(1−x)
. Using elemen-

tary analysis, we see that for x→ 0, f(x)→∞. Infact, for x ≤ 0.32, f(x) > 1. Hence, for
λ ≤ 0.32, r satisfying the conditions of the theorem exists.

B.2 Sample and query complexity of RCC using P12

Theorem B.4. Given metric space (X, d), a class of clusterings F of X and a threshold
parameter λ. Given ε, δ ∈ (0, 1) and a C∗-oracle. Let d be (α, β)-informative w.r.t C∗ and
λ and let X satisfy γ-skewed property. Let A be the ERM-based approach as described in
Alg. 5 (where the LSH-based scheme is ζ-tight) and Ĉ be the output of A. If

m−,m+ ≥ a
VC-Dim(F) + log(2

δ
)

ε2
(B.1)

where a is a global constant then with probability at least 1− δ− exp
(−2ν2(1−α)2|X+

2 |2
49

)
(over

the randomness in A), we have that

LC∗(Ĉ) ≤ min
C∈F

LC∗(C) + 3α + ζ + ε+ ν

Proof. Let T0 be the distribution induced by P0 and T1 be the distribution induced by P1.

Using Thm. 1.2, we know that if m+ > a
VC-Dim(F)+log( 1

δ
)

ε2
then with probability at least

1− δ − e−2ν2(1−α)2|X+
2 |2 , we have that for all C

|P̂ (C)− P
(x,y)∼T1

[C(x, y) = 0]| ≤ ε

=⇒ P̂ (C) ≤ ε+ (1 + 2ν)(1 + 2α)LP+(C) and

LP+(C)− ε− α− ζ − ν ≤ P̂ (C) (B.2)

Note that we obtain upper and lower bounds for P
(x,y)∼T1

[h(x, y) = 0] using Thm. 3.20.

Similarly, if m− > a
VC-Dim(F)+log( 1

δ
)

ε2
, then with probability at least 1− δ, we have that for

all h,

|N̂(C)− P
(x,y)∼T0

[C(x, y) = 1]| ≤ ε

=⇒ N̂(C) ≤ ε+ LP−(C) and LP−(C)− ε ≤ N̂(C) (B.3)
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Combining Eqns. B.2 and B.3, we get that with probability at least 1−2δ−e−2ν2(1−α)2|X+
2 |2 ,

we have that for all C ∈ F

L̂(C) ≤ µ[ε+ (1 + 2ν)(1 + 2α)LP+(C)]

+ (1− µ)(ε+ LP−(C))

≤ LC∗(C) + ε+ 2α + 2ν + 4αν

And L̂(C) ≥ µ(LP+(h)− ε− α− ν − ζ) + (1− µ)(LP−(h)− ε)
≥ LC∗(C)− ε− α− ν − ζ

Now, let Ĉ be the output of A and let Ĉ∗ be arg minC∈F LC∗(C). Then, we have that

LC∗(Ĉ) ≤ L̂(Ĉ) + α + ε+ ν + ζ ≤ L̂(Ĉ∗) + α + ε+ ν + ζ

≤ LC∗(Ĉ
∗) + 2ε+ 3α + 3ν + 4αν + ζ

Choosing ε = ε
2

and δ = δ
2

and ν = ν
7

throughout gives the result of the theorem, and
this completes the proof of the theorem.

Finally, we analyse the query complexity of our approach. That is the number of
queries that our algorithm makes to the C∗-oracle. Our algorithm makes queries during
the sampling procedure. We see that to sample m− negative and m+ positive pairs the
number of queries is ‘close’ to m+ + m− with very high probability. Thus, the number of
‘wasted’ queries is small.

Theorem B.5. [Query Complexity] Let the framework be as in Thm. B.4. With probability

at least 1 − exp
(
− ν2m−

4
) − exp

(
− ν2m+

4

)
− exp(−ν2(1 − α)2|X 2

+|2) over the randomness
in the sampling procedure, the number of same-cluster queries q made by A is

q ≤ (1 + ν)

(
m−

(1− γ)
+

m+

β(1− ζ − ν)

)
Proof. The number of queries made to sample the set Sg is qg = mg. Let q+ denote the
number queries to sample the set S+. Using Lemma 3.21, we know that E[q+] ≤ 1

β(1−ζ−ν)

with probability at least 1 − exp(−ν2(1 − α)2|X 2
+|2) over the randomness in the hashing

procedure. Given that the expectation is bounded as above, using Thm. 1.3, we get that

q+ ≤ (1+ν)m+

β(1−ζ−ν)
with probability at least 1− exp(−ν

2m+

4
). Similarly, combining Lemma 3.16

with Thm. 1.3, we get that with probability at least 1− exp(−ν
2m−
4

), q− ≤ (1+ν)m−
(1−γ)

.
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Appendix C

Noise-robust k-means clustering

C.1 Hardness of regularized k-means

Theorem C.1. Given a clustering instance X ⊂ Rp, define m(X) := minx 6=y∈X ‖x− y‖2
2

and n := |X|. Finding the optimal solution to the regularized 1-means objective is NP-hard

for m(X)
2

< λ < m(X)
2

+ 1
2n2(n−1)

.

In particular, the optimization problem is NP-hard for λ = λ0(X) := m(X)
2

+ 1
4n3 .

Proof. The proof uses reduction from the clique problem. Given a graph G = (V,E) and
an integer q, the clique problem asks the following: does there exist a clique in G of size
at least q?

Given an instance of the clique problem, we construct an instance of regularized 1-means
as follows. For every v ∈ V , construct xv ∈ X. Define the metric as

d2(xi, xj) =

{
1 if (i, j) ∈ E
1 + ∆ if (i, j) 6∈ E (C.1)

where 0 < n∆ < 1. Now, we will show that G has a clique of size ≥ q ⇐⇒ X has a
clustering of cost ≤ c = q−1

2
+ λ(n− q).

=⇒ Assume G has a clique of size at least q. Assign all points in the clique to C1 and
the remaining points to C2. This clustering has cost as desired.

⇐= Let |C1| = n′. Now, there are three possibilities.
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Case 1: n′ > q. If all the distances in C1 are 1, then the cost of the clustering is
n′−1

2
+ λ(n − n′) ≤ c as λ > 1

2
. Thus, the vertices corresponding to the points in C1 form

a clique of size n′ > q. If at least one distance is 1 + ∆ then the cost of the clustering is

n′ − 1

2
+ λ(n− n′) +

∆

n′
≤ c =⇒ λ ≥ 1

2
+

∆

n′(n′ − q)

This is a contradiction because of the choice of λ.

Case 2: n′ < q. If all the distances in C1 = 1, then the cost of the clustering is
n′−1

2
+ λ(n−n′) > c. If atleast one distance is 1 + ∆ then the cost of the clustering is even

greater as λ > 1
2
.

