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Abstract

To every linear binary-constraint system (LinBCS) non-local game, there is an asso-
ciated algebraic object called the solution group. Cleve, Liu, and Slofstra showed that a
LinBCS game has a perfect quantum strategy if and only if an element, denoted by J ,
is non-trivial in this group. In this work, we restrict to the set of graph-LinBCS games,
which arise from Z2-linear systems Ax = b, where A is the incidence matrix of a connected
graph, and b is a (non-proper) vertex 2-colouring. In this context, Arkhipov’s theorem
states that the corresponding graph-LinBCS game has a perfect quantum strategy, and
no perfect classical strategy, if and only if the graph is non-planar and the 2-colouring
b has odd parity. In addition to efficient methods for detecting quantum and classical
strategies for these games, we show that computing the classical value, a problem that is
NP-hard for general LinBCS games can be done efficiently. In this work, we describe a
graph-LinBCS game by a 2-coloured graph and call the corresponding solution group a
graph incidence group. As a consequence of the Robertson-Seymour theorem, we show
that every quotient-closed property of a graph incidence group can be expressed by a finite
set of forbidden graph minors. Using this result, we recover one direction of Arkhipov’s
theorem and derive the forbidden graph minors for the graph incidence group properties:
finiteness, and abelianness. Lastly, using the representation theory of the graph incidence
group, we discuss how our graph minor criteria can be used to deduce information about
the perfect strategies for graph-LinBCS games.
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Chapter 1

Introduction

Mathematically quantum states are unit vectors of a Hilbert space. Physical operations on
these states are described by the action of certain operators acting on the Hilbert space.
Unlike classical states, quantum states can be entangled with other quantum states in a
variety of ways. In this context, performing local -operations on these states can result in
systems that are strongly correlated in astounding ways.

Non-local games provide a convenient framework to explore these quantum correlations.
In a non-local game, each player receives an input, according to some distribution, and
they respond to a verifier, each with an element from some output set. The players win if
their combined output satisfies a winning predicate1. In a non-local game, players are not
permitted to communicate once they have received their input from the verifier. However,
the players are allowed to share entangled quantum states. In addition to sharing these
quantum states, the players can perform local-operations on these states, including mea-
surements. Interestingly, the additional resource of entanglement allows certain non-local
games to be won at higher instances than without [1, 11, 8, 29, 13]. The object in studying
non-local games is to understand the limitations and nature of entanglement as a general
resource. We realize this goal by exploring the space of quantum strategies for these games.

A deterministic strategy for a non-local game is a collection of functions, where each
function maps from the input set to the output set for each player. A more general classical
strategy consists of a probability distribution over a collection of deterministic strategies.
Loosely speaking, a quantum strategy consists of a collection of quantum measurements,
which the players employ in a predetermined fashion to determine their outputs. In this
context, we will see that the space of classical strategies corresponds to the set of classical

1This predicate is a boolean function of the outputs returned by the players.
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correlations, while quantum strategies correspond to the larger set of quantum correlations.
We will elaborate on the description of a non-local game and the connection to correlations
in Section 2.5.

Because the set of quantum correlations includes the set of classical ones. It is of interest
to classify the non-local games where entanglement provides an advantage to the players
over any classical strategy. An interesting set of such non-local games are those with a
perfect quantum strategy, but no perfect deterministic strategy. In the literature, these
games have been referred to as magic2, or pseudo-telepathy games [3, 8]. A well-known
example of such a game is the magic squares3 game [30, 31, 34]. In the magic squares
game, the best classical strategy wins with probability ω4 strictly less than 1, meanwhile
there is a quantum strategy that always wins, meaning the entangled value of the magic
squares game is 1. To further explore where the separations between the quantum and
classical strategies occur, we restrict to a class of non-local games with more mathematical
structure.

A rich class of non-local games are the binary constraint system (BCS) games. These
non-local games, introduced in [13], consists of a collection of binary variables and a system
of binary constraints. Additionally, each of the constraints is an arbitrary boolean function
of some subset of the variables. From the description of a BCS, it is clear that deciding if
a perfect classical-strategy exists is NP-hard, as the constraints of the game could involve
solving instances of 3-SAT. Additionally, it has been shown that even approximating the
entangled value of a BCS game is NEXP-hard [24].

In addition to general BCS games, the authors of [13] considered an interesting class of
BCS games that they called parity-BCS games. In a parity-BCS game, the binary value
of each constraint depends only on the parity of the supporting variables. Following the
language of [5], we have chosen to refer to these parity-BCS games as LinBCS games, since
the (parity) constraints in the game can be expressed by a linear system Ax = b over Z2.
With these definitions, we denote an instance of a LinBCS game by G(A, b). The rough
idea of a LinBCS non-local game is for two players to convince a verifier that they have
a solution5 x to the system of linear equations Ax = b. A nice property held by these
LinBCS games is unlike for general BCS games, it is “easy” and efficient way to decide if

2Personally, I believe we should leave the word “magic” to the realm of the supernatural.
3The idea of the game originates from a particular contextuality scenario that was independently

discovered by the duo. It was first considered as a non-local game by Aravind [1].
4The classical (resp. entangled) value of a game ω (ω∗) is the maximum (supremum) winning probability

obtained with a classical (quantum) strategy.
5This, of course, might not be an actual solution of Ax = b, in particular when b is not in the range.

In fact, this is why determining the classical value of a LinBCS game remains NP-hard.
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there is a perfect deterministic strategy6.

In this thesis, we consider a restricted class of the LinBCS games which we call graph-
LinBCS games G(G, b). These non-local games comprise the set of LinBCS games where
each variable appears in two or zero equations. In this case, we can view A as the incidence
matrix of a simple graph G. The principal motivation for this thesis is to understand the
connections between two seemingly unrelated classifications of perfect quantum-strategies
for these non-local games.

Firstly, given any LinBCS game G(A, b) there is an associated finitely presented group
Γ(A, b), called the solution group [12, 13]. Moreover, the existence of a perfect quantum
strategy turns out to be a property of this group. Specifically, the existence of a perfect
commuting-operator quantum strategy corresponds to the existence of a central non-trivial
involution, typically denoted by J . This J element is vital in constructing an entangled
state on the Hilbert space required by any concrete quantum strategy. A general exami-
nation of LinBCS games and their solution groups can be found in [12].

To distinguish from the general LinBCS case, we call the solution group of a graph-
LinBCS game a graph incidence group7 and denote it by Γ(G, b). We now give the main
result of [12] adapted for graph-LinBCS games and graph incidence groups.

Theorem 1.0.1 (The Cleve-Mittal-Liu-Slofstra (CMLS) theorem). Given a graph-LinBCS
game G(G, b):

(i) G(G, b) has a perfect quantum commuting-operator strategy if and only if J 6= 1 in
the graph incidence group Γ(G, b).

(ii) G(G, b) has a perfect quantum tensor-product strategy if and only if the graph inci-
dence group Γ(G, b) has a finite-dimensional unitary representation π, on a Hilbert
space H, with π(J) 6= 1H.

Theorem 1.0.1 holds more generally for any LinBCS game and its corresponding solution
group. Proof of part (i) can be found in [12], while part (ii) is essentially due to [13].
Furthermore, the representations of Γ(G, b) comprise of operator solutions to the LinBCS.
Finite-dimensional operator solutions can be turned into tensor-product strategies using a
construction found in [12]. Operator solutions to a LinBCS are generalizations of vectors

6This is equivalent to deciding if there is a solution to the Z2-linear system of equations.
7More generally, an incidence group could be defined for any incidence structure, not just graphs.
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solutions; in the sense that, one-dimensional operator-solutions are vector solutions8. We
discuss these operator solutions to LinBCS’s in Section 2.5.4.

Secondly, concurrent to Cleve and Mittal’s introduction of LinBCS (or parity-BCS)
games, Alex Arkhipov developed in [3], a geometric characterization of the non-local games
that we now refer to as graph-LinBCS games. Arkhipov observed the correspondence
between linear systems in which each variable appeared in only two equations and linear
systems Ax = b where A is the incidence matrix of a (non-proper) 2-coloured9 graph.
The bijection is as follows: take A to be the incidence matrix of a graph G = (V,E), with
columns labelled by the edges E, and rows by the vertices V , and take b to be a non-proper
2-colouring of the vertices b : V → Z2.

In recent work, Slofstra studied general LinBCS games where he identified (n × m)-
linear system games, Ax = b over Z2, with vertex decorated hypergraphs [39]. Inspired by
Arkhipov’s construction, they took A to be in the incidence matrix of a hypergraph H with
n vertices, m hyperedges, and took b to be a vertex-decorating function b : V (H) → Z2.
With this correspondence, Slofstra showed that one can embed any finitely presented group
into a solution group for some LinBCS game. This result allowed Slofstra to give an explicit
separation between the commuting-operator and tensor-product strategies by employing
the fact that there are finitely presented groups, with the desired J 6= 1 element, but which
have no faithful finite-dimensional representations.

With the above constructions, it is clear that we can describe a graph-LinBCS games
by the pair (G, b), where G is a graph, and b is a non-proper 2-colouring of V . Under this
identification, Arkhipov observed that the magic squares game is a graph-LinBCS game
whose 2-coloured graph appears in Figure 1.1 as the 2-coloured complete bipartite graph
on 6 vertices also known as K3,3.

Moreover, the well-known magic pentagram game is a graph-LinBCS game on the com-
plete graph K5, see the left diagram of Figure 1.1. Arkhipov noticed that these two “magic”
games corresponded to the excluded graph minors for planarity. He then proved that any
graph-LinBCS game arising from a planar graph cannot have a perfect non-deterministic
strategy! This characterization provides a surprising graph-minors classification of per-
fect quantum strategies for graph-LinBCS games10. We explicitly state Arkhipov’s main
theorem below.

8One-dimensional operator-solutions are unitary representations into 〈−1〉. To recover the vector space
solution, one can take the isomorphism from 〈−1〉 into Z2. This yields the familiar vector x ∈ Zm

2 satisfying
Ax = b.

9Though, Arkhipov never called this a colouring instead he referred to this as a signing of the vertices.
10In his work, Arkhipov used the term arrangement to refer to the graph of these LinBCS game.
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Figure 1.1: On the right, transposing the hypergraph of the magic squares game arrange-
ment results in a game G(K3,3, b), where one gives assignments to the edges. Treating the
binary constraints as vertex labels, one can exhibit the game structure as the 2-coloured
complete bipartite graph K3,3. On the left, the resulting graph from the magic pentagram
game G(K5, b). We chose the convention that blue vertices represent a 1 constraint and
red vertices a 0 constraint, thus both games have odd-colourings.

Theorem 1.0.2 (Arkhipov’s theorem). Let G be a connected graph. Then the correspond-
ing graph-LinBCS game G(G, b) has a perfect quantum strategy and no perfect classical
strategy if and only if the graph G contains K3,3 or K5 as graph minors and the non-proper
vertex 2-colouring b has odd parity.

Recalling that a simple graph is non-planar if |E| > 3|V | − 6, Arkhipov’s theorem
seems to suggest that if G is sufficiently connected then there exists a perfect quantum
strategy. We will see in Section 3.1.1 that if G is connected and b is even11, then there
is always a deterministic12 strategy to G(G, b). By this simple fact, we observe that any
separation between perfect quantum and classical strategies can only be obtained if the
colouring b is odd. The appearance of planarity13 in Arkhipov’s theorem, and the existence
of the element J in the graph incidence group can be partially explained using the theory
of pictures. A picture is a planar diagram which represents relations of a group. Curves
or edges in the disk, correspond to generators in the group, while vertices correspond to
relations.

The theory of pictures was developed in [39] for the solution groups of LinBCS games
11A vector in Zn

2 is odd (resp. even), if it has odd (even) Hamming weight.
12We will see that it is natural to consider deterministic strategies as one-dimensional quantum strategies
13In the appendix, we discuss other planarity characterizations that might be worth exploring.
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with corresponding hypergraphs. These pictures are dual to the van Kampen diagrams
developed in [26]. Applied to graph incidence groups, pictures are a useful tool for exploring
the connection between attributes of the graph G, and properties of the graph incidence
group Γ(G, b). Unlike in the more general setting of hypergraphs, for graphs pictures are
a type of weak graph cover. We examine some connections between the theory of covers
for graphs and pictures for graph incidence groups in Section 3.3.1.

A corollary of Arkhipov’s theorem is an efficient algorithm for deciding if a graph-
LinBCS game has a perfect quantum strategy, given by the linear-time planarity testing
of [23]. This result for graph-LinBCS games is contrasted by the same problem in general
LinBCS games, whereby, deciding if there is a perfect quantum strategy can be undecidable
[39].

Recall that planarity is a graph property that is closed under the graph minor opera-
tions. Graph minor operations play a fundamental role in the structure theory of graphs.
For instance, Wagner’s theorem states that the forbidden minors for planarity are K3,3

and K5 [44]. This observation motivates a natural question: is there a broader connection
between graph minors and solution groups from graph-LinBCS games? If so, are their
other properties of graph incidence groups that can be characterized by forbidden minors?
This thesis provides an affirmative answer to the above question.

In Chapter 4 we establish a rigorous connection between graph minor operations on
2-coloured graphs and graph incidence group properties. This connection is made precise
by our main lemma.

Lemma 1.0.3. If (H, b′) is a minor of (G, b), then there is a surjective group homomor-
phism φ : Γ(G, b)→ Γ(H, b′).

We prove Lemma 1.0.3 in Section 4.2, by demonstrating that for 2-coloured graphs,
there is a natural extension of the graph minor operations, each of which induces a surjective
group homomorphism between graph incidence groups. In addition, our main lemma has
the following immediate corollary by the Robertson-Seymour theorem [35].

Corollary 1.0.4. Every quotient-closed property of a graph incidence group Γ(G, b) is
characterized by a finite set of forbidden minors.

Once the connection between quotient-closed properties of graph incidence groups and
graph minors was established. It is natural to wonder what the forbidden minors for
quotient-closed properties of graph incidence groups are. In Chapter 4, we derive the set
of forbidden graph minors for two basic quotient-closed graph incidence group properties:
finiteness and abelianness.
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Theorem 1.0.5. The graph incidence group Γ(G, b), is a finite group if and only if it does
not contain K3,6 or two independent vertex-disjoint cycles C(1) t C(2) as graph minors.

Theorem 1.0.6. If b is even, then Γ(G, b) is an abelian group if and only if (G, b) does
not contain K3,4 or two independent vertex-disjoint cycles C(1)tC(2) as minors. If b is odd,
then Γ(G, b) is an abelian group if and only if (G, b) does not contain any of K3,3, K5 or
two independent vertex-disjoint cycles C(1) t C(2) as graph minors.

The proofs of Theorem 1.0.6 and Theorem 1.0.5 rely on Lovasz’s classification [28] of
graphs that do not contain 2 vertex-disjoint cycles. Another consequence of the Robertson-
Seymour theorem is an efficient (runtime O(|V |3) for simple graphs) algorithm for the
problem of detecting a given minor. This implies that once the forbidden minors are
known, any quotient-closed property of a graph incidence group can be detected efficiently.

In Chapter 5 we apply our main corollary (Corollary 1.0.4) to investigate the quantum
correlations arising from perfect strategies for graph-LinBCS games. In particular, using
our graph minor characterizations from Theorem 1.0.6 and Theorem 1.0.5, we make some
observations about the perfect14 correlations for abelian and finite graph incidence groups.
To achieve this, we make use of the connection between perfect correlations and characters
of the graph incidence group. Lastly, we investigate the characters of the dihedral groups,
as these groups appear to emerge naturally in graph incidence groups.

Many of the results in this thesis were supported by computations using computer
algebra systems. In the Appendix, we include a SAGE implementation of a function that
takes a 2-coloured graph (or hypergraph) and returns the incidence group. This function
allows for testing or as a sandbox for future research. We also include some examples
of useful tools in SAGE for examining the perfect classical and quantum correlations for
graph-LinBCS games.

14Perfect correlations are those that arise from perfect quantum/classical strategies.
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Chapter 2

Preliminaries

The subject matter of this thesis requires some background in the theory of graphs, finitely
presented groups, representation theory, quantum information and non-local games. In
the interest of a self-contained thesis, we provide a brief survey of required definitions and
results that are used or referred to later in this work.

2.1 Graph theory

In this section, we present some basic graph theory terminology. In addition, we review
the notion of graph minors which will be referred to later in the work. These statements
can be found in any standard text on graph theory such as [7].

2.1.1 Simple graphs and non-proper colourings

A graph G is an ordered pair of sets (V,E), where V = {v1, v2, . . . , vn} is a set of vertices
and E is collection of edges (distinct two-element subsets of V ), euv = {u, v} ∈ E, for
u, v ∈ V . Two vertices u, v are adjacent if there is an edge euv ∈ E. Adjacency is an
equivalence relation on G. For example, if v ∼ u for u, v ∈ V , then there exist an edge
euv ∈ E. Similarly, we say an edge e is incident to a vertex v ∈ V , if there is element of
E containing v. We may write e ∼ v to indicate that e is incident with v. More generally,
graphs can contain edges with the same endpoint called loops, and can contain multiple
edges between the same two vertices. A graph is simple if it does not contain any loops or
multi-edges.
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The degree of a vertex is the number of edges incident to that vertex. A graph is
k-regular, if every vertex has degree k, and is complete if each vertex has degree n − 1.
The complete graph on n vertices is denoted by Kn. A graph is said to be k-partite, if
there exists a partition of the vertex set into k disjoint subsets, such that no vertices in the
same partition share an edge. A walk is a sequence, of possibly repeating, adjacent edges
e1e2 . . . ek. If in addition to being a walk, each edge is distinct, then the sequence is a path
of length n − 1, and if v1 = vn, then it is a cycle C. A graph with no cycles is said to be
acyclic. A graph is connected, if there is a path between every pair of vertices.

A non-proper vertex colouring of G is a function from the set of vertices to a finite set of
colours f : V → Zn. Similarly, a non-proper edge colouring of G is a function g : E → Zn.
Graph theorist often study proper graph colourings; whereby, any pair of adjacent vertices
do not share a colour. Given two graphs G and H, the map φ : V (G)→ V (H) is a graph
homomorphism, if for every pair v ∼ u in V (G), then φ(v) ∼ φ(u) in V (H). The notion of
onto and one-to-one maps are described as functions between the finite labeled sets V (G)
and V (H). An invertible graph homomorphism defines a graph isomorphism. Lastly, a
graph homomorphism is a local -isomorphism, if the cardinality of each fibre φ−1(v) is one
for all v ∈ V (H).

2.1.2 Hypergraphs and higher incidence structures

A natural generalization of a graph is a hypergraph H, which consists of vertices V along
with a set of hyperedges E. Hyperedges are k-element subsets of V , for any 1 ≤ k ≤ n. For
any hypergraph H with |V | = n, and |E| = m, we define its incidence matrix to be the
n×m matrix Av,e with entries

(av,e)
(n,m)
(v,e)=(1,1) =

{
1 , if v is incident to e
0 , otherwise

. (2.1.1)

If a Av,e is the incidence matrix of a connected graph, then every column has exactly 2
non-zero entries. More generally, a connected hypergraph is said to be k-uniform if every
column of its corresponding incidence matrix sums to k. Observe that permuting rows and
columns of Av,e is analogous to relabeling the vertices or edges in G (H). From this, the
incidence matrix of any disconnected graph G(D), with connected components C, can be
written as a direct sum of connected incidence matrices, for each connected component,

A(D)
v,e =

⊕
c∈C

Av,e
(c) . (2.1.2)
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Therefore, we can work exclusively with connected graphs, and the above construction
determines how properties will carry back to the disconnected case.

