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SUMMARY

This paper presents a high-performance computing (HPC) framework for Monte Carlo (MC) simulations in
the ocean color (OC) application domain. The objective is to optimize a parallel MC radiative transfer code
named MOX, developed by the authors to create a virtual marine environment for investigating the quality of
OC data products derived from in sifu measurements of in-water radiometric quantities. A consolidated set of
solutions for performance modeling, prediction, and optimization is implemented to enhance the efficiency
of MC OC simulations on HPC run-time infrastructures. HPC, machine learning, and adaptive computing
techniques are applied taking into account a clear separation and systematic treatment of accuracy and pre-
cision requirements for large-scale MC OC simulations. The added value of the work is the integration of
computational methods and tools for MC OC simulations in the form of an HPC-oriented problem-solving
environment specifically tailored to investigate data acquisition and reduction methods for OC field mea-
surements. Study results highlight the benefit of close collaboration between HPC and application domain
researchers to improve the efficiency and flexibility of computer simulations in the marine optics application
domain. © 2016 The Authors. Concurrency and Computation: Practice and Experience Published by John
Wiley & Sons Ltd.
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1. INTRODUCTION

Research at the interface of Geosciences and Computer Science increasingly demands large-scale
high-performance computing (HPC) applications. Simulation-driven experimentation in Geo-
sciences generally involves complex mathematical models and large volumes of data. HPC solutions
tailored to specific application areas can help improve the quality of numerical results through a
comprehensive exploitation of computational resources. Scientific studies relying on HPC facilities
need to meet different performance and efficiency requirements including the following: (1) opti-
mization of time and space costs for running large-scale computer simulations; (2) comprehensive
exploitation of consolidated and emerging computer architectures in different geographical settings;
and (3) ease of access to computing resources and supporting HPC techniques. These requirements
have been the rationale of numerous HPC applications in Geosciences (e.g., [1-6]), stimulating
a variety of Computer Science studies on HPC-oriented problem-solving environments (PSE).
Key PSE components include parallel and grid computing infrastructures [7, 8], middleware and
programming tools [9-12], and computational methods for Geoscience applications [13-16].
Within the scope of the Geo-Info project [17] aiming to promote joint research between com-
puter scientists and Geoscience experts, this paper presents an HPC framework for performance
prediction and optimization of Monte Carlo (MC) simulations for ocean color (OC) applications.
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Figure 1. Study components with specific uncertainty budgets.

This framework concerns a parallel MC radiative transfer code [17-20], hereafter referred to as
MOX, developed by the authors to support investigations on OC data products derived from in situ
radiometric measurements perturbed by uncertainties due to environmental factors [21-23]. The
MOX implementation is underpinned by the increasing importance of accurate long-term in situ OC
measurements for the development of bio-optical models, vicarious calibration of satellite sensors,
and validation of remote sensing (RS) radiometric products [24-30]. Earth observation programs
of relevance include the MERIS and OLCI projects of the European Space Agency and the Sea-
WiFS, MODIS, and VIIRS projects of the US National Aeronautics and Space Administration.
MOX computes the light distribution in natural waters by tracing a number of photons and track-
ing their trajectories. The output of the photon tracing is a two-dimensional virtual representation of
in-water radiometric fields, which can then be used as a controlled environment to derive OC data
products with statistical features analogous to those in reality. MOX can hence contribute to theoret-
ical assessments of uncertainty budgets in OC field measurements and provide guidelines to refine
data reduction methods for in sifu marine radiometry [31-33].

An integrated set of HPC techniques for MOX performance prediction and optimization is imple-
mented in this study to enhance the efficiency of MC OC simulations on large-scale parallel
computers. This objective is challenged by heterogeneous uncertainty characterizing OC applica-
tions, MC simulations, and HPC systems. These uncertainty budgets, hereafter respectively referred
to as OC, MC, and HPC uncertainty, are addressed in a component-wise manner (Figure 1). The
OC uncertainty represents perturbations affecting the quality of OC data products, specifically the
following: (1) the precision (i.e., reproducibility) of in situ measurements and (2) the accuracy of
RS observations with respect to reference in situ data. The former refers to those perturbations due
to environmental conditions and measurement settings that MOX is intended to analyze. The latter
uncertainty is a matter of satellite OC investigations, which set up the encompassing context of the
present work. The MC precision accounts for statistical fluctuations intrinsic to the randomness of
MC methods [34-36] affecting the reproducibility of simulation results. The MC accuracy deter-
mines the physical correctness of simulated radiometric fields [18]. The HPC uncertainty finally
refers to performance variability observed in parallel computing systems [37-40]. This variability
influences the precision of execution time assessments based on which performance prediction is
attempted, and hence also the accuracy of prediction results with respect to reference execution time.

Large-scale MOX simulations are motivated by (1) the necessity to satisfy MC precision require-
ments and (2) the need to explore various environmental cases of interest in OC investigations.
Specifically, the present HPC framework aims to address two goals:

(1) Modeling radiometric fields at the required precision level. In order to provide meaningful
insights for OC applications, the virtual radiometric environment produced by MOX has to
meet the precision requirement of real field measurements. From a computational perspec-
tive, this means tracing a sufficiently large number of photons. Simulation configurations
(i.e., MOX input parameters) are given by OC experts in compliance with environmental
settings of interest and the technical specification of radiometric measurement systems. The
required photon population size N, to reduce MC-intrinsic statistical noise to a negligible
level is an unknown function of these input parameters. In addition, MOX execution time
depends on the performance variability in HPC architectures. It is thus beneficial to deter-
mine N, at run time while taking account of these uncertainty budgets, in order to improve
execution efficiency.
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(2) Efficient exploitation of HPC systems. MOX is used by domain experts to explore a wide
multi-dimensional parameter space defined by case study specifications. This may require hun-
dreds of simulation jobs. It is hence desirable to distribute the simulation jobs to the available
computing environments in a cost-effective manner based on an automated job scheduling
mechanism. The foremost objective of job scheduling is to minimize time costs because of
expensive computation time in HPC facilities. The job-environment mapping can be auto-
mated by means of execution time estimates. However, predictive performance modeling of
the MOX code is challenged by the aforementioned issue of photon population size, as well as
by a nonlinear dependence of the execution time upon multivariate simulation settings, includ-
ing illumination conditions, seawater optical properties, and irregular boundary conditions
imposed by sea-surface waves (e.g., [18]).

The main achievements of the present work are summarized hereafter:

(1) From a Computer Science perspective, this study makes a case of an effective combination
of HPC, machine learning, and adaptive computing techniques to address the performance
prediction and optimization problems posed by large-scale MC simulations in the presence of
OC, MC, and HPC uncertainty budgets.

(2) From an applicative point of view, instead, it provides OC scientists with a suite of compu-
tational methods that improve the efficiency and flexibility of MOX experiments, benefiting
application case studies conducted on supercomputers.

1.1. Related work

The present work advances reference research achievements [19, 20] by integrating new results
and methods in a unifying framework of performance optimization techniques. Numerical results
acknowledge an extended range of input simulation parameters to investigate the effects of envi-
ronmental factors on run-time performance optimization. Besides, the offline performance tuning
scheme outlined in [20], here revised from a methodological perspective, is evaluated based on
novel numerical results. The study is part of a wide range of performance modeling solutions for
optimizing time and space in simulation-driven investigations for Geosciences, as reviewed next.

Performance modeling and prediction in the literature can be roughly divided into three classes:
Fully analytical modeling based on in-depth knowledge of target computer programs and envi-
ronments [41-43]; semi-analytical modeling based on a priori knowledge of the programs and
environments to identify appropriate model expressions, and least-squares fitting of model coef-
ficients to observed performance data [44-50]; and empirical performance modeling relying on
very general model expressions whose coefficients are learned from data [48, 51]. The key element
exploited for MOX performance modeling is the identification of linear and nonlinear components in
the photon tracing time. The linear dependence is treated analytically, while an empirical multi-layer
perceptron (MLP) scheme is used to model the nonlinear relationship.

MLP neural networks have been widely used for a number of applications including perfor-
mance modeling [48, 51], job scheduling [52], load balancing [53], design space exploration [54,
55], and OC bio-optical inversion [29, 30, 56-64]. A common finding among these studies is that
a key to successful MLP applications is empirical tuning of MLP algorithms in terms of network
architecture, data pre-processing, and application-specific feature selection. Developing MLP algo-
rithms usually requires a thorough adaptation of the generic neural computing framework to specific
application cases.

Performance analyses of MC particle transport codes have been addressed by several researchers.
Main differences are in whether the analyses are qualitative [65, 66] or intended for performance
prediction, as well as in target aspects of the modeling (e.g., parallel performance in [43] vs. serial
photon tracing time in this study). The reported dependence of the execution time on input param-
eters defining the simulated media and the degree of parallelism [65, 66] are in agreement with the
dependence of the MOX performance on seawater inherent optical properties (IOPs) and the number
of CPU cores.
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Adaptive computing applications commonly exploit domain-specific elements in order to enable
automated dynamic optimization. The online accuracy evaluation scheme applied in this study is an
example of a widely used procedure where computation continues (either iteratively or recursively)
until predefined accuracy conditions are met. Many other examples of domain-specific adaptive
computing techniques are found in the literature, for instance in self-adapting linear algebra [67—69],
adaptive quadrature [70, 71], and adaptive mesh refinement [42, 72] just to name a few. These
previous studies and the present work differ in the ways how domain-specific elements are used to
control adaptive iteration/recursion procedures.

Our adaptive performance tuning shares strategies with the adaptive control theory [73]. In both
cases, the objective is the adaptive scheduling of computations upon run-time events. Canonical
control theory relies on formal expressions through an analytical (e.g., [74]) or a machine learning
approach (e.g., [75]) to model the distribution of the system state. In the present study, decision
making does not require learning the occurrence of different events (hence there is no need for
probability density estimation). Instead, adaptive strategies are decided on prior knowledge of run-
time events.

