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a b s t r a c t

We study the supersymmetric partners of the harmonic oscillator
with an infinite potential barrier at the origin and obtain the
conditions under which it is possible to add levels to the energy
spectrum of these systems. It is found that instead of the usual rule
for non-singular potentials, where the order of the transformation
corresponds to themaximumnumber of levelswhich can be added,
now it is the integer part of half the order of the transformation
which gives the maximum number of levels to be created.
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1. Introduction

The so called spectral design in quantum mechanics basically consists in producing a Hamilto-
nian with a prescribed spectrum, departing from an initial one whose spectrum is already known.
Among the various techniques available to implement the spectral design, supersymmetric quantum
mechanics has proven to be a powerful one, since its defining equation gives the relation between
the energy spectrum of the initial and new Hamiltonians (usually called supersymmetric partners)
in a straightforward manner [1–31]. While first investigations focused on non-singular potentials, it
is important to study the way that supersymmetric quantum mechanics works for potentials with
singular terms, e.g. infinite walls, centrifugal barriers, etc. [4,9,14,17,25,29]. In this paper we will see
that the so-called truncated oscillator plays a special role for this kind of studies.

Let us note that a truncation for the harmonic oscillator was introduced in [32], where the infinite-
dimensional matrices representing the position and momentum operators were replaced by the
corresponding finite-dimensional matrices generated from the first Fock states. Later, in [33,34] its
parasupersymmetric partners were studied and its quasicoherent states were obtained, respectively.
On the other hand, a different truncation, in the domain of definition of the potential, is also possible:
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in [14] it was shown that an infinite potential barrier added to the harmonic oscillator modifies
the domain of its supersymmetric partners, according with the position where the infinite barrier
is placed. In [35–37] we started to study the possibilities of spectral design for the harmonic oscillator
with an infinite potential barrier at the origin, or truncated oscillator for short. It was found that a
first order supersymmetric transformation produces only isospectral partners, while a second order
transformation allows to add at most one level to the spectrum of the new Hamiltonian. Let us recall
that a non-singular higher order supersymmetric transformation can be decomposed as an iteration
of first and second order non-singular transformations [38–40]. This suggests that, in order to add
n new levels to the spectrum of the truncated oscillator, it is necessary to use a supersymmetric
transformation of order 2n at least.

In this work we continue the study of spectral design for the supersymmetric partners of the
truncated oscillator, by generalizing the conditions under which such singular systems can acquire
additional energy levels in the case of a transformation of arbitrary order. However, instead of
iterating lower order transformations we will use a straightforward method that employs a single
transformation of high order, and then we will analyze the fulfillment of the boundary conditions.

This article is organized as follows: In Section 2 we introduce the supersymmetric transformation,
relying on the truncated oscillator to exemplify the technique. In Sections 3 and 4we recall the results
found previously for the first and second order cases, respectively. In Section 5 we present the novel
results of this work, regarding the higher order supersymmetric partners of the truncated oscillator
and how it turns out that only a subset of the possible eigenfunctions for these systems actually satisfy
the boundary conditions. Finally, in Section 6 we present our concluding remarks.

2. Supersymmetric partners of the truncated oscillator

A supersymmetry transformation in quantummechanics relates two Schrödinger Hamiltonians H
and H̃ through the intertwining equation

H̃Q = QH, (1)

where Q is a non-singular kth order differential operator known as intertwining operator. Once the
intertwining relation has been established,H and H̃ are called supersymmetric partners of each other.

From (1) it follows that if ψn is a solution of the stationary Schrödinger equation Hψn = Enψn,
associated to the value En, then

ψ̃n ∝ Q ψn (2)

is a solution of H̃ψ̃n = Enψ̃n, associated to the same value En. If ψn and ψ̃n both satisfy the
corresponding boundary conditions, then we can say that there are eigenvalues En in the spectrum
of H which are also in the spectrum of H̃ and that their corresponding eigenfunctions are related by
equation (2). However, the functions ψ̃n in general do not form a complete set, since it is possible to
find functions which are orthogonal to them [3].

