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Abstract

Knowledge graphs are considered an important representation that lie between free text
on one hand and fully-structured relational data on the other. Knowledge graphs are
a back-bone of many applications on the Web. With the rise of many large-scale open-
domain knowledge graphs like Freebase, DBpedia, and Yago, various applications including
document retrieval, question answering, and data integration have been relying on them.

In this thesis, We are primarily interested in knowledge graphs from the perspective
of integrating disparate heterogeneous sources, with an eye towards applications such as
document retrieval and question answering. Integrating different knowledge graphs is very
important for enriching the knowledge shared among them. The core part of this inte-
gration process is matching entities across the knowledge graphs. The biggest challenge
to entity matching is the ambiguity. The obvious solution is to make use of the graph
structure and entity neighbourhoods for matching and disambiguating entities.

We formalize the entity matching problem and present the first large-scale dataset,
Ambiguous DBpedia-Wikidata, for this task based on exiting cross-ontology links be-
tween DBpedia and Wikidata, focused on several hundred thousand ambiguous entities.
We propose an entity matching framework that is capable of disambiguating entities across
different knowledge graphs. The framework consists of fuzzy string matcher and graph
embedding-based matcher. Using a classification-based approach, we find that a simple
multi-layered perceptron based on representations derived from RDF2VEC graph embed-
dings of entities in each knowledge graph is sufficient to achieve high accuracy, with only
limited training data. The contribution of our work is both a large dataset for examining
this problem and strong baselines on which future work can be based.

We also present SimpleDBpediaQA, a new benchmark dataset for simple question
answering over knowledge graphs that was created by mapping SimpleQuestions entities
and predicates from Freebase to DBpedia. We show how entity matching using manual
annotations can be used for migrating datasets across knowledge graphs. Although this
mapping is conceptually straightforward, there are a number of nuances that make the task
non-trivial, owing to the different conceptual organizations of the two knowledge graphs.

Finally, if manual annotations are scarce, we show how our entity matching framework
can be used to generate free annotations to train our model and then use it for disam-
biguation. In that essence, we introduce SimpleQuestions++, a new question answering
benchmark that have all questions linked to Freebase, DBpedia, and Wikidata.
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Chapter 1

Introduction

Knowledge graphs form an important representation that lie between free text on one hand
and fully-structured relational data on the other. Knowledge graphs have proven useful for
many applications, including document retrieval [16] and question answering [31]. We are
primarily interested in them from the perspective of integrating disparate heterogeneous
sources, with an eye towards applications such as document retrieval and question answer-
ing. In this context, there are two main challenges that need to be tackled: First, linking
mentions extracted from free text to entities in a knowledge graph. As there already exists
many large-scale efforts such as Freebase [9], DBpedia [2], Wikidata [46], and YAGO [42],
to support interoperability there is a need to match entities across multiple resources that
refer to the same real-world entity. Addressing this challenge would, for example, allow
mentions in free text that have been linked to entities in one knowledge graph to benefit
from knowledge encoded elsewhere.

Ambiguity, of course, is the biggest challenge to this problem; for example, there are 21
persons named Adam Smith in DBpedia and 24 in Wikidata. The obvious solution is to
exploit the context of entities and leverage the structured graph nature of the knowledge
graphs for matching and disambiguating entities.

In this thesis, we propose an entity matching1 framework for matching and disambiguat-
ing entities across multiple, and possibly heterogeneous knowledge graphs. The proposed
framework consists of a fuzzy string matcher and a graph embedding-based matcher. To-
gether, they provide a simple yet effective solution for the entity matching problem. We
show how graph embeddings can be exploited to boost the disambiguation effectiveness

1We use entity mapping and entity matching interchangeably througout the thesis
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using a simple Multi Layer Perceptron (MLP) model. We also show how our framework
can work without the need of handcrafted annotations.

Furthermore, we provide the community with a large-scale dataset for entity matching
that focuses on ambiguous cases to pave the way for future work. We extensively evaluate
our model on the new benchmark and examine the effects of varying the number of needed
free annotations.

We also present SimpleDBpediaQA, a new dataset that we have created by mapping
entities and predicates that comprise the answers to SimpleQuestions dataset from Free-
base to DBpedia. Unlike Freebase, DBpedia is actively maintained by a dedicated commu-
nity. We describe how this dataset migration is accomplished via high-quality alignments
between entities in the two different knowledge graphs, and explain many of the nuances
that make the creation of this dataset non-trivial.

Furthermore, we introduce SimpleQuestions++, a new question answering bench-
mark that is also based on the popular SimpleQuestions dataset. The introduced bench-
mark consists of a subset of questions that we linked to Freebase, DBpedia, and Wikidata.
This enables future benchmarking of question answering models on different knowledge
graphs to show how the model performs in different settings and different knowledge graphs
structures.

Finally, We showcase how our proposed entity matching framework can be used for
generating free question answering benchmarks on multiple knowledge graphs given any
dataset that is only linked to one knowledge graph. In essence, that enables training
multiple question answering models for multiple knowledge graphs using only one seed
benchmark.

1.1 Contributions

The main contributions of the thesis are summarized in the following:

• We formulate the problem of entity matching across knowledge graphs and propose
a simple yet strong framework that can effectively match and disambiguate entities
across different knowledge graphs.

• We provide the community with the first, to our knowledge, large scale dataset
that focuses on the ambiguous entity matching problem and evaluate our proposed
framework on it.

2



• We introduce SimpleDBpediaQA, a high-quality large-scale dataset which we cre-
ated by mapping the original SimpleQuestions dataset from Freebase to DBpedia.

• We also introduce SimpleQuestions++, a unified SimpleQuestions dataset that
include a big subset of questions that are linked to Freebase, DBpedia, and Wikidata.

• We use SimpleQuestions++ as a downstream use case for our proposed entity
matching framework and show how we can exploit a question answering dataset
linked to a knowledge graph to create another question answering model on another
knowledge graph.

1.2 Thesis Organization

Chapter 2 reviews some of the needed background concepts and fundamentals for un-
derstanding the covered topics in the thesis and presents an overview for the relevant
related work on entity matching across multiple knowledge graphs as well as factoid simple
question answering over knowledge graphs. Chapter 3 describes in detail the proposed
framework for entity matching and disambiguation across multiple knowledge graphs and
presents a novel large-scale dataset for ambiguous entity mapping across DBpedia and
Wikidata. Chapter 4 introduces the SimpleDBpediaQA dataset and describes in details
the migration process. Chapter 5 explains SimpleQuestions++ dataset which is the
updated version of the original SimpleQuestions dataset and includes entities linked
into Freebase, DBpedia, and Wikidata. Finally, Chapter 6 concludes the thesis.

3



Chapter 2

Background and Related Work

In this chapter, we briefly revise some of the topics that are necessary for understanding the
work done in this thesis. After that, we discuss some of the previous work done on entity
matching in general and entity matching across knowledge graphs in particular. We also
discuss previous work done on question answering over knowledge graphs and the popular
datasets used for benchmarking question answering models in order to lay foundation to
our contribution.

2.1 The Semantic Web and Knowledge Graphs

The Semantic Web1, proposed by Sir Tim Berners-Lee in [6], provides a common framework
that allows data to be shared and reused across application, enterprise, and community
boundaries. It is a collaborative effort led by World Wide Consortium (W3C)2 with partici-
pation from a large number of researchers and industrial partners. Originally, the Semantic
Web aimed to facilitate the integration and combination of data collected from various re-
sources by defining common formats for interchanging documents on the web. Recently,
it has also been extended as a language for describing how the data relates to real-word
entities.

The Semantic Web is not just about putting data on the web. It is about
making links, so that a person or machine can explore the web of data. With

1https://www.w3.org/2001/sw/
2https://www.w3.org/
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linked data, when you have some of it, you can find other, related, data. (Tim
Berners-Lee)

2.1.1 Resource Description Framework

Since the beginning, the Semantic Web has promoted a graph-based representation of
knowledge, e.g., using the Resource Description Framework (RDF) standard3. As defined
by the W3C recommendation for RDF4, it is a framework for representing information in
the Web. RDF graphs are sets of subject-predicate-object triples, where the elements may
be Internationalized Resource Identifier (IRI), blank nodes, or data-typed literals. They are
used to express descriptions of resources. In such a graph-based knowledge representation,
entities, which are the nodes of the graph, are connected by predicates, which are the edges
of the graph (e.g., Alexander the Great founded Alexandria), and entities can have
types, denoted by is a predicate (e.g., Alexandria is a City). The sets of possible types
and predicates are organized in a schema or ontology, which defines their interrelations and
restrictions of their usage.

More formally, we adopt the definition in [36].

Definition 2.1.1. RDF An RDF graph is a labeled graph G = (V,E), where V is a set of
vertices, and E is a set of directed edges, where each vertex v ∈ V is identified by a unique
identifier, and each edge e ∈ E is labeled with a label from a finite set of edge labels.

2.1.2 Linked Open Data

As the Semantic Web emerged, the necessity of organizing and sharing data over the web
has increased. Linked Data [7] has been proposed as a way of using the Web to connect
related data that wasn’t previously linked, or using the Web to lower the barriers to linking
data currently linked using other methods5. More specifically, Wikipedia defines Linked
Data as “a term used to describe a recommended best practice for exposing, sharing, and
connecting pieces of data, information, and knowledge on the Semantic Web using URIs
and RDF.”

To further facilitate these efforts, Linked Open Data (LOD)6 was introduced in [7].
LOD is an open, interlinked collection of datasets in machine-interpretable form, covering

3https://www.w3.org/RDF/
4https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
5http://linkeddata.org/
6https://www.w3.org/DesignIssues/LinkedData.html
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multiple domains from life sciences to government data [39]. As a result of interlinking
different datasets together, the collection is conceptually seen as one large knowledge graph,
although very heterogeneous. Currently, the LOD cloud contains 1,234 interlinked datasets
with 16,136 links (as of June 2018). Figure 2.1 depicts the structure of the LOD cloud7.

2.1.3 Knowledge Graphs

As mentioned in [34], the term Knowledge Graph was coined by Google in 2012, referring to
their use of semantic knowledge in Web Search (“Things, not string”), and is recently also
used to refer to Semantic Web knowledge bases DBpedia, Freebase, Wikidata, YAGO. From
a broader perspective, any graph-based representation of knowledge can be considered a
knowledge graph (e.g., any RDF dataset). Nonetheless, there is no definition that is agreed
upon regarding what a knowledge graph is. To refrain from defining a formal definition,
we can outline the desired characteristics of a knowledge graph. A knowledge graph:

• mainly describes real world entities and their interrelations, organized in a graph.

• defines possible classes and relations of entities in a schema.

• allows for potentially interrelating arbitrary entities with each other.

• covers various topical domains.

Freebase

Freebase [10] is a popular public, editable open knowledge graph with schema templates
for most kinds of possible entities (i.e., persons, cities, movies, etc.). The data in it
is collaboratively structured and maintained. Freebase uses the notions of objects, facts,
types, and properties. Each object is uniquely identified by a MID (Machine ID). An object
has one or more types, and uses properties with these types to represent facts. According
to [34], the last version of Freebase contains roughly 50 million entities and 3 billion facts.
Freebases schema comprises roughly 27,000 entity types and 38,000 relation types. Freebase
was launched by Metaweb in 2007 and acquired by Google in 2010. Unfortunately, in 2014
Google decided to shutdown Freebase and it is now defunct.