1.2. Structure of the work

The paper organization is as follows. Section 2 presents a general architecture of HPC-oriented
problem-solving environments based on which the present work is developed. Section 3 examines
MOX performance characteristics. On this analysis basis, the components of the proposed HPC
framework are formulated in Section 4. The system components are then verified by experimental
results in Section 5 and further discussed in Section 6. Finally, Section 7 concludes the work with a
summary of the study and elements for future progresses.

2. HPC-ORIENTED PROBLEM-SOLVING ENVIRONMENTS

Scientific and engineering applications increasingly rely on virtual experiments by means of
numerical simulations to better understand the behavior of real complex systems under different con-
figuration scenarios. The growing demand of a systematic support for simulation-based experiments
has pushed forward the development of integrated solutions commonly called PSEs. This concept,
appeared in the 1990s [76], is now a recognized approach to help scientists and engineers manage
the complexity of problem solving. The scope is to provide a transparent and easy-to-use interface to
state-of-the-art algorithms and problem-solving strategies. Large-scale and data-intensive applica-
tions as those addressed here require dedicated support and easy access to underlying run-time HPC
systems, as well as efficient and scalable means for job and resource management, data visualization
and analysis.

The schematic in Figure 2 identifies the following four main PSE functional layers for HPC
applications.

(1) Application set-up. This layer accommodates domain-specific abstractions, mathematical
models and solvers, as well as experiment scenarios in terms of parameters and objective func-
tions for optimization. In the present study, this layer includes the MOX code and case study
specifications.

(2) Experiment management. This layer comprises generic components for managing the
problem-solving process, that is,

(a) Experiment specification, which allows users to describe structural or template plans
for computer experiments.

(b) Design space exploration, optimization, and tuning, based on a set of design alterna-
tives corresponding to various configurations of input parameters.

(c) Data interpretation, analysis, and visualization, by means of tools for supporting the
evaluation of computer simulations, on the basis of a specific interpretation and anal-
ysis process for each application problem. In this regard, the present study addresses
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Figure 2. Architectural overview of problem-solving environments (PSEs). Rectangles represent general
PSE components, whereas rounded boxes highlight study elements of the present work.

performance enhancement of MOX simulations through online accuracy evaluation
and offline threshold parameter tuning.

(3) Job and resource management. This layer offers functionalities to automate the instantiation
of simulation jobs and management of their execution in underlying run-time infrastructures.
In the case of the present work, this layer includes techniques for predictive performance
modeling and job scheduling on the basis of past MOX execution records.

(4) Computing infrastructure. This layer represents execution platforms for HPC applications
including clusters, grids, and clouds. The target computing environments of this work are
distributed-memory and shared-memory parallel machines.

3. MOX PERFORMANCE CHARACTERIZATION

This section addresses the performance characterization of the MOX code. MOX features relevant
to this study are also presented for convenience of the readers (see [18] for more detail).

MOX applications start with MC simulations of in-water radiometric fields, followed by ‘virtual’
optical profiling where the simulated radiometric fields are used to derive data products relevant for
OC studies.

MC simulations constitute the most compute-intensive part of MOX applications. The simulation
domain is an x—z cross section of a seawater column (from surface to bottom) modeled as vertically
stacked layers of horizontal photon-collecting bins (Figure 3). The output of photon tracing provides
the spatial distributions of different radiometric quantities %z (k = 1,2, 3,...). Each radiometric
field, expressed by a matrix whose (i, j) entry accumulates photons that hit the j-th bin of the i-
th layer, is then used for virtual optical profiling complying with measurement protocols of in situ
marine optics.

For example, Figure 4(a) shows a computed distribution of a radiometric quantity (namely, the
downward irradiance E4 [18]) in the presence of sea-surface waves, illustrating the light focusing
and defocusing effects of the sea surface. White diagonal lines indicate a virtual deployment path of
a profiler system below the sea surface (black line). Note that in reality, waves propagate horizon-
tally, while the optical system is deployed vertically. Figure 4(b) shows radiometric values E4(6;)
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Figure 3. Schematic of MOX simulation domain and photon trajectory.
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Figure 4. Panel (a) shows a simulated radiometric field (referred to as downward irradiance Eq4 [18]) in

the presence of sea-surface waves. Spatial variability of the light distribution in the water illustrates the

light focusing and defocusing effects induced by the sea surface. White diagonal lines indicate a virtual

deployment path of a profiler system below the sea surface (in-air trajectories in red are not considered for

data sampling). Panel (b) shows a set of E4(§;) values (circles) sampled at different depths §, along the

deployment path in the Ej field. The thick red line indicates a mean regression line computed over 500 sets
of E4 samples collected through independent deployments.
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(circles) sampled at different depths &, along the deployment path in the radiometric field. A data
reduction method is then applied to these sampled values to compute the radiometric data products
of interest.

Only the MC computation has been parallelized, because the time spent for virtual optical
profiling is negligible with respect to the photon tracing time.

3.1. Parallelization

MC radiative transfer simulations belong to the class of embarrassingly parallel problems, where
each photon transport can be computed independently of the others. MOX exploits data parallelism
through full replication of radiometric field matrices as follows. The total number of photons N,
is evenly divided into N. CPU cores. Each CPU core computes the trajectories of Nppe = Np/ N,
photons using a different random number seed. For each radiometric quantity, matrices on the N,
CPU cores are gathered and summed up at the end of the simulation. This summation is carried out
by a parallel reduction operation, which involves N, — 1 matrix additions.

Two versions of the parallel MOX code were implemented, one with MPI for distributed-memory
parallel computers and the other with OpenMP for shared-memory machines. Both implementations
show similar parallel performance because of the embarrassingly parallel workload. This paper
focuses on the MPI version of the code, since it enables numerical experiments with a larger number
of CPU cores.

3.2. Execution time components

The execution time of the parallel MOX code consists of three components: initialization, photon
tracing, and matrix summations. The initialization time, spent for reading a simulation configu-
ration file and preparing zero-filled radiometric field matrices, is negligible. The photon tracing
time is dominant (more than 99 %) when considering the number of photons per CPU core
(10° or larger) typically required for application studies. The time spent for matrix summations can
also be neglected with respect to the photon tracing time. Only the photon tracing time is henceforth
referred to as the execution time of MOX.

The photon tracing time may vary significantly depending on various input simulation parame-
ters, including the seawater IOPs (i.e., attenuation and absorption coefficients, and volume scattering
function), illumination conditions (i.e., the sun position, sky radiance distribution, and diffuse-to-
total irradiance ratio), sea-surface geometry (expressed by the lengths and heights of harmonic
waves), dimensions and spatial resolution of the simulation domain, and photon weight threshold.
Clearly, the photon tracing time also depends on performance factors of execution environments
such as CPU clock frequency, memory bandwidth, and memory latency.

3.3. Parallel performance and uncertainty

This section describes MOX performance characteristics through experiments using the Milipeia
cluster (University of Coimbra, Portugal). The cluster consists of identical compute nodes on a Giga-
bit Ethernet interconnect. Each node has two dual-core AMD Opteron 275 processors at 2.2 GHz
and 8 GB RAM.

Table I shows photon tracing time 7' (in seconds; averaged over five samples) as a function of
Nppe in the case of N. = 4 and N, set equal to a power of 10. The ratio 7 = T (Nppe)/ T (Nppe/10)
is approximately 10 when Np. = 10°, which indicates that T is proportional to Nppe in operational
MOX applications.

Even though the same number of photons N, is traced by each of N. CPU cores, the time
T; spent for photon tracing on the i-th CPU core can vary due to non-deterministic MC radiative
transfer computations and performance variations (i.e., jitters) in computing environments. A barrier
synchronization is thus performed at the end of photon tracing to ensure that all matrices on the
N, CPU cores are ready for parallel reduction. Therefore, the photon tracing time 7" of a parallel
MOX run is the maximum per-core photon tracing time 7,,x = max{7;} among the N. CPU cores
@=12,..., No).
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Table I. Photon tracing time 7" (in seconds; averaged

over five samples) on Milipeia as a function of Npp

in the case of N. = 4 and N, set equal to a power
of 10

Nc Np Nppe T r

4x101 10! 1.984 x 1071 —
4%x10%2 102 3.172x 1071 1.599
4x103 103 1.284 x 10° 4.048
4x10* 104 1.036 x 10! 8.07
4%10°  10° 1.011 x 102 9.752
4x10%  10° 9.988 x 102 9.884
4x107 107 1.007 x 10% 10.08

O OO O O O

Ratio r = T (Nppc)/ T (Nppc/10) is approximately 10
when Nppe = 107, indicating that 7' is proportional to
Nppe-

ppc

Table II. Maximum, mean, standard deviation, and coefficient of vari-

ation (Tyax, 4,0, and CV, respectively; averaged over five samples) of

per-core photon tracing time 7; (in seconds) on Milipeia as a function of

N¢ in the case of Np,e = 2 x 10°, where subscript i is a serial CPU core
number i = 1,2,...,N.) and CV = 100 - 6/ u[%)].

N Np Nppe Tinax w o cv
4 8§x 100 2x10° 19745 19479 36.12 1.85%
8 16x 10 2x10% 20047 19623 33.19 1.69%
16 32x10° 2x10° 20046 19529 3259 1.67%
32 64x 106 2x10° 20066 19498 39.18 2.01%
64 128 x 10° 2x10° 20573 19705 4233 2.15%
128 256 x 106 2x10° 20904 19751 4242 2.15%
Average — — — 1968.4 42.17 2.14%

CV, coefficient of variation.

