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Abstract. Given a Lie-Poisson completely integrable bi-Hamiltonian system on Rn, we

present a method which allows us to construct, under certain conditions, a completely inte-
grable bi-Hamiltonian deformation of the initial Lie-Poisson system on a non-abelian Poisson-

Lie group Gη of dimension n, where η ∈ R is the deformation parameter. Moreover, we show

that from the two multiplicative (Poisson-Lie) Hamiltonian structures on Gη that underly the
dynamics of the deformed system and by making use of the group law on Gη , one may obtain

two completely integrable Hamiltonian systems on Gη ×Gη . By construction, both systems
admit reduction, via the multiplication in Gη , to the deformed bi-Hamiltonian system in

Gη . The previous approach is applied to two relevant Lie-Poisson completely integrable

bi-Hamiltonian systems: the Lorenz and Euler top systems.

1. Introduction

It is well-known that a Hamiltonian system on a symplectic manifold M of dimension 2r
is (Liouville) completely integrable if there exist r first integrals that pairwise commute and
which are functionally independent in a dense open subset U of M . In such a case, U admits
a Lagrangian foliation and the solutions of the Hamiltonian dynamics live in the leaves of this
foliation (see [1]). The previous notion may be extended, in a natural way, for the more general
case when the phase space M is a Poisson manifold P , not necessarily symplectic (for more
details, see [17]). Following this approach, a dynamical system on a manifold P is said to be
bi-Hamiltonian if admits two Hamiltonian descriptions with respect to two compatible Poisson
structures on P . Bi-hamiltonian and completely integrable Hamiltonian systems are closely
related since, under certain conditions, a bi-Hamiltonian system is completely integrable (see,
for instance, [16]).

We also recall that for a multiplicative Poisson structure on a Lie group G, the multiplication
is a Poisson epimorphism. In these conditions, the dual space g∗ of the Lie algebra g of G admits
a Lie algebra structure in such a way that the couple (g, g∗) is a Lie bialgebra. In fact, the Lie
algebra structure on g∗ is defined by the dual map of an adjoint 1-cocycle on g with values in
Λ2g. Conversely, an adjoint 1-cocycle on a Lie algebra g with values in Λ2g whose dual map
satisfies the Jacobi identity, induces a unique multiplicative Poisson structure on a connected
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simply connected Lie group with Lie algebra g (see [9]). Lie groups which are endowed with
multiplicative Poisson structures are called Poisson-Lie groups and Lie-Poisson structures on
the dual space of a Lie algebra g are examples of abelian Poisson-Lie groups (for more details
see, for instance, [23]). Poisson-Lie groups are instances of Poisson coalgebras for which the
comultiplication map is given by the group law, and the quantization of the former are the
so-called quantum groups, which are the underlying symmetries of many relevant quantum
integrable models (see, for instance, [8, 10]).

As it was shown in [6], Poisson coalgebras can be systematically used in order to construct
completely integrable Hamiltonian systems with an arbitrary number of degrees of freedom.
Moreover, under this approach, deformations of Poisson coalgebras provide integrable defor-
mations of the previous systems, and all constants of the motion can be explicitly obtained.
Since then, this approach has been extensively used in order to construct different types of
finite-dimensional integrable systems (see [2, 3, 4, 7] and references therein) and several closely
related constructions relying on the modification of the underlying Poisson coalgebra symmme-
try have been also proposed in [5, 12, 19].

Nevertheless, the generalization of the Poisson coalgebra approach to bi-Hamiltonian systems
was still lacking, and the aim of this paper is to fill this gap by presenting a systematic approach
for the construction of integrable deformations of bi-Hamiltonian systems, which will be based
on the theory of multiplicative Poisson structures on Lie groups.

To achieve this goal, we will firstly need an appropriate geometric interpretation of the results
recently presented in [3]. In particular, from a Lie-Poisson completely integrable Hamiltonian
system defined on the dual space g∗ of a Lie algebra g and in the presence of an arbitrary uni-
parametric family {Ψη}η∈R of adjoint 1-cocycles whose dual maps satisfy the Jacobi identity,
we will show that a Hamiltonian deformation of the initial system can be constructed on a
connected and simply connected Lie group with Lie algebra g∗η. When η approaches to zero,
one recovers the initial system on g∗ and, under certain conditions, the deformed system is also
completely integrable. Now, by using that the multiplication in Gη is associative and a Poisson
epimorphism, one may obtain new Hamiltonian systems with more degrees of freedom on N
copies of Gη, by coupling of the integrable Hamiltonian deformation in Gη. We will show that,
by construction, these systems admit reduction, via the multiplication, to the deformed system
in Gη. Moreover, under certain conditions, they are also completely integrable.

Secondly, if we want to generalize the previous construction when the initial completely
integrable Hamiltonian system is bi-Hamiltonian with respect to two compatible Lie-Poisson
structures Π0 and Π1 on Rn, this implies that we have to deal with two compatible Lie algebra
structures [·, ·]0 and [·, ·]1 on Rn which induce the two compatible Poisson structures Π0 and
Π1. As we will show in this paper, the following important considerations and findings arise as
a consequence of the bi-Hamiltonian approach:

• In order to stay within the category of bi-Hamiltonian systems, we will have to impose
that the integrable deformation of the initial system has to be bi-Hamiltonian with
respect to two compatible multiplicative Poisson structures Π0η and Π1η on the same
Lie group Gη. So, we should be able to find a common uni-parametric family of adjoint
1-cocycles {Ψη}η∈R for the Lie algebra structures [·, ·]0 and [·, ·]1.

• When comparing with the prescriptions given by the generic Poisson coalgebra method
used in [3, 6], now we have more constraints in choosing the two Hamiltonian functions
H0η and H1η for the bi-Hamiltonian system on Gη. The reason is that H0η and H1η
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must be commuting functions for the Poisson structures Π0η and Π1η. This, in some
cases, fixes uniquely the definition of the Hamiltonians H0η and H1η.

• The dynamics of the (completely integrable) Hamiltonian systems (Π0η, H0η) and
(Π1η, H1η) onGη coincide. However, the coupling, on one hand, of the system (H0η,Π0η)
on Gη×Gη and the coupling, on the other hand, of the system (H1η,Π1η) on Gη×Gη
can be used to produce two completely integrable Hamiltonian systems on the Lie
group Gη × Gη which do not have, in general, the same dynamics. In other words,
the method does not provide, in general, a bi-Hamiltonian system on the phase space
Gη ×Gη.

• Nevertheless, the two completely integrable Hamiltonian systems on Gη × Gη admit
reduction, via the multiplication, to the deformed bi-Hamiltonian system on Gη. So,
for this reason, we can say that the Hamiltonian systems on Gη × Gη are ‘quasi-bi-
Hamiltonian’. Moreover, in the same way as in the general method [6] and by using
the associativity of the multiplication in Gη, one may extend this construction in
order to obtain two multiplicative completely integrable Hamiltonian systems on N
copies of Gη, with N ≥ 2. By construction, these systems admit reduction (via the
multiplication) to the deformed bi-Hamiltonian system on Gη and will preserve for any
N its ‘quasi-bi-Hamiltonian’ nature.

• The method here presented is fully constructive and it could be applied to any Lie-
Poisson completely integrable bi-Hamiltonian system such that both Lie algebra struc-
tures [·, ·]0 and [·, ·]1 have a common 1-cocycle. Indeed, if this cocycle is found to be
multiparametric, then we would obtain a multiparametric integrable deformation of
the initial bi-Hamiltonian system.

The paper is structured as follows. In Section 2, we will review some definitions and basic
results on Poisson structures, Poisson-Lie groups and Poisson bi-Hamiltonian systems. In Sec-
tion 3, we will present the systematic method to obtain integrable deformations of Lie-Poisson
bi-Hamiltonian systems. For the sake of clarity, we will exemplify the method to the par-
ticular case when our initial dynamical system is a specific Lie-Poisson completely integrable
bi-Hamiltonian system on R4. Our motivation for considering this system lies in the fact that
its restriction to a submanifold of codimension 1 is just an integrable limit of the well-known
Lorenz dynamical system (see [3, 18]). In Section 4 we will face the problem of the construc-
tion of the two completely integrable quasi-bi-Hamiltonian systems on R2n = Rn × Rn, which
will admit a reduction to the bi-Hamiltonian systems on Rn that have been presented in the
previous section. The deformed counterpart of this construction leading to coupled systems
on Gη × Gη is presented in Section 5. In order to show the fully constructive nature of the
approach here introduced, in Section 6 we apply it to another relevant Lie-Poisson completely
integrable bi-Hamiltonian system: an Euler top on R3. Finally, a concluding section closes the
paper.

