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Chapter 1

Introduction

Commodity markets are very important for different industries. On the one hand, they are funda-

mental to production companies which look for hedging unwanted commodity exposure. On the

other hand, they are very interesting for investors who use commodities as investments, Back and

Prokopczuk [4]. Moreover, the importance of commodity markets has increased considerably since

the start of this century. As a result, they are of great interest for researchers.

Recent developments in commodity prices have been atypical in many ways. From the mid-

2000s a rising trend of commodity prices was observed in the markets. In fact, the boom between

2002 and mid-2008 was the most important one in several decades, both in magnitude and duration.

After the beginning of the current global crisis, the prices started to decline and this fact affected a

large number of commodities. However, on the whole, since 2009, and especially since the summer

of 2010, global commodity prices started to increase again. During this period of time, commodity

prices also had a high volatility.

These developments also coincide with important changes in commodity market basics. For ex-

ample, changes in fundamental supply and demand relationships, especially in emerging economies

which are experiencing a fast growth. In addition, the aim to reduce the use of fossil fuels in

energy consumption, the debate about global climate change and its link with agricultural produc-

tion has had an important impact on recent commodity price evolution. However, these factors

are not enough to explain the behaviour of commodity prices. In fact, the greater presence of

financial investors in these markets looking to diversify their portfolios beyond traditional securi-

ties, is an additional factor. This phenomenon is called financialization of commodity markets and

its importance has increased considerably since 2004, as can be perceived by the rising volume of

financial investments in commodity derivative markets. This situation is important because the

activity of these financial participants can move commodity prices away from the levels fixed by

supply and demand relationships. Financial investors make trading decisions based on factors not

totally related to the corresponding commodity, such as portfolio considerations or following the

market trend. Moreover, this fact can have negative effects on both the consumers and producers
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2 Chapter 1: Introduction

of commodities.

1.1 Commodity markets

Trading in commodity spot markets is quite limited because most market participants look for

a financial exposure to the movements of the underlying commodity price instead of the underlying

commodity itself. Therefore, as Back and Prokopczuk [4] state: “trading and price discovery take

place in the futures markets”.

Commodity derivatives are traded on organized exchanges as well as on over the counter (OTC),

usually with a financial institution. Futures exchanges where trade standardized clearly defined

products, offer higher liquidity, price transparency, and reduce default risk. However, the variety

of these exchange-traded standardized contracts is quite limited and they do not always provide

a perfect hedge. In the OTC markets, traders can go beyond standardized futures products and

customize them in terms of the contracts they trade. Although they offer great freedom and

potentially lower trading costs, these markets may leave both parties at risk, if they are not using

the services of a clearing house. In fact, currently, OTC markets are still rather opaque in all parts

of the world.

In the US, the most popular exchanges are those run by the CME Group, which originated

after the Chicago Mercantile Exchange (CME) and Chicago Board of Trade (CBT) merged in

2006. The New York Mercantile Exchange (NYMEX) is among its operations.

Nowadays, tradable commodities are divided into four categories:

• Metals. They are probably the most traded commodities. They can also be divided into

various categories, for instance, precious metals (gold, silver, etc.), base metals (copper,

aluminum, etc.), carbon, steel and so on.

• Energy. It is one of the most influential commodities. It includes crude oil, natural gas, coal

and so on.

• Agricultural. These are goods such as cotton, cocoa, sugar, orange juice, etc.

• Livestock and meat. These commodities include live cattle, feeder cattle and lean hogs and

they are more volatile than other traded commodities.

A well-known way to invest in commodities is through a futures contract, which is an agreement

between two parties to buy (or sell) a specific quantity of a commodity at a fixed specific price and

at a predetermined future date on an organized exchange. Another way is through option contracts.

Options provide greater flexibility to market participants because they are designed to offer the

right (not the obligation) to buy (or sell) a specific commodity or contract at a predetermined

specific price and at a given date in the future, see Cummins and Murphy [26]. In financial

commodity markets, there are mainly two types of investors:
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• Hedgers buy and sell contracts to protect themselves from possible commodity price move-

ments. They try to avoid risks.

• Speculators try to make some profit analyzing the commodity markets, forecasting derivative

price movements and trading.

1.2 Spot and futures prices

In commodity markets, it is interesting to know the term structure of commodity futures

prices, which is the relationship between the futures prices and the maturity for any delivery rate

Lautier [54]. In fact, changes in the slope of the commodity futures curves have very important

consequences for investment decisions and risk management and have been the focus of numerous

studies, see Acharya et al. [1], Bessembinder and Lemmon [13], and Geman and Ohana [35].

A futures curve is upward sloping when futures prices are higher than the spot price and this

situation is called contango. On the contrary, when futures prices are below the current spot price

the futures curve is downward sloping and this situation is called backwardation. The futures

curve can also show a humped shape. Moreover, the shape of the term structure of futures prices

changes over time, see for example Hambur and Stenner [42].

The shape of the term structure of the commodity futures curve has been traditionally explained

by two broad strands: the theory of storage, which started with Brennan [16], and Kaldor [50]

among others, and the hedging pressure literature, which was pioneered by Hicks [45], and Keynes

[51].

The theory of storage focuses on the overall benefits of holding the physical commodity and

some aspects related to inventories. Owning a commodity provides some benefits, but also some

costs. In consequence, the (net) convenience yield is defined as the difference between the gross

convenience yield and the costs of holding the physical commodity, such as storage, transportation

and so on. According to this theory, there is a relation between the spot and futures prices. If the

benefits of holding the commodity (convenience yield) are higher than the financial costs (interest

rates), the futures curve is in backwardation. However, if the interest rate is higher than the

convenience yield, the futures curve is in contango, see Back and Prokopczuk [4] for more detail.

Moreover, holding the physical commodity allows producers to fulfill unexpected changes in

demand, avoid temporary shortages of supply and the insurance of the production process, see

Kwok [52]. Then, following supply and demand arguments, there is a negative relationship between

inventory levels and price, see Back and Prokopczuk [4]. That is, if inventory levels are high, the

futures curve is in contango and if inventory levels are low the futures curve is in backwardation.

In contrast, the hedging pressure literature focuses on the risk premium. This strand considers

that the futures price is the sum of the expected future spot price and risk premium. The theory of

normal backwardation proposed by Keynes [51] is based on the general assumption that commodity

producers usually want to enter into a short position, because they wish to guarantee a certain
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price level for the delivery. This contract provides a form of insurance against any decline in the

spot price to the producers. Thereby, producers are willing to pay a risk premium in order to hedge

their exposure. Commodity consumers may also want to protect themselves against increases in

the spot price. Then, they will enter into a long position in the futures contract. If the hedging

activity of producers of a particular commodity is greater than that of consumers, the futures

price will be lower than the expected future spot price and the futures price will be a downward

biased estimator of future spot prices, see Back and Prokopczuk [4]. Moreover, this fact will induce

speculators to balance the market taking the opposite long position. However, this assumption

of hedgers usually being on average in a net short position is not always true. If the hedging

activity of consumers is greater than that of producers, there will be an excess of commercial

market participants looking to enter a long position, and then, the future price will be above the

expected future spot price. In this case, speculators should be compensated for taking a short

position in the commodity. Therefore, the futures price may carry either a positive or a negative

risk premium depending on the net position of hedgers for each commodity at each moment, see

Cootner [25], and Hambur and Stenner [42]. In this sense, Hambur and Stenner [42] define the

risk premium as the return that speculators expect to obtain as compensation for buying or selling

some commodity futures contracts. The role of risk premia for different markets have been widely

analyzed, see for example Acharya et al. [1], Basu and Miffre [8], and Ronn and Wimschulte [69].

1.3 Valuation models

As far as commodity derivatives pricing is concerned, several models have arisen over recent

years. First, the state variables of these models as well as their dynamics must be determined.

Then, there must be a balance between a tractable and easy implement model and they should

also be able to capture the commodity price properties.

The spot price is, obviously, a variable that we should consider for pricing commodity fu-

tures. Many models specify a stochastic process for the spot price dynamics and, then, arbitrage

arguments are used for valuation, see Schwartz [73].

Due to the interaction of demand and supply, a mean-reverting behaviour usually arises in the

commodity dynamics literature. For example, Bessembinder et al. [12] show strong evidence of

mean-reversion in commodity markets. However, Brooks and Prokopczuk [18] show that mean-

reversion is not supported when estimating a stochastic volatility model with jumps. In fact, in

the literature, different approaches are found. Schwartz [73] considers a constant mean-reversion

while Schwartz and Smith [74] assume a long-term stochastic mean.

Brennan and Schwartz [17] propose a one-factor model when the convenience yield is modelled

by means of a deterministic function of the spot. However, one-factor models are not consistent

with empirical observations, since they give futures prices which are perfectly correlated. Then,

they seem not to be able to capture the real dynamics of futures prices. Gibson and Schwartz

[36] introduce a model with a joint diffusion process for the spot price and the convenience yield.
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More precisely, they consider a geometric Brownian motion for the spot price dynamics and the

convenience yield is described through an Ornstein-Ulhenbeck process. As the convenience yield is

unobservable in the market, Gibson and Schwartz [36] propose a proxy for this variable. Schwartz

[73] considers a three-factor model with an additional factor, the interest rate, which follows a

diffusion process. Later, Miltersen and Schwartz [59] also consider a three-factor model in order to

price commodity futures and futures options. Recently, Schöne and Spinler [72] propose an affine

diffusion model with stochastic volatility to price commodity futures and options.

Many commodity markets are characterized by exceptional abrupt changes in the prices as a

consequence of failures in production or transportation, weather conditions affecting agricultural

commodities, or unanticipated macroeconomic events among other reasons. In the literature, so as

to take into account these abrupt changes of the commodity prices, a jump term in the stochastic

process is added. For example, Hilliard and Reis [46] propose a model that allows for jumps in

the spot price process. In particular, they consider that the spot price follows a jump-diffusion

process. Yan [86] proposes a model for pricing commodity derivatives with jumps in the spot

price and volatility. Schmitz et al. [71] assume a stochastic volatility model with jumps for

agricultural commodities and its effect on option prices is analyzed. Hilliard and Hilliard [47] use

a standard geometric Brownian motion augmented by jumps to describe the underlying spot and

mean-reverting diffusion for the interest rate and convenience yield state variables for gold and

copper prices.

Finally, it is widely shown that supply and demand of most commodities follow seasonal cy-

cles. In particular, agricultural commodities and a vast majority of energy commodities present a

seasonal pattern in their prices. On the one hand, the supply of agricultural commodities depends

on the weather which affects the production. On the other hand, the demand for energy is higher

during the cold season. Therefore, prices are higher during this season than during the hot sea-

son. For example, Sørensen [75] shows seasonal patterns for agricultural products such as soybean,

corn, and wheat markets, and Manoliu and Tompaidis [57] and Paschke and Prokopczuk [63] find

strong seasonal effects in some energy commodities such as natural gas, heating oil or gasoline.

Cartea and Figueroa [20], Li et al. [55] and Lucia and Schwartz [56], consider the seasonality in

electricity markets, Garćıa Mirantes et al. [34] in the natural gas markets, Kyriakou et al. [53] in

petroleum commodities and Back and Prokopczuk [4] in the soybean, corn heating oil and natural

gas markets. Arismendi et al. [3] analyze the importance of the seasonal behaviour in the volatility

of price commodity options. Mu [60] analyzes how weather affects natural gas price volatility and

shows a strong seasonal pattern. Geman and Ohana [35] and Suenaga et al. [79] find that the

natural gas price volatility is higher during the winter than during the summer.

Sørensen [75] includes a deterministic seasonal component in the model to describe the seasonal

variations in the commodity price. More precisely, he assumes that the log spot price is the sum

of a deterministic trigonometric function and two latent factors. In fact, he finds strong evidence

for the inclusion of his proposed seasonality component in soybeans, corn and wheat. Considering

trigonometric polynomials to model the seasonal component has some advantages such as functions
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are continuous in time and few parameters are needed. In other cases, seasonal dummy variables

are considered as a different modeling approach, see for example Benth et al. [11], and Lucia and

Schwartz [56]. This approach is very flexible, but a larger number of parameters are usually needed.

Garćıa Mirantes et al. [34] assume trigonometric components generated by stochastic processes as

seasonal factors.

1.4 Methodology

The commodity pricing models proposed in this dissertation consider diffusion and jump-

diffusion stochastic processes. Moreover, we add a seasonal component in the spot price process.

In this regard, the role of the jumps and seasonality is studied. So as to develop this research, we

use the following methodology.

The fundamental tool for working with financial pricing models in continuous time is stochastic

calculus. In this respect, we assume all tools in a complete filtered probability space where we

describe the state variable dynamics as stochastic processes. More precisely, we use diffusion and

jump-diffusion processes by means of Brownian processes and a jump term. This term is modelled

by a Poisson process with its corresponding jump intensity. Jump sizes are assumed to be random

variables with a known distribution (normal or exponential). Moreover, we use the Ito product rule

and Ito’s Lemma of the stochastic calculus, see Applebaum [2], Cont and Tankov [23], Øksendal

[62], Protter [67], and Shreve [76] for more detail. In this context, we utilize the differential and

integral notations of the jump-diffusion stochastic processes.

In order to price commodity derivatives, we consider arbitrage-free valuation, that is, we make

a change from the physical measure to a risk-neutral measure, by means of Girsanov-type measure

transformation, see Bremaud [15], and Shreve [76]. Then, we express the processes under this

equivalent martingale measure. When we consider jump-diffusion processes, we have to take into

account that the risk-neutral measure is not unique, that is, the market is incomplete.

For pricing commodity derivatives, the estimation of the process functions is a necessary step.

We approximate the seasonal component of the commodity as a Fourier trigonometric polynomial.

Then, we estimate all the parameters simultaneously by means of a nonlinear least square method,

see Benth et al. [11], Lucia and Schwartz [56], and Stoer and Bulirsch [78].

Concerning the rest of the functions of the risk-neutral stochastic processes, we estimate them

by means of nonparametric techniques, in order to avoid imposing arbitrary functions in the model.

In particular, we use the Nadaraya-Watson estimator with Gaussian kernels as weight functions,

see Figà-Talamanca and Roncoroni [32], Fusai and Roncoroni [33], Härdle [43], and Härdle and

Muller [44], because this procedure is sufficiently flexible to allow for potential nonlinearities in the

drift, the diffusive volatility and the intensity of the discontinuous jump component.

So as to illustrate the implementation process and the behaviour of our approach, we use an

energy commodity: natural gas. This commodity and its corresponding contracts (futures, options)

are actively traded and also very liquid in the markets, see Cummins and Murphy [26]. Henry Hub
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natural gas spot price was obtained from the US Energy Information Administration of the US

Department of Energy (EIA database). The daily natural gas futures prices with short-maturities

(till 4 months) were also obtained from the EIA database and for higher maturities (till 44 months)

from the Quandl platform. All the data are divided into two different groups: the in-sample data,

which we use for estimating all the functions and parameters, and the most recent data, which

is included in the out-of-sample data. This most recent data is used to evaluate the proposed

approach.

Finally, as we consider a nonparametric approach in this research, a closed-form solution cannot

be obtained. An approximated commodity derivative price can be computed in two ways: solving

numerically the corresponding partial integro-differential equation and Monte Carlo simulation

approach, which provides the commodity derivative price as the conditional expectation of the

final payoff of the derivative. Both techniques are related by means of Feynman-Kac Theorem, see

Pascucci [64], and Shreve [76]. In this research, we use the Monte Carlo method which generates

a great number of paths of the underlying under the risk-neutral measure. This method is widely

used by researchers and practitioners in the markets, especially for multiple-factor models because

of its simplicity and efficiency, see Glasserman [37], and Wilmott [84].

1.5 Contributions

In the commodity literature, it is very common to use affine models because of their simplicity

and tractability. Simple parametric functions are chosen to obtain a closed-form solution for the

derivative price. In fact, in most of the cases, the market prices of risk are considered constant.

Then the functions of the risk-neutral processes are estimated using the corresponding derivative

prices. For example, Gibson and Schwartz [36], Schwartz [73], and Cortazar et al. [24] consider

affine models with one, two or three factors and obtain a closed-form solution for some commodity

derivatives. However, they do not discuss jumps or seasonality in their models.

In the literature, the empirical evidence does not show that affine models are the best ones to

price commodity derivatives. If we consider other dynamics for the state variables which could

be realistic, a closed-form solution is not usually known. Then, the market prices of risk or the

functions of the risk-neutral processes cannot be estimated, because they are unobservable. In

fact, this problem is one of the open questions in the commodity derivative pricing literature, and

the main goal of this thesis.

In order to solve this problem, we propose a new approach to estimate the whole functions of

the risk-neutral processes of the model directly from market data, even if a closed-form solution

is not known. That is, we design new estimation techniques for the different behaviour of the

commodities in the market. Moreover, so as to illustrate how to implement these techniques, we

use natural gas contracts actively traded on the NYMEX.

In the different chapters of this thesis, we show our main contributions. In Chapter 3, we

consider a two-factor jump-diffusion commodity model, whose factors are the spot price and the
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convenience yield. We assume that the spot price follows a jump-diffusion process because of

the abrupt changes that happen in the commodity market (see Deng [27] among others) and the

convenience yield follows a diffusion process, as commonly found in the literature; see Schwartz

[73], and Yan [86]. The main contribution of this chapter is twofold. First, we obtain some results

that allow us to estimate the functions of a two-factor risk-neutral jump-diffusion commodity model

directly from the spot and futures prices in the market. Finally, we show the effect of considering

jumps in the commodity spot price.

In Chapter 4, we also consider a jump-diffusion process for the spot price, but we assume

different jump size distributions. In this case, our goal is to understand the role of the jump and

its distribution. Then, we price natural gas futures and futures options with the different jump

size distributions. As futures prices are considered an important information source of expected

spot prices, financial investors use them to hedge against the risk of commodity price. Therefore,

we also analyze the natural gas futures risk premium.

In the literature, empirical evidence of seasonality has been widely shown for different com-

modity markets such as electricity, natural gas, soybean and so on; see Arismendi et al. [3], Back

and Prokopczuk [4], Cartea and Figueroa [20], Kyriakou et al. [53], Li et al. [55], and Lucia and

Schwartz [56]. In order to take into account this fact, in Chapter 5, we add a multiplicative sea-

sonal component in the model. In particular, we assume a seasonal deterministic function which

is a trigonometric polynomial whose parameters are approximated by means of the nonlinear least

square method. As in this case, a closed-form solution is not known, we prove some results to

estimate the risk-neutral functions of the model using data from the markets. Finally, we show

how to implement this approach using natural gas data and we analyze the role of the seasonality

in the futures, futures options and futures risk premia.



Chapter 2

Introducción

En la actualidad los mercados de materias primas son muy relevantes por diferentes motivos.

Por un lado, son fundamentales para las empresas que buscan cubrirse del riesgo de los posibles

cambios de los precios de las materias primas. Por otro lado, son muy atractivos, también, para los

inversores financieros que los utilizan para diversificar sus inversiones, véase Back y Prokopczuk

[4]. Además, la importancia de estos mercados ha aumentado considerablemente desde el comienzo

de este siglo, convirtiéndose en un tema de investigación muy actual.

Los precios de las materias primas han experimentado variaciones recientemente, que han sido

bastante anómalas por diferentes motivos. Desde la primera década del año 2000, estos precios

han reflejado, en general, una tendencia creciente. De hecho, entre el año 2002 y mediados del

año 2008 este crecimiento, tanto en magnitud como en duración, ha sido el más importante en

décadas. Posteriormente, con el comienzo de la reciente crisis global, los precios comenzaron a

disminuir y este fenómeno afectó a un gran número de materias primas. Sin embargo, desde el

año 2009, y especialmente desde el verano de 2010, los precios en general comenzaron de nuevo a

aumentar. Durante estos años los precios de las materias primas han experimentado también una

gran volatilidad.

