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Abstract

Accurate link quality predictions are key in community wireless mesh networks

(CWMNs) to improve the performance of routing protocols. Unlike other tech-

niques, online machine learning algorithms can be used to build link quality

predictors that are adaptive without requiring a predeployment effort. How-

ever, the use of these algorithms to make link quality predictions in a CWMN

has not been previously explored. This paper analyses the performance of 4

well-known online machine learning algorithms for link quality prediction in a

CWMN in terms of accuracy and computational load. Based on this study, a

new hybrid online algorithm for link quality prediction is proposed. The evalua-

tion of the proposed algorithm using data from a real large scale CWMN shows

that it can achieve a high accuracy while generating a low computational load.

Keywords: community networks, wireless mesh networks, link quality

prediction, machine learning

1. Introduction

Community networks are distributed networking infrastructures owned and

managed by local communities to provide their members with a variety of free
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services such as Internet access and voice connections [1]. In many cases, they

are deployed in a decentralized manner as wireless mesh networks using inex-5

pensive networking equipment [2]. These community wireless mesh networks

(CWMNs) are very dynamic, as links frequently appear and disappear, and

can reach a large size. Gifui.net [3], Ninux [4], and FunkFeuer [5] are relevant

examples of CWMNs in Europe.

One of the most important research challenges in CWMNs is the effect of10

their often asymmetric and unreliable links on routing protocols and network

performance [1, 6]. Link quality tracking techniques are currently employed in

CWMNs to obtain metrics of the quality that can be observed in each link at a

given point in time. These metrics, called Link Quality Estimators (LQEs) [7],

are then used by routing protocols in CWMNs with the aim of selecting better15

paths. However, LQEs provide very limited information about the quality of

links in the future [8], even though this information could be very useful in the

context of CWMNs [6], where the quality of links can fluctuate frequently.

Link quality prediction techniques can be used to forecast LQEs in CWMNs

[6]. Routing protocols can leverage the information provided by link quality pre-20

dictions to select routes with more reliable and stable links. With these routes,

the number of packet losses and subsequent retransmissions can be reduced thus

improving the network throughput [9]. Furthermore, more stable clusters can

be created in the case of networks with a hierarchical topology [8].

Link quality predictors should feature two important characteristics [10]. An25

essential requirement for a link quality predictor is adaptivity, since it should be

able to adapt itself to cope with the changes in quality that might observed in

the link along time. This is especially important in networks that may exhibit

large dynamics, as it is the case of CWMNs. Another important feature of a

link quality predictor is plug-and-play. Ideally, a link quality predictor should30

start working on the network without any predeployment effort since, even if

the effort is reduced, it might not be feasible for all deployments. Furthermore,

the availability of the predictions is delayed until the end of the predeployment.

Online machine learning algorithms can be employed to build link quality
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predictors that meet both requirements [10]. These algorithms assume an initial35

model that can be used to generate predictions without any predeployment effort

as soon as the link is up. The model can be thereafter updated every time a

new quality value is observed in the link with the aim of improving the accuracy

of the initial model and also adapting it to the changes observed in the link.

Furthermore, online machine learning algorithms are usually designed to update40

models in a computational efficient way so that it can be done in real time in

devices that do note feature high computational capabilities, as it is usually the

case of the networking equipment employed in CWMNs.

The use of link quality predictors based on online machine learning algo-

rithms has already been proposed within the context of small wireless sensor45

networks (WSNs) [11, 10, 12] and mobile ad-hoc wireless networks (MANETs)

[9]. However, to the best of our knowledge, there are no previous works that

study the use of these algorithms to predict link quality in the case of large scale

CWMNs.

This paper explores the possibility of using online machine learning algo-50

rithms to predict link quality using real data from the FunkFeuer Wien CWMN.

More specifically, the main contributions of the paper include:

• A detailed analysis of the performance of 4 well-known online machine

learning algorithms in the prediction of link quality in a large scale CWMN

during several consecutive days, taking into account both the accuracy55

and the computational load generated by the algorithms, and including a

comparison with a baseline.

• The proposal of a new hybrid online algorithm that combines the base-

line with an online machine learning algorithm to predict link quality in

CWMNs.60

• The evaluation of the performance of the hybrid online algorithm used for

link quality prediction in a large scale CWMN, including a comparison

with 4 batch machine learning algorithms whose accuracy for the same

prediction problem has already been studied in the literature.
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The rest of this paper is structured as follows. Section 2 discusses the re-65

lated work that can be found in the literature. Next, Section 3 describes the

experimental framework used in our study. Section 4 introduces the analysis

of online machine learning algorithms for link quality prediction. Then, Sec-

tion 5 proposes a hybrid prediction approach that combines a baseline with an

online machine learning algorithm to predict link quality, evaluates its perfor-70

mance and compares it with that of batch machine learning algorithms. Finally,

Section 6 includes the main conclusions of the paper.

2. Related work

The link quality prediction problem in CWMNs has already been addressed

in [6] using batch machine learning algorithms. Several well-known batch algo-75

rithms were employed to build a predictive model for each link of FunkFeuer

Wien CWMN based on a set of quality values sampled from the corresponding

link during an observation period of 6 days. It was also shown that the gener-

ated models performed very well in the prediction of quality values featured by

links during the day right after the observation period. Unfortunately, the pre-80

diction approach followed in this work has important limitations derived from

the use of batch machine learning algorithms.

