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Abstract—We show the impossibility to obtain the D’auria–Fré-type superalgebras that allow for
an underlying gauge theoretical structure of D = 11 supergravity from the superalgebra osp(1|32)+ ⊕
osp(1|32)−, by means of a Weimar-Woods contraction.
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1. INTRODUCTION

In the original paper where supergravity theory in
D = 11 was introduced, Cremmer, Julia, and Scherk
(CJS) [1] raised the question of the identification of its
underlying gauge symmetry group. They conjectured
that the theory could admit a geometrical interpre-
tation in terms of the simple supergroup OSp(1|32).
The evidence in favor of this suggestion was the fact
that its graded Lie algebra osp(1|32) contains an
internal o(8) subalgebra, which is also a subalgebra
of the internal invariance group of a D = 4 reduction
of the D = 11 model.

However, the lack of understanding about how
this connection could be realized, was caused be-
cause of the presence of a three-form field A3 =
Aμνρ(x) dxμ ∧ dxν ∧ dxρ in the action found in [1].
While the graviton ea = eaμdx

μ , the gravitino ψα =

ψα
μdx

μ and the spin connection wab = wab
μ dxμ one-

forms can be considered as the gauge fields of a
Lie superalgebra, the antisymmetric Aμνρ(x) gauge
field cannot be associated to a symmetry operator
in an easy way. D’Auria and Fré [2], addressed this
problem by looking at the free differential algebra
(FDA) satisfied by the above forms in the absence
of curvatures. The FDA formalism does not consist
only of one-forms, so it is the natural extension of the
Lie algebras, being particulary suitable to account the
three-form field mentioned above. D’Auria and Fré’s
idea was to express A3 in terms of linear combinations
of exterior products of one-forms, treated as gauge
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fundamental fields belonging to a certain superalge-
bra which had to be found. For this to be possible, it
was necessary to introduce a set of additional one-
forms, two of them bosonic fields Bab = Bab

μ dxμ

and Ba1...a5 = Ba1...a5
μ dxμ, and one extra fermionic

contribution ψ′α = ψ′α
μ dxμ, which play a central role

in the new algebra. Consequently, the composite
nature of the three-form field A3 required extending
the underlying gauge group of D = 11 CJS super-
gravity into a new superalgebra with larger algebraic
dimension (hereafter E(528|32+32)).

Two superalgebras were obtained which allowed
the decomposition of A3 in that way. The question
about how these superalgebras could be related to
a simple supergroup was studied in [3], where the
osp(1|32), as well as the su(32|1) and the conformal
osp(1|64) superalgebras, were ruled out as algebras
that could lead to the D’Auria–Fré ones by contrac-
tion.

Nevertheless, the semisimple superalgebra
osp(1|32) ⊕ osp(1|32) was not in the above list,
but this is the algebra that was later considered by
Hor̆ava [4] as a prospective candidate to construct
a Chern–Simons (CS) M-theory group on a holo-
graphic scenario. The reason for this choice relies on
the fact that the CS action must be parity invariant in
the Hor̆ava–Witten construction [5], which is based
on the properties of the heterotic string theory [6],
and a single osp(1|32) superalgebra does not yield
parity invariance [7–10]. Rather, parity invariance
will require a non-minimal extension of the osp(1|32)
superalgebra into an algebra with 64 supercharges.

Another implication of Hor̆ava’s suggestion is that
D = 11 CJS supergravity would be a low-energy
limit of a CS theory based on osp(1|32) ⊕ osp(1|32).
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In [4, 11], it was assumed that the supersymmetry
group in the low-energy limit had to be a contraction
of osp(1|32) ⊕ osp(1|32). The contraction problem
was considered in [11], where the superalgebras ob-
tained, although with the same structure, did not
coincide with those originally found by D’Auria and
Fré. The question remained of interpreting this dis-
crepancy.