7https://lod-cloud.net/
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Figure 2.1: The Linked Open Data cloud
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DBpedia

DBpedia [8] is another very popular knowledge graph which is extracted from structured
data in Wikipedia. Typically, key-value pairs in the infobox tables of Wikipedia are first
extracted and then mapped, in a crowd-sourced process, to DBpedia. Keys and types of
the extracted infoboxes are mapped to DBpedia’s properties and ontology respectively.
The most recent DBpedia release (2016-10)8 is based on updated Wikipedia dumps from
October 2016. The latest release consists of 13 billion RDF triples. 1.7 billion triples
were extracted from the English edition of Wikipedia, 6.6 billion triples were extracted
from other language editions, and the rest was extracted from Wikipedia Commons9 and
Wikidata. The latest ontology includes 760 classes, and 2859 properties.

Wikidata

Wikidata [46] is a collaboratively edited knowledge base hosted by the Wikimedia Foun-
dation10. Wikidata is interlinked to many languages that are featured in WIkipedia which
makes it very rich. After the shutdown of Freebase11, the data contained in Freebase is
subsequently moved to Wikidata. Currently, Wikidata contains roughly 54 million in-
stances12 and 673 million statements13. Its schema defines roughly 23,000 types14 and
5,816 relations15.

2.2 Word Embedding

Natural language models have been proposed to overcome the drawbacks of traditional
language models (e.g. bag of words) such as high dimensionality and data sparsity. Neu-
ral language models avoid this problem by representing words in a distributed way, as
non-linear combinations of weights in a neural network. The goal of these approaches is
estimating the likelihood of a specific sequence of words appearing in a corpus by analyzing
the context.

8http://wiki.dbpedia.org/blog/new-dbpedia-release-%E2%80%93-2016-10
9https://commons.wikimedia.org/wiki/Main_Page

10https://en.wikipedia.org/wiki/Wikimedia_Foundation
11http://plus.google.com/109936836907132434202/posts/3aYFVNf92A1
12https://www.wikidata.org/wiki/Wikidata:Statistics
13https://tools.wmflabs.org/wikidata-todo/stats.php
14http://tools.wmflabs.org/wikidata-exports/miga/?classes#_cat=Classes
15https://www.wikidata.org/w/index.php?title=Special:ListProperties
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More specifically, a word embedding, W : w → Rd is a parameterized function that
maps a word, w, to a d-dimensional vector space. Typically, the function is a lookup table
parameterized by a matrix, θ, with a row n for each word [33]:

Wθ(wn) = θn

Word embeddings encapsulate latent semantics of words by exploiting the observation
that semantically-similar words appear in similar contexts. Word embeddings are usually
trained on large corpora in an unsupervised fashion.

One of the most popular and widely-adopted neural language models is word2vec [29,
30]. Word2vec is a computationally-efficient two-layer neural network model for learning
word embeddings. It comes with two model architectures: (a) CBOW model, and (b)
Skip-Gram model. Figure 2.2 shows the architecture of the models.

2.2.1 Continuous Bag-of-Words Model

CBOW model is used to predict a target word from its context within a given window.
The input layer consists of all the words before and after the target word wt with the
given window. The input vectors retrieved from the input weight matrix are averaged and
then projected. After that, the output weights which are retrieved from the output weight
matrix are used to compute a score for each word in the vocabulary. The score is the
probability of the word being a target word. Given a sequence of words w1, w2, . . . , wT ,
and a context window c, then the objective of CBOW is to maximize the average log
probability:

1

T

T∑
t=1

logP (wt|wt−cwt−1 . . . wt+1wt+c), (2.1)

where the probability P (wt|wt−cwt−1 . . . wt+1wt+c) is calculated using the softmax func-
tion:

P (wt|wt−cwt−1 . . . wt+1wt+c) =
exp(v̄Tv′wt

)∑|V |
w=1 exp(v̄Tv′wt

)
, (2.2)

where v′w is the output vector of the word w, V is the complete vocabulary of words,
and v̄ is the averaged input vector of all the context words:
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v̄ =
1

2c

∑
−c≤j≤c,j 6=0

vwt+j
(2.3)

2.2.2 Skip-Gram Model

Inversely, the skip-gram model is used to predict the context words given the target word.
Given a sequence of words w1, w2, . . . , wT , and a context window c, the objective of the
skip-gram model is to maximize the average log probability:

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

logP (wt+j|wt), (2.4)

where the probability P (wt+j|wt) is calculated using the softmax function:

P (wo|wi) =
exp(v

′T
wo
vwi

)∑|V |
w=1 exp(v′T

wo
vwi

)
, (2.5)

where vw and v′w are the input and the output vectors of the word w, and V is the
complete vocabulary of words.

Since computing the softmax function for both models is inefficient due to the depen-
dence on the size of the vocabulary; two optimization techniques have been introduced:
(a) hierarchical softmax, and (b)negative sampling. Emperical analysis have shown that
negative sampling yields better performance in most cases.

2.3 Graph Embedding

Graphs are a natural way of representing diverse real-world phenomena. The ubiquity of
graphs has been manifested in different scenarios. Social media networks are clear exam-
ples of how graph models can be useful. Other applications include citation networks in
research, protein-protein interaction networks in biology, and knowledge graphs. Analyzing
different graphs can help us understand how networks interact in a systematic way. Graph
analytics have enabled various applications on top of graphs such as friendship or followers
recommendations and community detection in social networks, content recommendations
in multimedia, and interactions between proteins.
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Figure 2.2: Architecture of CBOW and Skip-gram models [29]
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Graph analytics can be classified according to [23] into node classification, link predic-
tion, clustering, and visualization. Many techniques have been proposed to tackle these
tasks either by directly working on the original graph or on a vector representation of it.

With the rise of machine learning as an effective technique for solving different prob-
lems, obtaining a vector representation of graphs has become essential. This vector rep-
resentation is usually referred to as an embedding. Graph embedding has proven to be
advantageous for machine learning and has gained much attention and popularity recently.
In particular, graph embedding takes a graph as input and outputs a low-dimensional
vector representation of part or whole of the graph while preserving its information [12].

The output of the graph embedding can be of different granularity as follows:

• Node embedding: Each node in the graph is represented as a vector in low-
dimensional space such that nodes that are similar in the graph have similar vec-
tor representations. Differences between graph embedding techniques arise from how
they define the similarity of two nodes and how they encode this information in vector
representations.

• Edge embedding: Each edge in the graph is represented as a vector in low-
dimensional space.

• Hybrid embedding: It is a combination of node-edge embedding.

• Whole graph embedding: It is usually used to encode small graphs such as pro-
teins or molecules. Two similar graphs should have similar embedding.

2.3.1 RDF2VEC

RDF2Vec [37] is a popular graph embedding technique for RDF graphs. It adopts neural
language models which was first introduced in [29, 30] to embed natural language text into
vector space word embeddings. Word embeddings were proposed to create low-dimensional
vector representations of words that satisfy two essential properties: (a) similar words are
close in the vector space, and (b) arithmetic operations on relations between words can
also be represented as vectors.

In case of RDF graphs, there are entities and predicates between entities in contrast
to words in natural language text. To adapt the neural language models to RDF, the
graph has to be first transformed into sentences comprising sequences of entities with their
relations to other entities. After that, the same neural language models can be trained on
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the generated sentences to output a vector representation for each entity preserving the
same properties.

RDF Graph Sub-Structures Extraction

To generate sentences (sequences) from the RDF, two approaches are used: (a) graph
walks, and (b) Weisfeiler-Lehman Subtree RDF graph kernels.

Definition 2.3.1. Graph Sequence It is a sequence of vertices vi and edges ei such that
for 1 ≤ i ≤ k, the edge ei has endpoints vi−1 and vi, and the length of the sequence is the
number of edges in it.

For each vertex v ∈ V , the goal is to generate a set of sequences Sv such that for each
sequence s ∈ Sv, the first vertex is v.

Graph Walks Given a graph G = (V,E), for each vertex v ∈ V , we generate all graph
walks Pv of depth d rooted at vertex v. A breadth-first algorithm is used to generate these
walks. In the first iteration, the direct outgoing edges of root vertex vr are generated. In
the next iterations, the same procedure is applied to each previously visited vertex and so
on. The algorithm terminates after d iterations. The output of this algorithm is the set of
graph sequences PG =

⋃
v∈V Pv.

Weisfeiler-Lehman Subtree RDF Graph Kernels The Weisfeiler-Lehman sub-tree
graph kernel [40] is an efficient, state-of-the-art, kernel for graph comparison. The approach
is to count the number of shared sub-trees between two or more graphs using Weisfeiler-
Lehman test of graph isomorphism. To adapt this approach to the RDF graph, [18, 17]
did two modification on the original Weisfeiler-Lehman algorithm. First, since the RDF
graph has directed edges, this means that the neighbours of a vertex v are only the vertices
reachable by its outgoing edges. Second, in the original algorithm, the labels of two previous
iterations might be different while representing the same sub-tree. To handle this, the labels
from a previous iteration is kept in track and if they are equivalent to the labels in the
current iteration they are reused.

Converting the RDF graph to a sequence of entities and relations is as follows: (1)
given a graph G = (V,E), the parameters needed for the Weisfeiler-Lehman algorithm
are chosen where h is the number of iterations, and d is the vertex subgraph depth which
defines the subgraph in which the subtrees will be counted for a vertex v. (2) after each
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iteration, for each vertex v, all the paths of depth d are extracted from the relabeled graph.
The original label of the vertex v is set to be the first token of each generated sequence.
(3) step (2) is repeated h times. The output of this algorithm is a set of graph sequences
of all iterations PG =

⋃h
i=1

⋃
v∈V Pv.

Neural Language Models After that, the generated sentences using both techniques
are used to train a Word2vec model as discussed in section 2.2.

2.4 Entity Matching

Research related to knowledge graph integration comes from the database community and
focuses on ontology matching—referred to as record-linkage, entity resolution, or dedu-
plication. Examples include Magellan [26], DeepER [20], and the work of [32]. The
primary difference between these work and ours is that they assume relational data and fur-
thermore that the tables to be matched have been already aligned using schema matching
techniques.

For example, Magellan [26] is an entity matching system that is built in Python data-
science eco-system to cover the entire entity matching pipeline (e.g. blocking, matching,
debugging, sampling). Also DeepER [20] is an entity resolution system that captures
syntactic and semantic similarities of tuples using deep learning models. In [32], they
categorize the entity matching problem space into structured, textual, and dirty entity
matching. However, these systems are tailored for relational data and they assume that
the tables to be matched have been already aligned using schema matching techniques.
These systems cannot be directly applied to entity matching across knowledge graphs due
to the difference in structure of both the relational model and RDF model.

The Semantic Web community has studied the problem of matching entities across
knowledge graphs. For example, researchers have introduced the Ontology Alignment
Evaluation Initiative (OAEI) to focus on ontology matching of knowledge graphs. However,
the benchmarks used in the evaluation are quite small in scale. For example spimbench
benchmark[38] has a total of only 1800 instances and 50,000 triples. In comparison, our
dataset is much bigger on the scale of hundreds of thousands.

According to [14], entity matching techniques in knowledge graphs are classified into:
(1) value-oriented techniques that define the similarity between instances on the attributes
level and an appropriate matching technique is used according to attribute type and (2)

14



record-oriented techniques which includes learning-based, similarity-based, rule-based, and
context-based techniques.