One of the main problems of predictive models generated using batch algo-

rithms is that they cannot be updated once their training has been completed.

This implies that they cannot be adapted to the changes that might be observed85

later in the link and, as a consequence, they do not perform well if the link does

not behave in a similar way to the observation period, which is very likely to

happen in the case of a CWMN. This is the reason why [6] observed that the

mean accuracy of link quality predictions quickly decays as the difference be-

tween the time for which the prediction is made and the time corresponding90

to the last quality value employed in building the model increases. A way of

dealing with this drawback consists in building a new predictive model after the

performance of the previous one has reached a given level of degradation. How-
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ever, this generates a higher computational load that could exceed the compu-

tational capabilities of the inexpensive networking equipment usually employed95

in CWMNs.

Moreover, link quality predictors based on batch machine learning algo-

rithms impose a predeployment effort: a set of quality samples must be collected

in each link before building the corresponding predictions models. This is the

reason why these predictors do not comply with the important plug-and-play100

feature [10]. It also implies that predictions are not available until the observa-

tion period is over, which might take a long time. For example, the observation

period suggested in [6] to obtain the highest accuracy in predictions is 6 days

long. Predictions could be generated earlier if a shorter observation period is

employed, but this would reduce in many cases the generalizability of the pre-105

dictive models, which in turn would lead to a significant decrease in prediction

accuracy and, in any case, this would still require a predeployment effort.

The use of online machine learning algorithms to predict future LQ values

within the context of MANETs has been studied in [9]. More specifically, an

approach was proposed to generate predictions of LQ values using the locally110

weighted projection regression algorithm based on past values of Received Sig-

nal Strength Indicator (RSSI) and Signal to Noise Ratio (SNR) link metrics

along with the physical distance among nodes. The authors showed that their

proposal generated accurate predictions using simulated data for MANETs of

up to 250 moving nodes. Furthermore, they verified that their prediction ap-115

proach generated a low computational load. Interestingly, they also reported

that the average network throughput increased up to a 40% in the simulated

MANETs when the routing protocol leveraged LQ predictions to select routes.

Unlike this work, we tackle the prediction problem in a larger network in which

nodes do not move. Further, we use link quality samples based on a different120

metric and obtained from a real network instead of from a simulated one.

Other works have proposed the use of online machine learning algorithms

to make link quality predictions within the context of WSNs also much smaller

than the CWMN considered in our work. In [11], the prediction problem was
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casted into a classification problem in which links were given a different label125

(e.g. good, medium, bad) according to the values of Packet Success Rate (PSR)

metric that was observed in them. Predictions in this work thus have a lower

granularity than in our proposal, in which we try to predict the actual value

of link quality. According to [13], predictions with higher granularity are more

useful. The Temporal Adaptive Link Estimator with No Training (TALENT)130

[10] predicts the probability that future PSR exceeds a certain threshold using

online algorithms that train predictive models using past values of PSR. Again,

the granularity of predictions in this work is lower than in our case. Online

algorithms were also employed in [12] to make predictions of the future Link

Quality Indicator (LQI) metric that can be expected in a link. The evaluation135

of the proposal in this work was also made using simulations, while we use data

from a real network.

Besides online machine learning algorithms, the link quality prediction prob-

lem has also been dealt in in different ways for small wireless networks. For

example, [14] proposes XCoPred (using Cross-Correlation to Predict), in which140

the nodes of a small WMN store the sequence of SNR values observed in their

links so that the normalized cross correlation can then be used to find the past

pattern that is most similar to the current situation. The SNR values that fol-

low the selected pattern are employed as a prediction for the values that are

expected during the next tens of seconds. The Holistic Packet Statistics (HoPs)145

proposed in [8] uses an exponential weighted moving average to obtain short-

term and long-term predictions of link quality based on the PSR link metric

within the context of WSNs. Foresee (4C) [15] employs batch machine learning

algorithms to predict the success probability of delivering the next packet ac-

cording to the Received Signal Strength Indicator (RSSI), Signal to Noise Ratio150

(SNR) and Link Quality Indicator that can be observed in the links of WSNs.

The interested reader can find in [13] the survey of more works that tackle the

link quality prediction problem and are not based on online machine learning

algorithms.

Machine learning techniques have also been applied to address a variety155
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of problems within the context of wireless networks other than link quality

prediction [16, 17, 18]. Some recent examples include intrusion detection in

MANETs [19], feature selection for performance characterization in multihop

WSNs [20] and efficient link quality monitoring in WSNs [21].

3. Experimental framework160

This section describes the framework that was employed to carry out our ex-

periments with machine learning algorithms to predict link quality in a CWMN.

This includes the dataset, the approach followed to build link quality predictors,

the actual algorithms that were tested, the metrics that were employed to re-

port the performance of the algorithms, the baseline that was used to facilitate165

the assessment of such performance, and the software and hardware that were

employed to carry out the experiments.