2. Bi-Hamiltonian systems and Poisson-Lie groups

In this section, we will review some definitions an basic results on Poisson-Lie groups and
bi-Hamiltonian systems on Poisson manifolds (for more details, see [23]).

2.1. Poisson manifolds and Lie-Poisson structures. We recall that a Poisson structure on
a manifold M is a bivector field Π on M such that the Schouten-Nijenhuis bracket [Π,Π] = 0.
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This is equivalent to defining a Lie algebra structure on C∞(M), whose bracket {·, ·} is called
the Poisson bracket. The relation between the two definitions is given by the formula:

{f, g} = Π(df, dg), ∀f, g ∈ C∞(M).

A Poisson structure Π on M determines in a natural way a vector bundle morphism Π] : T ∗M →
TM from the cotangent bundle T ∗M of M to the tangent bundle TM . We also denote by Π]

the corresponding morphism between the space Ω1(M) of 1-forms on M and the space X(M)
of vector fields. The rank of the Poisson structure at the point x ∈ M is just the rank of the
linear map Π](x) : T ∗xM → TxM . Since this linear map is skew-symmetric, the rank is always
an even number. It is clear that Π](x) : T ∗xM → TxM is not, in general, an isomorphism. In
fact, a real C∞-function on M is said to be a Casimir if Π](df) = 0 or, equivalently,

{f, g} = 0, ∀g ∈ C∞(M).

If the rank of a Poisson structure Π on a manifold M is maximum and equal to the dimension
of M then the structure is symplectic. This means that the manifold M has even dimension
2n and it admits a closed 2-form Ω which is non-degenerate, i.e., the vector bundle morphism
[Ω : TM → T ∗M , induced by Ω, is an isomorphism. In fact, in such a case, we have that Π] is
just the inverse morphism of [Ω.

Another interesting class of Poisson structures are the so-called Lie-Poisson structures on
Rn. A Poisson structure on Rn is said to be Lie-Poisson if the bracket of two linear functions is
again a linear function. So, if (x1, . . . , xn) are the standard coordinates on Rn, it follows that

{xi, xj} = ckijxk, for i, j ∈ {1, . . . , n}, (2.1)

where ckij ∈ R.

In fact, there exists a one-to-one correspondence between Lie-Poisson structures on Rn and
Lie algebra structures on the same space. In fact, the Lie algebra structure [·, ·] on Rn associated
with the Lie-Poisson structure characterized by (2.1) is given by

[xiei, x
jej ] = xixjckijek.

2.2. Poisson bi-Hamiltonian systems. Let Π be a Poisson structure on a manifold M .
Then, a smooth real function H (the Hamiltonian function) induces a vector field XH = Π](dH)
(the Hamiltonian vector field). Hamilton’s equations of motion for H are:

ẋ = Π](dH) ≡ {x,H}.

So, solutions of the Hamilton equations are just the integral curves of XH . The pair ({·, ·}, H)
is said to be a Poisson Hamiltonian system.

Let ({·, ·}0, H0) be a Hamiltonian system. This system is said to be bi-Hamiltonian if there
exists another compatible Poisson structure {·, ·}1 and a Hamiltonian function H1 such that
the corresponding Hamiltonian vector fields XH0 and XH1 coincide. This means that

ẋ = {x,H0}0 = {x,H1}1.

We recall that two Poisson structures Π and Π′ are said to be compatible if the sum Π + Π′ is
also a Poisson structure or, equivalently, if the Schouten-Nijenhuis bracket [Π,Π′] is zero.

There exist different notions of completely integrable Poisson Hamiltonian systems. In this
paper, we will adopt the following definition. Let Π be a Poisson structure, with Poisson bracket
{·, ·}, on a manifold M of dimension n such that the rank of Π is constant and equal to 2r ≤ n
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in a dense open subset of M . A Poisson Hamiltonian system ({·, ·}, H) is said to be completely
integrable if there exist ϕ1, . . . , ϕr−1 ∈ C∞(M) satisfying the two following conditions:

(i) The functions H and ϕ1, . . . , ϕr−1 are functionally independent in a dense open subset
of M , that is,

dH ∧ dϕ1 ∧ · · · ∧ dϕr−1 6= 0,

in a dense open subset of M .
(ii) They are first integrals of the Hamiltonian system that pairwise commute, i.e.,

{ϕj , H} = 0 and {ϕj , ϕk} = 0, for j, k ∈ {1, . . . , r − 1}.

2.3. Poisson-Lie groups. A multiplicative Poisson structure Π on a Lie group G is a Poisson
structure such that the multiplication m : G×G→ G is a Poisson epimorphism or, equivalently,

Π(gh) = (Tgrh)(Π(g)) + (Thlg)(Π(h)), ∀g, h ∈ G.

where rh : G → G and lg : G → G are the right and left translation by h and g, respectively.
In this case, G is called a Poisson-Lie group.

Note that Rn endowed with a linear Poisson structure is an abelian Poisson-Lie group.

For a multiplicative Poisson structure Π on a Lie groupG, the linear map ψ = deΠ : g −→ ∧2g
is a 1-cocycle, i.e.

[ξ, ψη]− [η, ψξ]− ψ[ξ, η] = 0, ∀ξ, η ∈ g

and the dual map ψ∗ : Λ2g∗ −→ g∗ is a Lie bracket on g∗. In other words, the couple (g, g∗)
is a Lie bialgebra. Note that if Π is a multiplicative Poisson structure on G then Π(e) = 0, e
being the identity element in G.

On the other hand, if ((g, [·, ·]), (g∗, [·, ·]∗)) is a Lie bialgebra and G is a connected simply-
connected Lie group with Lie algebra g, then G admits a multiplicative Poisson structure Π
and [·, ·]∗ = d∗eΠ.

3. Bihamiltonian deformations and integrability

In this section, we will present a systematic method in order to obtain integrable deformations
of Lie-Poisson bi-Hamiltonian systems and we will use the Lorenz system as a guiding example.

We recall that our initial data is a dynamical system D on Rn, which is bi-Hamiltonian with
respect to two compatible linear Poisson structures. In fact, in the examples here presented,
the system D is completely integrable. The aim of this construction is two-fold:

• Firstly, to construct a bi-Hamiltonian deformation Dη of the dynamical system on Rn,
whose bi-Hamiltonian structure will be provided by a pair of multiplicative (Poisson-
Lie) structures on a non-abelian Lie group Gη. We will see that, under certain con-
ditions and for every η ∈ R, this method is fully constructive and systematic, and
guarantees that the limit η → 0 of Dη is just the initial dynamical system on Rn.

• Secondly, under the assumption that the bi-Hamiltonian system on Gη is completely
integrable, we will try to construct two completely integrable Hamiltonian systems on
the product Lie group Gη×Gη whose projection, via the multiplication ·η : Gη×Gη →
Gη in Gη, is just the bi-Hamiltonian and completely integrable system on Gη.

In the sequel we will make this construction explicit by splitting it into several steps.
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3.1. The system D and its bi-Hamiltonian structure. The Lorenz dynamical system (see
[18]) is given by the differential equations

ẋ = σ(y − x),
ẏ = ρx− xz − y,
ż = −βz + xy,

(3.1)

where σ and ρ are the Prandtl and Rayleigh numbers, respectively, and β is the aspect ratio.
In [21, 22] (see also [13]), the authors consider the conservative limit of the previous equations,
which is obtained through the following rescalling

t→ εt, x→ 1

ε
x, y → 1

σε2
y, z → 1

σε2
z, ε =

1
√
σρ

In the limit ε→ 0, the system (3.1) reduces to

ẋ = y,
ẏ = x(1− z),
ż = xy.

(3.2)

Furthermore, the transformation

x = x1, y =
x2

2
, z =

x3 + 2

2

carries (3.2) into:

ẋ1 =
x2

2
, ẋ2 = −x1x3, ẋ3 = x1x2.

It is straightforward to check that the previous system is bi-Hamiltonian with respect to the
Poisson structures {·, ·}0 and {·, ·}a in R3 which are characterized by

{x1, x2}0 = −x3

2
, {x1, x3}0 =

x2

2
, {x2, x3}0 = 0,

{x1, x2}a =
1

4
, {x1, x3}a = 0, {x2, x3}a = −x1

2
.

The corresponding Hamiltonian functions are

H0 = x3 − x2
1 and H1 = x2

2 + x2
3, (3.3)

respectively (for more details, see [13]).