Table II shows the maximum, mean, standard deviation, and coefficient of variation (CV) of per-
core photon tracing time 7; as a function of N, (set equal to a power of 2). Statistical figures report
mean results of five tests. For each test, a MOX simulation was performed with fixed parameter
settings (including a unique random number seed for each CPU core). It is observed that (1) the
mean pu values are almost the same for all N, values, and (2) the maximum per-core photon tracing
time Tiax slightly grows with an increase in ;. The first point is an expected consequence of the
embarrassingly parallel photon tracing with an even number of photons per CPU core. The second
point can be explained by performance variations in the per-core photon tracing time. Figure 5
shows the distribution of observed 7; values in the case of N. = 128 (Table II). Each of the five
histograms shows the frequency distribution of 128 per-core photon tracing time observations during
a parallel run. By using the same simulation setting, the five runs produced the identical simulation
results, but 7; values are normally distributed. The increasing trend of T, at larger N, can be
explained by theoretical results of extreme value statistics: the expected largest element in a set of n
independent and identically distributed (i.i.d.) samples drawn from a normal distribution gets larger
as n increases [77, 78]. Figure 6 gives additional confirmation by numerical results. The theoretical
expected maximum value observed in a set of N, i.i.d. samples drawn from A'(0, 1) is in agreement
with MC results with 1000 trials (pluses). Estimates of expected maxima are less accurate with a
smaller MC trial count, as seen in the MC results with five trials (crosses) as well as in the measured
Tmax values (circles).
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Figure 5. Distribution of observed per-core photon tracing time 7; in the case of N, = 128 in Table II.
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and o are the mean and standard deviation of measured 7; values, respectively. The solid line, based on

Eq. (9) in [78], shows the theoretical expected maximum value among N, independent and identically dis-

tributed samples drawn from a normal distribution with zero mean and one standard deviation, A/(0, 1). The

pluses and crosses show two sets of expected maxima determined by Monte Carlo (MC) simulations [78]
with 1000 and 5 trials, respectively.

In summary, the MOX parallel performance is quantified by the maximum per-core photon trac-
ing time, which is proportional to N, (Table I) and weakly depends on N, (Table II). These
characteristics define MOX performance modeling and job scheduling methods (Sections 4.1
and 4.2).

3.4. Performance tuning

MOX challenges conventional code optimization techniques because of sparse computations due
to a high frequency of conditional branching addressing complex boundary conditions for photon
tracing, as well as due to poor data locality resulting from irregular stride access to radiometric
field matrices for photon trajectory tracking [20]. These code characteristics prevent improving
the MOX performance with conventional code optimization techniques such as register blocking
(loop unrolling), cache blocking (different data matrix decomposition schemes), and instruction-
level vectorization (x86 SIMD instructions). Nevertheless, this study demonstrates that careful
exploitation of application-specific knowledge can still lead to significant performance gains
(Sections 4.3 and 4.4).
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4. METHODS

This section presents the four components of the HPC framework for large-scale MC OC simu-
lations: (1) MLP algorithms for execution time prediction; (2) job-environment mapping (JEM)
algorithm; (3) adaptive termination of photon trajectory tracking; and (4) offline optimization of
photon weight threshold. The first two components permit an automated job scheduling scheme
for large simulation-based experiments in OC application studies, whereas the other two allow for
enhancing the MOX performance. Figure 7 shows the interaction of the four components, which are
presented in the subsequent sections.

4.1. Hybrid approach for execution time prediction

MOX execution time is predicted jointly using an analytical model and an empirical MLP regression
scheme. The rationales of this hybrid approach are the following. First, the MOX execution time is
proportional to the number of photons per CPU core and approximately inversely proportional to
the number of CPU cores (Section 3.3). These properties are easy to capture by a linear expression.
Second, the photon tracing time shows a nonlinear dependence on input simulation parameters,
which is analytically intractable. Hence this component is modeled using MLP neural networks
(see [19] for more detail).

The expected execution time 7" of a production MOX run in a particular parallel computing
environment is modeled as a function of a set of input simulation parameters, the number of CPU
cores N, and the number of photons N, as follows:

(1) A training dataset is built by running a set of simulation jobs and measuring the time spent
for tracing a reduced number of photons N, several orders of magnitude smaller than N, and
using a limited number of CPU cores 1\7 < N..

(2) AnMLP is built from the training dataset and then used for predicting the time T tobe spent for
tracing Np photons using N CPU cores based on the given set of input simulation parameters.

(3) The prediction T is computed by linear extrapolation as

T = (ZVC/NC) (NP/NP) 7. (1)

Note that a small prediction error is expected because of increased time variability with a large
N, (Section 3.3). This error is, however, much smaller than the time variability due to multivariate
simulation settings, and thus neglected in Eq. (1).

© 2016 The Authors. Concurrency and Computation: Practice  Concurrency Computat.: Pract. Exper. 2017; 29: e3860
and Experience Published by John Wiley & Sons Ltd. DOI: 10.1002/cpe



HIGH-PERFORMANCE MONTE CARLO OCEAN COLOR SIMULATIONS 11 of 26

Input

S ={s1, ..., sn_}: aset of simulation jobs.

&€ ={e1, ..., en, }: aset of execution environments.

f(s4, ej): acost function that gives a scalar value representing the cost of running s; on e;.
Output

Q1, ..., Qn,: environment-wise disjoint subsets of S.
Begin

1: Let U = S be a set of simulation jobs that are not assigned to any execution environment.
2: Let Q; = () be a set of simulation jobs assigned to environment e;, and ¢; = 0 be the total
cost of running the jobs assignedtoe; (j =1, ..., Ne).
3: Repeat the following steps until U becomes empty:
4: Leté C & be the set of environments having the smallest ¢;, and Ne be the number of
environments in £.
S: Foreache; € £, find the job s; € U with the largest cost function value fi; = f(s;, e;).
6: Among the N. job-environment pairs, find the pair (s;, e;) with the smallest f;;.
7: Assign the job s; to the environment e; by removing s; from U, adding s; to @, and
adding f;; to t;.
End

Figure 8. The job-environment mapping scheme.

4.2. Job-environment mapping algorithm

This section presents the JEM algorithm to minimize the total time for running MOX simulation jobs
distributed to multiple execution environments [19]. Let S = {s1, ..., sn,} be a set of N, simulation
jobs, £ = {e1, ..., ey} be a set of N, execution environments, and f;; = f(s;, e;) represent
the cost of running s; on e;. The cost function f is defined by means of MLP algorithms for
execution time prediction. Figure 8 shows the JEM scheme. It employs a greedy strategy to assign
jobs to environments in descending order of time costs. This mapping algorithm complements the
MLP performance prediction, and they provide a complete tool set of HPC job scheduling foreseen
in Figure 7.

4.3. Adaptive termination of photon trajectory tracking

The execution time of a MOX simulation job is decoupled into two parts. One is the time employed
for computing photon trajectories. The other is the time for tracking the photon trajectories by
adding the photon weight into the entries of radiometric field matrices along the photon trajectories.
Some matrices are updated, while the others are left unchanged depending on the photon traveling
direction and field-of-view angles of radiometers being simulated [18]. For example, the radiometric
field shown in Figure 4(a) is computed by accumulating only those photons traveling downwards.

Light in a homogeneous seawater column decreases approximately exponentially with depth
8, [79]. Indicating with 9 radiometric quantities (¢ = 1, 2, 3, ...) and omitting the spectral
dependence for brevity, the decrease of 9y with §, is expressed as follows:

Ne(8z) = Ne(07) exp(—Kap, - 82), 2

where N (07) are subsurface radiometric values just below the sea surface, Kg, are diffuse attenu-
ation coefficients, and §; is positive downward. In field marine radiometry, 3%z (07) and Ky, are the
OC quantities of interest derived applying a regression scheme to a set of i (§;) values measured at
different depths § in the water column. In MOX application scenarios, simulated radiometric fields
are used for virtual optical profiling to evaluate the precision of OC data products under controlled
simulation conditions that could not be attained in the natural environment.

Data reduction results of virtual optical profiling are affected by two sources of variability. One
is due to statistical noise intrinsic to the MC approach. This uncertainty must be decreased to a neg-
ligible level by tracing a sufficiently large number of photons. The other depends on environmental
effects such as light focusing and defocusing induced by sea-surface waves seen in Figure 4(b) as
periodical large values (spikes, also known as caustics in computer graphics). This variability can
be assessed only after the MC noise has been reduced to a negligible level. To evaluate these types
of uncertainty budgets, virtual optical profiling is repeated multiple times.
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With § generically indicating data reduction results [either i (07) or Ky, of Eq. (2)], the
uncertainty observed in a set of J; values is expressed by the CV in percent defined as

VEE, (- @)
Q) ’

CVg = 100- (3)

where N is the number of J; values and
Q)=+ PRIT )

MOX simulations concern two general types of environmental conditions hereafter referred to as
Types I and I, respectively. Type I simulations are those with an ideal flat sea surface, whereas Type
IT simulations acknowledge the presence of sea-surface waves. Experimental results with MOX
simulations have shown that (1) CVy decreases infinitely with an increasing number of photons
in Type I simulations, and (2) CVgy reaches a plateau at a certain number of photons in Type II
simulations [18]. In the Type I simulations, tracing more photons does not significantly improve the
reproducibility of OC data products after the MC noise is reduced to an acceptable level. In the Type
IT simulations, the variability cannot be reduced below a certain level no matter how many extra
photons are traced, due to genuine light variability caused by the focusing effects of sea-surface
waves. Note that the number of photons necessary to neglect the MC noise is unknown in advance
in both cases.

The MOX performance is optimized based on online quality evaluation of radiometric field matri-
ces to stop tracking photon trajectories when predefined precision criteria are met [20]. The rationale
behind this early termination of photon trajectory tracking is that it is a waste of time and computing
resources to keep updating the matrices that are already free of MC-intrinsic statistical noise.