Indeed, suppose that φ is one of such functions, i.e.,

⟨φ|ψ̃n⟩ = 0 H⇒ ⟨φ|Qψn⟩ = ⟨Q †φ|ψn⟩ = 0. (3)

Since the set of eigenfunctions ofH is complete, it turns out that the only vectorwhich is orthogonal
to all |ψn⟩ is null. From this, we can see that the onlymissing eigenfunctions are those contained in the
kernel of the intertwining operatorQ †. Since it is a kth order linear differential operator, the dimension
of such a kernel is precisely k. Even more, we can readily see that H̃ and Q † commute in said kernel,
thus they can be diagonalized simultaneously.

Hence, a possible non-isospectral eigenfunction φϵ of H̃ is obtained as a zero mode of the adjoint
of the intertwining operator Q , i.e.,

Q † φϵ = 0, (4)

corresponding to the eigenvalue ϵ. These are regarded as eigenvalues added to the initial energy spec-
trum as a result of the technique. We can conclude that the number of non-isospectral eigenfunctions
of H̃ is less than or equal to the order k of the intertwining operator. This shows that the spectral
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Fig. 1. Potential for the truncated oscillator and the eigenfunctions of its first four energy levels.

values of H̃ are exhausted by two sets of possible eigenfunctions, the isospectral ones ψ̃n given by
Eq. (2) and the k non-isospectral solutions satisfying Eq. (4), depending on whether they satisfy the
boundary conditions [23,9,19,24,27].

Let us suppose now that H = −
1
2

d2

dx2
+ V is the Hamiltonian for the one-dimensional harmonic

oscillator with an infinite potential barrier at the origin, which from now on we shall call truncated
oscillator, where the potential is given by

V =

{
x2

2
if x > 0

∞ if x ≤ 0.
(5)

The spectrum of H consists of the set of values En associated to those solutionsψn of the stationary
Schrödinger equation

H ψn = En ψn (6)

such that ψn(x) is square-integrable in the domain (0,∞) and it satisfies the boundary conditions,
i.e. ψn(0) = ψn(∞) = 0. Therefore, the eigenvalues of H are given by En = 2n + 3/2, n ∈ N, with
corresponding eigenfunctions

ψn(x) = Cn e−x2/2 H2n+1(x) , (7)

where Cn =
[√
π 22n (2n + 1)!

]−1/2 is a normalization constant and Hm(x) is the mth Hermite
polynomial. These are the odd eigenfunctions of the standard one-dimensional harmonic oscillator
now normalized in the domain (0,∞).

The even eigenfunctions of the standard harmonic oscillator, normalized in (0,∞) and associated
to the values En = 2n +

1
2 are given by

χn(x) = Bn e−x2/2 H2n(x) , (8)

where Bn =
[√
π 22n−1 (2n)!

]−1/2. These are solutions to the Eq. (6) but they do not satisfy the
boundary condition at x = 0. Thus, En are not elements of the spectrum of H . Nonetheless, we will see
that they play an important role in the further development of the supersymmetric technique for the
truncated oscillator.

Fig. 1 contains a plot of the potential V of the truncated oscillator. It also shows the eigenfunctions
of the ground state ψ0(x) and the first three excited states. As is customary when depicting the
potential and eigenfunctions in the same plot, the x-axis for each eigenfunction is shifted up to the
energy of its corresponding eigenvalue.

3. First-order supersymmetric partners

Suppose that Q is a first-order differential operator defined as

Q =
1

√
2

[
−

d
dx

+ α(x)
]
, (9)
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where α(x) is a real function of xwhich can be obtained by substituting Eq. (9) into Eq. (1). Moreover,
if one assumes that α = u′/u, where u(x) is called the seed solution, it turns out that

−
1
2
d2u
dx2

+ Vu = ϵu, (10)

being ϵ a parameter called factorization energy, which we shall consider real. This is the stationary
Schrödinger equation defined by H , but u is not required to be physical, i.e. to satisfy the boundary
conditions. However, umust be such that α, and thus Q , is non-singular. If this is the case, then V and
Ṽ can be related by

Ṽ = V −
d2

dx2
ln(u). (11)

The general expression for the seed solution is a linear combination of two functions with opposite
parity given by

u(x) = e−x2/2
[
b1 1F1

(
1 − 2ϵ

4
,
1
2
, x2
)

+ b2 x 1F1

(
3 − 2ϵ

4
,
3
2
, x2
)]

, (12)

where b1 and b2 are real constants and 1F1(a, b; x) is the confluent hypergeometric function. A simple
way to fulfill the appropriate boundary conditions for the eigenfunctions of the new Hamiltonian is
to proceed by cases, choosing a definite parity of u.