Case 3: n′ = q. If atleast one distance is 1 + ∆ then the cost of the clustering is
q−1

2
+ λ(n − q) + ∆

m
> c . Hence, the only possibility remains that |C1| = q and all the

distances in C1 = 1. Hence, G has a clique of size q.

Corollary C.2 ([Dasgupta, 2008] Cor. 7). An N×N symmetric matrix D can be embedded
in RN if and only if uTDu ≤ 0 for all u ∈ RN with u.1 = 0

Lemma C.3. Let d be as in Eqn. C.1. Then d can be embedded into R|X|.

Proof. The proof of embedding is very similar to Thm. 8 in [Dasgupta, 2008]. Using Cor.
C.2, we know that D can be embedded into R|X| if and only if uTDu ≤ 0 for all uT1 = 0.

uTDu =
∑
ij

uidijuj =
∑
ij

uiuj

(
1− 1(i = j) + ∆1(i 6∼E j)

)
≤
(∑

i

ui

)2

−
∑
i

u2
i + ∆

∑
ij

|ui||uj| ≤ −‖u‖2 + |X|∆‖u‖2

= −(1− |X|∆)‖u‖2,

which completes our proof.

We now use Thm. C.1 to show that regularized 1-means is Np-Hard for any λ >
m(X)/2.

Theorem C.4. For all λ there exists a clustering instance X ⊂ Rp such that λ > m(X)
2

but finding the optimal solution to the regularized 1-means objective is NP-hard.
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Proof. Let (X, d) be any clustering instance. Thm. C.1 showed that optimizing the prob-
lem

min
C⊆X

∑
x∈C

d2(x, c) + λ0(X) |X \ C| (FRM)

is NP-hard when λ0(X) := m(X)
2

+ 1
4n3 . Given λ > 0, we want to show that for all

λ > m(X)/2, the following is also NP-hard to optimize:

min
C⊆X

∑
x∈C

d2(x, c) + λ |X \ C| (GRM)

Let λ′ =
√
n3(4λ− 2m(X)) > 0, and define a new Euclidean distance d′(x, y) = d(x,y)

λ′ .
Then

∑
x∈C

d2(x, c) + λ |X \ C| = λ′2
(∑

C

d′2(x, c) +
|X \ C|
λ′2

(m(X)

2
+
λ′2

4n3

))
= λ′2

(∑
C

d′2(x, c) + |X \ C|λ0(X ′)
)
.

where X ′ is the clustering instance X but with distance function d′ instead of d. Hence,
we see that GRM is equivalent to FRM which is NP-hard.

C.2 The regularized k-means algorithm

Equivalence of regularized k-means with 0, 1-SDP

We follow a similar technique to that of [Peng and Wei, 2007] to translate equation 5.4
into a 0-1 SDP. We are given a set X with n data points. The goal is to partition the set
into k clusters with the option of throwing some points into the garbage k+ 1 cluster. Let
S be an assignment matrix of size n × k and y be an n × 1 column vector that assigns
points to the “garbage” cluster.

sij =

{
1 iff xi ∈ Cj, j ≤ k

0 otherwise
yi =

{
1 iff xi ∈ Ck+1

0 otherwise
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Provided that Ci 6= ∅, we have the following equality by expanding the mean ci =
1
|Ci|
∑

x∈Ci x: ∑
x∈Ci
‖x− ci‖2 =

1

2|Ci|
∑
x,y∈Ci

‖x− y‖2 (C.2)

cj =
∑
i sijxi∑
i sij

is the average of points in the jth cluster. Hence,∑
j

∑
i

sij(〈cj, cj〉 − 2〈xi, cj〉) =
∑
j

〈
∑
i

sijcj, cj〉 − 2
∑
j

〈
∑
i

sijxi, cj〉

=
∑
j

〈cj,
∑
i

sijxi〉 − 2
∑
j

〈
∑
i

sijxi, cj〉 = −
∑
j

〈
∑

i sijxi∑
i sij

,
∑
i

sijxi〉 = −
∑
j

‖∑i sijxi‖2∑
i sij

(C.3)

Combining equations C.2 and C.3, we get that

k∑
j=1

∑
x∈Ci
‖x− ci‖2 =

n∑
i=1

‖xi‖2(1− yi)−
k∑
j=1

‖∑i sijxi‖2∑
i sij

=
n∑
i=1

‖xi‖2(1− yi)−
n∑
i=1

n∑
j=1

〈xi, xj〉Zij (C.4)

where Z = S(STS)−1ST . Observe that if xi 6∈ Ck+1 then Zij = 1
|Sc(i)|〈si, sj〉 where Sc(i)

denotes the size of the ith cluster. If xi ∈ Ck+1 then Zij = 0. Thus,

Zij =


1

|Sc(i)|
〈si, sj〉 if yi = 0

0 otherwise

Observe that Zij = Zji and

Tr(Z) =
∑
i

Zii =
∑

x 6∈Ck+1

1

|Sc(i)|
= k.

Also, we have that and 〈Zi,1〉 =
∑

j Zij. If yi = 0 then
∑

j Zij = 0 else
∑

j Zij =
1

|Sc(i)|
∑

j〈si, sj〉 = 1. Hence, we get that 〈Zi,1〉 =
∑

j Zij = 1 − yi, or equivalently,

Z · 1 + y = 1. Also, it is fairly easy to see that Z2 = Z.
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Let D be a matrix such that Dij = d2(xi, xj). Using the above properties of Z, we get
that

Tr(DZ) =
∑
ij

〈xi − xj, xi − xj〉zij =
∑
i

‖xi‖2
∑
j

zij +
∑
j

‖xj‖2
∑
i

zij − 2
∑
ij

〈xi, xj〉zij

= 2
(∑

i

‖xi‖2(1− yi)−
∑
ij

〈xi, xj〉zij
)

= 2
k∑
i=1

∑
x∈Ci
‖x− ci‖2 (using Eqn. C.4)

Finally, observe that λ|Ck+1| = λ〈1, y〉.

0-1

SDP



minZ,y Tr(DZ) + λ〈1, y〉
s.t. Tr(Z) = k

Z · 1 + y = 1

Z ≥ 0, Z2 = Z,ZT = Z

y ∈ {0, 1}n

relaxed−−−−→ SDP



minZ,y Tr(DZ) + λ〈1, y〉
s.t. Tr(Z) = k

(
Z+ZT

2

)
· 1 + y = 1

Z ≥ 0, y ≥ 0, Z � 0

(C.5)

Theorem C.5. Finding a solution to the 0-1 SDP (5.6) is equivalent to finding a solution
to the regularized k-means objective (5.4).

Proof. We will use the same proof ideas as in the proof of Thm 2.2 in [Peng and Wei, 2007].
However, we need to modify the proof slightly according to our formulation. From the
discussion in the previous subsection, we can see that any solution for (5.4) implies a
solution for the 0-1 SDP (5.6) with same cost. Now, we will prove the other direction. Any
solution for the 0-1 SDP implies a solution for for (5.4) with same cost.