2.1.3 Graph minors

Graphminors are operations by which one can deconstruct a graph. The operations consist
of edge deletion, edge contraction, and vertex deletion. Edge deletion is the simplest
operation; if e ∈ E(G), then the deletion G \ e of e is the graph with vertex set V (G) and
edge set E(G) \ {e}. If v ∈ V (G), then the deletion G \ v of v, results in the graph with
vertex set V (G) \ {v} and edge set E(G) \ {e ∈ E(v)}, where E(v) = {e ∈ E : e ∼ v}.
Finally, if e = v1v2 is an edge of G, then the contraction G/e of e results in the graph
where the edge e is removed, the vertices v1 and v2 are merged into a new vertex v, and
there is an edge wv in G/e if and only if there is an edge wvi ∈ E(G) for i = 1, 2. Edge
deletion is depicted in Figure 2.1, edge contraction1 shown in Figure 2.2, and deletion of
an isolated vertex is shown in Figure 2.3. We say a graph H � G is a minor of G (or G

a
b

e c

d g

f

a
b

c

gd

f
−→

G G \ e

Figure 2.1: The graph minor operation of deleting the edge e from G. The dashed line
indicates the removed edge from the graph, following the operation.

contains H as a minor), if there is an appropriate sequence of graph minor operations mi,
taking G to H

G
m1−→ G1

m2−→ · · · mk−1−−−→ Gk−1
mk−−→ H . (2.1.3)

Graph planarity is the property of a graph having a non-crossing embedding in the
2D-plane. It was famously shown by Wagner that a graph is planar if and only if it does

1In the case of simple graphs to avoid creating loops, we consider the more precise neighbourhood-disjoint
edge contraction, i.e. one must first remove any extraneous shared edges before contracting a desired edge
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d

a

c

b

e

f

g gb

a e

c f

−→

G G / d

Figure 2.2: The graph minor operation contracting the edge d in E(G). Observe that this
operation results in the merging of the two end-vertices of d ∈ E(G). Hence, this minor
operation reduces the number of vertices in V (G) by one.

not contain the complete bipartite graph on six vertices K3,3 or the complete graph K5

as minors [44]2. Wagner famously conjectured that for every graph minor closed property
P, there is a finite list L of graphs, such that a graph satisfies P if and only if it does not
contain any minors in L. Graphs in L are called the forbidden minors of property P.

Wagner’s conjecture was proved by the celebrated Robertson-Seymour theorem [37],
which states more generally that the set of finite graphs is well-quasi-ordered3 with respect
to the graph minor operations. The Robertson-Seymour theorem also gives a basis for
which the detection of a forbidden minor H can be done in runtime O(|V |3).

Another graph property we consider in this thesis is not containing two vertex-disjoint
cycles C(1) t C(2). The set of graphs (and multi-graphs) without 2 vertex-disjoint cycles
were characterized by Lovasz [28]. These graphs include: trees Tn, wheelsWn, the complete
graphK5. As well as bipartite graphs for which G\{u, v, w} is edgeless for some set of edges
u, v, and w. These include K(2,3), K3,n amongst many other variants of these. Figure 2.4
illustrates an example of a (3, n)-bipartite graph variant where a cycle C has been adjoined
to the 3-partition. Observe, that the addition of this cycle has not increased the number of
vertex-disjoint cycles in the graph. Therefore, we must consider these graph variants in our
analysis of graphs without 2 vertex-disjoint cycles. Moreover, remark that the 3-partition
is very important, as it is not hard to find two disjoint cycles in K4,n for any n ≥ 4. On this
note, it was shown in [6] that the runtime of an algorithm for finding two vertex-disjoint
cycles is linear in the number of vertices.

2Though it had already been shown by Kuratowski that a graph is planar if and only if the graph
doesn’t contain an edge-subdivision of K3,3 or K5 [27].

3In a well-quasi-ordered class, any infinite sequence of elements contains an increasing pair xi ≤ xj ,
with i < j.
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a

v

b

e c

gd

f

gd

f
−→

G G \ v

Figure 2.3: The graph minor operation G→ G\v deleting vertex v from G. The removed
vertex and its subsequent edges are indicated by dashed lines in the graph following the
vertex deletion. Observe that deleting vertex v, also removes all the edges incident to v.
Essentially the vertex-deletion minor operation induces the edge-deletion minor for every
edge incident to v.

Figure 2.4: Four types of graphs that do not contain two disjoint cycles. From left-to-right,
K5, the wheel graph W5, the bipartite graph K3,4, and a cycle with tree branches Rn.

2.2 Group theory

We present some basic background on relevant group theoretic terms, references include
the basic texts [20, 4].

2.2.1 Basic properties of groups

A group Γ, consists of a non-empty set S with an associative4 binary operation (·) such
that the following hold:

4For all a, b, c an operation is associative if (a · b) · c = a · (b · c).
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(i) There is a unique identity element 1 ∈ Γ with respect to the binary operation

(ii) Every element x ∈ Γ has a unique inverse x−1 ∈ Γ such that x · x−1 = x−1 · x = 1

(iii) Γ(S) is closed5 with respect to the binary operation.

A subset Σ ⊆ Γ is called a subgroup, if 1 ∈ Σ, and Σ is closed under the group operation;
furthermore, each element of Σ has an inverse in Σ. We say that Σ is a proper subgroup,
if Σ 6= {1} and Σ 6= Γ. We say a subgroup Λ ⊂ Γ is normal, if xΓx−1 ∈ Λ for all x ∈ Γ,
or if every left coset xΓ ∈ Λ is also a right coset Γx ∈ Λ. If Λ is a normal subgroup of
Γ, denoted Λ E Γ, then Γ/Λ is called the quotient of Γ by Λ. The normal closure of a
subgroup R is the smallest normal subgroup RΓ = {g−1Rg : ∀g ∈ Γ} containing R.

The commutator of x, y ∈ Γ is defined as [x, y] = xyx−1y−1. We SAY x and y commute
if [x, y] = 1. The centre of a group Γ consists of the elements that commute with everything
in the group. We say a group is abelian if Γ ⊆ Z(Γ). We say that a group is finite, or
has finite order, if it has a finite number of elements. A group Γ is simple, if it has no
(non-trivial) normal subgroups.

Let Γ and Σ be groups. A group homomorphism is a map ϑ : Γ → Σ such that
ϑ(xy) = ϑ(x)ϑ(y) for all x, y ∈ Γ. The kernel of a homomorphism ϑ : Γ→ Γ′ is the set of
elements in Γ that are mapped to the identity 1′ in Γ′. A homomorphism is surjective (or
onto) if the kernel is trivial, and injective (or one-to-one) if it is invertible on its image. We
now recall the fundamental theorem of group isomorphisms as it highlights the interplay
between normal subgroups and homomorphisms.

Theorem 2.2.1 (Isomorphism theorem for groups). If Γ and Σ are groups and ϑ : Γ→ Σ
is a surjective group homomorphism, then there is an isomorphism

ϕ : Γ/Λ→ Σ , (2.2.1)

with ϑ = ϕ ◦$, where Λ = Ker(ϑ), and $ : Γ→ Γ/Λ.

Proof. Let ϕ(Λg) = ϕ ◦$(g) = ϑ(g). To see that ϕ is well defined; note that, if Λg = Λh,
then there exist λ ∈ Λ such that g = λh. Hence, ϑ(g) = ϑ(λh) = ϑ(λ)θ(h) = ϑ(h), since λ
is in the kernel of ϑ. To see that ϕ is a surjection, consider an element ϕ(g) ∈ Σ, since ϑ is
surjective there exist a g ∈ Γ such that ϑ(g) = ϕ(Λg). To see that ϕ is injective, suppose
that ϕ(Λg) = ϕ(Λh), then ϑ(g) = ϑ(h), and Σ 3 1 = ϑ(g)ϑ(h)−1. It follows that, since ϑ
is a homomorphism, gh−1 is in Λ a normal subgroup. Thus Λg = Λh, and ϕ is injective.
Lastly, observe the quotient map $ : Γ → Γ/Λ. It follows that ϕ is a homomorphism,
since ϕ(ΛgΛh) = ϕ(Λgh) = ϕ ◦$(gh) = ϑ(gh) = ϑ(g)ϑ(h) = ϕ(Λg)ϕ(Λh).

5A set S is closed w.r.t an operation (·), if c ∈ S whenever a · b = c, for a, b ∈ S.
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Let Φ and Λ be normal subgroups of Γ such that Φ ∩ Λ = {1}. We write Γ = Λ × Φ
and say that Γ is the direct product of Φ and Λ. Let Γ and Σ be groups with corresponding
central subgroups ΓZ ⊆ Z(Γ) and ΣZ ⊆ Z(Σ), such that there is an isomorphism of
subgroups α : ΓZ ↔ ΣZ ,. Then the central product is the quotient of the direct product
Γ × Σ by the normal subgroup Λ = {(γ, σ), γ ∈Z , σ ∈ ΣZ : α(γ)σ = 1}. We will denote
the central product by ×ΛΣ.

Let Γ be a group and Λ a normal subgroup. There is a natural projection map π : Γ→
Γ/Λ given by π(x) = xΛ for x ∈ Γ. Furthermore, if η : Φ → Γ is an injective map, and
π : Γ→ Λ is a projection, then we say the following sequence is exact, and write

1→ Φ
η−→ Γ

π−→ Λ→ 1 . (2.2.2)

If in addition to the exact sequence, there is a homomorphism φ : Λ → Γ such that
π ◦ φ = 1, then Γ is the semi-direct product of Λ acting on Φ6 with respect to the map
ϕ : Λ → Aut(Φ), written Γ = Λ oϕ Φ. The dihedral group Dihn is an example of the
semi-direct product. In other words, Dihn is the semi-direct product of Zn acting on
Z2. In particular, we have that Dihn ∼= Zn oϕ Z2, where ϕ(a) : Z2 → Aut(Zn), and
ϕ(a)(z) = z(−1)a acts by inversion.

A sequence of subgroups Γ0 > Γ1 > . . . > Γr > 1 is a composition series of length
r, if Γi+1 E Γi for all i, and every successive quotient Γi/Γi+1 is simple. Recursively one
can define the derived subgroups Γ(n) = [Γ(n−1),Γ(n−1)], as the group generated by the
commutator with Γ(0) = Γ. We call the group Γ(1) = [Γ,Γ] the commutator subgroup.
From this definition, we obtain the normal derived series Γ / Γ(1) / · · · / Γ(n). A group is
solvable, if the series terminates with Γ(n) = 〈1〉. The commutator subgroup is a normal
subgroup. Furthermore, the homomorphism Γ → Z(Γ) induced by the quotient of Γ by
the commutator subgroup Γ/Γ(1) ∼= Z(Γ) is called the abelianization of Γ, and its centre
Z(Γ) is sometimes referred to as the subgroup of abelian invariants.

2.2.2 Finitely presented groups

Every group Γ can be given a presentation. A presentation of Γ consists of a set of
generators S and relations R, we denote a presentation of Γ by 〈S : R〉. A group is said
to be finitely presented if there exist presentations with S and R finite. For example, the
infinite dihedral group has a simple finite presentation,

Dih∞ =
〈
x, y : x2, y2

〉
. (2.2.3)

6One might also say that Γ splits over Φ.
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The free group F(S) is the set of all reduced words of S. Every group Γ has a presentation
due to the following isomorphism of groups,

α : F(S)/R→ Γ , (2.2.4)

where R is the normal closure of the relations defining all words in Γ. An important remark
here is that there is no algorithm with bounded runtime, which given a presentation of a
group can decide if the order of a group is finite. This is because deciding if a particular
element has finite order is related to the following decision problem. Given a word w, as
a product of generators in S(Γ) determine, if w = 1 ∈ Γ. This is called the word problem
for finitely presented groups, and it is known to be undecidable [16].

Even with the undecidability result, in practice, we can typically reduce the order of
arbitrary words and thus often compute the order of a group. One approach to this is using
an algorithm that generates a rewriting system for the presented group. A rewriting system
(RWS) consists of a set of rules for transforming words into other words in the group. We
say the rewriting system is confluent if its rules reduce words to the identity, and finite if
it has a finite number of rewriting rules. A finite and confluent rewriting system is called
complete. Given a complete RWS for a group, one has effectively solved the word problem
for that group and therefore one can determine the order of the group. Algorithms for
computing RWS’s come standard in most computer algebra systems including SAGE or
GAP.

2.2.3 Products for presented groups

Given two presented groups Γ1 = 〈S1 : R1〉 and Γ2 = 〈S2 : R2〉, the direct product can be
expressed as

Γ1 × Γ2 =
〈
S1 ∪ S2 : R1 ∪R2 ∪R1,2

〉
(2.2.5)

where R1,2 consists of the relations enforcing that every element of S1 commutes with every
element in S2. Similarly, we can define the free product of two groups,

Γ1 ∗ Γ2 =
〈
S1 ∪ S2 : R1 ∪R2

〉
. (2.2.6)

Observe in the free product, that there is no enforced commutation relations between S1

and S2.7

7In the category of groups the direct product is merely the universal product, while the free product is
the co-product.
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2.3 Representation theory

We give the standard definitions and facts concerning the representations of finite groups.
These facts can be found in the works [38, 9]. In everything that follows we are working
over the field of complex numbers C.

2.3.1 Unitary representations of groups

A representation of a finite group Γ is a pair (ϕ,V) such that

ϕ : Γ 7→ GL(V) , (2.3.1)

is a group homomorphism into GL(V)8. We are primarily interested in unitary represen-
tations of a group9 ϕ : Γ 7→ U(V). When there is little room for confusion, we may refer
to a representation as the space V .

The dimension of a representation is the rank of the identity ϕ(1) ∈ GL(V). A sub-
representation (ϑ,W) is a Γ-invariant subspace of V , such that ϕ

∣∣
W = ϑ. The subspace of

Γ-invariants is described as

VΓ = {ν ∈ V : ϕ(g)ν = ν , ∀ g ∈ Γ} . (2.3.2)

A representation (ϕ,V) is said to be irreducible, if V contains no proper Γ-invariant sub-
spaces. Using the above definitions one can show the following important facts regarding
representations. First, ifW is a sub-representation of V , then there exist a complementary
invariant subspace W⊥ such that V ∼= W ⊕W⊥; which in turn, implies that every repre-
sentation is the direct sum of irreducible representations. Remark that if ρ is a unitary
representation, then every invariant subspace is also a reducing subspace. This fact makes
the decomposition of unitary representation very nice.

We now state a fundamental result, which describes the relationship between irreducible
representations. Let the space of the Γ-invariant maps between irreducible representations
V and W be denoted by HomΓ(V ,W) ∼= (V∗ ⊗ W)Γ. These are also sometimes called
Γ-module homomorphism.

Lemma 2.3.1 (Schur’s lemma). If (ρ,V) and (ϕ,W) are irreducible representations of Γ
and the map α : V 7→ W is in HomΓ(V ,W), then

8The group of invertible linear transformations acting on the vector space V.
9The unitary group U are the elements of GL(V) with the ∗-involution property U∗ = U−1.

16



(i) Either α is an isomorphism, or α = 0

(ii) If V =W , then α = c · 1, for some c ∈ C, and 1 is the identity on V .

Proof. Let K be the kernel of α. Given an x ∈ K, observe that (αρ)x = (ϕα)x = 0, hence
ρx ∈ K and K is an invariant subspace of V , but since V is irreducible either K = V or
K = 0. Similarly, let R be the image of α, such that, if x ∈ R then ϕx ∈ R, and R is an
invariant subspace of W . Now, since W is also irreducible, observe that R = W or R = 0.
It follows, that either α is an isomorphism or α = 0. Now assume V =W , and let λ be an
eigenvalue of α. It follows from (i) that α − λI ∈ Hom(V ,V), so α − λI = 0 ⇒ α = λI,
since α − λI being an isomorphism contradicts the fact that we let λ be an eigenvalue of
α.

The main consequence of Schur’s lemma is that we can decompose any representation
into a direct sum of irreducible components of the form

V =
k⊕
j=1

V⊕mj

j , (2.3.3)

where each mj is the multiplicity of the distinct irreducible representation Vj. Recall that
the dual space of a vector space V , is the vector space of homomorphisms on that space
denoted by V∗ := Hom(V ,V). Suppose that (ϕ,V) is a representation of Γ, then the dual
representation of Γ is given by (ϕ∗,V∗) and

(ϕ∗(g)f)(v) = f(ϕ(g−1)v) , (2.3.4)

for all g ∈ Γ, f ∈ V∗ and v ∈ V . Remark that if f : V 7→ C and V is a complex inner
product space, then the Riesz representation theorem states that, for any f ∈ V∗ there
exist a u ∈ V such that fu(v) = 〈u, v〉V .

A finite set S with a left Γ-action, where Γ 7→ Aut(S) is a homomorphism, defines the
permutation representation of Γ on S. In this case one, we view V as a vector space with
basis {vs : s ∈ S}, where Γ acts by

g

(∑
s

asvs

)
=
∑
s

asvg(s) . (2.3.5)

If we let Γ = S in the above definition, we obtain what is known as the left-regular
representation of Γ on V . Where the dimension of the representation is |Γ|, and each
element of the group is an element of the basis for V ∼= C|Γ|.
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2.3.2 A representation of the dihedral group

The group Dih4 has 4 one-dimensional representations and one dimension-2 irreducible
representation. A two dimensional unitary representation of Dih4 with generators 〈x, y〉
and xyx = y−1 is given by mapping the generators,

ρ(x) 7→
(

0 1
1 0

)
= X and ρ(y) 7→

(
i 0
0 −i

)
= iZ. (2.3.6)

Where X, and Z are the 2 × 2 Pauli matrices. It is easy to check that ρ(x) has order 2,
and ρ(y) has order 4. The only remaining relation to verify is (ρ(x)ρ(y))2 = 1. Observe,

(ρ(x)ρ(y))2 =

((
0 1
1 0

)(
i 0
0 −i

))2

=

(
0 −i
i 0

)2

=

(
1 0
0 1

)
. (2.3.7)

The product of representations is given by the tensor product of the irreducible repre-
sentations modulo the representation of the centre (y2, y2) 7→ −12 ⊗ −12 = 14. Where
the tensor product of matrix representations is described by the Kronecker product of the
representative matrices.

A set of matrices {X1, . . . , Xn} are called Clifford unitaries, if they are self-adjoint,
involutions, that anti-commute XiXj +XjXi = 0. Recall that matrix elements of a repre-
sentation commute if XiXj−XjXi = 0 for all i 6= j. The Pauli group10 is such, a collection
of 16 matrices.

X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
(2.3.8)

and
XZ =

(
0 1
1 0

)(
1 0
0 −1

)
=

(
0 −1
1 0

)
= −

(
0 1
−1 0

)
= −ZX (2.3.9)

2.3.3 Characters of a representation

The character of a representation (ϕ,V) of Γ is the complex valued functional χV : Γ→ C,
such that χV(g) = tr

(
ϕ(g)

)
. The properties of the trace give us some immediate properties

of the character. Firstly, that χV is a class function, (i.e. constant on conjugacy classes), and
secondly the degree of a representation is given by the character of the identity dim(V) =
χV(1). Characters behave nicely, with respect to the sum and product of representations,
we state without proof that χV⊕W = χV + χW , χV⊗W = χV · χW , and lastly χV∗ = χV .