3.1. Odd seed solution

By choosing b1 = 0 and b2 = 1 we obtain the odd seed solution

u(x) = xe−x2/2
1F1

(
3 − 2ϵ

4
,
3
2
, x2
)
, (13)

and from Eq. (11) we obtain in particular that

Ṽ = V + 1 +
1
x2

−

{
ln
[
1F1

(
3 − 2ϵ

4
,
3
2
, x2
)]}′′

. (14)

We can see that the terms V and 1/x2 have a singularity at x = 0, which is allowed since it lays outside
the domain (0,∞). On the other hand, no singularities are added inside the domain (0,∞) as long as
ϵ < 3

2 , which defines the allowed values for the factorization energy. In the limit where ϵ =
3
2 this

value is removed from the spectrum of H̃ .
Therefore H̃ is isospectral to H and its eigenfunctions are obtained using (2) as

ψ̃n(x)=
Cn x2e−x2/2

√
En−ϵ

[
4
3 1F1

(
1 − n,

5
2
, x2
)

+

(
1 −

2
3
ϵ

)
1F1( 7−2ϵ

4 , 5
2 , x

2)

1F1( 3−2ϵ
4 , 3

2 , x
2)

1F1
(
−n,

3
2
, x2
)]
. (15)

3.2. Even seed solution

Next we choose b1 = 1 and b2 = 0 such that

u(x) = e−x2/2
1F1

(
1 − 2ϵ

4
,
1
2
, x2
)

(16)

leading now to the potential

Ṽ = V + 1 −

{
ln
[
1F1

(
1 − 2ϵ

4
,
1
2
, x2
)]}′′

. (17)

This potential has a singularity at x = 0, due to the barrier in the term V , while the allowed values for
the factorization energy are such that ϵ ≤

1
2 .
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When studying the way in which the eigenfunctions of Eq. (6) are transformed we find that
Q ψn fails to satisfy the boundary conditions, where ψn is given by Eq. (7). In fact, it is Q χn which
solves the stationary Schrödinger equation for H̃ and also satisfies the boundary conditions. Thus, the
eigenfunctions of H̃ are given by

ψ̃n(x) =
Bn x e−x2/2

√
En − ϵ

[
4n 1F1

(
1 − n,

3
2
, x2
)

+ (1 − 2ϵ)
1F1( 5−2ϵ

4 , 3
2 , x

2)

1F1( 1−2ϵ
4 , 1

2 , x
2)

1F1

(
−n,

1
2
, x2
)]

.

They are associated to the eigenvalues En, which are the elements of the spectrum of H̃ .
It is worth mentioning that in both cases of the first order intertwining, H and H̃ are isospectral,

up to an overall shift in the energy.

4. Second-order supersymmetric partners

Now, let us consider a second-order intertwining operator defined as

Q =
1
2

[
d2

dx2
− η(x)

d
dx

+ γ (x)
]
, (18)

where η(x) and γ (x) are real functions of the position x. This realization of the supersymmetric
technique can be obtained using a pair of seed solutions of Eq. (10), ui(x) associated to ϵi, i = 1, 2,
in the form given by Eq. (12).

Once the seed solutions have been fixed, the potential of H̃ becomes

Ṽ = V −
d2

dx2
ln [W (u1, u2)] . (19)

As it was done previously, we shall proceed by cases according to the parity of u1(x) and u2(x). For
definiteness, we order the factorization energies as ϵ1 < ϵ2; then, there are four non-equivalent
identifications of these functions consistent with expressions (13) and (16).