The adaptive termination of photon trajectory tracking is performed as follows. Every time a
certain number of photons on different orders of magnitude (e.g., 103, 104, and 10°) have been
traced, the statistical quality of radiometric field matrices is quantified by the CVy values of Eq. (3).
Specifically, for each radiometric quantity iy and data product 3, the following stopping criteria
are tested:

CVy < 0.1 &)
CVy —CVy
200 ——*———= <5 (6)

where CVY refers to the CVy value in the previous evaluation. The first condition imposes a target
precision of 0.1% to take into account that the CV of data reduction results keeps decreasing as
photon tracing continues in Type I simulations. The second condition relies on the unbiased percent
difference between the present and previous CV values to detect a saturation pattern of CV reduction
rate in Type II simulations. The unbiased percent difference threshold is here set to 5%. If one of
the stopping criteria is met, then the updates of the N data matrix are terminated. Photon tracing is,
however, continued until photon trajectory tracking has been stopped for all radiometric quantities
of interest.

4.4. Offline optimization of photon weight threshold

Tracing of a photon continues until either it escapes into the sky from the top boundary of the simula-
tion domain (Figure 3) or its weight (starting from one) becomes lower than threshold ¢, (e.g., set to
1079) after a series of scattering and absorption events. How many photons exit into the sky mostly
depends on seawater IOPs (including attenuation and absorption coefficients) and boundary con-
ditions (e.g., sea-surface geometry and sea-bottom reflectance). These environmental parameters,
defined as part of case study specifications by OC experts, are not tunable from the computational
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perspective. In contrast, thresholding the photon weight is suggested by a cost-effectiveness con-
sideration, because a photon weight close to zero does not significantly contribute to the statistical
quality of simulated light fields.

A thorough examination of OC and MC application requirements thus permits performance opti-
mization based on quality-speed trade-offs. The case considered here is that a smaller ¢,, improves
the precision of simulated radiometric fields, whereas a larger £y, leads to a shorter photon lifetime,
which translates into a shorter execution time.

Seawater IOPs and photon weight threshold jointly determine the average depth that photons can
reach within the water column. Simulated light fields below this average depth are not be suitable
for virtual optical profiling due to increased MC statistical noise. Note also that virtual optical profil-
ing is conducted by sampling radiometric values within an upper layer of the water column, namely,
between just below the surface and a predefined depth referred to as the regression layer depth [31].
Hence the average photon depth must be deeper than the regression layer depth.

The objective is then to determine the largest value of ¢, so that data reduction results are not
affected by MC statistical noise. To this end, the photon weight w is parameterized as a function of
the depth z [m] (positive downward) in the seawater medium having attenuation ¢ and absorption
a coefficients [m™!]. To simplify this parameterization, an ideal flat surface illuminated only by the
sun at the zenith is considered. By the same token, forward scattering is adopted for an analytical
approximation of the problem.

The initial photon weight is set to one. Every time the photon is scattered by the seawater, the
weight is scaled by single scattering albedo w = (c—a)/c to account for absorption by the seawater.
Therefore, the number of scattering events m after which the weight becomes smaller than ¢, is
implicitly expressed as

o™ = ZW‘ @)

By solving for m,

m = log{y/logw. 8)

This gives the maximum number of scattering events that a photon may undergo before tracing of
the photon is terminated. Equation (8) indicates that for a fixed w lower than 1 by definition, an
exponential increase of ¢, (e.g., from 1076 to 1073) leads to a linear decrease of m and thus of the
per-photon and total execution time.

The optical distance 7 that a photon travels before a scattering event is given by an exponential
probability density function

p(t) = exp(—1), ©)

where t = 0. The expectation value of t is E(t) = 1. The geometrical distance r [m] is defined as
r = t/c, so that the photon travels E(r) = 1/c¢ on average between scattering events. The average
depth z that the photon can reach after n scattering events is at most

z=n-E(r)=n/c, (10)
and hence
n=cz. (11)
The maximum photon weight after n scattering events is finally expressed as a function of z as
w = 0. (12)

This analysis relates the photon weight w to the depth parameter z and a given set of IOP values,
guiding a proper definition of the weight threshold ¢, that satisfies the quality requirements for
virtual optical profiling. An estimate of ¢, that will guarantee a sufficiently low MC uncertainty in
the upper layer of the seawater column is given by letting m = n and ¢, = w°?, and setting z to a
value greater than the regression layer depth chosen by OC experts.

© 2016 The Authors. Concurrency and Computation: Practice  Concurrency Computat.: Pract. Exper. 2017; 29: e3860
and Experience Published by John Wiley & Sons Ltd. DOI: 10.1002/cpe



14 of 26 T. KAJIYAMA, D. D’ALIMONTE AND J. CUNHA

Table III. MOX simulation configurations, with different values for five

input parameters: attenuation ¢ and absorption a coefficients [m~!], sun

zenith angle 6, [deg.], and surface wave lengths / and heights & [m]. Single
scattering albedo w = (¢ — a)/c is additionally shown.

Conf. c a w O l h
la 0.2 0.15 0.25 30 5 0.5
1b 0.5 0.05 0.9 30 5 0.5
1c 0.6 0.5 0.17 30 5 0.5
1d 1 0.2 0.8 30 5 0.5
2a 0.2 0.15 0.25 60 5 0.5
2b 0.5 0.05 0.9 60 5 0.5
2¢ 0.6 0.5 0.17 60 5 0.5
2d 1 0.2 0.8 60 5 0.5
3a 0.2 0.15 0.25 30 5,05 0.5, 0.05
3b 0.5 0.05 0.9 30 5,05 0.5, 0.05
3¢ 0.6 0.5 0.17 30 5,05 0.5, 0.05
3d 1 0.2 0.8 30 5,05 0.5, 0.05
4a 0.2 0.15 0.25 60 5,0.5 0.5, 0.05
4b 0.5 0.05 0.9 60 5,0.5 0.5, 0.05
4c 0.6 0.5 0.17 60 5,05 0.5,0.05
4d 1 0.2 0.8 60 5,0.5 0.5, 0.05
S5a 0.2 0.15 0.25 30 0 0
5b 0.5 0.05 0.9 30 0 0
5¢ 0.6 0.5 0.17 30 0 0
5d 1 0.2 0.8 30 0 0

5. RESULTS

Table IIT shows 20 MOX parameter sets from real case scenarios [18] taking account of five input
quantities: seawater attenuation ¢ and absorption a coefficients [m~!], sun zenith angle 6, [deg.],
surface wave length /, and height 4 [m]. Four sets of seawater optical property values, two sun
elevations, and three sea-surface states are considered. Sea-surface geometry is modeled as the sum
of harmonic waves. Attenuation and single scattering albedo indicate that the considered simulations
concern various seawater types ranging from clear to turbid waters (¢ € [0.2, 1]), as well as from
less to more scattering waters (w € [0.17,0.9]).

5.1. MLP algorithms for execution time prediction

This section concerns the validation of the MLP performance modeling method (Section 4.1). MLPs
for predicting the execution time of the 20 simulation configurations in Table III are developed on
the basis of execution time measurements collected by running training simulations.

Selected MLP input parameters are attenuation ¢ and absorption a coefficients and sun zenith
angle 6. To account for different sea-surface states, the 20 test simulation cases were split into three
groups W1, W2, and F as shown below, and a separate MLP was trained for each group:

W1 Conf. 1a-1d and 2a-2d with one wave component.
W2 Conf. 3a-3d and 4a—4d with two wave components.
F Conf. 5a-5d with flat surface.

The selection of training samples may affect the performance of MLP execution time predic-
tion. This effect is here assessed based on three sets of samples shown in the left column panels of
Figure 9, where dots (blue) and crosses (red) indicate MLP training and validation cases, respec-
tively. Differences among these training datasets are in the way how ¢ and a values are chosen. The
dataset in Panel 9(a) is a combination of five ¢ and four a values at linear uniform intervals, and
only the data points that satisfy the physical constraint a < ¢ are retained. The dataset in Panel 9(c)
includes five a values at log-scale regular intervals and three w values at linear uniform intervals—
that is, the corresponding ¢ values are computed as ¢ = a/(1 — w). The dataset in Panel 9(e)
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combines each of five a values at log-scale regular intervals with three ¢ values between a and @y«
at linear uniform intervals, where a,,x was set equal to 1.1. In all cases, a total of 15 pairs of ¢ and
a values as well as the same set of three 6 values (i.e., 20, 45, and 70 degrees) were used, so that
each training dataset includes 45 samples.

MLP training and validation were repeated M = 10 times to assess the average MLP perfor-
mance taking account of variations in prediction results due to the nonlinear optimization performed
to train the MLP. The relative prediction error in percent is defined as

k
elk: 100. 2" t’, (13)
14
where #; denotes the observed execution time of the i-th simulation configuration and ylk is the cor-
responding execution time prediction from the k-th MLP. The average MLP performance is assessed
by the mean p and standard deviation o, of ef‘ values computed over N simulation configurations
and M predictions for each configuration:

1 M
NZZef, (14)

k=1i=1

<[ -

He =

) 5 1/2
(e,. _Me) ) . (15)

Figure 9 shows MLP prediction results in the right column panels. Circles (blue), triangles
(green), and squares (red) indicate results for Groups W1, W2, and F, respectively. The markers
show the mean of M execution time predictions, with error bars indicating £1 standard deviation.
The MLPs trained with the dataset in Panel 9(a) gave smaller p. values but larger prediction uncer-
tainties, especially at longer execution time. This is likely explained as an extrapolation problem
due to the training data that do not completely cover the parameter space including the validation
cases. The training data in Panel 9(c) represent a more regular sampling but also an uneven distribu-
tion with respect to the validation samples. This may explain the large prediction errors due to MLP
learning with sparse training data. The most performing MLPs (i.e., with a moderate . and the
smallest o on average) were those trained with the dataset in Panel 9(e). This case study highlights
the importance of a careful selection of training samples to avoid MLP extrapolation and learning
from sparse data.