3.1. Dataset

The dataset employed in this paper comes from Funkfeuer Wien [5], a

CWMN with more than 500 nodes and around 2000 links. This network uses170

a routing protocol that was derived from Open Link State Routing (OLSR)

[22] in order to improve its scalability, which is called OLSR-Next Generation

(OLSR-NG). The topology information of Funkfeuer Wien CWMN provided by

OLSR-NG was collected from a node of the network every 5 minutes and pub-

lished in an open data platform set by the Confine Project [23] during several175

years.

Topology information includes the values of link quality (LQ) and neighbor

link quality (NLQ) observed for all the links of the network that are active.

LQ is defined as the fraction of successful probes that were received by a node

from its neighbor during a certain time window, while NLQ is the fraction of180

successful probes received by the neighbor within the time window [22]. LQ

and NLQ values can be employed to calculate the expected transmission count

(ETX) [24], which can be computed as ETX = 1/(LQ×NLQ). ETX is a link
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metric widely employed for routing in CWMNs that estimates the total number

of transmissions (including retransmissions) that can be expected for a packet185

to be succesfully delivered over a link. Here, it can be noticed that ETX is

easily obtained from LQ and NLQ, and that the NLQ of a given node can be

derived from the LQ of its neighbor node. This is the reason why, same as in

[6], our dataset is based on LQ values.

The dataset was derived from the network topology information collected190

from January 15 to 28, 2016, which was available in the platform. More specif-

ically, the dataset contains the LQ values observed for the 998 links of the

network that experienced any variation in their quality during the aforemen-

tioned period of 14 days. The data of 1206 links that had constant quality were

excluded from the dataset because predicting their future LQ values is trivial.195

It is noteworthy that the sequence of LQ values observed in each link can be

considered a time series since they are a set of data collected over time with a

natural ordering. In this case, the data points of the time series are LQ values

ranging from 0 to 1 in the same order in which they were obtained from the

link. However, it should be noticed that the difference between the times in200

which two consecutive LQ values were observed may vary since no observations

are made when a link is off.

The number of days that each link of the dataset showed activity is variable,

as it can be observed in Figure 1(a). It can also be seen that most links have

activity all 14 days, while the second most numerous group corresponds to links205

that have activity only 1 day. Figure 1(b) shows that the amount of active links

per day varies around 800, which represents about 80% of the links. It is also

interesting to notice in Figure 1(c) that most links are active more than 90% of

the time in the days that they show activity, whereas the second largest group

comprises links only active up to 10% of the time. Figure 1(d) depicts a boxplot210

of the percentage of time with activity for the links that show any activity in

each day of the dataset. It can be observed that, except for day 13, the great

majority of links are active more than 97% of the time.

Concerning the quality of links, Figure 2(a) reveals that most of them have
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(a) Number of links with respect to the num-

ber of days with activity.

(b) Number of links with activity in each day

of the dataset.

(c) Number of links with respect to the per-

centage of time active in days with activity.

(d) Percentage of time active for links with

activity in each day of the dataset.

Figure 1: Characterization of the activity of links.
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(a) Number of links with respect to the mean

of LQ values.

(b) Mean of LQ values in each day of the

dataset.

(c) Number of links with respect to the stan-

dard deviation of LQ values.

(d) Standard deviation of LQ values in each

day of the dataset.

Figure 2: Characterization of the quality of links.

a mean quality above 0.9, while Figure 2(b) shows that the distribution of the215

mean quality of links with activity is quite similar in all the days of the dataset.

As it can be seen in Figure 2(c), the standard deviation of quality is under 0.45

in all cases and under 0.05 in most of them. Figure 2(d) also shows that the

distribution of the standard deviation of quality for the links with activity is

quite similar in all days.220

It can also be pointed out that a strong positive correlation (r = 0.74) was

found between the number of days that links showed activity and the percentage

of time with activity in the days they were active. Furthermore, a moderate

10



negative correlation (r = −0.49) was found between the mean values of link

quality and the standard deviation of link quality.225

In summary, the dataset comprises many links that were on all 14 days with

a high percentage of activity and a smaller, yet significant, number of links that

were off some days, and had more intermittent activity the days they were on.

The unbalanced nature of the dataset makes it rather simple to achieve fair

accuracy in prediction, though improving it further requires to predict well the230

most variable and unreliable links.

3.2. Machine learning algorithms for link quality prediction

The creation and evaluation of a model to predict the value of data points

in a time series such as the sequence of quality values observed in a link can be

done using both online and batch machine learning algorithms. Suppose a time235

series made of N data points d = {d1, d2, ..., dN} in which predictions should

be made for data points that are S steps ahead using the last W observations,

which make the so-called lag window.

Time series prediction with online machine learning algorithms is done fol-

lowing an interleaved test and then train approach, also called prequential ap-240

proach. In this approach, a set of input vectors with their corresponding output

values {< (di−W+1, ..., di−1, di), di+S >: i = W, ..., (N − S)} is derived from the

time series. Each input vector is first employed to get the predicted output from

the model. Next, the same input vectors are used along with its correspond-

ing actual output to update the model. The predictions obtained in this way245

can also be compared with the actual output values in order to determine the

accuracy of the model.

One of the main advantages of online machine learning algorithms is the

possibility of updating the prediction model every time a new data point is

available. Furthermore, the computational load generated by online algorithms250

is often much low since each update of the model implies the use of just one

input vector along with its corresponding output. This facilitates the possibility

of running the algorithms in the network nodes that feature low computational
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capabilities.