The two superalgebras found in [2] were shown to
be two particular elements of an infinite set G(s) =

E(528|32+32)(s) � so(10, 1) parametrized by one real
parameter s [12, 13] (see Section 3). Moreover, all
values of s except s = 0, allow for the decomposition
of the three-form field A3 in terms of combinations
of one-forms dual to the generators of the algebra.
In fact, this particular case G(0) for which it is not
possible make such decomposition can be obtained
via an expansion procedure from osp(1|32). An ex-
pansion of a given Lie (super)algebra is obtained by
a suitable rescaling of the Maurer–Cartan (MC) dual
one-forms in terms of a parameter λ [14–16]. The re-
sulting (super)algebra is expressed by the coefficients
of each power in λ in the resulting MC equations.
In this way, superalgebras with an infinite number
of generators are obtained, so this process does not
preserve the dimension of the start handle algebra.
Certain conditions can be imposed in order to ensure
that, by cutting the expansion in λ up to a finite power,
the resulting equations are the MC equations of a
finite (super)algebra [17].

In all the examples obtained so far, the resulting
expansions can be viewed as extensions followed by
contractions, and this will presumably be true in gen-
eral. However, the inverse statement is obviously
false: contractions are more general than expansions
in the sense that the latter remember the structure
of the original (super)algebra, whereas the former
procedure leads to more possibilities. Nevertheless,
taking two copies of the same algebra would reduce
the freedom associated to contraction, and it is not
clear whether a contraction of osp(1|32) ⊕ osp(1|32)
leads to an expansion G(0) or to the other class of the
set G(s �= 0).

For the above reasons, we have made a de-
tailed computation of all possible contractions of
osp(1|32) ⊕ osp(1|32) leading to a superalgebra with
the generic structure(

E(528|32+32)(s)⊕ L(473)
)

� so(10, 1), (1)

where L is an arbitrary superalgebra, not necessarily
abelian, that mixes in a trivial way with the D’Auria–
Fré superalgebra, and has to be present because the
contraction procedure is dimension preserving, and
the dimensions of osp(1|32) ⊕ osp(1|32) and G(s) do
not match.

Our study states that it is only possible to ob-
tain the expansion case (s = 0) by contraction pro-
cedure from the osp(1|32) ⊕ osp(1|32) superalgebra.
Therefore, none of the Lie superalgebras, suitable for
decomposing the three-form A3 of D = 11 super-
gravity in terms of MC one-forms, can be obtained
by contraction from the direct sum of two osp(1|32)
algebras.

The paper is organized as follows: in Section 2 a
brief review of osp(1|32) is presented. In Section 3 we
show the main properties of the D’Auria–Fré family
superalgebras. Lie algebra and Maurer–Cartan one-
form languages are used in both sections. Section 4 is
devoted to showing the main details in the contraction
procedure from the two copies of osp(1|32). Finally,
we collect some conclusions in the last section.

2. THE SUPERALGEBRA osp(1|32)
The orthosymplectic supergroup OSp(1|32) de-

fines the minimal grading of the symplectic Sp(32)
bosonic group which, in turn, is the maximal group
preserving the Majorana property of the SO(10, 1)
spinors. Since its algebraic counterpart osp(1|32)
verifies the inclusion so(10, 1) ⊂ sp(32) ⊂ osp(1|32),
its bosonic generators Pa, Jab, Za1...a5 could be di-
rectly associated to the even symmetry operators of
the D = 11 superPoincaré bosonic extended superal-
gebra [18–20].

The orthosymplectic Lie algebra osp(1|32) can be
defined, in a certain basis {Zαβ, Qγ}, by the following
anticommutator and commutator relations:

{Qα, Qβ} = ηZαβ ,

[Zαβ , Qγ ] = CαγQβ + CβγQα,

[Zαβ, Zγδ ] = CαγZβδ + CβγZαδ

+ CαδZβγ + CβδZαγ , (2)

where Zαβ is a symmetric matrix in the spinorial
indices (α, β, γ = 1, . . . , 32), which are raised and
lowered by the 32× 32 skewsymmetric charge con-
jugation matrix Cαβ . We point out that, in the first
relation, the parameter η may take the values ±1, but
these choices do not make any difference in the com-
plex Lie algebra in contrast with the real case, where
they determine two nonisomorphic superalgebras de-
noted by osp+(1|32), osp−(1|32), as it happens in the
the case of osp(1|2) (see [21]).

