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The copepod Calanus glacialis plays a key role in the Arctic pelagic ecosystem. Despite its ecological importance
and ongoing climate changes, limited knowledge at the genomic level has hindered the understanding of themo-
lecular processes underlying environmental stress responses and ecological adaptation. Transcriptome data was
generated from an experiment with C. glacialis copepodite (CV) subjected to five different temperatures.We ob-
tained a total of 512,352 high-quality 454 pyrosequencing reads, which were assembled into 55,562 contigs dis-
tributed in 128 KEGG pathways. Functional analysis revealed numerous genes related to diverse biological
functions and processes, including members of all major conserved signaling pathways. Comparative analysis
of acclimated individuals to experimental temperatures has provided information about gene variations ob-
served in several pathways (e.g. genes involved in energy, lipid and amino acid metabolism were shown to be
down-regulated with increasing temperatures). These mRNA sequence resources will facilitate further studies
on genomics and physiology-driven molecular processes in C. glacialis and related species.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Climate change is dramatically affecting Arctic ecosystems, causing
changes in oceanic circulation, sea ice loss and temperature increases
that may alter marine community structure (e.g., demographic traits,
spatial range, biological interactions) and ecosystem function (Post
et al., 2009; Slagstad et al., 2011). The calanoid copepode Calanus
glacialis plays a major role in the trophodynamics of Arctic pelagic eco-
systems and is the dominant species of the genus in the northern Ba-
rents Sea (Tande, 1991). Warming of the Arctic is predicted to induce
a possible replacement of C. glacialis by its boreal sibling Calanus
finmarchicus (Reygondeau and Beaugrand, 2011; Weydmann et al.,
2014a). Consequently, it is essential to understand how climate change
might affect the biogeography and population dynamics of C. glacialis,
and to predict the response and adaptability of the species to environ-
mental fluctuations (Wassmann et al., 2011). In an effort to provide
comprehensive genomic resources for C. glacialis and a baseline for fu-
ture physiological studies, we have used Roche 454 pyrosequencing
technology to characterize the temperature responsive transcriptome
of this species.
2. Methods and analysis

2.1. Sample collection and temperature experiment

Mesozooplankton samples were collected in the Barents Sea, NE of
the Hopen Island (77° 08.6′N 28° 11.0′E; average water temperature
−0.6 °C), with vertical tows using a WP-2 net (0.25 m-2 opening;
0.2 mm mesh size; with a large non-filtrating cod end) in June 2009.
Sixty C. glacialis copepodites at the 5th stage (CV) were gently picked
and randomly assigned to 6 groups of 10 individuals. One of these,
representing natural conditions (NAT), was immediately frozen in liquid
nitrogen and stored at−80 °C. The other 5 groups were placed in flasks
(200 ml) filled with filtered seawater and placed in a laboratory cooler
(type CHL 1 B) at 0 °C. After 36 h of incubation all but one of the groups
were transferred to a second cooler at 2.5 °C. This process was repeated
with 2.5 °C increments every 36 h. At the end of the experiment
(204 h) the individuals incubated at 0 °C (T0), 2.5 °C (T2.5), 5 °C (T5),
7.5 °C (T7.5) and 10 °C (T10) were flash frozen in liquid nitrogen and
stored at −80 °C. See Supplementary methods for RNA preparation,
cDNA synthesis and pyrosequencing.

2.2. Bioinformatic analysis

Sequence quality-filtering, assembly and annotation were per-
formed essentially as described in Martins et al. (2013). An overview
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Table 1
Summary of 454 sequencing, assembly and BLASTx annotation.

Source No of raw
reads

Assembled
quality-filtered
reads (% of total)

No. of
contigs

Assembled reads with
BLASTxb matches
(% of total)

Total 721,973 512,352 (71.0) 55,562a 324,538 (67.7)
NAT 181,118 134,983 (74.5) 14,957 85,963 (65.1)
T0 169,830 121,663 (71.6) 16,297 80,183 (67.6)
T2.5 59,914 43,080 (71.9) 9307 27,551 (65.3)
T5 62,862 43,639(69.4) 8860 27,061 (63.2)
T7.5 111,683 76,266 (68.3) 12,661 47,231 (63.0)
T10 136,566 92,691 (67.9) 13,466 56,549 (61.9)

