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Abstract. We study the problem of sparse matrix multiplication in the
Random Access Machine and in the Ideal Cache-Oblivious model. We
present a simple algorithm that exploits randomization to compute the
product of two sparse matrices with elements over an arbitrary field. Let
A ∈ F

n×n and C ∈ F
n×n be matrices with h nonzero entries in total

from a field F. In the RAM model, we are able to compute all the k
nonzero entries of the product matrix AC ∈ F

n×n using Õ(h + kn)
time and O(h) space, where the notation Õ(·) suppresses logarithmic
factors. In the External Memory model, we are able to compute cache
obliviously all the k nonzero entries of the product matrix AC ∈ F

n×n

using Õ(h/B + kn/B) I/Os and O(h) space. In the Parallel External
Memory model, we are able to compute all the k nonzero entries of
the product matrix AC ∈ F

n×n using Õ(h/PB + kn/PB) time and
O(h) space, which makes the analysis in the External Memory model a
special case of Parallel External Memory for P = 1. The guarantees are
given in terms of the size of the field and by bounding the size of F as
|F| > kn log(n2/k) we guarantee an error probability of at most 1/n for
computing the matrix product.

1 Introduction

Matrix multiplication is a fundamental operation in computer science and math-
ematics. Despite the effort, the computational complexity is still not settled, and
it is not clear whether O(n2) operations are sufficient to multiply two dense n×n
matrices.

Given matrices A ∈ F
n×n and C ∈ F

n×n, we define h as the number of
nonzero entries in the input, i.e. h = nnz(A) + nnz(C), k as the number of
nonzero entries in the output, i.e. k = nnz(AC), where nnz(A) denotes the
number of nonzero entries in matrix A. Let Ai,j be the value of the entry in
the matrix A with coordinates (i, j). We denote with A∗,j and Ci,∗ the j-th
column of A and the i-th row of C respectively. Note that we can easily detect,
by scanning the input matrices, null vectors. Hence, without loss of generality,
we consider only the case where h ≥ 2n and the rows of A (resp. columns
of C) are not n-dimensional null vectors. Observe that, in contrast cancellations
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can lead to situations where k ≤ n.1 The algorithms presented in this paper
can compute the product of matrices of arbitrary size and the bounds can be
straightforwardly extended to rectangular matrices. However, for the ease of
exposition, we restrict our analysis to square matrices. We denote with column
major layout the lexicographic order where the entries of A are sorted by column
first, and by row index within a column. Analogously, we denote with row major
layout the order where the entries of A are sorted row-wise first, and column-
wise within a row. Note that a row major layout can be obtained from column
major layout by transposing A, and vice versa. Throughout this paper we use
f(n) = Õ(g(n)) as shorthand for f(n) = O(g(n) logc g(n)) for some constant c.
The memory hierarchy we refer to is modeled by the I/O model by Aggarwal and
Vitter [1], the Ideal Cache-Oblivious model by Frigo et al. [2] and the Parallel
External Memory model by Arge et al. [3]. We denote with M the number
of elements that can fit into internal memory, B the number of elements that
can be transferred in a single block and P as the number of processors. The
parameters M , and B are referred as the memory size and block size respectively.
The Ideal Cache-Oblivious model resembles the I/O model except for memory
and block size are unknown to the algorithm. Unless otherwise stated, it holds
1 ≤ B ≤ M � h. Note that, for our parallel algorithm, we consider a cache aware
model since concurrency is nontrivial in external memory models whenever the
block size B is unknown [4].

1.1 Contributions

We study the problem of matrix multiplication in the Random Access Machine
and in external memory over an arbitrary field (F,+, ·), where (+, ·) are atomic
operations over elements of F in the computational models. We present a
randomized algorithm for multiplying matrices A ∈ F

n×n, C ∈ F
n×n that,

after O(h) time for preprocessing using deterministic O(h) space, computes,
using O(nk log(n2/k)) time all the k nonzero entries of the product matrix
AC ∈ F

n×n, with high probability. We present a cache oblivious algorithm for
multiplying matrices A ∈ F

n×n and C ∈ F
n×n. After O((h/B) logM/B h/B)