In this paper, 4 well-known online machine learning algorithms for regression255

are employed to make one step ahead predictions of the series of LQ values

corresponding to each link of the dataset: online perceptron [25] (OP), on-

line regression trees with options (ORTO) [26], fast incremental model trees

with drift detection (FIMT-DD) [27], and adaptive model rules (AMRules) [28].

Any of these algorithms can be employed to generate predictions for all of the260

14 days of the dataset. However, it is well known that the performance of

these algorithms in the prediction of the first samples of a time series cannot

be considered representative of the performance that can be achieved in the

long term, which is due to the fact that the model used to generate the first

predictions has been trained with very few samples. This is the reason why the265

first day of the dataset was used in our experiments only to train models, while

the remaining 13 days were employed both to test and train the models.

In the case of batch machine learning algorithms, time series prediction

requires deriving a training set and a test set from the series. If the first P ≥

W+S data points shall be employed to create a prediction model, then a training270

set consisting of pairs of input vectors with their corresponding output values

{< (di−W+1, ..., di−1, di), di+S >: i = W, ..., (P − S)} can be derived from the

time series. Similarly, if the next Q data points shall be employed to evaluate

the prediction model, then a test set also consisting in pairs of input vectors

with their corresponding output values {< (di−W+1, ..., di−1, di), di+S >: i =275

(P − S + 1), ..., (N − S)} can be derived. If desired, feature selection methods

could be used with the training set to reduce the size of vectors in both sets.

Another option would be to extend vectors of both sets with additional features

such as, for example, the date or time of the observations.

Creating a predictive model with a batch machine learning algorithm usu-280

ally requires multiple iterations of the algorithm over the whole training set.

This is the reason why some batch algorithms can be very demanding from a

computational point of view. Once the model has been generated, it can be

employed to predict the output values corresponding to the input vectors of the
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test set. Then, the predictions can be compared with the actual output values285

of the test set in order to determine the accuracy of the model.

In a real setting, only the data points available at a given time can be used to

create a predictive model with batch machine learning algorithms. The model

can then be used to predict future data points. However, if the underlying

data distribution evolved, the prediction quality of the model decreases, since it290

predicts according to past knowledge that is no longer accurate. Unfortunately,

the model cannot be updated with each new data point that becomes available.

In this way, a new model must be created using the data available some time

after the generation of the previous model. This significantly increases the

computational load required to make link quality predictions, thus hindering295

the possibility of running the algorithms in network nodes that feature low

computational capabilities.

This paper uses for comparison purposes the same 4 well-known batch ma-

chine learning algorithms for regression that were studied in [6] to make also

one step ahead predictions of LQ values: Support Vector Machines (SVM) [29],300

k-Nearest Neigbours (kNN) [30], Regression Trees (RT) based on reduced error

pruning [31], and Gaussian Processes for Regression (GPR) [32]. According to

[6], the LQ values observed in a link during 6 days in a row should be used with a

lag window of size 12, corresponding to the LQ values observed in the last hour,

when creating a model with any of these batch algorithms to make predictions305

one step ahead during the next day. This implies that a new model must be

trained for every test day using the most recent data available. Following this

approach, in our experiments each batch algorithm was used with a lag window

size of 12 to train a different predictive model for each of the days 7 to 14 using

the LQ values available from the 6 previous days right after the end of days 6310

to 13, respectively. The models were then employed to generate the predictions

of LQ values expected for each link during days 7 to 14. Moreover, it was veri-

fied in [6] that the accuracy of the models could be improved by saturating the

predicted values so that all predictions above 1 would be 1, and all predictions

below 0 would be 0. This improvement was also included in our experiments.315
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3.3. Performance metrics and baseline

Two aspects of the performance of machine learning algorithms in the pre-

diction of LQ values are evaluated in this paper. One is the accuracy of the

predictions made by the algorithms; the other is the computational load gener-

ated by the the training and testing of the algorithms.320

Mean Average Error (MAE) and Root Mean Squared Error (RMSE) are two

metrics usually employed to evaluate the accuracy of prediction methods in time

series analysis [33]. However, RMSE is more sensitive to outliers, which has led

some authors such as [34] to recommend against its use in time series prediction

evaluation. This is the reason why MAE is used in this paper to measure the325

accuracy of machine learning algorithms.

The computational load generated by machine learning algorithms is usually

evaluated (e.g. [25], [26], [27], [28]) using the CPU time that is consumed by

the execution of the algorithms. CPU time is also the metric employed in this

paper to measure computational load.330

The accuracy and computational load of a simple baseline prediction algo-

rithm are also reported in this paper in order to facilitate the assessment of the

performance of machine learning algorithms. Here we propose a simple baseline

that predicts that the next LQ value will be the same as the last measured

value.335

3.4. Experimental environment

The experiments reported in this paper used the Java implementations of

online and batch machine learning algorithms provided by, respectively, the

2016.04 release of the Massive Online Analysis framework [35] for data streams,

and version 3.8.1 of Weka data mining software [36]. All experiments were run on340

a single CPU Intel Core i7 3615 QM with 4 cores and 16GB of RAM. However,

it should be taken into account that the networking equipment available in

CWMNs is usually inexpensive and, when that is the case, more CPU time would

be needed to complete the training of the models and to make the predictions

using them.345
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4. Analysis of online machine learning algorithms

The analysis introduced in this section aims at determining if the online ma-

chine learning algorithms under study can improve the accuracy of the baseline

algorithm as well as to understand if the accuracy of the algorithms depends

on the activity of the links or the quality that can be observed in the links.350

Furthermore, it seeks to assess the computational load that algorithms gener-

ate. However, to carry out this analysis, it was necessary to first determine the

size of the lag window to be used for the testing and training of the prediction

models generated with each online machine learning algorithm.