Este fenómeno coincide, también, con una serie de cambios importantes que han tenido lugar en

las bases de los mercados. Por ejemplo, tanto la oferta como la demanda de los páıses emergentes

han crecido de manera considerable en poco tiempo. Por otro lado, el objetivo general de reducir

el uso de combustibles fósiles como fuente de enerǵıa y el debate sobre el cambio climático y su

relación con la agricultura han tenido también un importante efecto sobre la evolución de los

precios de las materias primas. Sin embargo, estos factores no son suficientes para explicar el

comportamiento más reciente de estos precios. Aśı, un factor adicional es la mayor presencia de

inversores financieros en estos mercados, los cuales buscan diversificar sus inversiones más allá de

los tradicionales activos financieros. Este fenómeno se conoce como financialization de los mercados

y su relevancia ha aumentado considerablemente desde el año 2004, como se puede deducir a partir

del elevado crecimiento experimentado por el número de inversiones financieras realizadas en los

9
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mercados de materias primas desde dicho año. Este factor es muy importante porque la actividad

de estos inversores financieros puede mover los precios de las materias primas lejos de los niveles

que establecen las leyes de la oferta y la demanda. Los inversores financieros toman decisiones

de negocio que no se basan totalmente en las caracteŕısticas propias de las materias primas, sino

más bien en aspectos relacionados con la composición de sus carteras y la tendencia seguida por

los mercados en un determinado momento. Estos comportamientos pueden, incluso, tener efectos

negativos tanto sobre los consumidores como sobre los productores de las materias primas.

2.1 Los mercados de materias primas

La negociación de las materias primas en los mercados es bastante limitada ya que sus par-

ticipantes buscan, normalmente, una exposición financiera a los movimientos de los precios de la

materia prima subyacente más que a la propia materia prima. Por tanto, tal y como señalan Back

y Prokopczuk [4], la negociación y la fijación de los precios de las materias primas tiene lugar en

los mercados de futuros de dichos productos.

Los derivados sobre materias primas se negocian tanto en mercados organizados como en

mercados no organizados u over the counter, utilizando normalmente una institución financiera

como intermediario. En los mercados de futuros se negocian productos estandarizados, claramente

definidos, que ofrecen una gran liquidez, transparencia y reducen el riesgo de posible impago. Sin

embargo, el número y variedad de este tipo de contratos estandarizados es bastante limitado y no

siempre proporcionan una cobertura perfecta a sus participantes. En los mercados no organizados

los agentes pueden negociar contratos más amplios que los futuros estandarizados existentes y

adaptarlos a sus preferencias y necesidades. Sin embargo, a pesar de que estos contratos ofrecen

mayor libertad, y en general menores costes potenciales de negociación, pueden incurrir en mayor

riesgo de impago para ambas partes, pues no suelen utilizar los servicios de las cámaras de com-

pensación. De hecho, todav́ıa actualmente, los mercados no organizados suelen ser bastante opacos

en todas las partes del mundo.

En Estados Unidos los mercados más conocidos son aquellos pertenecientes al CME Group, el

cual surgió después de la fusión del Chicago Mercantil Exchange (CME) y el Chicago Board of

Trade en 2006. De hecho, el New York Mercantil Exchange (NYMEX) también pertenece a este

grupo y es uno de los mercados más activos a nivel mundial.

Las materias primas negociadas en los mercados son muy diversas pero pueden agruparse en

cuatro grandes categoŕıas:

• Metales. Este tipo de materias primas son probablemente las más negociadas y pueden, a

su vez, dividirse en otras categoŕıas, como por ejemplo metales preciosos (oro, plata,. . . ),

metales no preciosos (cobre, aluminio,. . . ), acero, etc

• Enerǵıa. Estas materias primas son las más influyentes e incluyen petróleo, gas natural,

carbón, etc.
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• Productos agŕıcolas. En este grupo se incluye el algodón, el cacao, el azúcar, el zumo de

naranja, etc.

• Ganadeŕıa y carne, como por ejemplo el ganado vacuno, porcino, etc.

Los futuros son una forma muy conocida de invertir en materias primas. Estos contratos se

realizan en un mercado organizado entre dos partes con el objetivo de comprar (o vender) una

cantidad establecida de una materia prima determinada a un precio fijo y en una fecha estipulada.

Otra posible forma de invertir en materias primas es a través de opciones. Las opciones propor-

cionan una mayor flexibilidad a los inversores que los futuros, ya que están diseñadas para ofrecer

el derecho (no la obligación) de comprar (o vender) una determinada materia prima o contrato a

un determinado precio y en una fecha futura establecida de antemano, véase Cummins y Murphy

[26]. En los mercados financieros de materias primas participan, fundamentalmente, dos tipos de

participantes:

• Los inversores, que compran y venden contratos para protegerse de los movimientos que

pueden experimentar los precios de las materias primas. Por tanto, buscan evitar riesgos.

• Los especuladores, que tratan de enriquecerse analizando el comportamiento de los mercados

de materias primas, adelantándose a los posibles movimientos en sus precios y comprando y

vendiendo los diferentes contratos en circulación.

2.2 Los precios al contado y los futuros

En los mercados de materias primas es interesante conocer la estructura temporal de los precios

de los futuros sobre materias primas o curva de futuros, la cual es la relación existente entre los

precios de los futuros para diferentes vencimientos en un determinado momento, véase Lautier [54].

De hecho, los cambios en la pendiente de la curva de futuros tienen importantes consecuencias

sobre las decisiones de inversión y gestión de riesgo, y han sido el centro de numerosos trabajos de

investigación, véanse Acharya et al. [1], Bessembinder y Lemmon [13] y Geman y Ohana [35].

Una curva de futuros se dice que tiene pendiente creciente cuando los precios de los futuros

son mayores que los precios al contado. En esta situación se considera que el mercado está en

contango. Por el contario, cuando el precio de los futuros está por debajo del precio al contado, la

curva de futuros tiene pendiente decreciente y se dice que el mercado está en backwardation. Sin

embargo, lo más habitual es que estas curvas presenten tramos crecientes y decrecientes, incluso

su forma suele variar a lo largo del tiempo, véase por ejemplo Hambur y Stenner [42].

La forma de la estructura temporal de los precios de los futuros ha venido explicada tradicional-

mente por dos corrientes: la teoŕıa de inventarios, la cual comenzó con Brennan [16] y Kaldor [50]

entre otros, y la literatura sobre la presión de cobertura o hedging pressure, de la cual fueron

pioneros Hicks [45] y Keynes [51].
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La teoŕıa de inventarios se centra en el beneficio global que reporta poseer la materia prima

f́ısicamente aśı como de algunos aspectos relacionados con su almacenamiento. Poseer la materia

prima proporciona ciertos beneficios pero también conlleva ciertos costes. Por tanto, el rendimiento

de conveniencia (neto) se define como la diferencia entre el rendimiento de conveniencia bruto menos

el coste de poseer f́ısicamente el bien, como por ejemplo los costes de almacenamiento, transporte,

etc. En ĺınea con esta teoŕıa, existe una relación entre el precio al contado y el precio de los corres-

pondientes futuros. Si los beneficios de poseer las materias primas (rendimiento de conveniencia)

son mayores que sus costes financieros (tipo de interés), la curva de futuros estará en backwardation,

sin embargo, si los costes financieros son superiores al rendimiento de conveniencia, entonces la

curva estará en contango, véase Back y Prokopczuk [4] para más información.

La posesión de la materia prima permite también a los productores cubrir cambios inesperados

de la demanda, periodos temporales de escasez de oferta y asegurarse el proceso de producción

véase Kwok [52]. Por tanto, a partir de argumentos relacionados con la oferta y la demanda se

establece también una relación negativa entre el nivel de los inventarios y el precio, véase Back y

Prokopczuk [4]. Aśı, si el nivel de los inventarios es elevado, la curva de futuros estará en contango

y, si el nivel de los inventarios es bajo, la curva de futuros estará en backwardation.

Por el contrario, la teoŕıa de la hedging pressure se centra en la prima de riesgo. Esta corriente

considera que el precio de los futuros es la suma del precio al contado esperado más una prima

de riesgo. La teoŕıa de la normal backwardation propuesta por Keynes [51] se basa en la hipótesis

general de que los productores, normalmente, toman posiciones cortas en los contratos de futuros

porque desean asegurarse cierto precio en el momento de la entrega de la materia prima. Este

contrato proporciona a los productores una forma de cubrirse del riesgo de descenso del precio al

contado. Por tanto, los productores están dispuestos a pagar una prima de riesgo que les cubra su

exposición a variaciones del precio de la materia prima. Por otro lado, los consumidores también

pueden estar interesados en protegerse de posibles subidas del precio. Por tanto, tomarán una

posición larga en los correspondientes contratos de futuros. Si la actividad de cobertura de los

productores de una determinada materia prima es mayor que la actividad de los consumidores, el

precio de los futuros será menor que el precio al contado esperado, y el precio de los futuros será

un estimador sesgado por defecto del precio al contado esperado, véase Back y Prokopczuk [4].

Esta situación inducirá a los especuladores a equilibrar el mercado tomando la posición contraria,

es decir, una posición larga. Sin embargo, esta situación no siempre es válida. Si la actividad de

cobertura de los consumidores es mayor que la de los productores, habrá un exceso de participantes

en el mercado buscando entrar en una posición larga y, por tanto, el precio del futuro será menor que

el precio al contado esperado en un momento futuro. En este caso, los especuladores deberán ser de

alguna manera recompensados por tomar una posición corta en el futuro y aśı equilibrar el mercado.

Por tanto, los precios de los futuros pueden incluir una prima positiva o negativa dependiendo de

la posición neta de los coberturistas para cada materia prima y del instante de tiempo considerado,

véanse Cootner [25] y Hambur y Stenner [42]. En este sentido, Hambur y Stenner [42] definen la

prima de riesgo como el rendimiento que los especuladores esperan obtener como compensación



2.3 Modelos de valoración 13

por comprar y/o vender contratos de futuros sobre materias primas. El papel que desempeña la

prima de riesgo en los diferentes mercados de materias primas ha sido ampliamente analizado,

véanse por ejemplo Acharya et al. [1], Basu y Miffre [8] y Ronn y Wimschulte [69].

2.3 Modelos de valoración

En los últimos años se han propuesto diferentes modelos relacionados con la valoración de

derivados de materias primas. En este tipo de modelos, en primer lugar, se deben establecer las

variables de estado y su dinámica, todo ello buscando un equilibrio entre que el modelo sea sencillo

de implementar y que sea capaz de capturar adecuadamente las propiedades de los precios.

Evidentemente, el precio al contado de la materia prima debeŕıa ser una de las variables a tener

en cuenta para valorar futuros. Muchos modelos describen la dinámica de esta variable mediante

un proceso estocástico y utilizan argumentos de no arbitraje para la valoración del derivado, véase

Schwartz [73].

Debido a la relación entre la demanda y la oferta se suele considerar que el precio al contado

tiene un comportamiento de reversión a la media. Por ejemplo, Bessembinder et al. [12] muestran

una fuerte evidencia de reversión a la media en los mercados de materias primas, sin embargo,

Brooks y Prokopczuk [18] afirman que la reversión a la media no se mantiene cuando el modelo

presenta saltos y volatilidad estocástica. De hecho, en la literatura se han propuesto diferentes

tipos de dinámicas: Schwartz [73] supone que la reversión a la media es constante mientras que

Schwartz y Smith [74] consideran una media a largo plazo estocástica.

Brennan y Schwartz [17] proponen un modelo de un factor donde el rendimiento de conveniencia

se describe mediante una función determinista del precio al contado. Sin embargo, los modelos

unifactoriales no son consistentes con la observación emṕırica, ya que proporcionan precios de

futuros que están perfectamente correlacionados. Por tanto, parece que estos modelos no son

capaces de reflejar la dinámica de los precios de los futuros.

Gibson y Schwartz [36] introducen un modelo con procesos de difusión conjuntos del precio al

contado y el rendimiento de conveniencia; más concretamente, consideran que el precio al contado

sigue un movimiento Browniano geométrico y el rendimiento de conveniencia está descrito mediante

un proceso Ornstein-Ulhenbeck. Como el rendimiento de conveniencia no es observable en el

mercado, Gibson y Schwartz [36] proponen una proxy para esta variable. Schwartz [73] considera

un modelo de tres factores con un factor adicional, el tipo de interés, que sigue un proceso de

difusión. Posteriormente, Miltersen y Schwartz [59] también proponen un modelo de tres factores

para valorar futuros de materias primas y opciones de futuros. Recientemente, Schöne y Spinler

[72] consideran un modelo de difusión af́ın con volatilidad estocástica para valorar también futuros

y opciones.

Muchas materias primas se caracterizan por presentar excepcionalmente cambios bruscos en

los precios en el mercado, como consecuencia de fallos en la producción o el transporte, de las

condiciones climáticas, en el caso de materias primas agŕıcolas, o de sucesos macroeconómicos
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inesperados entre otras razones. En la literatura, con el fin de tener en cuenta estos cambios brus-

cos en el precio de las materias primas, se añade un término de salto en el proceso estocástico.

Por ejemplo, Hilliard y Reis [46] proponen un modelo que permite saltos en el proceso del precio

al contado, en particular, suponen que este precio sigue un proceso de difusión con saltos. Yan

[86] considera un modelo de valoración de derivados de materias primas con saltos en el precio al

contado y la volatilidad. Schmitz et al. [71], en el caso de las materias primas agŕıcolas, suponen

que la volatilidad es un proceso estocástico con saltos, y analizan su efecto en los precios de las

opciones. Hilliard y Hilliard [47] usan, para describir el precio al contado, un movimiento Browniano

geométrico con un término de salto y, para el tipo de interés y el rendimiento de conveniencia,

procesos de difusión con reversión a la media, todo ello para valorar precios de opciones del oro y

el cobre.

Finalmente, es bien conocido que la oferta y la demanda de muchas materias primas presentan

ciclos estacionales. En particular, las agŕıcolas y la mayoŕıa de las energéticas tienen un patrón

estacional en sus precios. Por un lado, la oferta de las materias primas agŕıcolas depende del clima

el cual afecta a la producción. Por otro lado, la demanda de enerǵıa es mayor durante las estaciones

fŕıas. Por tanto, los precios son más altos durante estas estaciones que en el periodo cálido. Por

ejemplo, Sørensen [75] muestra el patrón estacional que presentan productos agŕıcolas como la

soja, el máız y el trigo, y Manoliu y Tompaidis [57] y Paschke y Prokopczuk [63] encuentran un

fuerte efecto estacional en algunas materias primas de la enerǵıa como el gas natural, el petróleo o

la gasolina. Cartea y Figueroa [20], Li et al. [55] y Lucia y Schwartz [56] consideran estacionalidad

en mercados de la electricidad, Garćıa Mirantes et al. [34] en los del gas natural, Kyriakou et al.

[53] en los del petróleo y Back y Prokopczuk [4] en mercados de la soja, el máız, el petróleo y el

gas natural. Arismendi et al. [3] analizan la importancia de la estacionalidad en la volatilidad a

la hora de valorar opciones. Mu [60] muestra cómo afecta el clima a la volatilidad del precio del

gas natural y que presenta un fuerte patrón estacional. Geman y Ohana [35] y Suenaga et al. [79]

encuentran que la volatilidad del precio de gas natural es más alta durante el invierno que durante

el verano.

Sørensen [75] incluye una componente estacional determinista en el modelo para describir las

variaciones estacionales en el precio de la materia prima. Más concretamente, supone que el

logaritmo del precio al contado es la suma de una función trigonométrica determinista y dos

factores latentes. De hecho, encuentra una fuerte evidencia de estacionalidad en el precio de la

soja, el máız y el trigo. Considerar polinomios trigonométricos en la componente estacional del

modelo tiene algunas ventajas, como que las funciones son continuas en el tiempo y que para su

descripción son necesarios pocos parámetros. En otros casos, se consideran variables estacionales

dummy para su modelización, véanse por ejemplo Benth et al. [11] y Lucia y Schwartz [56]. Este

enfoque es muy flexible, pero generalmente requiere de un gran número de parámetros. Garćıa

Mirantes et al. [34] proponen como factores estacionales componentes trigonométricos generados

por procesos estocásticos.
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2.4 Metodoloǵıa

En los modelos de valoración propuestos en este trabajo se utilizan procesos de difusión y de

difusión con saltos. Además, añadimos una componente estacional en el precio al contado de la

materia prima, y analizamos el papel que tienen los saltos y la componente estacional a la hora de

valorar futuros y opciones. Para desarrollar esta investigación, utilizamos la siguiente metodoloǵıa.

La herramienta fundamental en los modelos de valoración financiera es el cálculo estocástico.

En este contexto, consideramos un espacio de probabilidad filtrado completo donde describimos la

dinámica de las variables de estado mediante procesos estocásticos. Más concretamente, utilizamos

procesos de difusión y difusión con saltos mediante un proceso Browniano y un término de salto.

Este término es modelizado con un proceso de Poisson con su correspondiente intensidad de salto y

los tamaños de salto vienen determinados mediante variables aleatorias que siguen una distribución

de probabilidad concreta (normal o exponencial). Además, utilizamos la regla del producto de

Ito, aśı como el Lema de Ito del cálculo estocástico, véanse Applebaum [2], Cont y Tankov [23],

Øksendal [62], Protter [67] y Shreve [76] para más detalle. A lo largo del trabajo utilizamos las

notaciones diferencial e integral de los procesos estocásticos de difusión y saltos.

Para valorar derivados de materias primas consideramos el argumento de no arbitraje, es decir,

hacemos una transformación de la medida f́ısica a la neutral al riesgo, mediante el cambio de

medida de tipo Girsanov, véanse Bremaud [15] y Shreve [76]. Entonces, expresamos los procesos

estocásticos bajo esta medida martingala equivalente. Cuando consideramos procesos de difusión

con saltos, debemos tener en cuenta que la medida neutral al riesgo no es única, es decir, el mercado

no es completo.

Un paso previo a la valoración de derivados de materias primas es la estimación. En este trabajo,

utilizamos la estimación paramétrica con el método de mı́nimos cuadrados no lineales, véanse Benth

et al. [11], Lucia y Schwartz [56] y Stoer y Bulirsch [78], para obtener simultáneamente todos

los parámetros del polinomio trigonométrico de Fourier que aproxima la componente estacional

del precio de la materia prima. En lo que respecta al resto de las funciones de los procesos

neutrales al riesgo, las estimamos utilizando técnicas no paramétricas, evitando de esta forma

restricciones arbitrarias en las funciones. En particular, utilizamos el estimador de Nadaraya-

Watson con el núcleo Gaussiano para las funciones peso, véanse Figà-Talamanca y Roncoroni [32],

Fusai y Roncoroni [33], Härdle [43] y Härdle et al. [44], porque este procedimiento es flexible y

permite no linealidades en la tendencia, la volatilidad y la intensidad del salto.

Con el propósito de ilustrar el proceso de implementación del enfoque propuesto, utilizamos

una materia prima energética: el gas natural. Esta materia prima y sus correspondientes contratos

(futuros y opciones) son muy ĺıquidos y se negocian activamente en el mercado, véase Cummins

y Murphy [26]. El precio al contado del gas natural Henry Hub fue obtenido de la US Energy

Information Administration del US Department of Energy (EIA database). Los precios diarios de

los futuros del gas natural con vencimientos cortos (hasta 4 meses) fueron también obtenidos de

la base de datos EIA, y los precios con vencimientos más largos (hasta 44 meses) de la plataforma



16 Chapter 2: Introducción

Quandl. Los datos los hemos dividido en dos grupos: el periodo de estimación, que se utiliza

precisamente para realizar la estimación de las funciones y parámetros, y un periodo de tiempo de

predicción, que es una muestra más reciente y que es donde se valoran los derivados.