Note that the Poisson structure {·, ·}a on R3 is affine and the corresponding linear Poisson
structure {·, ·}l on R3 is given by

{x1, x2}l = 0, {x1, x3}l = 0, {x2, x3}l = −x1

2
.

So, we can consider the extension {·, ·}1 to R4 of {·, ·}l

{x1, x2}1 =
x4

4
, {x1, x3}1 = 0, {x2, x3}1 = −x1

2
, {·, x4}1 = 0, (3.4)

which is a Lie-Poisson structure. In this way, the affine subspace A defined by the equation
x4 = 1 is a Poisson submanifold, and the induced Poisson structure on A is just {·, ·}a. In
the same manner, we also denote by {·, ·}0 the trivial extension to R4 of the Poisson structure
{·, ·}0, namely

{x1, x2}0 = −x3

2
, {x1, x3}0 =

x2

2
, {x2, x3}0 = 0, {·, x4}0 = 0, (3.5)
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and the Casimir functions for the Poisson bracket {·, ·}0 are

C0 = x2
2 + x2

3, C′0 = x4.

The linear Poisson structures {·, ·}0 and {·, ·}1 on R4 turn out to be compatible, in the sense
that we can define a one-parametric family of Lie-Poisson structures (a Poisson pencil)

{., .}α = (1− α){., .}0 + α{., .}1, with α ∈ R

whose explicit brackets are given by

{x1, x2}α =
αx4

4
− (1− α)

x3

2
, {x1, x3}α = (1− α)

x2

2
,

{x2, x3}α = (−α)
x1

2
, {., x4}α = 0.

(3.6)

Obviously, if {X1, X2, X3, X4} is the canonical basis of R4 then the corresponding Lie bracket
[·, ·]α on R4 is given by

[X1, X2]α =
αX4

4
− (1− α)

X3

2
, [X1, X3]α = (1− α)

X2

2
,

[X2, X3]α = (−α)
X1

2
, [·, X4]α = 0.

(3.7)

Therefore, we can say that the dynamical system D

ẋ1 =
x2x4

2
, ẋ2 = −x1x3, ẋ3 = x1x2, ẋ4 = 0, (3.8)

is bi-Hamiltonian with respect to the Lie-Poisson structures {·, ·}0 and {·, ·}1 with Hamiltonian
functions given by H0 = x3x4 − x2

1 and H1 = x2
2 + x2

3. From the previous considerations, we
also deduce that this bi-Hamiltonian system is completely integrable. Note that the original
Lorenz system is recovered within the submanifold x4 = 1.

In general, starting from a dynamical system D on Rn, the first task consists in finding
two compatible linear Poisson structures {·, ·}0 and {·, ·}1 such that our dynamical system is
bi-Hamiltonian with respect to these two Poisson structures. This means that there exist two
Hamiltonian functions H0 : Rn → R and H1 : Rn → R and the evolution of an observable
ϕ ∈ C∞(Rn) is given by

ϕ̇ = {ϕ,H0}0 = {ϕ,H1}1.

In fact, in the Lorenz system that we have just described we observe that:

• The Hamiltonian H0 (respectively, H1) is a Casimir function C1 (respectively, C0) for
{·, ·}1 (respectively, {·, ·}0).

• The rank of the Poisson structures {·, ·}0 and {·, ·}1 satisfies the following condition

rank{·, ·}0 = rank{·, ·}1 = 2r

in a dense open subset of Rn. In the previous example r = 1 and n = 4.
• The Hamiltonian systems ({·, ·}0, H0) and ({·, ·}1, H1) are completely integrable.

In general, we will denote by {Ci,Cji}j=1,...,n−2r−1 the Casimir functions for {·, ·}i, with i = 0, 1,
and by {ϕj}j=1,··· ,r−1 the set of common first integrals for the Hamiltonian systems ({·, ·}0, H0)
and ({·, ·}1, H1).



8 A. BALLESTEROS, J. C. MARRERO, AND Z. RAVANPAK

3.2. Construction of the bi-Hamiltonian system Dη. Let [·, ·]0 (respectively, [·, ·]1) be
the Lie algebra structure on Rn associated with the linear Poisson bracket {·, ·}0 (respectively,
{·, ·}1). Then, we have to find a non-trivial common adjoint 1-cocycle ψη : Rn → ∧2Rn, with
η ∈ R, for the Lie algebras (Rn, [·, ·]0) and (Rn, [·, ·]1) and with the initial condition ψ0 = 0.

In doing so, we deduce the following result.

Proposition 3.1. Let ψη : Rn → Λ2(Rn) be a common adjoint 1-cocycle for the compatible
Lie algebras (Rn, [·, ·]0) and (Rn, [·, ·]1) and Gη a connected simply-connected Lie group with Lie
algebra (Rn, [·, ·]∗η = ψ∗η). If {·, ·}0η and {·, ·}1η are the multiplicative Poisson brackets on Gη
associated with the 1-cocycle ψη : Rn → Λ2(Rn) then {·, ·}0η and {·, ·}1η are compatible.

Proof. It is a consequence of the following general result. If H is a connected Lie group with
Lie algebra h and {·, ·}0, {·, ·}1 are two multiplicative Poisson brackets on H then the Pois-
son brackets are compatible if and only if the dual Lie algebras (h∗, [·, ·]∗0) and (h∗, [·, ·]∗1) are
compatible.

Next, we have to find a Casimir function C0η (resp., C1η) for the Poisson bracket {·, ·}0η
(resp., {·, ·}1η) on Gη in such a way that:

(i) The Hamiltonian systems ({·, ·}0η, H0η := C1η) and ({·, ·}1η, H1η := C0η) coincide, that
is, we have a bi-Hamiltonian system Dη on the Lie group Gη.

(ii) This system is a η-deformation of the original bi-Hamiltonian system D, i.e.,

lim
η→0
{·, ·}0η = {·, ·}0, lim

η→0
{·, ·}1η = {·, ·}1

and

lim
η→0

H0η = H0, lim
η→0

H1η = H1.

Moreover, in our examples, the Hamiltonian systems ({·, ·}0η, H0η) and ({·, ·}1η, H1η) are com-
pletely integrable and the ranks of {·, ·}0η and {·, ·}1η are again 2r within a dense open subset

of Gη. We will denote by {Ciη,Cjiη}j=1,...,n−2r−1 the Casimir functions for the multiplicative

Poisson bracket {·, ·}iη, with i = 0, 1, and by {ϕjη}j=1,...,r−1 the common first integrals for the
Hamiltonian systems ({·, ·}iη, Hiη), with i = 0, 1. In fact, we have that

lim
η→0

C
j
iη = C

j
i , with j = 1, . . . , n− 2r − 1,

and

lim
η→0

ϕjη = ϕj , with j = 1, . . . , r − 1.

3.2.1. The Lorenz 1-cocycle and its associated non-abelian group Gη. A straightforward com-
putation shows that a non-trivial admissible cocycle for the family of Lie algebras gα (see (3.7))
is:

ψη(X1) = 0, ψη(X2) = −ηX3 ∧X4, ψη(X3) = ηX2 ∧X4, ψη(X4) = 0.

So, we have the family of Lie bialgebras (gα, ψη). The Lie bracket [·, ·]∗η on (R4)∗ ' R4 obtained
from the dual cocommutator map is:

[X2, X4]∗η = ηX3, [X3, X4]∗η = −ηX2,

the rest of basic Lie brackets being zero.
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Now, let Gη be the connected and simply-connected Lie group with Lie algebra (R4, [·, ·]∗η).

Then, one may prove that Gη is diffeomorphic to R4 and the multiplication ·η of two group
elements g = (x1, x2, x3, x4) and g′ = (x′1, x

′
2, x
′
3, x
′
4) reads

g ·η g′ = (x1 + x′1, x2 + x′2 cos(ηx4) + x′3 sin(ηx4), x3 − x′2 sin(ηx4) + x′3 cos(ηx4), x4 + x′4).

Note that G0 is the abelian Lie group and Gη, with η 6= 0, is isomorphic to the special euclidean
group SE(2).

A basis {
←−
X 1,
←−
X 2,
←−
X 3,
←−
X 4} (resp., {

−→
X 1,
−→
X 2,
−→
X 3,
−→
X 4}) of left-invariant (resp., right-invariant)

vector fields for Gη is found to be

{ ∂

∂x1
, cos(ηx4)

∂

∂x2
− sin(ηx4)

∂

∂x3
, sin(ηx4)

∂

∂x2
+ cos(ηx4)

∂

∂x3
,
∂

∂x4
}

(resp., { ∂

∂x1
,
∂

∂x2
,
∂

∂x3
, ηx3

∂

∂x2
− ηx2

∂

∂x3
+

∂

∂x4
}).