I/Os for preprocessing, using deterministic O(h) space, we are able to com-
pute, using O((n/B)k log(n2/k)) I/Os, all the k nonzero entries of the prod-
uct matrix AC ∈ F

n×n, with high probability, under a tall cache assump-
tion, i.e. M ≥ B1+ε for some ε > 0. Similarly, in the Parallel External
Memory model, we present an algorithm for multiplying matrices A ∈ F

n×n,
C ∈ F

n×n that, after O((h/PB) logd(h/B)) I/Os for preprocessing, with d =
max{2,min{M/B,H/PB}}, using deterministic O(h) space, computes, using
O((n/PB + log P )k log(n2/k)) I/Os, all the k nonzero entries of the product
matrix AC ∈ F

n×n, with high probability. Note that, for the External Mem-
ory model and the Parallel External Memory model, preprocessing is domi-
nated by O(sort(h)) I/Os which stems from layout transposition. Although faster

1 A cancellation occurs when (AC)i,j = 0 while elementary products do not evaluate
to zero, i.e. Ai,κ · Cκ,j �= 0, for some κ ∈ [n].
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algorithms for transposing sparse matrices exist, for the ease of exposition, we
consider O(sort(h)) I/Os as an upper bound for preprocessing which weakens
the bounds only in the parameters of the logarithmic factors. We give rigorous
guarantees on the probability of detecting all the nonzero entries of the output
matrix by studying how the process of generating random elements from the
field affects the process of locating entries. The guarantees are given in terms
of the size of the field. If the algorithms generate random variables from an
arbitrary field F then we are able to detect a nonzero entry in the matrix with
probability at least 1 − 2/|F| + 1/|F|2. On the other hand, given an arbitrary
field F, if the random variables are generated from F

∗ = F\{0} then we detect
a nonzero entry with probability at least 1 − 1/|F∗|. By bounding the size of F
as |F| ≥ ckn log(n2/k), for some constant c, we guarantee an error probability
of at most 1/n. Conversely, if |F| < ckn log(n2/k) we can improve the error
probability by repeating the random process an arbitrary number of time, say
log n times, thus sacrificing a log n factor in space and time with the effect of
decreasing the error probability by a factor of n.

1.2 Related Work

Given two n × n matrices A and C, the matrix product AC can be trivially
computed with O(n3) arithmetic operations. Strassen [5], in 1969, provided a
recursive algorithm able to multiply two matrices in O(nω) with ω = 2.8073549
by exploiting cancellations. The last known result is due to Le Gall [6] who holds
the current record of ω < 2.3728639. Yuster and Zwick [7] presented an algo-
rithm that multiplies two n × n matrices over a ring using Õ(h0.7n1.2 + n2+o(1))
arithmetic operations. Iwen and Spencer [8] proved that if each column of AC
contains at most n0.29462 nonzero entries, then A and C can be multiplied with
O(n2+ε) operations. Our algorithms improve over Yuster and Zwick [7] as well
as Iwen and Spencer [8] when k < n and h � n2. In addition, we do not
require a balanced assumption of the output matrix, e.g. the number of nonzero
entries per column, as in [8]. Amossen and Pagh [9] provided a sparse, output-
sensitive matrix multiplication that incurs in Õ(h2/3k2/3 + h0.862k0.408) oper-
ations and Õ(h

