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Abstract

Purpose: In this work we have proposed a methodology for the estimation of
the apparent diffusion coefficient in the body from multiple breath hold diffusion
weighted images, which is robust to two preeminent confounding factors: noise
and motion during acquisition.

Methods: We have extended a method for the joint groupwise multimodal
registration and apparent diffusion coefficient estimation, previously proposed
by the authors, in order to correct the bias that arises from the non-Gaussianity
of the data and the registration procedure.

Results: Results show that the proposed methodology provides a statisti-
cally significant improvement both in robustness for displacement fields calcu-
lation and in terms of accuracy for the apparent diffusion coefficient estimation
as compared with traditional sequential approaches. Reproducibility has also
been measured on real data in terms of the distribution of apparent diffusion
coefficient differences obtained from different b-values subsets.

Conclusions: Our proposal has shown to be able to effectively correct the
estimation bias by introducing additional computationally light procedures to
the original method, thus providing robust apparent diffusion coefficient maps
in the liver and allowing an accurate and reproducible analysis of the tissue.
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1. Introduction

Diffusion weighted magnetic resonance imaging (DW-MRI) is a non-contrast
technique sensitive to molecular displacement which provides the capability
to non-invasively assess microstructure organization within the tissue and cell
membrane density upon differences in water proton mobility [1]. DW-MRI is5

increasingly employed for tissue evaluation as it provides characteristic quanti-
tative parameters of the tissue.

Among the different values that can be derived from the diffusion signal,
the apparent diffusion coefficient (ADC) is the most commonly used biomarker,
which is obtained after applying a monoexponential decay model to the dif-10

fusion images of isotropic tissues [2]. ADC values have shown to be accurate
indicators of tumor response to therapy [3, 4], as well as the severity of liver
fibrosis and cirrhosis [5]. However, in order to thoroughly validate the ADC
as an imaging biomarker, a robust parameter estimation methodology suitable
for multiparametric acquisitions is necessary. Unfortunately, quantitative ADC15

mapping is affected by multiple artifacts and confounding factors, including
motion-related errors [6], image distortions caused by susceptibility, and noise-
related effects [7]. Although most of the proposed estimation techniques in
the literature have focused on the reduction of these artifacts, those methods
have usually considered ADC estimation and the reduction of the different con-20

founding factors and artifacts as two different problems that are usually treated
separately. Nonetheless, even applying the most complex models and estimation
techniques over the diffusion weighted images (DWI), the confounding factors
may lead to false conclusions and misestimation of the ADC.

In abdominal organs such as the liver, kidney, or spleen, possible movement25

of the organ across the different b-value scans could result in image misalignment
[8, 9]. Consequently, computing the ADC map on a pixel-by-pixel basis is error-
prone, highly likely incurring a boundary smearing [10]. In clinical practice,
to reduce this misalignment-related inaccuracies, the region of interest should
be individually segmented in the different b-value images to extract the mean30

signal intensity at this region pixels for the different b-values and only then,
compute the ADC. However, this methodology does not explicitly account for
tissue heterogeneity, thus leading to biased ADC estimates in several clinically
relevant scenarios.

Breath-hold acquisitions are also a popular way of avoiding respiratory mo-35

tion artifacts with fast scan times. However, when images with different b-values
have been acquired at different breath-holds and, subsequently, used for ADC
estimation, considerable image artifacts can arise that stem from the fact that
two breath hold states are never identical [11].

Extensive research has been carried out on motion-robust sequences in MRI40

[12]. Most approaches have posed the registration problem from a pairwise
standpoint. This procedure, however, is prone to an undesired bias towards
the a priori chosen template [13]. On the other hand, groupwise approaches
are based on an image reference built out of the whole image set, so the bias
mentioned above vanishes.45
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Recently, spatially-constrained approaches have also been proposed for liver
DWI non-rigid registration (see [14, 15]) grounded on Markov Random Field
(MRF), showing an increase in robustness of diffusion parameter estimation by
enforcing boundary consistency. Groupwise approaches that use a MRF have
also been described [16]. However, the first two approaches are devised for50

the tracking of small structures and organs, thus requiring a higher degree of
regularization. In addition, despite their elegant formulation, computational
needs associated to MRF approaches are high. With respect to the latter, in
[17], we showed a better performance of our scheme.

In [17], we have previously presented a novel light methodology for joint55

ADC estimation and groupwise registration of diffusion weighted images in the
liver. However, despite its good performance, the method did not take into
account any possible bias introduced by the noise present in the data.

The presence of noise in the data is precisely a major issue in DW-MRI, since
it greatly affects accurate evaluation of signal decay parameters [18], becom-60

ing specially critical at higher b-values, where the signal-to-noise-ratio (SNR)
decreases. Specifically, it has been shown that insufficient SNR can lead to
spuriously low ADC values and a high variance (low precision) in estimation
[19, 7].