Let ei be a vector with all zeros except in the ith index. Observe that uTi Zui ≥ 0. Hence,
Zii ≥ 0. Similarly, (ei− ej)TZ(ei− ej) = Zii− 2Zij +Zjj. Hence, Zij ≤ max(Zii, Zjj). Let
Zi∗i∗ = maxi Zii. Hence, we have that for all i, j, Zij ≤ Zi∗i∗ .

Suppose Zi∗i∗ = 0. Then, Z = 0 and y = 1. This implies that all points are assigned
to the k + 1 cluster. The cost of both the solutions in this case is λ|Ck+1|.

Now, suppose Zi∗i∗ > 0. Let I = {j : Zi∗j > 0}. Since, Z2 = Z, we have that Zi∗i∗ =∑n
j=1 Z

2
i∗j =

∑
j∈I Z

2
i∗j. Hence,

∑
j∈I

Zi∗j
Zi∗i∗

Zi∗,j = 1. Also, we have that
∑

j Zi∗j + yi∗ = 1.
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If yi∗ = 1, then
∑

j Zi∗j = 0 which contradicts our assumption that Zi∗i∗ > 0. Hence,
yi∗ = 0 and we have

∑
j Zi∗j =

∑
j∈I Zi∗j = 1. Since we have the following constraints,

∑
j∈I

Zi∗j = 1 and
∑
j∈I

Zi∗j
Zi∗i∗

Zi∗j = 1

Zi∗j = Zi∗i∗ for all j ∈ I. Hence, we see that the matrix Z and the vector y can be
decomposed as

Z =

[
ZII 0
0 Z ′

]
y =

[
0
y′

]
where ZII = 1

|I|1|I|1
T
|I|. Now, we can see that Tr(Z ′) = k − 1 and

Z1 + a =

[
1
Z ′1

]
+

[
0
a′

]
=

[
1
1

]
.

This implies that Z ′ · 1 + y′ = 1. Hence, the optimization problem now reduces to
minZ′,y′ Tr(DZ ′) + λ〈·1, y′〉
subject to Tr(Z ′) = k − 1

Z ′ · 1 + y′ = 1

Repeating this process k times, we get that Z can be decomposed into k non-zero block
diagonal matrices and one zero block diagonal matrix. Hence, using this we construct a
solution for the original clustering problem as follows. For all i, if the row Zi belongs to
the jth diagonal block then xi is assigned to Ci. Given Z and a, the cost of the 0-1 SDP
solution is

1

2
Tr(DZ) + λ〈1, y〉 =

k∑
i=1

∑
x,y∈Ci

‖xi − xj‖2

2|Ci|
+ λ|Ck+1| =

k∑
i=1

∑
x∈Ci
‖x− ci‖2 + λ|Ck+1|

which is the same as the cost of the regularized k-means objective. Hence, from a feasible
solution of (5.4), we can obtain a feasible solution of the 0-1 SDP of same cost.
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C.3 Tightness of the SDP based algorithm

0-1

SDP


minZ Tr(DZ)

s.t. Tr(Z) = k

Z · 1 = 1

Z ≥ 0, Z2 = Z,ZT = Z

relaxed−−−−→ SDP



minZ Tr(DZ)

s.t. Tr(Z) = k

(
Z+ZT

2

)
· 1 = 1

Z ≥ 0, Z � 0

(C.6)

We are given a set X ⊂ Rd. X can be covered by a set of k “well-separated” balls. That
is, X := ∪ki=1Bi where Bi is a ball of radius at most r centered at µi and ‖µi − µj‖ ≥ δr.
Define ni := |Bi| and n := mini∈[k] ni and N =

∑
i ni. D is an N × N matrix such that

Dij = ‖xi − xj‖2.

The goal is to output a clustering C∗ of X such that C∗ = {B1, B2, . . . , Bk}. From the
way we constructed the 0-1 SDP, this corresponds to

Z∗ =
k∑
p=1

1p1p
T

np
(C.7)

where 1p is an N -dimensional indicator vector for the pth cluster. That is, Z is a block
diagonal matrix and consists of k non-zero diagonal blocks. Observe that Z consists of
blocks Z(p,q). Also, Z(p,p) = 1

np
11T and for p 6= q, Z(p,q) = 0. To prove that our SDP (Eqn.

C.6) finds this solution, we will adopt the following strategy. We first construct a dual
for Eqn. C.6. We then show that under certain conditions on δ (well-separateness of the
balls) the following happens. The primal objective value and the dual objective value are
the same. Also, the corresponding Z satisfies Eqn. C.7.

Before, we describe the dual, lets introduce a bit of notation. We index every point
as (p, i) where p denotes the ball (or cluster) to which it belongs and i denotes the index
within that ball. Observe that the distance matrix D consists of blocks D(p,q) such that
D

(p,q)
ij = ‖x(p,i)−x(q,j)‖2

2. Now, to construct the dual, we introduce variables z, α(p,i), β(p,i)(q,j)
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and Q for each of the constraints in the primal problem.

SDP Dual



max −zk −∑k
p=1

∑np
i=1 α(p,i)

subject to

Q = D + zI +
∑

p

∑
i α(p,i)A(p,i) −

∑
p,q

∑
i,j β(p,i)(q,j)E(p,i)(q,j)

β ≥ 0

Q � 0

(C.8)
where, A(p,i) = 1

2
(ep,i1

T + 1eTp,i) and E(p,i)(q,j) = e(p,i)e
T
(q,j). 1 is an N -dimensional vector

of all ones while ep,i is the indicator vector with one in position (p, i) and zeros elsewhere.
Now, we will examine the conditions under which the dual objective value matches the
primal objective such that all the constraints of the dual are satisfied.

Complementary slackness

We know that β(p,i)(q,j)Z(p,i)(q,j) = 0. Now, Z(p,q) = 0 and Z(p,p)6=0. Hence, we get that
β(p,p) = 0. Also, if we have that Q(p,p)1 = 0 then 〈Q,Z〉 = 0. This ensures that the second
complementary slackness condition is also satisfied.