4.1. Lag window size355

The impact that the size of lag window has in the accuracy of online machine

learning algorithm was checked in order to determine the size to be used with

each of them. Table 1 shows the MAE of all predictions made for days 2 to 14

using each online algorithm with lag window sizes ranging from 1 to 12. It can

be seen that the best results are achieved with lag window size 4 for OP, 2 for360

ORTO and FIMT-DD, and 10 in the case of AMRules. It is worth mentioning

that the differences between the best MAE and second best MAE with respect

to size of lag window for each algorithm are statistically significant (p < 0.01)

in all cases.

Here, it should be noticed that rest of the results reported in this section are365

based on experiments made with the lag window sizes that get the best results

for each algorithm.

4.2. Prediction accuracy

The MAE of predictions corresponding to each day 2 to 14 as well as the

MAE of all predictions that can be achieved with the baseline and each online370

algorithm are shown in Table 2. It can be seen that the results of the base-

line algorithm are better than those of ORTO, FIMT-DD and AMRules. The

differences between the accuracy of baseline and those three algorithms are sta-

tistically significant (p < 0.01) in all cases. Only OP outperforms the baseline

15



OP ORTO FIMT-DD AMRules

W=1 1.840e-2 2.421e-2 2.305e-2 2.634e-2

W=2 1.833e-2 2.146e-2 2.263e-2 2.299e-2

W=3 1.816e-2 2.169e-2 2.279e-2 2.298e-2

W=4 1.801e-2 2.180e-2 2.291e-2 2.300e-2

W=5 1.895e-2 2.192e-2 2.299e-2 2.299e-2

W=6 1.836e-2 2.197e-2 2.305e-2 2.299e-2

W=7 1.853e-2 2.202e-2 2.305e-2 2.295e-2

W=8 1.872e-2 2.205e-2 2.304e-2 2.298e-2

W=9 1.894e-2 2.207e-2 2.302e-2 2.298e-2

W=10 1.930e-2 2.211e-2 2.295e-2 2.285e-2

W=11 1.962e-2 2.211e-2 2.295e-2 2.289e-2

W=12 1.996e-2 2.212e-2 2.296e-2 2.291e-2

Table 1: Overall MAE of predictions made by each online machine learning algorithm for days

2 to 14 with respect to lag window size.

every day, being all differences also statistically significant (p < 0.01). It is also375

noteworthy that OP improves the baseline overall MAE by 8.9%.

Figure 3 depicts the boxplot of MAE corresponding to all predictions made

for each link using the baseline and each online algorithm. It can be seen that

the median value is lower for the baseline than for any other algorithm, while

the value of its third quartile is higher than for OP but lower than for the rest of380

the algorithms. This implies that, in spite of OP having a better overall MAE,

there are links in which predictions made with baseline were more accurate. The

second and third quartiles are also lower for OP than for ORTO, FIMT-DD and

AMRules.

4.3. Impact of link activity in prediction accuracy385

The boxplots in Figure 4 reveal that the performance of all algorithms is

clearly worse when the link is active only 1 or 2 days. Here, it must be taken

into account that these links not only are active during very few days, but

16



Baseline OP ORTO FIMT-DD AMRules

Day 2 2.137e-2 2.020e-2 2.403e-2 2.531e-2 2.494e-2

Day 3 2.047e-2 1.880e-2 2.320e-2 2.425e-2 2.435e-2

Day 4 1.916e-2 1.722e-2 2.102e-2 2.225e-2 2.409e-2

Day 5 1.919e-2 1.726e-2 2.082e-2 2.169e-2 2.284e-2

Day 6 2.010e-2 1.790e-2 2.134e-2 2.180e-2 2.091e-2

Day 7 1.940e-2 1.756e-2 2.054e-2 2.137e-2 2.079e-2

Day 8 1.907e-2 1.727e-2 2.072e-2 2.177e-2 2.106e-2

Day 9 1.896e-2 1.732e-2 2.067e-2 2.183e-2 2.161e-2

Day 10 2.011e-2 1.874e-2 2.096e-2 2.274e-2 2.360e-2

Day 11 2.018e-2 1.861e-2 2.239e-2 2.350e-2 2.420e-2

Day 12 1.989e-2 1.793e-2 2.157e-2 2.489e-2 2.462e-2

Day 13 1.966e-2 1.775e-2 2.100e-2 2.183e-2 2.273e-2

Day 14 1.941e-2 1.762e-2 2.082e-2 2.097e-2 2.132e-2

Days 2-14 1.977e-2 1.801e-2 2.146e-2 2.263e-2 2.285e-2

Table 2: Daily MAE and overall MAE of predictions made by baseline and each online machine

learning algorithm for days 2 to 14.

also a very low percentage of time in those days, as it was already shown by the

strong correlation between the number of days that links showed activity and the390

percentage of active time. This implies that the number of LQ values observed

in those links is low, which hinders the possibility of training accurate predictive

models. The problem is much worse in the case of OP because, unlike the rest

of the online algorithms, it cannot start updating the prediction model until

W + 1 LQ values are available and, in the meantime, it generates predictions395

with value 0.