Finalmente, como en este trabajo utilizamos estimación no paramétrica, no es posible obtener

una forma cerrada de la solución. En estos casos, se puede calcular el precio del derivados me-

diante dos procedimientos: resolviendo numéricamente la ecuación en derivadas parciales integro-

diferencial o con el método de Monte Carlo, el cual calcula una aproximación al precio del derivado

mediante la esperanza condicionada de la condición final del derivado. Ambas técnicas están

relacionadas por medio del Teorema de Feynman-Kac, véanse Pascucci [64] y Shreve [76]. En esta

investigación, usamos el método de Monte Carlo generando un gran número de simulaciones del pre-

cio al contado subyacente bajo la medida neutral al riesgo. Este método es ampliamente utilizado

por investigadores y profesionales de los mercados, especialmente para modelos multifactoriales,

debido a su sencillez, véanse Glasserman [37] y Wilmott [84].

2.5 Contribuciones

En la literatura es muy habitual utilizar modelos afines para valorar derivados de materias

primas, por su sencillez y adaptabilidad. Para poder obtener una forma cerrada del precio del

derivado, se suelen considerar funciones paramétricas sencillas. De hecho, en la mayoŕıa de los

casos, los precios de riesgo del mercado se consideran constantes. Entonces, las funciones de los

procesos bajo la medida neutral al riesgo se estiman a partir de las observaciones de los precios

del derivado. Por ejemplo, Gibson y Schwartz [36], Schwartz [73] y Cortazar et al. [24] consideran

modelos afines con uno, dos o tres factores, y obtienen una forma cerrada de la solución para

el precio del derivado. Sin embargo, estos autores no introducen saltos ni estacionalidad en sus

modelos. Además, no hay ninguna evidencia emṕırica de que los modelos afines sean mejores

para valorar derivados de materias primas. Si consideramos otras dinámicas más realistas para las

variables de estado, no se suele conocer una forma cerrada de la solución. Entonces, los precios de

riesgo del mercado o las funciones de los procesos neutrales al riesgo no se pueden estimar, porque

no son observables. De hecho, este problema es una de las cuestiones abiertas en la valoración de

derivados de materias primas, y es el principal objetivo de esta tesis.

Aśı pues, para resolver este problema, proponemos un nuevo enfoque para estimar las funciones

de los procesos neutrales al riesgo del modelo a partir de los datos del mercado, incluso cuando

no se conoce una expresión de la solución. Es decir, diseñamos nuevas técnicas de estimación para

diferentes comportamientos del precio al contado de la materia prima en el mercado. Además,

para ilustrar cómo implementar estas técnicas, utilizamos futuros del gas natural negociados en el

NYMEX.

En los diferentes caṕıtulos de esta tesis mostramos nuestras principales contribuciones. En el

Caṕıtulo 3 consideramos un modelo de dos factores de difusión con saltos cuyas variables son el

precio al contado y el rendimiento de conveniencia. Suponemos que el precio al contado sigue
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un proceso de difusión con saltos, para que recoja los cambios bruscos que se producen en los

mercados de materias primas (véase Deng [27], entre otros), y el rendimiento de conveniencia sigue

un proceso de difusión, como es habitual en la literatura, véanse Schwartz [73] y Yan [86]. La

principal contribución de este caṕıtulo es doble. En primer lugar, obtenemos resultados que nos

permiten estimar las funciones de un modelo de dos factores de difusión con saltos directamente

a partir de los precios de los futuros. Finalmente, mostramos el efecto de considerar saltos en el

precio al contado sobre los precios de futuros.

En el Caṕıtulo 4 también consideramos un proceso de difusión con saltos para el precio al

contado, pero suponemos diferentes distribuciones para los tamaños de salto. En este caso, nuestro

objetivo es analizar el papel que juega dicha distribución en el modelo y, para ello, valoramos

futuros del gas natural y opciones de futuros, con diferentes distribuciones del salto. Los inversores

financieros consideran los precios de los futuros como una fuente de información sobre el precio

esperado de la materia prima, y lo utilizan para diseñar sus estrategias de cobertura del riesgo. En

este caṕıtulo analizamos la prima de riesgo de los futuros de materias primas.

Diferentes investigadores han mostrado evidencia emṕırica de estacionalidad en diversos mer-

cados de materias primas como la electricidad, el gas natural, la soja, etc, véanse Arismendi et al.

[3], Back y Prokopczuk [4], Cartea y Figueroa [20], Kyriakou et al. [53], Li et al. [55] y Lucia y

Schwartz [56]. Con el fin de tener en cuenta este hecho, en el Caṕıtulo 5 añadimos una componente

estacional multiplicativa en el modelo previo. En particular, consideramos una función estacional

determinista mediante un polinomio trigonométrico, cuyos parámetros son aproximados mediante

el método de mı́nimos cuadrados no lineal. Como en este caso no existe una forma cerrada de la

solución, probamos resultados para estimar las funciones de los procesos neutrales al riesgo usando

datos del mercado. Finalmente, mostramos cómo implementar estas técnicas utilizando datos de

los futuros del gas natural y analizamos el papel de la estacionalidad en los precios de los futuros,

las opciones sobre futuros y las primas de riesgo de los futuros.
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a b s t r a c t

In order to price commodity derivatives, it is necessary to estimate themarket prices of risk
aswell as the functions of the stochastic processes of the factors in themodel. However, the
estimation of themarket prices of risk is an open question in the jump–diffusion derivative
literature when a closed-form solution is not known. In this paper, we propose a novel
approach for estimating the functions of the risk-neutral processes directly from market
data. Moreover, this new approach avoids the estimation of the physical drift as well as the
market prices of risk in order to price commodity futures. More precisely, we obtain some
results that relate the risk-neutral drifts, volatilities and parameters of the jump amplitude
distributions with market data. Finally, we examine the accuracy of the proposed method
withNYMEX (NewYorkMercantile Exchange) data andwe show the benefits of using jump
processes for modelling the commodity price dynamics in commodity futures models.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The behaviour of many commodity futures has become highly unusual over the past decades. Prices have experienced
significant run-ups, and the nature of their fluctuations has changed considerably. This is partly due to financial firmswith no
inherent exposure to the commodities have adopted strategies of portfolio diversification into commodity futures markets
as an asset class, see [1]. However, energy commodities are different from financial assets such as equity and fixed-income
securities. For example, changes in market expectations, or even unanticipated macroeconomic developments may cause
sudden jumps in energy prices, see [2]. Therefore, traditional modelling techniques are not directly applicable.

In order to price commodity derivatives, the empirical features of the commodity prices need to be considered. First, the
spot price and other factors were assumed to follow diffusion processes. For example, Gibson and Schwartz [3] assumed
that the spot price and the convenience yield were mean-reverting diffusion processes. Then, Schwartz [4] reviewed one
and two-factor models and developed a three-factor mean-reverting diffusionmodel. Later, Miltersen and Schwartz [5] also
considered a three-factor model in order to price commodity futures and futures options. More recently, in the literature,
jump–diffusion models have been considered because there are numerous empirical studies which show that commodity
prices exhibit jumps, [6,7] and so on. Hilliard and Reis [8] considered a three-factor model where the spot price follows a
jump–diffusion stochastic process. Yan [9] extended existing commodity valuation models to allow for stochastic volatility
and simultaneous jumps in the spot price and volatility. Hilliard and Hilliard [10] used the standard geometric Brownian
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motion augmented by jumps to describe the underlying spot and mean-reverting diffusions for the interest rate and
convenience yield state variables for gold and copper prices.

In this paper, we consider a two-factor jump–diffusion commoditymodel, where one of the factors is the commodity spot
price. In the commodity literature, it is very common to use affine models for its simplicity and tractability. They select the
simple parametric functions for the model in order to obtain a closed-form solution for the pricing problem. This is mainly
important for the market prices of risk, which are assumed to be constant in most of the cases. Then, all the functions can
be easily estimated and the commodity derivatives priced. However, there is not any empirical evidence either consensus
about affinemodels are the bestmodels to price commodity futures. Furthermore, themarket prices of risk are not observed
in the markets. If we considered other more realistic functions for the state variables or the market prices of risk or even a
nonparametric approach, then, the model would not be affine anymore, a closed-form solution could not be obtained and
therefore, the estimation of the market prices of risk would not be possible. In fact, this last problem is an open question in
the jump–diffusion commodity literature.

The main contribution of this paper is twofold. First, we obtain some results that allow us to estimate the risk-neutral
functions of a two-factor jump–diffusion commodity model directly from commodity spot and futures data on the markets.
Therefore, we can obtain a closed-form solution or a numerical approximation for the pricing problem without estimating
themarket prices of risk, which are not observed and possible to estimatewhen a closed-form solution is not known. Second,
we show the effect of considering jumps in the commodity spot price over the futures prices. We use NYMEX data and a
nonparametric approach to estimate the whole functions of our two-factor model. We think that using a nonparametric
approach is more realistic than using an affine model.

The remaining of the paper is arranged as follows. In Section 2, we present a two-factor jump–diffusion model to price
commodity futures. In Section 3, we prove some results which allow us to estimate the risk-neutral drift, jump intensity and
parameters of the distribution of the jump amplitude from spot commodity price and futures data. In Section 4, we estimate
our two-factor jump–diffusionmodelwithNYMEXdata bymeans of a nonparametric approach,we price commodity futures
and we show its supremacy over a diffusion model. Section 5 concludes.

2. The valuation model

In this section, we present a two-factor commodity futuresmodel. The first factor is the spot price S, and the second factor
is δ, which could be, for example, the instantaneous convenience yield or the volatility among other possible variables. Let
(Ω, F , P ) be a probability space equippedwith a filtrationF satisfying the usual conditions, see [11,12] or [13]. The factors
of the model are assumed to follow this joint jump–diffusion stochastic process:

dS(t) = µS(S(t), δ(t))dt + σS(S(t), δ(t))dWS(t) + J(S(t), δ(t), Y (t))dN(t), (1)
dδ(t) = µδ(S(t), δ(t))dt + σδ(S(t), δ(t))dWδ(t), (2)

whereµS andµδ are the drifts, σS and σδ the volatilities. The jump amplitude J is a function of the two factors and Y which is
a random variable with probability distribution Π . Moreover, WS and Wδ are Wiener processes and N represents a Poisson
process with intensity λ. We assume that the standard Brownian motions are correlated with:

Cov(WS,Wδ) = ρt.

However, WS and Wδ are assumed to be independent of N . We also assume that the jump magnitude and the jump arrival
time are uncorrelated with the diffusion parts of the processes. We suppose that the functions µS, µδ, σS, σδ, J, λ and Π

satisfy suitable regularity conditions: see [11,14]. Under the above assumptions, a commodity futures price at time t with
maturity at time T , t ≤ T , can be expressed as F(t, S, δ; T ) and at maturity it is

F(T , S, δ; T ) = S.

Finally, we assume that there exists a replicating portfolio for the futures price and then, the futures price can be expressed
by

F(t, S, δ; T ) = EQ
[S(T )|S(t) = S, δ(t) = δ], (3)

where EQ denotes the conditional expectation under theQmeasurewhich is known as the risk-neutral probabilitymeasure.
The two-factor model (1)–(2) under Q measure is as follows:

dS =

µS − σSθ

WS + λQEQ
Y [J]


dt + σSdWQ

S + JdÑQ, (4)

dδ =

µδ − σδθ

Wδ

dt + σδdWQ

δ , (5)

where WQ
S and WQ

δ are the Wiener processes under Q and Cov(WQ
S ,WQ

δ ) = ρt . The market prices of risk of Wiener
processes are θWS (S, δ) and θWδ (S, δ), and ÑQ represents the compensated Poisson process, underQmeasure,with intensity
λQ(S, δ) = λ(S, δ)θN(S, δ).
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3. Exact results and approximations

In the literature, researchers have devoted the greatest attention to affine models such as [4,8–10]. One of the main
reasons is that a closed-form solution for the commodity futures price is found. Moreover, this fact allows the application
of different estimation techniques, like the Kalman Filter or Maximum Likelihood. However, there is neither evidence nor
consensus that affine models are the most suitable for pricing futures contracts.

In the literature, to the best of our knowledge, there is no approach for estimating the market prices of risk for pricing
commodity derivatives with jumps, unless a closed-form solution is known. Bandi and Nguyen [15] and Johannes [14]
showed how to estimate the functions of a jump–diffusion process by means of their moment equations for interest rate
models. However, this approach does not allow us to estimate the market prices of risk, which are necessary to price
commodity derivatives but not observable.

In this section, we propose a new approach for estimating the functions of the risk-neutral jump–diffusion stochastic
factors of a commodity model directly frommarket data. Then, we can price futures and the estimation of the market prices
of risk can be avoided.

Theorem 1. Let F(t, S, δ; T ) be the price of the future (3), and S and δ follow the stochastic processes given by (4) and (5),
respectively, then:

∂F
∂T

(t, S, δ; T ) =

µS − σSθ

WS + λQEQ
Y [J]


(T ), (6)

∂(SF)

∂T
(t, S, δ; T ) =


2S

∂F
∂T

+ σ 2
S + λQEQ

Y [J2]


(T ), (7)

∂(δF)

∂T
(t, S, δ; T ) =


δ
∂F
∂T

+ S(µδ − σδθ
Wδ ) + ρσSσδ


(T ). (8)

We prove these results by means of (3). The detailed proof of this theorem can be found in the Appendix. Analogous results,
but for diffusion processes, are also shown in [16]. Parallel results for one-factor jump–diffusion interest rate models can be
found in [17,18].

In order to implement Theorem 1 we rely on numerical differentiation. We use futures prices at a point that is inside the
time interval to approximate the slopes at the boundary of the time domain. This fact allows us to consider futures prices
with a high spectrum ofmaturities for the estimation of the functions of themodel. More precisely, we obtain a fourth order
approximation to the slopes by the well-known difference formula:

∂g
∂T

|T=t =
−25g(t) + 48g(t + ∆) − 36g(t + 2∆) + 16g(t + 3∆) − 3g(t + 4∆)

12∆
+ O(∆4). (9)

Finally, it is important to remark that after approximating the slopes in Theorem 1, any parametric or nonparametric
technique can be applied to estimate them. In this paper, we use the Nadaraya–Watson nonparametric estimator in order to
avoid imposing arbitrary restrictions to the different functions of the model. Suppose a data set consists of N observations,
(S1, δ1, Z1), . . . , (SN , δN , ZN), where (Si, δi) are the explanatory variables and Zi is the response variable.We assume amodel
of the kind Zi = g(Si, δi)+ϵi, where g(S, δ) is an unknown function and ϵi is an error term, representing random errors in the
observations or variability from sources not included in the (Si, δi) observations. The errors ϵi are assumed to be independent
and identically distributed with mean 0 and finite variance. The estimate has the closed-form

ĝ(S, δ) =

N
i=1

wi(S, δ)Zi

N
i=1

wi(S, δ)
,

where wi(S, δ) = K


S−Si
hS


K


δ−δi
hδ


are weight functions (we use the multivariate Gaussian kernel which is also widely

used in the literature) and hS, hδ the bandwidths, see [19].

4. Empirical application

In this section, we show how practitioners can implement the approach in Section 3 for pricing commodity futures in
the markets. Moreover, we analyse the effect of adding jumps to the commodity spot price over the futures prices.

In this empirical application, we use the commodity spot price and the convenience yield as state variables, which are
frequently used in the literature, see for example [3,4]. We assume that the spot price follows a jump–diffusion process,
because commodity prices usually suffer from abrupt changes in the markets, see [6]. However, we assume that the
convenience yield is a diffusion process because its behaviour is not affected by extreme changes, see for example [9].
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Table 1
Summary of the statistics on the natural gas spot price and its first differences, January 2004–December 2014.

Variable N Mean Std. dev. Max Min

St 2735 5.4732 2.3070 15.3900 1.8200
St+1 − St 2734 −0.0011 0.2665 2.5000 −1.9100

For simplicity and tractability and as usual in the literature, we also assume that the distribution of the jump size under
Q measure is known and equal to the distribution under P measure. This means that all risk premium related to the jump
are artificially absorbed by the change in the intensity of the jump from λ under the physical measure to λQ under the risk-
neutral measure, see [20]. Moreover, we assume in (4) that J(S, δ, Y ) = Y , where Y is a random variable which follows a
normal distribution N(0, σY ), see [9,21,22] among others. Therefore, EQ

Y [Y ] = EY [Y ] = 0.
In order to show how the approach in Section 3 can be implemented, we will price natural gas futures with daily data

from the NYMEX. Natural gas spot and futures prices were obtained from the Energy Information Administration of the U.S.
Department of Energy (E.I.A. database) and Quandl platform. The sample period covers from January 2004 to April 2015.
Fig. 1 plots the natural gas spot price data and its first differences. We also consider futures prices with maturities equal
to 1, 2, 3, 4, 6, 9, 12, 18, 24, 36 and 44 months. We use data from January 2004 to December 2014 for estimating the risk-
neutral functions. Table 1 summarizes the in-sample data. We keep data from January to April 2015 as out-of-sample data
in order to evaluate the results of our approach.

As it is well known in the literature, the convenience yield is not observed in the markets. Then, following [3], we
approximate it by the following result

δT−1,T = rT−1,T − 12 ln


F(t, S, δ; T )

F(t, S, δ; T − 1)


,

where rT−1,T denotes the T − 1 period ahead annualized one month riskless forward interest rate. We obtain this forward
interest rate with two daily T-Bill rates withmaturities as close as possible to the futures contracts’ ones in order to compute
δ1,2, the one-month ahead annualized convenience yield. The latter is identified with the instantaneous convenience yield
δ0,1 in this study, see [3] for more details. T-Bill rates are obtained from the Federal Reserve h.15 database.

First, we obtain the compensated risk-neutral drift of the spot price. We approximate the partial derivative in (6), using
numerical differentiation (9), with futures prices with maturities equal to 1, 2, 3 and 4 months. Then, we estimate it by
means of the Nadaraya–Watson estimator. Secondly, in order to obtain the risk-neutral jump intensity, we approximate the
partial derivatives ∂F

∂T |T=t and ∂(SF)

∂T |T=t in (7), using numerical differentiation (9) with spot prices and futures prices with
maturities equal to 1, 2, 3 and 4 months.

In order to estimate the functions of the stochastic processes of S and δ under the physical measure, we use the following
result.

Theorem 2. If S and δ solve (1)–(2), then

M1
S (S, δ) = lim

∆t→0

1
∆t

E[S(t + ∆t) − S(t)|S(t) = S, δ(t) = δ] = µS(S, δ) + λ(S, δ)EY [Y ], (10)

M2
S (S, δ) = lim

∆t→0

1
∆t

E[(S(t + ∆t) − S(t))2|S(t) = S, δ(t) = δ] = σ 2
S (S, δ) + λ(S, δ)EY [Y 2

], (11)

Mk
S (S, δ) = lim

∆t→0

1
∆t

E[(S(t + ∆t) − S(t))k|S(t) = S, δ(t) = δ] = λ(S, δ)EY [Y k
], k ≥ 3, (12)

M2
δ (S, δ) = lim

∆t→0

1
∆t

E[(δ(t + ∆t) − δ(t))2|S(t) = S, δ(t) = δ] = σ 2
δ (S, δ), (13)

Cov(S, δ) = lim
∆t→0

1
∆t

E[(S(t + ∆t) − S(t))(δ(t + ∆t) − δ(t))2|S(t) = S, δ(t) = δ] = ρ(S, δ)σS(S, δ)σδ(S, δ). (14)

This theorem can be proved with the infinitesimal operator (see [12]), as in [23,24], for diffusion processes, and in [14,15],
for jump–diffusion processes.

As we have previously assumed, the jump size distribution under Q measure is known and equal to the distribution
under P measure and Y ❀ N(0, σ 2

Y ), then EQ
Y [Y ] = EY [Y ] = 0 and σ 2

Y = EQ
Y [Y 2

] = EY [Y 2
]. Therefore, we estimate σ 2

Y and
the volatility of the spot price σS , by means of the moment equations of a jump–diffusion process in Theorem 2, when the
jump amplitude follows a normal distribution. More precisely, as Y ❀ N(0, σ 2

Y ), then:

EY [Y 2k
] = σ 2k

Y

k
n=1

(2k − 1),

EY [Y 2k−1
] = 0, k = 1, 2, 3, . . . .
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Fig. 1. Daily natural gas spot price and its first differences from January 2004 to April 2015.