√
k/(BM1/8)) I/Os. Lingas [10] presented an output-sensitive,

randomized algorithm for computing the product of two n × n boolean matrices
using Õ(n2kω/2−1) operations. Compared to Amossen and Pagh and Lingas, we
allow cancellations of terms and we do not restrict our analysis to boolean matri-
ces. In addition, Amossen and Pagh’s I/O algorithm is not cache oblivious, i.e.
it requires knowledge of of the memory size. Pagh [11] presented a randomized
algorithm that computes an unbiased estimator of AC in time Õ(h + nk), with
guarantees given in terms of the Frobenius norm. Pagh’s compressed algorithm
achieves the same time bounds as our algorithms. However, we improve over
space complexity whenever k < h/ log n, i.e. when cancellations account for a
1/ log n factor compared to the number of input entries. Besides this, Pagh’s
result is algorithmically more involved, since it makes use of hash functions and
Fast Fourier Transform. Williams and Yu [12] provided an output-sensitive, ran-
domized algorithm for matrix multiplication with elements over any field, that,
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after O(n2) preprocessing, computes each nonzero entry of the matrix product in
Õ(n) time. We extend their techniques to the sparse input case and we improve
whenever h � n2, i.e. when the input matrices are sparse, both in time and
space complexity. Jacob and Stöckel [13] presented a Monte Carlo algorithm
that uses Õ(n2(k/n)ω−2 + h) operations and, with high probability, outputs the
nonzero elements of the matrix product. In addition, they state an I/O complex-
ity of Õ(n2(k/n)ω−2/(Mω/2−1B) + n2/B). Their analysis is focused specifically
on dense matrices and we improve over their results, both in time and I/O com-
plexity, whenever k is asymptotically smaller than n in the general case while
we achieve the same bounds when k = n. In addition, we do not require knowl-
edge of the memory size as opposed to [13]. Van Gucht et al. [14] presented a
randomized algorithm for multiplying two boolean matrices in Õ(k + h

√
k + h)

time. In contrast to their results, our algorithms are not restricted to the boolean
case and we are able to compute the product of matrices from an arbitrary field.
Matrix multiplication has been widely studied in external memory as well. In a
restricted setting, i.e. the semiring model, Hong and Kung [15] provided a lower
bound of Ω(n3/

√
M) I/Os for multiplying two n×n matrices using n3 operations

and a memory of size M . Frigo et al. [2] provided a cache oblivious algorithm
for multiplying two n×n matrices cache obliviously using O(n3) operations and
O(n2/B + n3/(B

√
M)) I/Os. In the I/O model, Pagh and Stöckel [16] provided

a randomized, I/O optimal algorithm for matrix multiplication that incurs in
Õ((h/B)min{√k/

√
M,h/M}) I/Os. However, their algorithm does not allow

cancellation of terms and it requires knowledge of the memory size in order to
partition the input matrices. In relation to this, we require no knowledge on
the size of M and our algorithm run cache obliviously. To the knowledge of the
authors, there are no previously known cache oblivious algorithms for sparse
matrix multiplication that exploit cancellations.

2 Algorithms

Williams and Yu [12] provided a simple output-sensitive algorithm for matrix
multiplication. The intuition behind [12] is that nonzero entries in a submatrix of
AC with indices in [i1, i2]× [j1, j2] can be detected by testing whether 〈a, c〉 = 0,
where a =

∑i2
k=i1

ukAk,∗ and c =
∑j2

k=j1
vkC∗,k are random (w.r.t uk and vk)

linear combinations, i.e. sketches, of rows of A and columns of C respectively. A
preprocessing phase, where prefix sums are involved, allows to compute sketches
a and c of arbitrary size in linear time during the query process. When the input
matrices are sparse, the prefix sums densify the matrices thus having to compute
and store n2 elements. In addition, sparse matrices make nontrivial to compute
linear combinations since row/column vectors are not explicitly stored.

We refine the analysis of [12] as follows. In order to detect the k positions
(i, j) such that (AC)i,j 	= 0, using binary search among the n2 feasible locations,
we need at most k log n2 comparisons. We note that the algorithms do not yield
false positives when querying submatrices. That is, given an all-zero submatrix
with related sketches a and c, it holds 〈a, c〉 = 0 always. This leads to the
following lemma.
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Lemma 1. Let F be an arbitrary field and let A = {a1, . . . , an} and C =
{c1, . . . , cn} be two sets of d-dimensional vectors such that ai, cj ∈ F

d, for all
i, j ∈ [n]. In addition, let u1, . . . , un, v1, . . . , vn be 2n random variables chosen
uniformly at random from F and let a, c be vectors computed as a =

∑n
k=1 ukak,

c =
∑n

k=1 vkck. If 〈ai, cj〉 = 0, for all i, j ∈ [n], then 〈a, c〉 = 0.