It can also be observed in the boxplots depicted in Figure 5 that the perfor-

mance of all algorithms is significantly worse in the case of links that feature up

to a 10% of active time on average during the days in which they show activity.

Many links of this group were active only during 1 or 2 days, and the reasons400

for the low accuracy in this case have already been explained. There are also
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Figure 3: Distribution of link MAE of predictions made by baseline and each online machine

learning algorithms for days 2 to 14. Outliers are not shown to improve the readability of the

figure.

Figure 4: Distribution of link MAE of predications made by baseline and each online machine

learning algorithms for days 2 to 14 with respect to the number of active days.

links in this group that were active during more than 2 days. However, these

links were often turned off, which implies that the difference of time between

two consecutive LQ values observed is high in many cases. Again, this hinders

the possibility of training accurate predictive models. The especially poor per-405

formance of OP with this group of links can also be attributed to the predictions
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Figure 5: Distribution of link MAE of predications made by baseline and each online machine

learning algorithms for days 2 to 14 with respect to the percentage of active time.

with value 0 that it generates until it starts training a model.

4.4. Impact of link quality in prediction accuracy

There is no apparent relationship between the performance of algorithms

and the mean quality of the links for which predictions are generated according410

to Figure 6. However, if the mean standard deviation in LQ of the links cor-

responding to each group is taken into account, which is shown in Figure 7, it

can be observed that the performance of algorithms with each group of links is

clearly related.

The relationship between the performance of algorithms and link quality415

standard deviation can also be confirmed with Figure 8. It can be seen that

the performance of all algorithms decreases with the standard deviation of link

groups in the range (0, 0.25); groups in the range [0.25, 0.45) should not be taken

into account since the number of links in each of them is very low. Moreover, it

can be noticed that OP performs better than any other algorithm in the groups420

of links within the range (0.05, 0.25), while the baseline performs better in the

group with links quality standard deviation ranging in (0, 0.05), i.e. the most

stable links.
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Figure 6: Distribution of link MAE achieved by baseline and online machine learning algo-

rithms for days 2 to 14 with respect to the mean of LQ values in each link.

Figure 7: Mean of link quality standard deviation corresponding to groups of links made

according to their mean link quality.

4.5. Computational load

We measured the CPU time that was employed in each test day 2 to 14 by425

each online algorithm to generate the predictions and to update the models.

The time employed by the baseline to generate the predictions for the same

days was measured too. The mean CPU time per day corresponding to each

algorithm can be seen in Table 3. As expected, the baseline is the algorithm

that requires less CPU time. However, it is noteworthy that OP, ORTO and430
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Figure 8: Distribution of link MAE achieved by baseline and online machine learning algo-

rithms for days 2 to 14 with respect to the standard deviation of LQ values in each link.

Baseline OP ORTO FIMT-DD AMRules

Test & train 0.02 0.35 0.24 0.26 10.46

Table 3: Mean CPU time (in seconds) per day employed by the baseline to generate the

predictions and by each online machine learning algorithm to generate the predictions and

update the models for days 2 to 14.

FIMT-DD required on average less than 0.5 seconds per day. AMRules was more

demanding from a computational point of view although the load it generates

can also be considered low.

4.6. Lessons learned

The analysis of online machine learning algorithms detailed in this section435

allowed us to draw the following conclusions:

• OP is the only online machine learning algorithm that outperforms the

baseline in terms of accuracy.

• The accuracy of OP is hindered by the predictions with value 0 that are

generated until W + 1 LQ values are available to start updating a model.440

21



• The baseline performs better than OP in some cases, including links with

low standard deviation of their quality.

• The computational demands of OP are very light.

Based on these observations, it seems reasonable to expect that baseline and

OP algorithms could be combined in an attempt to improve the accuracy of any445

of them while keeping the computational demands low.

5. A hybrid online algorithm for the prediction of link quality

We propose a hybrid online algorithm that combines the use of baseline and

OP as described next. Suppose that the hybrid online algorithm is employed to

make predictions for a link using a lag window of size W , an accuracy window450

of size M and, at a given time, P observations of LQ values have already been

made. If P < W + 1, then the baseline method shall be employed to generate

a prediction. If P ≥ W + 1, then the algorithm that achieved the lowest MAE

with its predictions for the last min(M,P −W − 1) data points shall be used.

With this hybrid model, a sensible prediction will be made at any time,455

regardless of the number of data points already observed. Moreover, if the OP

is performing well in the past, presumably because it has captured well the

variations of the underlying distribution, it will be used. If, on the contrary, the

baseline is doing better, most likely because the link is very stable, it will be

preferred. It should be noticed that this selection is dynamic in nature, being460

automatically updated after every observation.