In order to estimate σ 2
Y and σ 2

S , We use moments (11) and (12) with k = 4 and 6 and the Nadaraya–Watson estimator.
Then, we replace these values and the approximations of the partial derivatives ∂F

∂T |T=t and ∂(SF)

∂T |T=t in (7) and we estimate
the risk-neutral jump intensity of the spot pricewith theNadaraya–Watson estimator. As the convenience yield is a diffusion
process, we can estimate its risk-neutral drift bymeans of (8)where ρσSσX = Cov(S, δ). In order to estimate this covariance,
we use themoment condition (14) and the Nadaraya–Watson estimator, see [24] for more details. Then, we replace the esti-
mated covariance and the approximations of ∂F

∂T |T=t and ∂(δF)

∂T |T=t in (8) and we get the risk-neutral drift of the convenience
yield bymeans of the Nadaraya–Watson estimator. Finally, the volatility of the convenience yield under P measure is equal
to the volatility under Q measure, we estimate σδ by means of the second order moment (13) and convenience yield data.

In order to price natural gas futures, we use the Monte Carlo simulation approach because it is widely used by
practitioners in the markets, especially for multifactorial models because of its simplicity and efficiency.

The approach we propose in this paper is a jump–diffusion extension of the one proposed by Gómez-Valle andMartínez-
Rodríguez [16] for a diffusion commodity model. Therefore, we can use both approaches for examining the effect of adding
jumps to the commodity spot price over the commodity futures prices.

Gómez-Valle and Martínez-Rodríguez [16] assume that the futures price depends on the same two factors: the
commodity spot price and the convenience yield. More precisely, they assume that these factors follow this joint diffusion
stochastic process under Q measure:

dS =

µS − σSθ

WS

dt + σSdWQ

S , (15)

dδ =

µδ − σδθ

Wδ

dt + σδdWQ

δ , (16)

with Cov(WQ
S ,WQ

δ ) = ρt .
We also estimate model (15)–(16) directly from data in the NYMEX, using the approach by Gómez-Valle and Martínez-

Rodríguez [16], and obtain the natural gas futures prices with the method of Monte Carlo.
In order to analyse the effect of adding jumps to the commodity price over the futures prices, wemake some comparisons

between the futures prices obtained with the jump–diffusion model (JDM) and with the diffusion model (DM). We use the
root mean square error (RMSE), the percentage root mean square error (PRMSE) and the mean absolute error (MAE) for the
out-of-sample period of time as measures of error:

RMSE =

1
n

n
t=1


Ft − F̂t

2
,

PRMSE =

1
n

n
t=1


Ft − F̂t

Ft

2

,

MAE =
1
n

n
t=1

|Ft − F̂t |,

where n is the number of observations, Ft is the market futures price and F̂t is the predicted futures price of the different
models.
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Fig. 2. Natural gas futures prices (January 2015–April 2015) with maturities: 12, 24, 36 and 44months. The observed futures prices on the NYMEX are the
red solid line, the DM futures prices are the green dash line and the JDM futures prices are the blue dotted line.

For the out of sample period of time, in Table 2 we show the values of these different measures of error in the futures
prices with different maturities. For short maturities (6 months and 9 months) the DM provides slightly lower errors than
the JDM, except for the shortest maturity (1 month). However, for the longest maturities the JDM provides smaller errors
than the DM. Moreover, the higher the maturity the higher the differences between the two models.

In Fig. 2, we plot the observed futures prices and those estimated with the DM and the JDM along the out-of-sample
period of time for different maturities. As seen from the figure, for the different maturities, the observed futures prices are,
in general, over the prices obtained with DM and JDM. More precisely, the prices with the DM are nearly always smaller
than those with the JDM. Furthermore, the higher the maturity, the higher the differences.

In sum, JDM and DM underprice the futures prices and the prices obtained with the JDM are, in general, closer to the
observed prices than those obtained with the DM. Hence this fact supports the use of jump processes when modelling the
commodity price dynamics in order to price commodity futures, especially for high maturities.

5. Conclusions

In order to price commodity derivatives with jump–diffusion processes, we provide a novel procedure based on the
estimation of the drifts and jump intensities of the risk-neutral processes. This technique is notable because neither
the physical drift, nor the market prices of risk have to be estimated. As a consequence, it is not necessary to make
arbitrary assumptions about the market prices of risk as usual in the literature, when a closed-form solution is not known.
Furthermore, as we estimate the risk-neutral drifts directly from data in the market, we reduce the misspecification
error because we do not have to estimate the physical drifts. Finally, this approach is adaptable: both parametric and
nonparametric methods could be used to estimate the required functions.

We show the practical interest of this new approach in an empirical experiment with NYMEX data and we analyse the
effect of adding jumps to the commodity spot price over the futures prices.
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Appendix

In this appendix, we prove Theorem 1 in Section 3.

Proof of Theorem 1. We consider the integral form of (4)

S(T + h) − S(T ) =

 T+h

T


µS − σSθ

WS + λQEQ
Y [J]


(z)dz +

 T+h

T
σSdWQ

S (z) +

 T+h

T
JdÑ(z).
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Table 2
Measures of error: MAE, RMSE and PRMSE, for the out of sample period of time, January 2015–April 2015, with the diffusion
and jump–diffusion model.

DM JDM
RMSE PRMSE MAE RMSE PRMSE MAE

F1 2.019 × 10−1 7.2% 1.565 × 10−1 1.929 × 10−1 6.9% 1.448×10−1

F6 1.424 × 10−1 4.9% 1.209 × 10−1 2.567 × 10−1 8.8% 2.271×10−1

F9 1.151 × 10−1 3.7% 9.852 × 10−2 1.666 × 10−1 5.4% 1.290×10−1

F12 2.993 × 10−1 9.1% 2.637 × 10−1 1.858 × 10−1 5.7% 1.509×10−1

F18 1.964 × 10−1 6.1% 1.585 × 10−1 1.711 × 10−1 5.3% 1.399×10−1

F24 5.280 × 10−1 14.8% 4.839 × 10−1 3.218 × 10−1 9.0% 2.892×10−1

F36 6.677 × 10−1 17.8% 6.206 × 10−1 4.229 × 10−1 11.3% 3.865×10−1

F44 4.780 × 10−1 13.2% 4.706 × 10−1 1.933 × 10−1 5.3% 1.711×10−1

Taking into account (3) and that the expected value of stochastic integral is zero, we calculate the expectation with respect
to Q measure, and we obtain

F(t, S, δ; T + h) − F(t, S, δ; T ) =

 T+h

T
EQ

[(µS − σSθ
WS + λQEQ

Y [JS])(z)|S(t) = S, δ(t) = δ]dz. (17)

If we divide by h and take limits in (17), we get (6).
Using the risk-neutral process (4) and the Ito’s product rule, see [11] we have

d(S2) =

2S(µS − σSθ

WS + λQEQ
Y [J]) + σ 2

S + λQEQ
Y [J2]


dt + 2SσSdWQ

S + (2SJ + J2)dÑQ. (18)

If we consider the integral form of (18), with a similar reasoning to one used for the equality (6), we obtain (7).
Finally, we use the risk-neutral processes (4) and (5) and with the Ito’s product rule, we have

d(Sδ) =

δ(µS − σSθ

WS + λQEQ
Y [J]) + S(µδ − σδθ

Wδ ) + ρσSσδ


dt + δσSdWQ

S + SσδdWQ
δ + δJdÑQ. (19)

Once more, if we consider the integral form of (19), with a similar reasoning to our analysis above we get (8).
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In this paper, we analyze the role of the jump size distribution in the US natural gas prices when valuing natural gas futures traded at
NewYorkMercantile Exchange (NYMEX) andwe observe that a jump-diffusionmodel always provides lower errors than a diffusion
model. Moreover, we also show that although the Normal distribution offers lower errors for short maturities, the Exponential
distribution is quite accurate for long maturities. We also price natural gas options and we see that, in general, the model with the
Normal jump size distribution underprices these options with respect to the Exponential distribution. Finally, we obtain the futures
risk premia in both cases and we observe that for long maturities the term structure of the risk premia is negative. Moreover, the
Exponential distribution provides the highest premia in absolute value.

1. Introduction

In the literature, the commodity price usually follows a diffu-
sion process with continuous paths when pricing commod-
ity derivatives. Although this assumption is very attractive
because of its computational, convenience, theoretical deriva-
tion and statistical properties, [1–4] others found significant
evidence of the presence of jumps in commodity prices.

In traditional jump-diffusion commodity models, the
functions of the stochastic processes and the market prices of
risk are usually specified as simple parametric functions, for
pure tractability and simplicity. Furthermore, the functions
of the models are usually chosen to provide an affine model
which has a known closed-form solution. For example,
[5] considers a three-factor model where the spot price
follows a jump-diffusion stochastic process. In [6] existing
commodity valuation models were extended to allow for
stochastic volatility and simultaneous jumps in the spot price
and volatility.The standard geometric Brownianmotion aug-
mented by jumps was used by [7] to describe the underlying
spot and the mean reverting diffusion processes for the
interest rate and convenience yield in gold and copper price
models. In [8] a seasonal mean reverting model with jumps
and Heston-type stochastic volatility is analyzed.

We consider, in this paper, a two-factor jump-diffusion
commodity model, where one of the factors is the com-
modity spot price and the other is the convenience yield.
These factors are often used in the commodity literature.
For example, [9, 10] propose affine models with these two
factors, though they do not consider jumps. Then, all the
functions can be easily estimated and the commodity deriva-
tives priced. However, there is not any empirical evidence
or consensus that affine models are the best models to
price commodity futures. Furthermore, the market prices
of risk are not observed in the markets. If we considered
other more realistic functions for the state variables or the
market prices of risk or even a nonparametric approach,
then, the model would not be affine anymore, a closed-
form solution could not be obtained, and, therefore, the
estimation of the market prices of risk would not be possible.
However, [11] shows a new approach to estimate the whole
functions of the model although a closed-form solution is
not known. They even apply it to a jump-diffusion model
where the jump follows a Normal distribution. Finally, they
estimate the whole functions with a nonparametric tech-
nique in order to avoid imposing arbitrary functions on the
model.
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Other authors have found seasonal patterns in commod-
ity markets and this fact has been taken into account in their
models; see [12–15].

In this paper, we price natural gas futures assuming
that the spot price follows a diffusion process and, then,
we also consider a jump-diffusion process with a Normal
jump size distribution as in [11] but for a higher prediction
period of time. Moreover, we also assume that the jump
size follows an Exponential distribution in order to make
some comparisons and analyze the role of the jump size
distribution. We find that for short maturities the Normal
distribution provides more accurate futures prices. However,
the Exponential distribution shows the lowest error for long
maturities. Furthermore, for longmaturities, themodels with
both distributions underprice the futures in the market,
but the futures prices with the Exponential distribution are
higher than with the Normal distribution. Moreover, they are
closer to the observed ones. Then, in order to complement
[11], we also price futures options when the jump is not taken
into account and when Normal as well as an Exponential
jump size distributions are considered. In this case, we
see that the differences between the prices are higher (in
particular for out of money options).

Futures prices are potentially a valuable source of infor-
mation on market expectations of asset prices. In fact,
financial investors use futures contracts to hedge against
commodity price risk. However, exploiting this information
is difficult in practice, because of the presence of a risk
premium between the current futures price and the expected
spot price of the underlying asset. Moreover, understanding
this premium is very important; see [16]. Therefore, in this
paper, we also show an out-of-sample analysis of the natural
gas futures risk premia. We find that the risk premium with
the Exponential distribution is negativemore times thanwith
the Normal distribution. In all the cases, we use natural gas
data traded at NYMEX and a nonparametric approach to
estimate the whole functions of the two-factor model.

The rest of the paper is organized as follows. Section 2
shows a two-factor jump-diffusion model to price com-
modity derivatives. Section 3 prices futures with a diffusion
model and a jump-diffusion model, when the jump size
follows a Normal as well as an Exponential distribution.Then
a comparison is made. Section 4 compares futures option
prices when the jump follows a Normal or an Exponential
distribution. Section 5 analyzes the futures risk premiumand,
finally, Section 6 concludes. All the implementation has been
done using MATLAB software.

2. The Valuation Model

In this section, we introduce a commodity model with two
state variables: the spot price and the convenience yield, for
pricing commodity derivatives; see also [11, 17]. We assume
that the spot price follows a jump-diffusion process, because
commodity prices usually suffer from abrupt changes in the
markets; see [1]. However, we assume that the convenience
yield is a diffusion process because its behaviour is not
affected by extreme changes; see, for example, [6].

Define (Ω,F, {F𝑡}𝑡≥0,P) as a complete filtered probabil-
ity space which satisfies the usual conditions where {F𝑡}𝑡≥0
is a filtration; see [18–20]. Let 𝑆 be the spot price and 𝛿
the instantaneous convenience yield. We assume that these
factors follow this joint jump-diffusion stochastic process:

𝑑𝑆 (𝑡) = 𝜇𝑆 (𝑆 (𝑡) , 𝛿 (𝑡)) 𝑑𝑡 + 𝜎𝑆 (𝑆 (𝑡) , 𝛿 (𝑡)) 𝑑𝑊𝑆 (𝑡)+ 𝑑𝐽 (𝑡) ,
𝑑𝛿 (𝑡) = 𝜇𝛿 (𝑆 (𝑡) , 𝛿 (𝑡)) 𝑑𝑡 + 𝜎𝛿 (𝑆 (𝑡) , 𝛿 (𝑡)) 𝑑𝑊𝛿 (𝑡) ,

(1)

where 𝜇𝑆 and 𝜇𝛿 are the drifts and 𝜎𝑆 and 𝜎𝛿 the volatilities.
Moreover, 𝑊𝑆 and 𝑊𝛿 are Wiener processes and the impact
of the jump is given by the compound Poisson process,𝐽(𝑡) = ∑𝑁(𝑡)𝑖=1 𝑌𝑖, with jump times (𝜏𝑖)𝑖≥1, where𝑁(𝑡) represents
a Poisson process with intensity 𝜆(𝑆, 𝛿) and 𝑌1, 𝑌2, . . . is a
sequence of identically distributed random variables with a
probability distribution Π. We assume that 𝑊𝑆 and 𝑊𝛿 are
independent of 𝑁, but the standard Brownian motions are
correlated with

[𝑊𝑆,𝑊𝛿] (𝑡) = 𝜌𝑡. (2)

We also suppose that the jump magnitudes and the jump
arrivals time are uncorrelated with the diffusion parts of the
processes. We assume that the functions 𝜇𝑆, 𝜇𝛿, 𝜎𝑆, 𝜎𝛿, 𝜆 andΠ satisfy suitable regularity conditions: see [20, 21]. Under the
above assumptions, a commodity futures price at time 𝑡 with
maturity at time𝑇, 𝑡 ≤ 𝑇, can be expressed as 𝐹(𝑡, 𝑆, 𝛿; 𝑇) and
at maturity it verifies that 𝐹(𝑇, 𝑆, 𝛿; 𝑇) = 𝑆.

We assume that the market is arbitrage-free. Then, there
exists an equivalent martingale measure, Q-measure, which
is known as the risk-neutral measure; see extendedGirsanov-
typemeasure transformation in [22].The state variables of the
model (1) under the risk-neutral measure are as follows:

𝑑𝑆 = (𝜇𝑆 − 𝜎𝑆𝜃𝑊𝑆 + 𝜆Q𝐸Q
𝑌 [𝑌1]) 𝑑𝑡 + 𝜎𝑆𝑑𝑊Q

𝑆

+ 𝑑𝐽Q (𝑡) ,
𝑑𝛿 = (𝜇𝛿 − 𝜎𝛿𝜃𝑊𝛿) 𝑑𝑡 + 𝜎𝛿𝑑𝑊Q

𝛿 ,
(3)

where 𝑊Q
𝑆 and 𝑊Q

𝛿 are the Wiener processes under the
risk-neutral measure and [𝑊Q

𝑆 ,𝑊Q
𝛿 ](𝑡) = 𝜌𝑡. The market

prices of risk associated with 𝑊𝑆 and 𝑊𝛿 Wiener processes
are 𝜃𝑊𝑆(𝑆, 𝛿) and 𝜃𝑊𝛿(𝑆, 𝛿), respectively. Finally, 𝐽Q(𝑡) =∑𝑁Q(𝑡)
𝑖=1 𝑌𝑖 −𝜆Q𝑡𝐸Q

𝑌[𝑌1] is the compensated compound Poisson
process underQ-measure, the intensity of the Poisson process𝑁Q(𝑡) is 𝜆Q(𝑆, 𝛿), and 𝐸Q denotes the expectation under the
Q-measure. Then, the futures price can be expressed as

𝐹 (𝑡, 𝑆, 𝛿; 𝑇) = 𝐸Q [𝑆 (𝑇) | 𝑆 (𝑡) = 𝑆, 𝛿 (𝑡) = 𝛿] . (4)

Let𝑉(𝑡, 𝑆, 𝛿, 𝑇2; 𝑇1) be the price of a European call option
that matures on 𝑇1 on a futures contract that expires at 𝑇2,𝑇1 ≤ 𝑇2, and𝐾 is the strike price.Then, analogously to (4), an
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European commodity futures option is priced as the expected
discounted payoff under the Q-measure; see [6, 22]:

𝑉 (𝑡, 𝑆, 𝛿, 𝑇2; 𝑇1) = 𝐸Q [𝑒−∫𝑇1𝑡 𝑟(𝑢)𝑑𝑢
⋅max (𝐹 (𝑇1, 𝑆 (𝑇1) , 𝛿 (𝑇1) ; 𝑇2) − 𝐾, 0) | 𝑆 (𝑡)
= 𝑆, 𝛿 (𝑡) = 𝛿] ,

(5)

where 𝑟 denotes the instantaneous risk-free interest rate,
which is assumed to be constant. Moreover, 𝜏1 = 𝑇1 − 𝑡 and𝜏2 = 𝑇2−𝑇1 are thematurity of the option contract and futures
contract, respectively.

3. Valuation of Commodity Futures with
NYMEX Data

In this section, by means of an empirical application with
natural gas NYMEX data, we illustrate the advantages and
disadvantages of modelling the spot price with a jump-
diffusion process with an Exponential distribution and a
Normal distribution. In all the cases, we use the approach, the
nonparametric techniques and the in-sample data (January
2004–December 2014) as in [11], to estimate the risk-neutral
functions. However, we increase the out-of-sample period
where we price the natural gas derivatives from January till
July 2015.

In this empirical application, we use the model stated in
Section 2, where the factors are the commodity spot price and
the convenience yield. For simplicity and tractability and as
usual in the literature, we also assume that the distribution
of the jump size under Q-measure is known and equal to
the distribution under P-measure. This means that all risk
premium related to the jump is artificially absorbed by the
change in the intensity of the jump from 𝜆 under the physical
measure to 𝜆Q under the risk-neutral measure; see [8, 11,
23]. Moreover, we assume the jump size follows a Normal

distribution𝑁(0, 𝜎𝑌) (see [11]) or an Exponential distribution
Exp (𝜎𝑌) (see [6, 24, 25]) among others.

In order to price natural gas futures, we use daily natural
gas data from the NYMEX in Quandl platform. Natural gas
spot prices were obtained from the U.S. Energy Information
Administration (EIA). The sample period covers from Jan-
uary 2004 to July 2015. More precisely, we use data from
January 2004 to December 2014 to estimate the risk-neutral
functions as in [11] and, then, we keep data from January to
July 2015 to make our out-of-sample analysis of the futures
prices.

As it is well known in the literature, the convenience
yield is not observed in the markets. Then, following [9], we
approximate it by the following result

𝛿𝑇−1,𝑇 = 𝑟𝑇−1,𝑇 − 12 ln [ 𝐹 (𝑡, 𝑆, 𝛿; 𝑇)𝐹 (𝑡, 𝑆, 𝛿; 𝑇 − 1)] , (6)

where 𝑟𝑇−1,𝑇 denotes the forward interest rate between 𝑇 − 1
and 𝑇. We obtain this forward interest rate with two daily T-
Bill rates with maturities as close as possible to the futures
contracts’ ones in order to compute𝛿1,2, the one-month ahead
annualized convenience yield. The latter is identified with
the instantaneous convenience yield 𝛿0,1; see [9, 11] for more
details.

