
Journal of Computer and System Sciences 79 (2013) 714–724

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sapientia
Contents lists available at SciVerse ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Computation with perturbed dynamical systems ✩

Olivier Bournez a,∗, Daniel S. Graça b,c, Emmanuel Hainry d,e

a Ecole Polytechnique, LIX, 91128 Palaiseau Cedex, France
b CEDMES/FCT, Universidade do Algarve, C. Gambelas, 8005-139 Faro, Portugal
c SQIG/Instituto de Telecomunicações, Lisboa, Portugal
d Université de Lorraine, Nancy, France
e LORIA, Campus Scientifique, BP 239, 54506 Vandœuvre-lès-Nancy, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 April 2011
Received in revised form 10 October 2012
Accepted 26 January 2013
Available online 16 February 2013

Keywords:
Dynamical systems
Reachability
Robustness
Computational power
Verification

This paper analyzes the computational power of dynamical systems robust to infinitesimal
perturbations. Previous work on the subject has delved on very specific types of systems.
Here we obtain results for broader classes of dynamical systems (including those systems
defined by Lipschitz/analytic functions). In particular we show that systems robust to
infinitesimal perturbations only recognize recursive languages. We also show the converse
direction: every recursive language can be robustly recognized by a computable system. By
other words we show that robustness is equivalent to decidability.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Recently there has been a surge of interest on the field of computer aided verification. In particular, a topic that has
deserved much attention is concerned with computer aided verification of hybrid/continuous systems [1]. The idea is to get
an “as automatic as possible” procedure such that, having as input the description of a system, it could tell in finite time if
the system satisfies a given property.

A property which has been addressed by many authors is the reachability problem, which is concerned with the long
term behavior of the system. Briefly, this problem can be stated as follows: “given as input a region A and a point x0
determine whether the trajectory starting on x0 will eventually reach A.”

The majority of results that appear in the literature tends to classify this problem as undecidable [2–7] (several references
are given, since each one deals with a particular class of systems). The reason is simple: many systems are known to
simulate Turing machines (e.g. simple classes of linear hybrid automata [8] or piecewise constant derivative systems [9])
and one can encode the Halting problem as a reachability problem. However, these simulations usually use exact real
numbers, and thus infinite precision is required to get the previous undecidability results.

Due to the use of exact simulations, some authors have questioned the meaningfulness of such results, arguing that
this undecidability is due to non-robustness, sensitivity to initial values of the systems, and that it never occurs in
“real systems” [10]. For example, Martin Fränzle writes in [11]: “Hence, on simple information-theoretic grounds, the unde-
cidability results thus obtained can be said to be artifacts of an overly idealized formalization. However, while this implies

✩ This work has been partially supported by the INRIA program “Équipe Associée” ComputR. D.S. Graça was partially supported by Fundação para a Ciência
e a Tecnologia and EU FEDER POCTI/POCI via SQIG – Instituto de Telecomunicações through the FCT project PEst-OE/EEI/LA0008/2011.

* Corresponding author.
E-mail addresses: bournez@lix.polytechnique.fr (O. Bournez), dgraca@ualg.pt (D.S. Graça), Emmanuel.Hainry@loria.fr (E. Hainry).
0022-0000/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jcss.2013.01.025

https://core.ac.uk/display/211120469?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jcss.2013.01.025
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:bournez@lix.polytechnique.fr
mailto:dgraca@ualg.pt
mailto:Emmanuel.Hainry@loria.fr
http://dx.doi.org/10.1016/j.jcss.2013.01.025
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jcss.2013.01.025&domain=pdf

O. Bournez et al. / Journal of Computer and System Sciences 79 (2013) 714–724 715
that the particular proof pattern sketched above lacks physical interpretation, it does not yield any insight as to whether
the state reachability problem for hybrid systems featuring noise is decidable or not. We conjecture that there is a variety
of realistic noise models for which the problem is indeed decidable.”

Several attempts were made to understand if the reachability problem becomes decidable in the presence of noise.
This appears not to be clear and to deeply depend on the considered notion of noise: it was previously known that this
problem was decidable for some classes of models, such as Timed Automata [12] (independent to the issue of noise).
However, it was also proved in [13] that small perturbations of the trajectory still yield undecidability for timed and hybrid
systems. In opposition, using a different model for noise (infinitesimal perturbations), it was shown [11] that the reachability
problem is decidable for a certain model of hybrid systems. This has been extended to several models [10]. In [14] it is
shown that Turing machines exposed to small stochastic noise can decide the Halting problem, since its computational
power when the error converges to 0 is ≈ Π0

2 . The effect of noise was also studied in the context of neural networks.
In [15] it is shown that analog neural net subjected to gaussian or other common noise distributions cannot recognize
arbitrary regular languages. In [16] (see [17] for a more throughout discussion) the authors show that some types of neural
networks can simulate Turing machines. If arbitrary (possibly non-recursive) reals are authorized, it has been shown by same
authors in [18] that any arbitrary language can be recognized by a neural network in exponential time, and that languages
recognized in polynomial time correspond to non-uniform polynomial time, that is to say, to languages recognized by
circuits of polynomial size.

In this paper we will continue the work done in [10], in which the authors consider several classes of widely used models
of dynamical systems: Turing machines, piecewise affine maps, linear hybrid automata, and piecewise constant derivative
systems. They introduce a notion of “perturbed” dynamics for each of these classes and then establish the computational
power required to solve the reachability problem. Their idea is to use the reachability relation R: given two points x and y
in the state space, they are in relation (denoted by xR y) if there is a trajectory from x to y. Then they perturb this relation
in the following manner: given an ε > 0, xRε y if there is an ε-perturbed trajectory from x to y (the precise definition
depends if the system is discrete-time or continuous-time). Taking the limit (intersection) of the relations Rε when ε → 0,
one obtains the relation Rω . They call the system robust if R = Rω . By other words, a system is robust if its reachability
relation does not change under infinitesimal perturbations of the dynamics.

