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Abstract 

Although extensive work has focused on kelp responses to constant temperature, little 

is known about their response to the consecutive temperature shocks they are often exposed 

to in the shallow subtidal and intertidal pools. Here we characterized the responses of the two 

southernmost forest-forming kelp species in the Northeast Atlantic, Laminaria ochroleuca De 
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La Pylaie and Saccorhiza polyschides (Lightf.) Batt. to multiple cycles of thermal stress.  

Individuals from the upper vertical limit of the geographical distribution edges where the two 

species co-occur forming forests, France and Portugal, were exposed to 4 consecutive cycles of 

thermal shock simulating a spring tide. A 24 h cycle consisted of culture at 15 °C, plus 1 h heat 

shock at one of five levels (20, 22.5, 25, 27.5 or 30 °C). The maximum quantum yield (Fv/Fm) of 

chlorophyll fluorescence of photosystem 2 (PS2) was used to detect impaired reaction centre 

function, as a proxy for individual fitness costs, during recovery from heat shock. Both species 

showed resilience to temperatures from 20 to 25 °C. While exposure to 27.5 °C caused no 

inhibition to Fv/Fm of S. polyschides, a threshold was met above this temperature and 

exposure to 30 °C caused the death of all individuals. In contrast, L. ochroleuca from France was 

damaged but able to survive 30 °C shocks and individuals from Portugal showed complete 

resilience to this treatment. In both species, blade elongation decreased with increasing 

temperature, with necrosis surpassing growth at higher temperatures. Resilience to high 

temperature exposure may confer an advantage to L. ochroleuca to colonize intertidal pools on 

the Portuguese coast, in agreement with the observation that both species recruit in tide pools 

but only L. ochroleuca reach adulthood. Our results indicate that as summer temperatures 

increase with climate change, the disappearance of S. polyschides from intertidal pools and a 

decrease in the density of L. ochroleuca can be expected. 

 

Keywords: Saccorhiza polyschides, Laminaria ochroleuca, chlorophyll fluorescence, 

heat-shock 

1. Introduction 

Temperature is a major factor influencing species geographical distribution, and has 

increased over the last decades due to anthropogenic pressure (Hampe and Petit, 2005; IPCC, 

2007). Since 1980, mean sea surface temperature increased 0.2-0.3 °C per decade in southern 
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Europe, and 0.3-0.7 °C in the Norwegian and North seas (Lima and Wethey, 2012). Moreover, 

projections indicate that warming rates may increase further in the coming decades (IPCC, 

2007). These changes have the potential to cause local extinctions and poleward distribution 

shifts for several species (Hampe and Petit, 2005; Hiscock et al., 2004; Wernberg et al., 2010), 

as has been observed for several species of plankton (Beaugrand and Reid, 2003), gastropods 

(Mieszkowska et al., 2006), fish (Sabatés et al., 2006) and macroalgae (Nicastro et al., 2013), 

including kelps (Díez et al.,2012; Fernández  2011; Müller et al., 2009; Tuya et al., 2012; 

Voerman et al., 2013). However, just as terrestrial species’ distribution shifts often occur in 

altitude (Franco et al., 2006; Kelly and Goulden, 2000), on marine shores the effects of climate 

change may be first observed in local species distribution on the shore, before geographical 

shifts are perceived (Cheung et al., 2009; Pehlke and Bartsch, 2008). Species populating 

shallower areas such as the intertidal and upper subtidal will be the first to experience the 

effects of global warming, as they’re more exposed to temperature extremes, UV and excessive 

light, desiccation and osmotic stresses, and are more exposed to storm-induced wave surge. 

Indeed, intertidal species have been reported to suffer shifts in their geographical distribution 

faster than most terrestrial species (Helmuth et al., 2002). To persist as extreme environmental 

conditions become more frequent, populations will have to adjust to the new conditions and 

compensate for the elevated losses typical of populations near distributional boundaries (Guo 

et al., 2005). As such, the resilience of recruits and early stages to repeated cycles of heat shock 

is likely to be a determining factor in persistence of populations in the intertidal. 