In order to estimate the risk-neutral functions of the
jump-diffusion models, we follow the same approach as [11].
Note that similar techniques have been proposed for interest
rate derivatives; see [26, 27].

Firstly, we obtain the compensated risk-neutral drift of
the spot price bymeans of the following equalitywhich relates
the futures slope in the origin with the drift of the spot in
the stochastic process under Q-measure; see [11] for more
detail:

𝜕𝐹𝜕𝑇 (𝑡, 𝑆, 𝛿; 𝑡) = (𝜇𝑆 − 𝜎𝑆𝜃𝑊𝑆 + 𝜆Q𝐸𝑌 [𝑌1]) (𝑡) . (7)

We approximate the partial derivative by means of
numerical differentiation

𝜕𝑔𝜕𝑇
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑇=𝑡 = −25𝑔 (𝑡) + 48𝑔 (𝑡 + Δ) − 36𝑔 (𝑡 + 2Δ) + 16𝑔 (𝑡 + 3Δ) − 3𝑔 (𝑡 + 4Δ)12Δ + 𝑂 (Δ4) , (8)

with futures prices with maturities equal to 1, 2, 3, and 4
months. Then, we estimate it by means of the Nadaraya-
Watson estimator; see [28] for more details on this estimation
technique.

Secondly, for the risk-neutral jump intensity, we use a
result proposed in [11] which relates the futures slope in the
originwith the spot price, spot price volatility, and parameters
of jump size distribution under Q-measure:

𝜕 (𝑆𝐹)𝜕𝑇 (𝑡, 𝑆, 𝛿; 𝑡) = (2𝑆𝜕𝐹𝜕𝑇 + 𝜎2𝑆 + 𝜆Q𝐸𝑌 [𝑌21 ]) (𝑡) . (9)

Initially, [11] assumed that the jump size followed a
Normal distribution as 𝑌1 󴁄󴀼 𝑁(0, 𝜎2𝑌), then, 𝐸𝑌[𝑌1] = 0,
and 𝜎2𝑌 = 𝐸𝑌[𝑌21 ]. Furthermore, it is well known that

𝐸𝑌 [𝑌2𝑘1 ] = 𝜎2𝑘𝑌 𝑘∏
𝑛=1

(2𝑘 − 1) ,
𝐸𝑌 [𝑌2𝑘−11 ] = 0, 𝑘 = 1, 2, 3, . . . .

(10)

In this paper we also assume that the jump size follows an
Exponential distribution as 𝑌1 󴁄󴀼 Exp (𝜎𝑌); then:𝐸𝑌 [𝑌𝑘1 ] = 𝑘!𝜎𝑘𝑌, 𝑘 = 1, 2, 3, . . . . (11)



4 Abstract and Applied Analysis

This jump size distribution has also been considered by [29]
for the volatility and [30] for interest rates. This assumption
could be useful for pricing during periods in which positive
jumps are expected to dominate negative jumps, for example,
coming out of an economic crisis (see [30]) or in certain
economic regimes (see [31]).

With both distributions, the parameters of the jump size
distribution and the spot price volatility, 𝜎𝑆, are estimated by
means of a system of moment equations of a jump-diffusion
process (see [11, 32, 33]):

𝑀2𝑆 (𝑆, 𝛿)
= lim
Δ𝑡→0

1Δ𝑡𝐸 [(𝑆 (𝑡 + Δ𝑡) − 𝑆 (𝑡))2 | 𝑆 (𝑡) = 𝑆, 𝛿 (𝑡) = 𝛿]
= 𝜎2𝑆 (𝑆, 𝛿) + 𝜆 (𝑆, 𝛿) 𝐸𝑌 [𝑌21 ] ,
𝑀𝑘𝑆 (𝑆, 𝛿)
= lim
Δ𝑡→0

1Δ𝑡𝐸 [(𝑆 (𝑡 + Δ𝑡) − 𝑆 (𝑡))𝑘 | 𝑆 (𝑡) = 𝑆, 𝛿 (𝑡) = 𝛿]
= 𝜆 (𝑆, 𝛿) 𝐸𝑌 [𝑌𝑘1 ] , 𝑘 ≥ 3.

(12)

More precisely, we use moments 𝑀2𝑆 , 𝑀4𝑆 , and 𝑀6𝑆 for
the Normal distribution and moments 𝑀2𝑆 , 𝑀3𝑆 , and 𝑀4𝑆
for the Exponential distribution; see, for example, [34, 35],
respectively. Then, Nadaraya-Watson estimator is applied.
Oncewe estimate the parameters of the jump size distribution
and the spot volatility and approximate the previous partial
derivatives (𝜕𝐹/𝜕𝑇)|𝑇=𝑡 and (𝜕(𝑆𝐹)/𝜕𝑇)|𝑇=𝑡, we replace them
in (9). Then, we estimate the risk-neutral jump intensity of
the spot price with the Nadaraya-Watson estimator.

As the convenience yield follows a diffusion process, we
estimate its risk-neutral drift by means of

𝜕 (𝛿𝐹)𝜕𝑇 (𝑡, 𝑆, 𝛿; 𝑡)
= (𝛿𝜕𝐹𝜕𝑇 + 𝑆 (𝜇𝛿 − 𝜎𝛿𝜃𝑊𝛿) + 𝜌𝜎𝑆𝜎𝛿) (𝑡) ; (13)

see [11]. In order to estimate the correlation, we use the
moment

𝑀1𝑆,𝛿 (𝑆, 𝛿) = lim
Δ𝑡→0

1Δ𝑡
⋅ 𝐸 [(𝑆 (𝑡 + Δ𝑡) − 𝑆 (𝑡)) (𝛿 (𝑡 + Δ𝑡) − 𝛿 (𝑡)) | 𝑆 (𝑡)
= 𝑆, 𝛿 (𝑡) = 𝛿] = 𝜌 (𝑆, 𝛿) 𝜎𝑆 (𝑆, 𝛿) 𝜎𝛿 (𝑆, 𝛿) ,

(14)

and theNadaraya-Watson estimator; see [36] formore details.
Later, we replace the estimated covariance and the approx-
imations of (𝜕𝐹/𝜕𝑇)|𝑇=𝑡 and (𝜕(𝛿𝐹)/𝜕𝑇)|𝑇=𝑡 in (13) and we
estimate the risk-neutral drift of the convenience yield by
means of the Nadaraya-Watson estimator.

Finally, the volatility of the convenience yield under P-
measure is equal to the volatility under Q-measure. Hence,

we estimate 𝜎𝛿 by means of the second order moment of a
diffusion process:

𝑀2𝛿 (𝑆, 𝛿) = lim
Δ𝑡→0

1Δ𝑡
⋅ 𝐸 [(𝛿 (𝑡 + Δ𝑡) − 𝛿 (𝑡))2 | 𝑆 (𝑡) = 𝑆, 𝛿 (𝑡) = 𝛿]
= 𝜎2𝛿 (𝑆, 𝛿) ,

(15)

and Nadaraya-Watson estimator, with spot and convenience
yield data.

Up to this point, we have focused on the estimation
of the risk-neutral functions of jump-diffusion processes. If
we assume that the spot price follows a diffusion stochastic
process, the factors of the model will follow this joint
diffusion stochastic process under Q-measure:

𝑑𝑆 = (𝜇𝑆 − 𝜎𝑆𝜃𝑊𝑆) 𝑑𝑡 + 𝜎𝑆𝑑𝑊Q
𝑆 ,

𝑑𝛿 = (𝜇𝛿 − 𝜎𝛿𝜃𝑊𝛿) 𝑑𝑡 + 𝜎𝛿𝑑𝑊Q
𝛿 , (16)

with [𝑊Q
𝑆 ,𝑊Q
𝛿 ](𝑡) = 𝜌𝑡.

The estimation of these functions is made by means of
the approach in [37] and the Nadaraya-Watson estimator,
with the same natural gas data and numerical differentiation
approximation as the jump-diffusion model.

For analyzing the effect of the jumps on the natural gas
futures prices, we price natural gas futures with a diffusion
model (DM) as well as a jump-diffusion model with a
Normal jump size distribution (JDMN) and an Exponential
distribution (JMDExp). In order to price natural gas futures
it is necessary to solve a partial integrodifferential equation
or, equivalently, by means of Feynman-Kac Theorem the
expectation in (4). As we use nonparametric methods a
closed-form solution cannot be found. Recently, several
numerical methods have been developed to solve this kind
of problems; see [38, 39].

In this paper, we use the Monte Carlo simulation
approach because it is widely used by practitioners in the
markets, especially for multiple factor models because of its
simplicity and efficiency, [40]. More precisely, we consider
5000 simulations and a daily time step, Δ𝑡 = 1/250. We price
natural gas futures with maturities from 1 to 44 months and
we compare themwith those traded atNYMEXalong the out-
of-sample (January–July 2015). As measures of error, we use
the root mean square error (RMSE) and the percentage root
mean square error (PRMSE) for the out-of-sample:

RMSE = √ 1𝑛
𝑛∑
𝑡=1

(𝐹𝑡 − 𝐹𝑡)2,

PRMSE = √ 1𝑛
𝑛∑
𝑡=1

(𝐹𝑡 − 𝐹𝑡𝐹𝑡 )2,
(17)

where 𝑛 is the number of observations, 𝐹𝑡 is the futures price
traded at NYMEX, and 𝐹𝑡 is the predicted futures price with
the different models.
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Table 1: RMSE and PRMSE for the out-of-sample (January–July 2015) for DM, JDMN, and JDMExp models.

RMSE PRMSE
DM JDMN JDMExp DM JDMN JDMExp

F1 0.1582 0.1362 0.1398 5.7376 4.9326 5.0514
F6 0.1636 0.1744 0.1893 5.4787 5.9201 6.4430
F9 0.1472 0.1162 0.1531 4.5256 3.6732 4.9852
F12 0.2113 0.1529 0.1590 6.2670 4.6156 5.1349
F18 0.2651 0.2012 0.1466 7.7642 5.8706 4.5386
F24 0.3757 0.3172 0.2176 10.3069 8.6277 6.0603
F30 0.3826 0.3141 0.1630 10.7959 8.8260 4.5345
F36 0.4753 0.4199 0.3126 12.4319 10.8809 8.0727
F42 0.4295 0.3661 0.2254 11.8569 10.0716 6.1337
F44 0.5065 0.4413 0.2953 13.7741 11.9909 7.9929

Table 1 shows a summary of the RMSE and PRMSE of
the different models for the out-of-sample and for several
maturities. F1 is the futures price with a maturity of 1 month,
F6 with six months, and so on. In this table, we show that
for short maturities the RMSE are usually lower than for long
maturities. Besides, for very short maturities sometimes the
diffusion model prices natural gas futures quite accurately, as
for F6. However, for F1 and for maturities higher or equal to
9 months, jump-diffusion models provide lower errors than
the diffusion model as in [11]. Moreover, for maturities lower
than 18months the JDMN ismore accurate than the JDMExp,
but for long maturities (higher or equal to 18 months) the
results change and the JDMExp displays lower errors than the
JDMN. Therefore, depending on the maturity of the futures
to price, somemodels aremore accurate than others. As far as
the PRMSE is concerned, we reach the same conclusion but,
formaturities longer or equal than 36, the differences between
the relative error of the JDMN and JDMExp are higher.

Wenow turn our attention to the absolute errors along the
out-of-sample for somematurities. Figure 1 plots the absolute
errors of the considered models for some maturities such as
6, 18, and 44 months. We show only these maturities because
the behaviour of the rest is analogous. For example, for a
maturity of 6 months, we observe that the errors of the DM
are the lowest along the first months of the out-of-sample,
although it changes for the lastmonths. For longermaturities,
for example 18 months, the JDExp model provides the lowest
errors for a great number of months, followed by the JDN.
Finally, when we consider the longest available maturity, the
JDExp model is clearly the most accurate.

If we analyze the price behaviour along the out-of-sample,
we observe high changes for short maturities, but they
decrease when we increase the maturity. That is, the longer
the maturity, the lower the price variations along the time. In
order to illustrate this result, in Figure 2, we plot the futures
prices traded at NYMEX and those priced with the different
models considered in this paper (DM, JDMN, and JDMExp).
As we can see in this figure, the highest variations are for F6
and the lowest are for F44. Focusing on the estimated prices,
we observe that, in general, theDMprovides the lowest prices
and the JDMExp the highest prices for each maturity along
the time for some maturities. We observe that the NYMEX
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Figure 1: Absolute error of the futures prices for the out-of-sample
(January–July 2015) with maturities: 6, 18, and 44 months. The
absolute error for the DM is the red dotted line, the JDMN is the
blue dash line, and the JDMExp is the black solid line.

and estimated futures prices usually rise when the maturity
increases, but the rate of rising of the market prices is higher
than the rate of the estimated prices with the differentmodels.
We also see that the estimated models overprice the NYMEX
F6 futures in several months. However, in most of the cases,
the JDMN and the DM underprice the NYMEX futures for a
maturity of 18 months. Finally, for a maturity of 44 months,
the whole estimated models underprice the NYMEX futures.
Then, the higher the maturity the higher the possibility for
natural gas futures to be underpriced by the different models,
especially by the DM.

In conclusion, as in [11], the jump-diffusion models pro-
vide lower errors than the diffusion model apart from some
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Table 2: Ratios between the JDMN and JDMExp option prices.

Strike 95% 100% 105%𝜏1\𝜏2 3m 6m 9m 12m 3m 6m 9m 12m 3m 6m 9m 12m
3m 0.91 0.76 0.65 0.59 0.91 0.70 0.52 0.42 0.94 0.63 0.36 0.19
6m 0.88 0.73 0.63 0.58 0.88 0.68 0.52 0.43 0.90 0.62 0.40 0.24
9m 0.80 0.68 0.60 0.58 0.79 0.63 0.50 0.43 0.79 0.56 0.37 0.26
12m 0.80 0.69 0.62 0.60 0.78 0.63 0.51 0.46 0.78 0.57 0.40 0.29
short maturities. Hence, this fact supports the use of jump
processes whenmodelling the commodity price dynamics for
pricing natural gas futures. As far as the jump size distribution
is concerned, the JDMN prices are, in general, lower than
the JDMExp prices. This is consistent with the assumptions
made for the jump size distribution in Section 3. Under the
Normal distribution the average jump size is zero, whereas
under the Exponential distribution the average jump size is
positive. Therefore, average impact of the jumps on the spot
prices under the Normal distribution should be lower than
under the Exponential distribution. Moreover, the Normal
distribution provides the lowest error for maturities shorter
than or equal 12 months, but the Exponential distribution is
more accurate for longer maturities. This fact could be due
to the very low natural gas spot price during the prediction
period of time. Furthermore, investors in the market should
take care of the possible overpricing or underpricing of these
models depending on the maturity of the futures.

4. Valuation of Futures Options

In the previous section we have already seen the superiority
of the jump-diffusion models over the diffusion models for
pricing natural gas futures and that, for long maturities, the
model with an Exponential distribution is more accurate
than the other models. Hence, in this section we present the
effect of the different jump size distributions on a different
natural gas derivative: a futures option. In order to price this
European call option we use the same NYMEX data and
estimation methodology than in the previous section, but,
now, the Monte Carlo method approximates (5) with 5000
simulations and a daily time step (Δ𝑡 = 1/250).

We assume different option maturities, 𝜏1, such as 3, 6,
9, and 12 months, and different futures maturities, 𝜏2, equal
to 3, 6, 9, and 12 months. We also assume that the strike
price, which is a percentage of the natural gas spot price at
the moment of its pricing, is equal to 95%, 100%, and 105%.
Therefore, the options are priced in the money, at the money,
and out of the money, respectively.

As the instantaneous interest rate is not observable, we
use the three-month Treasury Bill rates of the US Federal
Reserve at the valuation moment as a proxy. In the term
structure literature, this Treasury Bill rate is also usually
considered as a proxy of the instantaneous interest rate; see,
for example, [33].

In this paper, we price the futures options the first day
of the out-of-sample data, that is, on January 3, 2015, and we
observe that the higher the strike price, the lower the option

F6

2.5

3

3.5

Observ
JDMN

JDMExp
DM

F1
8

2.8
3

3.2
3.4
3.6

Time
Jan Feb Mar Apr May Jun Jul

Time
Jan Feb Mar Apr May Jun Jul

Time
Jan Feb Mar Apr May Jun Jul

F4
4

3
3.2
3.4
3.6
3.8

4

Figure 2: Natural gas futures prices (January–July 2015) with
maturities: 6, 18, and 44 months. The NYMEX futures prices are the
red solid line, the DM is the green dashed dotted line, the JDMN is
the blue dash line, and the JDMExp is the black dotted line.

price. However, conclusions do not change if we consider
other different days of the out-of-sample for valuation.

As we do not have observations of European natural gas
option prices for different maturities, we compare the prices
when theNormal and Exponential jump sizes are considered.
In Table 2, we show some ratios between the JDMN and
JDMExp for different strike prices and maturities on January
3, 2015. As we can see, for options and underlying futures
with short maturities (3 months) the ratios are higher than90%. The main reason is that the futures prices with short
maturities are quite similar for both distributions, although
the futures prices with the Normal distribution are slightly
lower. However, as we increase the maturities, especially of
the futures, the ratios decrease considerably till 19%.This fact
is consistent with the high differences between the futures
prices with both distributions when the maturity increases.
Moreover, these differences are even higher because the
futures price is the underlying of the option. Therefore, we
conjecture that, in order to price futures options accurately,
other stochastic variables should be considered in the model,
such as the volatility or interest rates.
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This result can be very interesting for practitioners,
because they should take into account the fact that the
Exponential jump size distribution overprices option prices
with respect to the Normal distribution, which is consistent
with the results obtained in the previous section for jump-
diffusion futures prices. Finally, we see that the higher the
strike price the lower the ratio. Therefore, the highest price
differences can be found for the out of the money options.

5. Futures Risk Premium

The futures risk premium provides a link between natural gas
futures and expected spot prices and it is a keymeasure in risk
management. In particular, the term structure of commodity
risk premia supplies additional information about the role of
the net hedging pressure. Then, it is an important factor in
understanding the markets and it deserves great attention.

In the literature, the risk premium is defined as the
difference between the expected future spot price and the
futures price; see [25, 41] among others:

𝑅𝑃 = 𝐸 [𝑆 (𝑇) | 𝑆 (𝑡) = 𝑆, 𝛿 (𝑡) = 𝛿] − 𝐹 (𝑡, 𝑆, 𝛿; 𝑇) . (18)

Therefore, the risk premium is the reward for holding a risk
rather than a risk-free investment; see [41]. In energymarkets,
the sign of the risk premium usually changes along the time,
with thematurity of the futures and even with themarket and
the commodity; see for example [42].

On the one hand, commodity consumersmay enter into a
long position in futures contracts, because theywant to insure
against future increases in the spot price, so they accept prices
over the expected spot price. On the other hand, commodity
producers may enter into a short position in futures contracts
because they wish to hedge their revenue risk. Since this
decision is taken in advance, they accept prices below the
expected spot price. Then, if the activity of consumers is
greater than that of producers, there will be an excess of
commercial participants looking to enter a long position. In
this case, the net hedging pressure theory establishes that the
futures pricewill be higher than the expected future spot price
to induce speculators to balance the market by taking a short
position. In contrast, if the hedging activity of producers is
greater than that of consumers, there will be an excess of
commercial participants looking to enter a short position.
Then, the expected future spot price will be higher than the
futures price to induce speculators to balance the market by
taking a long position.Therefore, the commodity futures risk
premia (in absolute value) can be seen as the return that
speculators expect to receive to compensate the market; see
[42].