This idea of infinitesimal robustness has a close resemblance with the notion of “structural stability” for dynamical
systems: a system A is structurally stable if, roughly, ε-perturbed systems converge to A as ε → 0, a concept widely
studied in the dynamical system theory, see e.g. [19,20].

It is proved in [10] that for Turing machines, piecewise affine maps, linear hybrid automata, and piecewise constant
derivative systems, the relation Rω belongs to the class Π1

0 (it is co-recursively enumerable), and moreover, any Π1
0 relation

can be reduced to a relation Rω of a perturbed system: any complement of a recursively enumerable set can be semi-
decided by an infinitesimally perturbed system. This result shows that robustness implies decidability. Indeed, the reach set
is recursively enumerable and if the system is robust, the complement of the reach set must be recursively enumerable,
from which it follows that the reach set must be recursive for robust systems.

In short, the results of [10] give a partial answer to the above mentioned conjecture: the reachability problem is de-
cidable for certain classes of robust systems, if the notion of robustness is the one considered in [10]. By other words,
undecidability of verification arises only when non-robust systems are considered.

The aim of this paper is to extend the results of [10] for the case of Lipschitz/analytic and computable (in the sense
of recursive analysis [21]) systems. This class of systems is very broad including any Ck-system for k � 1 (e.g. any system
defined using the usual functions of analysis – polynomials, exponential, trigonometric functions, etc. – is Lipschitz). We
present both continuous-time and discrete-time versions of our results. We therefore seek to strengthen the results of [10]:
verification of the reachability problem is decidable for robust systems considered in classical mathematics and computer
science. These results suggest that undecidability of verification is really a by-product of non-robustness, even if the system
does not have the dynamics of Turing machines, piecewise affine maps, linear hybrid automata, and piecewise constant
derivative systems as in [10].

In a more provocative way, undecidability of verification for safety properties seems to be an artifact of modelization for
very general and natural classes of systems.

The present paper is an extended journal version of preliminary results presented at the conference MFCS 2010 [22]. In
particular, this paper differs from the conference version on the following points: first, the proofs of the results are fully
detailed (and a minor correction is stated); second, we study both acceptance and recognition; third, results are extended
for the case where the state space may be unbounded, sometimes at the price of more subtle arguments.

Since this paper deals with recognized/accepted languages in bounded/unbounded domains using discrete/continuous-
time, each basic result will have several variants, depending on which hypothesis is being used. Since all these cases may
yield some confusion, next we provide a small guide for the main results.

Overall, we have two main results in the paper: robustness implies recursiveness and its converse result. The results
which show that robustness implies recursiveness are: Theorem 16 (bounded domain and discrete/continuous-time), The-
orem 17 (unbounded domain, discrete-time), Theorem 18 (unbounded domain, continuous-time). For the converse result
we have: Theorem 20 (unbounded domain, continuous-time), Theorem 21 (unbounded domain, discrete-time), Theorem 22
(bounded domain, continuous-time), and finally Theorem 23 (bounded domain, discrete-time).

716 O. Bournez et al. / Journal of Computer and System Sciences 79 (2013) 714–724
Throughout the paper we use the following assumptions: (i) unperturbed systems acting as language acceptors or rec-
ognizers are deterministic; (ii) words to be inspected for language membership are encoded by initial states rather than
inspected sequentially by a dynamical system.

For the result stating that recursiveness implies robustness we use a particular coding of words into initial states. Albeit
being restricted to this particular coding, we conjecture that our results can be extended to more general types of encodings.

We should also note that our results for bounded domains assume non-uniform robustness: the amount of robustness
depends on the initial state. This is natural since we are coding infinitely many words as initial states in a bounded space
and therefore the infimum of robustness (distance between initial states) over all (permissible, i.e. word encoding) initial
states must be zero.

Notice that this paper discusses continuous-time and discrete-time dynamical systems in a uniform way, but separately.
Some of the constructions then carry to hybrid systems, that is, to systems with continuous and discrete dynamics: on the
one hand, it is possible to embed discrete-time dynamical systems and continuous dynamical systems in well-chosen classes
of hybrid systems, and on the other hand it is possible to extend some of our constructions to approximate trajectories for
continuous systems to hybrid systems. For succinctness, we do not fully discuss in this paper hybrid systems and refer
instead the reader to [23,24].

2. Preliminaries

2.1. Computable analysis

In this paper we will deal with computable systems in the sense of computable analysis. This section briefly introduces
some basic material from computable analysis.

The theory of computation can be rooted in the seminal work of Turing, Church, and others, which provided a framework
to achieve computation over discrete identities or, equivalently, over the integers.

However, this definition was not enough to cover computability over continuous structures, and was then developed by
other authors such as Turing himself [25], Grzegorczyk [26], or Lacombe [27] to originate computable analysis (also known
as recursive analysis).

The idea underlying computable analysis to compute over a set A is to encode each element a of A by a countable
sequence of “simple” elements, called a name. Each sequence (name) can encode at most one element of A. The more
elements we have from a sequence encoding a, the more precisely we can pinpoint a. From this point of view, it suffices to
work only with names when performing a computation over A. To compute with names, we use oracle Turing machines as
in [28]. See [29] or [21] for other equivalent approaches to computable analysis.

In the present work we will encode a real number α by a sequence of dyadic rational number, i.e. by numbers with the
format k/2n , where k,n ∈ Z. In turn, each dyadic rational can be encoded by three natural numbers p,q, r ∈N satisfying

k

2n
= p − q

2r

and these three natural numbers can be encoded in just one number via well-known polynomial-time computable bijections
〈· , · , ·〉 :N3 → N [30].