4.1. Odd–odd seed solutions

Consider the identification

u1 = xe−
x2
2 1F1

(
3 − 2ϵ1

4
,
3
2
; x2
)
, u2 = xe−

x2
2 1F1

(
3 − 2ϵ2

4
,
3
2
; x2
)
. (20)

Then, the new potential is given by

Ṽ = V +
3
x2

+ 2 − [lnw1(ϵ1, ϵ2; x)]′′, (21)

where w1 must not have zeros in the domain (0,∞). To achieve this, the factorization energies must
be such that ϵ1 < ϵ2 < E0 or En < ϵ1 < ϵ2 < En+1.

The eigenfunctions of H̃ are obtained as the action of the intertwining operator on the eigenfunc-
tions of H:

ψ̃n(x) =
Q ψn(x)

√
(En − ϵ1)(En − ϵ2)

, (22)

corresponding to the eigenvalues En = 2n + 3/2. In the limit when ϵ2 = E0, En = ϵ1 or ϵ2 = En+1,
the energy level E0, En or En+1 is erased, respectively; however, no new levels can be added to the
spectrum of H̃ in this case.

4.2. Even–odd seed solutions

By choosing now

u1 = e−x2/2
1F1

(
1 − 2ϵ1

4
,
1
2
; x2
)
, u2 = xe−x2/2

1F1

(
3 − 2ϵ2

4
,
3
2
; x2
)
, (23)
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it is obtained the potential

Ṽ = V + 2 − [lnw2(ϵ1, ϵ2; x)]′′ , (24)

where w2 has no zeros in (0,∞) as long as En < ϵ1 < ϵ2 < En. These are the allowed values for the
factorization energies for this even–odd choice of seed solutions.

The eigenfunctions of H̃ are again given by expression (22), and they are associated to the
eigenvalues En = 2n + 3/2. In the limit when ϵ2 = En, the level En disappears from the spectrum
of H̃ . On the other hand, the level ϵ1 ̸= En is indeed an eigenvalue of H̃ associated to the eigenfunction

φϵ1 ∝
u2

W (u1, u2)
. (25)

It means that, through the supersymmetric technique, we were able to add a new energy level to the
initial spectrum of the truncated oscillator.

4.3. Odd–even seed solutions

Now we consider the identification

u1 = xe−x2/2
1F1

(
3 − 2ϵ1

4
,
3
2
; x2
)
, u2 = e−x2/2

1F1

(
1 − 2ϵ2

4
,
1
2
; x2
)
. (26)

From this choice we obtain that Ṽ is of the form given by Eq. (24), with a different functionw3 instead
ofw2. By applying the same considerations to the functionw3 as in the previous case, we arrive at the
condition that the factorization energies must be such that ϵ1 < ϵ2 < E0 or En < ϵ1 < ϵ2 < En+1 in
order to avoid singularities in the domain of the problem. Notice that this condition is different from
those in the previous cases.

The spectrum of H̃ is given again by the set of values En = 2n + 3/2, which are associated to the
eigenfunctions of Eq. (22). It is possible to erase now the energy level En by choosing ϵ1 = En, and a
new energy level ϵ2 can be added by choosing ϵ2 ̸= En+1, associated to the eigenfunction

φϵ2 ∝
u1

W (u1, u2)
. (27)

4.4. Even–even seed solutions

Finally, let us choose the seed solutions as

u1 = e−x2/2
1F1

(
1 − 2ϵ1

4
,
1
2
; x2
)
, u2 = e−x2/2

1F1

(
1 − 2ϵ2

4
,
1
2
; x2
)
, (28)

to obtain that the new potential is given by

Ṽ = V +
1
x2

+ 2 − [lnw4(ϵ1, ϵ2; x)]′′. (29)

This potential is non-singular for x > 0 whenever that ϵ1 < ϵ2 < E0 or En < ϵ1 < ϵ2 < En+1.
For this choice of seed solutions, the eigenfunctions of H̃ are given this time by the action of the

intertwining operator on the solutions χn(x) (see Eq. (8)):

ψ̃n(x) =
Q χn

√
(En − ϵ1)(En − ϵ2)

(30)

which are associated to the eigenvalues En = 2n+ 1/2. By choosing ϵ2 = E0, ϵ1 = En or ϵ2 = En+1 the
energy levels E0, En or En+1 can be erased, respectively. In this case, no new levels can be added to the
spectrum of H̃ .