Some properties of the Q matrix

Before we proceed, let’s examine some properties of the dual matrix Q. Observe that for
all 1 ≤ p 6= q ≤ k,

Q(p,p) = D(p,p) + zInp +
1

2

np∑
i=1

α(p,i)(ei1
T + 1eTi )

Q(p,q) = D(p,q) +
1

2

np∑
i=1

α(p,i)ei1
T +

1

2

nq∑
i=1

α(q,i)1e
T
i − β(p,q) (C.9)

Dual matches intended primal solution

Now, using the fact that Q(p,p)1 = 0 implies that

0 = eTrD
(p,p)1 + z +

1

2

∑
α(p,i)(e

T
r ei1

T1 + eTr 1eTi 1) = eTrD
(p,p)1 + z

+
1

2

∑
α(p,i)(e

T
r einp + 1) = eTrD

(p,p)1 + z +
1

2

∑
α(p,i) +

npα(p,r)

2
.
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Summing over all r and then substituiting back, we get that for all 1 ≤ p ≤ k and for all i,

α(p,i) =
1TD(p,p)1

n2
p

− z

np
− 2eTi D

(p,p)1

np

=

∑
i,j〈xpi − xpj, xpi − xpj〉 − 2np

∑
j〈xpi − xpj, xpi − xpj〉

n2
p

− z

np

=
−2n2

p‖xpi‖2 + 4np〈xpi,
∑

j xpj〉 − 2〈∑i xpi,
∑

j xpj〉 − znp
n2
p

= −2‖xpi − xp‖2 − z

np
(xp denotes the center of the pth cluster) (C.10)

Now, we have the value of α for all 1 ≤ p ≤ k and for all i. Computing the objective
function, we get that

kz +
∑
p

∑
i

αp,i = kz +
∑
p

1TD(p,p)1

np
−
∑
p

z − 2
∑
p

1TD(p,p)1

np
= −

∑
p

1TD(a,a)1

np

= −〈D,Z〉 = −Tr(DZ)

Hence, we see that for the intended solution, the primal and dual values are the same.
Hence, solution is optimal. Now, the main question is to find Q such that Q is positive
semi-definite while simultaneously ensuring that β ≥ 0.

Satisfying PSD for Q

We already know that Q(p,p)1 = 0. We will now try to ensure that Q(p,q)1 = 0. As we
will see later, this will help us to prove the positive semi-definiteness property for Q. Now,
Q(p,q)1 = 0 implies that for all r, we have eTr Q

(p,q)1 = 0.

0 = eTr Q
(p,q)1 =

∑
s

Q(p,q)
rs =

∑
s

D(p,q)
rs +

nqα(p,r)

2
+

1

2

nq∑
i=1

α(q,i) −
∑
s

β(p,q)
rs

It is always possible to satisfy the above equation by choosing β
(p,q)
rs as long as it is greater

than zero. That is we need that,

β(p,q)
rs :=

∑
sD

(p,q)
rs

nq
+
α(p,r)

2
+

∑nq
i=1 α(q,i)

2nq
≥ 0

⇐⇒
∑

s ‖xpr − xqs‖2

nq
≥
∑

s ‖xqs − xq‖2

nq
+ ‖xpr − xp‖2 +

z

2np
+

z

2nq
(C.11)
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Before, we go further lets examine,∑
s

‖xpr − xqs‖2 = nq‖xpr‖2 − 2nq〈xpr, xq〉+
∑
s

‖xqs‖2

= nq‖xpr − xq‖2 +
∑
s

〈xqs, xqs〉 − nq〈xq, xq〉 = nq‖xpr − xq‖2 +
∑
s

‖xqs − xq‖2

Substituting this in Eqn. C.11, we get that it is always possible to satisfy Q(p,q)1 = 0 as
long as for all r, we have that

‖xpr − xq‖2 − ‖xpr − xp‖2 ≥ z

2np
+

z

2nq
(C.12)

Also, note that from β
(p,q)
rs as defined in Eqn. C.11, we get that

Q(p,q)
rs = D(p,q)

r,s +
1

2
αq,s −

1

nq

∑
j

Dpq
rj −

1

2

∑
j αqj

nq
and from Eqn. C.9 (C.13)

Q(p,p)
rs = D(p,p)

r,s +
1

2
αp,r +

1

2
αp,s + z1[r=s] (C.14)

If Eqn.C.12 holds, then for all 1 ≤ p, q ≤ k, we have that Q(p,q)1 = 0. Let 1p denote the N -
dimensional indicator vector for the pth cluster. Then, we see that for all 1 ≤ p ≤ k, we have
that Q1p = 0. Let V be the subspace spanned by these vectors. That is, V = span{1p}kp=1.
Then, for all v ∈ V , vTQy = vT0 = 0. Hence, we need to only show that for all v⊥V ,
vTQv ≥ 0. Let v = [v1, . . . , vk]

T . Since, v⊥V , we know that for all p, 〈vp, 1〉 = 0 =
∑

r vpr.
Now,

vTQv =
∑
pq

∑
rs

xprQ
(p,q)
rs vqs =

∑
p6=q

∑
rs

vprQ
(p,q)
rs vqs +

∑
p

∑
rs

vprQ
(p,p)
rs vqs

Now, we analyse the case when p 6= q. Then, we have that∑
rs

vprQ
pq
rsvqs =

∑
rs

vprD
pq
rsvqs +

1

2

∑
rs

αqsvqsvpr −
1

nq

∑
rs

∑
j

vprvqsD
pq
rj

− 1

2nq

∑
rs

∑
j

vprvqsαqj

=
∑
rs

vprvqsD
pq
rs +

1

2

∑
s

αqsvqs
∑
r

vpr −
1

nq

∑
r

∑
j

Dpq
rjvpr

∑
s

vqs

− 1

2nq

∑
s

∑
j

vqsαqj
∑
r

vpr =
∑
rs

vprvqsD
pq
rs
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Now for the other case, we have that∑
rs

vprQ
pp
rsvps =

∑
rs

vprD
pp
rsvps +

1

2

∑
rs

αprvprvps +
1

2

∑
rs

αpsvprvps +
∑
r

zvprvpr

=
∑
rs

vprD
pp
rsvps +

1

2

∑
r

αprvpr
∑
s

vps +
1

2

∑
s

αpsvps
∑
r

vpr +
∑
r

zvprvpr

=
∑
rs

vprD
pp
rsvps +

∑
r

zvprvpr

Combining the above two equations, we get that

vTQv =
∑
pq

vprD
pqvqs + z

∑
p

∑
r

(vpr)
2 = vTDv + zvTv

Now, let X be the N × d dimensional input matrix. That is, the matrix X contains the
N points in d dimensional euclidean space. Then, D = W + W T − 2XXT where W is a
rank one matrix such that its ith contains ‖xi‖2 in its ith row. That is, W =

∑
i ‖xi‖2ei1

T .
Now, v⊥V , hence we get that vTDv = −2vTXXTv. Thus, Q is positive semi-definite as
long as we can find z such that

z > 2 max
v⊥V

vTXXTv

vTv
. (C.15)

Putting it all together

Eqns. C.15 and C.12, show that as long as

‖xpr − xq‖2 − ‖xpr − xp‖2 >
2

n

(
max
v⊥V

vTXXTv

vTv

)
(C.16)

then we can find Q and β satisfying the constraints of the dual and there is no primal and
dual gap. First observe that LHS of Eqn. C.16 has a minimum of (δ − 1)2 − 1. Now, we
need to upper bound the RHS of Eqn. C.16. Note that X = X ′ +X where C is a rank k
matrix which contains the centers µ1, . . . , µk. Also, for any v⊥V , we have that vTC = 0.
Let σmax denote the maximum eigenvalue of the matrix X. Hence,

2

n

(
max
v⊥V

vTXXTv

vTv

)
=

2

n

(
max
v⊥V

vTX ′X ′Tv

vTv

)
≤ 2

n
σmax

(
X ′
)2

(C.17)

The last inequality follows from the Defn. of σmax. (Eqn. 5.3 in [Vershynin, 2010]). In
the current setting, X := ∪ki=1Bi where each Bi is generated as follows. Let P denote the
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isotropic distribution on the ball centered at origin of radius at most r, that is B1(r) ⊂ Rd.
Let Bi be a set of ni points drawn according to Pi, the measure P translated to µi. Also,
‖µi − µj‖ > δr > 2r.