In this section, we obtain the natural gas futures risk
premia for the out-of-sample (January–July 2015).We use the
natural gas futures prices traded at NYMEX for maturities
between 1 and 24 months, but we also need to calculate𝐸[𝑆(𝑇) | 𝑆(𝑡) = 𝑆, 𝛿(𝑡) = 𝛿]. In this case, the functions of
the stochastic processes (1) are estimated directly from the
moment conditions for the different jump distributions; see,
for example, [34] for the Normal distribution and [35] for the
Exponential distribution. The market prices of risk are not
taken into account because there is not a change from the
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Figure 3:The risk premium as a function of time tomaturity for the
JDMN and JDMExp models.

physical to the risk-neutral measure. Then, these estimated
functions are used to obtain 𝐸[𝑆(𝑇) | 𝑆(𝑡) = 𝑆, 𝛿(𝑡) = 𝛿]
by means of Monte Carlo simulation approach, with 5000
simulations and a daily time step (Δ𝑡 = 1/250).

Figure 3 shows the term structure of natural gas risk
premia with the Normal and the Exponential jump size
distributions, hereafter RPNormal and RPExp, respectively.
We calculate these values like the mean of the risk premia,
for each maturity, in the out-of-sample. In this figure, both
RPNormal and RPExp have, in general, the same behaviour
although the risk premium under the Normal jump size
distribution is always higher than the risk premium under
the Exponential distribution. This fact is consistent with
the mean of the distributions considered in each case.
Furthermore, as it can be seen in Figure 3, the risk premium
is positive for short maturities (approximately, up to 7 or
8 months for the Exponential and the Normal distribution,
resp.). Following the net hedging pressure theory, for these
short maturities the activity of the producers is higher than
the consumers activity and the risk premium is the average
return that speculators would receive by entering a long posi-
tion in the natural gas futuresmarkets and holding the futures
to expiration.Thismeans that the futures prices are below the
expected spot prices and the futures curve is said to be nor-
mally backwardated; see [43]. However, for maturities higher
than 7 or 8 months the risk premium starts to be negative. In
this case, the futures prices are above the expected spot prices
and, then, the curve is said to be in Normal contango; see
[43]. Following the net hedging pressure theory, consumers
have to offer an incentive to induce speculators to enter a
short position, and the absolute value of the risk premia is
the return that speculators expect to receive for balancing the
market.More precisely, in general, the higher thematurity the
more negative the risk premium and, then, speculators expect
to receive a higher compensation to balance the market.
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Figure 4: The risk premium for the JDMNmodel along the out-of-sample, for maturities 1, 9, 12, and 24 months.

In Figures 4 and 5, we plot the estimated risk premium
as a function of time when the jump size follows a Normal
and an Exponential distribution, respectively. These figures
show that there is mixed evidence of the sign of the risk
premium and, besides, the risk premia are strongly time-
varying. Hence, the activity of speculators is also time-
varying. In Figure 3 we saw that the risk premium for very
short maturities was positive; however, in Figure 4 we see
that it is not always positive but it is on average. Therefore,
in general, the futures price is a downward biased predictor
of the expected spot price for short maturities. However, for
longer maturities, we see that the risk premium is usually
negative, apart from maturities longer than 12 months for
the Exponential distribution and longer than 24 months for
the Normal distribution, where it is always negative. Then,
for maturities longer than 6 months, the futures price is an
upward biased predictor of the expected spot price as a whole.

6. Conclusions

In this paper, we make mainly two contributions. Firstly, we
apply the approach in [11] for pricing natural gas futures,

but we assume that the jump size follows an Exponential
distribution. We use the data and nonparametric techniques
to estimate all the risk-neutral functions of the model as
in [11]. Then, considering a higher out-of-sample period,
we show that considering a jump-diffusion model provides
lower errors than a diffusion model when pricing futures.
Furthermore,we also show that theNormal distribution is the
best assumption to price short maturity futures. However, the
Exponential distribution provides lower errors when pricing
long maturity futures.

The second contribution comes through the use of [11]
approach and data to price natural gas options and risk
premia.Wefind that, in general, themodel with the Exponen-
tial distribution overprices option prices with respect to the
Normal distribution. We think that, in order to price options
more accurately, other state variables should be taken into
account.

As far as the risk premia is concerned, we find that
this premium is negative more times with the Exponential
distribution than with the Normal distribution. These facts
should be taken into account when a jump-diffusion is
applied to price commodity futures or options.
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Figure 5: The risk premium for the JDMExp model along the out-of-sample, for maturities 1, 9, 12, and 24 months.

Both of these contributions open opportunities for fur-
ther work. On the one hand, we could consider that the dis-
tribution of the jump size underQ-measure is not equal to the
distribution underP-measure. In this case, we would have to
obtain an additional relation to estimate the parameter of the
jump size distribution under the risk-neutralmeasure.On the
other hand, it is straightforward to see that a more realistic
model should include the effect of seasonality, especially in
natural gas markets.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments
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a b s t r a c t

In this paper, we focus on a seasonal jump–diffusionmodel to price commodity derivatives.
We propose a novel approach to estimate the functions of the risk-neutral processes
directly from data in the market, even when a closed-form solution for the model is not
known. Then, this new approach is applied to price some natural gas derivative contracts
traded at New York Mercantile Exchange (NYMEX). Moreover, we use nonparametric
estimation techniques in order to avoid arbitrary restrictions on the model. After applying
this approach, we find that a jump–diffusion model allowing for seasonality outperforms
a standard jump–diffusion model to price natural gas futures. Furthermore, we also show
that there are considerable differences in the option prices and the risk premiumwhen we
consider seasonality or not. These results have important implications for practitioners in
the market.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In the 1990s, and especially the 2000s, commodity derivatives have become an important component of many investors
portfolios. In particular, pension funds and other portfolio managers have considered commodities as an independent asset
class that, when combined with traditional stock and bond portfolios, can improve the risk-return performance. Most
practitioners use simple models, such as the models which are the basis for the Black–Scholes option pricing formula, to
analyze commodity prices and price commodity derivatives. Nevertheless, these models are extremely limited and do not
answer questions related to the effects of speculation, see [1].

When pricing commodity derivatives, the special features of these markets should be considered. In the literature, the
commodity price is usually assumed to follow a mean-reverting diffusion process, because of the dynamics of the supply
and demand, see [2,3]. However, nowadays, the commodity prices suffer from abrupt changes and empirical studies find
significant evidence about the presence of jumps in commodity processes, see [4,5]. Then, this fact has also been considered
in the commodity pricing literature, see, among others, [6–9]. Lastly, there are numerous studies, e.g. [10,11], which have
documented that commodity prices showa seasonal behavior. Therefore, this property has been taken into account in several
models in the literature. Lucia and Schwartz [12], Cartea and Figueroa [13], and Li et al. [14] considered the seasonality in
electricity markets, García et al. [15] in the natural gas markets, Kyriakou et al. [9] in petroleum commodities and Back
et al. [11] in the soybean, corn, heating oil and natural gas markets. Recently, Arismendi et al. [16] analyze the importance
of the seasonal behavior in the volatility to price commodity options.
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In the commodity pricing literature, the functions of the stochastic processes and the market prices of risk are usually
assumed as simple parametric functions, for pure tractability and simplicity. Moreover, the whole functions are usually
chosen to provide an affine model which has a known closed-form solution. However, there is not any empirical evidence
either consensus about affine models are the best models to price commodity futures. Furthermore, the market prices of
risk are not observed in the markets. Hence, if we consider other more realistic functions for the stochastic variables or the
market prices of risk or even a nonparametric approach then, themodel would not be affine anymore, a closed-form solution
could not be obtained and the estimation of themarket prices of risk would not be possible. This problemwas solved by [17]
but for a jump–diffusion model without seasonality. Then, we contribute to the literature by filling this gap for a seasonal
jump–diffusion model.

This paper ismainly concernedwith the importance of the accurate estimation of thewhole functions of a jump–diffusion
pricing commodity derivativemodelwith a seasonal component, although a closed-form solutionwas not known.We obtain
some results to estimate the whole functions of a two-factor jump–diffusion model with seasonality under the risk-neutral
measure, directly frommarket data. In ourmodel,we assume that one of the factors is the commodity spot price and the other
is the convenience yield. These factors are often used in the commodity literature. For example, Gibson and Schwartz [2] and
Schwartz [3] also consider these two factors, though they consider neither jumps nor seasonality. Gómez-Valle et al. [17]
use this two-factor model with a diffusion and a jump–diffusion process, but they do not take into account the seasonality.
Furthermore, we use a nonparametric approach to estimate the functions of the risk-neutral stochastic processes so as to
avoid imposing arbitrary restrictions on the model. To our knowledge, this is the first research that explicitly estimates the
functions of the risk-neutral stochastic processeswith a nonparametric technique in a commodity two-factor seasonal jump–
diffusionmodel to price commodity derivatives. Then,we analyze the role of the seasonality for some natural gas derivatives.
As a result of the great attention that partitioners have devoted to the risk premium, we also analyze the influence of the
seasonality on this premium.

The rest of the paper is organized as follows. Section 2 develops a two-factor jump–diffusion model with seasonality to
price commodity derivatives. Section 3 proposes some novel results to estimate the whole functions of a derivative pricing
model with jumps and seasonality, directly from market data, even when a closed-form solution is not known. Section 4
shows how to deal with the seasonality in the natural gas market and how to implement the approach in Section 3 with
a nonparametric technique. Section 5 prices futures and options with the approach in Section 3 and data in Section 4 and
shows the effect of taking into account the seasonality. Section 6 analyzes the futures risk premium and finally, Section 7
concludes. All the implementations have been done using MATLAB software.

2. The valuation model

In this section, we discuss the two-factor jump–diffusion model with seasonality that we use to price commodity
derivatives. This research assumes that the two factors are the dynamics of the spot price, S, and the instantaneous
convenience yield, δ. However, the proposed model works with the natural logarithm of the spot price instead of the spot
price itself, see, among others, [12]. In a similar way, we could obtain the same theoretical results if we considered another
state variable instead of the convenience yield.

Define (Ω,F, {Ft}t≥0,P) as a complete filtered probability space which satisfies the usual conditions where {Ft}t≥0 is a
filtration, see [18–20]. We describe the behavior of the log-price process in terms of two types of components. The first one
is a predictable deterministic component which takes into account regularities in the evolution of the spot price, that is, a
deterministic trend and any periodic behavior. This component is represented by a known deterministic function of time.
The second component X is stochastic and both of them verify that

ln S(t) = f (t)X(t), t ∈ [0, ∞). (1)

In particular, we assume that X follows a jump–diffusion stochastic process.
As far as the second factor of the model is concerned, the convenience yield is assumed to follow a diffusion process, see

for example [7]. However, we assume that X follows a jump–diffusion process because commodity prices usually suffer from
abrupt changes in the markets, see [4]. Therefore, the factors of the model follow this joint stochastic process:1

X(t) = X(0) +

∫ t

0
µX (X(z), δ(z))dz +

∫ t

0
σX (X(z), δ(z))dWX (z) +

∫ t

0
c(X(z−), δ(z))dJ(z), (2)

δ(t) = δ(0) +

∫ t

0
µδ(X(z), δ(z))dz +

∫ t

0
σδ(X(z), δ(z))dWδ(z), (3)

where µX and µδ are the drifts and σX and σδ the volatilities. Moreover,WX andWδ are Wiener processes and the impact of
the jump is given by the function c and the compound Poisson process, J(t) =

∑N(t)
i=1 Yi, with jump times (τi)i≥1, where N(t)

represents a Poisson process with intensity λ(X, δ) and Y1, Y2, . . . is a sequence of identically distributed random variables

1 S is right-continuous (cadlag, see [20]) and we denote the left limit X(t−) = limz↑tX(z). However, for notational clarity the pre-jump values X(t−)
will be added only when necessary to avoid confusion and otherwise, they will be assumed implied.



L. Gómez-Valle et al. / Journal of Computational and Applied Mathematics 330 (2018) 835–847 837

with aGaussian probability distributionΠ ,N (0, σ 2
Y ).We assume thatWX ,Wδ and the jump size distribution are independent

of N , but the standard Brownian motions are correlated with:

[WX ,Wδ](t) = ρt.

We also assume that the jump magnitude and jump arrival times are uncorrelated with the diffusion parts of the processes.
Lastly, we suppose that the functions µX , µδ, σX , σδ, λ and Π satisfy suitable regularity conditions provided in Appendix.

We assume that the market is arbitrage-free. Then, there exists an equivalent martingale measure, Q-measure, which is
known as the risk-neutral measure, see extended Girsanov-type measure transformation in [21,22]. The state variables of
the model (2)–(3) under the risk-neutral measure, are as follows:

X(t) = X(0) +

∫ t

0

(
µX − σXθ

WX
)
dz +

∫ t

0
σXdWQ

X (z) +

∫ t

0
c(X(z−), δ(z))J̃Q(z), (4)

δ(t) = δ(0) +

∫ t

0

(
µδ − σδθ

Wδ
)
dz +

∫ t

0
σδdWQ

δ (z), (5)

whereWQ
X andWQ

δ are theWiener processes underQ-measure and [WQ
X ,WQ

δ ](t) = ρt . Themarket prices of risk associated
to WX and Wδ Wiener processes are θWX (X, δ) and θWδ (X, δ), respectively. Finally, J̃Q(t) =

∑NQ(t)
i=1 Yi − λQtEQ

Y [Y1] is the
compensated compound Poisson process under Q-measure and the intensity of the Poisson process NQ(t) is λQ(X, δ).

Moreover, we will consider the function c(X, δ) = 1 in (2) and (4) and, as usual in the literature, for simplicity and
tractability, we assume that the jump size distribution underQ-measure of the jump–diffusion process is known and equal
to the distribution under P-measure. This means that all risk premia related to the jump are artificially absorbed by the
change in the intensity of the jump from λ under the physical measure to λQ under the risk-neutral measure, see [9,23].
Then, EQ

Y [Y1] = EY [Y1].
As S(t) = h(t, X(t)) = ef (t)X(t) and provided that the function f satisfies the appropriate regularity conditions, we can

apply the Itô formula for jump–diffusion processes, see [20,24]. Then, the spot price under the risk-neutral measure is the
solution to the following stochastic differential equation (we use the differential notation to simplify, see [20]):

dS = S
(
f ′ ln S

f
+ f (µX − σXθ

WX ) +
1
2
σ 2
X f

2
)
dt + σX f 2SdW

Q
X + d

⎛⎝NQ(t)∑
i=1

S(τi−)(efYi − 1)

⎞⎠ . (6)

As Y1 ⇝ N(0, σ 2
Y ), then efY1 follows a log-normal distribution, efY1 ⇝ LN(0, f 2σ 2

Y ), and we obtain:

EY1 [e
fY1 − 1] = e

f 2σ2
Y

2 − 1. (7)

Moreover, as the compensated Poisson process is a martingale, then we show the compensated process of (6):

dS = S
(
f ′ ln S

f
+ f (µX − σXθ

WX ) +
1
2
σ 2
X f

2
+ λQ

(
e

f σ2
Y
2 − 1

))
dt + σX f 2dW

Q
X

+

⎡⎣d

⎛⎝NQ(t)∑
i=1

S(τi−)(efYi − 1)

⎞⎠ − S(t−)λQ
(
e

f σ2
Y
2 − 1

)
dt

⎤⎦ . (8)

If seasonality is not considered in the model: ln S = X then, f ≡ 1 and f ′
≡ 0. Therefore, the spot price under the

risk-neutral measure follows this stochastic differential equation:

dS =

(
(µX − σXθ

WX ) +
1
2
σ 2
X + λQ

(
e

σ2
Y
2 − 1

))
dt + σXdW

Q
X

+

⎡⎣d

⎛⎝NQ(t)∑
i=1

S(τi−)(eYi − 1)

⎞⎠ − S(t−)λQ
(
e

σ2
Y
2 − 1

)
dt

⎤⎦ . (9)

A commodity futures price at time t with maturity at time T , t ≤ T , under the above assumptions, can be expressed as
F (t, S, δ; T ) and at maturity it verifies that F (T , S, δ; T ) = S(T ), and the futures price can be expressed by

F (t, S, δ; T ) = EQ
[S(T )|S(t) = S, δ(t) = δ]. (10)

Let V (t, S, δ, T2; T1) be the price of a European call option that matures on T1 on a futures contract that expires at T2,
T1 ≤ T2, and K is the strike price. Then, analogously to (10), an European commodity futures option is priced as the expected
discounted payoff under the Q-measure, see [7,22],

V (t, S, δ, T2; T1) = EQ
[
e −

∫ T1
t r(u) du max(F (T1, S(T1), δ(T1); T2) − K , 0) | S(t) = S, δ(t) = δ

]
, (11)

where r denotes the instantaneous risk-free interest rate, which is assumed to be constant. Moreover, τ1 = T1 − t and
τ2 = T2 − T1 are the maturity of the option contract and futures contract, respectively.
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3. Exact results and approximations

Researchers have devoted the greatest attention to affinemodels such as [3,6–8]. One of themain reasons is that a closed-
form solution for the commodity futures price is known. Moreover, this fact allows the application of different estimation
techniques, like the Kalman Filter or Maximum Likelihood, and the market price of risk estimation is simple, although
sometimes statistically insignificant see, among others, [11,25]. However, there is neither evidence nor consensus that affine
models are the most suitable for pricing futures contracts.

In the literature, to the best of our knowledge, there is no approach to estimate themarket prices of risk in jump–diffusion
models with seasonality, unless a closed-form solution is known. Bandi and Nguyen [26] and Johannes [27] show how to
estimate nonparametrically the functions of a jump–diffusion process by means of their moment equations for interest rate
models. However, this approach does not show how to estimate the market prices of risk. Gómez-Valle et al.[17] propose
some results to estimate the risk-neutral functions for jump–diffusion processes directly from market data in a commodity
derivativemodel, but they do not consider seasonality. Therefore, in this section, we contribute to the literature by proposing
a new approach to estimate the functions of the risk-neutral jump–diffusion stochastic factors of a seasonal commodity
model directly from market data. Then, we can price commodity derivatives without estimating the unobservable market
prices of risk, although a closed-form solution of the futures price was not known.

In the following result we prove several equalities which relate the slope of the futures curve with the risk-neutral drift,
the volatility and the covariance of the stochastic variables.

Theorem 1. Let F (t, S, δ; T ) be the price of a commodity future, with ln S = fX , and X and δ follow the joint stochastic processes
given by (4)– (5), then:

∂F
∂T

(t, S, δ; T ) = F (t, S, δ; T )
(
f ′ ln S

f
+ f (µX − σXθ

WX ) +
1
2
σ 2
X f

2
+ λQEY [efY1 − 1]

)
(T ), (12)

∂(SF )
∂T

(t, S, δ; T ) = F (t, S, δ; T )
(
2
∂F
∂T

+ S(f 4σ 2
X + λQEY [(efY1 − 1)2])

)
(T ), (13)

∂(δF )
∂T

(t, S, δ; T ) =

(
δ
∂F
∂T

+ S(µδ − σδθ
Wδ ) + Sf 2ρ σXσδ

)
(T ). (14)

The derivatives above should be assumed as right derivatives when T ∈ (τi)i≥1, that is, when T is a jump time.

We prove these results bymeans of (10). The detailed proof of this theorem can be found in Appendix. Analogous results,
but for diffusion and jump–diffusion processes without seasonality, are also shown in [17,28].

Ifwe consider thatX = ln S that is, the seasonality is not taken into account, then the expressions (12)–(14) are reduced to

∂F
∂T

(t, S, δ; T ) = F (t, S, δ; T )
(

µX − σXθ
WX +

1
2
σ 2
X + λQEY [eY1 − 1]

)
(T ), (15)

∂(SF )
∂T

(t, S, δ; T ) = F (t, S, δ; T )
(
2
∂F
∂T

+ S(σ 2
X + λQEY [(eY1 − 1)2])

)
(T ), (16)

∂(δF )
∂T

(t, S, δ; T ) =

(
δ
∂F
∂T

+ S(µδ − σδθ
Wδ ) + S ρ σXσδ

)
(T ). (17)

4. Implementation and estimation

In this section, we illustrate how practitioners can apply the novel approach in Section 3 to estimate the functions of the
risk-neutral processes of the state variables. Particularly,we apply it to theHenryHubnatural gas data because, asmentioned
in the literature, there is a high evidence of seasonality in this commodity market, see, among others, [11,15]. Then, we use
a nonparametric estimation technique in order to avoid imposing arbitrary restrictions on the model functions.

