
Noname manuscript No.
(will be inserted by the editor)

BFCA+: Automatic synthesis of parallel code with TLS
capabilities

Sergio Aldea, Diego R. Llanos, Arturo
Gonzalez-Escribano

the date of receipt and acceptance should be inserted later

Abstract Parallelization of sequential applications requires extracting infor-
mation about the loops and how their variables are accessed, and afterwards,
augmenting the source code with extra code depending on such information.
In this paper we propose a framework that avoids such an error-prone, time-
consuming task. Our solution leverages the compile-time information extracted
from the source code to classify all variables used inside each loop according
to their accesses. Then, our system, called BFCA+, automatically instruments
the source code with the necessary OpenMP directives and clauses to allow
its parallel execution, using the standard shared and private clauses for vari-
able classification. The framework is also capable of instrumenting loops for
speculative parallelization, with the help of the ATLaS runtime system, that
defines a new speculative clause to point out those variables that may lead to
a dependency violation. As a result, the target loop is guaranteed to correctly
run in parallel, ensuring that its execution follows sequential semantics even
in the presence of dependency violations. Our experimental evaluation shows
that the framework not only saves development time, but also leads to a faster
code than the one manually parallelized.

Keywords: Automatic parallelization, compiler framework, OpenMP, source
synthesis, source transformation, speculative parallelization, XML.

1 Introduction

One of the main concerns of current computer science is the study of parallel
capabilities for both programs and processors that execute them. Due to the
huge number of sequential programs already written for many decades until
now, complexity of parallel programming languages, and knowledge required
to parallelize source code, a technique that automatically parallelizes them is

ETS Ingeniera Informtica, Universidad de Valladolid, Paseo Beln 15, 47011 Valladolid, Spain
Tel.: +34-983185642, fax: +34-983423671. E-mail: {sergio,arturo,diego}@infor.uva.es.

2 Sergio Aldea, Diego R. Llanos, Arturo Gonzalez-Escribano

quite desirable. However, automatic parallelization techniques currently im-
plemented in many commercial compilers are not able to parallelize most of
the loops because of the possibility of data dependencies [3].

Thread-Level Speculation (TLS) [6,8] is a runtime technique that can be
used to run loops in parallel that may present dependency violations. TLS
optimistically assumes that the code can be executed in parallel, relying on a
runtime monitor to ensure correctness. If a dependency violation appears at
runtime, these library functions stop the offending threads and restart them
in order to use the updated values, thus preserving sequential semantics.

Until now, speculative techniques were experimental, requiring the manual
intervention of expert programmers. These programmers firstly needed to ex-
tract certain information about the source code that they aim to parallelize,
such as variable usages within each loop, or I/O functions that complicate, or
even preclude, the parallelization. The second step was to manually add all
the functions and structures needed to handle the speculative execution.

Our research group have been working several years in the problem of
automatic synthesis of parallel code with TLS capabilities. Our prior work
included the development of both an analysis framework, called BFCA, and a
TLS runtime system, called ATLaS.

– BFCA [2,4] is an analysis framework that extracts profiling and depen-
dency information of for loops in C code, in order to detect which for
loops are the best candidates for parallelization.

– ATLaS is a Thread-Level Speculation (TLS) compile [19] and runtime
system [1] that extends OpenMP functionalities with a new speculative
clause, to allow the parallelization of for loops that are not guaranteed at
compile time to be dependency-free1. During parallel execution, variables
that were labeled as speculative are monitored at runtime. If a dependency
violation occur, the thread that has consumed an incorrect value is stopped
and restarted, ensuring sequential semantics.

The use of both frameworks greatly simplified the development of paral-
lel code, but the intervention of an expert programmer was still needed to
transform the sequential code into a parallel version.

The framework presented in this paper closes the loop, allowing for the first
time the automatic synthesis of parallel code with TLS capabilities. BFCA+

relies on the data returned by BFCA to automatically add the OpenMP direc-
tives needed to run a chosen loop in parallel, either using the classic OpenMP
directives if the loop does not present dependencies among iterations, or us-
ing the new OpenMP speculative clause provided by ATLaS if the lack of
dependencies cannot be guaranteed at compile time.

Despite its internal complexity, BFCA+ usage is simple. A first run obtains
profile information of all loops in the application, together with a classification
of variables usage in all of them. After examining these results, the user should

1 Only well-formed for loops where the number of iterations are known at the beginning
of the loop can be parallelized by the ATLaS framework. See [1] for additional details.

BFCA+: Automatic synthesis of parallel code with TLS capabilities 3

choose a loop for parallel execution. A second run of BFCA+ with the line
number of the chosen loop generates an OpenMP-based parallel version of
the loop, using the shared, private, and the non-standard speculative clauses
to classify loop variables according to their usage. Thanks to this solution,
any target loop is guaranteed to correctly run in parallel while preserving its
sequential semantics.