As a consequence, at most k queries produce a positive answer, i.e. 〈a, c〉 	= 0.
Via a level-by-level top-down analysis, we note that at most min{2i, 2k} nodes
are explored at each recursive level, with i ∈ [log n2]. Hence, we deduce the
following.

log n2
∑

i=1

min{2i, 2k} =
log k∑

i=1

2i +
log n2
∑

i=log k

k ≤ 2k + 2k log(n2/k). (1)

Accordingly, we recursively split AC into two evenly divided submatrices, which
resembles the splitting phase of a k-d tree. We query each submatrix and after at
most log(n2/k) queries we isolate each nonzero entry. In the following theorem
we show how to compute linear combinations of sparse matrices. The intuition
is to preserve the sparseness of the input matrices while computing prefix sums
and generate sketches via predecessor queries, which can be efficiently computed
using fractional cascading [17].

Theorem 1 (RAM). Let F be an arbitrary field, let A ∈ F
n×n, C ∈ F

n×n

and assume A and C have h nonzero entries. After O(h) time for preprocessing
and using deterministic O(h) space, it is possible to compute all the k nonzero
entries of AC ∈ F

n×n w.h.p, using O(kn log(n2/k)) time.

Proof. We assume that the input matrices A and C are stored in column major
and row major layout respectively. If not, we can transpose A and C using O(h)
time and O(h) additional space.

Preprocessing : We generate vectors u = (u1, . . . , un) ∈ F
n and v = (v1, . . . , vn) ∈

F
n uniformly at random and we initialize the data structures A and C as follows:

for each Ai,j 	= 0 and Ci,j 	= 0 then

Ai,j =
i∑

k=1

ukAk,j Ci,j =
j∑

k=1

vkCi,k Ak,j , Ci,k 	= 0, i, j ∈ [n]. (2)

Intuitively, Ai,j (resp. Ci,j) denotes the prefix sum of the nonzero entries of
the column vector A∗,j up to row i (row vector Ci,∗ up to column j). After
this phase, A and C maintain the same sparse structure, as well as the same
layout, of the original input matrices. Computing A and C requires O(h) time
and O(h) space.2 Starting from column j = n − 1, every column vector A∗,j

is augmented with every element in even position from the sparse column vec-
tor A∗,j+1. After the augmentation, the vector A∗,j contains entries native to
2 Initializing A and C corresponds to computing prefix sums of each row and column

vector of A and C respectively, which requires a linear scan of the input matrices.
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A∗,j and entries inherited from A∗,j+1. For each inherited entry, we add pointers
to its native-predecessor and its native-successor. If A1,j is undefined, every col-
umn vector stores a dummy entry in first position with value 0. For each entry
in A∗,j , we add a bridge to the entry with the same row index in A∗,j+1 or, if
it is undefined, we add a bridge to the predecessor. Dummy entries ensure that
every element in A∗,j has at least a bridge towards A∗,j+1. The augmentation,
together with bridging, requires a linear scan of the column vectors. The space
required by the augmented vectors is T (j) = nnz(A∗,j) + T (j + 1)/2 + 1, with
T (n) = nnz(A∗,n) and j ∈ [n − 1], which is a geometric series bounded by 2h.
The data structure A is further augmented with a dense vector A∗,0 where every
Ai,0 has a bridge to either the entry with the same row index or its predecessor
in A∗,1. The total space required is 2h + n ≤ 3h. Analogous considerations hold
for data structure C.

Computing AC : We recursively divide AC into two evenly divided submatrices
(which resembles the splitting of a k-d tree) and query each submatrix in order to
detect nonzero entries. Each query is answered via an inner product 〈a, c〉 where
sketches a and c are constructed using fractional cascading. Given a generic
submatrix of AC with indices in [i1, i2] × [j1, j2] we compute sketches of matrix
A with rows in [i1, i2] and of matrix C with columns in [j1, j2] respectively. We
start by indexing Ai1,0 which redirects to an entry Ai,1. We probe the data
structure for the native-predecessor, call it Aip,1, and the native-successor, call
it Ais,1, of Ai,1. Recall i2 ≥ i1 and i ≤ i1.

1. If Ai,1 is native then: (a) if is < i1 then we emit Ais,1, (b) if i = i1 then we
emit Aip,1, (c) otherwise we emit Ai,1.