The principal source of noise in MR data is the heat source, i.e., the subject65

or object to be scanned (what is commonly referred to as thermal noise), followed
by electronic noise in the receiver chain [20, 21], produced by the stochastic
motion of free electrons in the coils and by eddy current losses in the patient,
which are inductively coupled to the coils. There are different ways to cope with
the noise component in the estimation of diffusion parameters; but, due to its70

random nature, a probabilistic modelling is a proper and powerful solution. The
most accepted model is to consider that MR magnitude images are corrupted
by Rician noise [22, 21]. This is a common assumption in MRI, mostly valid for
single–coil acquisitions and multi–coil parallel imaging methods reconstructed
with a spatial matched filter, like SENSE [23], for instance. In the former, noise75

depends on a single scalar parameter, σ while on the later, noise can become
non–stationary, i.e., the variance of noise will depend on the position and σ must
be replaced by σ(x). Nonetheless, many data processing techniques still assume
stationary distributions as a model, forgetting about the non-stationarity of
the data. This is probably due to the fact that most noise estimators in the80

literature are based on a single noise variance (σ2) value for all the pixels in the
image.

It is usually argued that these noise-induced biases do not seriously affect
MR images and an identically distributed signal-independent Gaussian model
is commonly assumed. However, this may not be suitable when performed over85

images with relative low SNR, which is the case in DW-MRI in higher b-values
[24], since it may lead to the introduction of a noise-induced bias which greatly
affect subsequent estimations.

There are in general two ways to cope with noise in estimation: first, to in-
clude the noise model into the estimation pipeline and second, to remove or re-90

duce the noise with some filtering or denoising method. Many authors have pre-
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cisely introduced Rician statistics in the estimation of diffusion models [19, 6, 25]
to accurately retrieve ADC estimates, thus significantly increasing computa-
tional complexity. On the other hand, denoising techniques [26, 27, 28, 29, 30]
have also been developed as preprocessing steps with the purpose of removing95

the noise-induced bias from the data for the sake of robustifying estimation in
subsequent stages.

The purpose of this paper is to define a complete framework that allows the
ADC estimation from DW-MRI data taking into account two preeminent con-
founding factors: the motion of the patient and the physiological noise present100

in the data. To that end, the work is grounded on a methodology for joint
ADC estimation and groupwise registration that we have previously presented
in [17]. Although that scheme has shown to be able to successfully cope with
the movement of the patient, it did not take into account any model for the
noise. As a consequence, some steps of the procedure may introduce a signif-105

icant bias. In order to cope with both confounding factors simultaneously, we
have incorporated within the original pipeline proper methods which correct for
the interpolation bias that arises from the weighting of non-Gaussian (skewed)
distributed data, and which, accordingly, improve the ADC estimation. We
have shown that the complete algorithm yields higher quality ADC maps when110

compared to other previously reported approaches.

2. Theory

2.1. Signal and Noise Modelling

In order to obtain relevant information from a limited amount of acquisitions,
it is necessary to assume a diffusion model that allows the estimation of the115

diffusion measures related to the properties of the different tissues. To that end,
many different models have been proposed in the literature [2, 31, 32], where
the simplest is the assumption of a monoexponential model to the diffusion
weighted signal decay [33]. Such model gives a quantitative diffusion value that
has proved to successfully characterize different tissues in the body. This model120

will be adopted in this paper; nonetheless, the methodology here proposed could
be easily extended towards more complex diffusion models.

The acquired complex signal in the monoexponential model is defined as:

A(x) = A0(x)e−b·ADC(x), (1)

where b is the weighting of the diffusion sequence, the so-called b-value [34],
which determines the strength of applied diffusion weighting. A0(x) denotes
the complex noiseless signal intensity obtained with a null diffusion gradient.
This noise-free DW signal is not available, since the scanner provides a noise
corrupted version. For practical purposes, it is usually assumed that the noise
in the image domain is a zero-mean, spatially uncorrelated Gaussian process,
with equal variance in both the real and imaginary parts [21]:

S(x) = A(x) +N(x; 0, σ2) (2)
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Fig. 1. Pipeline of joint registration and ADC estimation under Gaussian assumptions.
Superscript (i) indicates number of iteration, while subscripts b and l indicate b-value of the
image and displacement direction, respectively.

with A(x) being a noise-free signal and N(x; 0, σ2) is a complex Gaussian dis-
tributed noise with zero-mean and a constant variance σ2. In the case that
the data is acquired by several receiving coils, the exact same distribution is125

assumed for all of them.
In clinical and research scenarios, however, it is more usual to work with

magnitude data rather than its complex representation. Thereby, in its simplest
form, the magnitude information is retrieved by applying the absolute value
operator over the complex signal, i.e., M(x) = |S(x)|. Hereinafter, we will130

work with the magnitude images M . Since the modulus operator is not a linear
transformation, the Gaussianity assumption is no longer valid in magnitude
data. Hence, the noise becomes signal-dependent and it is modeled according
to Rician statistics [21].

In advanced acquisition techniques that involve parallel imaging, interpo-135

lation and other reconstruction techniques, different noise models may arise.
However, many of them may yield to non-stationary Rician distributions: the
noise variance σ2(x) is no longer constant, but it depends on the position x
within the image. Hereinafter, we will consider both variants, i.e., stationary
and non-stationary Rician distributed magnitude DW data. The method here140

proposed can be easily extended to other noise models, such as the nc-χ distri-
bution.