The best approaches that performed well in OAEI 2017 either rely on logical reasoning
as in [24] or on textual features as in [1]. In constrast, Our problem formulation and
solution are different for the following reasons: (1) we use graph embedding to capture
the semantics and structure of the knowledge graphs without the need for hand-crafted
features, (2) our system does not require any schema mappings, (3) our approach can make
use of the graph nature of the RDF which has extra knowledge in terms of the connectivity
between nodes and how they relate to one another.

Furthermore, RDF ontologies define a class (type) hierarchy that can be used to provide
more semantics in the matching process. As observed in Section 3.6.2, our system can make
use of these typing information implicitly.

2.5 Question Answering

Question answering over knowledge graphs is an important problem at the intersection
of multiple research communities, with many commercial deployments. To ensure contin-
ued progress, it is important that open and relevant benchmarks are available to support
the comparison of various techniques. In this thesis, as a use case, we focus on the class
of questions that can be answered by a single triple (i.e., fact) from a knowledge graph.
For example, the question “What type of music is on the album Phenomenon?” can be
answered via the lookup of a simple fact—in this case, the “genre” property of the en-
tity “Phenomenon”. Analysis of an existing benchmark dataset [47] and real-world user
questions [15, 45] show that such questions cover a broad range of users’ needs.

The SimpleQuestions dataset [11] has emerged as the de facto benchmark for evalu-
ating these simple questions over knowledge graphs. However, there is one major deficiency
with this resource: the answers draw from Freebase. Unfortunately, Freebase is defunct and
no longer maintained. This creates a number of insurmountable challenges: First, because
the knowledge graph is stale, it is no longer possible to build a “real-world” operational
QA system using models trained on SimpleQuestions. Second, a defunct knowledge
graph means that researchers must develop custom infrastructure for querying, browsing,
and manipulating the graph. Thus, we are not able to leverage multiple cooperative and
interchangeable service APIs that are deployed and maintained by different parties—which
is the strength of the broader “open linked data” ecosystem. While it may be the case
that one can apply transfer learning so that models trained on SimpleQuestions can be

15



re-targeted to another “live” knowledge graph, we are not aware of research along these
lines.

The development and continual advance of question answering techniques over knowl-
edge graphs require benchmark datasets that cover different aspects of the task. Quite
obviously, each dataset has to target one (or more) knowledge graphs, which means that
the structure of the answers are dictated by the conceptual organization of the particular
knowledge graph.

Over the years, researchers have built a number of datasets based on Freebase [10]. For
instance, Free917 [13] contains 917 questions involving 635 distinct Freebase predicates.
WebQuestions [5] contains 5,810 question-answer pairs collected using the Google Sug-
gest API and manually answered using Amazon Mechanical Turk (AMT). Both contain
answers that require complex, multi-hop traversals of the knowledge graph. In contrast,
the SimpleQuestions dataset focuses on questions that can be answered via the lookup
of a single fact (i.e., triple). Due to its much larger size and thus support for data-hungry
machine learning techniques, this dataset has gained great popularity with researchers. Un-
fortunately, Google shut down Freebase in 2015; a final snapshot of the knowledge graph
is still available online for download, but the associated APIs are no longer available.

Like Freebase, DBpedia [8] has also been used as the target knowledge graph for multiple
question answering datasets. For example, QALD16 (Question Answering over Linked
Data) is a series of evaluation campaigns focused on question answering over linked data.
LC-QuAD [44] is another recent dataset that comprises 5,000 questions with answers in
the form of SPARQL queries over DBpedia. These questions are relatively complex and
require the integration of evidence from multiple triples. However, a more recent analysis
by Singh et al. [41] found that only 3,252 of the questions returned answers using the
provided queries.

We are not the first to attempt to migrate SimpleQuestions to another knowledge
graph. Diefenbach et al. [19] mapped the dataset from Freebase to Wikidata.17 How-
ever, our migrated SimpleDBpediaQA dataset has roughly twice the number of mapped
questions. DBpedia is generally considered to be more mature than Wikidata due to its
longer history, and thus we believe targeting DBpedia will ultimately yield higher-impact
applications.

16https://qald.sebastianwalter.org/
17https://www.wikidata.org/wiki/Wikidata:Main Page
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Question Answering Baseline

In this thesis, we use simple yet strong baselines proposed in recent work by Mohammed et
al. [31], who applied techniques with and without neural networks to SimpleQuestions.
We adapt their open-source code18 as a strong question answering baseline when needed
throughout the thesis.

We briefly describe their approach, which decomposes into four tasks:

• Entity Detection: Given a question, the task is to identify the topic entity of
the question. For this task, we examined bidirectional Long Short-Term Memory
(LSTM)s and Conditional Random Field (CRF)s.

• Entity Linking: Detected entities (text strings) need to be linked to entities in
the knowledge graph (e.g., URI from DBpedia in our case). This is formulated as a
string matching problem: Levenshtein Distance is used along with a few heuristics
for ranking candidate entities.

• Predicate Prediction: Given a question, the task is to identify the predicate being
queried. We examined three models: bidirectional Gated Recurrent Unit (GRU),
Convolutional Neural Network (CNN), and Logistic Regression (LR). The first two
are standard neural network models; for logistic regression we used as input the
average of the word embeddings of each word. BiGRU was selected over BiLSTM
based on the experiments of Mohammed et al. [31], where it was found to be slightly
more accurate.

• Evidence Integration: With m candidate entities and r candidate predicates from
the previous components, the evidence integration model selects the best (entity,
predicate) pair based on the product of each component score as well as a number of
heuristics.

18http://buboqa.io/
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Chapter 3

Entity Matching and Disambiguation

3.1 Introduction

Knowledge graphs form an important representation that lie between free text on the one
hand and fully-structured relational data on the other. Knowledge graphs have proven use-
ful for many applications, including document retrieval [16] and question answering [31].
We are primarily interested in them from the perspective of integrating disparate hetero-
geneous sources, with an eye towards applications such as document retrieval and question
answering. In this context, there are two main challenges that need to be tackled: First,
linking mentions extracted from free text to entities in a knowledge graph. As there al-
ready exists many large-scale efforts such as Freebase [9], DBpedia [2], Wikidata [46], and
YAGO [42], to support interoperability there is a need to match entities across multiple
resources that refer to the same real-world entity. Addressing this challenge would, for
example, allow mentions in free text that have been linked to entities in one knowledge
graph to benefit from knowledge encoded elsewhere.

In this chapter, first, we offer the community the first large-scale dataset for entity
matching, focusing on ambiguous entities. Second, we show that a simple model performs
well on this dataset [4]. Results suggest that RDF2Vec can capture the context of entities
in a low dimensional semantic space, and that it is possible to learn associations between
distinct semantic spaces (one from each knowledge graph) using a simple MLP to perform
entity matching with high accuracy. Experiment show that only small amounts of train-
ing data are required, but a linear model (LR) on the same graph embeddings performs
poorly. Naturally, we are not the first to have worked on aligning knowledge graphs. While
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more explorations are certainly needed, to our knowledge we are the first to make these
interesting observations.

3.2 Problem Formulation

We begin by formalizing our entity matching problem. Given a source knowledge graph S
containing entities Es = {es1, es2, . . . , esm}, where ei is a Uniform Resource Identifier (URI),
for each entity we wish find the entity (or possible entities) in the target knowledge graph
T containing entities Et = {et1, et2, . . . , etn} that corresponds to the same real-world entity.
This correspondence appeals to the common-sense notion that these entities refers to the
same person, location, etc. In our current formulation, we take a query-based approach:
that is, for a given “query” entity in the source knowledge graph, our task is to determine
the best matching entity (or set of entities) in the target knowledge graph.

3.2.1 Entity Ambiguity

Ambiguity, of course, is the the biggest challenge to this problem: for example, there are
21 persons named “Adam Smith” in DBpedia and 24 in Wikidata. The obvious solution
is to exploit the context of entities for matching. In the next section, we present a dataset
for entity matching between DBpedia and Wikidata that specifically focuses on ambiguous
cases. Interestingly, experimental results show that with a classification-based formulation,
an off-the-shelf graph embedding, RDF2Vec [37], combined with a simple MLP achieves
high accuracy on this dataset.

3.3 Entity Matching Framework

Our entity proposed entity matching approach consists of two components: (1) Fuzzy
String Matcher, and (2) Graph embedding-based Matcher. As discussed in Section 3.2,
the inputs to the framework are the source and the target knowledge graphs S and T
containing entities sets ES and ET , respectively. The overall architecture of the entity
matching framework is shown in Figure 3.1.

First, all entities from the source knowledge graph are fed into the fuzzy string matcher.
Then, the unambiguous entities (only one exact match found) are directly mapped to the
target knowledge graph. The unambiguous entities are further used as training data for
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Figure 3.1: Architecture Overview for the Entity Matching Framework

the graph embedding-based matcher. Finally, the trained model is used to disambiguate
the ambiguous data and match them to the target knowledge graph.

3.3.1 Fuzzy String Matcher

First, for each entity eS ∈ ES, the fuzzy string matcher is used to find the set of the entities
matches(eS) ⊆ ET that have the exact label of entity eS. This set acts as a candidates set
for eS, where there is only one entity eT that is equivalent to eS, which is what we need to
find.

If the candidates set has only one candidate (i.e. |matches(eS)| = 1), then this means
there is no ambiguity for entity eS and we declare that candidate as eT . Otherwise, if the
candidates set has more than one candidate (i.e. |matches(eS)| > 1), then eS is considered
to be an ambiguous entity that needs further investigation.

Let US ⊆ ES, AS ⊆ ES denote the set of all unambiguous and ambiguous entities in
ES, where ES = US ∪ AS. After that stage, we are left with the set A that needs to be
disambiguated to find the actual corresponding target entities. This is the reason we use
the graph embedding-based matcher.
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Free Positive Examples

It is worth mentioning that the set U can be used as a free source of positive sameAs
mappings. This will be discussed shortly in the next section.

3.3.2 Graph embedding-based Matcher

We propose a classification approach to tackle the entity matching problem across knowl-
edge graphs. Here, we use point-wise training strategy: a classifier is trained on each
source–target entity pair and the probability of predicting a match is used for candidate
ranking. As mentioned in the previous section, the set of unambiguous entities U can be
used as a free training set for the classifier without the need of any handcrafted annotations
which means that the whole matching process can be done automatically.

As discussed in Section 2.3, a graph embedding is used to represent a graph in a
low dimensional semantic space while preserving its structure. Different graph embedding
techniques have been introduced recently to capture different aspects of the graph structure.
In our case, we need to preserve the structural as well as the semantic features of the nodes
(entities) so that semantically-similar nodes are close to each other in the embedding
space. For this reason, we decided on using one of best graph embedding algorithms,
RDF2Vec [37], as our graph embedding technique.

The RDF graph is firstly unfolded into a set of k sequences of entities with predicates
connecting them forming natural language sentences. This is typically performed using two
approaches: graph walks and Weisfeiler-Lehman Subtree RDF graph kernels. After that,
the generated sentences are used to train a Word2Vec [29, 30] over the natural language
output. The outcome of this step is a d -dimensional vector for each entity.

After the above process, the embedding of the query entity in the source knowledge
graph and candidate entity in the target knowledge graph are concatenated into one feature
vector and then fed into a multi-layer perceptron with one hidden layer using ReLU activa-
tion function, followed by fully-connected layer and softmax to output the final prediction.
The model is trained using Adam optimizer [25], and negative log-likelihood loss function
is used. Each pair of training example is associated with the ground truth from our dataset
described in the previous section. We rank the candidates by the match probability for
evaluation. As a baseline, we compare our MLP with a simple LR model over the exact
same input vectors.
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3.4 Infrastructure

3.4.1 Knowledge Graphs Store

We use Apache Jena1 as an RDF store for efficiently querying the knowledge graph using
SPARQL when needed. We also deployed Apache Jena Fuseki2 for exposing SPARQL
endpoints via REST API. We deployed services for DBpedia and Wikidata.