2. If Ai,1 is inherited then: (a) if is < i1 then we emit Ais,1, (b) otherwise we
emit Aip,1.

Note that, if the predecessor or the successor of Ai,j is not defined in the j-th
column vector we simply output 0 or Ai,j respectively. Accordingly, we correct
the following lookup by redirecting the search from either the successor Ais,1,
if is < i1, or to Ai,1, otherwise, and following its bridge to Ai,2. We iterate
the process up to the n-th column and we produce a n-dimensional vector ai1 .
The process for i2 is analogous. Note that, for i2, the case (1b) is omitted and
inequalities become non-strict as we want to capture the elements with row
index i2. After cascading through the n columns we have vectors ai1 and ai2 . The
sketch of the submatrix A with row indices in [i1, i2] stems from a = ai2 −ai1 , i.e.
the element-wise difference. We repeat the same process for C thus computing
c and we query the submatrix of AC by performing the inner product 〈a, c〉.
The construction of sketches a and c requires to probe the data structure a
constant number of times per column and per row respectively. Hence, O(n) time
is required per query. By Formula (1) at most k log(n2/k) queries are required
to isolate the k nonzero entries of AC. The claim follows. 
�
The algorithm from Theorem 1 computes k locations (i, j) to as many nonzero
entries in AC ∈ F

n×n. In order to compute (AC)i,j we can retrieve, using
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Formula (2), the entry value as follows (AC)i,j = 〈Ai,∗, C∗,j〉 =
∑

k

[
(Ai,k −

Ai−1,k)(Ck,j − Ck,j−1)
]
/uivj while querying unit length matrices.

2.1 External Memory and Parallel External Memory

Fractional cascading relies on random memory accesses for cascading through
A∗,j , with j > 1. In the worst case, O(n) blocks must be loaded in memory.
Instead, we use a data structure which is close in spirit to the range coalescing
data structure by Demaine et al. [18].

Theorem 2 (Ideal Cache-Oblivious). Let F be an arbitrary field, let A ∈
F

n×n, C ∈ F
n×n and assume A and C have h nonzero entries. Let M ≥ B1+ε

for some ε > 0. After O((h/B) logM/B(h/B)) I/Os for preprocessing and using
deterministic O(h) space, it is possible to compute all the k nonzero entries of
AC ∈ F

n×n w.h.p., using O((kn/B) log(n2/k)) I/Os.

Proof. We describe the procedure for preprocessing matrix A and generating
the sketch a. We transpose the input matrix A in column major layout using
O((h/B) logM/B(h/B)) I/Os with a cache oblivious sorting algorithm [19] (this
requires the tall cache assumption M ≥ B1+ε) and we compute column-wise
prefix sums using O(h/B) I/Os. Given the matrix A, we generate a sparse 0–1
representation A′ of A, where A′

i,j = 1 if and only if Ai,j 	= 0, A′
i,j = 0 otherwise,

using O(h/B) I/Os. We compute a counting vector H = A′1, where 1 ∈ 1n and
Hi =

∑
i nnz(Ai,∗), using a cache oblivious Sparse Matrix Vector Multiplication

algorithm [20] and O((h/B) logM/B(n/M)) I/Os. After a prefix sum over H we
are able to emit h/n index positions rl ∈ [n] such that

∑rl+1
i=rl

nnz(Ai,∗) ≤ 3n. As
a consequence, we build h/n buckets Al of size O(n) where the elements of Al

are the entries Ai,j such that i ∈ [rl, rl+1). Starting from A2, we incrementally
augment the bucket Al with elements from Al−1 such that, after the augmenta-
tion, for every column index j, there is an entry with value equal to the prefix
sum up to bucket l. As in Theorem 1, we augment the data structure with a
column vector A∗,0 of size n, where Ai,0 indices the l-th bucket if and only if
i ∈ [rl, rl+1), with l ∈ [h/n]. A query on the data structure A probes Ai1,0

using a single I/O and it incurs in O(n/B) I/Os for scanning the bucket, thus
generating the sketch a. Analogously, we generate the sketch c and we compute
the inner product 〈a, c〉 by scanning the vectors using O(n/B) I/Os. 
�
Corollary 1 (Parallel External Memory). Let F be an arbitrary field,
let A ∈ F

n×n, C ∈ F
n×n, assume A and C have h nonzero entries and

let P ≤ n/B. After O((h/PB) logd(h/B)) I/Os for preprocessing, with d =
max{2,min{M/B,H/PB}}, and using deterministic O(h) space, it is possible
to compute all the k nonzero entries of AC ∈ F

n×n w.h.p., using O((n/PB +
log P )k log(n2/k)) I/Os.