Opposite to what happened for the first-order supersymmetric technique, the second order
method allows to add energy levels for the supersymmetric partners of the truncated oscillator. This
is made possible by means of a particular choice of the parities for the seed solutions employed in the
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procedure. The work done in [38–40] indicates that a non-singular supersymmetry transformation of
arbitrary order can be obtained as iterations of first- and second-order nonsingular transformations.
Thus, in order to add more levels to the spectrum of H̃ one should iterate the procedures described in
this section and the previous one. This approach would require intermediate steps whose final result,
however, should be achieved by a direct procedure involving only the initial and final expressions. In
the rest of this paper wewill describe how a non-singular supersymmetry transformation of arbitrary
order k can be performed, to addmore than one level to the spectrum of the supersymmetric partners
of the truncated oscillator.

5. kth order supersymmetric partners

The generalization of the supersymmetric technique for an intertwining operator Q of arbitrary
order k leads to the following relation between the potentials V and Ṽ [18]:

Ṽ = V −
d2

dx2
ln [W (u1, . . ., uk)] , (31)

where the uj, j = 1, . . . , k, are k seed solutions of Eq. (10) associated to the factorization energies
ϵ1 < ϵ2 < · · · < ϵk, respectively. We can see that Eq. (31) appropriately generalizes Eqs. (11) and
(19). On the other hand, a generalization of Eqs. (25) and (27) indicates that if there are new levels
added to the spectrum of H̃ , then these become a subset of the ϵj’s associated to solutions of the form

φϵj ∝
W
(
u1, . . . , uj−1, uj+1, . . . , uk

)
W (u1, . . . , uk)

(32)

such that H̃φϵj = ϵj φϵj . It is the boundary conditions of the system which prevent the k solutions
(32) from becoming actual eigenfunctions. While the condition at x → ∞ is satisfied naturally, the
boundary condition at x = 0 needs to be studied carefully. In what follows we are interested in
finding under which conditions a supersymmetric transformation yields the maximum number of
non-isospectral eigenfunctions of H̃ .

In order to produce nonsingular transformationswith normalizable solutions (32),we shall assume
that the seed solutions possess definite parity, so that the uj’s are of the form (13) or (16). Thus, let us
define the parity P of an even function as +1 and that of an odd functions as −1, i.e., P(f ) = +1 if f is
even and P(f ) = −1 if f is odd.

Now, let us split the domain of the ϵj’s in connected subsets belonging to one of two classes: class
A given by intervals of the form (−∞, E0) or (En, En+1); class B given by intervals of the form (En, En).
Such domains are illustrated in the following diagram:

...
...

− − − − − − − − − − − − − −− E2 = 11/2
B

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · E2 = 9/2
A

− − − − − − − − − − − − − −− E1 = 7/2
B

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · E1 = 5/2
A

− − − − − − − − − − − − − −− E0 = 3/2
B

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · E0 = 1/2
A
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In what follows, we will describe how to add energy levels to the supersymmetric partners of the
truncated oscillator in a single interval of class A or B. If one wishes to add energy levels to distinct
intervals, one must consider the results obtained here in each of these domains, separately.

Since the seed solutions have definite parity, then the function φϵj given by Eq. (32) has definite
parity too. This in turn means that the fulfillment of the boundary condition at the origin will depend
on the parity of φϵj . With this in mind, let us establish first an important result.

Let
∏

k|cuj be the product of k functions uj with definite parity, such that to c of them we
have inverted their parity, e.g., in a term of a Wronskian the inversion of parities comes from
differentiations. If c is even, then there is no change in the parity of the product, i.e.