5.1. Prediction accuracy

The hybrid online algorithm was employed to make all predictions for days

2 to 4 using lag window size 4 and accuracy window sizes 12, 144, 288, 576, and

864 which correspond to the number of samples that can be collected from a465

link that is continuously active during 0.5, 1, 2, and 3 days respectively. Table

4 shows the MAE of predictions corresponding to each day as well as the MAE

of all predictions that were obtained. It can be observed that the accuracy
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M=12 M=144 M=288 M=576 M=864

Day 2 1.916e-2 1.885e-2 1.888e-2 1.888e-2 1.888e-2

Day 3 1.834e-2 1.815e-2 1.818e-2 1.816e-2 1.818e-2

Day 4 1.708e-2 1.683e-2 1.680e-2 1.676e-2 1.676e-2

Day 5 1.711e-2 1.682e-2 1.684e-2 1.678e-2 1.677e-2

Day 6 1.764e-2 1.744e-2 1.739e-2 1.740e-2 1.741e-2

Day 7 1.716e-2 1.690e-2 1.691e-2 1.691e-2 1.689e-2

Day 8 1.684e-2 1.665e-2 1.659e-2 1.660e-2 1.661e-2

Day 9 1.696e-2 1.670e-2 1.667e-2 1.667e-2 1.667e-2

Day 10 1.778e-2 1.739e-2 1.737e-2 1.734e-2 1.734e-2

Day 11 1.789e-2 1.765e-2 1.763e-2 1.763e-2 1.766e-2

Day 12 1.765e-2 1.732e-2 1.734e-2 1.733e-2 1.731e-2

Day 13 1.739e-2 1.716e-2 1.713e-2 1.709e-2 1.709e-2

Day 14 1.732e-2 1.710e-2 1.704e-2 1.703e-2 1.705e-2

Days 2-14 1.756e-2 1.730e-2 1.729e-2 1.727e-2 1.728e-2

Table 4: Daily MAE and overall MAE of predictions made by hybrid online algorithm for

days 2 to 14 with respect to accuracy window size.

improves with size 144 with respect to size 12. Sizes 288, 576, and 864 feature

marginally lower accuracies when compared with size 144.470

It is noteworthy that MAE values achieved by the hybrid online algorithm

with any accuracy window size are lower every day than those obtained with

OP. The differences between the accuracies of both algorithms are statistically

significant (p < 0.01). The hybrid online algorithm with accuracy window size

144 improves the OP overall MAE by 3.9% and the baseline overall MAE by475

12.5%.

The boxplot of MAE corresponding to all predictions made for each link of

the dataset made with the hybrid online algorithm is depicted in Figure 9. The

second and third quartiles are lower for the hybrid online algorithm with any

accuracy window size than for the baseline or OP. The upper inner fence Q3 +480

1.5IQ is also lower for the hybrid online algorithm also regardless of the accuracy

23



Figure 9: Distribution of link MAE of predictions made by baseline, OP and hybrid online

machine learning algorithm for days 2 to 14. Outliers are not shown to improve the readability

of the figure.

window size. Both facts support the idea that the hybrid online algorithm has

an overall better performance in terms of accuracy than the baseline and OP.

Here it can be recalled that OP is an algorithm that performs clearly better

than the baseline with links that do not feature a very low standard deviation485

of quality. Hence, it can be expected that the proposed hybrid online algorithm

achieves a much better accuracy than the baseline in the case of CWMNs where

the percentage of links with variable quality is higher than in our dataset.

5.2. Computational load

Again, we measured the CPU time that was used in each test day 2 to 14490

by the hybrid online algorithm to generate predictions and train the predictive

models. The mean CPU time per day obtained with each accuracy window

size is shown in Table 5. As expected, the time increases with the size of the

accuracy window. In any case, the computational demands of all options are

low.495
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M=12 M=144 M=288 M=576 M=864

Test & train 0.47 0.75 1.37 2.60 3.59

Table 5: Mean CPU time (in seconds) per day employed by the hybrid online machine learning

algorithm to generate the predictions and update the models for days 2 to 14 with respect to

the accuracy window size.

Interestingly, the time required in the case of M = 288 nearly doubles the

time employed with M = 144. Given the marginal difference of accuracy be-

tween both options, it seems reasonable to choose M = 144 as a good compro-

mise option.

5.3. Comparison with batch algorithms500

An important limitation of batch machine learning algorithms for the pre-

diction of link quality that was already reported in [6] is that they cannot be

used unless there are a minimum of W + 1 LQ values available to generate a

training set. This implies that, unlike in the case of the hybrid online algorithm

proposed in this paper, no predictions can be made for links when it is their first505

day of activity or if they have been active for a very short time in the previous 6

days. Figure 10 shows the percentage of active links during days 7 to 14 of our

dataset for which it is not possible to generate predictions using batch machine

learning algorithms. It is noteworthy that this percentage is as high as 8.4%

in day 10. In the experiment reported next, this limitation was circumvented510

by using the baseline algorithm to obtain predictions in the cases in which a

predictive model generated with batch algorithms is not available.