3 Probabilistic Error Analysis

We proceed to give guarantees on the probability of detecting non-zero entries in
the output matrix and we study how altering the process of random generation
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alters the probability of detection. The guarantees are given in terms of the field
size and not on the size of the matrix as, e.g., in [11]. Throughout the paper we
gave no restriction on the field F. Nevertheless, when F is infinite and countable,
we require to sample from a finite subset of F. This constraint is justified since
random variables cannot be uniformly distributed among infinite and countable
sets. Fields, in contrast with other algebraic structures, guarantee the existence
of the multiplicative inverse for elements of F, a property we use for proving the
following lemmas.

Lemma 2. Let A ∈ F
n×n, C ∈ F

n×n and let AC ∈ F
n×n have at most k nonzero

entries. Consider a submatrix of AC with indices [i1, i2] × [j1, j2] and assume to
query the submatrix with sketches a, c as in Theorem 1. (i) The matrix has a
nonzero entry if and only if 〈a, c〉 	= 0 with probability at least 1− 2/|F|+1/|F|2.
(ii) The submatrix is all zero if and only if 〈a, c〉 = 0 with probability at least
1 − 2k log(n2/k)/|F| + k log(n2/k)/|F|2.
Pr(〈a, c〉 = 〈uiai, vjcj〉 = 0), with 〈ai, cj〉 	= 0, is given by the probability
of choosing either ui or vj zero uniformly at random from F. By altering the
algorithm, such that random entries are now generated from F

∗ = F\{0}, we
derive the following lemma.

Lemma 3. Let A ∈ F
n×n, C ∈ F

n×n and let AC ∈ F
n×n have at most k

nonzero entries. Let F
∗ = F\{0}, consider the submatrix of AC with indices

[i1, i2] × [j1, j2] and assume to query the submatrix with sketches a, c as in
Theorem 1 where the entries of the vectors u and v are chosen uniformly at
random from F

∗. (i) The submatrix has a nonzero entry if and only if 〈a, c〉 	= 0
with probability at least 1 − 1/|F∗|. (ii) The submatrix is all zero if and only if
〈a, c〉 = 0 with probability at least 1 − k log((n2/k) − 1)/|F∗|.

A Omitted Proofs

Proof (Lemma 2). (i) If 〈a, c〉 	= 0, then there exist i, j ∈ [n] such that ui, vj 	= 0
and 〈ai, cj〉 	= 0, hence, (AC)i,j 	= 0. If there is a nonzero entry then 〈a, c〉 	= 0
with probability at least 1−2/|F|+1/|F|2. This is equivalent of saying that if there
is a nonzero entry then 〈a, c〉 = 0 with probability at most 2/|F|−1/|F|2. Without
loss of generality, let i1 = i2 = i and j1 = j2 = j. Considering a bigger sub-
matrix with exactly one nonzero entry leaves the probability unchanged, while
considering more nonzero entries will only increase the probability of 〈a, c〉 	= 0.
Therefore, we consider the case where we want to isolate, with high probability,
the location of a single nonzero entry in a submatrix of unit size. It follows that,
in order to query the submatrix we have to perform the following inner product
〈a, c〉 = 〈uiai, vjcj〉, where u, v are chosen uniformly at random from F. Since
〈ai, cj〉 	= 0 by hypothesis, we have that Pr(〈a, c〉 = 0) ≥ 2/|F| − 1/|F|2.