10Abstractly, the Pauli group can be described as the central product of Z4 with Dih4.
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The utility of characters in representation theory is seen by observing the following
construction. Character theory is of particular use in determined the dimensions and
multiplicities of irreducible representations. Consider the problem of finding the dimension
of the Γ-invariant subspace of V of a unitary representation. Consider the orthogonal
projection onto VΓ by defining

Π =
1

|Γ|
∑
g∈Γ

ϕ(g) (2.3.10)

We verify that Π is an orthogonal projection. Firstly, it is easy to see that Π is self-adjoint
since summing over the elements of g ∈ Γ is the same as summing over the inverse elements
g−1 ∈ Γ as ϕ is a unitary representation. Secondly, we show that Π2 = Π,

Π2 =
1

|Γ|2
∑

(g,g′)∈Γ

ϕ(g)ϕ(g′) (2.3.11)

=
1

|Γ|2
∑

(g,g′)∈Γ

ϕ(g · g′) (2.3.12)

=
1

|Γ|2
∑
h∈Γ

ϕ(h)|Γ| (2.3.13)

=
1

|Γ|
∑
h∈Γ

ϕ(h) (2.3.14)

Now, observe that we can use Π to compute the dimension of the irreducible sub-representations,

dim(VΓ) = tr(Π) =
1

|Γ|
∑
g∈G

tr(ϕ(g)) =
1

|Γ|
∑
g∈Γ

χV(g) . (2.3.15)

Corollary 2.3.2 (Consequences of Schur’s lemma). Let V =
⊕k

j=1mjVj be a decom-
position of the representation V into a direct sum of irreducible representations Vj with
multiplicity mj, then the following non-trivial statements can be obtained

(a) The number of irreducible representations is equal to the number of conjugacy classes
in Γ

(b) The irreducible characters with respect to the above Hermitian inner product form
an orthonormal basis for the set of class functions on Γ

(c) A representation V is irreducible if and only if (χV , χV) = 1
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(d) mj = (χV , χVj)

(e) |Γ| = ∑j dim(Vj)2

We refer the reader to any standard text representation theory for the proofs of the
above results such as [38, 9].

There is a hermitian inner-product on the set of characters11, from which we have the
following application of Schur’s lemma,

(χV , χW) =
1

|Γ|
∑
g∈Γ

χV(g)χW(g) (2.3.16)

=
1

|Γ|
∑
g∈Γ

χ(V∗⊗W)Γ(g) (2.3.17)

= dim(HomΓ(V ,W)) =

{
1 if V ∼=W
0 if V �W . (2.3.18)

If a group Γ decomposes into a product of smaller groups, of which the representations are
known, then one can obtain a representation of the whole group with the following fact. If
V and W are representations of Γ and Σ, then V ⊗W is a representation of Γ× Σ.

Perhaps the most important use of characters is for decomposing a representation into
irreducible representations. In particular, the characters can be used to construct a set of
orthogonal projections onto the space of irreducible representations. Consider the projec-
tion given by

Πi =
di
|Γ|
∑
g∈Γ

χi(g)∗ρi . (2.3.19)

We verify that this is indeed a projection onto the ith irreducible representation Vi of
dimension di. Since, the characters are orthogonal, the projection onto Vj is 0 for all i 6= j.
On the other hand, when i = j, we obtain di/|Γ|〈χi|χi〉 = d2

i /|Γ| and therefore

1

|Γ|
∑
i∈C

d2
i = 1 . (2.3.20)

Example 2.3.3. The cyclic group Z2 is generated by 〈a〉. The unitary irreducible repre-
sentation of Z2 have characters ±1. The two-by-two character table is shown in Table 2.1.

11More generally this inner product is defined on the set of class functions.
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1 a
χ0 1 1
χ1 1 -1

Table 2.1: The character table of Z2, the columns index the conjugacy classes via some
class representative, while the rows are the labelled by its irreducible representations.

Example 2.3.4. The dihedral group of order 8 is denoted by Dih4, is generated by two
elements 〈r, s〉 along with the following relations R = {r4, s2, srsr}. Dih4 has 5 conju-
gacy classes, a set of conjugacy class representatives is given by {1, sr, sr2, r, r2}. The 5
irreducible representations of Dih4 are given in the following character-table matrix. Each
column correspond to conjugacy classes while the rows correspond to the characters of
the irreducible representations. Since the identity forms its own conjugacy class in every
group, the first column gives the dimension of the representations χρ(1) = dim(V).

1 1 1 1 1
1 −1 −1 1 1
1 −1 1 −1 1
1 1 −1 −1 1
2 0 0 0 −2

 (2.3.21)

2.3.4 Representations of groups generated by involutions

We denote the group Inv〈S : R〉 to be the finitely presented group generated by invo-
lutions. Meaning R contains the relation s2 = 1 for all s ∈ S. If π is a finite unitary
representation of a group generated by involutions, the resulting unitary elements of V
are elements of the subgroup of reflections (self-adjoint unitaries). The characters of each
one-dimensional representation of these groups can only take on the values ±1. While any
higher-dimensional characters of these representations can take on integer values.

2.4 Quantum measurements

The notion of a quantum correlation comes from the statistical theory of quantum states
and quantum measurements. The information in the proceeding section is taken from
[45, 43], and [11] in the context of non-local games.
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2.4.1 Quantum states

A pure quantum state is a unit vector |ψ〉 in a complex Hilbert space. Hilbert spaces
are self-dual (reflexive), which means that there is a one-to-one correspondence between
elements of H and the linear functionals on H (these are elements of the dual space H∗).
This is captured in Dirac’s convention of bra-ket notation. A ket is an element |ψ〉 of the
Hilbert space, and a bra 〈ψ| is the corresponding linear functional on the Hilbert space. The
idea behind the Dirac notation, is that whenever a functional 〈ψ| is applied to a vector |ψ〉
one recovers the inner-product 〈ψ|ψ〉. Whenever, the Hilbert space H has finite-dimension
d we can identify H ∼= Cd, and B(H) ∼= Md(C) (d× d complex matrices). If H is a Hilbert
space with elements h, h′ ∈ H, then we let 〈h, h′〉H denote the inner product on H. This
inner product on H induces the norm 〈h, h〉 = ‖h‖2 under which every Hilbert space is a
complete metric space.

Two principal features of quantum mechanics are locality, and entanglement. These
features are captured mathematically by the notion of tensor-products of Hilbert spaces.
For our purposes, the tensor product of Hilbert spaces can be thought of as the unique
bilinear mapping for which the following identity holds,

〈h1 ⊗ h′1|h2 ⊗ h′2〉H⊗H′ = 〈h1|h2〉H · 〈h′1|h′2〉H′ , (2.4.1)

for h1, h2 ∈ H and h′1, h
′
2 ∈ H′. A quantum state on the tensor product of two Hilbert

spaces H1 and H2 is called a bipartite state. A pure bipartite state is said to be separable
if it can be expressed as

|ψ〉 ⊗ |φ〉 , (2.4.2)

where |ψ〉 ∈ H1 and |φ〉 ∈ H2 are local states of their corresponding Hilbert spaces. Fur-
thermore, we say that a state is entangled if it is not separable12. The canonical maximally
entangled bipartite state on two d-dimensional systems isomorphic to Cd⊗Cd is expressed
as

|τ〉 =
1√
d

d−1∑
i=0

|i〉 ⊗ |i〉 , (2.4.3)

where {|0〉, |1〉, . . . , |d − 1〉} is the computational basis of Cd. It should be noted that a
bipartite state can be maximally entangled with respect to any pair of orthonormal bases.
Now that we have defined a quantum state we can discuss the mathematical framework in
which we model measurements of quantum states.

12The problem of deciding separability for an arbitrary quantum state is NP-hard [19].
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2.4.2 Measurement postulates and POVM’s

The postulates of quantum measurement can be summarized by the following observation.
Let {Mi}ki=1 be a collection of matrix elements, and p = (p1, . . . , pk) ∈ Rk+ be a probability
vector so that

∑k
i pi = 1. If |ψ〉 ∈ Cd is a quantum state then,

1 =
k∑
i=1

pi =
k∑
i=1

‖Mi|ψ〉‖2 =
k∑
i=1

〈ψ|M∗
iMi|ψ〉 (2.4.4)

Note that the above holds if and only if
∑k

i=1M
∗
iMi = 1 for every state |ψ〉. Let Oi =

M∗
iMi, then we refer to the collection of positive operators {O1, . . . ,Ok}, as a positive-

operator-value measure or POVM.

2.4.3 Projective measurements

Observe that if the collection of operators are orthogonal projections {P1, . . . , Pk}, such
that Pi = P ∗i = P 2

i then,

1 =
k∑
i=1

pi =
k∑
i=1

‖Pi|ψ〉‖2 =
k∑
i=1

〈ψ|Pi|ψ〉 , (2.4.5)

and we have the requirement that
∑k

i=1 Pi = 1. A set of projections {Pi}ki=1 is called a
projection valued measure (or PVM). One can show that every outcome achieved by an
arbitrary POVM’s can be achieved by a suitable choice of PVM13.

2.4.4 Joint measurements on entangled systems

Consider a quantum state on Alice and Bob’s joint state space |ψ〉 ∈ HA ⊗ HB. We
say a set of operators {X1, . . . , Xn} form a measurement system if

∑
iX
∗
iXi = 1H. Let

Alice and Bob have measurement systems {Xi}`i=1 such that
∑

iX
∗
iXi = 1HA

and {Yj}`j=1∑
j Y
∗
j Yj = 1HB

respectively. Let pAk be the probability that Alice obtains outcome k

pAk = 〈ψ|(Xk ⊗ 1B)|ψ〉 (2.4.6)

similarly, for Bob we have
pB` = 〈ψ|(1A ⊗ Y`)|ψ〉 (2.4.7)

13This follows from the fact that the PVM’s are the extreme points in the space of all POVM’s.
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and the joint probability is given by

pA,Bk,` = 〈ψ|(Xk ⊗ Y`)|ψ〉 . (2.4.8)

Remark that for separable states the resulting joint probability is what we would expect
from classical definitions. Now that we have established the basic probability statements
for quantum states we can move onto the theory of non-local games.

2.5 Non-local games

A two-player non-local game G consists of finite sets of inputs IA and IB for each player,
and finite sets of outputs OA and OB, along with a boolean predicate V : IA ×IA ×OA ×
OB → {0, 1}. Elements of the inputs are given to each player according to a probability
distribution P on IA × IB. Once a player receives their input they are forbidden from
communicating with the other. Upon receiving the input x ∈ IA (y ∈ IB resp.) each
player must return an output a ∈ OA (b14 ∈ OB resp.) to the verifier. The players win if
V(a, b|x, y) = 1 and lose if V(a, b|x, y) = 0. With this definition we can now formalize the
notion of a strategy for these non-local games.

2.5.1 Classical strategies for non-local games

We begin by defining classical strategies. For a two-player non-local game, a deterministic
strategy is a pair of functions f : IA → OA and g : IB → OB, such that V(f(x), g(y)|x, y) =
V(f(x), g(y)). Furthermore, a deterministic strategy is perfect if V(f(x), g(y)) = 1 for all
x, y ∈ IA × IB. In the case of a more general classical strategy, consider Alice and Bob
share a distribution Z over the joint set of outputs OA × OB. In this case we obtain the
conditional probability,

p(a, b|x, y) = Pr
(
f(x) = a, g(y) = b : x, y ∈ IA × IB

)
. (2.5.1)

Since this is a probability distribution, we have that p(a, b|x, y) ≥ 0 for all a, b, x, y, and∑
a∈OA,b∈OB

p(a, b|x, y) = 1 , (2.5.2)

14We hope from context that it is clear when we use b for the output of a player, and when we use b for
the function that 2-colours a graph.
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for any input pair (x, y) ∈ IA × IB. We model the forbidden communication between the
players by placing a non-signalling condition on the distribution, which mathematically
translates to the conditions∑

x∈OA

p(a, b|x, y) =
∑
x∈OA

p(a, b|x, y′) and
∑
y∈OB

p(a, b|x, y) =
∑
y∈OB

p(a, b|x′, y) (2.5.3)

for all a, b, x′, y′. A strategy is said to be synchronous if p(a, b|x, x) = 0 for all a 6= b. In
other words, the only non-zero synchronous probability is p(a, a|x, x). The synchronous
condition effectively means, that given the same input, the players always agree on their
outputs.

Given a game and a distribution over the set of inputs, we can rigorously define the
classical value of a game by

ω(G,P) = max
f,g

{ ∑
a,b∈OA×OB

∑
x,y∈IA×IB

P(x, y)V(a, b|x, y)p(a, b|x, y)

}
, (2.5.4)

where we maximize over all strategy functions f : IA → OA and g : IB → OB. Remark
from the above definition that a perfect deterministic strategy exists if and only if ω(G) = 1.
Furthermore, since the set of classical strategies form a convex set, the optimal value of ω
will be obtained by some deterministic strategy. Hence, we can express the classical value
as

ω(G,P) = max
f,g

{ ∑
x,y∈IA×IB

P(x, y)V(f(x), f(y)|x, y)

}
. (2.5.5)

2.5.2 Quantum strategies for non-local games

Let Alice and Bob be the two players participating in a non-local game G. To simplify
things, consider the case where they have the same input and output sets I andO. Suppose
we view the set O as the outcomes of a quantum experiment. Moreover, we can view a
quantum measurements as a function (denoted by δ) from the set I to the set of POVM
measurementsMO with outcomes in O, given by

δ : I →MO (2.5.6)
δ(x) = Xa , (2.5.7)

where each Xa is a positive element of B(H). Furthermore, we insist that this function
satisfies the following identity, ∑

a∈O

δ(x) =
∑
a∈O

Xa = 1H . (2.5.8)
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If δ is a measurement with outcomes in O, and the state being measured is |ψ〉 ∈ H, then
the probability of outcome a ∈ O is given by the equation

pa = 〈ψ|δ(x)|ψ〉 , (2.5.9)

for each a ∈ OA.
Now, a quantum strategy is a pair of functions δA : IA →MOA

and δB : IB →MOA
,

along with a quantum state |ψ〉15. Quantum strategies are a generalization of classical
strategies in the following way. Assigning elements of I to one-dimensional elements of
MO is equivalent to a deterministic strategy since these one-dimensional elements are
precisely the elements of O. However, it is well known in quantum information theory that
any outcome of a POVM can be attained on by suitable projection valued measure or PVM.
A PVM is merely a POVM where each element is an orthogonal projection P 2

a = P ∗ = P .
We now give a description of quantum correlations, which can be thought of as analogous
to quantum strategies.

A correlation p(a, b|x, y) is called a quantum commuting-operator correlation if there ex-
ist collections of mutually commuting projections {P x

a }a∈OA
for every x ∈ IA, and {Qy

b}b∈OB

for every y ∈ IB (i.e. P x
aQ

y
b = Qy

bP
x
a for all (a, b, x, y) ∈ IA × IA ×OA ×OB) and a global

quantum state |ψ〉 ∈ H, such that

p(a, b|x, y) = 〈ψ|P x
aQ

y
b |ψ〉 , (2.5.10)

for all (a, b, x, y) ∈ IA × IA ×OA ×OB.
A correlation p(a, b|x, y) is called a quantum tensor-product correlation if there exist a

projection valued measure {P x
a }a∈OA

∈ HA for every x ∈ IA, a {Qy
b}b∈OB

on HB for every
y ∈ IB, and a quantum state |ψ〉 ∈ HA ⊗HB, such that

p(a, b|x, y) = 〈ψ|P x
a ⊗Qy

b |ψ〉 , (2.5.11)

for all (a, b, x, y) ∈ IA × IA ×OA ×OB.
In the tensor product model, we choose the quantum state to be the canonical maxi-

mally entangled state16 on the tensor product of the local Hilbert spaces.
15We will see shortly, that specific types of quantum strategies depend on the pre-supposed structure of

the Hilbert space containing |ψ〉. For example, one can consider operators that act only on the local space
factors of H = HA ⊗HB or as commuting operators of a single global Hilbert space H.

16In the commuting-operator model, the entangled state comes from defining a tracial state on the global
Hilbert space using the action of the left-regular representation of the group algebra C[Γ(G, b)]. For more
details on these matters, we refer the reader to [12] or [43].
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We can now define the entangled value of a non-local game,

ω∗(G,P) = sup

{ ∑
x,y∈IA×IB

∑
a,b∈OA×OB

P(x, y)p(a, b|x, y)V(a, b|x, y)

}
, (2.5.12)

where the supremum17 is taken over all possible sets of measurements (P x
a , Q

y
b) obtained

from (δx, δy) and quantum states |ψ〉. Remark that there is a perfect quantum strategy
if ω∗(G) = 1. A sufficient condition for a strategy to be perfect, is for every losing tuple
(a, b, x, y) (i.e. V(a, b|x, y) = 0) we have p(a, b|x, y) = 0.

2.5.3 A non-local game with a quantum advantage

The Clauser-Holt-Shimony (CHSH) game [10], is perhaps the simplest concrete game for
exhibiting the separation of quantum and classical correlations. In this non-local game, a
verifier produces two bits x and y uniformly at random. Alice receives the first bit x and
responds with the bit a. Similarly, Bob receives a bit y and responds with a bit b. The
players are forbidden from classically communicating the value of their bits with the other
player. They win the game if and only if x ∧ y = a ⊕ b (i.e. the bitwise “AND” of their
outputs equals the bitwise “OR” of their outputs). It is easy to see that the players will win
on 3/4 of the inputs if they employ a strategy where a⊕ b = 0. It turns out that any pair
of classical players cannot do better than this 3/4 winning probability. Surprisingly, there
is a quantum strategy that obtains a higher winning probability than the best classical
strategy!

Suppose Alice and Bob share a maximally entangled state |ψ〉 ∈ HA ⊗ HB. The
quantum strategy is given as follows. If Alice receives the bit x = 0, she measures her state
with the observable A0, and if she receives x = 1 she measures with the observable A1. In
either case she responds to the verifier with the outcome of her measurement. Where her
operators are given as

A0 =

(
1 0
0 −1

)
and A1 =

(
0 1
1 0

)
. (2.5.13)

Likewise, Bob has a similar collection of observables, which he performs on his half of
the maximally entangled state depending on his input y. If y = 0 he applies B0 and if
y = 1, then he applies B1.

B0 =
1√
2

(
1 1
1 −1

)
and B1 =

1√
2

(
1 −1
−1 −1

)
(2.5.14)

17We have a supremum because the dimensions of underlying Hilbert space could be unbounded.
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Similarly, he responds to the verifier with the outcome of his measurement.

Observe that the operators {A0, A1, B0, B1} do not form suitable POVM’s, so how can
they constitute a quantum strategy as outlined above! First, observe that these elements
are ±1-valued hermitian operators. We call these elements binary observables, and we will
see shortly that 2-outcome projections are equivalent to these binary observables. In fact,
we will make extensive use of this connection in the following sections of this thesis.

Returning to the CHSH game, observe that the outcomes for each player are the values
〈ψ|Ax|ψ〉 = ±1 and 〈ψ|By|ψ〉 = ±1. To recover the {0, 1}-bits for the verifier to compute
the predicate on. Alice and Bob merely apply the inverse of the mapping a 7→ (−1)a to
their measurement outcomes before sending them to the verifier. The astonishing fact is
that this quantum strategy wins with probability ω∗(CHSH) = cos2(π/8) ≈ 0.85. Which
is substantially better than the optimal classical value of ω(CHSH) = 0.75. Furthermore,
it can be shown, that the maximum value attained by a quantum strategy for the CHSH
game is bounded above by this value 1

2
(1 + 1√

2
) ≈ 0.85. This bound is known as Tsirelson’s

bound [42], and thus the outlined quantum strategy above achieves ω∗.

In the case of the CHSH game, we saw how a quantum strategy obtained an advantage
over the best classical strategy. In the next sections, we will investigate when we can find
perfect quantum strategies. In particular, when do we have perfect quantum strategies
and no perfect classical ones. To do this we will investigate a very particular subset of
non-local games.