Kelps are habitat structuring species. They modify the area they populate, its 

environment and resources, and are fundamental for the survival of several other species 

(Bruno et al., 2003; Wernberg et al., 2010). Thus, variations in kelp species composition, size 

and canopy density will impact ecological and oceanographic processes. Although extensive 

work has been done on the temperature limits of kelp species (Bolton and Lüning, 1982; Fortes 

and Lüning, 1990; Izquierdo et al., 2002; Pang et al., 2007; Pereira et al., 2011; tom Dieck, 
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1993), nothing is yet is known about their ability to cope with consecutive cycles of stress 

exposure associated with low tides. In this study, we aimed to recreate the conditions 

experienced by recruiting individuals during typical summer spring tides, where individuals 

may be exposed daily to repeated cycles of thermal stress during low tides, and which may be 

decisive for population persistence. Experiments were performed to compare the two 

southernmost kelp-forest species in the Northeast Atlantic: Laminaria ochroleuca and 

Saccorhiza polyschides. Since, as reported for several species of animals and plants, individuals 

from different latitudes may be locally adapted or acclimated to different conditions (Liu and 

Pang, 2010; Zippay et al., 2010), we compared the responses of individuals from the higher and 

lower latitude ranges where these two species coexist: Brittany, France and Northern Portugal. 

The results of such experiments can provide clues as to whether temperature is likely to be a 

decisive factor influencing the distribution, persistence and composition of these populations 

in the near future. 

2. Material and methods 

2.1. Model species and collection 

L. ochroleuca and S. polyschides, a perennial and an annual species, respectively, are 

two important Northeast Atlantic species. They both have their southernmost populations in 

isolated spots in the upwelling region of west Morocco and some very deep areas in the 

Mediterranean and Atlantic seamounts and islets, south of their coastal distributional range 

which ranges from the Portuguese coast to Brittany (France), and the English and Bristol 

Channels (Birkett et al.,1998; Braud, 1974; Lüning, 1990; Norton, 1977; Titley and Neto, 2000; 

van den Hoek, 1982). S. polyschides has a wider northern distribution, found as far north as the 

west coast of Norway.  
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Sporophytes of the two species have similar upper temperature limit of around 24 °C 

(Birkett et al., 1998; Norton, 1977). Although no records of lower temperature limits were 

found for either species, at their northern distribution limit average winter sea surface 

temperatures (SST) are 4 °C and 10 °C, for S. polyschides and L. ochroleuca respectively (Braud, 

1974; Norton, 1977). Moreover, these two species have an overlapping range of optimum 

temperatures. L. ochroleuca is described as growing better between 15 and 18 °C, while S. 

polyschides seems to perform better at temperatures from 10 to 17°C (Biskup et al., 2014, 

Izquierdo et al., 2002; Norton, 1977). As such, despite their distinct life strategies, the two 

species have overlapping niches and are potential competitors. 

This study is focused on the distributional range where the two species overlap, from 

northwest Iberia to the English Channel.  Recruits of L. ochroleuca and S. polyschides ca. 15 cm 

length were collected near the northern distribution limit of L. ochroleuca, in Brittany, France 

(48°41'55.26"N 3°56'28.50"W), and in Northern Portugal (41°42'27.80"N 8°51'45.30"W), the 

southern distribution limit where both species are able to form forests. In Brittany, the vertical 

distribution of both species extends as high as the upper subtidal, being out of water only 

during the lowest spring tides of the year. In Northern Portugal they can be found in tidal pools 

and although their base is usually immersed, their blades may get exposed during spring tides. 

In both areas, collections were made in the upper distribution limit and were transported in 

cold seawater inside refrigerated boxes. In Brittany, samples were collected on the 13th of July 

2011, arriving in the lab within 48h of collection. In Northern Portugal, collections were made 

on the 29th of March 2012, reaching the laboratory within 12 hours of collection. Experiments 

were done at slightly different times of the year to coincide with the recruitment peak of each 

area. Average SST during the month prior to collection was 14.1 °C in Brittany and 13.3 °C in 

Northern Portugal (Aqua MODIS SST, NASA). The same protocol and experimental conditions 

were used for both populations. 
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2.2. Experimental design 

Immediately upon arrival, each individual was placed in 0.5 L individual tanks with 0.2 

µm filtered seawater (FSW) and aeration at 15 °C for 5 days of acclimation, so they could 

recover from eventual stress caused by collection and transportation. This temperature close to 

the conditions during the month of collection and small sporophytes and other microscopic 

forms of both species grow efficiently at 15 °C (Izquierdo et al., 2002; Norton, 1977; Pereira et 

al., 2011). These conditions were also used as control during the experiment. Throughout the 

acclimation and experimental periods, sporophytes were exposed to a 12h day photoperiod, 

with a photon flux density of 40 µmol m-2 s-1 (Bruhn & Gerard 1996; Izquierdo et al., 2002). 