Decomposing Zαβ in the basis of the Spin(1, 10)
gamma-matrices, we can express it in terms of the
usual tensorial generators Za, Zab, Za1...a5 , as

Zαβ =
1

1! · 32Γ
a
αβZa +

1

2! · 32Γ
ab
αβZab

+
1

5! · 32Γ
a1...a5
αβ Za1...a5 , (3)
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where the notation Γa1...an
αβ = (Γa1...anC−1)αβ , has

been used to denote generically the antisymmetrized
products of D = 11 Dirac matrix.

Using this last relation (3) in (2), we obtain the
commutator and anticommutator relations [22, 23]

[Za, Zb] =
1

8
Jab,

[Za, Jb1b2 ] =
1

4
δa[b1δ

k
b2]
Zk,

[Ja1a2 , Jb1b2 ] =
1

2
δ
[a1
[k1

δ
a2]
[b1

δ
k2]
b2]

Jk1
k2 ,

[Za, Zb1...b5 ]

=
i

8 · 5!εc5...c1k1k2...k6δ
[k1
a δk2[b1 . . . δ

k6]
b5]

Zc1...c5 ,

[Ja1a2 , Zb1...b5 ] =
5

4
δ
[a1
[k1

δ
a2]
[b1

δk2b2 . . . δ
k5]
b5]

Zk1
k2...k5 ,

[Za1...a5 , Zb1...b5 ]

=
i

8
δ
[a1
[k1

. . . δ
a5]
k5

δk6[b1 . . . δ
k10]
b5]

εk1...k5k6...k10cZ
c

+
5i

4!
δ
[a1
[k1

δa2k2 δ
a3
k3
δa4[b2δ

a5]
b1

δ
[k4
b3

δk5b4 δ
k6]
b5]

× εk1k2k3k4k5k6c5c4c3c2c1

× Zc1c2c3c4c5 + 75 δ
[a1
[k1

δa2[b4 . . . δ
a5]
b1

δ
k2]
b5]

Jk1
k2 ,

[Za, Qα] =
1

16
(Γa)α

βQβ,

[Jab, Qα] = − 1

16
(Γab)α

βQβ,

[Za1...a5 , Qα] =
1

16
(Γa1...a5)α

βQβ,

{Qα, Qβ} = Γa
αβZa +

1

2!
Γab
αβJab

+
1

5!
Γa1...a5
αβ Za1...a5 , (4)

where the square brackets in the r.h.s. denote an-
tisymmetrization with height one. Remember that
the bosonic generators Jab and Za1...a5 are associated
to even symmetry operators of the D = 11 super-
Poincaré bosonic extended superalgebra.

It is convenient to resort to a dual point of view to
deal with Lie algebras, in agreement with the FDA
context developed by D’Auria and Fré. If we use the
dual algebra spanned by the MC one-forms Παβ , Πα

dual to the algebraic generators Zαβ, Qα, which ver-
ify the identities

Παβ(Zγδ) = 2δ(αγ δ
β)
δ ≡ δαγ δ

β
δ + δβγ δ

α
δ ,

Πα(Qβ) = δαβ ,

the Eqs. (2) can be rewritten in a compact form by the
MC close relations [24]

dΠαβ = −(Παγ ∧Πγ
β)− η(Πα ∧Πβ), (5)

dΠα = −Παγ ∧Πγ ,

which provide the 528 bosonic MC one-forms of the
sp(32) algebra through the symmetric spin-tensor
Παβ , and the 32 fermionic MC one-forms Πα.