P

⎛⎝∏
k|c

uj

⎞⎠ = P

⎛⎝∏
k|0

uj

⎞⎠ for c even. (33)

This result implies that in order to have themaximumnumber of non-isospectral eigenfunctions of
H̃ for a fixed supersymmetric transformation, the difference between thenumber of even andodd seed
solutions uj should be either one or zero. If said difference is greater than one, then two seed solutions
with the same parity can be identified giving place to an intermediate second-order transformation
such that their corresponding solutions φϵ are not eigenfunctions of H̃ , as in the previous section, thus
reducing the number of non-isospectral eigenfunctions of H̃ . Such a choice of parities for the uj’s can
be used to produce supersymmetric partners which have less than

[ k
2

]
non-isospectral energy levels.

In any case, the isospectral part remains the same up to an overall shift in the energy.
If the factorization energies are chosen in an interval of classA, the transformation is non-singular

whenever

P(uk) = 1, P(uk−1) = −1, P(uk−2) = 1, . . . , (34)

while if the factorization energies belong to an interval of class B the transformation is non-singular
whenever

P(uk) = −1, P(uk−1) = 1, P(uk−2) = −1, . . . . (35)

Also, let us keep in mind that if the factorization energies ϵj are chosen above the ground level of the
truncated oscillator (E0 = 3/2), then the supersymmetry transformation is non-singular as long as k
is even [10], while for ϵj < E0 there is no restriction on such an order k.

Now let us proceed by cases, according to the class of interval which is being considered.

5.1. Domain of class A

In an interval of class A we have that W (u1, . . . , uk) is the sum of products of functions with
definite parity. Each of these terms involves a change of parity of c =

[ k
2

]
functions with respect to

the parity of the product u1...uk, due to the action of the differential operators
( d
dx

)i
, i = 0, 1, . . . , k−1

onto the functions uj, j = 1, . . . , k, i.e.,

P

⎛⎝∏
k|c

uj

⎞⎠ = (−1)c P

⎛⎝∏
k|0

uj

⎞⎠ . (36)

Since

P

⎛⎝∏
k|0

uj

⎞⎠ = (−1)c, (37)

it turns out that

P

⎛⎝∏
k|c

uj

⎞⎠ = (−1)2c = 1. (38)
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Therefore

P (W (u1, . . . , uk)) = P

⎛⎝∏
k|c

uj

⎞⎠ = 1. (39)

Now, the parity of the Wronskian of the k − 1 functions resulting from deleting the jth one is
required. In order to find it, let us notice first of all that P(uj) = (−1)k−j. Moreover, the parity of the
k-term product u1...uk factorizes as the product of the parity of the deleted function uj times the parity
of the (k − 1)-term product u1...uj−1uj+1...uk, which implies that:

P(u1...uj−1uj+1...uk) = (−1)k−jP(u1...uk) = (−1)c+k−j. (40)

As previously, the Wronskian W
(
u1, . . . , uj−1, uj+1, . . . , uk

)
is a sum of terms whose parities change

due to a change of parity of
[ k−1

2

]
functions in each product, i.e.,

P(W (u1...uj−1uj+1...uk)) = (−1)
[
k−1
2

]
P(u1...uj−1uj+1...uk) (41)

= (−1)
[
k−1
2

]
+

[
k
2

]
+k−j (42)

= (−1)2k−j−1
= (−1)−(j+1). (43)

Depending on the parity of the functions uj, two different cases arise:

(i) If P(uj) = 1 then j = k − 2m, where m = 0, 1, . . . ,
[ k−1

2

]
. Thus:

P(W (u1...uj−1uj+1...uk)) = (−1)2m−k−1
= (−1)k+1

=

{
+1 if k is odd
−1 if k is even. (44)

(ii) If P(uj) = −1 then j = k − (2m + 1), where m = 0, 1, . . . ,
[ k−1

2

]
, and then one has:

P(W (u1...uj−1uj+1...uk)) = (−1)2m−k
= (−1)k =

{
+1 if k is even
−1 if k is odd. (45)

Nowwe can conclude that if we choose the factorization energies in an interval of classA, then for
an intertwining of even order k the solutions φϵj such that uj is even obey

P

(
φϵj ∝

W
(
u1, . . . , uj−1, uj+1, . . . , uk

)
W (u1, . . . , uk)

)
=

−1
1

= −1, (46)

i.e., they satisfy the boundary condition at x = 0. On the other hand, if the order k is odd then the
solutions φϵj such that uj is odd obey

P

(
φϵj ∝

W
(
u1, . . . , uj−1, uj+1, . . . , uk

)
W (u1, . . . , uk)

)
=

−1
1

= −1, (47)

i.e., they comply the boundary condition at the origin. The remaining cases lead to solutions such that
P(φϵj ) = 1/1 = 1 that, in general, do not satisfy the boundary condition at the origin, although it is
possible to have that φϵj (0) = 0 with φϵj even, but this would happen for special and isolated values
of ϵj.