2.5.4 Linear binary-constraint systems and operator solutions

A linear binary-constraint system or LinBCS non-local game G(A, b) consists of an n×m
linear system Av = b, over Z2. The game proceeds in the following steps:

1. Alice receives an index 1 ≤ x ≤ n corresponding to a row in A, meanwhile Bob
received an index 1 ≤ y ≤ m corresponding to a variable of v. We assume that these
inputs are both picked independently and uniformly at random.

2. Alice’s returns a function f : Vx → Z2, where Vx is the set of non-zero entries in the
xth row of A, and Bob returns an assignment to the yth variable of vy = g(y) ∈ Z2

3. The players win if
∑

e∈Vx f(e) = b(x), and either y /∈ Vx or if y ∈ Vx and f(y) = g(y).

In other words, given her input x, Alice outputs a {0, 1}-assignment to each non-zero
variable in the xth row of A. While Bob, who is given a particular variable in v, outputs a
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{0, 1} assignment to variable g(y) = vy. The winning condition is based on the consistency
of any overlapping assignments to the variables/row-entries.

We will see that if Alice and Bob have a solution to the linear system of equations,
then they have the means of constructing a perfect deterministic strategy for the game.
Thus, the interesting instances of these Z2-linear system non-local games are when b is not
in the column space of A. In this case, the players must determine how to minimize their
probability of losing using the structure of A and b.

We now consider a type of generalized solution for a linear system of binary constraints.

Definition 2.5.1. An operator solution to a linear system of equations Ax = b over Z2,
is a collection of self-adjoint linear operators {X1, . . . , Xm}, such that the following hold:

(i) X2
j = 1

18 for all 1 ≤ j ≤ m.

(ii) If xk and x` appear in the same equation 1 ≤ k, ` ≤ m (each equation is the dot
product of the ith row of A with x) then XkX` = X`Xk (i.e. the corresponding
operators commute).

(iii) For each equation
∑

k xk = b`, Vk = {1 ≤ j ≤ m : a`jxj 6= 0} for all 1 ≤ ` ≤ n, then∏
k

Xk = (−1)b`1 . (2.5.15)

For operator solutions to linear binary-constraint systems, one can analogously define
the d-dimensional quantum column space as the subspace of vectors in Zn2 , such that there
is an operator solution of dimension d. The CMLS theorem (Theorem 1.0.1) states that
b belongs to the d-dimensional quantum column-space whenever there is a d-dimensional
unitary representations of the solution group Γ(A, b) with J 6= 1Cd . In addition, the CMLS
theorem says that, if one has such a representation, then it can be converted into a cor-
responding perfect tensor-product strategy for the corresponding non-local game G(A, b).
On the other hand, if Γ(A, b) is a solution group with J 6= 1, and the representation forms a
perfect infinite-dimensional operator-solution, then the CMLS theorem states that there ex-
ists some infinite-dimensional commuting-operator strategy for G(A, b). Furthermore, this
infinite-dimensional commuting-operator strategy, is a proper commuting-operator strat-
egy, if it contains an infinite irreducible representation. For more on operators-solutions to
LinBCS games and how they can be expressed as quantum strategies see [12, 13].

18Remark that if X is self-adjoint X = X∗ and self-inverse X = X−1 then X∗ = X−1 is unitary.
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2.6 Correlation sets for quantum models

Consider two quantum experimentalist Alice and Bob, who prepare quantum states be-
tween separated laboratories. Suppose they each have n experiments, each with m out-
comes, to perform on their shared quantum states. If Alice performs experiment x for
1 ≤ x ≤ n, and Bob performs experiment y for 1 ≤ y ≤ n, according to some distribution
P. If they obtain outcomes a and b respectively, then the space of correlations between
their joint outcomes forms the space of quantum correlations for the triple (n,m,P). These
correlations can be described by real matrices of the form,(

p(a, b|x, y)
)n2,m2

i=1,j=1
∈ Rn2×m2

+ . (2.6.1)

Where p(a, b|x, y) is read, the probability that Alice and Bob return outcomes (a, b), given
the inputs (x, y). Observe the similarities of this to the space of strategies we discussed
in Section 2.5. Thus, the set of all finite dimensional strategies can be expressed as a
finite dimensional matrix space, and is equivalent to the space of quantum finite quantum
correlations. It came as a surprise to researchers that in infinite-dimensions, the space
of correlations depended on the interpretation of locality for the corresponding space of
operators. We focus on the two important models relevant in this work.

Definition 2.6.1. Two relevant models for quantum correlations are:

(a) The quantum tensor-product model Cqs, where the measurements are sets of local
orthogonal projections {P x

a }ma
a=1 ∈ B(HA), and {Qy

b}mb
b=1 ∈ B(HB), andH = HA⊗HB.

(b) The quantum commuting-operator model Cqc, where the measurements are orthog-
onal projections {P x

a }ma
a=1, {Qy

b}mb
b=1 ∈ B(H) such that every Pa commutes with every

Qb.

It follows, that we could have alternatively described the set of quantum correlations
and thus strategies, in the following way. Let |ψ〉 be a state on a Hilbert space H, and let
{P x

a }ma
a=1 and {Qy

b}mb
b=1 be commuting projective measurements on H (i.e. P x

aQ
y
b = Qy

bP
x
a for

all (a, b, x, y)), then a quantum commuting correlation is described by

p(a, b|x, y) = 〈ψ|P x
aQ

y
b |ψ〉 , (2.6.2)

for all tuples (a, b, x, y) ∈ IA × IA × OA × OB. As strategies, these are called quantum
commuting-operator strategies. In this framework existence of the entangled state |ψ〉
is defined more abstractly, instead of as a canonical maximally entangled state on the
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bipartite space it is a particular tracial state on the algebra of operators from the global
Hilbert space. When the commuting projections are infinite dimensional, the existence of
this tracial state, subtlety depends on the algebraic structure of the measurement operators
(i.e. the group of observables Γ that they manifest in). As mentioned in Chapter 1, this
tracial state exists if and only if J 6= 1. In this case, the existence of nontrivial |J〉 indicates
that there is such an operator on the group Hilbert space C[Γ] given by a non-trivial action
on the space.

By definition, one can observe that the tensor-product model is contained in the
commuting-operator model. Simply consider the commuting elements (P x

a ⊗ 1B) and
(1A ⊗ Qy

b). In finite-dimensions, it can be shown that these models are the same. How-
ever, when the Hilbert spaces are infinite it is not so clear. If one considers the limit of
finite-dimensional quantum tensor product strategies, as the dimension of HA and HB go
to infinity, we obtain the closure of Cqs denoted Cqa. This model is known as the approx-
imable Cqa correlation model. As we have already established, there are strict separations
between the classical and quantum correlations sets Cc and Cq19. More generally Tsirelson’s
problem asks, whether there are other separations in the following chain of correlations sets,

Cc ⊆ Cq ⊆ Cqs ⊆ Cqa ⊆ Cqc . (2.6.3)

Using a powerful solution group construction, along with the CMLS theorem, Slofstra
showed that Cqs 6= Cqc [39]. The question, of whether or not Cqa = Cqc, is equivalent to
the famous Connes embedding conjecture [25, 33, 17], and remains the only open separation
in (2.6.3). At this point in time, it has been established that all the other inclusions are
proper (() [40, 42, 14, 15].

2.6.1 Decomposition of unitary elements into sets of projections

Observe that any collection of projective measurements {P x
a }ma=1 can be thought of as the

spectral projections of a m-dimensional unitary

U =
m∑
a=1

e2π(a−1)/mPa . (2.6.4)

Thus, there is a correspondence between m-outcome PVM’s and representations of the
group algebra of C[Zm]. In the case of LinBCS games, there is a drastic simplification of the
general non-local game framework. In particular, the set of outcomes is binary. Since any

19These separations are known as Bell inequalities.
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value attained by a POVM can be attained through PVM’s, we need only consider binary
projective measurements. It is convenient to take all POVM’s to be binary observables20

These unitary elements on a Hilbert space form a group generated by involutions.

Definition 2.6.2. The value t(a, b|x, y) is a Tsirelson correlation if there exists commuting
collections of unitary self-adjoint operators {Ox

a}nA
x=1, {Oy

b}nB
y=1, with a quantum state |ψ〉 ∈

HA ⊗HB, such that
t(a, b|x, y) = 〈ψ|Ox

aO
y
b |ψ〉 . (2.6.5)

Proposition 2.6.3. Tsirelson’s correlations are equivalent to finite dimensional quantum
correlations.

Proof. It suffices to show that for every collection of projective measurements, there is
a corresponding collection of self-adjoint unitary observables and vice versa. Let P0, P1

be a projective measurement, so P ∗i = Pi = P 2
i and P0 + P1 = 1. If we have a set of

observables, such that A∗A = 1, and A2 = 1, then we can transfer between projective
measurement and unitary observables via P0 = 1+A

2
and P1 = 1−A

2
. We observe that

P 2
i = 1

4
(21 ± 2A) = 1±A

2
and P ∗i = (1±A)

2

∗
= 1

∗±A∗
2

= 1±A
2

. On the other hand, consider
taking A = P0 − P1. Recall, since P0P1 = 0 = P1P0 the projections have disjoint support,
and A2 = P 2

0 + P0P1 + P1P0 + P 2
1 = P0 + P1 = 1.

Proposition 2.6.3 means that given a strategy in terms of 2-outcome projections, one
can transform the strategy into one with unitary observables using the fact t(a, b|x, y) =
〈ψ|Ox

aO
y
b |ψ〉 = 2p(a, b|x, y) − 1 . Thus, for a losing quantum strategy in terms of observ-

ables, instead of V(a, b|x, y) = 0, we have t(a, b|x, y) = −1. Remark, t is not probability
distribution, but it does take on values 〈−1〉 ∼= (Z2, ·), and this fact will be important in
Chapter 5.

20Hermitian matrices with ±1 eigenspaces, are precisely a subset of the unitary matrices known as
reflections.
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Chapter 3

Graph incidence groups for
graph-LinBCS games

In this chapter, we establish the definition of a graph-LinBCS game. We begin by defining
the classical and quantum strategies for graph-LinBCS games. We then give some examples
and discuss the case of some well-known graph-LinBCS games. Following this, we define
the solution group for these non-local games, which we call the graph incidence group.
Since graphs are the only incidence structure we consider in this thesis, we may sometimes
drop the “graph” and write incidence group. We then explore some immediate connections
between the graph structure and characteristics of the incidence group.

3.1 Graph-LinBCS non-local games

In this section we investigate how the properties of non-local games, discussed in Chapter 2,
specialize to graph-LinBCS non-local games. In particular, we explore how the specializa-
tion to graphs allows us to make conclusions about strategies and values for these games,
that is not possible for generic LinBCS games.

A graph-LinBCS game is a two-player non-local game. Both players have access to a
2-coloured graph (G, b). We consider two general versions of a graph-LinBCS game referred
to as v.1 and v.2 respectively. Each non-local game depends on the distribution over the
input sets, and therefore should be expressed by the data G(G, b,P). However, when P is
the uniform distribution, we omit the description (as we did for LinBCS games), and we
denote the graph-LinBCS game by G(G, b).
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Definition 3.1.1 (graph-LinBCS game v.1). Given a loop-less graph G = (V,E), with
a (non-proper) vertex 2-colouring b : V → Z2, the corresponding graph-LinBCS game
G(G, b) is given as follows. For an arbitrary vertex v ∈ V , let E(v) be the subset of edges
in E incident to v. The game proceeds in the the following steps:

1. Each player Alice and Bob, receive vertices u ∈ V and v ∈ V respectively, according
to a distribution P on V (G)× V (G).

2. They reply with functions f : E(u)→ Z2 and g : E(v)→ Z2 respectively, such that∑
e∈E(u)

f(e) = b(u) and
∑
e∈E(v)

g(e) = b(v) . (3.1.1)

3. The players win if f(e) = g(e) for every e ∈ E(u) ∩ E(v).

In the second version of the game we change the set of Bob’s inputs, from vertices to
edges. The lack of symmetry in this version in the reason we consider the other version to
be more natural.

Definition 3.1.2 (graph-LinBCS game v.2). Given a graph G = (V,E), with a (non-
proper) vertex 2-colouring b : V → Z2, the alternative version graph-LinBCS game G(G, b)
proceeds as follows:

1. Alice receives a vertex v′ ∈ V and Bob receives an edge e′ ∈ E, according to some
distributions on V × E.

2. Alice replies with a function f : E(v′)→ Z2, such that
∑

e∈E(v′) f(e) = b(v′) and Bob
replies with the single edge assignment g(e′) ∈ Z2,

3. The players lose the game if and only if e′ ∈ E(v) and f(e′) 6= g(e′).

3.1.1 The space of classical strategies for graph-LinBCS games

For both versions of the graph-LinBCS game a deterministic strategy is a function h :
E → Z2. To illustrate, we provide an example of a (non-perfect) deterministic strategy in
Figure 3.1. Furthermore, observe that the function h : E → Z2 is a perfect deterministic
strategy if

∑
e∈E(v) h(e) = b(v) for all v ∈ V . Moreover, Alice and Bob can employ the

strategy given by h by choosing f(e) = h
∣∣
E(v)

(e) and g(e) = h
∣∣
E(u)

(e) (or g(e) = h(e)).
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Figure 3.1: Any 0 or 1 assignment to euv would be inconsistent with the colouring of
G, hence we see that this edge assignment does not give a deterministic strategy for this
graph-LinBCS game, since giving Alice u and Bob v may result in an inconsistent labelling
of euv if they were to employ h as their strategy.

Proposition 3.1.3. There is a one-to-one correspondence between perfect deterministic
strategies for G(G, b), and solutions of the corresponding linear system Ax = b, where A is
the incidence matrix of G.

Proof. The function f : E → Z2 is a perfect deterministic strategy for G(G, b) if and only
if
∑

e∈E(v) f(e) = b(v) for all v ∈ V . Now consider the linear system Ax = b, written as∑
e∈E

a(v, e)x(e) = b(v) , (3.1.2)

for each v ∈ V . Observe that av,e = 1 if and only if there is an e ∼ v, otherwise av,e = 0.
Hence we obtain, ∑

e∈E(v)

x(e) = b(v) , (3.1.3)

and note that x : E → Z2 is a perfect deterministic strategy. The other direction follows
from the reverse argument.

Lemma 3.1.4. Let G be a connected graph. A vector b ∈ Zn2 is in the image of an
(m× n)-incidence matrix if and only if it has even parity.

Proof. (⇒) The image of a matrix is the Z2-span of its columns, since G is connected each
column contains 2 non-zero entries. Any linear combination of the columns will contain
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an even number of non-zero entries. (⇐) Let b ∈ Zn2 have even parity. For each pair
of vertices u and v with b(v) = b(v) = 1, let L = {P1, . . . , Pk} be a collection of paths
between the k pairs of vertices. It follows that

∑
e∈LA(e) = b, where A(e) is the column

of A corresponding to e ∈ E(G).

Corollary 3.1.5. If b has even parity, then the graph-LinBCS game G(G, b) has a perfect
deterministic strategy.

The proof follows directly from Proposition 3.1.3 and Lemma 3.1.4.

3.1.2 A deterministic polynomial time algorithm for computing ω
for graph-LinBCS games

Graph-LinBCS games are not only a simple class of games with respect to the detection of
perfect quantum or classical strategies. In the following section, we show that for graph-
LinBCS games, the classical value of G(G, b) can be computed efficiently. This will follow
from the proof of correctness and runtime analysis of the following algorithm, which obtains
the optimal classical strategy. For a graph with n vertices, we bound the number of edges
allowed in E by O(poly(|V |)).

Consider the following algorithm, which given a 2-coloured graph (VB, VR, E), generates
a deterministic strategy (i.e. a 2-colouring of G) for the graph-LinBCS game G(G, b).

Algorithm 1 (Optimal deterministic strategy finding for graph-LinBCS games). Let VB
be the set of blue vertices and VR the set of red vertices in G.
Input: (VB, VR, E)

1. Initialize e 7→ 0 for all e ∈ E

2. Partition the vertices in VB into k pairs of blue vertices, if there is a leftover vertex
(when |VB| is odd), label in v0.

3. For each pair of blue vertices {v, v′}ki=1, find a path (using breadth-first search starting
at an unpaired vertex) Pi = ev, . . . , e

′
v, denote the length of a path by `.

4. For each path Pi, and every edge in the path {ej}`j=1 ∈ Pi if e = 0 set e 7→ 1, else if
e = 1 set e 7→ 0.

Output: A 2-colouring η : E → Z2 such that
∑

e∈E(v) h(e) = b(v) for all v 6= v0 ∈ V .
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Proof of correctness. First, observe that initializing all edges with the value of 0 automat-
ically satisfies all red vertex constraints. We now prove that every path flip in Step (4)
between each pair of blue vertices, simultaneously satisfies the constraints of all the blue
vertices. Additionally, we need to show that flipping the values along each path does not
alter the constraints of other vertices along the paths (i.e. those not at the endpoints). To
see that a path flip (step 4) only affects the vertex constraints at the endpoints. Observe,
that following a path flip, the parity of any non-endpoint vertex will change on both an
incoming and outgoing edge, thus cancelling out. On the other hand, the parity of each
endpoint will change on a single edge, which simultaneously satisfies the two blue endpoint
constraints. Thus, if there is an even number of blue vertices this colouring satisfies all the
constraints of the graph. However, if there is an odd number of blue vertices, then there
remains one unsatisfied constraint. Overall the resulting colouring satisfies n − 1 of the
vertex constraints. For the analysis of the runtime let n = |V |, and m = |E|. The first step
takes O(m) operations, secondly there are |VB|/2 = k pairs with O(k) = O(n), and finding
a path between each pair is O(m+n) using BFS. Recall we restricted O(m) = O(poly(n)),
since O(`) = O(m) our runtime is polynomial in the number of vertices. If G is simple,
then we observe that our runtime is O(n3), since in that case O(m) = O(n2).

Recall that in version 1 of the non-local game, it is possible that Alice and Bob, receive
the same vertex. In this case, they win if and only if they give the same local edge labelling
about that vertex. Thus, to optimize their strategy, the players should predetermine their
edge pairings by picking agreeing labels for the leftover vertex v0, when b is odd1.

We now prove that the strategy given by Algorithm 1 achieves the best classical value
ω on the uniform distribution.

Proposition 3.1.6. The deterministic strategy η is optimal, and achieves ω(G) under the
uniform distribution P on (u, v) ∈ V × V .

Proof. If b is even, then we obtain a perfect deterministic strategy (see Proposition 3.1.3).
Thus we need only show that η is optimal for odd b. So suppose b is odd, by the proof
of correctness for the algorithm above, we observe that η loses on a single pair of vertices
incident to v0. Suppose towards contradiction, that there is a strategy η′ such that ω(η′) >
ω(η). Then η′ must lose on fewer than a single pair of vertices, but that means η′ is a
perfect strategy, which is a contradiction.