Henry Hub natural gas spot price data traded at NYMEX were obtained from the US Energy Information Administration
(EIA). Fig. 1 depicts the daily Henry Hub natural gas spot price and its first differences from January 2004 to July 2015. This
figure shows the behavior of the in-sample data (January 2004–December 2014) and the out-of-sample data (January–July
2015) that we use in the paper.

As in our model we consider (1), we use the natural logarithm of the spot price instead of the spot price. Therefore, in
Table 1, we summarize the main statistics of the log-spot price. We see that both skewness and kurtosis values indicate
that the log-spot price series does not follow a Normal distribution, which is further confirmed by results of the Jarque–
Bera test (JB) for normality in the last column (p-values on brackets). In fact, this series exhibits significant excess kurtosis
meaning that as compared to a Normal distribution, it has higher and sharper central peak and longer fatter tails. Hence, a
jump–diffusion process is more suitable for our model than a diffusion process.

In this paper, we consider the seasonality of the natural gas. However, the seasonality can be taken in different ways.
Therefore,wemake a seasonal decomposition of the log-spot price time series (withmonthly data) and calculate the seasonal
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Fig. 1. Daily Henry Hub natural gas spot price and its first differences, January 2004–July 2015.

Table 1
Summary of the statistics on the Henry Hub log-natural gas spot price and its first differences, January 2004–December 2014.

Variable N Mean Std. dev. Max Min Skewness Kurtosis JB

ln St 2735 1.6199 0.3957 2.7337 0.5988 0.1973 2.7310 25.9932
(0.0000)

ln St+1 − ln St 2734 −0.0003 0.0430 0.3901 −0.2784 0.6765 14.6122 15570
(0.0000)

Table 2
Estimated parameters of the approximated seasonal function.

a0 a1 b1 a2 b2 a3 b3 a4 b4
1 0.00484 0.0155 0.02147 0.00571 −0.00785 0.00165 −0.00310 0.00197

variations with an additive and multiplicative model. We obtain the coefficients of variations in both cases and we find that
the coefficient is much lower in the multiplicative model than in the additive model. This is the reason why we use the
multiplicative decomposition as in (1).

We choose as the deterministic seasonal function, f , a fit of the monthly average of the log-spot price with a fourth-order
Fourier approximation as follows

f (t) = a0 +

4∑
k=1

(ak cos(2kπ t) + bk sin(2kπ t)) a0, ak, bk ∈ R, k = 1, . . ., 4.

The parameters are estimated by means of fit, a MATLAB-function which uses Least Squares. Table 2 shows the parameter
values with R-square 0.9319 and standard error 0.0135.

The model we propose in Section 2 to price commodity derivatives has two factors: the spot price and the convenience
yield. As it is well known in the literature, the convenience yield is not observed in the markets. Then, as in [2], we
approximate it by the following formula

δT−1,T = rT−1,T − 12 ln
[

F (t, S, δ; T )
F (t, S, δ; T − 1)

]
, (18)

where rT−1,T denotes the T − 1 period ahead annualized one month riskless forward interest rate. We obtain this forward
interest rate with two daily T-Bill rates withmaturities as close as possible to the futures contracts’ ones in order to compute
δ1,2, the one-month ahead annualized convenience yield. The latter is identified with the instantaneous convenience yield
δ0,1, see [2] for more details. T-Bill rates are obtained from the Federal Reserve h.15 database. We also use the natural gas
futures contracts with the shortest maturities (1 and 2 months) traded at NYMEX. This data is taken from the EIA database.

So as to price commodity derivatives we need to estimate the functions of the risk-neutral spot price and convenience
yield processes. Then, we have to estimate the different terms in (5) and (8), but the risk-neutral variables are not observed.
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For this purpose, the risk-neutral functions of the jump–diffusion component, X , and the convenience yield δ are estimated
by means of the jump–diffusion moment equations and Theorem 1 (we consider T = t and then, F (t, S, δ; t) = S(t)).

Following [17], the estimation of the volatility of X (σX ) and the distribution parameters of Y1 is done with the jump–
diffusion process moment equations (see [17,26,27]),

MX (X, δ) = lim
1t↓0

1
1t

E[X(t + 1t) − X(t)|X(t) = X, δ(t) = δ] = µX + λ(X, δ)EY [Y1], (19)

M2
X (X, δ) = lim

1t↓0

1
1t

E[(X(t + 1t) − X(t))2|X(t) = X, δ(t) = δ] = σ 2
X (X, δ) + λ(X, δ)EY [Y 2

1 ], (20)

Mk
X (X, δ) = lim

1t↓0

1
1t

E[(X(t + 1t) − X(t))k|X(t) = X, δ(t) = δ] = λ(X, δ)EY [Y k
1 ], k ≥ 3. (21)

As we assume that the jump size follows a Normal distribution Y1 ⇝ N(0, σ 2
Y ). Then, µY = EQ

Y [Y1] = EY [Y1] = 0 and
σ 2
Y = EQ

Y [Y 2
1 ] = EY [Y 2

1 ]. Furthermore, under this assumption of normality it is well known that

EY [Y 2k
1 ] = σ 2k

Y

k∏
n=1

(2k − 1),

EY [Y 2k−1
1 ] = 0, k = 1, 2, 3, . . . .

In this paper, we use a nonparametric approach to estimate the whole functions and in consequence, we avoid to
impose arbitrary restrictions on the functions of the stochastic variables of the model. To our knowledge, in the literature,
nonparametric methods are not usually used for commodity derivative pricing, apart from [17,28] but they do not consider
the seasonality.

Suppose a data set consists of N observations, (X1, δ1, Z1), . . . , (XN , δN , ZN ), where (Xi, δi) are the explanatory variables
and Zi is the response variable. We assume a model of the kind Zi = g(Xi, δi) + ϵi, where g(X, δ) is an unknown function
and ϵi is an error term, representing random errors in the observations or variability from sources not included in the (Xi, δi)
observations. The errors ϵi are assumed to be independent and identically distributed with mean zero and finite variance.
The estimate has the closed-form

ĝ(X, δ) =

N∑
i=1

Wi(X, δ)Zi,

whereWi(X, δ) is the Nadaraya–Watson product weight function:

Wi(X, δ) =
KhX (X − Xi)Khδ

(δ − δi)∑N
j=1 KhX (X − Xj)Khδ

(δ − δj)
,

K is the Gaussian Kernel and hX and hδ the bandwidths or smoothing parameters, see [29]. Theoretical results for kernel
regression estimators show that the optimal bandwidths will be proportional to N−1/6. Then, we consider that the
bandwidths are as follows hX = ΦX σ̂1N−1/6 and hδ = Φδ σ̂2N−1/6, where σ̂1 and σ̂2 are the standard deviation estimates
of X and δ, respectively, and ΦX and Φδ are the scaling factors, see [30,31], for further details.

Then, for estimating the variance of X , σ 2
X , and the distribution parameter of the random variable Y1, σ 2

Y , the Nadaraya–
Watson estimator is applied to the moment conditions (20)–(21) with data in the market. That is, we obtain the spot price
S(t) from the market and we calculate X(t) with the relation (1). The convenience yield observations δ(t) are obtained by
means of (18). Then, we have the observations (Xi, δi) and the response variable Zi is (Xi+1 − Xi)2 and (Xi+1 − Xi)k in (20) and
(21), respectively. In order to estimate σ 2

Y , we use moment (21) with k = 4 and 6, then, we use moment (20) for estimating
σ 2
X , as in [27].
As far as the rest of functions is concerned, we use Theorem 1 because we have not got observations of the risk-neutral

variables. As efY1 ⇝ LN(0, f 2σ 2
Y ), then the expectations in (12) and (13) are replaced by (7) and

EY [(efY1 − 1)2] = ef
2σ2

Y + 1 − 2e
f 2σ2

Y
2 .

Firstly, we estimate the risk-neutral jump intensity λQ using (13). We approximate the partial derivatives ∂F
∂T |T=t and

∂(SF )
∂T |T=t by means of numerical differentiation. More precisely, we obtain a fourth order approximation to the slopes by the

well-known forward difference formula:
∂g
∂T

⏐⏐⏐⏐
T=t

=
−25g(t) + 48g(t + ∆) − 36g(t + 2∆) + 16g(t + 3∆) − 3g(t + 4∆)

12∆
+ O(∆4). (22)

This approximation allows us to consider a high spectrum of futures maturities for a better approximation of the slopes.
More precisely, we use natural gas futures prices with maturities equal to 1, 2, 3 and 4 months which are traded at NYMEX
and obtained from the Quandl platform. We replace in (13) the estimated volatility σ̂X , the distribution parameter of the
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Table 3
RMSE of the futures prices for the out-of-sample, January–July 2015, for NSM and SM.

Futures F1 F6 F9 F12 F18 F24 F30 F36 F42 F44

NSM 0.1607 0.2445 0.1446 0.1797 0.1435 0.2490 0.2346 0.3624 0.3088 0.3850
SM 0.1232 0.1473 0.0920 0.1577 0.0949 0.1847 0.1099 0.2453 0.1674 0.2595

random variable Y1, the approximated seasonal function and the approximations of ∂F
∂T |T=t and

∂(SF )
∂T |T=t . Next, we apply the

Nadaraya–Watson estimator and we approximate the jump intensity of the risk-neutral spot price.
Secondly, we replace the estimators of σX , σY , λQ, the approximated deterministic seasonal function f and the numerical

approximation of ∂F
∂T |T=t in (12) and we apply the Nadaraya–Watson estimator to estimate the risk-neutral drift of X .

Thirdly, the risk-neutral convenience yield functions are also estimated. For as much as this variable follows a diffusion
process, its estimation is easier. To this end, previously, we have to approximate numerically ∂(δF )

∂T |T=t by means of (22) and
estimate ρσSσX with the moment:

MX,δ(X, δ) = lim
1t↓0

1
1t

E[(X(t + 1t) − X(t))(δ(t + 1t) − δ(t))|X(t) = X, δ(t) = δ] = ρ(X, δ)σX (X, δ)σδ(X, δ),

and the Nadaraya–Watson estimator, see [31] and [17] for more details. Then, we replace this estimated covariance and the
numerical approximations of ∂F

∂T |T=t and
∂(δF )
∂T |T=t in (14) for getting the risk-neutral drift estimator of the convenience yield

by means of the Nadaraya–Watson estimator.
Finally, the volatility of the convenience yield under P-measure is equal to the volatility under Q-measure. Hence, we

estimate σδ by means of the second order moment of a diffusion process, see [31],

M2
δ (X, δ) = lim

1t↓0

1
1t

E[(δ(t + 1t) − δ(t))2|X(t) = X, δ(t) = δ] = σ 2
δ (X, δ),

and the Nadaraya Watson estimator.

5. Commodity derivatives pricing

In this section, we price different natural gas derivatives, such as futures and futures options, by means of the approach
in Section 3. Finally, we study the role of the seasonality when pricing these natural gas derivatives. In order to analyze the
efficiency of this approach, we price natural gas futures traded at NYMEX with maturities from 1 to 44 months. As in the
previous section, we use data from January 2004 to December 2014 for the estimation. Then, data from January to July 2015
have been selected as out-of-sample data for analyzing the accuracy of this approach with data from the EIA and the Quandl
platform.

As we have previously stated in Section 4, we consider a nonparametric approach to estimate the whole functions of the
risk-neutral stochastic processes.2 Therefore a closed-form solution for this model cannot be obtained. Hence, a numerical
method is necessary to get a solution for the problems (10) and (11). We use the Monte Carlo simulation approach because
it is widely used by practitioners in the markets and in the literature, especially for multiple-factor models because of its
simplicity and efficiency, see [32].

For analyzing the role of the seasonality in the natural gas derivatives, it is interesting to also price the derivatives with
a jump–diffusion model without seasonality. Then, we consider that X = ln S and as a consequence, the stochastic process
followed by the spot price is (9). In order to estimate the risk-neutral functions of the model, we use (15)–(17) in Section 3
and the same approach mentioned in Section 4.

The natural gas futures are priced by means of (10) and Monte Carlo simulation approach, with 5000 simulations and a
daily time step (1/250), for the out-of sample (January–July 2015).

So as to make comparisons, we use the root mean square error (RMSE) for the out-of-sample:

RMSE =

√1
n

n∑
t=1

(
Ft − F̂t

)2
,

where n is the number of observations, Ft is the NYMEX futures price and F̂t is the predicted futures price with the different
models.

Table 3 shows the RMSE of the NYMEX futures prices with the different models and for several maturities. F1 means the
futures with a maturity of 1 month, F6 with six months and so on. In this table, we show that, for the whole maturities, the
RMSE are always lower with the SM than with the NSM. Hence, the superiority of the seasonal model is clear.

2 All the scaling factors in the bandwidths (hX , hδ) take values ΦX ∈ [1, 8] and Φδ ∈ [3, 10].
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Fig. 2. Natural gas futures prices (January–July 2015) with maturities: 6, 12 and 18 months. The observed NYMEX futures prices are the red-solid line, the
SM is the blue dashed-line and the NSM the black-dotted line. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 3. Natural gas futures prices (January–July 2015) with maturities: 24 and 30 months. The observed NYMEX futures prices are the red solid line, the SM
is the blue dashed line and the NSM the black dotted line. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

In order to gain some insight into the causes of the discrepancies between real futures prices and theoretical prices,
Figs. 2, 3 and 4 allow for graphical comparison of the prices provided by SM and NSM with the observed futures prices in
the markets. More precisely, Fig. 2 shows the futures prices for maturities of 6, 12 and 18 months, Fig. 3 for maturities of 24
and 30 months and, lastly, Fig. 4 for maturities of 36 and 44 months. As it can be seen from these figures, in general, the SM
prices are closer to the futures prices traded at NYMEX than the NSM prices for the whole out-of-sample and for short and
long maturities. These figures show that SM reflects the changes of the prices along the time more accurately, while NSM
models do not nearly change. Furthermore, for short maturities, the SM and the NSM, in general, overprice the natural gas
futures traded at NYMEX, see Fig. 2. However, this fact changes with the maturities, whenever the maturity increases the
SM and the NSM start to underprice the futures traded at NYMEX.
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Fig. 4. Natural gas futures prices (January–July 2015) with maturities: 36 and 44 months. The observed NYMEX futures prices are the red solid line, the SM
is the blue dashed line and the NSM the black dotted line. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Table 4
Ratios between the NSM and SM option prices.

Strike Maturity

3 months 6 months 9 months 12 months

90% 1.20 0.75 0.50 0.37
100% 1.39 0.78 0.49 0.36
110% 1.70 0.81 0.48 0.34

In summary, these results show that when the seasonality is taking into account in the model we obtain more accurate
prices and therefore, lower errors.

It is usually shown in the literature that the errors in pricing commodity futures are magnified when pricing futures
options. Then, in this section, we also analyze the differences between the option prices with the SM and NSM. Commodity
options are generally not written on the commodity itself, but on futures contracts. This fact ensures high liquidity of the
underlying, as the trading is more common on the futures than on the spot market [11].

In order to price natural gas options, we use the same NYMEX data and estimation methodology than in Section 4, but
now, the Monte Carlo method approximates (11). Here, we also run 5000 simulations and we consider a daily time step
(1/250). We assume that the maturity of the option is equal to the underlying futures contract. In Table 4, we show the ratio
between the option prices obtainedwith the NSM and the SM (NSM/SM), for several strike prices andmaturities.We observe
that for a maturity of 3 months, the SM underprices with respect to the NSM. However, for longer maturities, that is higher
or equal to 6 months, the SM overprices the natural gas options. This fact should be taking into account by practitioners in
the markets when pricing options with any of these models.

6. The risk premium

The analysis of the futures risk premia deserves great attention in the literature because it is a key measure in risk
management. They affect the costs and benefits of hedging a spot contract and the diversification benefits that result from
including futures in investment portfolios. Moreover, they also play a prevailing role for economic agents who decide on
their production, storage and consumption by considering the futures prices as indicators of future spot prices, see [33].

It is very well-known that futures prices deviate from expected future spot prices because of the risk premia that traders
expect to earn or pay when trading in futures markets. Therefore, following [34,35], we consider the risk premium as the
difference between the expected future spot price and the futures price, that is,

RP = EP
[S(T )|S(t) = S, δ(t) = δ] − F (t, S, δ; T ). (23)

Hereby, the futures price is the sum of the expected future spot price under the physical measure and a risk premium.
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Fig. 5. The term structure of risk premium for the SM and NSM: RPSM and RPNSM, respectively.

In this section, we obtain the natural gas futures risk premium for the out of sample (January–July 2015) with (23) and
data in Section 4. We use the natural gas futures prices traded at NYMEX with maturities till 1 year. In order to calculate the
EP

[S(T )|S(t) = S, δ(t) = δ], the functions of the stochastic process (2)–(3) are estimated directly from moment conditions
(19)–(21) and data in themarket, because they are underP-measure. Then,Monte Carlomethod is applied to the expectation
under P-measure in (23), with 5000 simulations and a daily time step (1/250).

To investigate natural gas futures risk premia, first, we obtain the term structure as the mean of the risk premia for each
maturity. We plot this term structure in Fig. 5 with two models: seasonal model and nonseasonal model. Consistent with
most previous studies [36], neither the risk premium with seasonality (RPSM) nor the risk premium without seasonality
(RPNSM) are constant along the term structure. In fact, it varies across the different maturities. Moreover, the differences
in size and sign between the RPSM and RPNSM are very important. More precisely, the RPNSM is always positive but the
RPSM is positive till 4 months and then, it starts to be negative. As [36] states, if speculators require a term premium to
compensate for price uncertainty over a long period of time, the commodity risk premium should be larger (in absolute
terms) for longer maturity futures. As it can be seen from Fig. 5, this is in general true for the seasonal model, although not
for all maturities. The RPSM is very low for short maturities which is usually associated to the effect of financialisation of
the commodity markets, see [36]. Moreover, the RPSM is lower (in absolute terms) than the RPNSM. Then, the producers or
consumers would pay a lower premium if the SM model was used for pricing the natural gas futures.

Finally, Fig. 6 plots the RPSM and the RPNSM as a function of time along the out-of sample for some short maturities.
In general, these graphs show that the futures risk premia are strongly time-varying and take negative and positive values,
specially the RPSM. Therefore, the activity of speculators is also time varying. For a maturity of one month, both risk-premia
are quite similar and they are positive and negative. However, for a maturity of nine months both risk premia are very
different. Meanwhile the RPSM is always negative, the RPNSM is positive on average.

7. Conclusions

In the commodity literature, different assumptions have been considered for modeling the commodity spot price. On the
one hand, jump-diffusion processes are considered for describing the abrupt changes of the commodity prices in themarkets.
On the other hand, the seasonal behavior of some commodity prices is taken into account. They all assume parametric
functions in the stochastic processes in order to find a closed-form solution and, then, they can estimate the market prices
of risk.

In this paper, we assume that the commodity price follows a jump–diffusion process and we also add a seasonal
component. Then, we prove several equalities which relate the slope of the futures curve with the functions of the risk-
neutral processes. The main point of this result is that it allows estimating the whole risk-neutral functions directly from
data in the markets, even when a closed form-solution for the pricing model is not known.

So as to analyze the empirical performance of this approach, we apply it to price some natural gas derivatives. We
choose the natural gas because there is high empirical evidence of the abrupt changes and seasonality of the natural gas
spot price, but other commodities could also be used. In order to show a more realistic behavior of the model, we use a
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Fig. 6. The RPSM and the RPNSM along the out-of-sample (January–July 2015) for some different maturities.

nonparametric approach instead of imposing arbitrary restrictions to the functions. As a consequence, this pricing model
would not have a closed-form solution. However, this is not a problem for this novel approach because all the functions can
be estimated directly from data in the market. Then, we compare these futures prices with those obtained with a jump–
diffusion model without seasonality. In general, we see that both models overprice the market futures prices for short
maturities and underprice for long maturities. However, in all cases the futures prices obtained, when the seasonality is
taking into account, are closer to the market prices. Moreover, its behavior is more realistic (similar to the market prices). In
fact, taking into account this dynamic could have a great impact on the pricing of options.