2.2. Motion Correction and ADC estimation

To overcome the issues related with the misalignment between the different
b-value images, we must accurately retrieve the motion compensating displace-145

ment fields, so that we can obtain a consistent representation of the organ of
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study, thus avoiding blurred ADC estimates and motion artifacts. Due to the
significant signal intensity dropout observed in the images when increasing the
b-value, it is mandatory to resort to multimodal methodologies.

Therefore, we have made use of the method we have previously proposed
in [17], a methodology to jointly estimate the ADC map and register DW-
MRI sequences acquired in different breath hold states. The processing pipeline
has been depicted in Fig. 1. Briefly stated, the procedure performs an elas-
tic multimodal groupwise registration step in which the transformation τ (see
Eq. (4)) has been defined as a combination of B-spline free form deformations
(FFDs) [35]. The objective function to be optimized for the registration prob-
lem presents the function H in Eq. (4) as data fidelity term; this function is
based on Eq. (1) as the forward model, which should match the measured DW
magnitude data as defined in [17]:

H(M,ADC, τ ) =

Nb∑
b=1

W i
b (Mb(τ

i(x)))− M̂b(ADCi(x)))2, (3)

where M̂j is the estimated intensity value (in magnitude) from the current (i-150

th) ADC estimate obtained by applying Eq. (1) for a given b-value b out of
a total of Nb. The proposed metric additionally incorporates a Nb-component
vector W which weighs each component of the data fidelity term according
to the expected signal content, i.e., weights are a decreasing function of the
b-value [36]. This weighting vector is initially constant and unitary but their155

components are updated along the iterations. The transformation τ has been
driven to be smooth by means of a penalty term based on its first and second
order derivatives, resulting in the following optimization problem:

τ i = argmin
τ

∫
χ

(
H(M, ÂDCi, τ ) +

Nb∑
b=1

L∑
l=1

λ1

(
L∑
l′=1

(
∂τb,l(x)

∂xl′

)2
)

+

λ2

(
L∑
l′=1

L∑
l′′=1

(
∂2τb,l(x)

∂xl′∂xl′′

)2
))

dx, (4)

where M are the magnitude images and τb,l represents each of the displacement
components of the transformation (with L = 2 for the 2D case) for each b-value160

image. Derivatives have been approximated by finite differences in the spatial
dimension x. The influence of the regularization term has been balanced by λ1
and λ2. Quadratic interpolation has been used to obtain the intensity of the
deformed images on a rectilinear grid.

For the ADC estimation, the optimization functional comprises the same
weighted metric H as used for the registration procedure and an additional
Total Variation (TV) regularization term on the ADC map to ensure smooth
estimates. Specifically:

ÂDCi = argmin
ADC

∫
χ

[
H(M,ADC, τ i-1) + β||ADC(x)||TV

]
dx, (5)
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with ||ADC(x)||TV the spatial TV on the ADC which is controlled by a non-165

negative constant β. We should stress that the parameters involved in the
estimation problem, particularly the ones related to the spatial TV term in
Eq. (5), may greatly influence the performance of this step. A fine tuning of these
parameters is needed in order to prevent the TV term from oversmoothing the
structure in the ADC map so that its impact is just a mild denoising. However,170

notice that, by placing the TV ADC estimation at the end of the pipeline, it
will not interfere with other stages of the procedure, thus keeping magnitude
images untouched and simplifying parameter setting.

In this original formulation, no noise model has been taken into account.
That could not be a problem in Gaussian distributed data, but in distributions175

with certain skewness (like Rician, Rayleigh, nc-χ or Gamma), operations like
those carried out in Fig. 1 are known to produce certain bias that can seriously
affect the output values of the different steps (specially due to the iterative na-
ture of the procedure) and consequently the accuracy of the final ADC estimate.
In the following section, those biases introduced by the presence of noise, will180

be analysed and properly corrected.

2.3. Noise-induced Bias Correction

According to the scheme described in Fig. 1, the ADC has been estimated
from the registered magnitude images, which have been obtained through in-
terpolation using the transformation τ previously estimated. The interpolated
(squared) images M2(τ (x)) have been obtained as:

M2(τ (x)) =
∑

xp∈ητ(x)

ωpM
2(xp), (6)

with ητ (x) a square neighborhood around the transformed pixel. If the original
magnitude data M(x) are assumed to follow a Rician distribution, data after a
rigid registration will still remain Rician distributed, since no operation are done
on the values of the different pixels, only on the positions. Thus, the squared
interpolation can be seen as the weighted sum of squared Rician signals. We
have calculated the expected value of the output (for the sake of simplicity, we
drop spatial dependence and denote transformed pixel as j with neighborhood
ηj):

E
{
M2

j

}
= E

{∑
p∈ηj

ωpM
2
p

}
=
∑
p∈ηj

ωpE
{
M2
p

}
=

∑
p∈ηj

ωpA
2
p︸ ︷︷ ︸

original interpolation

+ 2
∑
p∈ηj

ωpσ
2
p︸ ︷︷ ︸

bias

.
(7)

It can be seen that the last term corresponds to a bias, which should not be
neglected in low SNR scenarios. Besides, this bias will be fed back inside the
optimization loop, thus increasingly affecting ADC estimates.185

7



Fig. 2. ADC estimation procedure with motion compensation and noise-induced bias correc-
tion. W0 is the initial weighting parameter and σ̂(x) is an estimate of the noise variance.