3.4.2 Labels Index

In our framework, we need to be able to quickly get all the entities URIs of a certain label.
This query can be processed in SPARQL by it takes a lot of time. To be able to get the
URIs instantly, we created labels index using sqlitedict3, a persistent dictionary backed by
sqlite3 and pickle, where each key is a label and the value is a list of entities URIs that
have that label. We created two indices for DBpedia and Wikidata.

3.4.3 Embeddings Index

Since the number of the entities in both DBpedia and Wikipedia is huge, loading the
embeddings of all entities in the knowledge graphs in memory is inefficient. Therfore, we
use sqlitedict as a persistent key-value store for quickly accessing embeddings when needed.
We created two indices for DBpedia and Wikidata.

3.5 Experiments

We evaluate our framework on two large-scale datasets sampled from DBpedia and Wiki-
data. One has DBpedia as the source knowledge graph and Wikidata as the target knowl-
edge graph and vice versa. Table 3.2 shows the number of entities in each dataset. The
percentage of ambiguous entities in the dataset is shown in Table 3.1.

We evaluate our end-to-end framework on both datasets. The Top 1 accuracy of the
entity matching is shown in Table 3.3 and Table 3.5. MRR is shown in Table 3.6 and
Table 3.6.

1https://jena.apache.org/
2https://jena.apache.org/documentation/fuseki2/
3https://github.com/RaRe-Technologies/sqlitedict
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Dataset Ambiguous Entities (%)
DB to WD 34%
WD to DB 33%

Table 3.1: Dataset Statistics

Dataset Number of Entities
DB to WD 112,820
WD to DB 98,797

Table 3.2: Dataset Ambiguity

It is clear that the framework is effective in matching and disambiguating entities
without the need of any manual annotation. The framework exploit the unambiguous
entities in the knowledge graphs as training data in a weakly supervised fashion to train
the graph embedding-based classifier to disambiguate the other ambiguous entities.

Model Unambiguous Ambiguous All

Fuzzy 0.99 0.299 0.767
LR - 0.291 -

MLP - 0.714 -
Fuzzy + LR - - 0.763

Fuzzy + MLP - - 0.904

Table 3.3: Top-1 Accuracy on DBpedia to Wikidata Dataset.

3.6 Ambiguous DBpedia-Wikidata Dataset

Since ambiguity is the biggest challenge for entity matching problem, we create a bench-
mark dataset that focuses on ambiguous entities in DBpedia and Wikidata. That is, for
each entity in the dataset, there exists more than one entity in the target knowledge graph
that has exactly the same label of the entity to be mapped.

We then show the performance of our entity matching approach on the benchmark and
we study the effects of having more ambiguity in terms of the number of possible candidates
and the effects of changing the number of manual annotations used in training.
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Model Ambiguous All

LR 0.523 -
MLP 0.820 -

Fuzzy + LR - 0.841
Fuzzy + MLP - 0.940

Table 3.4: MRR Accuracy on DBpedia to Wikidata Dataset.

Model Unambiguous Ambiguous All

Fuzzy 0.98 0.311 0.768
LR - 0.334 -

MLP - 0.701 -
Fuzzy + LR - - 0.777

Fuzzy + MLP - - 0.900

Table 3.5: Top-1 Accuracy on Wikidata to DBpedia Dataset.

3.6.1 Dataset Construction

To further evaluate our framework, we created a benchmark dataset exploiting OWL:sameAs

predicates that link entities between DBpedia (2016-10)4 and Wikidata (2018-10-29)5.
These predicates are manually curated and can be viewed as high quality ground truth.
The total number of mappings we obtained by querying DBpedia and Wikidata using
SPARQL was 6,974,651. We removed all mappings referring to Wikipedia disambiguation
pages.

Although in principle entities with different labels in two knowledge graphs may refer to
the same real-world entity, we wish to focus on the ambiguity problem and hence restrict our
consideration to entities in knowledge graphs that share the same label—more precisely, the
foaf:name predicate in DBpedia and the rdfs:label predicate in Wikidata. Furthermore,
to make our task more challenging, we only consider ambiguous cases. To accomplish this,
we first built two inverted indexes of the labels of all entities of DBpedia and Wikidata.
Our problem formulation leads to the construction of two datasets, each corresponding to
name matching in each direction:

4https://wiki.dbpedia.org/downloads-2016-10
5https://dumps.wikimedia.org/wikidatawiki/entities/20181029/
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Model Ambiguous All

LR 0.560 -
MLP 0.815 -

Fuzzy + LR - 0.853
Fuzzy + MLP - 0.938

Table 3.6: MRR Accuracy on Wikidata to DBpedia Dataset.

DBpedia to Wikidata Dataset

Here, we take DBpedia as the source knowledge graph and Wikidata as the target. For
each entity in DBpedia, we queried the above index to retrieve entities with the same name
in Wikidata, which forms a candidate set for disambiguation. Our focus is on ambiguous
entities, and so we discard source DBpedia entities in which there is only one entity with
the same name in Wikidata. For example, there are several people with the name “John
Burt”: John Burt (footballer), John Burt (rugby union), John Burt (anti-abortion activist),
and John Burt (field hockey). Of these, only one choice is correct, which is determined
by the owl:sameAs predicate: this provides our positive ground truth label. Thus, in each
candidate set there is only one positive candidate and many negative candidates. The
dataset contains 376,065 unique DBpedia URIs comprising the queries with a total of
232,757 unique names, and 967,937 unique Wikidata URIs as candidates.

Wikidata to DBpedia Dataset

We can apply exactly the same procedure as above to build a dataset with DBpedia as
the source and Wikidata as the target. The resulting dataset contains 329,320 unique
Wikidata URIs comprising the queries with a total of 293,712 unique names and 523,517
unique DBpedia URIs as candidates.

Finally, we shuffled and split the data into training, validation, and test set with a ratio
of 70%, 10%, and 20% respectively. The dataset statistics are summarized in Table 3.7.
Figure 3.2 shows the number of query (source) entities with different numbers of target
entities. We see Zipf-like distribution: although most query entities have only a moderate
number of possible candidates (e.g., less than 10), there exist outliers with hundreds or
even more candidates. Note that by construction, our name matching problem cannot be
solved by any more NLP techniques on text alone, since the source entities and target
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Figure 3.2: Log-log plot showing the number of candidate URIs for each corresponding
query URI

Dataset Training Validation Testing Total
DB to WD 263,245 37,607 75,213 376,065
WD to DB 230,523 32,933 658,64 329,320

Table 3.7: Dataset Statistics

entities share exactly the same name. Thus, the context for disambiguation must come
from a non-text source.

3.6.2 Experimental Evaluation

We use the benchmark introduced in Section 3.6 to evaluate our model. For each query in
the dataset, we have one positive candidate and several negative candidates. Entities in
each of DBpedia and Wikidata are embedded independently. As a result, each entity has
two different embeddings, one in each knowledge graph. We use pretrained embeddings6

that used k = 200 walks with depth l = 4 as hyper-parameters. The embeddings were
trained using the skip-gram model with d = 500 which showed better results in [37]. If an
entity has no pretrained embedding, a randomly-initialized embedding is used.

We evaluate the model on the test set with the best configuration tuned on the valida-
tion set, using the entire training set, The MLP hidden layer has size 750, with a learning
rate of 0.001 and a batch size of 1024. MRR is used for evaluation.

6http://data.dws.informatik.uni-mannheim.de/rdf2vec/
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Figure 3.3: MRR on validation set for different types of queries. Number on top of each
bar indicates the size of examples
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Overall, on test set, MLP model achieves 0.85 MRR mapping DBpedia entities to Wiki-
data and 0.81 MRR mapping Wikidata entities to DBpedia. In comparison, without the
non-linear feature transformation,7 a linear model like LR fails to learn a good decision
boundary and achieves only 0.64 MRR and 0.62 MRR, respectively. Note that the embed-
dings of each knowledge graph are learned separately, which means that our model is not
simply learning to match words in semantic relations—but actually learning correspon-
dences between two semantic spaces. For reference, a random guessing baseline yields 0.25
MRR and 0.32 MRR, respectively.

Figure 3.3 breaks down performance according to entity type. We observe that types
Album and MusicalWork yield worse results than the others, primarily there are greater
ambiguity—these two types have larger candidates sizes, averaging 12.1 and 11.0 respec-
tively, compared to persons, whose average candidates size is only 6.5.

Based on error analysis, we observe that our model lacks the fine-grained ability to
disambiguate entities in the same type/domain in some case.

For example, in music domain, our model cannot differentiate the record company
Sunday Best and the single Sunday Best by Megan Washington. Overall, for cases where
the model fails to place the correct entities at rank one but succeeds at second rank
instead, 79.5% of them have same type entities in these two positions in the validation set
of DBpedia-to-Wikidata dataset.

For example, given a query entity Sunday Best (song) from DBpedia, which is a song by
Australian musician Washington, the model ranked Q7639339, a British record company,
in the first position, and ranked correct entity Q7639338, a single by Megan Washington,
in second position.

Effects of increasing number of candidates: In our next analysis, we investigate
the effects of the candidates size against the effectiveness. We measure the MRR of the
MLP model on the validation set for different number of candidates. As shown in Fig-
ure 3.4, the MRR decreases for the queries that have large number of candidates. We
calculate MRR for each unique candidate size and then use boxplot to aggregate MRR in
each bin.

Effects of increasing training set size: Finally, we wanted to examine the effects of
changing training set size. Figure 3.5 shows the effect of changing the size of the training
set with percentages of {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100} on the MRR evaluated on the
validation set. We sample from the training and validation set respectively while preserving

7A MLP can be regarded as a LR classifier where the input is transformed with non-linear function,
which projects the feature into linear-separable.
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Figure 3.4: MRR on validation set for different number of candidates (numbers on top are
the total number of queries in each bin)

the 70:10 ratio. We repeat the sampling and run the models 10 times for the first 4 points
and 5 times for the rest. 95% CI are shown in the graph in shaded colors to capture the
variance of the samples. We observe that with a small fraction of the whole training set,
the MLP model can achieve reasonable MRR. For example, with only 0.5% of the training
set, the MLP model can achieve 0.74 MRR compared to 0.81 MRR on the whole training
set.

3.7 Conclusion

We explore the problem of entity matching across knowledge graphs, sharing with the com-
munity two benchmark datasets. We introduces entity matching framework that combines
a fuzzy string matcher with a graph embedding-based matcher for disambiguating am-
biguous entities. Although the framework is quite simple, our models reveal some insights
about the nature of this problem and paves the way for future work.
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Figure 3.5: MRR when varying the size of the training set (x-axis is in log-scale)
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Chapter 4

SimpleDBpediaQA: Dataset
Migration with Manual Annotations

4.1 Introduction

Question answering over knowledge graphs is an important problem of interest both com-
mercially and academically. There is substantial interest in the class of natural language
questions that can be answered via the lookup of a single fact, driven by the availability of
the popular SimpleQuestions dataset. The problem with this dataset, however, is that
answer triples are provided from Freebase, which has been defunct for several years. As a
result, it is difficult to build “real-world” question answering systems that are operationally
deployable. Furthermore, a defunct knowledge graph means that much of the infrastruc-
ture for querying, browsing, and manipulating triples no longer exists. To address this
problem, we present SimpleDBpediaQA [3], a new benchmark dataset for simple ques-
tion answering over knowledge graphs that was created by mapping SimpleQuestions
entities and predicates that comprise the answers to SimpleQuestions from Freebase to
DBpedia. Unlike Freebase, DBpedia is actively maintained by a dedicated community.from
Freebase to DBpedia.