Table 6 shows the MAE of predictions corresponding to each day 7 to 14

along with the MAE of all predictions for those days that can be obtained with

the baseline, the hybrid online algorithm with accuracy window size 144, and515

each batch machine leaning algorithm combined with the baseline. It can be

seen that both the hybrid online algorithm and the baseline clearly outperform

kNN, RT and GPR every day. These differences are statistically significant

(p < 0.01) in all cases. It is also noteworthy that there are some days in which
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Figure 10: Percentage of active links during days 7 to 14 that do not get any prediction from

batch algorithms.

the hybrid online algorithm performs better than SVM, while other days it is the520

other way round. However, in this case not all the differences are statistically

significant. In fact, the difference between the overall MAE achieved by the

hybrid online algorithm and SVM is not statistically significant (p = 0.704)

either. In this way, it is possible to state that both algorithms have a similar

overall performance in terms of accuracy.525

Table 7 compares the mean CPU time per day required by the hybrid online

algorithm and the batch machine learning algorithms to train the models and

use them to generate predictions for days 7 to 14. It can be seen kNN and

RT employed reasonably low CPU times, while SVM was quite demanding and

GRP generated a very high computational load. The hybrid online algorithm530

proposed here generated a computational load lower than any batch machine

learning algorithm. In fact, it is noteworthy that the mean CPU time per

day employed by the hybrid online algorithm represents only 0.1% of the time
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Baseline Hybrid SVM kNN RT GPR

Day 7 1.940e-2 1.690e-2 1.645e-2 1.962e-2 2.051e-2 2.475e-2

Day 8 1.907e-2 1.665e-2 1.699e-2 1.970e-2 2.049e-2 2.501e-2

Day 9 1.896e-2 1.670e-2 1.676e-2 1.968e-2 2.078e-2 2.523e-2

Day 10 2.011e-2 1.739e-2 1.686e-2 2.021e-2 2.403e-2 2.731e-2

Day 11 2.018e-2 1.765e-2 1.898e-2 2.122e-2 2.247e-2 2.984e-2

Day 12 1.989e-2 1.732e-2 1.724e-2 2.072e-2 2.082e-2 3.113e-2

Day 13 1.966e-2 1.716e-2 1.701e-2 2.031e-2 2.103e-2 2.631e-2

Day 14 1.941e-2 1.710e-2 1.640e-2 1.969e-2 2.023e-2 2.625e-2

Days 7-14 1.959e-2 1.730e-2 1.710e-2 2.015e-2 2.130e-2 2.702e-2

Table 6: Daily MAE and overall MAE of predictions made by baseline, hybrid online algorithm

and batch machine learning algorithms combined with baseline for days 7 to 14.

Baseline Hybrid SVM kNN RT GPR

Train & test 0.02 0.77 733.56 120.89 34.36 5841.37

Table 7: Mean CPU time (in seconds) per day employed by the baseline to generate the

predictions, the hybrid online algorithm and batch machine learning algorithms combined

with baseline to train and test the models for days 7 to 14.

required by SVM.

In summary, SVM is the only batch machine learning algorithm that achieves535

an accuracy similar to that of the hybrid online algorithm. However, the compu-

tational load generated by the latter is much lower. The hybrid online algorithm

should thus be preferred to make predictions of link quality in a CWMN since

the networking equipment in these networks is usually inexpensive and features

low computational capabilities.540

6. Conclusions

The potential benefits of accurate link quality prediction in CWMNs in-

clude improved network throughput and more stable clusters in hierarchical

topologies. Unlike batch machine learning algorithms, online machine learning
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algorithms can be used to build link quality predictors that automatically adjust545

themselves to cope with changes in the links and that do not require efforts that

hinder or even preclude their deployment. However, the use of online machine

learning algorithms to make link quality predictions in CWMNs has not been

explored yet.

In this paper we studied the performance of 4 well-known online machine550

learning algorithms for link quality prediction in terms of accuracy and com-

putational load using data from a real CWMN. It was observed that only one

of them, OP, outperforms the accuracy of a simple baseline. Furthermore, it

was shown that OP generates a low computational load. Moreover, the analysis

of the impact of link activity and link quality in the accuracy of both baseline555

and OP allowed us to understand the circumstances in which each algorithm

performs better. Based on this analysis, we proposed a hybrid algorithm that

combines OP and the baseline. This hybrid online machine learning algorithm

improved the accuracy of the baseline by a 12.5% while generating a reasonably

low computational load. The improvement is expected to be even better in560

the case of CWMNs with a higher percentage of links in which quality varies

frequently.

We also compared the performance of the proposed algorithm with that of 4

batch machine learning algorithms to predict link quality in a CWMN. Firstly,

it was observed that, using batch algorithms, it was not possible to generate565

predictions for links when it is their first day of activity or if they have been

active for a very short time in the previous days. However, we circumvented

this problem by using the baseline to generate predictions in those cases in

order to make the comparison with online machine learning algorithms. The

results of the experiments showed that SVM is is the only batch machine learn-570

ing algorithm that yields an accuracy similar to that of the proposed hybrid

online algorithm. However, the proposed algorithm requires only 0.1% of the

computational load generated by SVM. The rest of the batch machine learning

algorithms feature worse accuracy than the baseline.

Regarding future work, the performance of the hybrid online machine learn-575
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ing algorithm will be evaluated using data of other CWMNs with a higher

number of links and a higher percentage of variable links. There are also plans

to study the improvement of the throughput that can be achieved in a CWMN

when OLSR is used along with the link quality predictions made by the hybrid

online algorithm.580
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