In order to remove this bias in Eq. (7), we have decided to avoid any filtering
of the data. Although filtering techniques have shown proper performance in
many estimation problems, we have preferred to keep the original data whenever
possible, to avoid any loss of information that overfiltering may produce. In
this case, we can easily remove this noise-induced bias by estimating the signal∑
p∈ηj

ωpA
2
p. If we know the value of the variance of noise for each pixel in the

image σ2
p, we can simply define the interpolated signal as:(

MC
j

)2
=M2

j − 2
∑
p∈ηj

ωpσ
2
p. (8)

The non-squared signal will be finally obtained as:

MC
j =

√√√√max

{∑
p∈ηj

ωpM2
p − 2

∑
p∈ηj

ωpσ2
p, 0

}
. (9)

The maximum operator has been introduced to avoid any negative term inside
the square root. If noise is assumed to be stationary, the variance of noise is
the same for all the image and therefore the parameter σ2

p simply becomes σ2.
The ADC estimation pipeline with the inclusion of the interpolation bias cor-

rection is shown in Fig. 2, where W0 represents the initial weighting parameter190

and σ̂2(x) is an estimate of the noise variance. For the sake of generalization,
we have assumed the latter to be spatially dependent.

It is worth pointing out that the suitability of the Rician bias correction
procedure will greatly depend on the local SNR; when a high SNR is present,
a Gaussian distribution can be assumed, so no bias should appear in the data.195

On the other hand, when the signal tends to zero, data becomes Rayleigh dis-
tributed, so Rician correction may be inaccurate. Therefore, our method will
have more clear benefits on tissues with shorter T2; overall, any acquisition
parameter that affects either the signal content (TE, mono or multi-echo se-
quence, b-value) of the noise (receiver bandwidth) will have an impact in the200

model suitability.
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Fig. 3. First iteration of the ADC estimation procedure: a Rician noise filtering step is
introduced prior to the first estimation of the ADC and the registration weights.

In order to obtain the initial weighting parameter W0, a previous ADC esti-
mation has to be performed. The original Rician data is used for this estimation,
since no prior registration is carried out. As a consequence, the noisy data are
directly used in this estimation. In order to reduce the bias and variance of205

this previous step, we propose to introduce a Rician noise filter. The filtering
will only be used in this first step. Once the first set of weights is available,
this filter is no longer needed, since the bias can be directly removed without
any denoising step. That way, we avoid any possible overfiltering of the images
that may distort anatomical details and hinder the subsequent registration. For210

clarity, Fig. 3 sketches the detailed processing in the initial iteration.
One major issue to be also considered in the proposed pipeline is a robust

noise estimation. Our method requires the noise variance σ2 to be known or
at least (smoothly) estimated from the data both from the background and the
foreground regions. Methodologies widely employed to estimate stationary σ2

215

can be found in [21].
For the non-stationary Rician case, a more complex noise estimation step is

needed due to the spatially variant nature of the noise variance σ2(x). There-
fore, we have resorted to a method proposed in [37, 38], that uses a variance-
stabilizing transformation which transforms the magnitude data from a signal-220

dependent noise to an independent one. Afterwards, the spatial variability of
noise has been retrieved by a homomorphic filtering. We have restricted the spa-
tially variant noise estimators to operate only over a predefined region avoiding
outer organs influence. This procedure is able to estimate the spatially variant
noise maps using only a single image at fixed b-value, which is the case con-225

sidered here. Noise parameters have been precalculated and then stored for its
later use inside the algorithm loop.

Finally, for the sake of completeness, we show in Fig. 4 the whole processing
pipeline in which the two-tier processing is clearly depicted.
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Fig. 4. Pipeline of the proposed ADC estimation method. The method corrects the motion
of the patient through registration while reduce the bias induced by Rician noise. The switch
drawing indicates that ADC estimation takes as input images the ones coming from the
upper branch only at first iteration whereas taking them from the lower branch in subsequent
iterations.

3. Materials and Methods230

3.1. Materials

3.1.1. Diffusion Simulation

DW-MRI synthesis has been subdivided in two parts. Firstly, the b0 image
has been simulated; in this work we made use of the well-known Spin Echo
sequence, for the intensity values in the image are given by [39]:

A0 ∝ ρ(1− e−TR/T1)e−TE/T2 , (10)

where ρ, T1, T2 stand for the proton density, longitudinal and transverse relax-
ation times assigned for each simulated tissue in the volume, respectively.