Expressing the spinorial symmetric one-form Παβ

in terms of the MC one-forms Πa, Πab, Πa1...a5 dual to
the algebraic generators Za, Zab, Za1...a5 respectively,
the couple of MC equations (5) can be split as

dΠa = −1

8

(
Πb ∧Πb

a
)
− 1

2
Γa
αβ

(
πα ∧ πβ

)

− i

16(5!)2
εab1...b5c1...c5(Πb1...b5 ∧Πc1...c5),

dΠab = −1

8

(
Πa ∧Πb

)
− 1

8

(
Πac ∧Πc

b
)

− 1

2
Γab
αβ

(
πα ∧ πβ

)
− 1

4! · 8

(
Πa

c1...c4 ∧Πc1...c4b
)
,

dπα =
1

16
(Γa)β

α
(
πβ ∧Πa

)
− 1

2 · 16(Γab)β
α

×
(
πβ ∧Πab

)
+

1

5! · 16(Γa1...a5)β
α
(
πβ ∧Πa1...a5

)
,

dΠa1...a5 = − i

5! · 8εcb1...b5
a1...a5

(
Πc ∧Πb1...b5

)

− 5

8

(
Π[a1

b ∧Πba2...a5]
)
− 1

2
Γa1...a5
αβ

(
πα ∧ πβ

)

− i

2 · (4!)2 ε
a1...a5b1b2b3

c1c2c3

×
(
Πb1...b5 ∧Πb5b4c1c2c3

)
. (6)

which provide the same information as its algebraic
counterpart described by the (anti)commutator rela-
tions (4).

3. THE D’AURIA–FRÉ SUPERALGEBRAS

The two solutions found originally by D’Auria and
Fré can be identified as two examples of an infi-
nite family of superalgebras G(s) = E(528|32+32)(s) �

so(10, 1), which solved in general the problem posed
by them. All of these superalgebras contain a set
of 528 bosonic and 32 + 32 = 64 fermionic genera-
tors, plus the Lorentz generators Jab, and are defined
through the (anti)commutator relations

[Za, Qα] = τ2(s− 1)(Γa)α
βQ′

β,

[Zab, Qα] = τ2(Γab)α
βQ′

β,

[Za1...a5 , Qα] = τ2

(
s

6!
− 1

5!

)
(Γa1...a5)α

βQ′
β,

{Qα, Qβ} = Γa
αβZa +

1

2!
Γab
αβZab +

1

5!
Γa1...a5
αβ Za1...a5 ,{

Q′
α, ·

}
= 0, (7)
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where the fermionic generator Q′
α does not introduce

a new grading in the extended algebra because of
its central character. We point out that Zab and
Za1...a5 are the central generators of the M alge-
bra [25, 26], so this set of superalgebras are just a
class of fermionic central extensions of the M-theory
superalgebra. This point of view has been used as
a way to try to understand the underlying symmetry
structure of the M theory from the knowledge of the
gauge symmetry of D = 11 supergravity [12].

In the above equations the real parameter τ2 is
always different from zero and it can be included in the
normalization of the additional central charged Q′

α, so
it is thus inessential. Then, only one free parameter
s remains which labels all the equivalent, but non-
isomorphic, members belonging to this uniparameter
family E(528|32+32)(s) [12]. Note that this factoriza-
tion also includes the case when τ2 → 0 and so s →
∞, such that τ2 · s remains finite. In particular, the
two specific D’Auria–Fré solutions take the values
E(3/2) and E(−1) under the above notation.