11M N
"f=<ﬁﬁz_

k=1i=1

5.2. Job-environment mapping algorithm

The relevance of the proposed JEM algorithm is evaluated by considering the scheduling perfor-
mance of random job allocation (RND) as benchmark. When no prior information is available about
the execution time of individual MOX simulations, the most general scheduling approach is ran-
dom allocation assuming the same running cost for all jobs (homogeneous cases). If relative running
costs of different computing environments are known, then more jobs can be assigned to less costly
computing environments (heterogeneous cases). These two scheduling scenarios are used for eval-
uation, considering as a case study the problem of allocating the 20 simulation jobs of Table III to a
different number of computing environments ranging from 2 to 5. Results are presented in Table [V
through the quantities defined hereafter.

The columns labeled e; (i = 1,...,5) indicate relative costs for running jobs in the five comput-
ing environments (blank entries mean unused). Concerning the JEM approach matter of this study,
MLP performance models are trained adopting the dataset of Figure 9(e). The 20 jobs are then allo-
cated to multiple environments based on MLP execution time estimates, and for each environment,
the total execution time of allocated jobs are calculated. ;2% indicates the observed maximum total
execution time (in seconds) among the computing environments, while ngﬁ,}i corresponds to the
modeled execution time. The relative percent difference between observed and modeled values is
Siem = 100 (Tped — Ti) / Ty In the benchmark case, Tigky, is the mean of the maximum total
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Figure 9. Panels (a), (c), and (e) in the left column show three data distributions, with blue dots and red

crosses indicating training and validation samples, respectively. Note that the distributions of validation

values are the same for all tested cases. Panels (b), (d), and (f) in the right column indicate validation results

of the multi-layer perceptron (MLP) execution time models built with training samples in the corresponding

left column panels. MLP performance is assessed by mean relative error jte and standard deviation o¢

(shown in the form p & o) computed for all the 20 validation cases (indicated as ‘overall’), as well as for
each simulation configuration group (shown in the legend).
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Table IV. Performance analysis of scheduling algorithms. MOX execution times are expressed in seconds
(see text for detail).

Relative cost Proposed Random

p (%)

e1 ex ez es es T TR Sipm (%) TRy orD  CVRND (%)
1 1 2178.6  2082.1 442 2495.1 238.08 9.54 12.6
Homogeneous 1 1 1 1526.5 1397.1 8.47 1868.4 241.18 12.9 18.2
cases 1 1 1 1 1114.9 1054.0 5.46 1526.6 206.62 13.5 26.9
1 1 1 1 1 918.50  850.59  7.39 13209 188.34 14.2 30.4
1 15 2629.2 25113 4.48 2996.7 325.40 10.8 12.2
Heterogeneous 1 1.5 2 2079.9 1934.4 6.99  2550.6 306.29 12.0 18.4
cases 1 15 2 25 1762.5 1634.4 726  2415.1 381.70 15.8 27.0
1 1.5 2 25 3 17033 1513.2 11.1 2302.6 400.08 17.3 26.0

time observed upon 10000 random job allocations. By the same token, ornp and CVgnp are the
standard deviation and the CV, respectively. Finally, p = 100 - (T35 — Teny)/ TS, reports relative
performance gains by the JEM method with respect to the benchmark results.

In homogeneous cases, relative costs e; were set to 1 for all environments, and only the number of
available computing systems was changed. In the case of two environments e; and e, for example,
the JEM algorithm allocated 9 and 11 jobs to e; and e,, respectively. The observed (modeled) total
execution time in e; and e, was 2178.6 (2082.1) and 2151.9 (2080.0) seconds, respectively. With
the RND scheme, the 20 jobs were evenly assigned to the two environments at random. The result
is Tehsy = 2495.1, which corresponds to a gain of p = 12.6%.

In heterogeneous cases, relative differences in job execution costs were modeled by a linear scal-
ing factor indicated as e; in the table. Both the observed and modeled execution times of the 20
MOX simulation jobs were scaled by e; to account for heterogeneous performance of the execution
platforms. In the case of using two environments e; = 1 and e, = 1.5, the JEM method allocated
12 and 8 jobs to ey and e, respectively. The observed (modeled) total execution time in e; and e,
was 2577.7 (2488.0) and 2629.2 (2511.3) seconds, respectively. With the RND approach, 12 and 8
jobs were also allocated to e; and e,, respectively, due to the different relative running costs. The
benchmark result is 7oy, = 2996.7, corresponding to p = 12.2%.

The experimental results of Table IV show an increase of CVrnp with the number of available
environments in both the homogeneous and heterogeneous cases. In contrast, §jgy values document
an accurate estimate of the total execution time within the range of prediction errors reported in
Figure 9(f). Note that this is the case even when the Tjis values are computed by summing up
execution time estimates of individual jobs. Consequently, the performance gain p by JEM increases
with the number of computing environments in both the homogeneous and heterogeneous cases.

5.3. Adaptive termination of photon trajectory tracking

Figure 10 shows CV trends of derived data products as a function of the number of traced photons,
by considering selected Type I (Conf. 5a—5d) and Type II (Conf. 1a—1d) simulations of Table III and
computing simultaneously three radiometric quantities (referred to as downward E4 and upward
irradiance E, and up-welling radiance L, [18]). CV values in the left column panels show a steady
decrease with an increasing number of photons, as expected in Type I simulations with the ideal
flat surface. In contrast, all CV plots in the right column panels exhibit saturation patterns fore-
seen in Type II simulations performed in the presence of sea-surface waves. Thick markers indicate
the number of traced photons at which an adaptive termination condition [Eq. (5) or (6)] was sat-
isfied and photon trajectory tracking was discontinued. The dashed horizontal line shows the 0.1%
target precision in Eq. (5). These results confirm that the termination conditions for Type I and II
simulations are duly met in the flat and rough sea-surface cases, respectively.

Performance improvements by means of the adaptive termination of photon trajectory tracking
are assessed as follows. First, the 20 simulation cases of Table III were eercutAed without the adaptive
termination of photon trajectory tracking, and the execution time 7 (N,, N.) was measured with

© 2016 The Authors. Concurrency and Computation: Practice  Concurrency Computat.: Pract. Exper. 2017; 29: e3860
and Experience Published by John Wiley & Sons Ltd. DOI: 10.1002/cpe



18 of 26 T. KAJIYAMA, D. D’ALIMONTE AND J. CUNHA

1072 4 6 8 10 1072 4 6 8 10
10 10 10 10 10 10 10 10
Number of photons Number of photons
(a) Sa. (b) la.
10° 10°

10* 10° 10° 10" 10* 10° 10° 10"
Number of photons Number of photons
(c) 5b. (d) 1b.
10° 10°

10! 10° 10° 10'° 10* 10° 10° 10"
Number of photons Number of photons
(e) 5¢c. ) 1c.
10° 10?

_2 —2
10 10
10* 10° 10° 10 10* 10° 10° 10"
Number of photons Number of photons
() 5d. (h) 1d.

—o— Ed(07) —4— Eu(0) —=— Lu(0)
O~ Keg A~ Keu 5~ Ky

Figure 10. Coefficient of variation (CV) trends of subsurface values iz (07) and diffuse attenuation coef-
ficients Ky, in selected Type I (Conf. 5a—d) and Type II (Conf. la—d) simulations of Table III, where
N generically denotes radiometric quantities of interest (i.e., downward E4 and upward irradiance E, and

up-welling radiance L, [18]).
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Table V. Performance of the adaptive termination of photon trajectory
tracking, considering the 20 simulation cases shown in Table III.

Conf. T (Np, Ne) N T(Np, Ne) Topt(Np, Ne) S

la 153.2 32 3.830x10° 5.142x 104 7.45
1b 548.0 128 3.425%10° 1.585x10° 2.16
Ic 41.66 32 1.041x10° 3.279x 104 3.18
1d 184.7 64 2.309x 10° 7.451x104 3.10
2a 154.6 48 2.577x10° 3.253x10% 7.92
2b 526.7 128 3.292x10° 2.916x10% 11.2

2¢ 44.66 32 1.116x10° 3.252x 104 3.43
2d 176.3 64 2.204x10° 7.384x10% 2.99
3a 131.7 64 1.647x10° 1.827x 104 9.01
3b 514.1 128 3.214x10° 7.751x 104 4.15
3¢ 39.75 32 9.938x10% 3.186x10% 3.12
3d 178.8 64 2.236x10° 7.567x 104 2.95
4a 138.5 64 1.732x10° 2.546x10%* 6.80
4b 504.8 128 3.155x10° 3.115x10% 10.1
4c 40.27 32 1.007x10° 3.422x 104 2.94
4d 170.2 64 2.128x10° 7.341x10% 2.90
5a 123.4 64 1.543x10° 1.340x 104 11.5

5b 464.8 128 2.905%x10° 4.844x10% 6.00
5¢ 35.58 32 8.896x 10% 3.717x10% 2.39
5d 158.4 64 1.981x10° 5.684x 104 3.48

YA"(NP, Nc) is the measured execution time [sec.] with a reduced number of pho-
tons ]\7p = 107 and fixed processor count Nc = 16, whereas Topt(Np, N¢) refers
to the measured execution time [sec.] with N, = 5 X 1010 and processor count
Nc. Speed-up S is defined as S = T'(Np, Nc)/ Top(Np, Nc), where T (Np, Nc)
indicates extrapolated values from T by Eq. (1).

a reduced number of photons Np = 107 and a fixed processor count N, = 16. Next, the same
simulation cases were executed with adaptive termination, and the execution time Top (N, N) was
measured with an operational photon population size N, = 5 X 10'° and a varying number of CPU
cores N.. Finally, speed-up S was calculated as § = T/ T, where T = T'(N,,, N.) is extrapolated
from 7' by applying Eq. (1).

Table V reports performance gains based on the adaptive termination of photon trajectory track-
ing. Varying processor counts are required to address specific constraints of the job execution
platform Milipeia employed for the numerical experiments. Speed-ups ranged from 2.16 to 11.5,
demonstrating significant run-time performance improvements. These results have been obtained
using extrapolated references (due to time resource constraints in the computing system). Note that
the extrapolated execution time 7" and the performance gain S are likely an underestimate since the
MOX execution time might slightly increase when the processor count is larger (Section 3.3).