Secondly, we have simulated isotropic diffusion by a random walk process
using the Monte-Carlo method according to the methodology presented in [40].
Particles were uniformly distributed in the voxel and the trajectory of a spin was
generated by randomly moving the particle during each walk. The final diffusion
signal, derived from the bulk phase shift Φki of the K simulated particles, can
be numerically approximated [41, 42] by:

A =
A0

K

√√√√(

K∑
i=1

cos(Φki ))2 + (

K∑
i=1

sin(Φki ))2, (11)

where A0 is the noiseless b0 image intensity from Eq. (10). Complex Gaus-235

sian noise has been added afterwards according to Eq. (2). We have simulated
the following b-values: b ∈ {0, 10, 20, 50, 100, 200, 500, 1000, 1500, 2000} s/mm2.
Sampling of b-values is finer for lower b-values according to [43].

3.1.2. Synthetic Data

For validation, we have developed a synthetic diffusion phantom using a sim-240

ulation environment based on the 4D extended cardio-torso (XCAT) phantom
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[44]. The phantom is built from a whole body model that contains high level
detailed anatomical labels, which feed a high resolution image synthesis proce-
dure. The 4D XCAT phantom incorporates state-of-the-art respiratory and car-
diac mechanics, which provide sufficient flexibility to simulate non-rigid motion245

effects on the liver from a user-defined parameter set. Therefore, the phantom
will provide us not only with the images themselves, but also with ground-truth
deformation fields and a synthetic reference ADC map. For the ADC simulation,
we have covered the whole volume of the liver (both lobes). The parameters of
the bulk phase shift simulation have been set so that the ground-truth simulated250

ADC values present a distribution with 1.6± 0.4× 10−3mm2/s (mean ± std).
The resulting simulated images are shown in Fig. 5, from which the global

influence of the different breath holds on each image can be observed, as well
as the simulated decreasing SNR (Rician stationary noise). Moreover, SENSE
acquisitions have also been simulated. Therefore, non-stationary noise has been255

generated, which presents a spatial pattern that depends on a number of imag-
ing parameters [21] such as, coils sensitivities, SENSE acceleration factor and
correlation between coils. An exemplary synthetic non-stationary noise pattern
is presented in Fig. 5.

Fig. 5. Axial slices of the simulated diffusion sequence. The figure on the left shows the
image corresponding to the b0, as well as the ROI (χ) boundary in blue, while the figure on
the center is a checkerboard with b-values of 100 and 1000 s/mm2. The figure on the right
shows noise map for non-stationary Rician noise simulation with an acceleration factor of 2
and correlations between coils set to 0.1.

3.1.3. Real Data260

Additionally, we have performed MRI acquisitions over a sample of four
healthy volunteers. Axial SENSE DWI and T2 weighted Turbo Spin Echo se-
quences have been acquired on a Philips Achieva 3T scanner in each case of
study. The latter will be used to manually delineate the whole liver as region of
interest (ROI) χ on which meaningful measurements will be obtained. All the265

subjects signed the ordinary informed consent for the MR session and agreed in
writing to share the resulting images for research purposes. Personal data were
treated according to current legislation. Sequence details for real and synthetic
data are shown in Table 1.

Ten b-values have been chosen to be common for every sequence and volun-270
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Table 1
Details on the image sequences used in the paper. ∆p : Spatial Resolution (mm). ∆l : Slice
Thickness (mm). Np: Number of pixels along each direction. Nb: Number of b-values. Ns:
Number of slices. TE : Echo Time (ms). Ng : Number of diffusion gradients. Card.: Cardiac
Period (s). Resp.: Respiratory Period (s).

Params. XCAT DWI volunt.

∆p 1 1.23-1.85
∆l 10 5.5
Np 268 224-320
Nb 10 10
Ns 21 20-40
TE 93 65.65-72.1
Ng 1 3

Card. 1 ∼ 1
Resp. 4 Free

teer.

3.2. Methods

3.2.1. Reference Methods

Both real and synthetic datasets have been processed using different group-
wise multimodal metrics [45] as well as pairwise registration methodologies. As275

for the former, apart from the pipeline here proposed, we have tried the Entropy
of the distribution of intensities (Entr.) [46], Modality Independent Neighbour-
hood Descriptor (MIND) [47] and the joint formulation proposed in [17] based
on weighted ADC residuals (bWei).

As for the latter, the Demons [48] registration algorithm (DEM) has been280

implemented using a mutual information based metric; this registration algo-
rithm has been implemented under the pairwise paradigm. Therefore b0 image
has been selected as the image template.

These methodologies have been built as sequential approaches (except for
the joint procedure) as they focus on registration only. Consequently, ADC285

estimates are obtained once the DWI dataset is fully registered. We have solved
the Non-Linear Least Squares problem for ADC estimation using the Levenberg-
Marquardt method.

On the other hand, for the Rician noise filter we have implemented different
literature filtering approaches to compare its performance inside our proposed290

pipeline. Namely, we have tested a reported linear minimum mean square error
(LMMSE) procedure [26, 27], a Wiener filter (assuming a Gaussian noise model),
an unbiased non-local means (UNLM) denoising scheme [49, 50] and a non local
transform-domain filter (BM4D) [51].