Formally (see [28]), let νQ : N → Q be the following representation (many other natural representations of rational
numbers can be chosen: they still yield the same class of computable functions – see [21,28]) of dyadic rational numbers
by integers: νQ(〈p,q, r〉) �→ p−q

2r , where 〈· , · , ·〉 : N3 → N is a polynomial-time computable bijection. Let us now introduce
the notion of computable real point.

Definition 1. A sequence of integers (xi)i∈N ∈ NN converges quickly toward x (denoted by (xi)i∈N � x) if |νQ(xi) − x| < 2−i

for all i ∈ N.

Definition 2. A point x = (x1, . . . , xd) ∈ Rd is called computable if for all j ∈ {1, . . . ,d}, there is a computable sequence
(xi)i∈N ∈NN (i.e. a computable function a :N→ N such that xi = a(i) for all i ∈ N) satisfying (xi)i∈N � x j .

We can also define computable functions.

Definition 3. Let X ⊆ Rd . A function f : X ⊂→ R is called computable if there exists some d-oracle Turing machine M
such that, for all x = (x1, . . . , xd) ∈ X and all sequences (x j

i)i∈N � x j , M computes in finite time a value x′
i such that

(x′
i)i∈N � f (x), provided M is given as input a value i ∈ N and as oracles the d sequences (x1

i)i∈N, . . . , (xd
i)i∈N . A function

f : X ⊂Rd →Rk is said to be computable if all its projections are.

Finally, we provide the notion of computable open and closed set (cf. [21, Definition 5.1.15]).

O. Bournez et al. / Journal of Computer and System Sciences 79 (2013) 714–724 717
Definition 4.

1. An open set E ⊆ Rn is called recursively enumerable (r.e. for short) open if there are computable sequences {ai}i∈N ,
{ri}i∈N of integers such that

E =
∞⋃

k=0

B
(
νQ(ak), νQ(rk)

)
,

where B(a, r) = {x ∈ E: ‖x − a‖ < r}.
2. A closed subset A ⊆ Rn is called r.e. closed if there exists a computable sequence of integers {b j

i }i∈N , for j = 1, . . . ,n
such that {(νQ(b1

i), . . . , νQ(bn
i))}i∈N is dense in A. A is called co-r.e. closed if its complement Ac is r.e. open. A is called

computable (or recursive) if it is both r.e. and co-r.e.
3. An open set E ⊆Rn is called computable (or recursive) if E is r.e. open and its complement Ec is r.e. closed.

2.2. Dynamical systems

In its essence a dynamical system is a pair consisting of a state space where the action occurs and a function f which
defines the evolution of the system along time. Formally it can be defined as follows [31]. Let S be the space of states and
T the space of times (in general T needs only be a monoid, although usually T = Z – discrete-time systems – or T = R –
continuous-time systems).

Definition 5. A dynamical system is a triple (T ,S, φ), where S is a set, T is a monoid, and φ : T × S → S is a function
satisfying (we write φt(x) = φ(t,x) for t ∈ T):

1. φ0 : S → S is the identity function, i.e. φ0(x) = x;
2. φt ◦ φs = φt+s for every t, s ∈ T .

In this paper we will be concerned with systems defined on a continuous state space, i.e. where S ⊆ Rn is an open set.
We will only consider discrete-time (T = Z) and continuous-time systems (T = R). In the latter case, it can be shown [31]
that if φ is a C1 function, then the continuous-time dynamical system can be written as a differential equation

x′ = f (x).

For this reason we will model continuous-time dynamical systems as ordinary differential equations and just say that (S, f)
is a continuous-time dynamical system. From Definition 5, it is also not difficult to infer that, for discrete-time dynamical
systems, we can reconstruct φ just knowing g = φ1 since (for t > 0; a similar reasoning applies for the other cases)

φt(x) = g
(

g
(· · · g︸ ︷︷ ︸

t times

(x) · · ·)).

For this reason we will just say that (S, g) is a discrete-time dynamical system. Now we can introduce the notion of
trajectory.

Definition 6. Let S ⊂ Rd , and consider some function f : S → S . Then a trajectory associated to the dynamical system (S, f)
is:

• A sequence of points {x0,x1, . . .} ∈ SN , satisfying f (xi+1) = xi for all i ∈N, for discrete-time dynamical systems.
• A solution of the differential equation ẋ = f (x), x(0) = x0 ∈ S for continuous-time dynamical systems

In this paper we consider dynamical systems as recognizers of languages. Let Σ denote the alphabet Σ = {0,1} and Σ∗
denote the set of words over this alphabet. To recognize a language with a dynamical system, we need to encode words of
Σ∗ as points of S . Here we use a variation of the encoding defined in [32,7]. In this latter paper a word w = w0 . . . wn ∈ Σ∗
can be encoded as an integer

y = w0 + w12 + · · · + wn2n. (1)

In this paper we will consider two cases: (i) the state space is compact (bounded) and (ii) the state space is Rn (unbounded).
For the latter case one can consider the encoding (1). For the compact case we consider, without loss of generality, that
S = [−1,1]. We can then encode a word w ∈ Σ∗ in the state space S using the encoding v : Σ∗ → S defined by

v(w) = 2
arctan

(
w0 + w12 + · · · + wn2n). (2)
π

718 O. Bournez et al. / Journal of Computer and System Sciences 79 (2013) 714–724
In order to avoid pathological behavior which may trivially lead to non-computability, we assume that computation in
a dynamical systems setting has the following property: the computation is carried out in a region V compute and, when
the computation should finish, it diverges to regions V accept and V reject (depending on if the word should be accepted or
rejected). We assume that the (Hausdorff) distance between these 3 regions is non-zero so that we can distinguish them in
finite time. This assumption is done to avoid trivial undecidability due to the impossibility of distinguishing two reals in the
recursive analysis setting.