Let Θ = E[‖x′pr‖2]. Using Thm. C.9, we can bound the RHS of Eqn. C.16 by upper
bounding the maximum eigenvalue of X ′ as

P

[
σmax

(√
d

θ
X ′
)
>
√
N + t

√
d

θ

]
≤ 2d exp(−ct2) (C.18)

Now, let t
√

d
θ

= s
√
N . Then, we get that with probability atleast 1 − 2d exp(− cθNs2

d
)

we have that

2

n
σmax(X ′)2 ≤ 2(1 + s)2Nθ

nd
≤ 2ρθ(1 + s)2 1

d

So we see that as long (δ−1)2−1 > 2kρθ(1 +s)2 1
d
, the primal and dual objective value

are the same with high probability. In other words δ > 1 +
√

1 + 2ρθ(1 + s)2 k
d

implies the

desired conditions. Now, we are finally ready to state our result.

Theorem C.6. Let P denote the isotropic distribution on the unit ball centered at origin
in Rd. Given points µ1, . . . , µk such that ‖µi − µj‖ > δ > 2. Let Pi be the measure P
translated with respect to the center µi. Let each Bi is drawn i.i.d w.r.t the distribution Pi.

Given a clustering instance I ⊂ RN×d and k where I := ∪ki=1Bi. Define n :=
mini∈[k] |Bi| and ρ = N

nk
. If

δ > 1 +

√
1 +

2θρk

d

(
1 +

1

logN

)2

where θ = E[‖xpi − cp‖2] < 1, then there exists a constant c > 0 such that with prob-
ability at least 1 − 2d exp( −cNθ

d log2N
) the k-means SDP finds the intended cluster solution

C∗ = {B1, . . . , Bk}.
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C.4 Tightness of the regularized SDP based algorithm

0-1 SDP



minZ,y Tr(DZ) + λ〈1, y〉
s.t. Tr(Z) = k

Z · 1 + y = 1

Z ≥ 0

Z2 = Z,ZT = Z

y ∈ {0, 1}n

relaxed−−−−→ SDP


minZ Tr(DZ) + λ〈1, y〉
s.t. Tr(Z) = k(

Z+ZT

2

)
· 1 + y = 1

Z ≥ 0, y ≥ 0, Z � 0

(C.19)

We are given a set X ⊂ Rd. X = I ∪ N is such that I can be covered by a set of k
“well-separated” balls. That is, I := ∪ki=1Bi where Bi is a ball of radius at most r centered
at µi and ‖µi−µj‖2

2 ≥ δr. Define ni := |Bi| and n := mini∈[k] ni and m := |N | = nk+1 and
N =

∑
i ni +m. D is an N ×N matrix such that Dij = ‖xi − xj‖2.

Note that the clustering algorithm getsX as input and does not know about the setsBi’s
or I or N . The goal is to output a clustering C∗ of X such that C∗ = {B1, B2, . . . , Bk,N}.
From the way we constructed the 0-1 SDP, this corresponds to

Z∗ =
k∑
p=1

1p1
T
p

np
and y∗ = 1k+1 (C.20)

where 1p is an N -dimensional indicator vector for the pth cluster. That is, Z is a block
diagonal matrix and consists of k non-zero diagonal blocks. Observe that Z consists of
blocks Z(p,q). Also, for 1 ≤ p ≤ k, we have that Z(p,p) = 1

np
11T and for all p 6= q, Z(p,q) = 0.

Also, Z(k+1,k+1) = 0. To prove that the regularized SDP (Eqn. C.19) finds the desired
solution, we will adopt the following strategy. We first construct a dual for Eqn. C.19. We
then show that under certain conditions on δ (well-separateness of the balls) and m (the
number of noisy points) the following happens. The primal objective value and the dual
objective value are the same. Also, the corresponding Z satisfies Eqn. C.32.

Before, we describe the dual, lets introduce a bit of notation. We index every point as
(p, i) where p denotes the ball (or cluster) to which it belongs and i denotes the index within

that ball. Observe that the distance matrix D consists of blocks D(p,q) such that D
(p,q)
ij =

‖x(p,i) − x(q,j)‖2
2. Now, to construct the dual, we introduce variables z, α(p,i), β(p,i)(q,j), γ(p,i)
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and Q for each of the constraints in the primal problem.

SDP Dual



max −zk −∑(p,i) α(p,i)

subject to Q = D + zI +
∑

p

∑
i α(p,i)A(p,i) −

∑
p,q

∑
i,j β(p,i)(q,j)E(p,i)(q,j)∑

(p,i)(γ(p,i) − α(q,i))e(p,i) = λ1

β ≥ 0, γ ≥ 0

Q � 0

(C.21)
where, A(p,i) = 1

2
(ep,i1

T + 1eTp,i) and E(p,i)(q,j) = e(p,i)e
T
(q,j). 1 is an N -dimensional vector of

all ones while e(p,i) is the indicator vector with one in position (p, i) and zeros elsewhere.
Now, we will examine the conditions under which the dual objective value matches the
primal objective such that all the constraints of the dual are satisfied.

Complementary slackness

We know that β(p,i)(q,j)Z(p,i)(q,j) = 0. Now, for all 1 ≤ p ≤ k, Z(p,p)6=0 and for all the other
pairs (p, q) we have that Z(p,q) = 0. Hence, we get that for all 1 ≤ p ≤ k, β(p,p) = 0. Also,
we know that γ(p,i)y(p,i) = 0. Now, y(k+1,i) 6= 0, hence γ(k+1,i) = 0. Also, if we have that for
all 1 ≤ k ≤ p, Q(p,p)1 = 0 then 〈Q,Z〉 = 0. This ensures that the second complementary
slackness condition is also satisfied.