3.2.2. Evaluation on synthetic data295

We have first carried out a comparison using the data provided by the XCAT
computational phantom for the different filtering procedures described in Sec-
tion 3.2.1 under different scenarios in order to assess its suitability. We have
also measured the improvement due to the bias correction step, i.e., the pipeline
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shown in Fig. 1 with the Rician filter removed (Interp.). Our original procedure300

[17] is also shown for reference.
Furthermore, for the synthetic experiment we have simulated different types

of noise both stationary (“St.”) and non-stationary (“NS”) Rician noise, the
latter using the noise map represented in Fig. 5. Hence, we can measure both
the error in the estimation of the simulated deformation field τ and accuracy305

in ADC estimation for the methodologies presented in Section 3.2.1.
Besides, we have compared our proposal with respect to the approach de-

scribed in [17], in which the joint estimation-registration is performed although
under an underlying Gaussian assumption in order to assess robustness towards
different SNRs. For this purpose, we have measured the error obtained over310

the ADC map estimated for stationary and non-stationary noise with different
noise variances.

We have always used the ground-truth noise variance σ2(x) in the synthetic
experiments so as to avoid possible biases from noise estimation methodologies.
Experiments have been performed 100 times with different noise executions.315

3.2.3. Evaluation on real data

For the real data, due to the absence of a ground-truth, validation has
to be performed by indirect measures and qualitative visual assessment. We,
therefore, have proposed an indirect validation procedure based on the esti-
mates of the ADC obtained with different subgroups of b-values, with lengths320

of nb = [3, 6, 8], out of the total number of b-values available (Nb = 10). Specif-
ically, we have performed Kb =

(
Nb

nb

)
ADC estimations for each pixel per slice

and patient, changing only the combination of the b-values (maintaining the
same number of b-values) that enter the optimization problem. Ideally, for
two combinations of nb values, the ADC estimates should be pixelwise equal.325

Therefore, a natural measure of the method reproducibility is the similarity
between all ADC estimates. Accordingly, we have calculated the absolute dif-
ferences between each possible pair out of the Kb ADC estimates, giving rise to
Kb(Kb−1)/2 possible comparisons for each pixel in the liver, which will conform
the distribution of ADC differences. Robustness will be measured in terms of330

the variability of this pattern, the more variable, the less robust the method.
The value of σ(x), needed as an input parameter, has been estimated from

the data using the method in [37] over a predefined region of interest (ROI)
avoiding the influence of outer organs.

4. Results335

4.1. Results on Synthetic Data

Fig. 6 shows boxplot diagrams of the error distributions in ADC estimation
for different filtering procedures (as enumerated in Section 2.3) with respect to
the original bWei approach. We have also included the results without filtering.
From the results, we can conclude that the bias correction step itself is beneficial340

in order to improve ADC estimation. Regarding noise reduction at the first
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Fig. 6. Relative error on ADC estimates for the different customized filtering schemes de-
scribed in Section 3.2.2 for stationary noise (σ = [10,35], in left and right figures, respectively).
Numbers inside the boxes indicate the error reduction (%) with respect to original pipeline.

iteration, it is observed that LMMSE filter outperforms other state-of-the-art
approaches; the gain is observed not only in precision, as shown in the figure,
but also in speed.

Mann-Whitney U-tests were performed for the ADC error distributions on345

both scenarios. Significant differences were found for each of the different filter-
ing procedures with respect to the non-filtered scheme (greater differences were
found with respect to the original bWei approach). Best figures were obtained
with the LMMSE filter, p = 0.0031 and p < 10−3 for scenarios in Fig. 6, with
σ = 10 and σ = 35, respectively (p < 10−6 against bWei for both). Therefore,350

hereinafter, this filtering method will be used.
We now test the ability of the proposed methodology on motion correction

and robust ADC estimation. We have measured the relative error (over a pre-
defined ROI χ) on the ADC estimates under the noise scenarios described in
Section 3.2.2 for the different methodologies enumerated in Section 3.2.1 as well355

as our proposal.
In Fig. 7 we show the boxplot diagrams of the relative error distributions

from ADC estimation as a measure of estimation accuracy. Besides, we have
also measured the error module of the estimated deformation fields with respect
to the ground-truth provided by the XCAT phantom.360

Mann-Whitney U-tests have also been performed for the ADC error distri-
butions obtained with our method and with the others in the same scenario.
Significant differences were found, although greater in the non-stationary sce-
nario (p < 10−3) than in the stationary case (p < 0.05) for all methods. To
diminish correlation effect in these tests, images have been decimated by a fac-365

tor of ten, i.e., pixels entering the tests are taken 10 pixels apart at the acquired
resolution.