In a similar way as in the previous section, in-
troducing the MC one-forms Πa, Π′ ab, Πa1...a5 , πα,
π′α dual to the algebraic generators Za, Zab, Za1...a5 ,
Qα, Q′

α, respectively, the family of superalgebras
E(528|32+32)(s) can be equivalently descibed by the
MC equations

dΠa = −1

2
Γa
αβ(π

α ∧ πβ),

dΠ′ab = −1

2
Γab
αβ(π

α ∧ πβ),

dΠa1...a5 = −1

2
Γa1...a5
αβ (πα ∧ πβ),

dπα = 0,

dπ′α = −τ2

(
(s− 1)(Γa)β

α(Πa ∧ πβ)

+
1

2!
(Γab)β

α(Π′ ab ∧ πβ)

+

(
s

6!
− 1

5!

)(
Γa1...a5)β

α(Πa1...a5 ∧ πβ
))

, (8)

where the real parameter s is only involved in the last
relation.

In this parametrization, all the algebras in (7) and
(8) can be used to write the three-form A3 of D =
11 supergravity as a composite one, except of the
case s = 0. This particular value corresponds to the

only superalgebra G(0) = E
(528|32+32)
(s=0) � so(10, 1) for

which the Lorentz groupSO(10, 1) can be enlarged to
Sp(32), and is ruled out on the searching of the local
symmetry of the D = 11 supergravity [12, 13, 15].

Hence, it appears that the real factor s plays an
important role in the study of the connection of the
D = 11 supergravity with the osp(1|32) ⊕ osp(1|32)
superalgebra.

4. CONTRACTIONS OF osp(1|32) ⊕ osp(1|32)

In [4], the author tried to explore the possible
relation of the M theory with Chern–Simons super-
gravities. He focused the attention on the fact that
M theory is parity invariant. However, the Chern–
Simons action based on the eleven dimensional anti-
de Sitter groupOsp(1|32) is not compatible with such
invariance. Thus, in order to respect parity invariance,
Horava pointed out that the gauge group will contain
extra bosonic charges and an extra supercharge Q′

α,
so that the complete set of bosonic and fermionic
generators lead to an algebraic structure isomporphic
to osp(1|32)⊕ osp(1|32). Morever, he suggested that
this algebra contracts to the D’Auria–Fré superalge-
bra G(s �= 0), because in low-energy limit we have to
recover the D = 11 CJS supergravity. In this section
we study whether this is the case.

At a first step, we are interested in writing the
explicit relations of the osp(1|32) ⊕ osp(1|32) super-
algebra in a generic basis. In general, we consider
a change of basis from the basis of generators {Xi}
and

{
X̄i

}
of the component Lie algebras G and Ḡ, to

a new one {Yi, Ȳi} of G ⊕ Ḡ. In our case, we have
G = osp+(1|32) and Ḡ = osp−(1|32). Since these
two superalgebras are actually two non-isomorphic
real versions of the same complex algebra (see Sec-
tion 2), we can take G = Ḡ = osp+(1|32) by con-

sidering complex factors
{
aji , b

j
i , c

j
i , d

j
i

}
on the mix

process. Consequently, we can take two copies of
(4) and consider linear combinations of the generators
given by

Yi = ajiXj + bji X̄j ,

Ȳi = cjiXj + dji X̄j . (9)

This process can also be done applied to the Maurer–
Cartan one-forms

{
Πi, Π̄i

}
dual to the algebraic

generators
{
Xi, X̄i

}
. In fact, this is how we have

done our calculations. Then, the linear combina-
tion (9) leads to a new set of Maurer–Cartan one-

forms denoted
{
ρ
(n)
+ , ρ

(n)
−

}
, which can be written

generically as

ρ
(n)
+ = α(n)Π

(n) + β(n)Π̄
(n),

ρ
(n)
− = γ(n)Π

(n) + δ(n)Π̄
(n), (10)
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where
{
α(n);β(n); γ(n); δ(n)

}
are a set of 16 com-

plex scalars and n = (1, 2, 5, α) denotes the num-
ber of Lorentz indices for the bosonic one-forms
ρa±, ρ

ab
± , ρa1...a5± or the spinorial index for the fermionic

one ρα± ≡ ψα
±.

