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Abstract

The problem of characterizing the real spectra of weighted graphs is only solved
for weighted graphs of order n ≤ 4. We overview these known results, that come
from the context of nonnegative matrices, and give a new method to rule out many
unresolved spectra of size 5.
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A weighted digraph G is a triplet (V,E, w) where V is a nonempty finite
set, E ⊂ V × V and w:E → R

+ is a positive real map on E. The elements
of V and E are called vertices and arcs respectively; the values of the map
w are called weights. The order of a digraph is the number of vertices. The
adjacency matrix of a weighted digraph (V,E, w) with V = {v1, . . . , vn}
is the matrix A = (aij)

n
i,j=1 where aij = w(vi, vj) if (vi, vj) ∈ E and aij = 0

otherwise. The spectrum and the characteristic polynomial of a weighted
digraph are those of its adjacency matrix. In a similar way, a weighted

(undirected) graph can be defined. In this case, the adjacency matrix is
symmetric.
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A nonnegative matrix can be seen as the adjacency matrix of a weighted
digraph and a symmetric nonnegative matrix as the adjacency matrix of a
weighted graph. In this way, nonnegative matrices and weighted digraphs, as
well as symmetric nonnegative matrices and weighted graphs, can be consid-
ered as equivalent objects.

For a family of complex numbers σ = {λ1, . . . , λn}, repeats allowed, to be
the spectrum of a weighted digraph with adjacency matrix A, a number of
necessary conditions are known. The most basic of these follow from the fact
that a nonnegative matrix has real entries and nonnegative trace, and from
the Perron-Frobenius theory of nonnegative matrices:

• σ is closed under complex conjugation;

• the trace of A is nonnegative (the trace condition): Tr(A) =
∑n

i=1 λi ≥ 0;

• the moments of σ of all orders are nonnegative, where the moment of

order k of σ is the number sk(σ) =
∑n

i=1 λ
k
i = Tr(Ak), k ≥ 1;

(Note that the condition s1 = 0, i.e. trace 0, means that the weighted
graphs considered have no loops.)

• the spectral radius ρ of A is in σ (the Perron condition); without lose of
generality, this one may be taken to be λ1: λ1 ≥ |λi|, i = 2, . . . n.

Johnson and, independently, Loewy and London obtained the first non trivial
necessary conditions: (sj(σ))

m ≤ nm−1sjm(σ), j, m = 1, 2, . . . .

The RNIEP (Real Nonnegative Inverse Eigenvalue Problem) is the prob-
lem of characterizing all possible real spectra of weighted digraphs. If in the
RNIEP we require the digraph to be a graph, we have the SNIEP (Symmet-
ric Nonnegative Inverse Eigenvalue Problem). These problems come from the
context of nonnegative matrices.

For a long time it was thought that both problems were equivalent, but in
1996 Johnson-Laffey-Loewy [2] set out that both problems are different and
in 2004 Egleston-Lenker-Narayan [1] proved that they are different for spectra
of size greater than or equal to 5. A complete solution of both problems is
known only for spectra of size n ≤ 4. For these n’s the most basic necessary
conditions are also sufficient. That is, the trace and the Perron conditions
characterize both problems. The next table shows the adyacency matrices
and the weighted graphs associated to σ = {λ1 ≥ · · · ≥ λn} for n ≤ 4. Most
of these constructions are due to Fiedler.
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Spectra of size 5 for weighted graphs are not characterized and this problem
has proven a very challenging one. Note that when we consider digraphs and
graphs (both unweighted) their spectra are completely characterized if one is
able to calculate all the spectra of the matrices with 0’s and 1’s of a fixed size.

In what follows we focus our attention in the SNIEP for n = 5. For this n
there are two cases where the SNIEP is characterized:

Theorem 0.1 (Spector [8], 2011) Let σ = {λ1, λ2, λ3, λ4, λ5} and sk(σ) =
∑5

i=1 λ
k
i . Suppose λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ λ5 ≥ −λ1 and s1(σ) = 0. Then σ is

the spectrum of a weighted graph if and only if the following conditions hold:



(i) λ2 + λ5 ≤ 0,

(ii) s3(σ) ≥ 0.

Theorem 0.2 (Loewy-Spector [6], 2017) Let σ = {λ1, λ2, λ3, λ4, λ5} with

λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ λ5 and
∑5

i=1 λi ≥ 1
2
λ1. Then, σ is the spectrum of

a weighted graph if and only if the following conditions hold:

(i) λ1 = maxλ∈σ |λ|,
(ii) λ2 + λ5 ≤

∑5
i=1 λi,

(iii) λ3 ≤
∑5

i=1 λi.

McDonald-Neumann [7], Egleston-Lenker-Narayan [1] and Loewy-McDonald
[5] in their works give a detail discussion of many parts of the case n = 5 for
positive trace, that is, for weighted graphs with loops.

It is common to study spectra of size 5 considering the number of positive
eigenvalues. When there are 1, 4 or 5 positive eigenvalues the answer for
the SNIEP is straightforward. When there are just 2 positive eigenvalues, it
has been proved by Loewy, for a general n, that “partitioned majorization” is
sufficient for the SNIEP, i.e., if the nonpositive eigenvalues λ3 ≥ λ4 ≥ · · · ≥ λn

may be partitioned into 2 subfamilies such that the larger sum of the absolute
values in one subfamily is no more than λ1, and λ1+λ2 is at least |λ3|+· · ·+|λn|.
For n ≤ 5, this condition is also necessary. Note that for n > 5 this is not true:
the family {7, 5,−1/2,−7/2,−4,−4}, which is the spectrum of a weighted
graph [3, Example 8 with δ = 1/2], is not partitionable.

When n = 5, this leaves the unresolved case:

λ1 > λ2 ≥ λ3 > 0 > λ4 ≥ λ5, λ1 + λ5 ≥ 0,
∑5

i=1 λi > 0 and λ1 + λ2 + λ4 + λ5 < 0.

The last inequality may be assumed, as, otherwise, {λ1, λ2, λ4, λ5} and {λ3}
would be the spectra of a weighted graph. Thus far, none of these cases has
been resolved, except those for which translation by −

(

1
5

∑

λi

)

I, leads to a
spectrum of a weighted graph without loops.

We study spectra with single spectral radius, the other two positive eigen-
values equal and the two negative eigenvalues also equal. After normalization,
the spectra studied are of the form {1, a, a,−(a+d),−(a+d)}. We give a new
method [4], based upon the eigenvalue interlacing inequalities for symmetric
matrices, to rule out many unresolved spectra with 3 positive eigenvalues:

Theorem 0.3 Let 0 < a, d satisfy a + d, 2d < 1 < a + 2d. If 2(a + d)3 >



1+ a3 + (a+2d− 1)3, then {1, a, a,−(a+ d),−(a+ d)} is not the spectrum of

a weighted graph of order 5.

This new method shows that the family σ = {6, 3, 3,−5,−5}, which is
the spectrum of a weighted digraph, is not the spectrum of a weighted graph.
This spectrum, after normalization, corresponds to a = 1

2
and d = 1

3
, in which

case

2

(

5

6

)3

≥ 1 +

(

1

2

)3

+

(

1

6

)3

and the condition of the theorem is satisfied. So σ is not the spectrum of a
weighted graph. The “possible symmetric realization” of this spectrum has
been intensively studied by many authors in the field of nonnegative matrices
during the last 20 years.
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