Some properties of the Q matrix

Before we proceed, let’s examine some properties of the dual matrix Q. Observe that for
all 1 ≤ p 6= q ≤ k,

Q(p,q) =


D(p,p) + zI + 1

2

∑np
i=1 α(p,i)(ei1

T + 1eTi ) if 1 ≤ p = q ≤ k

D(k+1,k+1) + zI− λ11T − β(p,q) if p = q = k + 1

D(p,q) + 1
2

∑np
i=1 α(p,i)ei1

T + 1
2

∑nq
i=1 α(q,i)1e

T
i − β(p,q) otherwise

(C.22)
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Dual matches intended primal solution

Now, using the fact that for all 1 ≤ p ≤ k, Q(p,p)1 = 0 implies that

0 = eTrD
(p,p)1 + z +

1

2

∑
α(p,i)(e

T
r ei1

T1 + eTr 1eTi 1)

= eTrD
(p,p)1 + z +

1

2

∑
α(p,i)(e

T
r einp + 1) = eTrD

(p,p)1 + z +
1

2

∑
α(p,i) +

npα(p,r)

2
.

Summing over all r and then substituiting back, we get that for all 1 ≤ p ≤ k and for all i,

α(p,i) =
1TD(p,p)1

n2
p

− z

np
− 2eTi D

(p,p)1

np

=
−2n2

p‖xpi‖2 + 4np〈xpi,
∑

j xpj〉 − 2〈∑i xpi,
∑

j xpj〉 − znp
n2
p

= −2‖xpi − xp‖2 − z

np

Again, using complementary slackness, we know that γ(k+1) = 0. This implies that
α(k+1,i) = −λ. Combining these, we get that

α(p,i) = −2‖xpi − xp‖2 − z

np

α(k+1,i) = −λ (C.23)

Now, we have the value of α for all 1 ≤ p ≤ k and for all i. Computing the objective
function, we get that

kz +
∑
p

∑
i

αp,i = kz +
∑
p

1TD(p,p)1

np
−
∑
p

z − 2
∑
p

1TD(p,p)1

np
− λm

= −
∑
p

1TD(a,a)1

np
− λ〈1, y〉 = −〈D,Z〉 − λ〈1, y〉 = −Tr(DZ)− λ〈1, y〉

Satisfying the λ constraint of dual

This constraint implies for all 1 ≤ p ≤ k, γ(p,r) = α(p,r) + λ. This will be satisfied as long
as for all p and for all r, λ ≥ −α(p,r). Choosing λ as below ensures that the constraint is
satisfied for all p and all r.

λ ≥ z

n
+ 2‖xp,r − xp‖2 (C.24)
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where xp denotes the center of the pth cluster and xp.r denotes the rth point in the pth

cluster. Hence, we see that for the intended solution, the primal and dual values are the
same. Hence, solution is optimal. Now, the main question is to find Q such that Q is
positive semi-definite while simultaneously ensuring that β, γ ≥ 0.

Satisfying PSD for Q

Decompose Q as follows.

Q =

[
Q′ B1

B2 Q(k+1,k+1)

]
If B1 = B2 = 0 and Q′ � 0 and Q(k+1,k+1) � 0 then we know that Q � 0. Let X1 =
{C1, . . . , Ck} be the set of all points which were assigned to the 1 ≤ p ≤ k clusters. From
the proof of the noiseless case, we know that if

‖xpr − xq‖2 − ‖xpr − xp‖2 ≥ z

n
≥ 2

n

(
max
v⊥V

vTX1X
T
1 v

vTv

)
(C.25)

where V = span{1p}kp=1 is the subspace spanned by 1p (the indicator vector for the pth

cluster) then Q′ is positive semi-definite. We know that the RHS is upper bounded by the
square of maximum eigenvalue of X1, which gives the following

‖xpr − xq‖2 − ‖xpr − xp‖2 ≥ z

n
≥ 2

n
σ2

max(X ′1) (C.26)

Hence, if either Eqn. C.25 or Eqn. C.26 can be satisfied then we Q′ is positive semi-
definite. Here, the matrix X ′1 is such that X1 = X ′1 + C where C is a rank k matrix
which contains the centers µ1, . . . µk. Next, to ensure that B1 = 0, we need that for all
1 ≤ p ≤ k,Q(p,k+1) = 0. Using Eqn. C.22,

0 = Q(p,k+1)
rs = D(p,k+1)

rs +
1

2

∑
i

α(p,i)e
T
r ei1

T es −
λ

2
eTr 11T es − β(p,k+1)

rs

= D(p,k+1)
rs − ‖xpr − xp‖2 − z

2np
− λ

2
− β(p,k+1)

rs . We need to choose β(p,k+1)
rs ≥ 0. Hence,

=⇒ ‖xk+1,s − xpr‖2 ≥ λ

2
+

z

2np
+ ‖xpr − xp‖2

Thus, we see that if

‖xk+1,s − xpr‖2 ≥ λ

2
+

z

2n
+ ‖xpr − xp‖2 (C.27)
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then for all 1 ≤ p ≤ k, we have that Q(p,k+1) = 0. In other words, we have that B1 = 0.
Next, to ensure that B2 = 0, we need that for all 1 ≤ q ≤ k,Q(k+1,q) = 0. Using Eqn.
C.22,

0 = Q(k+1,q)
rs = D(k+1,q)

rs +
1

2

∑
i

α(q,i)e
T
r ei1

T es −
λ

2
eTr 11T es − β(k+1,q)

rs

Using the same analysis as before, we see that if ‖xk+1,r − xqs‖2 ≥ λ
2

+ z
2n

+ ‖xqs − xq‖2

then for all 1 ≤ q ≤ k, we have that Q(p,k+1) = 0. Observe that this is the same condition
as Eqn. C.27. Thus, this ensures that B2 = 0. Next, we need to show positive semi-
definiteness of the matrix Q(k+1,k+1). Again, using Eqn. C.22, we get that for any vector
v ∈ Rm

vTQ(k+1,k+1)v = vTD(k+1,k+1)v − vTβ(k+1,k+1)v + zvTv − λ(vT1)2

To show that Q(k+1,k+1) is positive semi-definite, we need to ensure that the above is ≥ 0
for all v. If we choose β(k+1,k+1) = D(k+1,k+1) and

z

m
> λ (C.28)

then, we have that vTQ(k+1,k+1)v = z
∑
i

v2
i − λ(

∑
i

vi)
2 ≥ (z − λm)

∑
i

v2
i ≥ 0

Putting it all together

We are given X := I ∪ N . Let I = ∪Bi where each Bi is ball of radius at most one and
centered at µi where µi is the average of points in Bi. Also, d(µi, µj) ≥ δ. Decompose
N = N1∪N2 into two sets. Let N2 = {n ∈ N : for all b ∈ I, ‖n−b‖ ≥ ν} and N1 = N \N2.
Let N1 be such that for all n ∈ N1, |‖n− µi‖2 − ‖n− µj‖2| ≥ α.

We will show that the regularized SDP outputs the clustering C = {C1, . . . , Ck, N2},
where each Bi ⊆ Ci. Hence, the clusters contain all the points from the balls Bi plus
(maybe) points from the set N1.