We can now put all pieces together to obtain the following definition.

Definition 7 (Considering a dynamical system as a language recognizer). Let Σ be an alphabet, H a discrete/continuous-time
dynamical system over space S . Let V compute , V accept , V reject ⊆ S be computable sets and σ : Σ∗ → V compute be a map
satisfying the following requirements:

1. The Hausdorff distance between any pair of sets from the following: V compute , V accept , V reject is non-zero.
2. There is a connected open set A which overlaps V compute and V accept , but such that A ∩ V reject = ∅ (by other words,

there are paths which go from V compute to V accept , without crossing V reject).
3. There is a connected open set B which overlaps V compute and V reject , but such that B ∩ V accept =∅.
4. Once a trajectory reaches V accept or V reject , it stays there.

We say that H accepts a language L ⊂ Σ∗ (or that L is the language of H), if the following holds: for all w ∈ Σ∗ , w ∈ L
if the trajectory of H starting from σ(w) reaches V accept . If w /∈ L, we require that the corresponding trajectory always stays
in V compute or goes to V reject .

We say that H recognizes a language L ⊂ Σ∗ (or that L is decided by H), if the following holds: for all w ∈ Σ∗ , if w ∈ L
then the trajectory of H starting from σ(w) reaches V accept; if w /∈ L then the trajectory of H starting from σ(w) reaches
V reject .

We finish this section by recalling the notion of Lipschitz function.

Definition 8. A function f : X ⊆ Rm → Rk is said to be Lipschitz over a set if there is some K > 0 such that for all x,y ∈ X
one has∥∥ f (x) − f (y)

∥∥� K‖x − y‖. (3)

A function f : E → Rm , E ⊆ Rl , is said to be locally Lipschitz on E if it satisfies a Lipschitz condition on every compact set
V ⊆ E .

In particular it is well known that C1 functions are locally Lipschitz over Rn , which implies that they are Lipschitz over
a compact set X ⊆ Rm . In [33] a notion of effectively Lipschitz function was presented, which will be used on what follows.

Definition 9. Let E = ⋃∞
n=0 B(an, rn) ⊆ Rl , where B(an, rn) ⊆ E , be a r.e. open set. A function f : E →Rm is called effectively

locally Lipschitz on E if there exists a computable sequence {Kn} of positive integers such that∥∥ f (x) − f (y)
∥∥� Kn‖x − y‖ whenever x, y ∈ B(an, rn).

In particular, it can be shown [33] that any C1 computable function on Rl is effectively Lipschitz.

2.3. Robustness

Before proceeding with our results, we recall the notion of robustness from [10], based on an idea of [34]. This will be
the notion of robustness used throughout this paper.

Definition 10 (ε-perturbation). Consider a discrete/continuous-time dynamical system H = (X, f). Given ε > 0, its ε-
perturbation Hε is the discrete/continuous-time system Hε defined over the same space X , where:

1. (x0,x1, . . .) is a (ε-perturbed) trajectory of Hε , in the case where H is discrete-time, if ‖xi+1 − f (xi)‖� ε for all i ∈N;
2. φ : R+

0 → X is a (ε-perturbed) trajectory of Hε , in the case where H is continuous-time, if φ(0) ∈ X and ‖φ′(t) −
f (φ(t))‖ � ε for all t ∈ R+

0 .

Notice that the system Hε is not, in general, deterministic. Since we are interested in robust recognition of languages by
a system, our next goal is to introduce an appropriate definition of robust recognition. Some care is needed, since it may
happen that a perturbed system has trajectories which go to V accept and to V reject .

O. Bournez et al. / Journal of Computer and System Sciences 79 (2013) 714–724 719
Fig. 1. A figure depicting various elements used in the demonstration of Theorem 13.

Definition 11. Let Hε be a perturbed system.

1. The language Lε ⊆ Σ∗ accepted by the system Hε is formed by all words w ∈ Σ∗ such that there is an ε-trajectory
starting from σ(w) which reaches V accept .

2. The language Kω is formed by all words w ∈ Σ∗ with the property that, for each w ∈ Kω , there is an ε > 0 such that
all trajectories of Hε with origin in σ(w) vanish in V reject .

The language Kω can be seen as the set of words “easy to reject.”

Definition 12 (Robustness). A dynamical system H is said to have robust recognition if the language L it recognizes has the
following properties: (i) if w ∈ L then w ∈ Lε for every ε > 0; (ii) if w /∈ L then w ∈ Kω .

3. Main results

We are now ready to present the main results of our paper. Section 3.1 shows that, for bounded domains, any language
which can be robustly recognized is recursive. Section 3.2 shows a similar result, but for unbounded domains. Then in
Section 3.3 we show the converse result: any recursive language can be robustly recognized by some system.

3.1. Bounded domain

Before presenting the main result of this section, let us present an auxiliary result, first for discrete-time systems, and
later for continuous-time systems.

Theorem 13. Let H = ([−1,1]d, f) be a discrete-time system, where f is Lipschitz and computable. Then the set Kω is recursively
enumerable.

Proof. Let n ∈ N\{0} and S = [−1,1]d . One can decompose S in d-dimensional hypercubes V 1, . . . , V s of size 1
n . Using this

decomposition we build a finite automaton An , whose states are V 1, . . . , V s , that roughly recognizes L 1
n

. To complete the

description of this automaton we need to define two things: (i) the set of accepting states and (ii) the transition rule δn . The
set of accepting states consists of those hypercubes which overlap V accept . These hypercubes can easily be identified since
the set V accept is computable (since we are only dealing with accepted languages, there is no need to consider V reject).