Finally, the adjoint action Ad : Gη×gη −→ gη for the Lie group Gη can be straightforwardly
computed:

Adg(X
1) = X1,

Adg(X
2) = cos(ηx4)X2 − sin(ηx4)X3,

Adg(X
3) = sin(ηx4)X2 + cos(ηx4)X3,

Adg(X
4) = −ηx3X

2 + ηx2X
3 +X4.

3.2.2. A Poisson-Lie group structure on Gη. By construction, the following family of non-trivial
admissible 1-cocycles for the Lie algebra (R4, [·, ·]∗η) is obtained as the dual of the commutator
map (3.7), namely

ψα(X1) = −α
2
X2 ∧X3, ψα(X2) =

(1− α)

2
X1 ∧X3,

ψα(X3) = − (1− α)

2
X1 ∧X2, ψα(X4) =

α

4
X1 ∧X2.

Denote by Παη the (unique) multiplicative Poisson structure on Gη which is induced by the
1-cocycle ψα. In order to obtain Παη, we consider the 1-form γψα on Gη with values in Λ2gη
which is characterized by the following relation

γψα(
←−
X )(g) = Adg(ψα(X)), for X ∈ gη and g ∈ Gη.

As we know (see the proof of Theorem 10.9 in [23]), γψα is an exact 1-form. So, there exists a
unique function π : Gη → Λ2gη satisfying

π(e) = 0 and dπ = γψα ,

where e = (0, 0, 0, 0) is the identity element in Gη.

If we suppose that

π(g) = πij(g)Xi ∧Xj , for g ∈ Gη,
then the multiplicative Poisson structure Παη is given by

Παη(g) = πij(g)
−→
Xi ∧

−→
Xj

(see the proof of Theorem 10.9 in [23]).
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Applying the previous process, we deduce that the corresponding compatible multiplicative
Poisson brackets {·, ·}αη on Gη are given by

{x1, x2}αη =
α

4

sin(ηx4)

η
− (1− α)

x3

2
, {x2, x3}αη = (−α)

x1

2
,

{x1, x3}αη = (1− α)
x2

2
+
α

4

cos(ηx4)− 1

η
, {., x4}αη = 0.

(3.9)

As we expected, limη→0{., .}αη = {., .}α. Thus, we have constructed an η-deformation (3.9) of
the Lie-Poisson bracket (3.6). We stress that (3.9) is just a multiplicative Poisson-Lie structure
on the noncommutative group Gη, while (3.6) can be thought of as a multiplicative structure
on the abelian Lie group R4.

3.2.3. Casimir functions and deformed bi-Hamiltonian structure. In the particular cases when
α = 0 and α = 1, the η-deformations {·, ·}0η and {·, ·}1η of the Lie-Poisson brackets {·, ·}0 and
{·, ·}1 have the form

{x1, x2}0η = −x3

2
, {x1, x3}0η =

x2

2
, {x2, x3}0η = 0, (3.10)

and

{x1, x2}1η =
sin(ηx4)

4η
, {x1, x3}1η =

cos(ηx4)− 1

4η
, {x2, x3}1η = −x1

2
. (3.11)

The function x4 is a Casimir for both Poisson structures. Other Casimir functions for these
two multiplicative Poisson structures are found to be

C0η = x2
2 + x2

3, C1η =
sin(ηx4)

η
x3 −

cos(ηx4)− 1

η
x2 − x2

1,

where it becomes clear that limη→0 C0η = H1 and limη→0 C1η = H0. In fact, if we denote
the Casimir functions C0η and C1η by H1η and H0η, respectively, then the dynamical systems
associated with the Hamiltonian systems (Gη, {·, ·}0η, H0η) and (Gη, {·, ·}1η, H1η) coincide and
define the deformed dynamical system Dη given by

ẋ1 =
1

2

sin(ηx4)

η
x2 +

1

2

cos(ηx4)− 1

η
x3, ẋ2 = −x1x3, ẋ3 = x1x2, ẋ4 = 0. (3.12)

In other words, this dynamical system Dη on the Lie group Gη is bi-Hamiltonian with respect
to the compatible multiplicative Poisson structures {·, ·}0η and {·, ·}1η. Indeed, this deformed
bi-Hamiltonian system is completely integrable and the η → 0 limit is just the D system (3.8).
The preservation of the closed nature of the trajectories under deformation is clearly appreciated
in Figure 1, where the trajectories have been found by numerical integration.

4. Coupled integrable deformations and non-abelian reduction

In this last step, we present how to construct two coupled completely integrable Hamiltonian
systems on the product Lie group Gη × Gη which admit reduction, via the multiplication
·η : Gη ×Gη → Gη, to the same bi-Hamiltonian system on Gη that we denoted Dη (see Section
3.2).

For this purpose, we will consider the product {·, ·}iη ⊕ {·, ·}iη of the multiplicative Poisson
structure {·, ·}iη on Gη with itself, i = 0, 1. Then, we will obtain two multiplicative Poisson



POISSON-LIE GROUPS, BI-HAMILTONIAN SYSTEMS AND INTEGRABLE DEFORMATIONS 11

(a)

-1
0

1x1

-2
0

2

x2
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1
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-1.0-0.50.00.51.0
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-1.0

-0.5

0.0

0.5

1.0

x3

(b)

Figure 1. (A) Closed trajectories of the Lorenz system (3.8) for x4 = 1 and
the initial data x1(0) = 1, x2(0) = 2, x3(0) = 3 (black line) and of the deformed
Lorenz system (3.12) with the same initial data, x4 = 1, and η = π

4 (green),
η = −π4 (blue), η = π

8 (red), η = −π8 (yellow). (B) The same figure as (A) but
with initial data x1(0) = 1, x2(0) = −1, x3(0) = 0.5.

structures on Gη ×Gη which, if there is not risk of confusion, we also denote by {·, ·}0η and by
{·, ·}1η, respectively. Note that

rank{·, ·}0η = rank{·, ·}1η = 4r

in a dense open subset of Gη ×Gη. Moreover,

{Ciη ◦ pr1,C
j
iη ◦ pr1,Ciη ◦ pr2,C

j
iη ◦ pr2}j=1,...,n−2r−1

are Casimir functions for {·, ·}iη, with i = 0, 1. Here, pr1 : Gη ×Gη → Gη and pr2 : Gη ×Gη →
Gη are the canonical projections.

In addition, we also consider the coproduct of the Hamiltonian functions H0η and H1η, that
is, the Hamiltonian functions on Gη×Gη defined by H0◦·η and H1◦·η, where ·η : Gη×Gη → Gη
is the multiplication in Gη. If there is not risk of confusion, we will use the same notation H0η

and H1η for the previous functions.

We remark that H0η (respectively, H1η) is a Casimir function for the Poisson bracket {·, ·}1η
(respectively, {·, ·}0η) on Gη × Gη. Furthermore, we have that the multiplication ·η : Gη ×
Gη → Gη is a Poisson epimorphism between the Poisson manifolds (Gη ×Gη, {·, ·}0η ⊕{·, ·}0η)
(respectively, (Gη × Gη, {·, ·}1η ⊕ {·, ·}1η)) and (Gη, {·, ·}0η) (respectively, (Gη, {·, ·}1η)). This
implies the following result.

Proposition 4.1. The Hamiltonian systems ({·, ·}0η⊕{·, ·}0η, H0η◦·η) and ({·, ·}1η⊕{·, ·}1η, H1η

◦·η) on Gη×Gη admit reduction, via the multiplication ·η : Gη×Gη → Gη, to the bi-Hamiltonian
system Dη on Gη.

From the previous result, the dynamical systems on Gη × Gη are said to be quasi bi-
Hamiltonian systems.

We also remark that

lim
η→0

({·, ·}0η ⊕ {·, ·}0η) = {·, ·}0 ⊕ {·, ·}0, lim
η→0

({·, ·}1η ⊕ {·, ·}1η = {·, ·}1 ⊕ {·, ·}1



12 A. BALLESTEROS, J. C. MARRERO, AND Z. RAVANPAK

and

lim
η→0

(H0η ◦ ·η) = H0 ◦+, lim
η→0

(H1η ◦ ·η) = H1 ◦+.