5.4. Optimization of photon weight threshold

Figure 11 shows the performance of selected simulation configurations as a function of photon
weight threshold . Time measurements were performed on Milipeia using 16 CPU cores. As
anticipated by Eq. (8), an exponential increase of the weight threshold leads to a linear reduction
of the execution time. This result clearly endorses the photon weight optimization based on quality-
speed trade-offs (Section 4.4).

A case study is henceforth addressed to the assessment of the photon weight model [Eq. (12)]
by considering a seawater medium with attenuation ¢ = 0.6 and absorption a = 0.5 (i.e., single
scattering albedo @ = 0.17). Let z = 10, then Eq. (12) gives w ~ 2.14 x 107> This specific case
of study was verified through an MC simulation as follows. A total of N = 10* photons traveling
straight towards the nadir were traced starting from just below the sea surface with the initial photon
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Figure 12. Validation of the photon weight model Eq. (12) in the case of attenuation ¢ = 0.6, absorption
a = 0.5, and depth z = 10. i and o indicate the mean and standard deviation of N samples, respectively.

weight set to one. Photon tracing was continued until the photon went below the depth z. When
the photon tracing was stopped, the following values were recorded: (1) the number of scattering
events ny that the photon underwent; (2) the depth z that the photon reached; and (3) the weight
value wy at that time, where subscription k is the photon index. Figure 12 shows the frequency
distributions of n, zx, and log;,(wy) values. The distribution of z; values is in agreement with
the exponential probability density function of optical distance 7 [Eq. (9)]. Instead, both n; and
log, o(wg) approximately follow a Gaussian distribution. The mean values of ny and log;,(wy) are
also close to those predicted by Egs. (11) and (12), respectively.

Figure 13 highlights the effects of photon weight threshold ¢, on the variability of derived data
products 3 [i.e., subsurface values 9 (07) and diffuse attenuation coefficients Kg, | considering
three radiometric quantities of interest. The left and right column panels show CVg values [Eq. (3)]
with the regression layer depth set to 5 and 15 m, respectively. The CV values were computed based
on simulated light fields accounting for different ¢, values and photon counts. The result is that when
the regression depth interval is fixed, the overall CV trends remain the same (except for missing CV
values when considering a larger photon weight threshold). For instance, the CV trends in Panels (a)
and (c) display a significant equivalence. The only differences in Panel (c) are missing CV values of
L,(07) and K, at the number of traced photons equal to 107. Analogous differences can also be
observed between Panels (b) and (d). Missing data points depend on MC-intrinsic statistical noise in
the simulated radiometric fields because a larger photon weight threshold leads to a shorter photon
lifetime and a less populated regression layer.
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6. DISCUSSION

Our performance prediction method takes advantage of a property that the average tracing time
per photon in MOX can be linearly extrapolated by the number of photons to obtain accurate tracing
time estimates. MLP regression further addresses a nonlinear time component without assuming any
proportionality to application-specific parameter values. It is highlighted that a MOX performance
model is applicable to different numbers of processors (as described in Section 4.1), but different
computing environments still require a distinct MLP built individually based on training data col-
lected in each target platform. Analytical approaches might also be relevant to the prediction of time
spent for parallel matrix summations in MOX, although this time component has not been addressed
in the present paper because of a small contribution to the total execution time of large-scale MOX
simulations.

The selection of MLP training data is largely application-dependent. Hence the documented
MLP results report a specific case study of MLP algorithm development considering the problem
of performance prediction for MOX simulations. The set of MOX input parameters for construct-
ing training datasets was chosen based on the knowledge of application domain researchers on the
radiative transfer processes in natural seawater. Given a set of MLP input parameters, the prediction
capability of trained MLPs further depends on the following: (1) the ranges of parameter values;
(2) the intervals between values of each parameter; and (3) the total number of training samples. A
previous publication [19] has examined the effect of the size of training data, which is confirmed as
a major MLP performance factor. The case study reported in the present work follows this research
venue by taking the ranges and intervals of parameter values into consideration.

MLP performance models are built upon execution time samples. Hence the presented method is
suitable when (1) the number of simulation cases at hand is larger than the number of training sam-
ples, and/or (2) historical performance records from previously executed simulations are available.
If the number of simulation cases is small (e.g., up to a few tens), the total execution time can be reli-
ably estimated by running all of them with a reduced photon count N using a small number of CPU
cores N, and extrapolating the measured execution time T by Eq. (1) If the number of simulation
cases is large, then the MLP method can reduce the total cost of execution time prediction. In addi-
tion, application studies may accumulate a number of historical performance records by addressing
many different simulation cases over time. Such performance records effectively provide a dataset
for training an MLP execution time model, which can then be applied to future simulations. Hence
the MLP prediction method and the ‘run all” approach are complementary.

Speed-ups by means of the adaptive termination of photon trajectory tracking may vary sig-
nificantly depending on the convergence property of individual simulation cases and modeled
radiometric quantities. Seawater optical properties, sea-surface geometry, and illumination con-
ditions jointly determine how quickly the variability due to MC statistical noise is reduced by
tracing an increasing number of photons. In addition, multiple radiometric quantities are simultane-
ously computed in a single simulation case, and they display distinct variability convergence trends
because of the anisotropic light distribution in the water column. Hence the adaptive stopping cri-
teria [Egs. (5) and (6)] are satisfied at a different number of photons for each simulation case and
radiometric quantity, as documented by numerical results in Figure 10. Smaller photon counts at
which photon trajectory tracking is terminated lead to larger speed-ups.

7. CONCLUSION

This paper presented an HPC framework for MC radiative transfer simulations in the OC application
domain. Specific solutions for performance modeling, prediction, and optimization were developed
to support efficient and flexible execution of computer experiments for OC studies on in situ marine
radiometry by means of the MOX simulation code.

The present study contributes to a clear separation and systematic treatment of HPC, MC, and OC
application requirements through a combination of HPC, machine learning, and adaptive computing
techniques. The added value of the work is in fact the improvement and assessment of computational
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methods and tools for large-scale MC simulations integrated in the form of an HPC-oriented
problem-solving environment specifically tailored to OC applications.

The study underlines the importance of close collaboration between HPC researchers and appli-
cation domain scientists to identify domain-specific knowledge of relevance to the performance
characterization of target applications and exploit it for the development of supporting HPC
tools and techniques. In the case of MLP performance modeling and job scheduling, the use of
domain knowledge is essential for feature selection during MLP algorithm development. By the
same token, both the adaptive termination of photon trajectory tracking and the offline tuning
of photon weight threshold are realized based on in-depth understanding of marine radiometry
requirements. Note that some of the results documented in Section 5 refer to real application
studies [31-33].

The novelty of the predictive performance modeling and scheduling is the decoupling and sepa-
rate handling of linear and nonlinear execution time components. Modeling the former component
depends on the a priori characterization of MOX parallel performance, whereas predicting the latter
relies on a learning-from-data approach. The original contribution of the online performance tun-
ing is the combined use of the general convergence property of MC precision (i.e., at the rate of
02 //n, where o2 is the variance and n is the sample count) and an application-specific property
(i.e., a saturation of noise reduction due to rough sea-surface geometry). The general MC noise con-
vergence usually applies only to the ideal flat sea surface. In contrast, the proposed online tuning
method exploits the new finding that the variance of radiometric data reduction results is constrained
by the presence of sea-surface waves. The OC application relevance is to quantify the uncertainty
due to rough sea-surface geometry over data reduction methods for field radiometric measurements,
with the flat sea surface as a benchmark case. MOX simulations have then shown that the latter
convergence property can offer major performance gains. The novel aspect of the offline thresh-
old parameter tuning is instead the identification of specific MC application requirements to set up
simulation configurations accounting for quality-speed trade-offs. Remarkably, both the online and
offline tuning methods are orthogonal to parallelization, so the reported performance gains can be
further amplified by parallel speed-ups.

The validity of the developed methods and the relevance of documented insights are general
because (1) MLP performance modeling and job scheduling solely rely on data samples (i.e., input
simulation parameters and corresponding execution time observations) and (2) the online and offline
tuning methods only deal with quality indices, no matter what application problem and computing
environment are considered.

Future work includes the application of the presented HPC framework to three-dimensional
extensions of the MOX code to investigate OC above-water radiometry [32, 33, 80]. Dynamic
changes in the execution time of simulation jobs (due to the online performance tuning) will
challenge efficient resource utilization based on job scheduling. Hence a future study is planned
to address run-time monitoring of simulation jobs and dynamic rescheduling of waiting jobs
to improve the utilization of available HPC systems. Extending the target execution platforms
to cloud computing environments is also foreseen on the basis of scientific workflow sys-
tems for describing application scenarios and controlling the distributed execution of MC OC
simulations.

ACKNOWLEDGEMENTS

The authors are grateful to Dr. Giuseppe Zibordi (E.C. Joint Research Centre, Italy) for his support
from in situ marine radiometry perspectives. This study was supported by the Portuguese Foundation
for Science and Technology (FCT/MEC) through the grant PEst-OE/EEI/UI0527/2011. Access to
the Milipeia cluster (University of Coimbra, Portugal) was granted through the project ‘Large-scale
parallel Monte Carlo simulations for ocean colour applications.” Additional funding was granted
through the ESA contract No. 22576/09/I-OL, ARG/003-025/1406/CIMA, and NOVA LINCS Ref.
UID/CEC/04516/2013.

© 2016 The Authors. Concurrency and Computation: Practice  Concurrency Computat.: Pract. Exper. 2017; 29: e3860
and Experience Published by John Wiley & Sons Ltd. DOI: 10.1002/cpe



24 of 26 T. KAJIYAMA, D. D’ALIMONTE AND J. CUNHA

10.

11.

12.

13.

14.

15.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

217.