Now let us present the transition rule of An . The following construction is depicted in Fig. 1. Let V j be some hypercube.
Then pick its central point x j (this is an easily computable rational) and compute a rational approximation f (x j) of f (x j)

with precision 1
n . Because f is Lipschitz, there will be some Lipschitz constant K > 0 satisfying condition (3) for all x,y ∈ X .

Then, if x ∈ V j is another point of the same hypercube and y is an ε-perturbed image of f (x), with ε = 1/n, we have

∥∥ f (x) − y
∥∥� 1

n
⇒ ∥∥ f (x j) − y

∥∥ �
∥∥ f (x j) − f (x j)

∥∥ + ∥∥ f (x j) − f (x)
∥∥ + ∥∥ f (x) − y

∥∥ � K + 2

n
. (4)

By other words, if y is an ε-perturbed image of a point of V j , then this point will be within distance K+2
n of f (x j). We use

this fact in what follows.
We use the following algorithm to show that Kω is r.e. First compute a rational approximation f (x j) of f (x j) with

precision 1
n . After computing f (x j), determine all the hypercubes which are within distance � (K + 2)/n of this point

(in Fig. 1 this corresponds to all hypercubes covered by the ball of center f (x j) and radius (K + 2)/n). This can be done

720 O. Bournez et al. / Journal of Computer and System Sciences 79 (2013) 714–724
algorithmically, in finite time, since it is only necessary to check which are the hypercubes (which are finitely many) that
have vertices within distance � (K + 2)/n of f (x j). Let W1, . . . , W i be these hypercubes. Then we define the transition rule
over the hypercubes as follows: δ(V j) = {W1, . . . , W i}. This defines the automaton An .

Now we say that a point x ∈ X is accepted by An if it lies in an accepted hypercube. Let L̃ 1
n

be the language accepted

by An . It is easy to conclude that the dynamics of An includes those of the 1
n -perturbed system H 1

n
. Hence L 1

n
⊆ L̃ 1

n
.

On the other side, using (4), it is not difficult to see that the dynamics of An are included in those of H K+3
n

(here we

suppose that ‖x‖ = ‖x‖∞ = max1�i�n |xi |. However, a similar result holds for other norms since all norms are equivalent in
a finite-dimensional space). Therefore

L 1
n

⊆ L̃ 1
n

⊆ L K+3
n

⇒
∞⋂

n=1

L̃ 1
n

=
⋂
ε>0

Lε = Lω.

Let us now show that Kω is recursively enumerable. Let w ∈ Kω . We notice that if w belongs to Kω , then there will be
some n0 ∈N such that for all n � n0, w /∈ L̃ 1

n
. Reciprocally, if w /∈ L̃ 1

n
for some n ∈ N, then w ∈ Kω . Moreover we can decide

in finite time, using the automaton An , whether w ∈ L̃ 1
n

. All these facts can be used to show that the following algorithm

accepts words which belong to Kω in finite time:
i=0
Repeat

i++
Simulate Ai with input νX (w)

Until νX (w) vanishes in V reject using the dynamics of Ai
Accept w

This algorithms accepts in finite time exactly those words which belong to Kω . By other words, it shows that Kω is r.e., as
required. �

Next we present a similar result for continuous-time systems. This result can be obtained by using a construction pre-
sented in [35].

Theorem 14. Let H = ([−1,1]d, f) be a continuous-time system, where f is Lipschitz and computable. Then the set Kω is recursively
enumerable.

Proof. The proof of this theorem is essentially the main result from [35]. There the authors show that given a differential
inclusion x′ ∈ f (x) (case where f can be multi-valued) one can compute an arbitrary over-approximation of the flow for this
differential inclusion, with error bounded by input ε > 0, by means of polygons. Therefore, if f is just a “normal” function
(not multi-valued), and fε(x) = [f (x) − ε, f (x) + ε], we can over-compute the flow, x(t0) = x0, x′ ∈ f 1

n
(x) with precision 1

n .

Since we are on a compact, we can decide in finite time whether this polygonal over-approximation An vanishes entirely in
V reject or not. If w ∈ Kω , then for some over-approximation An0 (and all over-approximations An , with n � n0), the trajectory
starting on (the coding of) w will vanish in V reject . Reciprocally, if all the trajectories starting in (the coding of) w vanish
entirely in V reject using the dynamics of some over-approximation An0 , then w ∈ Kω . Now consider the following algorithm:

i=0
Repeat

i++
Compute Ai for input νX (w)

Until νX (w) vanishes in V reject using the dynamics of Ai
Accept w

This algorithm accepts in finite time exactly those words which belong to Kω . By other words, it shows that Kω is r.e., as
required. �

The following result is a corollary from the results of [36,37]: one can compute any trajectory of H. Therefore one can
semi-decide if a trajectory finishes in V accept , and thus semi-decide L.

Corollary 15. Let L be the language accepted by a (continuous-time or discrete-time) system H = (S, f), where f is Lipschitz and
computable. Then L is r.e.

Proof. We recall that the trajectory of a dynamical system H is computable for all times [37]. Moreover, by hypothesis,
the Hausdorff distance between V compute , V accept and V reject is non-zero and bounded by below by some rational δ > 0. The
following algorithm accepts w in finite time iff w ∈ L (φ(t,x) gives the point of the trajectory starting at point x for t0 = 0,
for time t – see Definition 5):

O. Bournez et al. / Journal of Computer and System Sciences 79 (2013) 714–724 721
i=0
Repeat

i++
Compute φ(i, νX (w)) with precision δ/2

Until φ(i, νX (w)) ∈ A
Accept w

where A is a finite over-approximation of V accept (which can be computed in finite time) satisfying dist(V accept, A) < δ/2. If
w /∈ L, then φ(i, νX (w)) ∈ V reject ∪ V compute for all i ∈ N and the algorithm will never reach the set A and thus will run
forever. If w ∈ L, there will be some i ∈ N such that φ(i, νX (w)) ∈ V accept and thus its δ/2-estimate will reach A and stay
there. Therefore this algorithm shows that L is r.e. �

Since a set is recursive (computable) if it is r.e. as well as its complement (see for example [30]), it follows trivially that
a robust system must compute recursive languages.