We have to emphasize that the above linear com-
binations cannot be arbitrary in order to keep the
Lorentz transformation law inside the osp(1|32) ⊕
osp(1|32). This means that we have to take combina-
tions of pairs of one-forms Πa and Π̄a, Πab and Π̄ab,
etc. separately. Moreover, we must ensure that these
linear combinations have to be invertible in order to
really perform a change of basis, so

det

⎛
⎝α(n) β(n)

γ(n) δ(n)

⎞
⎠ �= 0.

Thus, the osp(1|32) ⊕ osp(1|32) superalgebra may
be written explicity in terms of these complex scalar
coefficients

{
α(n);β(n); γ(n); δ(n)

}
, their inverse rela-

tions
{
α′
(n);β

′
(n); γ

′
(n); δ

′
(n)

}
and the structure con-

stants (6) (see appendix on reference [27]).
Now let us perform a generalized Weimar-Woods

contraction on these equations. Generalized, or
Weimar-Woods [28, 29], contractions can be con-
structed as follows: let G be a Lie (super)algebra
given, as a vector space, by the direct sum

G = V0 ⊕ V1 ⊕ · · · ⊕ Vn, (11)

and such that the (graded) commutators obey

[Vp, Vq] ⊂
p+q⊕
l=0

Vl. (12)

In particular, V0 is a subalgebra of G. Let {Xp,αp},
p = 0, . . . , n, αp = 1, . . . ,dimVp, be a basis of G rel-
ative to the splitting (11), then expression (12) can be
written explicitly as

[Xp,αp ,Xq,βq ] = Cr,γr
p,αp;q,βq

Xr,γr ,

Cr,γr
p,αp;q,βq

= 0 ∀r > p+ q.

If ωp,αp are the one-forms dual to the vector fields
Xp,αp , i.e., ωp,αp(Xq,βq ) = δpq δ

αp

βq
, the MC equations

of G are

dωr,γr = −1

2

∑
p+q≤r

Cr,γr
p,αpq,βq

ωp,αp ∧ ωq,βq . (13)

It turns out that the same vector space (11), but
now with modified MC equations given by (13)
with the sum only extended to p+ q = r, defines a
new Lie (super)algebra Gc, known as the Weimar-
Woods contracted/super)algebra relative to the split-
ting (11). This contracted algebra can be obtained by

rescaling in terms of parameter λ the forms ωp,αp as
ωp,αp → λpωp,αp in the starting MC equations, and
then taking the limit λ → 0. This is the procedure
that we use in this paper. The case n = 1 corresponds
to the original, İnönü–Wigner [30, 31], contractions.

Given a starting algebra and a set of structure
constants, in practice one has to study a system
of equations of the rescaled exponents for which
the contraction limit (λ → 0) is well defined and
reproduces the algebraic structure desired. How-
ever, in our case the starting structure constants
of osp(1|32) ⊕ osp(1|32) are written in terms of{
α(n);β(n); γ(n); δ(n)

}
and

{
α′
(n);β

′
(n); γ

′
(n); δ

′
(n)

}
, so

the set of exponents of λ in the rescaling

ρa+ ⇒ λnρa+, ρab+ ⇒ λpρab+ ,

ρa1...a5+ ⇒ λrρa1...a5+ , ψα
+ ⇒ λvψα

+,

ρa− ⇒ λmρa−, ρab− ⇒ λqρab− ,

ρa1...a5− ⇒ λtρa1...a5− , ψα
− ⇒ λwψα

−, (14)

are not the only coefficients to be determined. Hence,
we have to add a set of extra conditions, in terms
of the coefficients of the linear combinations (10),
that ensures that the structure constants after the
contraction limit λ → 0 reproduce the structure (1).