5.2. Domain of class B

In intervals of class B once again it is seen that W (u1, . . . , uk) is the sum of terms which are
products of functions with definite parity, each term involving a change of parity of

[ k
2

]
= c functions

compared to the parity of the product u1...uk, i.e.,

P

⎛⎝∏
k|c

uj

⎞⎠ = (−1)c P

⎛⎝∏
k|0

uj

⎞⎠ . (48)
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Since now

P

⎛⎝∏
k|0

uj

⎞⎠ = (−1)
[
k+1
2

]
, (49)

it is obtained that

P

⎛⎝∏
k|c

uj

⎞⎠ = (−1)
[
k+1
2

]
+

[
k
2

]
= (−1)k, (50)

i.e.,

P (W (u1, . . . , uk)) = (−1)k =

{
+1 if k is even
−1 if k is odd. (51)

On the other hand, since now P(uj) = (−1)k−j+1 one arrives at:

P(u1...uj−1uj+1...uk) = (−1)k−j+1+
[
k+1
2

]
. (52)

Hence:

P(W (u1...uj−1uj+1...uk)) = (−1)
[
k−1
2

]
P(u1...uj−1uj+1...uk) (53)

= (−1)2
[
k+1
2

]
−2+k−j

= (−1)k−j. (54)

Once again, two different cases arise which depend on the parity of the function uj:

(i) If P(uj) = 1 then j = k − (2m + 1) with m = 0, . . . ,
[ k−1

2

]
and thus:

P(W (u1...uj−1uj+1...uk)) = (−1)2m+1
= −1. (55)

(ii) If P(uj) = −1 then j = k − 2m withm = 0, . . . ,
[ k−1

2

]
. Hence:

P(W (u1...uj−1uj+1...uk)) = (−1)2m = 1. (56)

We can conclude that, for even k and removing a seed solution uj which is even leads to

P(φϵj ) =
−1
1

= −1, (57)

which satisfies the boundary condition at the origin. However, if we remove and odd seed solution uj
it turns out that

P(φϵj ) =
1
1

= 1, (58)

which, in general, does not satisfy the boundary condition at x = 0.
On the other hand, for k odd and removing an even seed solution uj it is obtained that

P(φϵj ) =
−1
−1

= 1. (59)

Nonetheless, the boundary condition limx→0+φϵj (x) = 0 is satisfied. If we remove an odd seed solution
uj it turns out that

P(φϵj ) =
1

−1
= −1, (60)

which at first sight may look like if it obeys the boundary condition at the origin. However, it can be
seen that the odd Wronskian in the denominator induces a singularity at x = 0 which avoids that φϵj
will satisfy indeed that boundary condition.
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Fig. 2. Supersymmetric partner potentials of the truncated oscillator, where two levels have been added below the ground
state through a 4th order transformation.

As we can see from these results, for an intertwining transformation of order k with factorization
energies ϵj inside intervals of class B, the solutions given by

φϵj ∝
W
(
u1, . . . , uj−1, uj+1, . . . , uk

)
W (u1, . . . , uk)

, (61)

such that uj is even satisfy the boundary condition at the origin regardless the parity of k.