From results in Fig. 7, we can state that the proposed methodology is
effective at improving robustness when obtaining ADC estimates from DW-
MRI sequences and, besides, provides accurate deformation measures, specially370

when compared to other sequential state-of-the-art techniques, in stationary and
spatially-variant noise scenarios; results for the second case are, as expected,
worse. Fig. 8 shows the evolution of the ADC estimation error with respect
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Fig. 7. Relative error on ADC estimation (first row) and module error (mm) for the de-
formation field (second row) obtained with the different methods in stationary (σ = 20) and
non-stationary (with σ(x) median set to 20) noise contaminated scenarios, shown in the left
and right respectively.

to the noise level (both stationary and spatially-variant) for the original joint
registration-estimation approach [17] and our present proposal.

Fig. 8. Mean relative error (%) on ADC estimates in presence of different noise levels σ for
both approaches. In the non-stationary noise scenario the x-axis shows the median of σ(x).

375

We can see from Fig. 8 that the here proposed methodology can provide ac-
curate estimation under very noisy conditions, with mean error being below 10%
until σ = 25 and σ = 15 for the stationary and non-stationary cases, respec-
tively. This is specially relevant when performance is compared with the original
bWei approach, which exponentially decreases for σ > 15. The figure also indi-380

cates that at higher SNR differences in estimation between traditional Gaussian
procedure and our Rician-based proposal can be neglected, as expected.
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4.2. Results on Real Data

Evaluation on real data has been performed according to the scheme de-
scribed in Section 3.2.3. As sketched in Fig. 9, we have used the cumulative385

distribution (CD) of the absolute differences on the ADC estimates obtained
so as to show the reproducibility of the different methodologies for different
number of acquired b-values. Proposal without TV regularization has also been
plotted so one can assess the influence of TV step over ADC estimates for the
different b-values subgroups.

Fig. 9. Cumulative distribution of absolute differences on ADC estimates for the different
methods with a fixed number of b-values: nb = 3 (left), nb = 6 (center) and nb = 8 (right).

390

It can be observed in Fig. 9 that the proposed method shows the highest
figures, specially when a lower number of b-values is employed and, besides,
the curves show a more “monotonic” behavior, what constitutes a good trend
towards the absence of bias in the ADC estimation, both in the boundaries and
in the interior of the liver. Nevertheless, notice that, since we are resorting to395

reproducibility measures in the real data, bias in ADC estimation cannot be
represented. Therefore, possible errors in the estimation, either caused by the
noise variance estimation method or by the monoexponential model assumption,
which does not account for the perfusion component in the data, will not be
reflected.400

Finally, in Fig. 10 we show some snapshots on the resulting estimated ADC
to visually notice the noise removal ability of the proposed methodology over
real data. From visual inspection, we can support that our approach effectively
removes the noise in final ADC maps maintaining liver structures integrity.
Fig. 10 also shows a reduction in the smearing near tissue boundaries, which405

will allow delineation of structures inside the liver directly over the reconstructed
ADC map.

5. Discussion

The ADC is known to provide useful information in vivo about body tissues,
specially in abdominal organs. However, the accuracy of the estimation of this410

parameter is affected by different external factors, some related to the estima-
tion procedure itself, some to the accuracy of the adopted model and some to
the so-called confounding factors. In this work, we have focused on the latter:
the reduction of the influence of two preeminent confounding factors in order

16



Fig. 10. Real ADC maps for two different patients estimated directly from the original
acquired sequence (left) as well as when using the bWei approach (center) and the here
proposed methodology with bias correction (right).

to improve the accuracy in the estimation of the ADC. To that end, we have415

presented a step-by-step approach for simultaneous correction of motion arti-
facts and removal of noise-induced bias in the ADC estimation from DW-MRI
sequences acquired in different breath hold states.

The proposed methodology has shown to be specially accurate in recovering
ADC maps, showing a significant reduction of the estimation bias when com-420

pared to previous approaches. The bias correction procedure plays an important
role, improving the performance, specially when the Gaussian assumption does
not hold, as shown in Fig. 8. It is important to point out that the whole scheme
is grounded on the assumption of an underlying noise model for the acquisi-
tions. In this work we have chosen the Rician distribution, for being the most425

accepted model in MRI. However, other models can also be easily adopted,
without many changes in the general scheme. The relevant issue is precisely to
adopt a model: overlooking the use of a statistical model for signal and noise
may lead to implicitly assume non-skewed distributions.

As a design choice we have opted to avoid using any filtering procedure430

to reduce noise. Instead, we have removed the interpolation bias of the data
by a simple subtraction. One may discuss that, this way, we only reduce the
bias of the estimation, but not the variance. While this is true, we have taken
a conservative approach: we believe that it is more important to avoid any
obliteration of the original data by overfiltering than to reduce the estimation435
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variance.
As a matter of fact, a filter was indeed used, but only on the first iteration

in order to obtain an initial set of weights. We have tested different methods
and we have finally resorted to LMMSE filtering as preprocessing step since
it provides the best performance as shown by Fig. 6 but also due to its lower440

computational complexity. From Fig. 6, we can also state the relevance of
initial iterations in the procedure since the introduction of a filtering stage
has significantly improved performance not only with respect to the original
proposal (bWei) but also when the first ADC estimation is directly performed
over magnitude images.445

The proposed pipeline has also proven to be robust towards different types
of noise, both stationary and spatially-variant. It has been shown that just by
introducing a computationally light stage after interpolation we were able to
correct the bias stemming from data weighting without apparently increasing
estimates variance, even for low SNR datasets (i.e., variance effects of estimating450

unknown quantities in Eq. (9) do not seem relevant). Hence, the introduction
of more complex models in the optimization equations may slightly improve
performance but at the price of greatly increasing computational complexity of
the algorithm.