(ii) If the submatrix of AC with indices [i1, i2]×[j1, j2] is all zero then 〈a, c〉 =
0 with probability at least 1 − 2k log(n2/k)/|F| + k log(n2/k)/|F|2. By Lemma 1
this is true. If 〈a, c〉 = 0 then the submatrix of AC with indices [i1, i2] × [j1, j2]
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is all zero with probability at least 1− 2k log(n2/k)/|F|+k log(n2/k)/|F|2. That
is, if 〈a, c〉 = 0 then the submatrix has a nonzero entry with probability at most
2k log(n2/k)/|F| − k log(n2/k))/|F|2. Without loss of generality, let i1 = i2 = i
and j1 = j2 = j. We have that 〈a, c〉 = 〈uai, vcj〉 = 0, where u, v are chosen
uniformly at random from F. Therefore, Pr(〈ai, cj〉 	= 0) ≥ 2/|F| − 1/|F|2. The
latter is a lower bound on the probability to not detect a nonzero entry in the
output matrix. A union bound over the k log(n2/k) queries needed to isolate the
k nonzero entries, gives us the probability to incur in at least one false negative.
By considering its complement, the claim follows. 
�
Proof (Lemma 3). (i) If 〈a, c〉 	= 0, then there exist i, j ∈ [m] such that ui, vj 	= 0
and 〈ai, cj〉 	= 0, hence, (AC)i,j 	= 0. If there is a nonzero entry then 〈a, c〉 	= 0
with probability at least 1 − 1/|F∗|. This is equivalent of saying that if there is
a nonzero entry then 〈a, c〉 = 0 with probability at most 1/|F∗|. If i1 = i2 = i,
j1 = j2 = j and 〈ai, cj〉 	= 0 then 〈a, c〉 	= 0 since scaling vectors with random
elements from F

∗ preserves non orthogonality. If i1 < i2 and j1 < j2 and the
submatrix contains exactly one nonzero entry, the same reasoning applies. If the
submatrix has � > 1 nonzero entries, then, without loss of generality, there exist
a1, . . . , a�, c1, . . . , c� such that 〈u1a1, v1c1〉+· · ·+〈u�a�, v�c�〉 = 0 and 〈ai, cj〉 	= 0,
for all i, j ∈ [�]. That is, � inner products that generate as many nonzero entries
and produce a false negative when the submatrix is queried. By the linearity of
the inner product, we have that 〈u1a1, v1c1〉 + · · · + 〈u�a�, v�c�〉 = u1v1〈a1, c1〉 +
· · · + u�v�〈a�, c�〉. Hence, the sum cancels whenever ui = −(u1v1〈a1, c1〉 + · · · +
u�v�〈a�, c�〉)/vi〈ai, ci〉 for a generic i ∈ [�]. Note that, such a ui is in F since fields
guarantee the existence of additive and multiplicative inverses. The probability
to choose ui such that it cancels the other inner products is the same as choosing
an element from F

∗ uniformly at random, i.e. 1/|F∗|.
(ii) If the submatrix of AC with indices [i1, i2] × [j1, j2] is all zero then

〈a, c〉 = 0 with probability at least 1 − k log((n2/k) − 1)/|F∗|. By Lemma 1 this
is true. If 〈a, c〉 = 0 then the submatrix of AC with indices [i1, i2] × [j1, j2] is all
zero with probability at least 1−k log((n2/k)−1)/|F∗|. That is, if 〈a, c〉 = 0 then
the submatrix of AC has a nonzero entry with probability at most k log((n2/k)−
1)/|F∗|. If 〈a, c〉 = 0 and i1 = i2 = i, j1 = j2 = j then 〈ai, cj〉 = 0. The same
reasoning applies for i1 < i2, j1 < j2 and exactly one nonzero entry in the
submatrix. Let 〈a, c〉 = 0 and suppose there exist a1, . . . , a�, c1, . . . , c� such that
〈u1a1, v1c1〉 + · · · + 〈u�a�, v�c�〉 = 0 and 〈ai, cj〉 	= 0, for all i, j ∈ [�]. Hence,
as in (i), the sum cancels with probability 1/|F∗|. The latter is a lower bound
on the probability to not detect a nonzero entry in the output matrix. A union
bound over the k log((n2/k)− 1) queries needed to isolate the k nonzero entries,
gives us the probability to incur in at least one false negative.3 By considering
its complement, the claim follows. 
�

3 We do not consider the last layer, i.e. log(n2/k), as it does not involve any stochastic
process.
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