We list below the steps that we have followed:
1. First, we have performed the change of

scale (14) on the MC equations of the osp(1|32) ⊕
osp(1|32) ([27]). The resulting MC equations could
be rewritten by sums of terms with the following
structure

λE(m,n,p,q,r,t,u,w)C(α(n), β(n), γ(n), δ(n)) (ρ± ∧ ρ±),

where, apart from the exterior product of two one-
forms, there is a power of λ that depends on the
scaling factors of (14), and a coefficient (structure
constant) that depends on the parameters of the linear
combination (10) and their inverse relations.

2. We then have chosen the one-form ρab± dual
to the Lorentz generator Jab which fixes the tensorial
transformation on the resulting algebras, as well as
the fermionic one-form field associated to the central
supercharge Q′

α. Without loss of generality, we have
made the election ρab+ as the boost generator and ψ′α

as the central fermionic one.
3. Next, we have carried out a suitable election, via

visual inspection, of the products of MC one-forms
ρa+, ρ

ab
− , ρa1...a5+ , ψα that reproduce the D’Auria–Fré

structure (8), plus the Lorentz transformations.
On the other hand, the remaining MC one-forms
ρa−, ρa1...a5− belonging to the bosonic algebra L are
identified by exclusion procedure.
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4. The above step fixes the exponents E which
have to be vanished, as well as the values of the
structure constants C in terms of the real parameter
s. Moreover, the study of the compatibility in terms
of the scaling factors (14) for all the 112 powers
associated to the 112 terms of the MC equations of
the osp(1|32) ⊕ osp(1|32), leads to:

(a) terms with E = 0 that should not appear in
the limit, so we have to impose the vanishing of their
associated structure constant C = 0,

(b) terms whose powers are negative E < 0, so
we have to ensure that their algebraic coefficient
also vanishes C = 0, consistently with the Weimar-
Woods approach.

5. Finally, we have imposed that the linear combi-
nation in (10) is invertible.

These steps lead to a system of equations and
inequations in terms of the complex scalar coefficients{
α(n);β(n); γ(n); δ(n)

}
, their inverse matrix relations{

α′
(n);β

′
(n); γ

′
(n); δ

′
(n)

}
and the real parameter s, per-

formed by
fifteen conditions C(α(n), β(n), γ(n)δ(n)) �= 0, as-

sociated to the third step,
six equations C(α(n), β(n), γ(n), δ(n)) = 0 for the

fourth step,
and four inequalities needed to express the admis-

sible basic changes of the fifth step.
The results of this problem rely on heavy algebraic

manipulations which have been performed by using a
symbolic manipulation program (Mathematica). The
resulting system of equations and inequations have
a solution only when s = 0, i.e., the expansion case
of osp(1|32) for which the three-form of D = 11 su-
pergravity A3 cannot be written in terms of Maurer–
Cartan one-forms. We have also considered the case
s → ∞ and checked that there is no solution. We
do not include here the detailed expressions of the
explicit computing, but they are available from the
authors upon request.

5. CONCLUSIONS

The main result of this paper is the proof that it is
not possible to obtain by generalized Weimar-Woods
contraction from osp+(1|32)⊕ osp−(1|32) any of the
algebras found in [12], which allow a gauge group
interpretation of the three-form field in the sense
of [2]. In other words, D = 11 supergravity can-
not be connected with the semi-simple supergroup
OSp+(1|32) ⊗ OSp−(1|32) by trivializing the three-
form field A3.

But we cannot claim that the conjecture made
in [4], according to which D = 11 supergravity can

be obtained as a low-energy limit of a Chern–Simons
theory based on osp+(1|32) ⊕ osp−(1|32), is incor-
rect. This is due to the fact that there is no reason why
the λq term in the expansion of the CS action should
be invariant under the contracted algebra.
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16. F. Izaurieta, E. Rodríguez and P. Salgado, J. Math.
Phys. 47, 123512 (2006).
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346 FERNÁNDEZ et al.

22. J. W. van Holten and A. van Proeyen, J. Phys. A 15,
3763 (1982).

23. A. van Proeyen, Ann. Univ. Craiova Phys. AUC 9, 1
(1999).
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