Regarding parallel performance, our experimental results, obtained by the
execution of four different benchmarks that present dependency violations at
runtime, show both a noticeable speedup (up to 13.5× speedup with 56 cores in
the presence of dependency violations) and good scalability. Interestingly, the
automatic transformation of the sequential code leads to better performance
than those obtained when the user manually transforms the code for the same
purpose using ATLaS runtime functions directly.

2 Related work

The generation of source code is a problem that concerns different areas, such
as refactoring, optimization, and parallelization of source codes. In the case of
BFCA+, there are many different proposals to the automatic parallelization
of source codes, and more particularly, focused on the synthesis of OpenMP
constructs.

One of the first attempts to automatize the generation of OpenMP con-
structs is the POST project [15], that provides a simple environment that also
allows the intervention of the user. A more advanced system is ParaWise/-
CAPO [12,13,20], which uses a dependency analysis to create the appropriate
OpenMP directives to parallelize simple and nested loops in Fortran applica-
tions. It also applies a certain level of optimization transformations to enhance
the quality of the generated code. This is also the case of PLuTo [21], a source-
to-source framework that uses the polyhedral model to optimize the code and
generate OpenMP parallel code automatically.

Graphite [14] is a branch of GCC that applies the polyhedral model to
different purposes, including the generation of parallel code, and proposes an
auto-parallelization option for GCC that uses OpenMP structures to define
parallel sections. This work inspired Polly [22], a similar proposal but focused
on a different compiler: LLVM [24]. Other works that also use the polyhedral
model such as Par4All [18]and PYPS [23] are based on PIPS [17], a source-to-
source framework. Par4All uses the analysis performed by PIPS to optimize
and create OpenMP (among other standards) source codes. PYPS is a Python-
based programmable pass manager, that also generates OpenMP constructs.

Unlike most of the approaches, which are source-to-source parallelizers that
automatically generate OpenMP directives and clauses (e.g. Liao et al. [11],
Cetus [10], or several of the proposals seen above), Gaspard2 [25] follows a
model-to-source approach. Gaspard2 is a graphical framework that needs that
the code and the available parallelism be expressed by the user with an UML-
based model, which is then transformed into an OpenMP model that gener-

4 Sergio Aldea, Diego R. Llanos, Arturo Gonzalez-Escribano

ates the parallel version of the source code. Finally, YAO [16] is a graph-based
framework, focused on the data assimilation mostly for geophysical applica-
tions, able to generate not only OpenMP constructs to parallelize code regions,
but also atomic directives to avoid race conditions.

As we will see, like most of the approaches described above, BFCA+ fol-
lows a source-to-source approach, leveraging its XML-based representation
of the source code to analyze and augment the code with OpenMP paral-
lel constructs, including our speculative clause [19]. This differs from other
approaches: BFCA+ is able to synthesize the code needed to handle the spec-
ulative execution of a certain program, creating an OpenMP-based parallel
version from the sequential source code.

3 BFCA+ architecture and usage

As we stated in Sect. 1, our proposal has been built upon two different solu-
tions that, until now, worked independently of each other. The first solution is
BFCA [4], an XML-based framework that combines static analysis of source
code with profiling information to generate complete reports regarding all
loops in a C application, including loop coverage, loop suitability for paral-
lelization, a taxonomy of their variables based on their accesses, as well as
other hurdles that restrict the parallelization. BFCA architecture is depicted
inside a dashed-line box in Fig. 1. BFCA+ extends this framework to enable
the synthesis of source code augmented with OpenMP directives and clauses,
intended not only to automatically classify variables according to their usage
(shared or private), but also to insert appropriate OpenMP directives to enable
the automatic parallelization of the target loop (see the solid box in Fig. 1).

In certain situations, however, the parallel execution of a given loop may
fail due to the possibility of runtime dependencies among iterations. This is
where speculative parallelization comes into scene. When BFCA+ detects such
a situation, it is also able to label as speculative all variables whose definition or
use may potentially lead to a dependency violation. Unlike shared and private
clauses, the speculative clause is not part of the OpenMP standard, but a new
clause first proposed by our group [2]. This proposal was later implemented in
the ATLaS framework, the second solution BFCA+ is built upon.

With respect to the ATLaS compile and runtime framework [1], it is com-
posed by two main elements. The first one is the compiler support, thanks
to a specialized GCC compiler plugin that detects the use of the speculative
clause, and augments the source code with software that controls the spec-
ulative execution of the loop. The second one is the runtime support, with
functions that monitors at runtime the existence of dependency violations,
and performs corrective actions if such a violation takes place.