Consider the pth cluster Cp. We know that Cp = Bp ∪ Mp where Mp ⊆ N1. Now,

xp =
∑
x∈Bp x+

∑
n∈Mp n

|Bp|+|Mp| = µp|Bp|+|Mp|avg(Mp)

|Bp|+|Mp| . Thus, we get that ‖xp − µp‖ = |Mp|
|Bp|+|Np|‖µp −

avg(Mp)‖ ≤ |N1|
n

(ν + 1) =: a. Thus, we have that for all xpr ∈ Bp

‖xpr − xq‖2 − ‖xpr − xp‖2 ≥ (‖xpr − µq‖ − ‖xq − µq‖)2 − (‖xpr − µp‖+ ‖xp − µp‖)2

= ‖xpr − µq‖2 − ‖xpr − µp‖2 + ‖xq − µq‖2 − ‖xp − µp‖2 − 2‖xpr − µp‖‖xp − µp‖
− 2‖xpr − µq‖‖xq − µq‖ ≥ (δ − 1)2 − 1− a2 − 4a
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and for xpr ∈Mp

‖xpr − xq‖2 − ‖xpr − xp‖2 ≥ α− a2 − 4a

Choosing z
n

= (δ − 1)2 − 1 − a2 − 4a > 2
n
σ2

max(X ′1) and α − a2 − 4a > 2
n
σ2

max(X ′1) ensures
that Eqn. C.26 is satisfied. Next, we see that if λ is such that

2‖xk+1,r − xqs‖2 − (δ − 1)2 − 1 ≥ λ ≥ (δ − 1)2 + 1 (C.29)

then Eqns. C.24 and Eqns. C.27 can be satisfied. Hence, if ν ≥
√

1 + (δ − 1)2 then the
above condition can be satisfied. Finally, combining Eqns. C.26 and C.29, we see that if

|N2| ≤ n
(δ − 1)2 − 1− a2 − 4a

λ

then Eqn. C.28 can also be satisfied.

Now, for X as generated by the isotropic distribution, we need to ensure that Eqn.
C.25 can be satisfied.

We will now upper bound the we can bound the RHS of Eqn. C.25. Decompose
X1 := A′1 + C + N ′1. Now, A′1 contains points from the balls B′1, . . . , B

′
k. C contains the

centers µ1, . . . , µk and N ′1 contains the points from the set |N1| but shifted by µp. Now,

2

n

(
max
v⊥V

vTX1X
T
1 v

vTv

)
=

2

n

(
max
v⊥V

vTA′1A
T
1 v

vTv

)
+

2

n

(
max
v⊥V

vTN1N
T
1 v

vTv

)
≤ σ2

max(A′1) + σ2
max(N ′1)

Now, it’s easy to see that σ2
max(N ′1) ≤ |N1|(ν + 1). Let θ = E[‖a′pr‖2]. Using Thm. C.9, we

will upper bound the maximum eigenvalue of A′1 as

P

[
σmax

(√
d

θ
A′
)
>
√
|I|+ t

√
d

θ

]
≤ 2d exp(−ct2) (C.30)

Now, let t
√

d
θ

= s
√
|I|. Then, we get that with probability atleast 1− 2d exp(− cθ|I|s2

d
)

we have that

2

n
σ2

max(A′1) ≤ 2(1 + s)2 |I|θ
nd
≤ 2kρθ(1 + s)2 1

d

Thus, (δ− 1)2− 1− a2− 4a > 2a+ 2ρkθ(1 + s)2 1
d

implies the desired conditions. Now,
we are finally ready to state our result.
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Theorem C.7. Let P denote the isotropic distribution on the unit ball centered at origin
in Rd. Given centers µ1, . . . , µk such that ‖µi − µj‖ > δ > 2. Let Pi be the measure P
translated with respect to the center µi. Let Bi is drawn i.i.d w.r.t the distribution Pi.

Given a clustering instance X ⊂ RN×d and k. Let X := I ∪N where I := ∪ki=1Bi. Let
N = N1 ∪ N2 have the following properties. For all n ∈ N1 and for all i, j, we have that
|‖(n−µi‖2−‖n−µj‖2| ≥ α. For all n ∈ N2 and for all x ∈ I, ‖n−x‖ ≥ ν ≥

√
(δ − 1)2 + 1.

Note that N1 ∩N2 = φ. Let n = mini |Bi| and ε = |N1|
n

and ρ = |I|
nk

. If

• δ > 2 +
√
O(ε) + 2ρkθ(1+1/ log(|I|))2

d

• α ≥ O(ε) + 2ρkθ(1+1/ log |I|)2
d

• |N2|
n
≤ δ2−2δ−O(ε)

λ

then there exists a constant c2 > 0 such that with probability at least 1−2d exp( −c2|I|θ
d log2 |I|) the

regularized k-means SDP finds the intended cluster solution C∗ = {C1, . . . , Ck,N2} where
Bi ⊆ Ci when given X and δ2 + 2δ ≥ λ ≥ (δ − 1)2 + 1 as input.

C.5 Tightness of the regularized LP based algorithm

IP



minZ,y
∑

pq d
2(p, q)zpq + λ

∑
p yp

s.t.
∑

p zpp = k∑
q zpq + yp = 1

zpq = zqp

zpq ∈ {0, zpp}, y ∈ {0, 1}n

relaxed−−−−→ LP



minZ,y
∑

pq d
2(p, q)zpq + λ

∑
p yp

s.t.
∑

q zpq + yp = 1

zpq ≤ zpp∑
p zpp = k

zpq ≥ 0, yp ≥ 0

(C.31)

We are given a set X ⊂ Rd. X = I ∪ N is such that I can be covered by a set of
k “well-separated” balls. That is, I := ∪ki=1Bi where Bi is a ball of radius at most r
centered at µi and ‖µi − µj‖2

2 ≥ δr. Let P denote the isotropic distribution in the unit
ball centered at origin B1(r) in Rd. The ball Bi is drawn from the isotropic distribution
Pi, that is, the measure P translated with respect to the center µi. Define ni := |Bi| and
n := mini∈[k] ni and m := |N | = nk+1 and N =

∑
i ni + m. D is an N × N matrix such

that Dij = ‖xi − xj‖2.
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Note that the clustering algorithm getsX as input and does not know about the setsBi’s
or I or N . The goal is to output a clustering C∗ of X such that C∗ = {B1, B2, . . . , Bk,N}.
From the way we constructed the Integer program, this corresponds to

Z∗ =
k∑
p=1

1p1
T
p

np
and y∗ = 1k+1 (C.32)

where 1p is an N -dimensional indicator vector for the pth cluster. That is, Z is a block
diagonal matrix and consists of k non-zero diagonal blocks. Observe that Z consists of
blocks Z(p,q). Also, for 1 ≤ p ≤ k, we have that Z(p,p) = 1

np
11T and for all p 6= q, Z(p,q) = 0.

Also, Z(k+1,k+1) = 0. To prove that the regularized LP (Eqn. C.31) finds the desired
solution, we will adopt the following strategy. We first construct a dual for Eqn. C.31. We
then show that under certain conditions on δ (well-separateness of the balls) and m (the
number of noisy points) the following happens. The primal objective value and the dual
objective value are the same. Also, the corresponding Z and y satisfy Eqn. C.32.