Therefore, the Hamiltonian systems ({·, ·}iη ⊕ {·, ·}iη, Hiη ◦ ·η), i = {0, 1}, may be considered
as η-deformations of the quasi bi-Hamiltonian systems ({·, ·}i ⊕ {·, ·}i, Hi ◦ +), i = {0, 1}, on
Rn×Rn. Note that these last systems admit reduction, via the sum + : Rn×Rn → Rn, to the
initial bi-Hamiltonian system on Rn.

Moreover, we have that

{H1η ◦ ·η, H0η ◦ ·η, ϕk ◦ ·η}k=1,...,r−1

are functionally independent first integrals of the Hamiltonian system ({·, ·}0η⊕{·, ·}0η, H0η ◦·η)
that pairwise commute, and the same holds for

{H0η ◦ ·η, H1η ◦ ·η, ϕk ◦ ·η}k=1,...,r−1

and the Hamiltonian system ({·, ·}1η ⊕ {·, ·}1η, H1η ◦ ·η). So, we conclude that

Proposition 4.2. If r = 1 the Hamiltonian systems ({·, ·}0η ⊕{·, ·}0η, H0η ◦ ·η) and ({·, ·}1η ⊕
{·, ·}1η, H1η ◦ ·η) in Gη ×Gη are completely integrable.

Proof. It follows using that {H0η ◦ ·η, H1η ◦ ·η} are functionally independent first integrals for
both Hamiltonian systems and, in addition, they pairwise commute.

We remark that in the two examples presented in this paper, r = 1.

4.1. Deformed coupled Lorenz systems. Denote by Π0η and Π1η the multiplicative Poisson
structures on the Lie group Gη associated with the Poisson brackets {·, ·}0η and {·, ·}1η given
by (3.10) and (3.11), respectively, and by (y, z) = ((y1, y2, y3, y4), (z1, z2, z3, z4)) the standard
coordinates on Gη ×Gη ' R4 × R4.

Then, we can consider two multiplicative Poisson structures on Gη ×Gη:

• The product of Π0η with itself, that is, the Poisson bracket on Gη×Gη, which we also denote
by {·, ·}0η, defined by

{y1, y2}0η = −y3

2
, {y1, y3}0η =

y2

2
, {z1, z2}0η = −z3

2
, {z1, z3}0η =

z2

2
,

the rest of the Poisson brackets of the coordinate functions being zero and

• The product of Π1η with itself, that is, the Poisson bracket on Gη×Gη, which we also denote
by {·, ·}1η, given by the non-vanishing Poisson brackets

{y1, y2}1η =
sin(ηy4)

4η
, {y1, y3}1η =

cos(ηy4)− 1

4η
, {y2, y3}1η = −y1

2
,

{z1, z2}1η =
sin(ηz4)

4η
, {z1, z3}1η =

cos(ηz4)− 1

4η
, {z2, z3}1η = −z1

2
.

If pri : Gη × Gη → Gη, with i ∈ {1, 2}, are the canonical projections then the Casimir
functions for the Poisson brackets {·, ·}0η and {·, ·}1η are

C0η ◦ pr1 = y2
2 + y2

3 , C0η ◦ pr2 = z2
2 + z2

3 , C′0η ◦ pr1 = y4, C′0η ◦ pr2 = z4,
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and

C1η ◦ pr1 =
sin(ηy4)

η
y3 −

cos(ηy4)− 1

η
y2 − y2

1 ,

C1η ◦ pr2 =
sin(ηz4)

η
z3 −

cos(ηz4)− 1

η
z2 − z2

1 ,

C′1η ◦ pr1 = y4, C′1η ◦ pr2 = z4,

respectively.

Now, we consider on Gη ×Gη the coproduct of the Hamiltonian functions H0η and H1η on
Gη, which we also denote by H0η and H1η,

H0η := C1η ◦ ·η =

(
1− cos(η(y4 + z4))

η

)
y2 +

sin(η(y4 + z4))

η
y3

+

(
cos(ηy4)− cos(ηz4)

η

)
z2 +

(
sin(ηy4) + sin(ηz4)

η

)
z3 − (y1 + z1)2,

and

H1η := C0η ◦ ·η = y2
2 + y2

3 + z2
2 + z2

3 + 2(y2z2 + y3z3) cos(ηy4) + 2(y2z3 − y3z2) sin(ηy4).

The Hamiltonian system (Gη × Gη, {·, ·}0η, H0η) can be straightforwardly computed and
reads

ẏ1 =

(
sin(η(y4 + z4))

η

)
y2

2
+

(
cos(η(y4 + z4))− 1

η

)
y3

2
,

ẏ2 = −y3(y1 + z1), ẏ3 = y2(y1 + z1), ẏ4 = 0,

ż1 =

(
sin(ηy4) + sin(ηz4)

2η

)
z2 +

(
cos(ηz4)− cos(ηy4)

2η

)
z3,

ż2 = −z3(y1 + z1), ż3 = z2(y1 + z1), ż4 = 0,

while (Gη ×Gη, {·, ·}1η, H1η) gives rise to the dynamical system

ẏ1 =

(
sin(ηy4)

2η

)
y2 +

(
cos(ηy4)− 1

2η

)
y3 +

(
sin(ηy4)

2η

)
z2 −

(
cos(ηy4)− 1

2η

)
z3,

ẏ2 = −y1(y3 − z2 sin(ηy4) + z3 cos(ηy4)),

ẏ3 = y1(y2 + z2 cos(ηy4) + z3 sin(ηy4)),

ẏ4 = 0,

ż1 =

(
sin(η(y4 + z4))− sin(ηy4)

2η

)
y2 +

(
cos(η(y4 + z4))− cos(ηy4)

2η

)
y3

+

(
sin(ηz4)

2η

)
z2 +

(
cos(ηz4)− 1

2η

)
z3

ż2 = −z1(sin(ηy4)y2 + cos(ηy4)y3 + z3),

ż3 = z1(cos(ηy4)y2 − sin(ηy4)y3 + z2),

ż4 = 0.

As we know, both systems are completely integrable and they admit reduction, via the
multiplication ·η : Gη × Gη → Gη, to the bi-Hamiltonian system Dη on Gη in Section 3.2.
This last result becomes apparent if we consider the new coordinates (x, z) = ((x1, x2, x3,
x4), (z1, z2, z3, z4)) on Gη ×Gη, with x = y ·η z.
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It is straightforward to prove that in these new coordinates, we have the following expressions
for the Poisson structures Π0η and Π1η on Gη ×Gη:

Π0η(x, z) = −x3

2

∂

∂x1
∧ ∂

∂x2
+
x2

2

∂

∂x1
∧ ∂

∂x3
− z3

2

∂

∂x1
∧ ∂

∂z2
+
z2

2

∂

∂x1
∧ ∂

∂z3

+
(

cos(η(x4 − z4))
z3

2
− sin(η(x4 − z4))

z2

2

) ∂

∂x2
∧ ∂

∂z1
+
z2

2

∂

∂z1
∧ ∂

∂z3

−
(

cos(η(x4 − z4))
z2

2
+ sin(η(x4 − z4))

z3

2

) ∂

∂x3
∧ ∂

∂z1
− z3

2

∂

∂z1
∧ ∂

∂z2
,

Π1η(x, z) =
sin(ηx4)

4η

∂

∂x1
∧ ∂

∂x2
+

(
cos(ηx4)− 1

4η

)
∂

∂x1
∧ ∂

∂x3
− x1

2

∂

∂x2
∧ ∂

∂x3

+
sin(ηz4)

4η

∂

∂x1
∧ ∂

∂z2
+

(
cos(ηz4)− 1

4η

)
∂

∂x1
∧ ∂

∂z3
− z1

2

∂

∂z2
∧ ∂

∂z3

+

(
sin(η(x4 − z4))− sin(ηx4)

4η

)
∂

∂x2
∧ ∂

∂z1
+

sin(ηz4)

4η

∂

∂z1
∧ ∂

∂z2

+
z1

2
sin(η(x4 − z4))

∂

∂x2
∧ ∂

∂z2
− z1

2
cos(η(x4 − z4))

∂

∂x2
∧ ∂

∂z3

+

(
cos(η(x4 − z4))− cos(ηx4)

4η

)
∂

∂x3
∧ ∂

∂z1
+
z1

2
cos(η(x4 − z4))

∂

∂x3
∧ ∂

∂z2

+
z1

2
sin(η(x4 − z4))

∂

∂x3
∧ ∂

∂z3
+

(
cos(ηz4)− 1

4η

)
∂

∂z1
∧ ∂

∂z3
.