Proposition 3.1.7. If G is a connected, oddly 2-coloured graph, and P is uniform and
independent on V × V , then there is a deterministic strategy that wins with probability
ω(G(G, b),P) = 1− 1

|V |2 .
1This also makes their strategy synchronous.
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Proof. Assume the uniform distribution on the pairs of vertices. By Corollary 3.1.5 we
know that if b is even, then there is a perfect deterministic strategy. Therefore, V(e, e′, u, v)
depends only on the odd vertex v0. The classical value of this game is obtained by η with
P(u, v) = 1

|V |2 on V × V . Recall that probabilistic strategies are normalized, such that
p(e, e′|v, v′) are proper conditional distributions on the outputs,∑

e∈E(v)

∑
e∈E(v′)

p(e, e′|v, v′) = 1 . (3.1.4)

Using the fact that this strategy wins on all but one pair of vertices, we observe

ω
(
G(G, b)

)
=
∑
v∈V

∑
v′∈V

P(v, v′)
∑
e∈E(v)

∑
e′∈E(v′)

V(e, e′|v, v′)p(e, e′|v, v′) (3.1.5)

=
1

|V |2
( ∑
v 6=v0∈V

∑
v′ 6=v′0∈V

V(fv(e), gu(e)) +
∑

(v0,v′0)
e=e′∼v0

V(fv(e), gu(e))

)
(3.1.6)

=
1

|V |2
( ∑
v 6=v0∈V

∑
v′ 6=v′0∈V

1 + 0

)
(3.1.7)

=
1

|V |2
(
|V |2 − 1

)
(3.1.8)

= 1− 1

|V |2 (3.1.9)

Similarly, one can consider the probability the strategy loses. Whereby, the probability
that Alice flips the bit on the edge (v0, v

′
0) (in an attempt to satisfy her local constraint)

when Alice receives v0 and Bob receives the adjacent edge v′0.

Pr(Lose) = Pr(Alice receives v0) Pr(Bob receives v ∼ v0) Pr(Alice bit-flips the wrong edge)

(3.1.10)

=

(
1

|V |

)(
deg(v0)

|V |

)(
1

deg(v0)

)
(3.1.11)

=
1

|V |2 (3.1.12)

The same strategy η, is in fact optimal for version 2 of the game, the distribution of
the inputs is slightly different.
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Proposition 3.1.8. If G is a connected, oddly 2-coloured graph, and P is independent
and uniform on V and E, then there is a deterministic strategy that wins version 2 of the
graph-LinBCS game G ′(G, b) with probability ω(G ′(G, b)) = 1− 1

|V ||E| .

Proof. For version 2 of the game, we have if P(e, v) is uniform and independent on V and
E. For a given optimal deterministic strategy, if b is odd then there exist some pair v0 ∈ V
and e0 ∈ E(v) such that fv0(e0) 6= g(e0), where fv(e) is the function f : E(v)→ Z2, hence

ω
(
G ′(G, b)

)
=
∑
v∈V

∑
e∈E

P(v, e)V(fv(e), g(e)) (3.1.13)

=
1

|V ||E|

( ∑
v 6=v0∈V

∑
e∈E

V(fv(e), g(e)) +
∑
e∈E

V(fv0(e), g(e))

)
(3.1.14)

=
1

|V ||E|

( ∑
v 6=v0∈V

∑
e∈E

V(fv(e), g(e)) +
∑

e 6=e0∈E

V(fv(e), g(e)) + V(fv0(e0), g(e0))

)
(3.1.15)

=
1

|V ||E|
(
(|V | − 1)|E|+ (|E| − 1) + 0

)
(3.1.16)

=
1

|V ||E|
(
|V ||E| − |E|+ |E| − 1

)
(3.1.17)

=
|V ||E| − 1

|V ||E| (3.1.18)

= 1− 1

|V ||E| . (3.1.19)

We can summarize the above Propositions in the following theorem.

Theorem 3.1.9. If G is a connected 2-coloured graph, then the classical value of a graph-
LinBCS game G(G, b) with uniform distribution on the inputs is given by

(i) ω = 1 if b is even

(ii) ω = 1− 1
|V |2 (or ω = 1− 1

|V ||E|), when b is odd.
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Figure 3.2: Visualization of Algorithm 1. Paths between pairs are labelled by the dashed
edges and the single (odd) vertex by the dashed circle. Observe the only loss can occur if
the odd, along with one of its two adjacent vertices, is chosen and Alice flips the colour
value on the wrong of the two edges. Since the colouring satisfies 9 of the 10 constraint,
the classical value of this graph-LinBCS game is ω = 0.99 by Proposition 3.1.7.

3.1.3 Perfect quantum strategies for graph-LinBCS games

Let us now describe how a concrete quantum strategy can be employed for a graph-LinBCS
game. Given a game G(G, b), where Alice and Bob each receive a vertex u, v ∈ V , and
respond with 2-colourings of the adjacent edge neighbourhoods E(v) and E(u) respectively.

The two-player begin by preparingm = O(poly(n)), d-dimensional maximally entangled
quantum states {|ψ〉k}mk=1, wherem = |E| is the number of edges inG. Alice’s portion of the
quantum strategy then consists of m, d-dimensional observables, each one over the outputs
of the game Ox

a, such that her output2 is determined by the outcome of the measurement
on her half of the maximally entangled pair 〈ψA|Ox

a|ψA〉 = a. One can show that for a
perfect quantum strategy, Bob’s strategy observables can be taken to be the transpose of
Alice’s observables3 O

y
b = (Ox

a)
T , and his output is given by the measurement outcome

〈ψB|Oy
b |ψB〉 = b. Because we can take these observables, to be self-adjoint unitaries,

the values taken by a and b are elements of the multiplicative Z2 group 〈−1〉. To obtain
corresponding the additive Z2 = {0, 1} edge-colours we map the outcomes 1 7→ 0 and −1 7→
1. The entanglement shared between these states ensures that the outputs determined
by their joint measurements will be consistent. For example, if Alice and Bob receive

2Z2-assignment to edge a given vertex x.
3Thus a perfect quantum strategy can be determined by specifying a single set of observables.
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adjacent vertices u ∼ v, then the outcome of the measurement euv, will be the same
〈ψA|Ov

e|ψA〉 = 〈ψB|Ou
e |ψB〉.

The magic squares game is a key example here. For the magic squares game there is a set
of 9 observables (one for each output), each of which can be represented as tensor products
of single-qubit Pauli matrices. The array below encodes an assignment of operators to the
9 edges of graph, which give a perfect quantum strategy for the game.

e1 e2 e3

e4 e5 e6

e7 e8 e9

−→
I ⊗ Z Z ⊗ I Z ⊗ Z
X ⊗ I I ⊗X X ⊗X
−X ⊗ Z −Z ⊗X −XZ ⊗XZ

. (3.1.20)

Figure 3.3: The assignment, of the following tensor product of 2× 2 Pauli matrices, to the
edges of K3,3 give a perfect quantum strategy for the magic squares game, where the −1
constraint appears once in the relation to the vertex incident with the bold edges {7, 8, 9},
all other relations are given the 1 constraint.

In the typical magic squares game, Alice receives a vertex, according to some distri-
bution P of V , and Bob receives an incident edge drawn according to some distribution
possibly conditioned on P. Under our the slightly different variant of the game, the classi-
cal value will be 35

36
≈ 0.97 (or 17

18
≈ 0.94) as we saw above. Commonly, the classical value

given for the magic squares is the worst-case probability of 8/9 where it is assumed that
Alice has received the “bad” vertex and Bob will lose if he obtains the “losing” edge with
probability 1/9.

3.1.4 The CHSH game is a graph-LinBCS game

Consider, the variant of the graph-LinBCS game where Bob receives, instead of a vertex,
some adjacent edge e ∼ v to Alice’s vertex v, drawn according to some distribution on the
edge neighbourhoods E(v). In this case, the winning condition is simply f(e) = g(e), and
there exist a function satisfying g : E(u)→ Z2, such that

∑
e∈E(u) g(e) = b(u), where u is

the other endpoint of e.

Consider the 2-coloured graph, with two vertices v1 and v2, and two edges e2 and e2
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pictured in Figure 3.4. As a linear system game it has the form,(
1 1
1 1

)(
x1

x2

)
=

(
0
1

)
. (3.1.21)

This graph-LinBCS game has no perfect classical strategy by simple linear algebra, and
no perfect quantum strategy4. The game is analogous to the CHSH game, the vertices are
encoded in the bit sent to Alice, and the edge is encoded by the bit sent to Bob. Their
output bits specify the edge colouring of e1 (the vertex relations enforce the colouring of
e2). The winning predicate is based on the consistency of their colouring, just as in the
CHSH game outlined in Subsection 2.5.3.

v1 v2

e1

e2

Figure 3.4: The CHSH game as a graph-LinBCS game, an oddly 2-coloured graph, on two
vertices with two edges.

The classical value of this graph-LinBCS game is ω = 3/4. However, we know that for
the CHSH game, there is a quantum strategy that outperforms the classical one. Therefore,
even when connected multi-graphs are planar, if b is not in the range of A, it is still possible
to find proper quantum strategies that yield some quantum advantage. Nevertheless, we do
not know of any graph-theoretic characterization that gives a quantitative way to measure
when this sort of advantage exists.

3.2 The solution group of a graph-LinBCS game

The solution group was introduced in [39, 12], and is based on some observations in [13].
The solution group can be associated with any LinBCS game, in particular, they can be
defined for graph-LinBCS games. In what follows we assume that G is a loopless graph
with |E| = O(poly(|V |)).
Definition 3.2.1. LetG = (V,E) be a graph with incidence specified by A, and let b : V 7→
Z2 be a non-proper vertex 2-colouring. The graph incidence group Γ(G, b) associated with

4We will see that this fact follows easily from the van Kampen lemma in Subsection 3.3.3.
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the graph-LinBCS game pair (G, b), is generated by the set of generators {xe, e ∈ E}∪{J},
and the following relations:

(i) x2
e = 1 for all ei ∈ E and J2 = 1

(ii) [xe, J ] = 1 for all ei ∈ E

(iii) [xe, x
′
e] = 1 if there is a vertex v incident to both e and e′

(iv)
∏

e x
Ave
e = J bv for all v ∈ V .

Observe that that the function b only appears in the last relation. Thus, given a graph
(with no colouring) we can define the graph incidence group Γ0(G) using the generators
{xe, e ∈ E} and relations (i)-(iii). We say that a relation r(v) =

∏
e∈E(v) xeJ

a is odd (resp.
even) if a is odd (resp. even). We denote r(v)+ =

∏
e∈E(v) xe to be the even part of the

relation r. The group formed by Inv〈E∪{J} : R+〉 ∼= Inv〈E : R+〉×Z2
∼= Γ0(G)×Z2, and

we call Γ0(G) the homogenous graph incidence group of G. When depicting relations or
isomorphisms of the homogenous graph-incidence group in a figure, we label the vertices
black to illustrate that these relationships are independent of the graph colouring.

Definition 3.2.2. A relation r(v) in an graph incidence group is said to be an anti-
commutation relation, if the relation includes an odd power of J , and is a commutation
relation, if it does not (which includes when the power of J is even).

Thus, the so-called odd relations are equivalently referred to as anti-commuting, and the
even relations are the same as commuting relations. For example, if a and b are generators,
then ab = ba is a commutation relation, and ab = Jba would be an anti-commutation
relation. This definition is motivated by the anti-commutator for general algebras. In this
case, the J element plays the role of −1. It is not surprising that idea appears intimately
in the definition of these groups, as commutation and anti-commutation of observables,
arises naturally in the theory of quantum mechanics. We now give an example of a graph
incidence group.

Example 3.2.3 (The homogenous graph incidence group Γ0(K4)). To get an idea of the
relationship between the graph incidence group and some simple 2-coloured graphs. Let
us consider a simple example, the complete graph on 4 vertices. The incidence matrix for
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the graph K4 is given by

A(K4) =

e1 e2 e3 e4 e5 e6


v1 1 0 1 1 0 0
v2 1 1 0 0 1 0
v3 0 1 1 0 0 1
v4 0 0 0 1 1 1

. (3.2.1)

The corresponding group generated by involutions is the homogenous graph incidence group
Γ0(K4). From Definition 3.2.1 we obtain the group presentation,

Γ0(K4) =
〈
x`, ` ∈ {1, . . . , 6} : x1x4x3, x1x2x5, x2x3x6, x4x5x6, (3.2.2)

(xixj)
2 for all pairs (i, j) in vk, k ∈ {1, . . . , 4}

〉
(3.2.3)

Figure 3.5 gives the graphical representation of Γ0(K4), from which we observe that
this graph gives rise to an abelian graph incidence group isomorphic to Z2 × Z2 × Z2. As
another example of how the simplifying isomorphisms work, see Figure 3.6.

x6

x4 x5

x3

x1

x2
x2x3

x1x3

x1x2

x3

x1

x2

−→

Figure 3.5: Generators of Γ0(K4) labelling the edges of K4 , the arrow denotes an arbitrary
simplifying isomorphism between the graph representation of the group. The local vertex
relations on the outer cycle are {x1x3x4, x1x5x2, x2x6x3}, each generator commutes within
the relation, hence we can rewrite x1x3x4 = 1 ⇒ x1x3 = x4, x1x5x2 = 1 ⇒ x1x2 = x5,
and x2x6x3 = 1 ⇒ x2x3 = x6. This does not change the group structure; it simply makes
inferring the group structure from the graph easier for small graphs.

Given a vertex relation with k-generators, we can rewrite the relation to express one of
the generators by the other k − 1.∏

e∈N(v)

xe = 1⇒
∏

e∈N(v)/{e′}

xe = xe′ . (3.2.4)
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x6

x4
x5

x3

x1

x2
x9

x7

x8

x9

x4
x4x9

x2

x7x9x4x9x2

x2
x9

x7

x9x7

−→

Figure 3.6: The addition of a vertex with three edges to the graph K4 yields the graph
K4 ∪ {v}. With the aid of a computer, one can deduce an isomorphic presentation of the
corresponding graph incidence group on fewer generators. The order of Γ0(K4) is 16, and
it is isomorphic to the direct product of cyclic groups Z2×Z2×Z2×Z2

∼= Z4
2, and therefore

is abelian.

This generalizes the generator reduction about a vertex that is illustrated in Figure 3.8.

x3

x2 x1

x3

x2

x1

Figure 3.7: The neighbouring edges, read counter-clockwise about the red vertex (left)
encode the commutation relation x1x2x3, while the relations of the blue vertex (right)
encodes an anti-commutation relation x1x2x3J .

3.3 Pictures and relations for graph incidence groups

The concept of a picture was introduced in [39] to make conclusion about certain relations
in the solutions group of LinBCS games. For a hypergraph, a H-picture P is a planar
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x1 x2 −→
x1

Figure 3.8: Each red vertex of degree 2 translates in the group to a relation on a pair of
commuting generating involutions x1x2 = 1⇒ x1 = x2. Hence, one can simplify the graph
incidence group presentation by replacing these vertices with a single edge, and identifying
x1 ≡ x2 in the group.

x5

x2
x1

x4
x6

x3
x1 x2 x3

−→

Figure 3.9: By simplifying the degree 2-relations in the left graph, we observe that the
graph incidence group of that graph is isomorphic to the graph incidence group generated
by the graph on the right.

embedding ofH into the 2D disk. Formally, pictures are dual to van Kampen diagrams [26].
Following the previous definition for hypergraph pictures, we give the following definition
for graphs and graph incidence groups.

Definition 3.3.1. A picture is denoted by the triple (V,E,D), where

(i) D is a region, whose boundary consists of a simple closed curve5,

(ii) V is a finite collection of points (or vertices), in D,

(iii) E is a collection of edges (or curves), and

(a) if the endpoint of a curve is a point p, then the other end connects to either a
point or to the boundary

5By curve, we mean the image of a smooth function γ, from the interval [0, 1], onto the 2D-plane. A
curve is simple if it only intersects at its endpoints, forming a closed curve, otherwise γ(0) and γ(1) are
the endpoints.
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x3

x1

x2
x4

x5

x6

x7
x1

x1

x1
1

x5

x5

x5

−→

Figure 3.10: The graph incidence group for the minimal connected graph with 2 vertex-
disjoint cycles is Γ0(C3tC3) ∼= 〈x1, x5 : x2

1, x
2
5〉 = Z2 ∗Z2. After a simplifying isomorphism,

we observe that the graph incidence group is generated by two non-commuting involutions
x1 and x5.

(b) if one endpoint of a curve is the boundary, then the other must be a point

Curves that share a point are said to be incident, and any curve which has an endpoint
along the boundary is said to be incident to the boundary. If there are no curves incident
to the boundary, then the picture is said to be closed.

3.3.1 Pictures as weak planar covers

Definition 3.3.2. Let G be a graph with incidence specified by Av,e, a G-picture is a
picture P , with a pair of labelling functions given by:

φV : V (P)→ V (G) and φE : E(P)→ E(G), (3.3.1)

such that for all v ∈ V (P), and e′ ∈ E(G), if we list the edges e1, . . . , en of P incident to
v with multiplicity then,

Aφ(v),e′ = |{1 ≤ i ≤ n : φ(ei) = e′}|. (3.3.2)

Alternatively, a G-picture is a type of weak covering of G. Recall, a graph H is cover
of G, if there is a graph homomorphism ϕ : H → G, such that ϕ is bijective onto the
neighbourhoods of ϕ(v) ∈ V (G), when restricted to the neighbourhood of v ∈ V (H). It
follows that if ϕ is a covering, then |ϕ−1(v)| is constant, and called the fold number of G.
In fact, every planar cover is a closed G-picture; however, the converse is not clear and
remains the object of further investigation (see the Appendix 5.1.2).
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3.3.2 Pictures for groups generated by involutions

Pictures are also particularly useful for diagrammatically representing relations in groups.
Let Λ = Inv〈S : R〉, then a Λ-picture is a picture, where every point corresponds to a
relation r(v) ∈ R such that e1, e2, . . . , ek is a sequence of curves e ∈ P(E) incident to
v ∈ P(V ). Let s(e`) = x`, read counterclockwise with multiplicity about a vertex v, the
word s(e1)s(e2) · · · s(ek) is a commutation relation in R+. Just at the boundary acts a
special vertex, the curves incident to the boundary read counterclockwise with multiplicity
form relations called cyclic boundary words bd(P) = s(e1)s(e2) · · · s(ek) ∈ R+

cyc. For
example, the boundary word in Figure 3.11 is

bd(P) = s(e6)s(e5)s(e1) ≡ s(e5)s(e1)s(e6) ≡ s(e1)s(e6)s(e5) . (3.3.3)

If P is a closed picture, then the boundary equals the empty word, bd(P) = 1. With these
conventions, the define the sign of a Λ-picture, to be the parity of the number of vertices in
P whose corresponding relations contain odd (anti-commutation) relations. More precisely,

sgn(P) =
∣∣{v ∈ V (P) : r(v) is odd}

∣∣ mod 2. (3.3.4)

3.3.3 The van Kampen lemma

The following lemma attributed to [26] was used by Slofstra in [39] as a geometric tool
for investigating relations in graph incidence groups. Given a finitely presented group Λ,
generated by involutions, a Λ-picture describes the relations of Λ in the following sense.

Lemma 3.3.3 (van Kampen lemma). Let Λ = Inv〈S ∪ {J} : R〉 be a finitely presented
group, let r be a word over S, and let a ∈ Z2 (a is even or odd). Then r = Ja if Λ if and
only if there is a Λ-picture P with bd(P) = r and sgn(P) = a.

For more details concerning Lemma 3.3.3 we refer the reader to [39]. Because J is an
order-2 central element, it is determined by relations in the graph incidence group Γ. The
key idea is that G-pictures are planar diagrams that encode the relations of the graph
incidence groups. The following definitions give two important properties of G-pictures.
We define them following the work of [39] for hypergraph (H-pictures). The character 6 of
a G-picture is the vector ch(P)v = |φ−1(v)| mod 2 ∈ Zn2 . With this definition, we can give
a more applicable version of the van Kampen lemma for graph incidence groups.

6The character of a picture is not to be confused with the character of a representation.
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e1 e2

e3

e5

e4

e6

e1 e2

e3

e5

e4

e6

←→ ←→ e3

e2

e4

e6

e1 e5

Figure 3.11: Three isotopic versions of the same a picture P . Observe, that P consisting
of 3 points and 5 curves, and how the special point (the grey vertex) is isotopy equivalent
to the boundary in the right diagram.