Seawater was changed every two days during the acclimation period. During the heat shock 

experiment this was done every day after exposure, to make sure individuals were not exposed 

to metabolites, as tidal flow would quickly wash them away. 

Temperature tolerance of young sporophytes (5 replicates) was tested for a series of 

sequential 1 hour exposures to one of five temperature treatments; 22.5, 25, 27.5 or 30 °C. 

Unnaturally rapid warming was avoided by sequential transfer at each temperature, in a 30 min 

ramp, until the target temperature was reached. Exposure to the target temperature was for 1 

hour. Afterwards, individuals were directly transferred back to the control temperature (15ºC) 

to simulate the returning tide, and remained at the control temperature till a 24 h cycle was 

complete. This procedure was repeated for 4 cycles. Measurements were repeatedly 

performed on the same individual and each was daily exposed to the same target temperature. 

2.3. Photosynthetic yield determination 

Photosynthetic activity is considered to be one of the most heat sensitive cellular 

processes, both by damage to the oxygen-evolving complex in PS II, damage and rapid turnover 

of the D1 protein, and by impairment of recovery processes by reactive oxygen species. As 

such, in vivo, the efficiency of reaction center functioning (controlling electron flux for 
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downstream processes) represents a balance between damage and repair (Allakhverdiev et al., 

2008). Initial values of chlorophyll maximum quantum yield (Fv/Fm) were measured for each 

individual (5 replicates per treatment) under control conditions. All Fv/Fm measurements were 

made with a portable chlorophyll fluorometer (Junior-PAM, Walz, Germany). Individuals were 

dark incubated for 5 minutes, after which Fv/Fm measurements were made on two different 

areas, in the center of the blade of each individual’s. The mean of the two values was used in 

downstream analyses. Because small intrinsic differences in population- and/or location-

specific Fv/Fm values can obscure subsequent statistical comparisons between species and/or 

populations, all Fv/Fm data were normalized as a proportion of the initial values (adjusted 

mean=1). Initial Fv/Fm values were above 0.7 to make sure the conditions used were not 

stressful. 

During each of 4 consecutive 24 h cycles, individuals were exposed to heat shock for 

one hour at the target temperature, immediately after which Fv/Fm was measured.  Individuals 

were then returned to the control temperature (15 °C) for recovery and Fv/Fm was measured 

again after 24 h to assess recovery.  Controls remained at 15 ºC throughout each cycle, but 

otherwise were manipulated in same way as the other treatments. The same individuals were 

used throughout the experiment and were always exposed to the same target temperature. 

2.4. Growth measurements 

Individual growth was expressed as relative change in blade area determined from 

photographs taken at the beginning of the experiment, after the acclimation period, and by the 

end of the 4 heat shock cycles. Tissue death was considered as negative growth. The software 

GIMP (GNU Image Manipulation Program) 2.6.6 was used for these measurements. 
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2.5. Statistical analysis 

PERMANOVA assesses differences in distribution, which may be caused by differences 

in means, in dispersion or both. PERMDISP focuses only on dispersion, complementing the 

PERMANOVA results. Both PERMANOVA and PERMDISP routines (Anderson et al., 2008) were 

used to analyze the data. Maximum quantum yield was compared between species and 

temperatures for each location. Growth data was compared for the two species exposed at the 

different temperatures. No direct statistically comparisons between French and Portuguese 

experiments were performed because these were done in different months of different years. 

3. Results 

The maximum quantum yield of photosystem II (Fv/Fm) of recruits collected in Brittany 

(France) varied between species, temperature and time (PERMANOVA, time * species * 

temperature, p < 0.0001). At the control temperature, 15 °C, no significant difference was 

observed through time for either species (Fig. 1). At 22.5°C, although significant but rather 

small differences were observed through time, for both species, within the temperature 

treatment, there was no significant difference at each time point between 22.5ºC and the 

control. Exposure to higher temperatures (25 and 27.5 °C) caused significant initial decreases in 

Fv/Fm in L. ochroleuca following stress exposure. However, recovery was complete within each 

24h cycle. Thus, sublethal temperature stress in the Brittany L. ochroleuca population caused 

reversible reductions in Fv/Fm (photoprotection of PSII).  However, at 30 °C, Fv/Fm declined 

following each consecutive stress cycle, indicating a breakdown of thermal resilience. 