The Casimir functions of the Poisson bracket {·, ·}0η are

C0η ◦ pr1 = x2
2 + x2

3 + z2
2 + z2

3 − 2(x2z2 + x3z3) cos(η(x4 − z4))

+2(x3z2 − x2z3) sin(η(x4 − z4)),

C0η ◦ pr2 = z2
2 + z2

3 , C′0η ◦ pr1 = x4 − z4, C′0η ◦ pr2 = z4,

and for {·, ·}1η we have

C1η ◦ pr1 =
sin(η(x4 − z4))

η
(x3 − z3)−

(
cos(η(x4 − z4)− 1

η

)
(x2 + z2)− (x1 − z1)2,

C1η ◦ pr2 =
sin(ηz4)

η
z3 −

(
cos(ηz4)− 1

η

)
z2 − z2

1 ,

C′1η ◦ pr1 = x4 − z4, C′1η ◦ pr2 = z4.

On the other hand, the Hamiltonian functions H0η and H1η read

H0η =
sin(ηx4)

η
x3 −

(
cos(ηx4)− 1

η

)
x2 − x2

1, H1η = x2
2 + x2

3.

In these coordinates, the two completely integrable Hamiltonian systems (Gη×Gη, {·, ·}0η, H0η)
and (Gη ×Gη, {·, ·}1η, H1η) become

ẋ1 =
1

2

sin(ηx4)

η
x2 +

(
cos(ηx4)− 1

2η

)
x3, ẋ2 = −x1x3, ẋ3 = x1x2, ẋ4 = 0,

ż1 =

(
sin(η(x4 − z4)) + sin(ηz4)

2η

)
z2 +

(
cos(η(z4))− cos(η(x4 − z4)

2η

)
z3,

ż2 = −x1z3, ż3 = x1z2, ż4 = 0,

(4.1)
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and

ẋ1 =
1

2

sin(ηx4)

η
x2 +

(
cos(ηx4)− 1

2η

)
x3, ẋ2 = −x1x3, ẋ3 = x1x2, ẋ4 = 0,

ż1 =

(
sin(ηx4)− sin(η(x4 − z4))

2η

)
x2 +

(
cos(η(x4))− cos(η(x4 − z4)

2η

)
x3,

ż2 = −z1(x2 sin(η(x4 − z4)) + x3 cos(η(x4 − z4))),

ż3 = z1(x2 cos(η(x4 − z4))− x3 sin(η(x4 − z4))),

ż4 = 0,

(4.2)

respectively. Again, the multiplication ·η : Gη ×Gη → Gη leads to the projection

·η ((x1, x2, x3, x4), (z1, z2, z3, z4)) = (x1, x2, x3, x4). (4.3)

So, by recalling (3.12), (4.1), (4.2) and (4.3), we directly deduce that the two completely inte-
grable Hamiltonian systems (Gη×Gη, {·, ·}0η, H0η) and (Gη×Gη, {·, ·}1η, H1η) admit reduction,
via the multiplication ·η : Gη ×Gη → Gη, to the bi-Hamiltonian system Dη on Gη considered
in Section 3.2.

5. Another example: an Euler top system

In this section, we will discuss another example: an Euler top system. We will follow the
same steps as in the Lorenz system. So, first of all, we will present the dynamical system and
its bi-Hamiltonian structure.

5.1. The system D and its bi-Hamiltonian structure. We consider the following com-
pletely integrable system D on R3

ẋ1 = x2
2 − x2

3,
ẋ2 = x1(2x3 − x2),
ẋ3 = x1(x3 − 2x2).

(5.1)

This system is equivalent to a particular case of the so(3) Euler top, which is a well-known three
dimensional bi-Hamiltonian system (see [13]) belonging to the realm of classical mechanics [20].

In fact, the previous system is bi-Hamiltonian with respect to the Lie-Poisson structures
{·, ·}0 and {·, ·}1 in R3 which are characterized by

{x1, x2}0 = −x3, {x1, x3}0 = x2, {x2, x3}0 = −x1,

{x1, x2}1 = −x2, {x1, x3}1 = x3, {x2, x3}1 = −2x1.
(5.2)

The Casimirs for these Poisson structures are

C0 = −1

2
(x2

1 + x2
2 + x2

3) and C1 = x2
1 + x2x3.

It is straightforward to prove that the Hamiltonian systems ({·, ·}0, H0 := C1) and ({·, ·}1, H1 :=
C0) coincide with the system D.

The real Lie algebras corresponding to {., .}0 and {., .}1 are so(3) and sl(2;R), respectively.
The structure equations for so(3) and sl(2,R) are

[X1, X2]0 = −X3, [X1, X3]0 = X2, [X2, X3]0 = −X1,

[X1, X2]1 = −X2, [X1, X3]1 = X3, [X2, X3]1 = −2X1.
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We consider the family of compatible Lie-Poisson structures:

{·, ·}α = (1− α){·, ·}0 + α{·, ·}1, with α ∈ R

which are characterized by

{x1, x2}α = (α− 1)x3 − αx2, {x1, x3}α = (1− α)x2 + αx3,
{x2, x3}α = −(1 + α)x1.

(5.3)

If {X1, X2, X3} is the canonical basis of R3 then the corresponding Lie bracket [·, ·]α on R3 is
given by

[X1, X2]α = (α− 1)X3 − αX2, [X1, X3]α = (1− α)X2 + αX3,
[X1, X3]α = −(1 + α)X1.

So, we have a family of Lie algebras (gα, [·, ·]α).

5.2. Construction of the bi-Hamiltonian system Dη. First of all, we will consider a family
of non-trivial admissible 1-cocycles for the previous Lie algebras (gα, [·, ·]α) given by:

ψη(X1) = 0, ψη(X2) = ηX2 ∧X1, ψη(X3) = ηX3 ∧X1.

Therefore, we have an η-parametric family of Lie bialgebras (gα, ψη). The Lie bracket [·, ·]∗η
on (R3)∗ ' R3 obtained from the dual cocommutator map is:

[X1, X2]∗η = −ηX2, [X1, X3]∗η = −ηX3, [X2, X3]∗η = 0.

So, (R3, [·, ·]∗η) is just the so-called book Lie algebra.

Now, let Gη be a connected simply-connected Lie group with Lie algebra (R3, [·, ·]∗η). Then,

one may prove that Gη is diffeomorphic to R3 and the multiplication of two elements g =
(x1, x2, x3) and g′ = (x′1, x

′
2, x
′
3) of R3 is given by

g.ηg
′ = (x1 + x′1, x2 + x′2e

−ηx1 , x3 + x′3e
−ηx1).

A basis {
←−
X 1,
←−
X 2,
←−
X 3} (resp., {

−→
X 1,
−→
X 2,
−→
X 3}) of left-invariant (resp., right-invariant) vector

fields is

{ ∂

∂x1
, e−ηx1

∂

∂x2
, e−ηx1

∂

∂x3
}

(resp., { ∂

∂x1
− ηx2

∂

∂x2
− ηx3

∂

∂x3
,
∂

∂x2
,
∂

∂x3
}).

The adjoint action Ad : Gη × gη −→ gη for Lie group Gη is as follows:

Adg(X
1) = η(x2X

2 + x3X
3) +X1, Adg(X

2) = e−ηx1X2, Adg(X
3) = e−ηx1X3.

Next, as in the case of the Lorenz system, we will introduce a Poisson-Lie group structure on
Gη.

As we know, a family of non-trivial admissible 1-cocycles for the Lie algebra (R3, [·, ·]∗η) is

ψα(X1) = −(1 + α)X1 ∧X3, ψα(X2) = −αX1 ∧X2 + (1− α)X1 ∧X3,

ψα(X3) = (α− 1)X1 ∧X2 + αX1 ∧X3.
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Applying the same process as in the previous example (see Section 3.2.2), we deduce that the
corresponding compatible multiplicative Poisson brackets {·, ·}αη on Gη are characterized by

{x1, x2}αη = (α− 1)x3 − αx2,

{x1, x3}αη = (1− α)x2 + αx3,

{x2, x3}αη = η(α− 1)(
x2

2

2
+
x2

3

2
)− ηαx2x3 + (1 + α)

e−2ηx1 − 1

2η
.

As expected, limη→0{., .}αη = {., .}α and this means that we have a η-deformation of the
Lie-Poisson bracket (5.3).

In the cases when α = 0 and α = 1, the η-deformations {·, ·}0η and {·, ·}1η of the Lie-Poisson
brackets {·, ·}0 and {·, ·}1 have the form

{x1, x2}0η = −x3, {x1, x3}0η = x2,

{x2, x3}0η = −η(
x2

2

2
+
x2

3

2
) +

e−2ηx1 − 1

2η
.