This can be seen when we calculate option prices with both models. In this case, we observe high differences between
the seasonal and the nonseasonal model. Finally, we analyze the risk premium of both models and the differences between
them are also considerable. Therefore, in this paper we show that the jump–diffusion model with seasonality outperforms
the standard jump–diffusion models.
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Appendix

This appendix states the regularity conditions that guarantee the existence and uniqueness of the stochastic differential
equations considered in this paper. These conditions are necessary to prove Theorem 1.

In the following assumptions, we consider the notation form of the functions in (2)–(3): µ = (µX , µδ) and σ = (σX , σδ).
• Assumption 1 The functionsµ, σ andλ are twice continuously differentiable andwe consider the function c(X, δ) = 1

in (2) along this paper. Moreover, they satisfy local Lipschitz and growth conditions. That is, for every compact subset
D ⊂ R2, there exists a constant CD

1 such that, for all x, z ∈ D,

|µ(x) − µ(z)| + |σ (x) − σ (z)| ≤ CD
1 |x − z|.

• Assumption 2 There exists a constant C2 such that for any x ∈ R2,

|µ(x)| + |σ (x)| + λ(x)
∫
R
|y|Π (dy) ≤ C2(1 + |x|).

• Assumption 3 For any α > 2, there exist a constant C3 such that for any x ∈ R2

λ(x)
∫
R

|y|αΠ (dy) ≤ C3(1 + |x|α).

• Assumption 4 λ(x) ≥ 0 and σ 2(x) > 0 on R2.
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The above conditions on the model guarantee the existence and uniqueness of a cadlag strong solution to (2)–(3), see
[24,26].

Then, we prove Theorem 1 in Section 3.

Proof of Theorem 1. We consider the integral form of the spot price stochastic equation (8)

S(T + h) − S(T ) =

∫ T+h

T
S
(
f ′ ln S

f
+ f (µX − σXθ

WX ) +
1
2
σ 2
X f

2
+ λQEY [efY1 − 1]

)
(z) dz

+

∫ T+h

T
σX f 2SdWQ

X (z) +

⎡⎣⎛⎝ NQ(T+h)∑
i=NQ(T+1)

S(τi−)(efYi − 1)

⎞⎠ −

∫ T+h

T
S(z−)λQEY [efY1 − 1]dz

⎤⎦ .

Then, we calculate the conditional expectation under Q-measure in the above equality. Taking into account (10) and
the fact that the Itô integral and compensated process are martingales, the conditional expectation under Q-measure of
the last terms is zero (that is, EQ

[
∫ T+h
T σX f 2S dWQ

X (z) | S(t) = s, δ(t) = δ] = EQ
[
∫ T+h
0 σX f 2S dWQ

X (z) | S(t) = s, δ(t) =

δ] − EQ
[
∫ T
0 σX f 2S dWQ

X (z) | S(t) = s, δ(t) = δ] = 0 and analogously for the jump term). Then, we obtain

F (t, S, δ; T + h) − F (t, S, δ; T ) =

∫ T+h

T
F (t, S, δ; z)

(
f ′ ln S

f
+ f (µX − σXθ

WX ) +
1
2
σ 2
X f

2
+ λQEY [efY1 − 1]

)
(z) dz.

Now dividing by h and taking limits, when h tends to 03 , leads to (12).
Using Itô’s product rule, see [22] and [20], and (8) we have

dS2 = S2
(
2
(
f ′ ln S

f
+ f (µX − σXθ

WX ) +
1
2
σ 2
X f

2
+ λQEQ

Y [efY1 − 1]
)

+ f 4σ 2
X + λQEQ

Y [(efY1 − 1)2]
)
dt

+ 2S2f 2σXdWQ
X (t) +

⎡⎣d

⎛⎝NQ(t)∑
i=1

S(τi−)2(e2fYi − 1)

⎞⎠ − S(t−)2λQEY [e2fY1 − 1]dt

⎤⎦ . (24)

With the integral form of (24) and using the same steps as above, we get (13).
Now, as earlier, using Itô’s product rule and (8) and (5) we have

d(Sδ) = S
(

µδ − σδθ
Wδ + δ

(
f ′ ln S

f
+ f (µX − σXθ

WX ) +
1
2
σ 2
X f

2
)

+ ρσXσδ f 2 + δλQEQ
Y [efY1 − 1]

)
dt

+ Sδf 2σXdWQ
X (t) + SσδdWQ

δ (t) +

⎡⎣d

⎛⎝NQ(t)∑
i=1

S(τi−)δ(efYi − 1)

⎞⎠ − S(t−)δλQEY [efY1 − 1]dt

⎤⎦ . (25)

Using the similar reasoning above, we obtain (14).
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Conclusions

The importance of commodity derivative markets has grown considerably over recent decades. As

a consequence, these markets have become an exciting topic for researchers who have proposed and

analyzed different commodity derivative pricing models. In the literature, parametric models are

usually considered to obtain a closed-form solution. However, there is not any empirical evidence

showing that these models are the best to price commodity derivatives. In fact, when more realistic

functions are considered in the models, a closed-form solution is not known. As the risk-neutral

stochastic processes and the market prices of risk are not observable in the market, when a closed-

form solution of the derivative is not known, these functions cannot be estimated.

In this research, we consider a two-factor model to price some commodity derivatives. The first

factor is the commodity spot price and the second one is the convenience yield. The first primary

assumption is that the spot price and convenience yield follow a jump-diffusion and diffusion

processes, respectively. The second assumption is that the distribution of the jump size under

the risk-neutral measure is known and equal to the distribution under the physical measure. This

means that all risk premia related to the jump are artificially absorbed by the change of measure in

the intensity of the jump. Furthermore, we extend this model assuming that the jump size follows

a normal or an exponential distribution, and, finally, add a seasonal factor in the spot price. In all

the cases, we prove some results which allow us to estimate the whole functions of the risk-neutral

processes directly from data in the market. This new technique is used for analyzing the role of

the jump and seasonality when pricing natural gas futures, options, and futures risk premia.

Firstly, we analyze the effect of considering a jump term in the spot price process when pricing

natural gas futures traded at NYMEX. We find that the diffusion model provides slightly lower

errors that the jump-diffusion model but only for short maturities. In contrast, the jump-diffusion

model provides lower errors than the diffusion model for longer maturities. We also show that, in

general, the diffusion and jump-diffusion models underprice natural gas futures for all maturities.

Moreover, the futures prices obtained with the jump-diffusion model are closer to the market prices.

Therefore, this fact supports the use of jump-diffusion processes when modelling the natural gas

price dynamics in order to price futures, especially for long maturities.

Secondly, we analyze the role of the jump size distribution in the US natural gas derivative

prices. We price natural gas futures assuming that the spot price follows a jump-diffusion process

with a normal and an exponential jump size distribution. For short maturities, equal or lower than
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18-months, we find that the normal distribution provides more accurate futures prices. However,

for long maturities, the exponential distribution shows the lowest errors. Moreover, for maturities

higher than 18-months, the exponential distribution provides higher prices than the normal distri-

bution, but both distributions underprice the natural gas futures prices observed in the markets.

Furthermore, the errors with normal and exponential distribution are higher for maturities longer

or equal to 36-months. Maybe, this fact could also be due to the propagation error because of the

use of Monte Carlo simulation approach.

In this research, we also price futures options with both jump size distributions. Then, we cal-

culate some ratios between the futures option prices with the normal and exponential distributions

for different strike prices and maturities, and we observe the following facts. For options with short

maturities, the ratios are higher than ninety percent. However, if we increase the maturities, these

ratios decrease considerably and the higher the strike price, the lower the ratio is. Therefore, the

highest price differences can be found in the out of the money options.

As far as the term structure of natural gas futures risk premia is concerned, we also show that

both risk premia (with normal and exponential distribution) have the same qualitative behaviour,

they have a decreasing trend. Moreover, we observe that the risk premium under the normal jump

size distribution is always higher than the risk premium under the exponential distribution. As

commonly found in the literature, we also find that both risk premia vary strongly over time. This

means that the activity of production companies and speculators also varies with time. Moreover,

we see that for both distributions the risk premium is, on average, positive for short maturities

and negative for long maturities. That is, for short maturities the futures prices are a downward

biased predictor of the expected spot price, but an upward biased prediction for long maturities.

As there is some evidence of seasonality in some commodity markets, we add a seasonal com-

ponent to the previous two-factor jump-diffusion commodity derivative pricing model. We assume

that this component is a predictable deterministic function of time. Then, we prove some new

results which allow us to estimate the whole risk-neutral functions of the model. In particular, we

price natural gas futures and futures options traded at NYMEX with this approach and analyze

the effect of the seasonality. We find that the errors in pricing natural gas futures are always lower

when the seasonality is taken into account in the model. Moreover, we also make some comparisons

between the option prices with both models. The ratios between the option prices with or without

seasonality for several strikes and maturities show that the seasonal model underprices with respect

to the non-seasonal model for a maturity of three months. However, the seasonal model overprices

the natural gas options for longer maturities, and the higher the maturity, the lower the ratios are.

Besides, we analyze the influence of the seasonality on the future risk premium. We obtain the

term structure of the natural gas risk premium with a seasonal and a non-seasonal model. We

observe that the model without seasonality always provides positive risk premia, but the seasonal

model shows negative risk premia for maturities higher than 6-months. As far as its behaviour

over time is concerned, in both cases the risk premia are strongly time-varying, taking positive and

negative values. Therefore, we can conclude that considering a seasonal component improves the
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pricing model in the natural gas market.

Finally, the main goal of this research is to provide an alternative approach to estimate the risk-

neutral functions directly from data in the markets. In fact, we design some estimation techniques

for seasonal models as well as non-seasonal models. These techniques can be applied even when

the dynamics of the factors do not allow to find a closed-form solution for the derivative prices.

In this research topic, there are investigation lines to be carried on.

On the one hand, in order to explain better the behaviour of commodity derivative prices, other

state variables could be considered in the model, for example, interest rates or spot price volatility.

Moreover, jump terms could be added to these variables to pick up any abrupt change.

As far as the jump size distribution is concerned, we could consider that it is also affected by

the change of measure instead of being artificially absorbed by the change in the jump intensity,

as is usual in the literature.

On the other hand, taking into account that there are diverse kinds of commodity markets whose

behaviours are very different (such as agricultural or metal commodities), distinct state variables

and dynamics should be considered in the models, depending on the commodity. In particular,

some of them have a strong seasonal pattern, especially energy and agricultural commodities. In

our research, we considered a deterministic seasonal factor. However, we could also assume that

the seasonal factors are trigonometric components generated by stochastic processes. In this case,

additional complex estimation techniques would be necessary to deal with this problem.

Finally, in this thesis, the Monte Carlo simulation approach has been applied to obtain nu-

merical solutions for the different pricing models analyzed. This method is easy to implement,

but its accuracy is low. Therefore, efficient numerical methods could be designed and applied for

obtaining more accurate prices. In this regard, the errors could be reduced, especially for higher

maturities where the propagation of errors could be affecting the long-term commodity prices.





Conclusiones

En las últimas décadas los mercados de derivados de materias primas han experimentado un

gran auge. Como consecuencia, los investigadores han mostrado un gran interés por los temas

relacionados con este tipo de mercados, y han propuesto y analizado diferentes modelos para

valorar derivados de materias primas.

En la literatura se suelen considerar modelos paramétricos afines para poder obtener una forma

cerrada de la solución. Sin embargo, no existe ninguna evidencia emṕırica de que este tipo de

modelos sean mejores para valorar los derivados. De hecho, cuando se consideran funciones más

realistas no se suele disponer de una forma cerrada de la solución. En este caso, como los procesos

neutrales al riesgo y los precios de riesgo del mercado no son observables en el mercado, estas

funciones no se pueden estimar salvo que se conozca la solución.

En este trabajo consideramos un modelo de dos factores para valorar derivados de materias

primas. El primer factor es el precio al contado de la materia prima y el segundo es el rendimiento

de conveniencia. En primer lugar, suponemos que estos factores siguen un proceso de difusión con

saltos y un proceso de difusión, respectivamente. En segundo lugar, consideramos que se conoce

la distribución del tamaño de salto bajo la medida neutral al riesgo y es igual a la distribución

bajo la medida f́ısica, es decir, la prima de riesgo asociada al salto es absorbida por el cambio de

medida en la intensidad del salto. Además, extendemos el modelo considerando que el tamaño de

salto sigue una distribución normal o una exponencial y, finalmente, añadimos una componente

estacional en el precio al contado de la materia prima. En todos los casos, probamos resultados

que permiten estimar todas las funciones de los procesos neutrales al riesgo directamente de los

datos del mercado, y utilizamos esta nueva técnica para analizar el papel que tienen los saltos y

la estacionalidad a la hora de valorar futuros, opciones y las primas de riesgo de los futuros de

materias primas.

En primer lugar analizamos el efecto del término de salto en el proceso del precio al contado

cuando valoramos futuros del gas natural negociados en el NYMEX. En este caso observamos que

el modelo de difusión sin saltos proporciona errores ligeramente más pequeños que el de difusión

con saltos pero para vencimientos cortos. Por el contrario, el modelo de difusión con saltos da lugar

a errores más pequeños que el de difusión para vencimientos largos. En cualquier caso, observamos

que, en general, ambos modelos infravaloran los precios de los futuros del gas natural para todos

los vencimientos. Además, los precios de los futuros obtenidos con el modelo de difusión con saltos
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son más cercanos a los del mercado. Por tanto, este hecho respalda el uso de los procesos con

saltos para modelizar la dinámica del precio al contado del gas natural a la hora de valorar futuros,

especialmente para vencimientos largos.

En segundo lugar, analizamos el papel del salto y de la distribución del tamaño de salto en la

valoración de derivados del gas natural de Estados Unidos. Valoramos los futuros suponiendo que

los saltos siguen una distribución normal y una exponencial y obtenemos que, para vencimientos

cortos menores o iguales a 18 meses la distribución normal proporciona precios más precisos. Sin

embargo, para vencimientos largos la distribución exponencial da lugar a errores más pequeños. En

cualquier caso, para vencimientos superiores a 18 meses la distribución exponencial proporciona

precios más altos que la distribución normal, pero ambas infravaloran los precios del mercado.

Además, los errores con ambas distribuciones son mayores para vencimientos superiores o iguales

a 36 meses. Probablemente, este hecho pueda ser debido a la propagación del error que puede

producirse al utilizar el método de Monte Carlo.

En este trabajo también valoramos opciones sobre futuros con ambas distribuciones, y calcu-

lamos los ratios entre los precios de las opciones con la distribución normal y con la exponencial para

diferentes precios de ejercicio y diferentes vencimientos. Aśı, observamos que, para vencimientos

cortos, los ratios son mayores del noventa por ciento; sin embargo, si aumentamos el vencimiento,

los ratios decrecen considerablemente, y cuanto mayor es el precio de ejercicio, menor es el ratio.

Por tanto, las diferencias mas grandes entre los precios de las opciones se producen en el out of the

money.

En lo que se refiere a la estructura temporal de las primas de riesgo de los futuros del gas natural,

también mostramos que ambas primas de riesgo (con la distribución normal y la exponencial) tienen

el mismo comportamiento cualitativo, tienen una tendencia decreciente. Además, observamos que

la prima de riesgo con los saltos siguiendo una distribución normal es siempre mayor que cuando

siguen una distribución exponencial. Como es habitual en la literatura, encontramos que la prima

de riesgo con ambas distribuciones tiene una gran variabilidad a lo largo del tiempo. Esto quiere

decir que la actividad de los productores y los especuladores también vaŕıa a lo largo del tiempo.

Además, observamos que, con ambas distribuciones, la prima de riesgo es, en media, positiva para

vencimientos cortos y negativa para vencimientos largos. Es decir, para vencimientos cortos, los

precios de los futuros proporcionan una predicción sesgada por defecto del precio al contado, pero

para vencimientos largos la predicción es sesgada por exceso.

Dado que existe evidencia de estacionalidad en los mercados de algunas materias primas, in-

troducimos una componente estacional en los modelos de valoración considerados previamente.

Suponemos que esta componente viene dada por una función del tiempo determinista. Entonces,

probamos algunos resultados que permiten estimar todas las funciones de los procesos neutrales

al riesgo del modelo. Con esta nueva forma de estimación, valoramos los futuros del gas natural

y las opciones sobre futuros negociados en el NYMEX, y analizamos el efecto de la estacionalidad

en los precios. Obtenemos que los errores en los precios de los futuros del gas natural son menores

para todos los vencimientos cuando se tiene en cuenta la estacionalidad en el modelo. Además,
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realizamos comparaciones entre los precios de las opciones con ambos modelos. Calculamos los

ratios entre los precios de las opciones con o sin estacionalidad para varios precios de ejercicio y

vencimientos, y mostramos que el modelo estacional infravalora los precios de las opciones del gas

natural con respecto al no estacional para vencimientos cortos (hasta tres meses); sin embargo,

sobrevalora para el resto, y cuanto mas largo es el vencimiento, menor es el ratio.

En este trabajo también analizamos la influencia de la estacionalidad en la prima de riesgo

de los futuros. Aśı, calculamos la estructura temporal de la prima de riesgo de los futuros con

estacionalidad y sin estacionalidad en el modelo, y observamos que el modelo sin estacionalidad

siempre proporciona primas positivas, pero el modelo con estacionalidad presenta primas negativas

para vencimientos mayores que 6 meses. En lo que se refiere a su comportamiento a lo largo del

tiempo, en ambos casos la prima de riesgo presenta una gran variabilidad a lo largo del tiempo.

Todo esto nos lleva a concluir que considerar una componente estacional mejora el modelo de

valoración para el mercado del gas natural.

El principal objetivo de este trabajo es proporcionar un enfoque alternativo para estimar las

funciones de los procesos neutrales al riesgo directamente de los datos del mercado. De hecho,

diseñamos técnicas de estimación para modelos con estacionalidad aśı como sin estacionalidad.

Estas técnicas se pueden utilizar incluso cuando la dinámica de las variables de estado no permite

encontrar una forma cerrada de la solución del precio del derivado.

En los temas tratados en esta tesis hay lineas abiertas con las que continuar.

Por una lado, para explicar mejor el comportamiento de los precios de los derivados de materias

primas se pueden introducir otras variables de estado en el modelo; por ejemplo, el tipo de interés o

la volatilidad del precio al contado. Además, se pueden añadir términos de salto en estas variables

para recoger sus cambios bruscos en el mercado.

En lo que se refiere a la distribución del tamaño de salto, se puede suponer que se esta se ve

afectada por el cambio de medida en lugar de ser absorbido artificialmente por el cambio en la

intensidad del salto, como es habitual en la literatura.

Por otro lado, teniendo en cuenta que hay diferentes tipos de materias primas con compor-

tamientos muy distintos (tales como las agŕıcolas o los metales), se debeŕıan considerar diferentes

dinámicas en las variables de estado del modelo, dependiendo de la materia prima. En particular,

algunas de ellas tienen un patrón estacional, especialmente las agŕıcolas y las de la enerǵıa. En este

trabajo hemos considerado un factor estacional determinista; sin embargo, seŕıa adecuado suponer

que el factor estacional viene dado por componentes trigonométricos generados por procesos es-

tocásticos. En este caso, para este nuevo problema, es necesario proporcionar nuevas técnicas de

estimación adecuadas.

En este trabajo hemos utilizado el método de Monte Carlo para obtener una aproximación de

los precios de los derivados en los diferentes modelos. Este método es fácil de implementar, pero su

precisión es baja; por tanto, seŕıa interesante diseñar método numéricos eficientes para aproximar

la solución de la ecuación en derivadas parciales de valoración y aśı obtener precios más precisos.

De esta forma, podŕıamos reducir los errores, especialmente para vencimientos largos.
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