REFERENCES

. Kurc T, Catalyurek U, Zhang X, Saltz J, Martino R, Wheeler M, Peszyriska M, Sussman A, Hansen C, Sen M,

Seifoullaev R, Stoffa P, Torres-Verdin C, Parashar M. A simulation and data analysis system for large-scale, data-
driven oil reservoir simulation studies. Concurrency and Computation: Practice and Experience 2005; 17(11):
1441-1467.

. Lang S, Wittum G. Large-scale density-driven flow simulations using parallel unstructured grid adaptation and local

multigrid methods. Concurrency and Computation: Practice and Experience 2005; 17:1415-1440.

. Roy IG, Sen MK, Torres-Verdin C. Full waveform seismic inversion using a distributed system of computers.

Concurrency and Computation: Practice and Experience 2005; 17(11):1365-1385.

. Liu M, Yang Y, Li Q, Zhang H. Parallel computing of multi-scale continental deformation in the western united

states: Preliminary results. Physics of the Earth and Planetary Interiors 2007; 163:35-51.

. Hammond GE, Lichtner PC. Field-scale model for the natural attenuation of uranium at the Hanford 300 area using

high-performance computing. Water Resources Research 2010; 46:W09527.

. Lindtjorn O, Pell RCO, Fu H, Flynn M, Fu H. Beyond traditional microprocessors for geoscience high-performance

computing applications. IEEE Micro 2011; 31(2):41-49.

. Folino G, Forestiero A, Papuzzo G, Spezzano G. A grid portal for solving geoscience problems using distributed

knowledge discovery services. Future Generation Computer Systems 2010; 26(1):87-96.

. Wang S, Liu Y, Wilkins-Diehr N, Martin S. SimpleGrid toolkit: Enabling geosciences gateways to cyberinfrastruc-

ture. Computers & Geosciences 2009; 35(12):2283-2294.

. Parashar M, Muralidhar R, Lee W, Arnold D, Dongarra J, Wheeler M. Enabling interactive and collaborative oil

reservoir simulations on the Grid. Concurrency and Computation: Practice and Experience 2005;17(11):1387-1414.
Guo H, Fan X, Wang C. A digital earth prototype system: DEPS/CAS. International Journal of Digital Earth 2009;
2(1):3-15.

Youn C, Kaiser T. Management of a parameter sweep for scientific applications on cluster environments. Concur-
rency and Computation: Practice and Experience 2010; 22(18):2381-2400.

Zhang H, Liu M, Shi Y, Yuen DA, Yan Z, Liang G. Toward an automated parallel computing environment for
geosciences. Physics of the Earth and Planetary Interiors 2007; 163(1-4):2-22.

Chen L, Fujishiro I, Nakajima K. Parallel visualization of large-scale unstructured geophysical data for the Earth
Simulator. Pure and Applied Geophysics 2004; 161(11-12):2245-2263.

Nakajima K. Parallel iterative solvers for finite-element methods using an OpenMP/MPI hybrid programming model
on the Earth Simulator. Parallel Computing 2005; 31:1048-1065.

Cleall PJ, Thomas HR, Melhuish TA, Owen DH. Use of parallel computing and visualisation techniques in the
simulation of large scale geoenvironmental engineering problems. Future Generation Computer Systems 2006; 22(4):
460-467.

Blaheta R, Jakl O, Kohut R, Stary J. Gem — a platform for advanced mathematical geosimulations. Proc. PPAM 2009,
Part I, LNCS 6067, Wroclaw, Poland, 2010; 266-275.

Kajiyama T, D’Alimonte D, Cunha JC, Zibordi G. High-performance ocean color Monte Carlo simulation in the
Geo-Info project. Proceedings of the Sth International Conference on Parallel Processing and Applied Mathematics
(PPAM 2009), Lecture Notes in Computer Science 6068, Springer, Wroclaw, Poland, 2010; 370-379.

. D’Alimonte D, Zibordi G, Kajiyama T, Cunha JC. Monte Carlo code for high spatial resolution ocean color

simulations. Applied Optics 2010; 49(26):4936-4950.

Kajiyama T, D’ Alimonte D, Cunha JC. Performance prediction of ocean color Monte Carlo simulations using multi-
layer perceptron neural networks. Procedia Computer Science, vol. 4, Proceedings of the International Conference
on Computational Science (ICCS 2011), Elsevier, Nanyang Technological University, Singapore, 2011; 2186-2195.
Kajiyama T, D’ Alimonte D, Cunha JC. Statistical performance tuning of parallel Monte Carlo ocean color simula-
tions. Proceedings of the 13th International Conference on Parallel and Distributed Computing, Applications and
Technologies (PDCAT’12), IEEE Computer Society, Beijing, China, 2012; 761-766.

Mobley CD, Gentili B, Gordon HR, Jin Z, Kattawar GW, Morel A, Reinersman P, Stamnes K, Stavn RH. Comparison
of numerical models for computing underwater light fields. Applied Optics 1993; 32(36):7484-7504.

D’Alimonte D, Zibordi G, Berthon JF. The JRC Data Processing System. In Results of the Second Seawifs Data
Analysis Round Robin, March 2000 (DARR-00), vol. 15, Hooker SB, Firestone ER (eds)., SeaWiFS Technical Report
Series, TM—2001-206892. NASA Goddard Space Flight Center: Greenbelt, MD, 2001; 52-56.

Zibordi G, Berthon JF, D’ Alimonte D. An evaluation of radiometric products from fixed-depth and continuous in-
water profile data from moderately complex waters. Journal of Atmospheric and Oceanic Technology 2009; 26:
91-106.

IOCCG. Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters Sathyendranath S (ed.).,
Reports of the International Ocean-Colour Coordinating Group, vol. 3. IOCCG: Dartmouth, Canada, 2000.

Zibordi G, Mélin F, Berthon JF, Holben B, Slutsker I, Giles D, D’ Alimonte D, Vandemark D, Feng H, Schuster
G, Fabbri BE, Kaitala S, Seppild J. AERONET-OC: A network for the validation of ocean color primary products.
Journal of Atmospheric and Oceanic Technology 2009; 26:1634-1651.

Zibordi G, Voss KJ. Field radiometry and ocean color remote sensing. In Oceanography from Space — Revisited,
Barale V, Gower JFR, Alberotanza L (eds). Springer: Netherlands, 2010; 307-334.

Zibordi G, Berthon JF, Mélin F, D’ Alimonte D. Cross-site consistent in situ measurements for satellite ocean color
applications: The BiOMaP radiometric dataset. Remote Sensing of Environment 2011; 115(8):2104-2115.

© 2016 The Authors. Concurrency and Computation: Practice  Concurrency Computat.: Pract. Exper. 2017; 29: e3860
and Experience Published by John Wiley & Sons Ltd. DOLI: 10.1002/cpe



28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

HIGH-PERFORMANCE MONTE CARLO OCEAN COLOR SIMULATIONS 25 of 26

Zibordi G, Mélin F, Berthon JF, Canuti E. An assessment of MERIS ocean color products for European seas. Ocean
Science 2013; 9(3):521-533.

Kajiyama T, D’ Alimonte D, Zibordi G. Regional algorithms for European seas: A case study based on MERIS data.
IEEE Geoscience and Remote Sensing Letters 2013; 10(2):283-287.

Kajiyama T, D’ Alimonte D, Zibordi G. Match-up analysis of MERIS radiometric data in the northern Adriatic Sea.
IEEE Geoscience and Remote Sensing Letters 2014; 11(1):19-23.

D’ Alimonte D, Shybanov EB, Zibordi G, Kajiyama T. Regression of in-water radiometric profile data. Optics Express
2013; 21(23):27707-27733.

D’Alimonte D, Kajiyama T, Zibordi G. Monte Carlo simulations of the sea-surface reflectance: A case study
addressed to above-water radiometry. Proceedings of the 34th Asian Conference on Remote Sensing (ACRS 2013),
Bali, Indonesia, 2013; SC03:227-234.

D’Alimonte D, Kajiyama T. Effects of light polarization and waves slope statistics on the sea-surface reflectance.
Optics Express 2016; 24(8):7922-7942.

Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical Recipes in C (2nd edn). Cambridge University
Press: New York, NY, USA, 1992.

Badano A, Sempau J. Parallel Monte Carlo simulation of imaging systems. Proceedings of the 3rd IEEE International
Symposium on Biomedical Imaging: From Nano to Macro, Arlington, Virginia, USA, 2006; 1216-1219.

Siebers JV. The effect of statistical noise on IMRT plan quality and convergence for MC-based and MC-correction-
based optimized treatment plans. Journal of Physics: Conference Series 2008; 102(1):12-20.

Gioiosa R, McKee SA, Valero M. Designing OS for HPC applications: Scheduling. 2010 IEEE International
Conference on Cluster Computing, Heraklion, Crete, 2010; 78-87.

Kramer WTC, Ryan C. Performance variability of highly parallel architectures. Proceedings of the 2003 International
Conference on Computational Science (ICCS’03), Springer-Verlag, Melbourne, Australia and St. Petersburg, Russia,
2003; 560-569.

Petrini F, Kerbyson DJ, Pakin S. The case of the missing supercomputer performance: Achieving optimal perfor-
mance on the 8,192 processors of ASCI Q. Proceedings of the IEEE/ACM Conference on Supercomputing (SC’03),
Phoenix, AZ, USA, 2003; 1-17.

Tabatabaee V, Tiwari A, Hollingsworth JK. Parallel parameter tuning for applications with performance variability.
Proceedings of the 2005 ACM/IEEE Conference on Supercomputing (SC’05), Seattle, WA, USA, 2005; 1-12.
Hoisie A, Lubeck O, Wasserman H. Performance and scalability analysis of teraflop-scale parallel architectures using
multidimensional wavefront applications. International Journal of High Performance Computing Applications 2000;
14(4):330-346.

Kerbyson DJ, Alme HJ, Hoisie A, Petrini F, Wasserman HJ, Gittings M. Predictive performance and scalability mod-
eling of a large-scale application. Proceedings of the ACM/IEEE Conference on Supercomputing (SC ’01), Denver,
Colorado, USA, 2001; 1-12.