Theorem 16 (Robust acceptation ⇒ recursive). Assume that language L is robustly accepted by a system H = ([−1,1]d, f), where f
is Lipschitz and computable. Then L is recursive.

Proof. L is r.e. by Corollary 15. Moreover, because the system is robust, the complement of L is Kω , which is r.e. by
Theorems 13 and 14. Hence L must be recursive. �
3.2. Unbounded domain

We now present similar results to those of Section 3.1, but with the difference that they are valid for unbounded do-
mains. Note that the proof of Theorem 13 is only valid for bounded domains, so it must be adapted to deal with unbounded
domains. Here the hypothesis of recognition will be important.

Theorem 17 (Robust recognition ⇒ recursive I). Let L be a language robustly recognized by a discrete-time system H = (Rd, f),
where f is effectively locally Lipschitz and computable. Then L is recursive.

Proof. If w ∈ L then, for ε small enough, any ε-perturbed trajectory will enter in a time T the accepting region (if w /∈ L
these trajectories will enter in a time T the rejecting region). Then all ε-perturbed trajectories (for an input w) will stay
inside some compact set A, where a Lipschitz condition holds, with some Lipschitz constant K which can be computed
since f is effectively Lipschitz. Then proceeding as in the proof of Theorem 13, substituting A for [−1,1]d , one gets the
result. �

A similar proof shows the following theorem.

Theorem 18 (Robust recognition ⇒ recursive II). Let L be a language robustly recognized by a continuous-time system H = (Rd, f),
where f is effectively locally Lipschitz and computable. Then L is recursive.

3.3. Recursiveness implies robustness

We now want to prove that any recursive language can be recognized by a robust system. By other words, we want to
show the converse direction of Theorem 16 (and its unbounded variants, Theorems 17 and 18). This equals to show that
every Turing machines can be simulated robustly by an (effectively) Lipschitz and computable system. We will analyze the
cases in which the state space is (i) unbounded and (ii) bounded. The former case is an immediate consequence of the
following theorem from [7].

Theorem 19. Given some Turing machine M, there is an analytic and computable ODE y′ = gM(y) defined over R6 which robustly
simulates M using the encoding (1), and which is robust to perturbations ε � 1/4.

In particular this theorem yields the following corollary, which shows the converse direction of Theorem 18:

Theorem 20 (Recursive ⇒ robust recognition). Let M be a Turing machine. Let L be the language recognized by M. Then for the
system y′ = gM(y) of Theorem 19 one has L = Lε for ε � 1/4. Moreover, any ε-perturbed trajectory starting in (a coding of) w /∈ L
will vanish in V reject for ε � 1/4. In particular the complement of L is Kω , i.e. there is a computable and effectively Lipschitz system
y′ = gM(y) which robustly recognizes L.

722 O. Bournez et al. / Journal of Computer and System Sciences 79 (2013) 714–724
In [7], the proof of Theorem 19 is obtained by first defining a map that simulates a Turing machines robustly to errors
using the encoding (1), and which is robust to perturbations ε � 1/4. Using this map instead of the differential equation,
we can obtain the discrete-time counterpart of the previous theorem.

Theorem 21. Let M be a Turing machine. Let L be the language recognized by M. Then there is a discrete-time system H = (R3, f),
where f is computable and effectively Lipschitz, which robustly recognizes L.

For the bounded version of this result (or, more correctly, a variant of it), we need to look at more detail how the
simulation of the Turing machine M is achieved by the system y′ = gM(y). Basically, the first component of this system will
be used to store the left side of the tape (using the encoding (1)), the second component will be used to store the right
side of the tape, and the third component is used to store the state coded as an integer. Without loss of generality, the TM
can be supposed to have only two final states, one accepting and another rejecting. We can also suppose that the states
are coded into integers {1, . . . ,m}, where 1 is the rejecting state, m is the accepting state, and 2 is the initial state. Once a
trajectory reaches a final state (point), it stays there (modulo ε – see below).

The last 3 components of y′ = gM(y) are used as memory for the main simulation. This simulation is robust to errors
in the sense that for any 0 < ε < 1/4, one can perturb any of these trajectories up to an amount ε and still be able to
simulate M .

Now we use the previous construction to simulate M on a compact set X = (−1,1)6. If φ is a solution of y′ = gM(y)

simulating M on R6, we can pick φ1 = 2
π arctanφ (and hence φ = tan(

φ1π
2)) as the corresponding simulation of M on

(−1,1)6. In general

φ′
1 =

(
2

π
arctanφ

)′
= 2

π

1

1 + φ2
φ′ = 2

π

1

1 + φ2
gM(φ)

⇒ φ′
1 = 2

π

1

1 + φ2
gM(φ) = 2

π

1

1 + tan2(
φ1π

2)
gM

(
tan

(
φ1π

2

))
= f M(φ1) (5)

where

f M(x) = 2

π

1

1 + tan2(xπ
2)

gM

(
tan

(
xπ

2

))
.