Nevertheless, at the end of the experiment all L. ochroleuca individuals were still alive. A rather 

different strategy was seen in S. polyschides from Brittany, where almost no effect of 

temperature on Fv/Fm was observed between 15 and 27ºC (Fig. 1), but where resilience 

collapsed after repeated exposure to 30ºC. By the end of the 4th cycle no chlorophyll 

fluorescence could be detected for any individual, and no recovery was observed by the end of 
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the experiment. As the threshold temperature tolerance was approached, individual variance 

clearly increased relative to that under control conditions (Fig. 1). 

Kelp recruits from the French populations showed no significant interspecific 

differences in relative growth rates. Growth rates were, however, significantly affected by 

temperature (PERMANOVA, temperature, p = 0.0028), being reduced as temperature increased 

to 27.5 °C for L. ochroleuca, and to 30 °C for both species.  At higher temperatures growth was 

surpassed by necrosis, resulting in size decrease (Fig. 2). 

Fv/Fm of recruits from Portugal varied significantly over time between species and 

temperatures (PERMANOVA, Time*Species*Temperature, p < 0.0001, Fig. 3). Data from the 15 

°C treatment shows that L. ochroleuca and S. polyschides responded similarly to culture 

conditions, although the variations in Fv/Fm over time and between individuals were greater 

than observed for the Brittany populations. Significant differences between post-stress and 

recovery points were not observed during exposure to either 22.5, 25 °C or 27.5 °C. Exposure of 

L. ochroleuca to 30 °C revealed a clearly greater resilience in the Portuguese compared to the 

Brittany population (c.f. Figs 1 and 3).  Although photoinhibition increased with consecutive 

heat-shock cycles, recovery of Fv/Fm to control levels occurred within 24 h after each 

exposure, indicating resilience to this level of thermal stress, as opposed to the population 

from Brittany. In contrast, Portuguese S. polyschides was even more affected by repeated 

exposure to 30 °C. At this temperature, no resilience was observed and cumulative damage 

resulted in the death of all individuals by the 3rd heat shock cycle (Fig. 3).  

Relative growth of kelp recruits from Portugal varied significantly with species and 

temperature (PERMANOVA, species * temperature p < 0.0001, Fig. 2). Growth rate shows a 

tendency to decrease with increasing temperature for both species, but this difference was 

significant only for S. polyschides, which showed a more pronounced trend. Relative growth 

differed significantly between species at 30 °C only. 
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4. Discussion 

In this study we report lethal temperature limits and sub-lethal temperature effects for 

recruits of the two southernmost forest-forming kelp species in the northeastern Atlantic: L. 

ochroleuca and S. polyschides.  We also show differences between populations of each species 

taken from southern and northern regions where they co-occur, with evidence that L. 

ochroleuca potentially exhibits greater thermal resilience near the southern edge of its range, 

which might indicate some adaptation to local conditions. Such phenotypic plasticity has been 

reported for S. polyschides (Biskup et al., 2014) and other kelp species, such as Laminaria 

digitata (Delebecq et al., 2012), Saccharina japonica (Pang et al., 2007) and Ecklonia radiata 

(Staehr & Wernberg, 2009; Wing et al., 2007). Previous studies, based on constant growth 

temperature, reported that both species have a similar upper temperature limit of 23 - 25 °C 

(Lüning, 1990; Norton, 1977). These limits were, however, determined by exposure to a 

constant growth temperature, and nothing was known about the impact of the rapid and 

consecutive temperature rise they are often exposed to in tidal pools, a common habitat in 

Portugal. Because the species occupy similar areas on the shore, it was expected that their 

responses would be similar. While water temperature in Northern Portugal is usually about 15 

°C, in tidal pools it may reach 20 °C on warmer summer days and blades may be subjected to 

temperatures as high as 30 °C near the surface (Engelen et al., 2008). Both species showed 

resilience to relatively short exposures to temperatures above their reported 23 -25 °C survival 

limit (Lüning, 1990; Norton, 1977). Although S. polyschides showed no significant response 

when exposed to up to 27.5 °C, when subjected to 30 °C a threshold seems to have been met 

as individuals were significantly damaged and died. In contrast, L. ochroleuca appeared more 

resistant to extreme temperatures; individuals from Brittany were damaged by 30 °C exposure 

but were still alive by the end of the experiment and individuals from Northern Portugal were 

even more resistant, showing total resilience. Still, temperature increase caused a tendency for 

blade elongation to decrease and at higher temperatures necrosis surpassed growth. This also 
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happened for S. polyschides from both locations. While previous work (Biskup et al., 2014) 

reported a higher physiological plasticity of S. polyschides when compared to L. ochroleuca, 

consecutive exposure to high temperatures indicates that such disparate responses are mainly 

a matter of strategy, most likely associated with their distinct life history. L. ochroleuca, as a 

perennial species, benefits more from photo protective mechanisms, while for the 

opportunistic annual, S. polyschides, strategies for faster growth may be selected. Although S. 