Mathis MM, Kerbyson DJ, Hoisie A. A performance model of non-deterministic particle transport on large-scale
systems. Future Generation Computer Systems 2006; 22(3):324-335.

Crovella ME, LeBlanc TJ. Parallel performance prediction using lost cycles analysis. Proceedings of the 1994
ACM/IEEE Conference on Supercomputing, IEEE Computer Society, Los Alamitos, CA, USA, 1994; 600-609.
Rodriguez G, Badia RM, Labarta J. Generation of simple analytical models for message passing applications.
Proceedings of the Euro-Par Conference 2004, LNCS 3149, Pisa, Italy, 2004; 183-188.

Yang LT, Ma X, Mueller F. Cross-platform performance prediction of parallel applications using partial execution.
Proceedings of the 2005 ACM/IEEE Conference on Supercomputing (SC’05), Seattle, WA, USA, 2005; 40.
Carrington L, Snavely A, Wolter N. A performance prediction framework for scientific applications. Future
Generation Computer Systems 2006; 22:336-346.

Lee BC, Brooks DM, de Supinski BR, Schulz M, Singh K, McKee SA. Methods of inference and learning for
performance modeling of parallel applications. Proceedings of the 12th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPOPP’07), San Jose, California, USA, 2007; 249-258.

Pllana S, Brandic I, Benkner S. A survey of the state of the art in performance modeling and prediction of parallel
and distributed computing systems. International Journal of Computational Intelligence Research 2008; 4(1):17-26.
Romanazzi G, Jimack PK, Goodyer CE. Reliable performance prediction for multigrid software on distributed
memory systems. Advances in Engineering Software 2011; 42(5):247-258.

Ipek E, de Supinski BR, Schulz M, McKee SA. An approach to performance prediction for parallel applications.
Proceedings of the Euro-Par 2005, LNCS 3648, Springer, Lisbon, Portugal, 2005; 196-205.

Park Y, Kim S, Lee YH. Scheduling jobs on parallel machines applying neural network and heuristic rules.
Computers & Industrial Engineering 2000; 38(1):189-202.

Ahmad I, Mehrotra K, Mohan CK, Ranka S, Ghafoor A. Performance modeling of load balancing algorithms using
neural networks. Concurrency and Computation: Practice and Experience 1994; 6:393—4009.

Altiparmak F, Dengiz B, Bulgak AA. Buffer allocation and performance modeling in asynchronous assembly system
operations: An artificial neural network metamodeling approach. Applied Soft Computing 2007; 7:946-956.

Ipek E, McKee SA, Caruana R, de Supinski BR, Schulz M. Efficiently exploring architectural design spaces via
predictive modeling. ACM SIGOPS Operating Systems Review 2006; 40:195-206.

Schiller H, Doerffer R. Neural network for emulation of an inverse model operational derivation of Case II water
properties from MERIS data. International Journal of Remote Sensing 1999; 20(9):1735-1746. special issue on the
ESA Medium Resolution Imaging Spectrometer (MERIS).

© 2016 The Authors. Concurrency and Computation: Practice  Concurrency Computat.: Pract. Exper. 2017; 29: e3860
and Experience Published by John Wiley & Sons Ltd. DOI: 10.1002/cpe



26 of 26 T. KAJIYAMA, D. D’ALIMONTE AND J. CUNHA

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

D’Alimonte D, Zibordi G. Phytoplankton determination in an optically complex coastal region using a multilayer
perceptron neural network. IEEE Transactions on Geoscience and Remote Sensing 2003; 41(12):2861-2868.
D’Alimonte D, Zibordi G, Berthon JF. Determination of CDOM and NPPM absorption coefficient spectra from
coastal water remote sensing reflectance. IEEE Transactions on Geoscience and Remote Sensing 2004; 42(8):
1770-17717.

D’ Alimonte D, Zibordi G, Berthon JF, Canuti E, Kajiyama T. Performance and applicability of bio-optical algorithms
in different European seas. Remote Sensing of Environment 2012; 124:402—412.

D’ Alimonte D, Zibordi G, Kajiyama T, Berthon JF. Comparison between MERIS and regional high-level products
in European seas. Remote Sensing of Environment 2014; 140:378-395.

Sa C, D’Alimonte D, Brito AC, Kajiyama T, Mendes CR, Vitorino J, Oliveira PB, da Silva JCB, Brotas V. Vali-
dation of standard and alternative satellite ocean-color chlorophyll products off Western Iberia. Remote Sensing of
Environment 2015; 168:403-419.

D’Alimonte D, Kajiyama T, Saptawijaya A. Ocean color remote sensing of atypical marine optical cases. IEEE
Transactions on Geoscience and Remote Sensing 2016. under revision.

Cristina S, D’ Alimonte D, Goela P, Kajiyama T, Icely J, Moore G, Fragoso B, Newton A. Standard and regional bio-
optical algorithms for chlorophyll a estimates in the Atlantic off the southwestern Iberian peninsula. I[EEE Geoscience
and Remote Sensing Letters 2016. in press.

Goela P, D’ Alimonte D, Cristina S, Kajiyama T, Icely J, Moore G, Fragoso B, Newton A. Algal pigment index 2
in the Atlantic off the southwest Iberian peninsula: Standard and regional algorithms. IEEE Geoscience and Remote
Sensing Letters 2016. submitted for publication.

Martinsen P, Blaschke J, Kiinnemeyer R, Jordan R. Accelerating Monte Carlo simulations with an NVIDIA graphics
processor. Computer Physics Communications 2009; 180(10):1983-1989.

Colasanti A, Guida G, Kisslinger A, Liuzzi R, Quarto M, Riccio P, Roberti G, Villani F. Multiple processor version
of a Monte Carlo code for photon transport in turbid media. Computer Physics Communications 2000; 132(1-2):
84-93.

Demmel J, Dongarra J, Eijkhout V, Fuentes E, Petitet A, Vuduc R, Whaley RC, Yelick K. Self-adapting linear algebra
algorithms and software. Proceedings of the IEEE 2005; 93(2):293-312.

Dongarra J, Bosilca G, Chen Z, Eijkhout V, Fagg GE, Fuentes E, Langou J, Luszczek P, Pjesivac-Grbovic J, Seymour
K, You H, Vadhiyar SS. Self-adapting numerical software (SANS) effort. IBM Journal of Research and Development
2006; 50(2/3):223-238.

Langou J, Langou J, Luszczek P, Kurzak J, Buttari A, Dongarra J. Exploiting the performance of 32 bit floating
point arithmetic in obtaining 64 bit accuracy (revisiting iterative refinement for linear systems). Technical Report
UT-CS-06-574, University of Tennessee, 2006.

Miller VA, Davis GJ. Adaptive quadrature on a message-passing multiprocessor. Journal of Parallel and Distributed
Computing 1992April; 14(4):417-425.

Bull JM, Freeman TL. Parallel globally adaptive algorithms for multi-dimensional integration. Applied Numerical
Mathematics 1995; 19(1-2):3-16.

Li Y, Lu HM, Tang TW, Sze SM. A novel parallel adaptive Monte Carlo method for nonlinear Poisson equation in
semiconductor devices. Mathematics and Computers in Simulation 2003; 62(3-6):413—-420.

Sastry S, Bodson M. Adaptive control: Stability, convergence, and robustness, Prentice-Hall Advanced Reference
Series (Engineering). Prentice-Hall: Englewood Cliffs, New Jersey, USA, 1994. http://www.ece.utah.edu/~bodson/
acscr/.

Arsenjev DG, Ivanov VM, Kul’chitsky OY. Adaptive control of stochastic calculating processes. Journal of
Statistical Planning and Inference 2000; 85(1-2):213-226.

Herzallah R, Lowe D. Distribution modeling of nonlinear inverse controllers under a Bayesian framework. IEEE
Transactions on Neural Networks 2007; 18(1):107-114.

Gallopoulos E, Houstis E, Rice JR. Computer as thinker/doer: problem-solving environments for computational
science. IEEE Computational Science and Engineering 1994; 1(2):11-23.

Embrechts P, Klppelberg C, Mikosch T. Modelling extremal events for insurance and finance, Stochastic Modelling
and Applied Probability, vol. 33. Springer-Verlag: Berlin Heidelberg, 1997.

Roberts SJ. Novelty detection using extreme value statistics. I[EE Proceedings—Vision, Image and Signal Processing
1999; 146(3):124-129.

Mobley CD. Light and water: Radiative Transfer in Natural Waters. Academic Press: San Diego, California, USA,
1994.

Santos IM, D’Alimonte D, Santos JP. Sky-radiance models for Monte Carlo radiative transfer applications. EGU
General Assembly 2012, vienna, austria, 2012. Geophysical Research Abstracts vol. 14, egu2012-7739.

© 2016 The Authors. Concurrency and Computation: Practice  Concurrency Computat.: Pract. Exper. 2017; 29: e3860
and Experience Published by John Wiley & Sons Ltd. DOLI: 10.1002/cpe


http://www.ece.utah.edu/~bodson/acscr/
http://www.ece.utah.edu/~bodson/acscr/

	*-15ptA high-performance computing framework for Monte Carlo ocean color simulations
	Summary
	Introduction
	Related work
	Structure of the work

	HPC-oriented problem-solving environments
	MOX performance characterization
	Parallelization
	Execution time components
	Parallel performance and uncertainty
	Performance tuning

	Methods
	Hybrid approach for execution time prediction
	Job-environment mapping algorithm
	Adaptive termination of photon trajectory tracking
	Offline optimization of photon weight threshold

	Results
	MLP algorithms for execution time prediction
	Job-environment mapping algorithm
	Adaptive termination of photon trajectory tracking
	Optimization of photon weight threshold

	Discussion
	Conclusion
	Acknowledgements
	REFERENCES