(5.4)

{x1, x2}1η = −x2, {x1, x3}1η = x3,

{x2, x3}1η = −ηx2x3 +
e−2ηx1 − 1

η
.

(5.5)

Casimir functions for the previous two multiplicative Poisson structures are:

C0η = −eηx1
x2

2 + x2
3

2
− eηx1 + e−ηx1 − 2

2η2
,

C1η = eηx1(x2x3) +
eηx1 + e−ηx1 − 2

η2
.

It is clear that limη→0 C0η = C0 and limη→0 C1η = C1. If we denote the Casimir functions
C0η and C1η by H1η and H0η, respectively, then the dynamical systems associated with the
Hamiltonian systems (R3, {·, ·}0η, H0η) and (R3, {·, ·}1η, H1η) coincide. In other words, the
dynamical system on the Lie group Gη

ẋ1 = eηx1(x2
2 − x2

3),

ẋ2 = ηeηx1x2x
2
3 −

1

2
ηeηx1(x3

2 − x2x
2
3) +

eηx1 − e−ηx1

2η
(2x3 − x2),

ẋ3 = −ηeηx1x2
2x3 +

1

2
ηeηx1(x2

2x3 + x3
3) +

eηx1 − e−ηx1

2η
(x3 − 2x2).

(5.6)

is bi-Hamiltonian with respect to the compatible multiplicative Poisson structures {·, ·}0η and
{·, ·}1η.

From the previous considerations, we also deduce that the bi-Hamiltonian system is com-
pletely integrable.

Finally, as we expected, the limit when η approaches to zero of (5.6) is just the bi-Hamiltonian
system (5.1).

5.3. Deformed coupled Euler top systems. Denote by Π0η and Π1η the multiplicative
Poisson structures on the Lie group Gη associated with the Poisson brackets {·, ·}0η and {·, ·}1η
given by (5.4) and (5.5), respectively, and by (y, z) = ((y1, y2, y3), (z1, z2, z3)) the standard
coordinates on Gη ×Gη ' R3 × R3.

Then, we can consider the multiplicative Poisson structures on Gη ×Gη:
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• The product of Π0η with itself, that is, the Poisson bracket on Gη×Gη, which we also denote
by {·, ·}0η, characterized by

{y1, y2}0η = −y3, {y1, y3}0η = y2,

{y2, y3}0η = −η(
y2

2

2
+
y2

3

2
) +

e−2ηy1 − 1

2η
,

{z1, z2}0η = −z3, {z1, z3}0η = z2,

{z2, z3}0η = −η(
z2

2

2
+
z2

3

2
) +

e−2ηz1 − 1

2η
.

• The product of Π1η with itself, that is, the Poisson bracket on Gη×Gη, which we also denote
by {·, ·}1η, characterized by

{y1, y2}1η = −y2, {y1, y3}1η = y3,

{y2, y3}1η = −ηy2y3 +
e−2ηy1 − 1

η
,

{z1, z2}1η = −z2, {z1, z3}1η = z3,

{z2, z3}1η = −ηz2z3 +
e−2ηz1 − 1

η
.

If pri : Gη × Gη → Gη, with i ∈ {1, 2}, are the canonical projections then the Casimir
functions for the Poisson brackets {·, ·}0η and {·, ·}1η are

C0η ◦ pr1 = −eηy1 y
2
2 + y2

3

2
− eηy1 + e−ηy1 − 2

2η2
,

C0η ◦ pr2 = −eηz1 z
2
2 + z2

3

2
− eηz1 + e−ηz1 − 2

2η2
,

and

C1η ◦ pr1 = eηy1(y2y3) +
eηy1 + e−ηy1 − 2

η2
,

C1η ◦ pr2 = eηz1(z2z3) +
eηz1 + e−ηz1 − 2

η2
,

respectively.

Now, we consider on Gη ×Gη the coproduct of the Hamiltonian functions H0η and H1η on
Gη, which we also denote by H0η and H1η,

H0η := C1η ◦ ·η = eηz1(y2z3 + y3z2) + eη(y1+z1)y2y3 + eη(z1−y1)z2z3 +
eη(y1+z1) + e−η(y1+z1) − 2

η2
,

and

H1η := C0η ◦ ·η = −eηz1(y2z2 + y3z3)− eη(y1+z1)

(
y2

2

2
+
y2

3

2

)
− eη(z1−y1)

(
z2

2

2
+
z2

3

2

)
−e

η(y1+z1) + e−η(y1+z1) − 2

2η2
.
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Then, the Hamiltonian systems (Gη × Gη, {·, ·}0η, H0η) and (Gη × Gη, {·, ·}1η, H1η) are given
by

ẏ1 = −y3

(
y3e

η(y1+z1) + z3e
ηz1

)
+ y2

(
y2e

η(y1+z1) + z2e
ηz1

)
,

ẏ2 = y3

(
ηy2y3e

η(y1+z1) − ηz2z3e
η(z1−y1) +

eη(y1+z1) − e−η(y1+z1)

η

)
+
(
y2e

η(y1+z1) + z2e
ηz1

)(
e−2ηy1 − 1

2η
− η(

y2
2

2
+
y2

3

2
)

)
,

ẏ3 = −y2

(
ηy2y3e

η(y1+z1) − ηz2z3e
η(z1−y1) +

eη(y1+z1) − e−η(y1+z1)

η

)
+
(
y3e

η(y1+z1) + z3e
ηz1

)(
η(
y2

2

2
+
y2

3

2
)− e−2ηy1 − 1

2η

)
,

ż1 = −z3

(
y3e

ηz1 + z3e
η(z1−y1)

)
+ z2

(
y2e

ηz1 + z2e
η(z1−y1)

)
,

ż2 = z3

(
ηy2y3e

η(y1+z1) + η(y2z3 + y3z2)eηz1 + ηz2z3e
η(z1−y1) +

eη(y1+z1) − e−η(y1+z1)

η

)
+
(
y2e

ηz1 + z2e
η(z1−y1)

)(
e−2ηz1 − 1

2η
− η(

z2
2

2
+
z2

3

2
)

)
,

ż3 = −z2

(
ηy2y3e

η(y1+z1) + η(y2z3 + y3z2)eηz1 + ηz2z3e
η(z1−y1) +

eη(y1+z1) − e−η(y1+z1)

η

)
+
(
y3e

ηz1 + z3e
η(z1−y1)

)(
η(
z2

2

2
+
z2

3

2
)− e−2ηz1 − 1

2η

)
,

and

ẏ1 = y2

(
y2e

η(y1+z1) + z2e
ηz1

)
− y3

(
y3e

η(y1+z1) + z3e
ηz1

)
,

ẏ2 = −y2

(
η(
y2

2

2
+
y2

3

2
)eη(y1+z1) − η(

z2
2

2
+
z2

3

2
)eη(z1−y1) +

eη(y1+z1) − e−η(y1+z1)

2η

)
−
(
y3e

η(y1+z1) + z3e
ηz1

)(
e−2ηy1 − 1

η
− ηy2y3

)
,

ẏ3 = y3

(
η(
y2

2

2
+
y2

3

2
)eη(y1+z1) − η(

z2
2

2
+
z2

3

2
)eη(z1−y1) +

eη(y1+z1) − e−η(y1+z1)

2η

)
−
(
y2e

η(y1+z1) + z2e
ηz1

)(
ηy2y3 −

e−2ηy1 − 1

η

)
,

ż1 = z2

(
y2e

ηz1 + z2e
η(z1−y1)

)
− z3

(
y3e

ηz1 + z3e
η(z1−y1)

)
,

ż2 = −z2

(
η(
y2

2

2
+
y2

3

2
)eη(y1+z1) + η(

z2
2

2
+
z2

3

2
)eη(z1−y1) +

eη(y1+z1) − e−η(y1+z1)

2η

)
−ηeηz1(y2z2 + y3z3)z2 −

(
y3e

ηz1 + z3e
η(z1−y1)

)(
e−2ηz1 − 1

η
− ηz2z3

)
,

ż3 = z3

(
η(
y2

2

2
+
y2

3

2
)eη(y1+z1) + η(

z2
2

2
+
z2

3

2
)eη(z1−y1) +

eη(y1+z1) − e−η(y1+z1)

2η

)
+ηeηz1(y2z2 + y3z3)z3 −

(
y2e

ηz1 + z2e
η(z1−y1)

)(
ηz2z3 −

e−2ηz1 − 1

η

)
,

respectively.
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As we know, these systems are completely integrable and they admit reduction, via the
multiplication ·η : Gη ×Gη → Gη, to the bi-Hamiltonian system on Gη in Section 5.2.