Although this mapping is conceptually straightforward, there are a number of nuances
that make the task non-trivial, owing to the different conceptual organizations of the two
knowledge graphs.

We describe how this dataset migration is accomplished via high-quality alignments
between entities in the two different knowledge graphs, and explain many of the nuances
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Dataset Training Validation Test Total

SimpleQuestions 75,910 10,845 21,687 108,442
SimpleDBpediaQA 30,186 4,305 8,595 43,086

Table 4.1: Statistics of SimpleQuestions and SimpleDBpediaQA.

that make the creation of this dataset non-trivial. Our new dataset includes a total of
43,086 questions and corresponding answers that cover 40% of the original dataset. Sum-
mary statistics of SimpleDBpediaQA and SimpleQuestions are shown in Table 4.1.
The complete dataset is available at https://github.com/castorini/SimpleDBpediaQA.

In addition to the contribution of providing the community with a new evaluation re-
source, we provide a series of simple yet strong baselines to lay the foundation for future
work. These baselines include neural network models and other techniques that do not
take advantage of neural networks, building on recently-published work [31]. An addi-
tional contribution of this thesis is that having two parallel datasets allows us to examine
the effects of different conceptual organizations and knowledge graph structures: For ex-
ample, we notice that many single-fact triples in Freebase require two-hop traversals in
the DBpedia knowledge graph, which makes them no longer “simple” questions. Finally,
evaluation resources targeting different conceptual organizations of knowledge help “keep
researchers honest” in guarding against model overfitting on a single dataset.

4.2 Problem Definition

We begin with a formal definition of our problem. Let E = {e1, e2, · · · , er} be a set of
entities, where ei is a Uniform Resource Identifier (URI) uniquely identifying each entity.
Let P = {p1, p2, · · · , ps} be a set of predicates. Let S ⊆ E be a set of subjects and
O ⊆ (L ∪ E) be a set of objects, where L is a set of literals. In this context, t = (s, p, o)
denotes a RDF triple, comprised of a subject s ∈ S, a predicate p ∈ P , and an object
o ∈ O.

Given this formalism, Freebase [10] represents a specific knowledge graph T b, where
T b = {tb1, · · · , tbm} (i.e., a set of Freebase triples). Each Freebase entity is uniquely identified
by a Mid (Machine ID). Similarly, DBpedia [8] represents another knowledge graph T d,
where T d = {td1, · · · , tdn}.

The SimpleQuestions dataset is a collection of natural language questions and an-
swers based on Freebase. Formally, Qb = {qb1, · · · , qbl }, where qbi = (Qi, tbj); Qi is a natural
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language question and tbj ∈ T b is a Freebase triple that supplies the answer to that question.

For example, the question “Who wrote The New Canada?” has the following answer
triple:

(fb:m/02qtvzv, fb:book/written work/author, fb:m/01hxz2)

where fb stands for the prefix http://www.freebase.com/. The subject of the above answer
triple is referred to as the topic entity, and the object of the triple is referred to as the
answer entity. To answer the natural language question, a system must correctly identify
the topic entity and the predicate, and then consult the knowledge graph to look up the
answer entity.

Given Freebase T b, DBpedia T d, and SimpleQuestions Qb, our problem can be for-
mally defined as follows: for each qbi = (Qi, tbj) ∈ Qb, find qdi = (Qi, tdk), where tdk ∈ T d is a
DBpedia triple, such that tbj is semantically equivalent to tdk. The result Qd = {qd1 , · · · , qdl }
is our SimpleDBpediaQA dataset. Although this characterizes the basic structure of
the problem, there are a number of nuances that deviate from this formalism, which we
describe in the following sections.

4.3 Approach

Our overall strategy for dataset migration breaks down into the following steps: entity
mapping, predicate mapping, and candidate refinement. At a high level, we begin by
first mapping the topic and answer entities from Freebase to DBpedia; these then serve
as anchors from which we can project the Freebase predicates to DBpedia. To assist in
the process, we ingest the knowledge graphs into an RDF store to facilitate querying via
SPARQL. For this effort, we use the latest version of DBpedia released in 20171.

4.3.1 Entity Mapping

The first step is to map Freebase entities from SimpleQuestions to entities in DBpedia.
Freebase Mids and DBpedia URIs are linked through the predicate:

http://www.w3.org/2002/07/owl#sameAs;

1https://wiki.dbpedia.org/develop/datasets/dbpedia-version-2016-10

33



these official mappings are released as part of DBpedia2. For each Freebase entity Mid
(topic entity or answer entity), we issue a SPARQL query to retrieve the corresponding
DBpedia URI. For example, Justin Trudeau, the current Prime Minister of Canada, is
mapped via the triple:

(dbr:Justin Trudeau, http://www.w3.org/2002/07/owl#sameAs, fb:m/02b5jh).

Here and throughout the thesis we use dbr as the DBpedia prefix for
http://dbpedia.org/resource/. For approximately 56% of questions in SimpleQues-
tions, we can map both the topic entity and the answer entity from Freebase to DBpedia.
For the remaining questions, we are only able to map the topic entity, the answer entity,
or neither. The detailed breakdowns are shown in Table 4.2.

Note that the URI for Justin Trudeau can be used to uniquely identify this entity
within the broader open linked data ecosystem. For example, a human-readable version
of facts associated with this individual is located at http://dbpedia.org/page/Justin Trudeau.
This, as well as a variety of other libraries, toolkits, APIs, etc. provide infrastructure that
simplifies the development of operational question answering systems. The existence of
these resources illustrates one of the major benefits of migrating SimpleQuestions over
to a knowledge graph that is actively maintained by a dedicated community.

4.3.2 Predicate Mapping

One-Hop Predicates

Let us consider the case where we are able to map both the topic entity and the answer
entity from Freebase to DBpedia. We can then issue a SPARQL query over DBpedia
to enumerate the paths (sequence of one or more predicates) connecting those entities.
In the simplest case, there is a single predicate connecting the topic entity to the answer
entity, which yields a straightforward mapping of the triple from Freebase to DBpedia.
This occurs for approximately half of the questions with successfully mapped topic and
answer entities; see detailed statistics in Table 4.2.

Consider the question “Which city is McCormick Field in?” The Freebase topic entity
fb:m/05 xgn is mapped to DBpedia as dbr:McCormick Field and the answer entity is mapped
from fb:m/0ydpd to dbr:Asheville, North Carolina. The DBpedia predicate dbo:location connects
those two entities, which provides a valid and correct mapping for the Freebase predicate

2http://downloads.dbpedia.org/2016-10/core-i18n/en/freebase_links_en.ttl.bz2
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fb:location/location/containedby. Here and throughout the paper we use dbo as the DBpedia
prefix for http://dbpedia.org/ontology/.

Due to differences in the conceptual organization of the two knowledge graphs, the di-
rectionality of equivalent predicates in Freebase and DBpedia may differ. For example, the
DBpedia predicate dbo:birthPlace takes a person as the subject and a location as the object,
whereas the equivalent predicate in Freebase fb:location/location/people born here inverts the
subject and object. Therefore, for a question such as “Who was born in Aguascalientes?”,
the subject in the Freebase triple becomes the object in the DBpedia triple.

During the migration from Freebase to DBpedia, if the directionality of the mapped
predicate is the same, we refer to the result as a forward predicate; if the directionality is
reversed, we refer to the result as a backward predicate. We explicitly keep track of this
metadata, which is necessary for the actual question answering task.

Two-Hop Predicates

Next, we consider the more complex case where the topic entity and the answer entity
are not directly connected by a single predicate in DBpedia. That is, the results of our
SPARQL query over DBpedia to enumerate the paths connecting the mapped entities
contain multiple hops. In this work, we only consider two-hop traversals, as even longer
paths are generally rare and spurious. These two-hop predicates can be categorized into
the following:

• Disambiguation Predicates

• Redirections Predicates

• Complex Predicates

• Missing Predicates

Disambiguation Predicates DBpedia uses wikiPageDisambiguates predicates to disam-
biguate different entities with the same name. The DBpedia sameAs links, however, might
map a Freebase Mid to an ambiguous URI, thus yielding a two-hop traversal from the topic
entity to the answer entity. In these cases, we can “compress” the path back into a single
predicate by changing the original topic entity to the disambiguated entity. Note that
this disambiguation process can occur with forward predicates, as in Figure 4.1a, where
dbr:Jack Carr is disambiguated to dbr:Jack Carr (footballer, born 1878), as well as backward
predicates, as in Figure 4.1b, where dbr:QBS is disambiguated to dbr:QBS (band).
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dbr:Jack_Carr dbr:Jack_Carr_(footballer,_born_1878) dbr:England

dbo:wikiPageDisambiguates dbo:deathPlace

fb:m/027szxj fb:m/02jx1

fb:people/deceased_person/place_of_death

Where did Jack Carr die?

(a) Forward Predicate

dbr:EMI_Music_Japan dbr:QBS_(band) dbr:QBS

dbo:recordLabel dbo:wikiPageDisambiguates

fb:m/05b0f7 fb:m/0vptyhb

fb:music/record_label/artist

What is an artist associated with Emi Music Japan?

(b) Backward Predicate

Figure 4.1: Examples of mapping disambiguation predicates from Freebase to DBpedia.

dbr:The_Mind's_I dbr:Douglas_R._Hofstadter dbr:Douglas_Hofstadter

dbo:author dbo:wikiPageRedirects

fb:m/01bchh fb:m/02fcx

fb:book/written_work/author

Who wrote The Mind's I?

(a) Forward Predicate

dbr:Midfielder dbr:Defensive_Midfielder dbr:Stelios_Iliadis

dbo:wikiPageRedirects dbo:position

fb:m/02nzb8 fb:m/047cjkf

fb:soccer/football_position/players

What player plays the position midfielder?

(b) Backward Predicate

Figure 4.2: Examples of mapping redirection predicates from Freebase to DBpedia.

Redirections Predicates Similar to disambiguation links, DBpedia uses wikiPageRedi-

rects predicates to redirect an entity to another entity (typically, the canonical variant of
that entity). As with disambiguation predicates above, these two-hop redirection pred-
icates can also be compressed into a single triple. For example, dbr:Douglas Hofstadter

is redirected back to dbr:Douglas R. Hofstadter and dbr:Midfielder is redirected back to
dbr:Defensive Midfielder, as shown in Figure 4.2a and Figure 4.2b, respectively. Once again,
this can occur with both forward and backward predicates.

Complex Predicates Due to differences in the conceptual organization of Freebase
and DBpedia, there is no direct equivalent in DBpedia for some Freebase predicates.
Instead, a chain of two predicates is necessary to capture the relationship between the
topic and answer entities. An example is shown in Figure 4.3a: the question “What
army was involved in Siege of Clonmel?” can be answered using the Freebase predicate
fb:base/culturalevent/event/entity involved, but in DBpedia the same fact requires a chain of
two predicates, dbo:commander and dbo:militaryBranch. Note that this can also occur with
backward predicates, as shown in Figure 4.3b.