Lemma 3.3.4. (van Kampen lemma for graph incidence groups) Let Γ(G, b) be a graph
incidence group. Then xe1 · · ·xe` = Ja in Γ(G, b) if and only if there is a G-picture P , with
bd(P) = e1 · · · e` and ch(P) · b = a.

Observe, by Lemma 3.3.4 that if a graph incidence group admits a closed odd-sign
picture, then J is trivial. Next, we show how the van Kampen lemma (Lemma 3.3.4) can
be used to deduce the existence of quantum strategies for graph-LinBCS games by finding
witnessing relations of the J element.

Example 3.3.5 (An illustrating application of the van Kampen lemma). Here we repeat
the illuminating example given by Slofstra in [39]. Where we apply the van Kampen lemma
to a graph with multiple edges and attain the value of J in the graph incidence group.
Consider the graph-LinBCS game which arises from the incidence matrix of the graph on
2 vertices with 3 edges between them. Ax = b is realized by

(
1 1 1
1 1 1

)x1

x2

x3

 =

(
1
0

)

The corresponding graph incidence group is generated by commuting involutions 〈x1, x2, x3, J〉,
modulo the anti-commutation relation x3x2x1J and the commutation relation x1x2x3. Ob-
serve that b has odd parity, and the rank of the incidence matrix A is 1. Therefore,
the linear system has no solution, and no corresponding perfect deterministic strategy.
Through the application of the van Kampen lemma in Figure 3.12 we observe that the
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game has no perfect quantum strategy (commuting-operator strategy) by observing that J
is trivial, by the witnessing picture P . In this particular example we remark that P ∼= G.
However, this relationship does not appear to hold in general.

x2

x1

x3

Figure 3.12: In this case, the initial graph with multiple edges is a closed picture P with
ch(P) = (1, 1), and b = (1, 0). So by the van Kampen lemma ch(P) · b = 1 and we witness
the relation J = 1.

The van Kampen lemma was used to prove Theorem 1.0.1 [39, 12], establishing the
connection between the existence of quantum commuting strategies as a solution group
property. Because graph incidence groups are generated by involutions and we generate
the group from a graph, we can analyze the weak cover G-picture directly. Typically,
one needs to consider the group and then the corresponding picture. However, for graph
incidence groups there is a more intimate relationship between the graphs which generate
the group, and the relations. We explore these connections in the next section.

3.4 Graph incidence group pictures and Arkhipov’s the-
orem

Recall Arkhipov’s theorem 1.0.2 from Chapter 1. We refer the reader to [3] for the proof.

Theorem 3.4.1. Let G be a connected graph, then the graph-LinBCS game G(G, b) has
a perfect quantum strategy and no perfect classical strategy if and only if G is non-planar
and b has odd parity.

Interestingly, we can prove the following proposition, which proves one direction of
Arkhipov’s theorem using the theory of pictures and groups.

Proposition 3.4.2. If G is a planar graph, then the graph-LinBCS game G(G, b) has no
proper quantum strategies.
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Proof. If G is planar, then there is a closed Γ-picture P given by the one-to-one embedding
h−1 : G → P . In this case ch(P)v = 1 for all v ∈ V , and thus a = |b| mod 2. If b is
odd, then by the van Kampen lemma (Lemma 3.3.4) we witness a picture of an anti-
commutation relation with J = 1. So by the CMLS theorem (Theorem 1.0.1) G(G, b) has
a perfect quantum commuting-operator strategy. If b is even, then G(G, b) has a perfect
deterministic strategy by Corollary 3.1.5.

Unfortunately, we do not know of a way to prove the converse other than by using
Arkhipov’s proof directly. We give this alternate proof since it demonstrates the connec-
tions with the graph incidence group idea.

Proposition 3.4.3. If a graph-LinBCS game G(G, b) has no proper quantum strategies
and b is odd, then G is non-planar.

Proof. If G(G, b) has no proper quantum strategies, then by Theorem 1.0.1 J = 1 in
Γ(G, b), and by Arkhipov’s theorem (G, b) cannot contain the forbidden minors (F , b) =
{(K3,3, b

odd), (K5, b
odd)}. Otherwise, there would be J 6= 1 preserving pullback Γ(G, b) ←

Γ(F , b) giving a contradiction.

Proposition 3.4.3 is a direct corollary of Arkhipov’s theorem, which states that the only
games with perfect quantum strategies are those on graphs with K3,3 or K5 as minors and
having no perfect classical strategy.

We believe the correspondence of planarity and proper quantum strategies is in the
connection between weak graph-coverings and pictures. It is worth noting, that the for-
bidden graph minors for planarity are minimal elements, in the sense that they could be
embedded in the plane by resolving a single crossing. Observe, in Figures 3.13 & 3.14 that
adding this special boundary vertex allows for a planar embedding.

3.4.1 Graph incidence group pictures for the magic squares game

Let A be the incidence matrix of the graphK3,3 with a single blue vertex, the corresponding
incidence linear system is

A =


1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

 , b =


1
0
0
0
0
0

 . (3.4.1)
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x9

x3 x6

x7

x2

x8

x4

x1

x5

x1

x5

−→ x9

x3 x6

x7

x2

x8

x4

x1 x5

x1x5

−→

Figure 3.13: An embedding of the oddly 2-coloured K3,3 in plane with a special vertex is
isotopy equivalent to the Γ(K3,3, b)-picture with boundary word bd(P) = x1x5x1x5.

A graph incidence group of the K3,3 graph is given by the linear system in equa-
tion (3.4.1), where v1 is coloured blue (describes an anti-commutation relation), as Γ(K3,3, b).
In fact, Γ(K3,3, b) is an example of a graph incidence group where we obtain a separation be-
tween classical and quantum strategies. The graph incidence group of the v1-distinguished
K3,3 game has the following presentation,

Γ(K3,3, b) = Inv〈a, b, c, d, e, f, g, h, i, J : abcJ, def, ghi, adg, beh, cfi〉 . (3.4.2)

In the above presentation (3.4.2) we have only listed the vertex-relations. We have omit-
ted the order-2 relations on the generators, the relations that make J central, and the
commutation relations amongst pairs of generators that share any vertex relation.

The picture depicted in Figure 3.13 shows that J is non-trivial in Γ(K3,3, b). A similar
construction can be done for the magic pentagram game, see Figure 3.14. In the next
chapter, we explore further connection between graph-minors and graph incidence groups.
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x9x3

x6
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x2

x4

x7

x10

x1

x5

x1

x5

−→

x9x3

x6
x8

x2

x4

x7

x10

x1

x5
x1

x5

Figure 3.14: An embedding of the oddly 2-coloured K5 in the plane with a special vertex
is isotopy equivalent to the Γ(K5, b)-picture with boundary word bd(P) = x1x5x1x5.

53



Chapter 4

Graph minor operations and graph
incidence groups

In the first section of this chapter, we describe the graph minor operations for 2-coloured
graphs. We then proceed with the proof of the main lemma (Lemma 1.0.3); in which we
demonstrate, that each graph minor operation induces a surjective group homomorphism
of the corresponding graph incidence groups. We then state the corollary given by the
Robertson-Seymour theorem for these incidence-group properties.

In Section 4.3 we derive two graph-minor-closed criteria for graph-LinBCS games. The
first characterizes when a graph incidence group is finite, while the second gives the for-
bidden minors for when the graph incidence group is abelian.

4.1 Graph minor operations for 2-coloured graphs

The following proposition establishes the graph incidence group dependence of perfect
deterministic strategies and the parity of b. Recall that we can alternatively describe the
parity of a 2-colouring b to be the

∑
v∈V b(v) mod 2.

Proposition 4.1.1. If b and b′ are different 2-colourings of a connected graph G of the
same parity, then there is an isomorphism Γ(G, b) ∼= Γ(G, b′) sending JG,b 7→ JG,b′ .

Proof. If b and b′ are colourings of the same parity, then b̃ = b+b′ is an even parity colouring.
If A is the incidence matrix of G then Ax = b̃ has a solution y. The homomorphism φ :
Γ(G, b)→ Γ(G, b′) sending xe 7→ Jy(v)xe and JG,b 7→ JG,b′ is the desired isomorphism.
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For 2-coloured graphs we allow the same graph minor operations as in Subsection 2.1.3
with one restriction, while also introducing an additional minor operation. Edge contrac-
tion and deletion are both allowed, but vertex deletion is only allowed for vertices with
b(v) = 0 (even parity constraints). Following the deletion or contraction of a vertex send-
ing G → H, the colouring is updated via the restriction b → b|H . For edge contraction,
if H is the result of contracting an edge e in G with endpoints v1 and v2, and v is the
vertex identified with v1 and v2 in H, then we regard H as the coloured graph (H, b′)
where b′(v) = b(v1) + b(v2) and b′(w) = b(w) for w 6= v. The new operation we allow
on 2-coloured graphs is illustrated in Figure 4.1, and is called the colour swap minor.
Given an edge e = v1v2, we swap the colours of the incident vertices via the mapping
(τ(b))(vi) = b(vj) for i = 1, 2. We say that (H, b′) is a minor of (G, b) if it is possible to get
(H, b′) from (G, b) by successively applying these 2-colour graph-minor operations in the
sense of (2.1.3).

4.2 Proof of main lemma

In this section, we prove the main lemma (Lemma 1.0.3) introduced at the beginning
of Chapter 1. This result gives a correspondence1 between graph minor operations and
surjective homomorphisms between graph incidence groups. To prove Lemma 1.0.3, we
show through a series of propositions, that for each 2-coloured graph minor-operation
sending F : (G, b)→ (H, b′) there is a surjective homomorphism of graph incidence groups
φ : Γ(G, b)→ Γ(H, b′). Unless the colouring is explicitly required in the following sections
we may abbreviate Γ(G, b) by Γ(G) and assume that b is implicit in G.

d

a

c

b

e

f

g −→ d

a

c

b

e

f

g

Figure 4.1: Colour swapping of adjacent vertices is our additional allowed minor operation
on 2-coloured graphs. This minor operation induces an isomorphism of the underlying
graph incidence groups by Proposition 4.1.1.

1This connection is, in essence, a functorial relationship between the category of 2-coloured graphs with
minor operations and the category of graph incidence groups with surjective group homomorphisms
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Proposition 4.2.1. The minor operation of edge deletion G 7→ G\e is given by the
surjective morphism of graph incidence groups φ : Γ(G)→ Γ(G\e), with Ker(φ) = 〈xe〉.

Proof. Consider the image of the graph incidence group under the surjective morphism
φ(G). Observe, that φ(Γ(G)) has the same generators as Γ(G\e) and every word w ∈ Γ(G)
containing xe is equal to a word w′ ∈ Γ(G\e). So, since w = 1 · w′ = w′ · 1 = w′ we are
dones.

a b

e c

d g

f

a b

c

gd

f
−→

(G, b) (G, b) \ e

Figure 4.2: Removal of the edge generator 〈xe〉 ∈ Γ(G) via the morphism φ(xe) = 1.

From the surjective morphism for edge deletion we derive the following isomorphism of
graph incidence groups:

Γ(G)/〈xe〉 ∼= Γ(G\e) . (4.2.1)

Proposition 4.2.2. The minor operation of isolated vertex deletion G 7→ G\ṽ, is given
by the identity morphism ι(Γ(G)) = Γ(G).

Proof. Recall that an isolated red vertex corresponds to the trivial relation r := 1 in the
graph incidence group. The map which sends these relations to 1 and has kernel 〈1〉. So
it must be the identity up to a permutation of the generators.

We obtain the following graph incidence group isomorphism for the isolated vertex
deletion operation. Let ṽ be an isolated vertex, then

Γ(G) ∼= Γ(G\ṽ) . (4.2.2)
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a

v

b

e c

gd

f

gd

f
−→

(G, b) (G, b) \ v

Figure 4.3: Removal of an isolated vertex with trivial relation r := 1 via the identity
morphism denoted by ι(1) = 1.

Proposition 4.2.3. Let R be a normal subgroup relation containing the generator e.
The minor operation of edge contraction G 7→ G/e is given by the surjective morphism
φ : Γ(G) � Γ(G/e), which sends φ : xe 7→ r and r is one of two relations containing xe.
Furthermore, this map is the identity homomorphism on all other generators.

Proof. Consider the image of the graph incidence group φ(Γ(G)). First, observe that the
generators of Γ(G/e) are mapped, one-to-one, from those in φ(Γ(G)). We now show that
φ sends the relations of Γ(G), to those of Γ(G/e). We only need to consider the relations
r̂ ∈ Γ(G), which include e. Choose an arbitrary relation containing xe, if r̂ = xe · r then
φ(r̂ = φ(xe · r) = r2 = 1, as each relation consists of commuting involutions. Now because
G is a graph 〈xe〉 is contained in exactly two relations r̂ and r̂′. In the image of φ, the
other vertex relation is r′ · φ(xe) = r′ · r. Now, observe that this is the only non-trivial
relation of the graph incidence group Γ(G/e) that is not found in Γ(G). So, φ maps the
generating set and the relations of Γ(G) onto those of Γ(G/e).

From the morphism for vertex contraction we derive the following isomorphism of graph
incidence groups,

Γ(G)/〈r2〉 ∼= Γ(G/e) . (4.2.3)

Proof of lemma 1.0.3. By Propositions 4.2.3, 4.2.2, and 4.2.1 we see that, for every graph
minor there is a corresponding surjective homomorphism of graph incidence groups. The
isomorphisms described in equations (4.2.1),(4.2.2), and (4.2.3) describe the equivalence
of the graph-minor-operations for the graph incidence groups. Since composition of these
minor operations and surjective homomorphisms is well defined, the result follows.
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Figure 4.4: The contraction minor creates two relations in the group r2 and rr′; however,
it is easy to see that r2 = 1, and only a single new relation is created in the graph incidence
group of the resulting graph.
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(G, b) (G, b) / d

Figure 4.5: Contraction of an edge 〈xd〉 ∈ Γ(G) via the morphism ϕ(xd) = xexgxf . Note
the Z2 addition of the vertex colouring in the contraction is 1 + 1 mod 2 ≡ 0.

By Lemma 1.0.3 we remark that the characterizations of Cleve and Arkhipov are a
particular example of this more general correspondence. However, it does not explain why
particular graphs arise as minors in the characterization of certain properties.

4.2.1 Graph minors and quotient-closed properties

Through the construction in Section 4.2 we have established a relationship between graph
minors and quotients of the graph incidence groups Γ(G). Recall that a group property P
is quotient-closed, if Γ satisfies P, then P is satisfied by every quotient Γ/Q. Combining the
Robertson-Seymour theorem for graph minors and Lemma 1.0.3 we obtain the following
important corollary.

Corollary 4.2.4. Every quotient closed property of a graph incidence group can be ex-
pressed as a forbidden set of graph minors in the incidence group and vice versa.
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In their monumental work on graph minors, Robertson and Seymour discuss a gener-
alization of graph minors to hypergraphs [36]. It is an interesting question of whether one
can find appropriate hypergraph minors that are related to solution groups in a similar
fashion.

4.3 Incidence groups for graphs without vertex disjoint
cycles

From some initial investigations of graph incidence groups, we observed that two vertex-
disjoint cycles, for example, seen in the barbell graph of Figure 3.10 have incidence groups
with infinite order. By Corollary 4.2.4 we have the following simple proposition.

Proposition 4.3.1. If G contains two vertex-disjoint cycles as a minor, then Γ0(G) is
infinite.

Proof. Suppose Γ0(G) is finite, and C(1) t C(2) = H is the minor of G consisting of two
vertex-disjoint cycles. Then the mapping G→ G\H removing the 2-disjoint cycles induces
some quotient Γ0(G) → Γ0(G)/Q, and the order of this quotient group is |Γ0(G)|/|Q| by
Lagrange’s theorem, but |Q| ≥ |Γ0(C2)| = ∞, which a contradiction, as we assumed
G 6= H.

We observe that a necessary condition for graph incidence group finiteness was the ex-
clusion of two cycles in G. Naturally, one could hope that the converse of Proposition 4.3.1
holds, giving a necessary and sufficient characterization of infinite graph incidence groups
by the 2 disjoint cycle minor. However, we will see that this is not the case.

Fortunately, the set of graphs that do not contain two vertex-disjoint cycles was charac-
terized by Lovasz in [28]. There are essentially three families of graphs that do not contain
two vertex-disjoint cycles: wheel type graphsWn, tree type graphs Tn, and complete (3, n)-
partite type graphs K3,n, where the 3 vertex independent set is completed with edges. The
set Wn also includes any graph obtained, through graph minor operations, from the wheel
graph on n vertices. Another graph without 2 disjoint cycles is given by a tree with an
adjoining vertex of degree d, denoted Tn ∪ {vd0}.

An example of a graph in K3,n is K3,4 ∪ {e1, e2, e3}, where the three edges connect the
three vertices of the first partition. This graph is shown in Figure 4.6. It also includes,the
bipartite variant K3,2 ∪ {e1, e2, e3} = K5 and K3,2 ∪ {e1, e2} = K5 \ e. More generally, we
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Figure 4.6: K3,4 t C-bipartite graph, with a cycle added to the 3-partition. Observe that
edges can only be added to the 3-partition, otherwise one creates 2 disjoint cycles in the
graph.

must consider the graph that are comprise of collections (forests) of these Wn or K3,n type
structures with additional acyclic components embedded or attached.

Our strategy will be to consider each class of graphs that do not contain 2 vertex-disjoint
cycles, and determined, whether their corresponding incidence groups are finite or not. If
we are able to successfully characterize the order of these graph incidence groups, then by
Proposition 4.3.1 we will have a full characterization for the graph-minors for finiteness by
Lemma 1.0.3. Along the way, we will see that this same approach essentially works for the
graph incidence group property of abelianness.

Proposition 4.3.2. If Γ(G, b) is the graph incidence group of a 2-coloured graph (G, b),
with a distinguished root vertex v0, then there is an isomorphism of groups Γ(G, b) ∼=
Γ(G, bv0), where bv0 is the 2-colouring

bv0(v) =

{∑
v∈V b(v) mod 2, if v = v0

0, otherwise.
(4.3.1)

Proof. Recall that by Proposition 4.1.1 there is an isomorphism Γ(G, b) ∼= Γ(G, b′). The
statement above is the case where b′ = bv0 .

Proposition 4.3.3. Let (Tn, b) be a 2-coloured tree on n vertices, then the graph incidence
group Γ(Tn, b) isomorphic to 〈J |b| : J2〉. In either case Γ(Tn, b) is a finite group.
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Proof. Root Tn at some leaf, and denote this vertex by v0. Consider the set of leaves
` of (Tn, bv0). By Proposition 4.3, it is clear that every x` = 1 ∈ Γ(Tn, bv0), and so
Γ(Tn, bv0) ∼= Γ(Tn \ `, bv0). Now consider the new set of leaves `′. Again they all describe
trivial relations by the same result. Repeating the above argument we observe a chain of
group isomorphisms (see an example in Figure 4.7). Since the only non-trivial relation lies
at the root vertex, this “pruning" procedure of the leaves can be iterated until one reaches
the root vertex at which point we observe that Γ(Tn, b

′) ∼= 〈J |b|〉.

x2

x1

x3

x4

x5

x6 x7

x8

x9

x10

x11
x12

x13

x3

x4

x5

x8
x10

−→

x3

x4
x8

−→ x4
x3

−→
1

−→

Figure 4.7: A series of simplifying isomorphisms for the incidence group of the pseudo-tree
on 13 vertices, can be viewed as a recursive leaf decomposition of the branches emitting
from the inner 3-vertex cycle. White vertices and dotted edges represent contracted leaves
from the pruning process. The last two simplifications come from enforcing the local vertex
relations.