Hence, the system y′ = f M(y) simulates M on X , with input w coded by v(w), where v is given by (2). Moreover, robust-
ness among states still exists, and the simulation of M can be carried out if the states are not perturbed more than

ε̄ = arctan(m + ε) − arctan(m). (6)

We now show that any recursive language can be robustly recognized by an analytic and computable system in a
bounded set. Note that since the set is open (although bounded), the function defining the system is not necessarily Lips-
chitz. Indeed, it is conjectured that there are recursive languages which cannot be accepted by any analytic system defined
on a compact, finite-dimensional space through a reasonable input and output encoding [38, Conjecture 2]. By other words,
if this conjecture holds, some recursive languages can only be recognized by analytic systems on bounded non-closed sets,
and that’s the reason why we used an open set. Of course, the system is effectively Lipschitz over its state space though the
question of knowing whether a Lipschitz and computable system can robustly recognize a given recursive language remains
open.

Theorem 22 (Recursive ⇒ robust recognition, bounded case). Let A be a recursive language. Then there is an analytic and computable
continuous-time system over S = (−1,1)6 which robustly recognizes A.

Proof. Pick ε = 1/4 and let M be a Turing machine which recognizes language L. Consider the construction depicted above.
From all of the above, we have a dynamical system H defined with an ordinary differential equation (5) which allows us to
robustly simulate M on the compact space S . There will be a component of (5) (the third) which will give the state of M .
The state is coded by the numbers arctan(1),arctan(2), . . . ,arctan(m), where arctan(1) is the rejecting state and arctan(m) is
the accepting state. The idea is to pick V compute as the region which overlaps the states arctan(2), . . . ,arctan(m − 1) modulo
the allowed error ε̄ given by (6). V accept and V reject are defined similarly. Then one simulates M with a system like (5). For
each trajectory simulating a computation, the trajectory will remain in V compute until the computation accepts or reject. At
this point the trajectory goes to V accept or V reject , respectively and stays there.

More precisely, define V compute = [a,b] × (−1,1)5 where a, b are rationals satisfying

arctan 1 + ε̄ < a � arctan 2 − ε̄,

arctan(m − 1) + ε̄ � b < arctanm − ε̄,

O. Bournez et al. / Journal of Computer and System Sciences 79 (2013) 714–724 723
Fig. 2. Computing regions for the proof of Theorem 22.

where ε̄ is given by (6), V reject = (−1, c] × (−1,1)5 where c is a rational satisfying arctan 1 + ε̄ � c < a, and V accept =
[d,1) × (−1,1)5, where d is a rational satisfying b < d � arctan(m) − ε̄. These regions are represented in Fig. 2. Note that
there is a gap between these sets, since their Hausdorff distance is δ = min{a − c,d − b} > 0.

Remark also that, since L is recursive, the computation of M will always halt for a given input w ∈ Σ∗ and therefore the
contents of the tape will not grow beyond a certain amount size(w) for a given input w (bigger words will be on the region
[2
π arctan size(w),1)). Therefore, since the function gM is robust to errors, we will still be able to proceed the computation

with some robustness, namely with errors less than or equal to γ = arctan(size(w) + ε) − 2
π arctan size(w). (The amount of

error depends on the input, but this is not a problem for us. The important is that there is robustness.) Therefore, for all
δ � γ : (i) if w ∈ L, then w ∈ Lδ (the δ-perturbed language of the system H), (ii) if w /∈ L, then all δ-perturbed trajectories
vanish in V reject . Therefore this system robustly recognizes L. �

Proceeding similarly, but now using the robust map that simulates Turing machines from [7] instead of the differential
equation, one obtains the following result.

Theorem 23. Let L be a recursive language. Then there is an analytic and computable discrete-time system over S = (−1,1)6 which
robustly recognizes L.

4. Conclusion

In this paper we showed that, on compact sets, robustness of dynamical systems in the sense of [10] is equivalent to
decidability. It would be interesting to know what happens at a more refined level, i.e. if from a complexity point of view.

Acknowledgment

We would like to thank the anonymous referee for helpful corrections and suggestions which helped to improve the
paper.

References

[1] R. Alur, G.J. Pappas (Eds.), Hybrid Systems: Computation and Control, 7th International Workshop (HSCC 2004), Lecture Notes in Comput. Sci., vol. 2993,
Springer, 2004.

[2] C. Moore, Unpredictability and undecidability in dynamical systems, Phys. Rev. Lett. 64 (20) (1990) 2354–2357.
[3] M.S. Branicky, Universal computation and other capabilities of hybrid and continuous dynamical systems, Theoret. Comput. Sci. 138 (1) (1995) 67–100.
[4] E. Asarin, O. Maler, Achilles and the tortoise climbing up the arithmetical hierarchy, J. Comput. System Sci. 57 (3) (1998) 389–398.
[5] O. Bournez, Achilles and the tortoise climbing up the hyper-arithmetical hierarchy, Theoret. Comput. Sci. 210 (1) (1999) 21–71.
[6] P. Koiran, C. Moore, Closed-form analytic maps in one and two dimensions can simulate universal Turing machines, Theoret. Comput. Sci. 210 (1)

(1999) 217–223.
[7] D.S. Graça, M.L. Campagnolo, J. Buescu, Computability with polynomial differential equations, Adv. in Appl. Math. 40 (3) (2008) 330–349.
[8] T.A. Henzinger, P.W. Kopke, A. Puri, P. Varaiya, What’s decidable about hybrid automata?, J. Comput. System Sci. 57 (1) (1998) 94–124.
[9] E. Asarin, O. Maler, A. Pnueli, Reachability analysis of dynamical systems having piecewise-constant derivatives, Theoret. Comput. Sci. 138 (1995)

35–65.
[10] E. Asarin, A. Bouajjani, Perturbed Turing machines and hybrid systems, in: Proc. 16th Annual IEEE Symposium on Logic in Computer Science, 2001,

pp. 269–278.
[11] M. Fränzle, Analysis of hybrid systems: An ounce of realism can save an infinity of states, in: J. Flum, M. Rodríguez-Artalejo (Eds.), Computer Science

Logic (CSL’99), in: Lecture Notes in Comput. Sci., vol. 1683, Springer, 1999, pp. 126–140.
[12] R. Alur, D.L. Dill, Automata for modeling real-time systems, in: Automata, Languages and Programming, 17th International Colloquium, in: Lecture

Notes in Comput. Sci., vol. 443, Springer, 1990, pp. 322–335.