This last result can be straightforwardly shown by considering the new coordinates (x, z) =
((x1, x2, x3), (z1, z2, z3)) on Gη × Gη, with x = y ·η z. In these new coordinates, the Poisson
structures Π0η and Π1η on Gη ×Gη are given by

Π0η(x, z) = −x3
∂

∂x1
∧ ∂

∂x2
+ x2

∂

∂x1
∧ ∂

∂x3
+

(
e−2ηx1 − 1

2η
− η(

x2
2

2
+
x2

3

2
)

)
∂

∂x2
∧ ∂

∂x3

−z3
∂

∂x1
∧ ∂

∂z2
+ z2

∂

∂x1
∧ ∂

∂z3
+ z3e

−η(x1−z1) ∂

∂x2
∧ ∂

∂z1
− z2e

−η(x1−z1) ∂

∂x3
∧ ∂

∂z1

+

(
e−η(x1+z1) − e−η(x1−z1)

2η
− ηe−η(x1−z1)(

z2
2

2
+
z2

3

2
)

)
∂

∂x2
∧ ∂

∂z3

+

(
e−η(x1−z1) − e−η(x1+z1)

2η
+ ηe−η(x1−z1)(

z2
2

2
+
z2

3

2
)

)
∂

∂x3
∧ ∂

∂z2

−z3
∂

∂z1
∧ ∂

∂z2
+ z2

∂

∂z1
∧ ∂

∂z3
+

(
e−2ηz1 − 1

2η
− η(

z2
2

2
+
z2

3

2
)

)
∂

∂z2
∧ ∂

∂z3
,

and

Π1η(x, z) = −x2
∂

∂x1
∧ ∂

∂x2
+ x3

∂

∂x1
∧ ∂

∂x3
+

(
e−2ηx1 − 1

η
− ηx2x3

)
∂

∂x2
∧ ∂

∂x3

−z2
∂

∂x1
∧ ∂

∂z2
+ z3

∂

∂x1
∧ ∂

∂z3
+ z2e

−η(x1−z1) ∂

∂x2
∧ ∂

∂z1
− z3e

−η(x1−z1) ∂

∂x3
∧ ∂

∂z1

+

(
e−η(x1+z1) − e−η(x1−z1)

η
− ηe−η(x1−z1)z2z3

)
∂

∂x2
∧ ∂

∂z3

+

(
e−η(x1−z1) − e−η(x1+z1)

η
+ ηe−η(x1−z1)z2z3

)
∂

∂x3
∧ ∂

∂z2

−z2
∂

∂z1
∧ ∂

∂z2
+ z3

∂

∂z1
∧ ∂

∂z3
+

(
e−2ηz1 − 1

η
− ηz2z3

)
∂

∂z2
∧ ∂

∂z3
.

The Casimir functions of the Poisson brackets {·, ·}0η and {·, ·}1η are:

C0η ◦ pr1 = −1

2
eη(x1−z1)(x2

2 + x2
3)− 1

2
e−η(x1−z1)(z2

2 + z2
3) + (x2z2 + x3z3)

−e
η(x1−z1) + e−η(x1−z1) − 2

2η2
,

C0η ◦ pr2 = −eηz1 z
2
2 + z2

3

2
− eηz1 + e−ηz1 − 2

2η2
,

and

C1η ◦ pr1 = eη(x1−z1)x2x3 − (x2z3 + x3z2) + e−η(x1−z1)z2z3

+
eη(x1−z1) + e−η(x1−z1) − 2

η2
,

C1η ◦ pr2 = eηz1(z2z3) +
eηz1 + e−ηz1 − 2

η2
,

respectively.
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On the other hand, the Hamiltonian functions H0η and H1η read

H0η = eηx1 x2 x3 +
eηx1 + e−ηx1 − 2

η2
, H1η = −eηx1

x2
2 + x2

3

2
− eηx1 + e−ηx1 − 2

2η2
.

In the new coordinates (x, z), the two completely integrable Hamiltonian systems (Gη×Gη, {·, ·}0η, H0η)
and (Gη ×Gη, {·, ·}1η, H1η) become

ẋ1 = eηx1(x2
2 − x2

3),

ẋ2 = ηeηx1x2x
2
3 −

1

2
ηeηx1(x3

2 − x2x
2
3) +

eηx1 − e−ηx1

2η
(2x3 − x2),

ẋ3 = −ηeηx1x2
2x3 +

1

2
ηeηx1(x2

2x3 + x3
3) +

eηx1 − e−ηx1

2η
(x3 − 2x2),

ż1 = eηz1(x2z2 − x3z3),

ż2 =

(
ηeηx1x2x3 +

eηx1 − e−ηx1

η

)
z3 + x2

e−ηz1 − eηz1
2η

+ ηx2e
ηz1(

z2
2

2
+
z2

3

2
),

ż3 =

(
ηeηx1x2x3 +

eηx1 − e−ηx1

η

)
(−z2) + x3

eηz1 − e−ηz1
2η

+ ηx3e
ηz1(

z2
2

2
+
z2

3

2
),

(5.7)

and

ẋ1 = eηx1(x2
2 − x2

3),

ẋ2 = ηeηx1x2x
2
3 −

1

2
ηeηx1(x3

2 − x2x
2
3) +

eηx1 − e−ηx1

2η
(2x3 − x2),

ẋ3 = −ηeηx1x2
2x3 +

1

2
ηeηx1(x2

2x3 + x3
3) +

eηx1 − e−ηx1

2η
(x3 − 2x2),

ż1 = eηz1(x2z2 − x3z3),

ż2 = −
(
ηeηx1

x2
2 + x2

3

2
+
eηx1 − e−ηx1

2η

)
z2 + x3

eηz1 − e−ηz1
η

+ ηeηz1x3z2z3

ż3 =

(
ηeηx1

x2
2 + x2

3

2
+
eηx1 − e−ηx1

2η

)
z3 − x2

eηz1 − e−ηz1
η

− ηeηz1x2z2z3,

(5.8)

respectively.

Finally, as in the Lorenz system, the multiplication ·η : Gη ×Gη → Gη in the new variables
is just the first projection, that is,

+ ((x1, x2, x3), (z1, z2, z3)) = (x1, x2, x3). (5.9)

So, using (5.6), (5.7), (5.8) and (5.9), we directly deduce that the two completely integrable
Hamiltonian systems (Gη ×Gη, {·, ·}0η, H0η) and (Gη ×Gη, {·, ·}1η, H1η) admit reduction, via
the multiplication ·η : Gη×Gη → Gη, to the bi-Hamiltonian system on Gη considered in Section
5.2.

6. Concluding remarks

In this paper we have presented the generalization of the Poisson coalgebra construction
of integrable deformations of Hamiltonian systems to the case when the initial system is bi-
Hamiltonian under a pair of Lie-Poisson structures. Moreover, the method here presented allows
the systematic construction, under certain conditions, of pairs of coupled completely integrable
Hamiltonian systems on Poisson-Lie groups. In this way, integrable deformations of the Lorenz
and Euler top systems have been explicitly constructed.
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It is worth recalling that a complete classification of the Lie-Poisson completely integrable bi-
Hamiltonian systems on R3, which have non-transcendental integrals of motion, may be found
in [14] (see also [13]). In fact, the Euler top system is labeled with the number (6) in Table
1 of [14]. On the other hand, a complete classification of non-equivalent adjoint 1-cocycles
on Lie algebras of dimension 3, whose dual maps satisfy the Jacobi identity (i.e. a complete
classification of non-equivalent Lie bialgebras of dimension 3) may be found in [11].

By using the results in [14] and [11], it can be easily proven by direct inspection that the
method here presented could be also straightforwardly applied to the Lie-Poisson completely
integrable bi-Hamiltonian systems on R3 which are labelled as (2), (4) and (5) in Table 1
of [14], since these are the only cases for which a common 1-cocycle does exist. Therefore,
for all these cases we could obtain pairs of completely integrable systems on the product of a
certain Lie-Poisson group Gη with itself, whose projection, via the group multiplication, leads
to a completely integrable bi-Hamiltonian system on Gη. The search for other Lie-Poisson bi-
Hamiltonian systems on RN (with N ≥ 4) and their compatible 1-cocycles is currently under
investigation.

Finally, we stress that it would be interesting to get a deeper insight into the underlying
geometric structure of the (quasi) bi-Hamiltonian systems on Poisson-Lie groups that have
arised in the present paper. Work on this line is also in progress and will be presented elsewhere.
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