Let Rn be a rooted cycle with connected acyclic components. By construction, these
graphs do not contain any vertex-disjoint cycles, as any additional cycle would have to
share the root cycle and thus not be vertex-disjoint.

Proposition 4.3.4. The graph incidence group Γ(Rn, b) is finite.
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Proof. We will prove that Γ(Rn, bv0) is a finite quotient of the group Zdeg(v0)
2 . Suppose

without loss of generality that deg(v0) = n. First observe that we have an isomorphism of
groups by replacing every leaf ` in Tn with the edge incident to v0. Replacing all leaves with
the edges incident to v0 may result in multiple edges from v0 to the new leaves `′ ∈ Tn. To
rectify this problem we delete arbitrary edges `′iv0 until there is only one edge `′v0. Continue
the process of leaf contraction, until only edges incident to v0 remain. At this point we
have a set of edges incident to the root vertex. By property (iii) of Definition 3.2.1 the
corresponding graph incidence group is abelian, and since the kernel of the edge deletion
map is finite we obtain the desired result.

Figure 4.7 illustrates the pruning algorithm described in the proof of proposition 4.3.4.
Given a graph that consists of branches coming off a single cycle, the recursive leaf con-
traction reduces the graph of the homogenous graph incidence group to one for the trivial
group. By Lemma 1.0.3, this transformation is a group isomorphism, so every graph inci-
dence group of this graph is the trivial group.

Proposition 4.3.5. The graph incidence group Γ(Wn, b) is isomorphic to Zn2 .

Proof. For any wheel Wn (with n spokes) |E| = 2n. There is an isomorphic presentation
with 2n starting generators of Γ0(Wn. For any vertex of degree 3 the relations of an graph
incidence group are eiejek = 1⇔ ek = eiej, and so we can canonically reduce the number
of generators to n. Performing the above transformation on all the “spokes”, the centre
vertex local commutation relations read [eiei+1, ejej+1] = 1 for all 1 ≤ i, j ≤ n. Since,
ei+1eiei+1 = ei for any wheel edge, let ei and ej be non-adjacent generators on the wheel,
now observe that

eiej = (ei+1eiei+1)ej (4.3.2)
= ei+1ei(ei+2ei+1ei+2)ej (4.3.3)
= ei+1eiei+2ei+1 · · · (ej−1ej−2ej−1)ej (4.3.4)
= (ei+1ei)(ei+2ei+1) · · · (ej−1ej−2)(ej−1ej) (4.3.5)
= (ej−1ej) · · · (ei+2ei+1)(ei+1ei) (4.3.6)
= (ejej−1) · · · (ei+2ei+1)(ei+1ei) (4.3.7)
= ej(ej−1ej−1) · · · (ei+2ei+2)(ei+1ei+1)ei (4.3.8)
= ejei . (4.3.9)

so [ei, ej] = 1 for every 1 ≤ i, j ≤ n, hence Γ(Wn) is abelian and has order 2n.
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Figure 4.8: The homogenous graph incidence group of the wheel graph on 8 vertices has
8 generators after a simple identification of the spokes as products of the outer-cycle edge
generators. We give an example where we take two non-adjacent edge generators x7 and
x2, and show they commute. First consider the elements under conjugation by their ad-
jacent outside edge generators (we chose the edge in the direction of the other generator),
i.e. x7 = x8x7x8 and x2 = x1x2x1. After conjugating by the outside edge generators,
the commutation relation [x8x7x8, x1x2x1] = 1 makes the result obvious, since the words
x1, x1x2 and x8, x7x8 are incident to a set of shared vertices (marked in grey) they com-
mute by definition x7x2 = (x8x7x8)(x1x2x1) = (x8x7)(x8x1)(x2x1) = (x1x2)(x1x8)(x7x8) =
(x1x2x1)(x8x7x8) = x2x7.

Figure 4.8 illustrates how the graph incidence group of the wheel graph is isomorphic
to the abelian group Z8

2, by showing that each outside edge generator commutes with any
non-adjacent edge generator.

The group corresponding to the oddly-coloured K3,3 is the smallest graph incidence
group, where J is non-trivial. This group is a quotient of a product of identical dihedral
groups. Recall that the dihedral group is given by the semi-direct product, with γ being
inversion (γ(a) = a−1).

Dihn =
〈
z1, z2|z2

1 = z2
2 = (z1z2)n = 1

〉 ∼= Zn oγ Z2 (4.3.10)

Proposition 4.3.6. The graph incidence group for G(K3,3, b) with odd b is the quotient
of a product of dihedral groups Γ(K3,3, b) ∼= (Dih4 ×Dih4)/QZ .

Proof. Consider the alternative presentation of Γ(K3,3, b) with generating involutions 〈x1, x2, x4, x5〉
and commutation relations {(x1x2)2 = (x4x5)2 = (x1x4)2 = (x5x2)2 = (x1x2x4x5)2 =
(x1x4x2x5)2 = 1}. The dihedral group Dih4 has presentation 〈a, b|a2 = b4 = 1〉, let
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〈c, d|c2 = d4 = 1〉 denote the presentation of a second copy of Dih4. Denote by Υ the
image of the group Dih4 × Dih4 under the quotient QZ = 〈b2(d2)−1〉. With the genera-
tors 〈a, b, c, d〉. Υ has relations {a2 = c2 = d2b2 = (d−1b)2 = (ba)2 = (dc)2 = (ac)2 =
adad−1 = bcb−1c}. Now consider the following map on the generators, 〈x1, x2, x4, x5〉 7→
〈a, c, (cd), (ab)〉. It follows that x1x5 7→ b and x2x4 7→ d. One can verify that the inverse
of this map is well defined and therefore gives the desired isomorphism. It follows that the
order of this graph incidence group is 32

A particular isomorphism of the graph incidence group Υ(Γ(K3,3, b)) graph can be seen
in Figure 4.9. The incidence group of the 2-coloured K5 system has a similar structure; in
fact, it is isomorphic to a similar quotient of three direct copies of Dih4. See Figure 4.10
to see the embedded involutions that generate the incidence group of the 2-coloured K5

systems. Another worthy observation is that the homogenous incidence group Γ0(K3,3) is
abelian.

ab

c a
cd

Figure 4.9: Two copies of Dih4 involutions generating Γ(K3,3, b), one generator set is la-
belled in the dashed edges 〈a, (ab)|a2 = (ab)2 = 1〉, the other two generators are dotted
edges 〈c, (cd)|c2 = (cd)2 = 1〉. In this figure the anti-commutation relation is denoted by
the blue vertex.

The remaining orders for the graph incidence groups found in Table 4.1 were calculated
with Turner Silverthorne using supplementary software. The software makes use of the
underlying computer algebra systems GAP [18] and in SageMath [41]. The groups not
contained in the above tables are those which contain K3,n as minors, for n < 6. These
graphs consist of K3,n, with the addition of edges connecting the vertices of the 3 vertex
independent set. For each n there are 8 such graphs we have computationally verified that
the graph incidence groups of these graphs are all finite.
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abc

a

ef

e

cd

Figure 4.10: The three copies of Dih4 involutions found in Γ(K5, b), each labelled by dotted,
dashed, and dashed-dotted edges. In this figure the anti-commutation relation is denoted
by the blue vertex.

4.3.1 Finiteness and abelianness for graph without disjoint cycles

The remaining, possibly infinite graphs are those containing K3,n as a minor, for n ≥ 6.
Evidence that the incidence group Γ(K3,6) was infinite was given first by the fact that
the KBMAG (Knuth-Bendix Algorithm) [22], along with GAP packages failed to compute
the order of the group after many hours of computation. By attempting various input
reordering’s of the group presentation in GAP my collaborator Turner Silverthorne was
able to verify that a quotient Λ of K3,6 does have infinite order! By our graph minor
characterization, this is sufficient to show that Γ0(K3,6) is infinite.

Proposition 4.3.7. There is a quotient Λ of Γ(K3,6, b) of infinite order. Moreover, this
quotient is not contained in Γ(K3,5, b).

Proof. Consider the finitely presented group Λ with generators 〈x1, x2, . . . , x9〉 and relations
{x1x2x3 = x4x5x6 = x7x8x9 = (x1x4x7)2 = (x2x5x8)2 = (x3x6x9)2}. There is an embedding
Λ ↪→ Γ(K3,6, b) by taking the generators 〈xi〉, modulo by their labels i ≡ 0(mod9), for
1 ≤ i ≤ 18. Hence, Λ is a quotient of Γ(K3,6, b). Under this mapping one can find a
confluent rewriting system for Λ using a computer2, from which one can certify that the

2Particular algorithms are able to detect infinite words in the RWS, in this case, the algorithm outputs
that of the group is infinite. The algorithm we implemented in finding rewriting systems and the order of
a group was a variant of the Knuth-Bendix completion algorithm known as KBMAG.
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Graph |Γ0(G)| [Γ0(G, ] |Γ(G, b)| [Γ(G, b)]
Tn 1 Yes 1 Yes
Wn 2n Yes 2n+1 Yes
K3,3 16 Yes 32 No
K5 64 Yes 128 No
K3,4 256 No 512 No
K3,5 213 No 214 No
K3′′′,5 216 No 217 No
K3,6 ∞ No ∞ No

Table 4.1: Finiteness | · | and abelianness [ · ] properties for the (homogenous) graph in-
cidence groups from a selection of graph families that do not contain two vertex disjoint
cycles. When the group is finite we give the order of the group.

quotient has infinite order, it follows that Γ(K3,6, b) is infinite. Remark, that this group is
not a quotient of the group Γ(K3′′′,5, b), as it does not contain K3,6 as a minor.

4.4 Proof of main theorems

We are now prepared to prove our finiteness criterion for graph incidence groups.

Theorem 4.4.1. Let G be a connected graph. The graph incidence group Γ0(G) is finite
if and only if G does not contain the following minors: two disjoint cycles C(1) t C(2) or
K3,6.

Proof of Theorem 1.0.5. If G contains C(1) t C(2) as a minor, then there is a quotient of
Γ0(G) that is isomorphic to the infinite group Z2 ∗ Z2. If G contains K3,6, then a quotient
of Γ(G) isomorphic to the graph incidence group Γ(K3̃,6). In both of these cases it follows
that Γ(G) is infinite. From this case analysis of the graphs outlined by Lovasz, we are able
to conclude that the graph incidence group of every graph not containing C(1)tC(2) or K3,6

is finite3.

Theorem 4.4.2. If b is even, then the graph incidence group Γ(G, b) is an abelian group if
and only if (G, b) does not contain K3,4 or two independent vertex-disjoint cycles C(1)tC(2)

3It is unfortunate that we rely on a computer assisted proof of this fact in the case of K3,6, the graph
incidence group is infinite.
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as minors. If b is odd, then Γ(G, b) is an abelian group if and only if (G, b) does not contain
any of K3,3, K5, or two independent vertex-disjoint cycles C(1) t C(2) as graph minors.

Proof of Theorem 1.0.6. If G contains K3,4 as a minor, by Lemma 1.0.3 Γ(G)0 there is a
surjective group homomorphism Γ0(G) → Γ0(K3,4), since Γ0(K3,4) is non-abelian so must
Γ0(G). Similarly, the group Γ0(C(1) t C(2)) is non-abelian, and the same argument follows.
The other direction follows from our results for the groups Γ0(G) that do not contain
2-vertex disjoint cycles, the groups Wn, Rn, and Tn are abelian.

In the next chapter, we will show how these graph minor characterizations can be used
to study the space of classical and quantum strategies via the representation theory of
these incidence groups.
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Chapter 5

Graph incidence group characters and
correlations for graph-LinBCS games

In this chapter we investigate the connection between characters1 of graph incidence groups,
and the quantum correlations of graph-LinBCS games introduced in Chapter 3. In par-
ticular, we analyze the correlations for games where the graph incidence groups are finite
or abelian. These are natural properties to investigate, as we know the forbidden graph
minors for these properties, and they are relevant in describing the representations.

We first demonstrate that finite dimensional correlations arising from maximally en-
tangled states correspond to a restriction of the one-dimensional characters of the graph
incidence group. While restricted normalized2 higher-dimensional characters describe cor-
relations from perfect mixed strategies, which may be quantum or classical. We then infer
a few observations about the space of perfect deterministic and quantum strategies for
these graph-LinBCS games from the representation theory.

5.0.1 Correlations and characters supported on observable conju-
gacy classes

The quantum correlations observed by in a non-local game depend not only on the mea-
surements, but the quantum state they are performed on. We say a correlation is perfect
if it arises from a perfect (quantum or classical) strategy. Consider a graph-LinBCS game

1Here we are referring to characters in the context of unitary representations of the incidence group.
2A normalized character is divided by the dimension of the representation.
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G(G, b), and recall from Section 2.6 of Chapter 2 that if |ψ〉 is maximally entangled, then a
perfect correlation in the tensor-product framework is given by sets of projective 2-outcome
measurements {P x

a }ma=1 and {Qy
b}mb=1.

p(a, b|x, y) = 〈τ |P x
aQ

y
b |τ〉 (5.0.1)

=
1√
m

m∑
a=1

〈a| ⊗ 〈a|(P x
a ⊗Qy

b)
1√
m

m∑
b=1

|b〉 ⊗ |b〉 (5.0.2)

=
1

m

m∑
a=1

m∑
b=1

〈a|P x
a |b〉 ⊗ 〈a|Qy

b |b〉 (5.0.3)

=
1

m
tr(P x

a (Qy
b)
T ) . (5.0.4)

It turns out, that for perfect strategies, Bob must choose his operators to be the transpose
of Alices. Thus we obtain that these perfect correlations only depend on the elements,

=
1

m
tr(P x

a P
y
b ) . (5.0.5)

We now recall the correspondence between binary observables and 2-outcome projective
value measures. Under this correspondence, we observe that a perfect correlation is related
to the quantity described by the product of two m-dimensional real unitary matrices, via
an appropriate linear transformation,

δ̃ =
1

m
tr(OxOy) . (5.0.6)

If these unitary matrices form a perfect strategy in the context of Theorem 1.0.1, then they
must be unitary representations of the graph incidence group Γ(G, b). Since, φ : Γ(G, b)→
U(H) is a ∗-homomorphism, we observe that

OxOy = Oxy = φ(xy) = φ(x)φ(y) . (5.0.7)

If the graph incidence group is finite, then any entangled correlation can be thought of as
a restriction to a normalized group character, supported on the set of observable conju-
gacy classes. The observable conjugacy classes are those which contain any element whose
representations form valid joint operations in the game. A joint operation is the resulting
transformation of the global quantum state determined by the local operations that Alice
and Bobs perform of their half of the shared state. These joint operations are representa-
tions of elements in the incidence group, and are determined by the vertex constraints of
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the game. Given the constraints of a game, one can derive this list of joint operations and
therefore determine the set of observable conjugacy classes. Then any character following
the restriction to the set of observable conjugacy classes is a possible correlation

For finite groups, the observable conjugacy classes can be enumerated and membership
can be determined using a lookup table. Our graph minor criterion implies that this group
property can be checked efficiently. From a finite graph-incidence group, computational
methods can be used to derive all the indecomposable perfect strategies of the game. Addi-
tionally, one can deduce the number of perfect (deterministic and quantum) strategies by
partitioning the one-dimensional observable characters from the higher dimensional ones.
With a description of the incidence group characters and the supporting observable conju-
gacy classes, one can deduce whether the strategies of higher-dimensional representations
are “properly” quantum, by examining if these higher-dimensional strategies are in the
probabilistic span of the deterministic characters. With this observation, quantum strate-
gies that can be decomposed into a direct sum of sub-strategies, and strategies that cannot
be decomposed further form indecomposable strategies.

Let δ be a strategy, then by (2.3.3) we have the corresponding statement for strategies,

δ̃ =
⊕
i∈C

δ̃i (5.0.8)

where δ̃i is an indecomposible strategy corresponding to the ith observable conjugacy class
Ci of Γ(G, b).

5.1 Observable characters of graph incidence groups

Given the connection between correlations and the representation theory of the graph
incidence group. We state several simple facts about the space of entangled correlations
for graph-LinBCS games from basic representation theory results.

Recall by Theorem 1.0.1, that a representation of the incidence group gives an operator-
solution to a LinBCS game. To see how the operator solution can be transformed into a
perfect quantum strategy, we refer the reader to [12]. It is a standard fact in representation
theory that Γ(G, b) is abelian if and only if all its irreducible representations are one
dimensional. Similarly, if Γ(G, b) is finite, then all its irreducible unitary representations
are finite-dimensional, and consequently, any indecomposable strategy of a finite incidence
group is finite dimensional.
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Proposition 5.1.1. If Γ(G, b) is abelian, then all the indecomposable perfect strategies
for G(G, b) are deterministic.

Proof. If Γ(G, b) is abelian, then every representation is a direct sum of 1-dimensional
irreducible representations. These irreducible representations correspond to deterministic
strategies, through the restriction to the observable conjugacy classes.

Proposition 5.1.2. If Γ(G, b) is non-abelian, and b has even parity, then there are both
perfect deterministic and higher-dimensional indecomposable perfect strategies.

Proof. To have an indecomposable perfect higher-dimensional strategy then the incidence
group Γ(G, b) must have an irreducible representation π of dimension greater than one,
such that π(J) 6= 1. Because Γ(G, b) is non-abelian, then it must have some irreducible
representation φ greater than one. Observe, that if φ(J) 6= 1 then we are done. So suppose
φ(J) = 1, we will show that we can always construct a new representation, ϕ(J) = −1
yielding a higher-dimensional perfect strategy. Since b has even parity, then Γ(G, b) must
also have a one-dimensional irreducible representation ψ with J 6= 1. Since J is central and
order 2 we can tensor this one-dimensional representation ψ with our higher-dimensional
representation φ to the obtain a representation φ⊗ψ = ϕ of the same dimension as φ, but
now ϕ(J) = −1.

Proposition 5.1.3. If Γ(G, b) is finite, then G(G, b) has no perfect infinite-dimensional
commuting-operator strategy.

Proof. Towards contradiction, suppose G(G, b) has an infinite-dimensional commuting-
operator strategy. Then the corresponding linear system (A, b) has an infinite-dimensional
operator-solution. Since Γ(G, b) is finite, any corresponding infinite-dimensional operator-
solution is necessarily an infinite direct sum of finite dimensional irreducible representa-
tions. Thus by part (ii) of the CMLS theorem (Theorem 1.0.1) each finite dimensional
indecomposable component of the operator solution has a corresponding perfect tensor-
product strategy. Thus the commuting-operator strategy is not a proper infinite dimen-
sional commuting operator strategy, as it is a direct sum of tensor-product strategies.

Notice that Propositions 5.1.3, 5.1.2 and 5.1.1 are all characterized by forbidden graph
minors by Theorem 1.0.5 and Theorem 1.0.6. Thus, both properties can be easily detected
in the graph-LinBCS game data using efficient algorithms on the graphs.
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5.1.1 Character tables for dihedral groups

We have seen many examples where the incidence group is obtained from a quotient of
a direct product of dihedral groups, such as in the case of K3,3 and K5. We examine its
character table along with the structure of its irreducible representations in the context of
strategies. The character matrix of Dih4 is given as follows

1 1 1 1 1
1 −1 −1 1 1
1 −1 1 −1 1
1 1 −1 −1 1
2 0 0 0 −2

 (5.1.1)

Observe that the group has 4 linear representations µi and one 2-dimensional representa-
tion, depicted by the rows of the matrix. The corresponding candidate quantum correlation
is given by the observable conjugacy class vector ν = (1, 0, 0, 0,−1). Whether this correla-
tion can be achieved by shared randomness is a question of whether ν is a probabilistic span
of the µi’s. Note, however, that the 5th entry of each character is 1 while the corresponding
entry in ν is −1. Since there is no way a probabilistic sum of positive numbers can be
negative we observe that ν is not in the positive span. That being said, it is not clear that
the dihedral groups correspond directly to a particular graph incidence group. However,
it does suggest why these graph-LinBCS games do admit proper quantum strategies.