5.3. Illustrative examples

As an example of this behavior consider a fourth order supersymmetric transformation with
factorization energies ϵ1 = −11/2, ϵ2 = −9/2, ϵ3 = −7/2, ϵ4 = −5/2, which belong to an interval
of class A. To add the maximum number of levels allowed by this transformation, that is two new
levels, the corresponding seed solutions are chosen such that P(u1) = −1, P(u2) = 1, P(u3) = −1 and
P(u4) = 1. Thus, by means of Eq. (31), we obtain the following supersymmetric partner potential

Ṽ=
256x18−4096x16+28416x14−99328x12+172512x10−224640x8+91440x6+86400x4−127575x2−16200

2
(
16x8−64x6+120x4+45

)2 . (62)

The two new eigenvalues added to the spectrum of the Hamiltonian H̃ corresponding to this potential
are ϵ2 = −9/2 and ϵ4 = −5/2 with eigenfunctions given by

φϵ2 = −
4
√
3e−

x2
2 x
(
8x6 − 4x4 + 10x2 + 15

)
4
√
π
(
8
(
2x4 − 8x2 + 15

)
x4 + 45

) , (63)

φϵ4 = −
2e−

x2
2 x
(
16x8 + 72x4 − 135

)
√
3 4
√
π
(
8
(
2x4 − 8x2 + 15

)
x4 + 45

) , (64)

respectively (see Eq. (32)).
A plot of this potential and the eigenfunctions of the first six levels of H̃ , including the two levels

−9/2 and −5/2 generated below the ground state, can be found in Fig. 2(a), depicted in a similar
fashion as in Fig. 1. As for an example of a new potential with levels added in an interval of class
B, Fig. 2(b) shows a supersymmetric partner of the truncated oscillator, such that the factorization
energies are chosen to be ϵ1 = 0.6, ϵ2 = 0.9, ϵ3 = 1, ϵ4 = 1.3. This time the eigenvalues added to
the spectrum of H̃ are ϵ1 = 0.6 and ϵ3 = 1. In this case we omitted to show the expressions for Ṽ , φϵ1
and φϵ3 since they result lengthy and impractical. However, as in the previous example, they can be
obtained through Eqs. (31) and (32), respectively.
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6. Conclusions

In this article we have studied the supersymmetric partners of the truncated oscillator, obtained
through an intertwining transformation of arbitrary order. As a result of this analysis we have found
that in order to add new levels to the energy spectrum of these systems the conditions that one must
impose to the transformation are the following.

For a supersymmetric transformation of order k the set of values from which we can choose the k
factorization energies ϵ1, . . . , ϵk can be split into two classes of intervals given by

A =

{(
−∞,

1
2

)
,

(
3
2
,
5
2

)
,

(
7
2
,
9
2

)
, . . . ,

(
3 + 4n

2
,
5 + 4n

2

)
, . . .

}
,

B =

{(
1
2
,
3
2

)
,

(
5
2
,
7
2

)
, . . . ,

(
1 + 4n

2
,
3 + 4n

2

)
, . . .

}
.

Without loss of generalitywe shall assume that the factorization energies are ordered as ϵ1 < · · · < ϵk
and that they are chosen in a single interval either of class A or B.

Under such assumptions we have found that in an interval of classA the seed solutions must have
parities given by P(uj) = (−1)k−j while in an interval of class B they must have parities given by
P(uj) = (−1)k−j+1. Moreover, it is possible to add

[ k
2

]
new levels ϵj to the spectrum of H̃ , associated

to the corresponding eigenfunctions

φϵj ∝
W
(
u1, . . . , uj−1, uj+1, . . . , uk

)
W (u1, . . . , uk)

, (65)

according to the following rules:

• In intervals of classA, if k is even the values ϵj such that uj is evenwill be added to the spectrum
of H̃ , while if k is odd and ϵ1 < · · · < ϵk < 3/2, the values ϵj such that uj is odd will be added
to the spectrum of H̃ .

• In intervals of class B, if k is even the values ϵj such that uj is even will be added to the
spectrum of H̃ , while if k is odd the same values will be added to the spectrum of H̃ whenever
ϵ1 < · · · < ϵk < 3/2.

We have seen that the truncated oscillator realizes the so called spectral design of supersymmetric
quantummechanics in a peculiar manner, since the number of levels that can be added is bounded by[ k
2

]
, where k is the order of the supersymmetry transformation. Such behavior can be understood as

a consequence of the singularity induced by the infinite barrier which, in turn, imposes the boundary
condition at the origin.
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