Now to construct the dual, we introduce variables αp, βpq, γ, µpq and ηp for each of the
constraints in the primal problem.

LP Dual



max
∑

p αp − γk
subject to αp + µpq = βpq + d2(p, q)

γ =
∑

q βpq

λ = αp + ηp

µpq ≥ 0, ηp ≥ 0

(C.33)

Now, we will examine the conditions under which the dual objective value matches the
primal objective such that all the constraints of the dual are satisfied. Before we go into
more details, lets introduce the following notation. We will refer to points using symbols
a, a′, b, b′, c and c′. a, b denotes two points in different clusters. a, a′ and b, b′ will refer to
a pair of points in the same cluster. c and c′ refers to the points in the noisy cluster k+ 1.

Complementary slackness

• µpqzpq = 0. We get that

µaa′ = µbb′ = 0 (C.34)
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• ηpyp = 0. We get that

ηc = 0 (C.35)

• βpq(zpq − zpp) = 0. We get that

βab = βac = βba = βbc = 0 (C.36)

Dual matches intended primal solution

Let a ∈ Ci where 1 ≤ i ≤ k. Hence, we get that∑
a′∈Ci

αa +
∑
a′∈Ci

µaa′ =
∑
a′∈Ci

βaa′ +
∑
a′∈Ci

d2(a, a′)

=⇒ αa =
γ

ni
+

∑
a′∈Ci d

2(a, a′)

ni
(C.37)

For c ∈ Ck+1, we have that

αc + ηc = λ =⇒ αc = λ.

Using these two equations, we get that

∑
p

αp − kγ =
k∑
i=1

∑
a∈Ci

αi +
∑

c∈Ck+1

αc − kγ =
k∑
i=1

∑
a∈Ci

γ

ni
+

∑
a′∈Ci d

2(a, a′)

ni
+ λ〈1, y〉 − kγ

=
k∑
i=1

γ +
k∑
i=1

1

ni

∑
a,a′∈Ci

d2(a, a′) + λ〈1, y〉 − kγ =
∑
pq

d2(p, q)z∗pq + λ
∑
p

y∗p

Satisfying the λ constraint of dual

We have already seen that αc should be equal to λ. Hence, if λ ≥ αa for all a ∈ C1, . . . , Ck
then this constraint can be satisfied. Thus, we get that if

αa ≤ λ and αc = λ (C.38)

then the λ constraint of the dual can be satisfied.
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Satisfying the αp constraint

Again observe that for a ∈ Ci and b ∈ Cj 6= Ci and c ∈ Ck+1

αa + µab = d2(a, b) =⇒ αa ≤ d2(a, b)

αa + µac = d2(a, c) =⇒ αa ≤ d2(a, c) (C.39)

To satisfy the constraint for αc, we need that

αc + µcq = βcq + d2(c, q) =⇒ αc|X|+
∑
q

µcq = γ +
∑
q

d2(c, q)

This can be satisfied as long as

λ|X| ≤ γ +
∑
q

d2(c, q) (C.40)

Putting it all together

From Eqns. C.39, C.38, C.37 and C.40, we see that the following constraints need to be
satisfied. Let a, a′ ∈ Ca, b 6∈ Ca ∪ Ck+1 and c ∈ Ck+1.

d2(a, a′) ≤ γ

ni
+

∑
a1∈Ci d

2(a, a1)

ni
≤ d2(a, b) (C.41)

d2(a, a′) ≤ γ

ni
+

∑
a1∈Ci d

2(a, a1)

ni
≤ d2(a, c) (C.42)

γ

ni
+

∑
a1∈Ci d

2(a, a1)

ni
≤ λ ≤ γ

|X| +
∑
q

d2(c, q)

|X| (C.43)

Following the exact same analysis as in [Awasthi et al., 2015], we know that Eqn. C.41
can be satisfied with high probability (as the points in the balls Bi are generated by an
isotropic distribution). Let ν denote the minimum distance between any point in Ck+1 to
any other point in C1, . . . , Ck. Choosing ν ≥ (δ − 2) ensures that Eqn. C.42 is satisfied.
Furthermore, if the number of noisy points m ≤ N(1− 4

ν2
) then Eqn. C.43 can be satisfied.

Theorem C.8. Let P denote the isotropic distribution on the unit ball centered at origin
in Rd. Given centers µ1, . . . , µk such that ‖µi − µj‖ > δ > 2. Let Pi be the measure P
translated with respect to the center µi. Let Bi is drawn i.i.d w.r.t the distribution Pi.
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Figure C.1: Heatmap showing the probability of success of the k-means regularized sdp al-
gorithm. Lighter color indicates probability closer to one while darker indicates probability
closer to zero.

Given a clustering instance X ⊂ Rd and k. Let X := I ∪ N . Let I := ∪ki=1Bi and
N have the following property. Each pn ∈ N is such that minpi∈I ‖pn − pi‖ ≥ νr. Let
|N | =: m. If

• δ > 4 and ν > δ − 2

• m ≤ |I|
(

ν2

(δ−2)2
− 1
)

then the regularized k-means LP finds the intended cluster solution C∗ = {B1, . . . , Bk,N}
when given X and (δ − 2)2r2 ≤ λ ≤ ν2(1− m

N
) as input.

C.6 Additional experimental results

Now, we provide some additional experiments on simulated data for the regularized sdp-
based algorithm. Fig. C.1 shows the performance of the algorithm as the cluster separation
and regularization constant are varied. It shows that for very high and very low values of
λ, the performance of our algorithm is bad. There exists a ’correct’ range of lambda when
it is able to correctly recover the target clustering. Similarly, Figs. C.2 and C.3 shows the
performance of the algorithm as other parameters are varied.
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Figure C.2: Heatmap showing the probability of success of the k-means regularized sdp
algorithm. Lighter color indicates probability closer to one while darker indicates proba-
bility closer to zero.m denotes the number of noisy points while n denotes the number of
points in the smallest cluster.

Figure C.3: Heatmap showing the probability of success of the k-means regularized sdp
algorithm. Lighter color indicates probability closer to one while darker indicates proba-
bility closer to zero. m denotes the number of noisy points while n denotes the number of
points in the smallest cluster.
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C.7 Technical lemma

Theorem C.9 (Thm. 5.41 in [Vershynin, 2010]). Let A be an N×d matrix whose rows Ai
are independent isotropic random vectors in Rd. Let m be a number such that ‖Ai‖ ≤

√
m

almost surely for all i. Then for every t, one has

√
N − t√m ≤ σmin(A) ≤ σmax(A) ≤

√
N + t

√
m

with probability atleast 1−2d exp(−ct2), where c is an absolute constant. σmin and σmax are
the spectral norms or the minimum and maximum eigenvalues respectively of the matrix
A.
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