36



dbr:Siege_of_Clonmel dbr:Oliver_Cromwell dbr:New_Model_Army

dbo:commander dbo:militaryBranch

fb:m/055595 fb:m/018rcx

fb:base/culturalevent/event/entity_involved

What army was involved in Siege of Clonmel?

(a) Forward Predicate

dbr:Vigo_County,_Indiana dbr:Terre_Haute,_Indiana dbr:TribuneStar

dbo:isPartOf dbo:headquarter

fb:m/0nsrv fb:m/0cb489

fb:periodicals/newspaper_circulation_area/newspapers

What newspaper circulates through Vigo county?

(b) Backward Predicate

Figure 4.3: Examples of mapping complex predicates from Freebase to DBpedia.

dbr:Mike_Altieri dbr:Kingston,_Pennsylvania dbr:United_States

dbo:birthplace dbo:country

fb:m/01k9gr fb:m/04v7h9

fb:people/person/nationality

What country does Mike Altieri represent?

(a) Forward Predicate

dbr:Xanth dbr:Geis_of_the_Gargoyle dbr:Harpy_Thyme

dbo:series dbo:subsequentWork

fb:m/018c66 fb:m/0bk331

fb:fictional_universe/fictional_universe/works_set_here

What is the name of a book that takes place in Xanth?

(b) Backward Predicate

Figure 4.4: Examples of missing predicates in DBpedia.

Missing Predicates Some questions in DBpedia are answered using two-hop predicates
even though there exists a one-hop predicate in the knowledge graph that represents a
better mapping; this situation arises due to the incompleteness of DBpedia. Note that
missing predicates actually represent a special case of complex predicates, which we only
discovered by manual examination of the predicate mapping results.

Nevertheless, it seems appropriate to separately categorize this particular type of pred-
icate mismatch between Freebase and DBpedia. An example is shown in Figure 4.4a:
The entity dbr:Mike Altieri should have a predicate dbo:nationality that directly links to
dbr:United States, as is typical of person entities.

However, since this predicate is missing, our SPARQL query discovered a roundabout
path via dbo:birthplace then dbo:country. Figure 4.4b shows a similar case involving a
backward predicate, where the entity dbr:Harpy Thyme should have a predicate dbo:series

that directly links to dbr:Xanth; instead, the answer entity is discovered via the extra hop
dbo:subsequentWork. We believe that DBpedia can be enhanced by inserting these missing
links, but augmenting DBpedia is beyond the scope of this work.

Detailed statistics of these two-hop predicate matches are shown in Table 4.2. As
described above, there is no automatic way to differentiate between complex and missing
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predicates, and thus we provide the sum of the two categories. For questions that have
both topic and answer entity mappings, we are not able to find any predicate mappings
for approximately 34% of them.

4.3.3 Candidates Refinement

The output of the initial entity and predicate mapping process (as described above) is then
refined to produce the final SimpleDBpediaQA dataset; detailed statistics are shown in
Table 4.3. In this section, we detail the candidate refinement process.

The need for post-processing candidate results from the output of the processes de-
scribed above is apparent from manual examination. While the entity mappings are gen-
erally of high quality, some of the mapped predicates are invalid, primarily due to two
reasons:

• Semantic drift: Some candidate predicates are not semantically correct even though
the answer may be factually correct. For example, consider the question “From where
does Anjali Devi claim nationality?” The predicate mapping produces dbo:deathPlace

instead of the correct predicate, dbo:nationality. This is because the correct predicate
is missing for this entity, and by coincidence, this person’s nationality is the same as
her death place.

• Predicate constraints: In some cases, we observe mismatches between the domains
of the subjects or objects of a Freebase predicate and its corresponding DBpedia
predicate. For example, the DBpedia predicate dbo:author can take as subject books,
movies, etc. However, the Freebase predicate fb:book/author/works written can only
be mapped to the DBpedia predicate dbo:author (in the backward direction) if the
DBpedia subject has the type dbo:WrittenWork. More generally, a predicate mapping
is valid only under certain type constraints.

To tackle these challenges with minimal manual effort, we construct manual rules that map
high-frequency Freebase predicates in the initial mappings to all potentially correct (at the
semantic level) DBpedia predicates. Each rule includes a Freebase predicate and a list of
corresponding DBpedia predicates, an associated directionality (forward or backward), and
an optional type constraint. A few examples are shown in Table 4.4. The interannotator
agreement of these rules based on three human annotators is 97%, where agreement is
computed as the number of predicates that were identically labeled by all the annotators,
divided by the count of all predicates.
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Training Validation Test Total

Mapped
Entities

Mapped
Predicates

One Hop 22,158 3,193 6,304 31,655

Two Hop
Disambiguation 173 24 59 256
Redirection 1,992 247 553 2,792
Complex + Missing 3,504 501 985 4,990

Not Mapped Predicates 14,875 2,059 4,373 21,307

Sub-Total 42,702 6,024 12,274 61,000

Not Mapped
Entities

Only Answer Entity Mapped 18,040 2,635 5,174 25,849
Only Topic Entity Mapped 9,611 1,415 2,648 13,674
Both Not Mapped 5,557 771 1,591 7,919

Sub-Total 33,208 4,821 9,413 47,442

SimpleQuestions Total 75,910 10,845 21,687 108,442

Table 4.2: Statistics from the initial mapping of entities and predicates in SimpleQues-
tions.

Using these mapping rules, we can filter and discard spurious one-hop mappings (in-
cluding the disambiguation and redirection cases) where both the topic and answer entities
are correctly mapped. Furthermore, we can expand the dataset by applying these rules to
a few additional cases. Consider the case of complex and missing predicate: since these
questions have two-hop predicates, making them no longer “simple questions”, they would
have been discarded from our dataset. However, we can issue a SPARQL query using
the topic entity and the mapped DBpedia predicates from our mapping rules to search for
valid answers (ignoring the answer entity). If the query returns a result, we can add the
question to our dataset. Heuristically, this means that the question does have an answer
in DBpedia, just not the same as the one provided in Freebase.

The same process can be applied to cases where we have successfully mapped the entities
but not the predicates, and even to cases where we have only successfully mapped the topic
entity. As a concrete example, for the question “What is a song by John Rutter?”, only
the topic entity is mapped. Based on our rules, the Freebase predicate fb:music/artist/track

is mapped to the DBpedia predicate dbo:artist with a constraint of dbo:MusicalWork in the
backward direction. Using the topic entity as an anchor, a SPARQL query returns a valid
result.

Detailed statistics from the refinement process are shown in Table 4.3. The final out-
put of entity mapping, predicate mapping, and candidate refinement is our SimpleDB-
pediaQA dataset, which successfully migrates SimpleQuestions from Freebase over to
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Training Validation Test Total

Mapped
Entities

Mapped
Predicates

One Hop 19,271 2,773 5,467 27,511

Two Hop
Disambiguation 84 17 32 133
Redirection 1,547 191 429 2,167
Complex + Missing 1,365 191 377 1,933

Not Mapped Predicates 3,940 531 1,183 5,654

Sub-Total 26,207 3,703 7,488 37,398

Not Mapped
Entities

Only Answer Entity Mapped 0 0 0 0
Only Topic Entity Mapped 3,979 602 1,107 5,688
Both Not Mapped 0 0 0 0

Sub-Total 3,979 602 1,107 5,688

SimpleDBpediaQA Total 30,186 4,305 8,595 43,086

Table 4.3: Final statistics of SimpleDBpediaQA following candidates refinement.

Freebase
Predicate

DBpedia
Predicate Directionality

Type
Constraint

fb:architecture/structure/architect dbo:architect forward -
fb:location/location/contains dbo:country backward -
fb:baseball/baseball position/players dbo:position backward dbo:BaseballPlayer

fb:music/album release type/albums dbo:type backward dbo:Album

fb:book/author/works written dbo:author backward dbo:WrittenWork

Table 4.4: Examples of predicate mapping rules.

DBpedia.

4.4 Question Answering Model

As discussed in Section 2.5, we evaluate the question answering model on SimpleDBpe-
diaQA and compare it to the original results on SimpleQuestions.

One additional detail is necessary to understand our experimental methodology for entity
detection. In SimpleQuestions, the topic entity is not explicitly tagged in the natural
language question at the token level; as a result, SimpleDBpediaQA does not have token-
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Entity Linking R@1 R@5

BiLSTM 78.0 88.2
CRF 75.1 85.4

Predicate Prediction R@1 R@5

CNN 89.2 99.1
BiGRU 88.1 99.0
LR 84.2 97.6

Table 4.5: Component accuracy on validation set.

level annotations either. This presents a problem, as our formulation of entity detection
as sequence labeling requires per-token labels. The solution adopted by Mohammed et
al. [31] with SimpleQuestions was to “back-project” the entities onto the natural lan-
guage questions to automatically derive token labels, either Entity or NotEntity. We
performed exactly the same back-projection in this work. If the entity text can be matched
exactly in the question, the corresponding tokens are tagged appropriately. If there is no
exact match, n-grams are generated from the question (from length one up to the length
of the question) and the Levenshtein Distances between these n-grams and the entity text
are computed. The n-gram with the highest score is selected and the corresponding tokens
are tagged appropriately. We find that 94.1% of questions have exact matches with entity
strings.

4.5 Experiment Results

We evaluated the quality of our models in the same way as Mohammed et al. [31]: For
entity detection, we compute F1 in terms of the entity labels. For both entity linking and
predicate prediction, we evaluate recall at N (R@N). For the final end-to-end evaluation,
we use accuracy (or equivalently, R@1). For evidence integration, our model considers
20 entity candidates and 5 predicate candidates. All hyper-parameters and other settings
follow the original paper; we have not specifically fine-tuned parameters for this dataset.

For entity detection, on the validation set, the Bidirectional Long Short-Term Memory
(BiLSTM) achieves 90.3 F1, compared to the CRF at 88.1. The top of Table 4.5 shows
the entity linking results for the BiLSTM and the CRF. These results are consistent with
the findings of Mohammed et al. [31]: the BiLSTM achieves a higher F1 score than the
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Entity Detection Relation Prediction Accuracy

BiLSTM CNN 78.5
BiLSTM BiGRU 78.2
BiLSTM LR 75.8

CRF CNN 76.1
CRF BiGRU 76.0
CRF LR 73.5

Table 4.6: End-to-end accuracy on test set.

CRF, which translates into higher recall in entity linking (both R@1 and R@5). Predicate
prediction results are shown on the bottom of Table 4.5: the CNN slightly outperforms the
Bidirectional Gated Recurrent Unit (BiGRU) on R@1, but in terms of R@5 the accuracy
of both are quite similar. The neural network models appear to be more effective than
logistic regression.

Finally, Table 4.6 shows end-to-end accuracy on the test set. The best model combina-
tion uses the BiLSTM for entity detection and the CNN for predicate prediction, achieving
78.5% accuracy. By swapping the BiLSTM with the CRF for entity detection, we observe
a 2.4% absolute decrease in end-to-end accuracy. Results from other combinations are also
shown in Table 4.6. Note that using the CRF for entity detection and LR for predicate
prediction, which is a baseline that does not use neural networks (with the exception of
word embeddings), is also reasonably accurate. This finding is also consistent with Mo-
hammed et al. [31], who advocate that Natural Language Processing (NLP) researchers
examine baselines that do not involve neural networks as a sort of “sanity check”.