polyschides is able to recruit in tidal pools, only few individuals can be found in the summer 

and the main kelp species occupying such areas is L. ochroleuca (personal observations; 

Barradas et al., 2011). The response of L. ochroleuca to short high temperature exposure 

suggests that its resilience provides an advantage to colonize such shallower areas. The inability 

of S. polyschides to cope with daily short exposure to 30 °C may offer an explanation as to why 

these are found in tidal pools in such low number and there they do not reach similar 

dimensions to L. ochroleuca nor to those attained by other S. polyschides in the high subtidal 

(personal observations). 

Responses to change in environmental conditions are reported to be largely mandated 

by an individual’s history (Lüning, 1990). Although no significant difference in Fv/Fm between 

sites can be asserted for S. polyschides, the response of L. ochroleuca varied between sites at 

30 °C. While L. ochroleuca from Portugal exposed to 30 °C suffered necrosis, individuals from 

Brittany showed significant blade loss at temperatures above 27.5 °C, an important difference 

between populations. Although blade elongation is not an expression of meristematic activity, 

this balance between growth and necrosis is important for population persistence, particularly 

since an individual’s spore production depends on blade length. Our finding on differences in 

responses to temperature between populations of L. ochroleuca does not match other studies 

on Laminaria sp, where the effect of temperature on growth and survival didn’t vary 

significantly along a latitudinal range (Bolton and Lüning, 1982; Kain, 1967). Such variation has, 

however, been observed for other kelp species (Liu and Pang, 2010).  
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Our results suggest that, in the near future, temperature will most likely not be a 

limiting factor for either species in the high subtidal, at least in the moderately exposed shores 

where they occur and where water mixing prevents strong thermal stratification at the surface. 

However, in tidal pools, a temperature increase might lead to higher apical blade loss and an 

increase in mortality rates. Moreover, climate change is accompanied by environmental 

changes other than temperature increase (Deysher and Dean, 1986; Han and Kain, 1996; Fortes 

and Lüning, 1980; Müller et al., 2009) which may impair local persistence before temperature 

increases enough to hamper recruit survival in tidal pools. Nevertheless, our results show that 

temperature responses can explain subtle differences in the upper distribution of these kelp 

species and variation between populations along the distributional range.  
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F igure 1
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F ig.1: Fv/Fm variations of Laminaria  ochroleuca  (left, circles) and Saccorhiza  polyschides 

(right, triangles) from Northern Brittany, France, in response to exposure to repeated 1 

hour temperature elevation.  Error bars represent standard error (n=5). Open symbols 

indicate measurements post-stress. Closed symbols refer to measurements after the 

recovery period. + indicates a significant difference from the control  (15°C). * indicates 

a significant difference between the two species. Different letters we re attributed, per 

species and temperature, to significantly different means. 
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F igure 2
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F ig. 2: Mean relative blade area growth rate (n = 5) of L. ochroleuca  (Lo) and S. 

polyschides  (Sp) from Brittany, France (top) and Northern Portugal (bottom), cult ivated 

at 15 °C with dai ly recurrent exposures of one hour to 15, 22.5, 25, 27.5 and 30 °C. Error 

bars represent standard error. Different letters were assigned, per species, to points 

with significantly different means (p < 0.05). No significant difference was observed 

between species at identical temperature treatments.  
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F igure 3
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F ig.3: Fv/Fm variation with repeated exposure to high temperature in Laminaria  

ochroleuca  (left, circles) and Saccorhiza  polyschides  (r ight, tr iangles) from Northern 

Portugal.  Error bars represent standard error (n=5). Open symbols indicate 

measurements after the heat shock. Closed symbols refer to measurements after the 

recovery period. + indicates a significant difference from the control  (15 °C). * indicates 

a significant difference between the two species. Different letters were attributed, per 

species, within each temperature,  to significantly different points.  