5.1.2 The correlations for Dih∞

Given a graph consisting of two vertex-disjoint cycles we saw how the corresponding inci-
dence group was Γ0(CtC) ∼= Z2∗Z2. This graph incidence group is infinite and non-abelian;
however, it is also isomorphic to the infinite dihedral group Dih∞. Using the representation
theory of this group we can make some conclusions about the correlations corresponding
to the C t C-LinBCS games.

The group Dih∞ is generated by s (the reflection) and rα (the rotation by α). It is
well-known that the infinite dihedral group has a countably infinite family of 2-dimensional
irreducible representations, see chapter 5 of [38]. The correlations that come from these
representation can be parametrized by qα = (1, cos(α), 0, 0). Where the corresponding
observable conjugacy classes are (1, rα, s, srα). A corresponding unitary representation is
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given by

ϕ(1) =

(
1 0
0 1

)
, ϕ(rα) =

(
eiα 0
0 e−iα

)
, ϕ(s) =

(
0 1
1 0

)
, and ϕ(srα) =

(
0 eiα

e−iα 0

)
.

(5.1.2)
Recall the character matrix for Z2 × Z2 gives us a basis for the deterministic strategies.

D =


1 1 1 1
1 −1 1 −1
1 −1 −1 1
1 1 −1 −1

 (5.1.3)

Determining if the correlation is classical is equivalent to showing that for all −π ≤ α ≤ π,
there is a non-negative solution x to Dx = qα.’

(
x1 x2 x3 x4

)
1 1 1 1
1 −1 1 −1
1 −1 −1 1
1 1 −1 −1

 =
(
1 cos(α) 0 0

)
(5.1.4)

Using Cramer’s rule one can show that

x =
1

4

(
1 + cos(α), 1− cos(α), 1− cos(α), 1 + cos(α)

)
(5.1.5)

is a non-negative solution for all α, since −1 ≤ cos(α) ≤ 1. Hence, this higher order
correlation can be observed by a probabilistic combination of deterministic strategies, so
it is a classical correlation.
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[21] Petr Hliněnỳ. 20 years of negami’s planar cover conjecture. Graphs and Combinatorics,
26(4):525–536, 2010. 86

[22] Derek Holt. KBMAG—Knuth-Bendix in monoids and automatic groups, soft-
ware package. anonymous ftp from ftp. maths. warwick. ac. uk in directory peo-
ple/dfh/kbmag2, 1995. 65

[23] John Hopcroft and Robert Tarjan. Efficient planarity testing. Journal of the ACM
(JACM), 21(4):549–568, 1974. 6

75



[24] Zhengfeng Ji. Binary constraint system games and locally commutative reductions.
arXiv preprint arXiv:1310.3794, 2013. 2

[25] Marius Junge, Miguel Navascues, D. Carlos Palazuelos, Perez-Garcia, Volkher B.
Scholz, and Reinhard F. Werner. Connes’ embedding problem and Tsirelson’s prob-
lem. Journal of Mathematical Physics, 2011. 31

[26] Van Kampen. On some lemmas in the theory of groups. American Journal of Math-
ematics, 55.1:268–273, 1933. 6, 46, 48

[27] Casimir Kuratowski. Sur le probleme des courbes gauches en topologie. Fundamenta
mathematicae, 15(1):271–283, 1930. 11

[28] László Lovász. On graphs not containing independent circuits. Mat. Lapok, 16:289–
299, 1965. 7, 11, 59

[29] Laura Mančinska and David E Roberson. Graph homomorphisms for quantum players.
arXiv preprint arXiv:1212.1724, 2012. 1

[30] David Mermin. Simple unified form for the major no-hidden-variables theorems. Phys-
ical Review Letters, 65(27):3373–3376, 1990. 2

[31] David Mermin. Hidden variables and the two theorems of John Bell. Reviews of
Modern Physics, 65(3):808–815, 1993. 2

[32] Seiya Negami. The spherical genus and virtually planar graphs. Discrete mathematics,
70(2):159–168, 1988. 86

[33] Narutaka Ozawa. About the Connes embedding conjecture—algebraic approaches.
arXiv preprint arXiv:1212.1700, 2012. 31

[34] Asher Peres. Two simple proofs of the kochen-specker theorem. Journal of Physics
A: Mathematical and General, 24(4):L175, 1991. 2

[35] Neil Robertson and Paul Seymour. Graph minors. Bell Communications Research.
Morris Research and Engineering Center. Mathematical, Communications, and Com-
puter Sciences Research Laboratory, 1986. 6

[36] Neil Robertson and Paul Seymour. Graph minors xxiii. Nash-Williams’ immersion
conjecture. Journal of Combinatorial Theory, Series B, 100(2):181–205, 2010. 59

76



[37] Neil Robertson and Paul D Seymour. Graph minors. xx. wagner’s conjecture. Journal
of Combinatorial Theory, Series B, 92(2):325–357, 2004. 11

[38] Jean-Pierre Serre. Linear representations of finite groups, volume 42. Springer Science
&amp; Business Media, 2012. 16, 20, 72

[39] William Slofstra. Tsirelson’s problem and an embedding theorem for groups arising
from non-local games. arXiv preprint arXiv:1606.03140, July 2016. 4, 5, 6, 31, 42,
45, 48, 49, 50

[40] William Slofstra. The set of quantum correlations is not closed. arXiv preprint
arXiv:1703.08618, June 2017. 31

[41] The Sage Developers. SageMath, the Sage Mathematics Software System (Version
8.3), 2018. http://www.sagemath.org. 64

[42] Boris Tsirelson. Bell inequalities and operator algebras, 2006. 28, 31

[43] Satish Pandey Vern Paulsen, Samuel Harris. Entanglement and non-locality. Course
notes for QIC890 taught by Vern Paulsen in Winter 2016, 2016. 21, 26

[44] Klaus Wagner. Über eine eigenschaft der ebenen komplexe. Mathematische Annalen,
114.1:570–590, 1937. 6, 11

[45] John Watrous. The theory of quantum information. Cambridge University Press,
2018. 21

77



APPENDICES

A Implementing incidence groups in SAGE

Below we describe an implementation of a short algorithm that converts a 2-coloured graph
(or hypergraph) into the corresponding finitely presented incidence (solution) group. The
implementation is given in the freely available open-source computer algebra system SAGE.

Given an object G from the class of graphs (or hypergraphs) one can construct the
incidence matrix A via A=G.incidence_matrix() which returns an object in
sage.matrix.matrix_integer_sparse. Given a graph the function mp_group() outputs
the corresponding incidence group. The options for this function include the parity of
a 2-colouring c which labels vertices {0, 1}, the default is an even, the flag h denotes
whether to include the J generator. The default (not including J) gives the homoge-
nous incidence group Γ0(G). The flag p is a binary option of outputting the group
as a permutation group sage.groups.per_gps. The group is by default output as a
sage.groups.finitely_presented (finitely presented group). The final option s indi-
cates whether to output the group after attempting to find a simplifying isomorphism
which ideally reduces the number of required generators to express the group. Working
with an isomorphic copy on fewer generators may help when attempting to calculate the
properties of the group. Many algorithms, especially those using GAP seem to perform bet-
ter on permutation groups over the finitely presented ones. Since, the groups can be very
large, determining the simple properties of these groups can be computationally intensive.

A.1 Code for the mp_group() function

# SAGE code for generating incidence groups from graphs

import sage.all
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# using the SAGE graph database you can easily construct
# the incidence matrix for your favourite graph

# define your favourite graph G, some examples

# G=graphs.CompleteBipartiteGraph(3,4)
# G=graphs.Cubegraph(3)
# G=graphs.Completegraph(5)
# G=graphs.BarbellGraph(3,0)

# options: c=’coloured’ p=’return as permutation group’
# s=’return simplified group’, h=’homogenous group’, a=’input incidence matrix’
# we have defined the flags to their default setting

c=true
h=false
p=false
s=false
a=false

# given a graph and the above flags the function returns the incidence group
# corresponding to the graph

def mp_group(G,*args):

# compute the incidence matrix (0,1)-matrix A of the graph G or
# hypergraph, if a=true, the input was an incidence matrix

if a==false:
A=G.incidence_matrix()

else:
A=G

# introduce convenient parameters for the number of rows/columns
n=A.nrows()
m=A.ncols()

# for every edge define a list Inv of generators including J
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Gens=[var(’x_%d’ % i) for i in range(m)]
if h==false:

Gens.append(var(’J’))

# generate the free group on the generators
F=FreeGroup(Gens)

# create a list of the generators who share a vertex

VtxRels=[[i+1 for i in range(len(r)) if list(r)[i]==1] for r in list(A.rows())]

# if c=true insert the J relation into VtxRels
if h==false and c==true:

VtxRels[0].append(m+1)

# generate a list of product relations
ProdRels=[F(p) for p in VtxRels]

# create a list of commuting relations this list also contains the
# involution relations

ComRels=[]
for k in VtxRels:

for i in k:
for j in k:

ComRels.append(F([i,j,-i,-j]))

# involution relations
for i in range(m+1):

ComRels.append(F([i+1,i+1]))

# append J^2 relation if required
if h==false:

for i in range(m):
ComRels.append(F([i+1,m+1,-i-1,-m-1]))

# combine lists of relations
Rels=ComRels+ProdRels
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# remove any trivial relations
while F.one() in Rels:

Rels.remove(F.one())

# create the group via quotient by Rels
K=F.quotient(Rels)

# consider a simplified group by computing a
# simplifying isomorphism (not unique)

L=K.simplified()

# check for "simplification" return options s
if s==true:

MPGrp=L
else:

MPGrp=K

# check for "permutation group" return options
if p==true:

print "incidence group as permutation group"
return MPGrp.as_permutation_group()

else:
print "incidence group as finitely presented group"
return MPGrp

# Find any info you want from the simplified FPG

# L.structure_description()
# L.order()
# L.abelian_invariants()
# L.center()
# L.conjugacy_class_representatives()

# R=L.rewriting_system()
# R.is_confluent()
# R.make_confluent()

# as a permutation group you can get more info about reps
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A.2 Finding rewriting systems and computing the value of J

Given a group, SAGE provides simple functions for attempting to solve the word problem.
We provide a short example.

sage: G=DihedralGroup(8)
sage: G
(Dihedral group of order 16 as a permutation group,)
sage: F=G.as_finitely_presented_group(); F
Finitely presented group < a, b | b^2, (b*a^-1)^2, a^8 >
sage: R=F.rewriting_system();R
Rewriting system of Finitely presented group < a, b | b^2, (b*a^-1)^2, a^8 >
with rules:

b^2 ---> 1
(b*a^-1)^2 ---> 1
a^8 ---> 1

sage: R.is_confluent()
False
sage: R.make_confluent(); R
Rewriting system of Finitely presented group < a, b | b^2, (b*a^-1)^2, a^8 >
with rules:

b^-1 ---> b
b*a^-1 ---> a*b
b*a ---> a^-1*b
b^2 ---> 1
a^-4 ---> a^4
a^5 ---> a^-3

In particular, when looking to solve the word problem using a computer algebra system
such as SAGE, we can use the make_confluent() function, which may not terminate.

A.3 Finding deterministic strategies for incidence groups in SAGE

One can also investigate the space of deterministic strategies using SAGE. Given the in-
cidence matrix of a graph, we can generate the matrix space over Z2 with the following
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code. In this example, we look at the graph for K4.

# generate a graph from the SAGE library
G=graphs.CompleteGraph(4)

# compute its incidence matrix
A=G.incidence_matrix()

# create the matrix space
V=MatrixSpace(IntegerModRing(2), A.nrows(), A.ncols())

Full MatrixSpace of 4 by 6 dense matrices over Ring of integers modulo 2

# re-format the incidence matrix as an element of the matrix space
A=V(G.incidence_matrix())

# generate the column space of the incidence matrix
A.column_space()

Vector space of degree 4 and dimension 3 over Ring of integers modulo 2
Basis matrix:
[1 0 0 1]
[0 1 0 1]
[0 0 1 1]

# remark the span of these vectors contains all even vectors

# you can even look at the full image of A
A.image()

Vector space of degree 6 and dimension 3 over Ring of integers modulo 2
Basis matrix:
[1 0 0 1 1 0]
[0 1 0 1 0 1]
[0 0 1 0 1 1]

# remark that the rank of A gives the number of classical strategies
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The information here coincides with the representation theory of the graph incidence
group. We saw earlier that the group Γ0(K4) is isomorphic to the product of three cyclic
groups Z3

2 and the rank of this group is 3. Furthermore, it contains three one-dimensional
representations.

B A toolbox for testing higher dimensional correlations

Suppose we have a game that admits a perfect deterministic strategy, but the correspond-
ing incidence group is non-abelian. In this case, the representation theory states that
there are a series of observable one-dimensional representations that coincide with these
deterministic strategies. However, whenever a group is non-abelian, it must also admit
some irreducible representation of dimension greater than one. This higher-dimensional
irreducible representation corresponds to a perfect operator strategy on some higher dimen-
sional space. The question is, are these higher dimensional representations really quantum
strategies, or are the correlations they describe also captured by probabilistic combina-
tions of deterministic ones. In the case of finite incidence groups, we can answer this
question using character theory. We do not yet have a toolset for dealing with arbitrary
infinite-dimensional incidence groups. However, in cases where the character theory of
these infinite groups is nice perhaps one can say something.

The canonical example here is K3,4 where the corresponding homogenous graph inci-
dence group Γ0(K3,4) is non-abelian. Furthermore, this incidence group has order 264,
and the number of abelian invariants is 64 (which is also the number of one-dimensional
representations irreducible representations). By deduction, there are 12 remaining 4 di-
mensional irreducible representations to check. This fact can be checked with the following
SAGE computations.

# setting the homogenous flag to true, ensures the mp_group() function
returns the group without the J element
sage: h=true
sage: H=mp_group(G,h)
incidence group as finitely presented group
sage: H.order()
256
sage: H.abelian_invariants()
(2, 2, 2, 2, 2, 2)
sage: CC=H.conjugacy_classes()
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sage: len(CC)
76
sage: P=H.as_permutation_group()
sage: T=P.character_table()
76 x 76 dense matrix over Cyclotomic Field of order 1 and degree 1
(use the ’.str()’ method to see the entries)
sage: T.str()

The process of recovering the observable conjugacy classes can be obtained by simply
searching each conjugacy class for any word in the list of generated or observable elements.
The observable elements depend on the game, and in particular the degrees of the vertices.
Once found, the unobservable conjugacy classes can be removed from the character table,
leaving us with only the correlations possible from the particular game. We call this the
restricted character table.

We then construct the square matrix consisting of all the deterministic correlations (one-
dimensional characters) and the observable conjugacy classes. Then, for each candidate
quantum correlation, we check if the solution to the linear system Cx = q is solved by
a vector with all non-negative entries. If a positive solution is found, it implies that the
candidate correlation lies in the probabilistic span of the deterministic correlations and is
therefore classical. Based on our findings we present the following conjecture.

Conjecture B.1. If a graph-LinBCS game has a deterministic strategy, then the correla-
tions from any higher dimensional strategy can be observed by a probabilistic mixture of
deterministic strategies.

Evidence for this conjecture is given by the fact that it holds for all finite graph-LinBCS
groups. For the infinite dihedral group, since its corresponding graph is planar we know
that it has no proper quantum strategies; however, this does not rule out the possibility
of higher dimensional correlations. In fact, because the group is not abelian we know that
there is at least one higher-dimensional irreducible representation.

C Future work & open questions

Here we list some possible avenues for future study and open problems.
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C.1 Minors for other quotient properties

Corollary 1.0.4 says that every quotient-closed property of a graph incidence group has a
set of forbidden graph minors. What are the forbidden graph minors for the properties of
solvability, simplicity, and amenability?

C.2 Planar covers and Negami’s conjecture

The notion of projective embedding and finite covers is the subject of the famous conjecture
of Negami [32], see [21] for the current state of the problem. Negami conjectured in 1988
that projective embeddings and finite planar covers are one and the same. In 1986 Negami
proved a weaker version of the conjecture for regular coverings. A covering is regular if
there is a subgroup of Aut(H) such that ϕ(u) = ϕ(v) if and only if σ(u) = v for some
automorphism σ ∈ Aut(H). Nemagi’s conjecture is that one can drop the regularity
condition from the above theorem. One can immediately see that showing every graph
with a cover has a regular cover is not easy since H may not have any automorphisms.

If φ : P → G has the property that for any edge uv ∈ P then h(u) 6= h(v), the P is
a planar cover of G. And if Negami’s conjecture holds, then P can be embedded in the
projective plane. What is interesting is that the pictures with boundary words describing
J in Γ(K3,3, b) and Γ(K5, b) have only one crossing.

In [2] it was shown that if G is a planar cover of a non-planar graph H, then the fold
number is even. A sort of converse to this theorem would be desirable for the theory of
pictures for solution groups. Every planar cover of a graph is clearly a picture, however,
the converse is believed to be false in general, it would seem natural to prove some sort of
result characterizing when pictures had to be covers.

Proposition C.1. If P is a planar cover of G then, either

ch(P)v =

{
1

0
, for all v ∈ V . (C.1)

Proof. Follows directly from the fact that every cover is a closed G-picture of G and ch(P)v
is the parity of the |φ−1(v)|.

Is there an angle on Negami’s conjecture here, or using this machinery to prove Arkhipov’s
theorem with pictures? In particular, can we prove Proposition 3.4.3 without Arkhipov’s
construction?
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C.3 Quantum advantage for oddly-2-coloured planar graphs

When the colouring is odd and G is connected and planar we know that there are no
classical nor quantum perfect strategies to G(G, b). However, for a given distribution on
the inputs, we can calculate the classical value of the game. In this case, we know by
embedding the CHSH game into a graph-LinBCS game that there are quantum strategies
that provide some advantage over the optimal classical strategy, in particular, there are
graph-LinBCS games for which ω < ω∗ < 1. It would be desirable to relate the quantum
advantage ω∗−ω to some parameter of the pair (G, b). Perhaps for graph-LinBCS games,
there is an efficient semi-definite program for computing the entangled value ω∗ of these
games?

C.4 Other planarity criteria for graphs

Recall that a simple graph is not-planar if |E| > 3n − 6, given that ω = 1 when G is
non-planar, it is natural to conjecture that perhaps the higher the connectivity κ(G) of the
graph the larger the value of ω. There are also other abstract characterizations of graph
planarity, such as MacLane’s planarity criterion and the Hanani-Tutte theorem, perhaps
these are related to the value of ω and ω∗?

C.5 Graph-LinBCS games and MIP∗

The complexity class MIP∗ of multi-prover interactive proofs (MIP), where provers3 can
share arbitrary entanglement is closely related to non-local games. It is a famous result in
complexity theory due to Babai, Fortnow, and Lund that MIP=NEXP (non-deterministic
exponential time). However, in the case of MIP∗ with the additional entanglement resource,
there is evidence to suggest that NEXP(MIP∗. Given the efficiency at which classical
values and potentially quantum values can be found for graph-LinBCS games, perhaps
there are consequences of our results in the context of complexity theory.

3In the case of a non-local game the players are the provers.
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