a Median length (N50)—620.
b E-value ≤ 1e−6.
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of the sequencing and assembly results is shown in Table 1. A total of
512,352 quality-filtered reads were pooled and assembled using MIRA
(v. 3.0; Chevreux et al., 2004) into 55,562 contiguous sequences
(contigs) and 12,369 singletons. 41% of the assembled contigs with
significant BLASTx homology (NCBI nr database, E-value ≤ 1e−6) were
annotated against KEGG pathway and Pfam protein databases
(Kanehisa and Goto, 2000; Finn et al., 2014). A total of 2733
KEGG terms were identified, mapping to 128 KEGG pathways (22,424
contigs). Annotation against the Pfam database identified 1691 terms
(16,998 contigs). Highly represented domains, as determined by the
total number of reads (N1000)mapping to the domain, were associated
with cytoskeletal-related proteins and essential cell functions including
energy production (glyceraldehyde 3-phosphate dehydrogenase,
ATP synthase, and NADH dehydrogenase), metabolite transport
(mitochondrial carrier, sugar transport and lipocalin), fatty acid biosyn-
thesis (fatty acid desaturase), lipid catabolism (Acyl-coA dehydrogenase),
cell differentiation (Ras family), protein synthesis (ribosomal genes),
and signal transduction and transcription regulation (protein kinases,
protein tyrosine kinases, WD40). Additionally, numerous abundant
transcripts were involved in the cellular stress response; redox, antiox-
idant reactions and stress-related processes (cytochrome P450, gluta-
thione S-transferase, NADH ubiquitone, thioredoxin and heat shock
Table 2
Selected list of KEGG biochemical mappings for C. glacialis transcriptome data and functiona
expression in the temperature experiment.

KEGG pathway Pathway ID

Metabolism
Glycolysis/gluconeogenesis 00010
Citric acid cycle 00020
Pentose phosphate pathway 00030
Oxidative phosphorylation 00190
Fatty acid elongation 00062
Fatty acid degradation 00071

Glycerolipid metabolism 00561
Glyceropholipid metabolism 00564
Biosynthesis of unsaturated fatty acids 01040
Purine metabolism 00230

Cysteine and methionine metabolism 00270
Arginine and proline metabolism 00330
Glutathione metabolism 00480

Genetic information processing
Ribosome 03010

RNA transport 03013
Proteosome 03050

Cellular processes
Peroxisome 04146

a Down (↓)/up- (↑) regulated genes with temperature increase; p-value b 0.05, FDR b 0.1; c
proteins—HSP70, HSP90, HSP40). Several potential homologues be-
longing to the major conserved animal signaling pathways were also
identified (e.g. Wnt, Notch, Hedgehog, TGF-, JAK-STAT and MAPK;
Pires-da Silva and Sommer, 2003). Overall response to temperature of
metabolic and regulatory pathways (R statistics using IDEG6, significant
threshold of 0.05, corrected for multiple tests using the False Discovery
Rate, FDR b 0.1; Romualdi et al., 2003; Stekel et al., 2000) showed differ-
ent regulation mechanisms and a patchwork of up- and down-
regulated steps in some KEGG pathways was observed (Table 2). Fur-
thermore, we tested a subset of simple sequence repeat (SSR) types
and nine polymorphic microsatellites were suitable for population ge-
netic studies as described in Weydmann et al., 2014b. In conclusion,
we performed de novo transcriptome sequencing of C. glacialis incubat-
ed at increasing temperatures representing realistic warming scenarios.
This pyrosequencing effort provides clues to the identification of genes
potentially involved in temperature responses and generates essential
molecular tools that will be useful in further genetic and genomic stud-
ies of this species.

2.3. Data deposition

The 454 sequence reads of C. glacialiswere submitted to NCBI Short
Read Archive (SRA) under the accession number SRP053198. The as-
sembled transcriptome datawere deposited in the EuropeanNucleotide
Archive (accession numbers HACJ01000001–HACJ01054344).
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l annotation of potential up- and down-regulated genes showing significant differential

No of annotated enzymes Stress regulationa

18 ↓ EC:3.1.3.11, EC:5.1.3.3
21 ↑ EC:1.2.4.2, EC:1.1.1.37
14 ↓ EC:2.2.1.1, EC:2.7.6.1, EC:3.1.3.11
24 ↓ EC:1.6.5.3 U: EC:1.9.3.1, EC:3.6.3.14
8 ↓ EC:2.3.1.199

14 ↓ EC:1.3.8.8, EC:1.3.8.9
↑ EC:5.3.3.8

12 ↓ EC 2.3.1.20
23 ↓ EC:3.1.3.4, EC:2.3.1.23, EC:3.1.1.5
7 ↑ EC:2.3.1.199, EC:1.1.1.100

40 ↓ EC:2.7.6.1, EC:1.7.3.3
↑EC:2.7.4.6

18 ↑ EC:3.1.3.77, EC:1.13.11.20, EC:1.1.1.37
26 ↑ EC:1.5.-.-, EC:1.2.1.88
19 ↓ EC:1.1.1.42, EC:4.1.1.17

75 ↓ RP-S20e, RP-S24e, RP-S2e
↑ RP-L18e, RP-L22e, RP-L24e, RP-L29e

29 ↑ SMT3, EIF4E, PABPC
9 ↑ PSMD11, PSMA6, PSMA2, PSMA5

35 ↓: EC:1.17.1.4

ontigs with more than 20 reads and log2 (fold change) N 1.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.margen.2015.03.014.
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