724 O. Bournez et al. / Journal of Computer and System Sciences 79 (2013) 714–724
[13] T.A. Henzinger, J.-F. Raskin, Robust undecidability of timed and hybrid systems, in: N.A. Lynch, B.H. Krogh (Eds.), Proc. Hybrid Systems: Computation
and Control, Third International Workshop, HSCC 2000, in: Lecture Notes in Comput. Sci., vol. 1790, Springer, 2000, pp. 145–159.

[14] E. Asarin, P. Collins, Noisy Turing machines, in: L. Caires, G.F. Italiano, L. Monteiro, C. Palamidessi, M. Yung (Eds.), Automata, Languages and Program-
ming, 32nd International Colloquium, ICALP 2005, in: Lecture Notes in Comput. Sci., vol. 3580, Springer, 2005.

[15] W. Maass, E. Sontag, Analog neural nets with gaussian or other common noise distributions cannot recognize arbitrary regular languages, Neural
Comput. 11 (1999) 771–782.

[16] H.T. Siegelmann, E.D. Sontag, On the computational power of neural networks, J. Comput. System Sci. 50 (1) (1995) 132–150.
[17] H.T. Siegelmann, Neural Networks and Analog Computation: Beyond the Turing Limit, Birkhäuser, 1999.
[18] H.T. Siegelmann, E.D. Sontag, Analog computation via neural networks, Theoret. Comput. Sci. 131 (2) (1994) 331–360.
[19] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields, Springer, 1983.
[20] M.W. Hirsch, S. Smale, R. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, Academic Press, 2004.
[21] K. Weihrauch, Computable Analysis: An Introduction, Springer, 2000.
[22] O. Bournez, D.S. Graça, E. Hainry, Robust computations with dynamical systems, in: P. Hlinený, A. Kucera (Eds.), Proc. 35th International Symposium

on Mathematical Foundations of Computer Science (MFCS 2010), in: Lecture Notes in Comput. Sci., vol. 6281, Springer, 2010, pp. 198–208.
[23] P. Collins, J. Lygeros, Computability of finite-time reachable sets for hybrid systems, in: Proc. 44th IEEE Conference on Decision and Control and the

European Control Conference, IEEE Computer Society Press, 2005, pp. 4688–4693.
[24] P. Collins, Semantics and computability of the evolution of hybrid systems, SIAM J. Control Optim. 49 (2) (2011) 890–925.
[25] A.M. Turing, On computable numbers, with an application to the Entscheidungsproblem, Proc. Lond. Math. Soc. (2) 42 (1936) 230–265.
[26] A. Grzegorczyk, On the definitions of computable real continuous functions, Fund. Math. 44 (1957) 61–71.
[27] D. Lacombe, Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs variables réelles III, C. R. Acad. Sci. Paris 241 (1955) 151–153.
[28] K.-I. Ko, Computational Complexity of Real Functions, Birkhäuser, 1991.
[29] M.B. Pour-El, J.I. Richards, Computability in Analysis and Physics, Springer, 1989.
[30] P. Odifreddi, Classical Recursion Theory, vol. 1, Elsevier, 1989.
[31] M.W. Hirsch, S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, 1974.
[32] D.S. Graça, M.L. Campagnolo, J. Buescu, Robust simulations of Turing machines with analytic maps and flows, in: S.B. Cooper, B. Löwe, L. Torenvliet

(Eds.), CiE 2005: New Computational Paradigms, in: Lecture Notes in Comput. Sci., vol. 3526, Springer, 2005, pp. 169–179.
[33] D. Graça, N. Zhong, J. Buescu, Computability, noncomputability and undecidability of maximal intervals of IVPs, Trans. Amer. Math. Soc. 361 (6) (2009)

2913–2927.
[34] A. Puri, Dynamical properties of timed automata, in: A.P. Ravn, H. Rischel (Eds.), Proc. Formal Techniques in Real-Time and Fault-Tolerant Systems, 5th

International Symposium, FTRTFT’98, in: Lecture Notes in Comput. Sci., vol. 1486, Springer, 1998, pp. 210–227.
[35] A. Puri, V. Borkar, P. Varaiya, Epsilon-approximation of differential inclusions, in: Proc. 34th IEEE Conference on Decision and Control, 1995, pp. 2892–

2897.
[36] P. Collins, Continuity and computability of reachable sets, Theoret. Comput. Sci. 341 (2005) 162–195.
[37] P. Collins, D.S. Graça, Effective computability of solutions of differential inclusions – the ten thousand monkeys approach, J.UCS 15 (6) (2009) 1162–

1185.
[38] C. Moore, Finite-dimensional analog computers: Flows, maps, and recurrent neural networks, in: C. Calude, J. Casti, M. Dinneen (Eds.), 1st International

Conference on Unconventional Models of Computation – UMC’98, Springer, 1998, pp. 59–71.

	Computation with perturbed dynamical systems
	1 Introduction
	2 Preliminaries
	2.1 Computable analysis
	2.2 Dynamical systems
	2.3 Robustness

	3 Main results
	3.1 Bounded domain
	3.2 Unbounded domain
	3.3 Recursiveness implies robustness

	4 Conclusion
	Acknowledgment
	References