4.6 Error Analysis

Following Lukovnikov et al. [28], we sampled 200 examples of errors on the test set from
the BiLSTM + CNN model to analyze their causes. We manually classified them into the
following categories, summarized in Table 4.7 and described below:

• Hard ambiguity: The context provided by the question is insufficient, even for a hu-
man, to disambiguate between two or more entities with the same name. In these
cases, our model correctly identified the entity string, but linked it to an incorrect en-
tity in the knowledge graph. For example, in the question “What is the place of birth
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Error Type # Errors Prevalence

Hard ambiguity 42 21.0%
Soft ambiguity 21 10.5%
Entity detection error 19 9.5%
Predicate prediction error 28 14.0%
Error in both 90 45.0%

Total 200 100.0%

Table 4.7: Results of error analysis.

of Sam Edwards?”, it is unclear if Sam Edwards refers to the actor dbr:Sam Edwards

or the physicist dbr:Sam Edwards (physicist).

• Soft ambiguity: The context provided by the question is sufficient to disambiguate
the entity, but our model fails to identify the correct entity in the knowledge graph.
In these cases, our model correctly identified the entity string, so the error is isolated
to the entity linking component. For example, in the question “What kind of show
is All In?”, the model predicted dbr:All In (song) instead of dbr:All In (TV series) (the
correct entity). Note that in this case, it is clear to a human based on context that
the question refers to a show and not a song.

• Entity detection error: The extracted entity string is incorrect.

• Predicate prediction error: The predicted predicate is incorrect.

• Error in both: Both the extracted entity and the predicted predicate are incorrect.

From the above analysis, we find that there is still substantial room to improve on the
effectiveness of our baselines. However, these results also suggest that there is an upper
bound on accuracy that lies substantially below 100%, as the cases of hard ambiguity are
difficult to resolve, even for humans. In those cases, correct entity linking is more a matter
of luck and other idiosyncratic characteristics of the dataset rather than signals that can
be reliably extracted to understand the true question intent.

4.7 Conclusion

This chapter presents SimpleDBpediaQA, a new benchmark dataset for simple question
answering over knowledge graphs created by migrating the SimpleQuestions dataset
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from Freebase to DBpedia. Although this mapping process is conceptually straightforward,
there are a number of nuances and complexities we had to overcome with a combination of
special-case handling and heuristics. The result is a dataset targeting a knowledge graph
that is actively maintained by a dedicated community. We hope that our efforts better
connect existing research communities, in particular, NLP researchers with the open linked
data community, and spur additional work in question answering over knowledge graphs.
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Chapter 5

SimpleQuestions++: Dataset
Migration without Manual
Annotations

5.1 Introduction

As discussed in Section 2.5, SimpleQuestions++ dataset has emerged as the de facto
benchmark for evaluating simple questions over knowledge graphs. However, Simple-
Questions dataset is solely based on Freebase, in other words, all entities in the dataset
are only linked to Freebase.

Having parallel datasets allows us to examine the effects of different conceptual orga-
nizations and knowledge graph structures: For example, we notice that many single-fact
triples in Freebase require two-hop traversals in the DBpedia knowledge graph, which
makes them no longer “simple” questions. Furthermore, most question answering models
over knowledge graphs that are released in research community are only benchmarked on
datasets that are linked to a single knowledge graph.

There is a real need of benchmarking those models against datasets that are linked to
multiple knowledge graphs that have different different conceptual organizations of knowl-
edge, and different structure of graphs. These benchmarks can help “keep researchers
honest” in guarding against model overfitting on a single dataset.

In this chapter, we describe SimpleQuestions++ dataset, an updated version of
SimpleQuestions dataset, that has questions linked to Freebase, DBpedia, and Wiki-
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data which can be used as the aforementioned benchmark. Moreover, we evaluate our en-
tity mapping and disambiguation model on the DBpedia-Wikidata portion of the dataset
and show how the model can be used to automatically migrate datasets from one knowl-
edge graph to another. The complete dataset is available at https://github.com/

MichaelAzmy/SimpleQuestionsQA.

5.2 Unified SimpleQuestions Dataset

5.2.1 Entity Mapping

We use the same approach in Section 4.3.1. We make use of http://www.w3.org/2002/
07/owl#sameAs predicate that links knowledge graph URIs. We use the official mappings
between DBpedia and Freebase that are released as part of DBpedia1. We also make use of
the official mappings between Freebase and Wikidata that are released as part of Freebase2.
In addition, we queried DBpedia SPARQL end-point to obtain mappings between DBpedia
and Wikidata. The summary of the numbers of obtained mappings are shown in Table 5.1.

The goal is to map, to the best effort, entities of SimpleQuestions from Freebase to
both DBpedia and Wikidata using the multiple mappings obtained.

Direct Mapping

The straightforward approach is to directly check if a given Freebase entity exists in the
mappings of the target knoweldge graph. For example, when mapping entities from Free-
base to DBpedia, we check the Freebase-DBpedia mappings to find a direct mapping. If a
mapping exists, then the process is done. Otherwise we try transitive mapping.

Transitive Mapping

We make use of the transitive property of the mappings for all entities that were not
found in the direct mappings. That is, if we are mapping an entity from Freebase to
DBpedia, we check if that entity has a direct mapping between Freebase-Wikidata and
Wikidata-DBpedia, where Wikidata here acts as a bridge between the source and the
target knowledge graphs. This approach help find more mappings with minimal effort.

1http://downloads.dbpedia.org/2016-10/core-i18n/en/freebase_links_en.ttl.bz2
2https://developers.google.com/freebase/#freebase-wikidata-mappings
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The entities that we didn’t find a mapping for using both methods are declared as not
mapped.

The summary of the statistics of the entity mapping of SimpleQuestions++ is shown
in Table 5.2. The numbers in brackets are the total number of actual entities appearing
in the original SimpleQuestions dataset. Since some entities can appear more than one
time in different questions, we also show the numbers of unique entities. In addition, an
entity can appear as a subject as well as an object, so we show both statistics.

DBpedia-Freebase Freebase-Wikidata DBpedia-Wikidata

4,389,741 6,974,361 20,967,457

Table 5.1: Statistics of mappings between Freebase, DBpedia, and Wikdiata.

Entity Ambiguity

We calcualte the number of ambiguous entities in both datasets. Table 5.3 and Table 5.4
shows the ratio of ambiguous entities in SimpleQuestions for both DBpedia to Wikidata
and Wikidata to DBpedia, respectively. It is clear that Wikidata to DBpedia direction is
more ambiguous, which will be reflected in a lower accuracy for the automatic mapper that
we will discuss in detail in Section 5.3.

5.2.2 Predicate Mapping

After mapping entities of SimpleQuestions, the next step is mapping predicates between
each subject and object. We follow the same procedure from Section 4.3.2. For questions
that we were able to map both the subject and the object, We issue a SPARQL query
over the target knowledge graph to enumerate the one-hop simple path connecting those
entities. The summary of the statistics of the predicate mapping is shown in Table 5.5.

5.2.3 Final Dataset

After the predicate mapping phase, we have two individual datasets (i.e, Freebase to DB-
pedia and Freebase to Wikidata). Since the mapping is done individually, it is expected to
find overlapping and non-overlapping questions in both datasets. Since our final goal is to
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Mapping Training Validation Test Total

D
B

p
ed

ia

S
u

b
je

ct
s Direct 41,297 (52,313) 6,575 (7,439) 12,792 (14,922) 60,664 (74,674)

Transitive 617 (985) 87 (138) 165 (250) 869 (1,373)
Not Mapped 22,054 (22,612) 3,249 (3,268) 6,449 (6,515) 31,752 (32,395)

Sub-Total 63,968 (75,910) 9,910 (10,845) 19,406 (21,687) 93,285 (108,442)

O
b

je
ct

s Direct 25,053 (60,742) 4,767 (8,659) 8,803 (17,448) 38,623 (86,849)
Transitive 315 (1,092) 52 (155) 91 (300) 458 (1,547)
Not Mapped 12,027 (14,076) 1,848 (2,031) 3,515 (3,939) 17,390 (20,046)

Sub-Total 37,395 (75,910) 6,667 (10,845) 12,409 (21,687) 56,471 (108,442)

W
ik

id
at

a S
u

b
je

ct
s Direct 30,063 (40,378) 4,934 (5,775) 9,457 (11,502) 44,454 (57,655)

Transitive 11,782 (12,852) 1,725 (1,797) 3,496 (3,668) 17,003 (18,317)
Not Mapped 22,123 (22,680) 3,252 (3,273) 6,453 (6517) 31,828 (32,470)

Sub-Total 63,968 (75,910) 9,910 (10,845) 19,406 (21,687) 93,285 (108,442)

O
b

je
ct

s Direct 20,348 (52,957) 4,067 (7,588) 7,390 (15,200) 31,805 (75,745)
Transitive 4,992 (8,830) 744 (1,222) 1503 (2,537) 7,239 (12,589)
Not Mapped 12,055 (14,123) 1,856 (2,035) 3,516 (3,950) 17,427 (20,108)

Sub-Total 37,395 (75,910) 6,667 (10,845) 12,409 (21,687) 56,471 (108,442)

Table 5.2: Statistics of entity mapping phase from Freebase to DBpedia and Wikidata in
SimpleQuestions++ dataset. (The numbers without brackets are the unique number
of entities)

get a unified dataset for Freebase, DBpedia and Wikidata, we have to get the overlapping
questions across the mapped dataset. The statistics of the overlapped dataset is shown in
Table 5.6. Furthermore, Table 5.7 shows the number of unique entities in the final uni-
fied dataset, and Table 5.8 shows the final number of questions in SimpleQuestions++
dataset.

5.2.4 Examples

Listing 1 shows an example of a question in the unified dataset. Each question has the
subject and the object mapped to Freebase, DBpedia, and Wikidata. In addition, each
question has a list of possible predicates for each knowledge graph. Listing 2 shows an
example of a question having three Wikidata predicates that can answer the question.
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Training Validation Test

Ambiguity 0.425 0.449 0.432

Table 5.3: Ambiguity of entities in SimpleQuestions++ dataset (DBpedia to Wikidata).

Training Validation Test

Ambiguity 0.570 0.564 0.589

Table 5.4: Ambiguity of entities in SimpleQuestions++ dataset (Wikidata to DBpedia).

5.3 Automatic Entity Mapping

Now that we have a high-quality unified dataset, SimpleQuestions++, we show the
effect of using our proposed entity matching approach discussed in Chapter 3 onautomat-
ically mapping SimpleQuestions++ dataset. The unified dataset acts as ground truth.

We use the same formulation introduced in Section 4.2. Let DB denote DBpedia
knowledge graph and WD denote Wikidata knowledge graph. Let QDB, QWD denote the
ground truth DBpedia and Wikidata datasets in SimpleQuestions++, respectively.

Since we have questions linked to both DBpedia and Wikidata, we use our approach to
automatically map the dataset in both directions without using any manual annotations
(i.e without levaraging any SameAs predicates). We assume that predicates are already
mapped and focus on entity mapping using our framework. This is a valid assumption
because predicates always exist in a small number and can always be manually mapped.

Generating Training Data

First, we use the fuzzy string matcher to map entities from source knowledge graph to
target knowledge graph. For each entity in source knowledge graph, we use the inverted
labels index to get the exactly matching entities from the target knowledge graph. The
output of this stage are two collections as follows:

• Unambiguous entities: entities in source knowledge graph that has only one exact
mapping in target knowledge graph.