With regards to the estimation of the deformation fields, we can see in Fig. 7455

that the mean absolute error seem has experienced only a slight improvement
as compared to the original proposal (bWei); however, robustness has been
significantly increased. This robustness gain is mainly caused by improvement of
the registration performance nearby tissue interfaces inside the liver due to bias
removal. This bias reduction (coming both from the groupwise registration and460

Rician correction) allowed a better alignment with the ADC reference, specially
at higher b-values on which these boundaries are barely distinguishable. For
this reason, smearing in the ADC maps obtained from the motion compensated
DW-MRI sequences has been greatly reduced, which in turn will also benefit
the subsequent registration stage.465

Notice that both procedures, noise bias correction and motion compensation,
have shown its benefits towards robust ADC estimation separately. However,
in this paper we have also demonstrated that its simultaneous use is beneficial
for each other when employed inside the iterative procedure, providing addi-
tional values with respect to sequential approaches or breath-hold acquisitions.470

Furthermore, the unified framework has been validated with in vivo human
data, suffering from involuntary motion using reproducibility figures. From the
improvement observed in Fig. 9, we can see that our procedure allows higher
flexibility towards the chosen b-values as well as to the total number of images
acquired. Furthermore, we can observe that the introduced TV term seems475

beneficial in preventing noise, although a fine tuning is necessary to avoid over-
smoothing in ADC estimates. Visual assessment from Fig. 10 also reveals the
motion compensating capability of the method, producing detailed ADC maps,
specially as compared to the ones obtained from the original scanner sequence.
Therefore, we can support that the proposed pipeline is suitable to be embed-480

ded into direct ADC reconstruction acquisition protocols, which will not only
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reduce scan time but also possible variabilities due to b-value selection.

6. Conclusions

In this paper we have extended the joint registration and ADC estimation
procedure for DW-MRI sequences in order to provide unbiased ADC estimates.485

To this end, we have designed a processing pipeline with smartly located fil-
tering stages capable of dealing with the possible biases generated inside the
optimization loop.

Experimental results demonstrate that the proposed approach helps to ro-
bustly cope with non-rigid motion artifacts, thus providing an accurate estima-490

tion under noisy (also for non-stationary) environments showing higher robust-
ness and reproducibility towards low SNR datasets and b-value selection.
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magnétique nucléaire. Comptes-Rendus de l’Académie des Sciences
1985;301(15):1109–1112.600

[34] Stejskal E, Tanner J. Spin diffusion measurements: Spin echoes in the
presence of a time-dependent field gradient. J Chem Phys 1965;42(1):288.

[35] Rueckert D, Aljabar P, Heckemann R, Hajnal J, Hammers A. Dif-
feomorphic registration using b-splines. MICCAI 2006 Lecture Notes in
Computer Science 2006;4191:702–709.605

[36] Veraart J, Sijbers J, Sunaert S, Leemans A, Jeurissen B. Weighted
linear least squares estimation of diffusion MRI parameters: Strengths,
limitations, and pitfalls. NeuroImage 2013;81:335–346.
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Alberola-López C. Groupwise non-rigid registration on multiparametric
abdominal DWI acquisitions for robust ADC estimation: Comparison with
pairwise approaches and different multimodal metrics. In: 14th IEEE ISBI.
Melbourne, Australia; 2017, p. 1156–1159.

[46] Learned-Miller E. Data driven image models through continuous joint635

alignment. IEEE Trans Pattern Anal Mach Intell 2006;28:236–250.

[47] Heinrich M, Jenkinson M, Bhushnan M, Matin T, Gleeson F, Brady
M, et al. Mind: Modality independent neighbourhood descriptor for mul-
timodal deformable registration. Med Image Anal 2012;16:1423–1435.

[48] Pennec X, Cachier P, Ayache N. Non-local understanding the demons640

algorithm: 3D non-rigid registration by gradient descentshape descriptor:
A new similarity metric for deformable multi-modal registration. MICCAI
1999 Lecture Notes in Computer Science 1999;1679:597–606.

[49] Aja-Fernández S, Krissian K. An unbiased non-local means scheme for
DWI filtering. In: MICCAI: Workshop on Computational Diffusion MRI.645

Lecture Notes in Computer Science. Springer; 2008, p. 277–284.

[50] Buades A, Coll B, Morell J. A non local algorithm for image denoising.
In: IEEE Computer Society CVPR 2005. San Diego, USA; 2005, p. 60–65.

[51] Maggioni M, Katkovnik V, Egiazarian K, Foi A. A nonlocal transform-
domain filter for volumetric data denoising and reconstruction. IEEE Trans650

Image Process 2013;22(1):119–133.

23