• Ambiguous entities: entities in source knowledge graph that has more than one
mapping in target knowledge graph.
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Training Validation Test Total

D
B

p
ed

ia

Mapped
Entities

Mapped Predicates 20,119 2,893 5,755 28,767

Not Mapped Predicates 24,309 3,376 6,973 34,658

Sub-Total 44,428 6,269 12,728 63,425

Not Mapped
Entities

Only Answer Entity Mapped 17,406 2,545 5,020 24,971

Only Topic Entity Mapped 8,870 1,308 2,444 12,622

Both Not Mapped 5,206 723 1,495 7,424

Sub-Total 31,482 4,576 8959 45,017

Total 75,910 10,845 21687 108,442

W
ik

id
at

a

Mapped
Entities

Mapped Predicates 22,420 3,174 6,380 31,974

Not Mapped Predicates 21,897 3,086 6,340 31,323

Sub-Total 44,317 6,260 12,720 63,297

Not Mapped
Entities

Only Answer Entity Mapped 17,470 2,550 5,017 25,037

Only Topic Entity Mapped 8,913 1,312 2,450 12,675

Both Not Mapped 5,210 723 1,500 7,433

Sub-Total 31,593 4,585 8,967 45,145

Total 75,910 10,845 21687 108,442

Table 5.5: Statistics of predicate mapping phase from Freebase to DBpedia and Wikidata
in SimpleQuestions++ dataset.

The first set of entities is trivially mapped (exactly one mapping exists so there is no
ambuiguity). Consequently, we use all of the unambiguous entities as training examples
for the graph embedding-based matcher.

5.3.1 DBpedia to Wikidata

In this section, we consider DB and WD as our source knowledge graph and target knowl-
edge graph, respectively. We use QDB as our source dataset and the goal is to automatically
map the questions of QDB that are linked to DB to QWD′

that is linked to WD.

As per our formulation, we first need to map entities and then issue the SPARQL query
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Training Validation Test Total

Mapped
Entities

Mapped Predicates 13,665 1,947 3,877 19,489

Not Mapped Predicates 15,284 2,114 4,418 21,816

Sub-Total 28,949 4,061 8,295 41,305

Not Mapped
Entities

Only Answer Entity Mapped 17,247 2,522 4965 24,734

Only Topic Entity Mapped 8,750 1,290 2,408 12,448

Both Not Mapped 5,178 720 1,490 7,388

Sub-Total 31,175 4,532 8,863 44,570

Total 60,124 8,593 17,158 85,875

Table 5.6: Statistics of overlapping questions between DBpedia and Wikidata mappings in
SimpleQuestions++.

to get the predicate. Obviously, if any of the subject or the object of a given question are
incorrectly mapped, the question will be incorrect and might negatively affect the question
answering model.

Entity Mapping

After retrieving the training set as described in the previous section, we train the graph
embedding-based matcher and then use the trained model to map the ambiguous entities.

Figure 5.1 shows the Top-1 accuracy of the model on the ambiguous entities, and
Figure 5.2 shows the MRR of the model on the ambiguous entities. Table 5.9 shows the
top 1 accuracy for the end-to-end entity matching framework. Fuzzy string matcher is used
for unambiguous cases and graph embedding-based matcher is used for ambiguous cases. It
is clear that using embeddings for disambiuguation boosts the performance of the matcher.
The fuzzy string matcher can only map ∼ 25% of the ambiguous entities yielding an overall
accuracy of ∼ 66%, however, when it is combined with the embedding-based matcher, it
achieves ∼ 84%. Table 5.10 shows the final statistics of the automatically-mapped dataset.
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Training Validation Test
F

re
eb

as
e

Unique Topic Entities 12,153 1,847 3,598

Unique Answer Entities 8,487 1,486 2,779

Overlap Topic and Answer Entities 995 92 264

Overall Unique Entities 19,645 3,241 6,113

D
B

p
ed

ia

Unique Topic Entities 12,152 1,847 3,598

Unique Answer Entities 8,487 1,486 2,779

Overlap Topic and Answer Entities 997 92 264

Overall Unique Entities 19,642 3,241 6,113

W
ik

id
at

a

Unique Topic Entities 12,153 1,847 3,598

Unique Answer Entities 8,487 1,486 2,779

Overlap Topic and Answer Entities 996 92 264

Overall Unique Entities 19,644 3,241 6,113

Table 5.7: Statistics of entities in SimpleQuestions++ dataset.

Dataset Training Validation Test Total

SimpleQuestions 75,910 10,845 21,687 108,442
SimpleQuestions++ 13,665 1,947 3,877 19,489

Table 5.8: Statistics of SimpleQuestions and SimpleQuestions++.

5.3.2 Wikidata to DBpedia

In this section, we consider WD and DB as our source knowledge graph and target knowl-
edge graph, respectively. We useQWD as our source dataset and the goal is to automatically
map the questions of QWD that are linked to WD to QDB′

that is linked to DB.

Similarly, we first need to map entities and then issue the SPARQL query to get the
predicate. Obviously, if any of the subject or the object of a given question are incorrectly
mapped, the question will be incorrect and might negatively affect the question answering
model.
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Model Unambiguous Ambiguous All

Fuzzy 0.982 0.254 0.697
LR - 0.567 -

MLP - 0.612 -
Fuzzy + LR - - 0.820

Fuzzy + MLP - - 0.837

Table 5.9: Top-1 Accuracy on SimpleQuestions++ dataset (DBpedia to Wikidata).

Training Validation Test

Both Subject and Object Mapped 4,688 687 1,340

Only Subject Mapped 4,150 604 1,176

Only Object Mapped 2,452 331 715

Both Subject and Object Not Mapped 1,659 228 441

Total Questions 12,949 1,850 3,672

Table 5.10: Statistics of automatically mapped entities in SimpleQuestions++ dataset
(DBpedia to Wikidata).

Entity Mapping

After retrieving the training set as described in the previous section, we train the graph
embedding-based matcher and then use the trained model to map the ambiguous entities.

Figure 5.3 shows the Top-1 accuracy of the model on the ambiguous entities, and
Figure 5.4 shows the MRR of the model on the ambiguous entities.

Table 5.11 shows the top 1 accuracy for the end-to-end entity matching framework.
Fuzzy string matcher is used for unambiguous cases and graph embedding-based matcher
is used for ambiguous cases. It is clear that using embeddings for disambiuguation boosts
the performance of the matcher. The fuzzy string matcher can only map ∼ 56% of the
ambiguous entities yielding an overall accuracy of ∼ 72%, however, when it is combined
with the embedding-based matcher, it achieves ∼ 80%. Table 5.12 shows the final statistics
of the automatically-mapped dataset.

53



Model Unambiguous Ambiguous All

Fuzzy 0.951 0.566 0.725
LR - 0.650 -

MLP - 0.709 -
Fuzzy + LR - - 0.775

Fuzzy + MLP - - 0.809

Table 5.11: Top-1 Accuracy on SimpleQuestions++ dataset (Wikidata to DBpedia).

Training Validation Test

Both Subject and Object Mapped 5,145 744 1,435

Only Subject Mapped 3934 579 1,135

Only Object Mapped 2,379 326 687

Both Subject and Object Not Mapped 1,491 201 405

Total Questions 12,949 1,850 3,672

Table 5.12: Statistics of automatically mapped entities in SimpleQuestions++ dataset
(Wikidata to DBpedia).

5.4 Conclusion

With exploring the problem of entity matching across knowledge graphs, sharing with
the community a new large-scale benchmark and new baseline models which leverages the
structure information from graph embedding, and offer detailed analysis on this problem
at the same time. Although quite simple, our model reveals some insights about the nature
of this problem and paves the way for future work.
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{

"ID": "00007",

"Question": "what movie is produced by warner bros.",

"Subject": {

"Freebase": "www.freebase.com/m/086k8",

"DBpedia": "http://dbpedia.org/resource/Warner_Bros.",

"Wikidata": "http://www.wikidata.org/entity/Q126399"

},

"Object": {

"Freebase": "www.freebase.com/m/0278x5r",

"DBpedia": "http://dbpedia.org/resource/Saving_Shiloh",

"Wikidata": "http://www.wikidata.org/entity/Q7428297"

},

"Predicates": {

"Freebase": [

{

"Predicate": "www.freebase.com/film/production_company/films",

"Direction": "Forward"

}

],

"DBpedia": [

{

"Predicate": "http://dbpedia.org/ontology/distributor",

"Direction": "Backward"

}

],

"Wikidata": [

{

"Predicate": "http://www.wikidata.org/prop/direct/P750",

"Direction": "Backward"

}

]

}

}

Listing 1: Example of a single-predicate question in SimpleQuestions++
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{

"ID": "75905",

"Question": "What airport is near the city elista",

"Subject": {

"Freebase": "www.freebase.com/m/02fd8s",

"DBpedia": "http://dbpedia.org/resource/Elista",

"Wikidata": "http://www.wikidata.org/entity/Q3977"

},

"Object": {

"Freebase": "www.freebase.com/m/0273xkh",

"DBpedia": "http://dbpedia.org/resource/Elista_Airport",

"Wikidata": "http://www.wikidata.org/entity/Q2276543"

},

"Predicates": {

"Freebase": [

{

"Predicate": "www.freebase.com/location/location/nearby_airports",

"Direction": "Forward"

}

],

"DBpedia": [

{

"Predicate": "http://dbpedia.org/ontology/location",

"Direction": "Backward"

}

],

"Wikidata": [

{

"Predicate": "http://www.wikidata.org/prop/direct/P138",

"Direction": "Backward"

},

{

"Predicate": "http://www.wikidata.org/prop/direct/P131",

"Direction": "Backward"

},

{

"Predicate": "http://www.wikidata.org/prop/direct/P931",

"Direction": "Backward"

}

]

}

}

Listing 2: Example of a multi-predicate question in SimpleQuestions++
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Figure 5.1: Top-1 Accuracy on ambiguous entities in SimpleQuestions++ dataset (DB-
pedia to Wikidata)
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Figure 5.2: MRR on ambiguous entities in SimpleQuestions++ dataset (DBpedia to
Wikidata)
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Figure 5.3: Top-1 Accuracy on ambiguous entities in SimpleQuestions++ dataset
(Wikidata to DBpedia)
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Figure 5.4: MRR on ambiguous entities in SimpleQuestions++ dataset (Wikidata to
DBpedia)
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Chapter 6

Conclusion

In this thesis, we proposed a novel framework for entity matching across multiple knowledge
graphs. We combine a fuzzy string matcher along with a graph embedding-based model for
disambiguating entities that have same labels. The proposed model achieves good results
given its simplicity and it paves the way for future work to enhance its capability.

We also created a large-scale dataset for entity matching that focuses on ambiguous
cases to make it easier for researchers to evaluate their entity disambiguation models.

We presented SimpleDBpediaQA, a new benchmark dataset for simple question an-
swering over knowledge graphs created by migrating the SimpleQuestions dataset from
Freebase to DBpedia.

Finally, we introduced SimpleQuestions++ , a unified simple questions dataset that
includes questions from SimpleQuestions dataset along with the entity and predicate
mapping in Freebase, DBpedia, and Wikidata. This benchmark can help evaluate the
performance of question answering models against different knowledge graphs. We also
evaluate the performance of our entity matching framework on automatically mapping
SimpleQuestions++ dataset.

61



References

[1] Manel Achichi, Zohra Bellahsene, and Konstantin Todorov. Legato: Results for oaei
2017. In OM-2017: Proceedings of the Twelfth International Workshop on Ontology
Matching, page 146, 2017.
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