These two building blocks, BFCA and ATLaS, are used together in BFCA+

to give a complete solution of the automatic synthesis of parallel versions of
for loops. The user should first run the framework to see which loops can
be parallelized, choose one, and let the automatic transformation system to

BFCA+: Automatic synthesis of parallel code with TLS capabilities 5

Input set Profiling
Information

Sequential
C source
code

Loop coverage
and variables
characterization

XMLCetus

Intel
Compiler

Binary
code

XML source code
representation

Profilazer

XML source code
with profiling data

BonaFide C Analyzer and Trasformer (BFCA+)

(Builds XML tree)

(Merges XML information)

Sirius

(Rebuilds C source)

GCC 4.6.2
 +
 plugin

Runtime parameters, including:
 - Threads
 - Block size
 - Max. number of iterations
 - Max. number of speculative elements

TLS runtime library

Parallel
binary
executable

The ATLaS framework

Linker

XML source code
with OpenMP
directives

(Queues XML tree)

Loopest

OMPlizer

(Augments XML tree)

BFCA
line number of
the loop to be
parallelized

(programmer's
 decision)

C source code annotated
with OpenMP directives

(possibly including new speculative clause)

Fig. 1 Overview of the BFCA+ plus ATLaS architecture, that analyzes the code, generates
an OpenMP-based speculatively-parallel version of the code, and finally compiles it to create
an executable that runs in parallel speculatively.

BFCA+

./bfca+ -c <file>.cC source
code

XML
file

BFCA+

./bfca+ -x <file>.xml
 -p <loop_line>

Loop report + variable classification

Speculatively
parallelized
C source code

Fig. 2 Overview of the process that transforms a sequential C code into a parallel one.
BFCA+ automatically generates the OpenMP constructs, including the speculative clause.

generate an executable that is guaranteed to run correctly in parallel. Without
BFCA+, programmers needed to manually classify variables of the loop that
they aim to parallelize, and then, insert all the OpenMP constructs required by
ATLaS to parallelize it speculatively. BFCA+ also solves this problem, freeing
programmers from this error-prone, tedious task.

Figure 1 shows the architecture of BFCA+, and how it generates an OpenMP-
based source code that is compilable by ATLaS to generate a speculatively
parallel version of the code. As can be seen in the figure, BFCA+ relies heavily
on BFCA, composed in turn by three main subsystems: (1) XMLCetus, a mod-
ified version of Cetus [10] that builds an XML tree representing the original C
source code; (2) Profilazer, that executes the code and augments the XML tree
with profiling information; and (3) Loopest, that exploits XML capabilities to

6 Sergio Aldea, Diego R. Llanos, Arturo Gonzalez-Escribano

1 #define NITER 1000000, MAX 100
2 int array[MAX];
3 ...
4

5 for (P = 0 ; P < NITER ; P++)
6 Q = P % (MAX) + 1;
7 aux = array[Q − 1];
8 Q = (4 ∗ aux) % (MAX) + 1;
9 array[Q − 1] = aux;

10 }

Fig. 3 File program.c: Fragment of C code that depicts a loop where the use of a data
structure (array) may lead to a dependency violation.

characterize every loop in the source code, and performs a taxonomy of the
variables based on how they are accessed. BFCA+ adds to this solution a new
module, called OMPlizer, that synthesizes OpenMP-based constructs to spec-
ulatively parallelize the code. Finally, a fifth module, called Sirius, transforms
the XML representation back to C.

Figure 2 summarizes the process that transforms a sequential source code
into a parallel one. In a first execution, BFCA+ reports about each loop and
how its variables are accessed. Then, the programmer only needs to point out
the line number of the loop to be parallelized. In a second execution, BFCA+

uses the information on the variable accesses to automatically augment the
XML representation of the code by using OMPlizer. OMPlizer modifies the
XML node that represents the FOR loop, and inserts a new XML node with
the OpenMP parallel directive and the corresponding clauses, according to the
variable classification that Loopest creates. This includes the insertion of the
speculative clause with those variables that may lead to a dependency viola-
tion. Once OMPlizer has augmented the XML representation of the source
code, Sirius transforms it back into a C representation. During this process,
the original sequential code has been annotated with OpenMP constructs that
parallelize it. Finally, ATLaS processes these OpenMP annotations, and per-
forms all the changes needed in the loop to be run in parallel using our TLS
runtime library, including the replacement of the accesses over speculative
variables with the corresponding speculative versions of these accesses. It is
important to remark that, if the FOR loop being parallelized does not contain
speculative variables, BFCA+ generates the OpenMP constructs in order to
be parallelized according to the OpenMP standard.

Despite the complexity of the transformation process, the usage of the
BFCA+ framework is simple. As an example, consider the sequential code de-
picted in Fig. 3. A first invocation to BFCA+ (shown in Fig. 4) analyzes the
sequential code statically and dynamically, producing both a report with the
characterization of the loop, and an XML file that merges this static charac-
terization with the profiling information of the loop coverage (Fig. 5).

A second run of BFCA+, also shown in Fig. 4, allows the programmer
to indicate the starting line of the loop that should be parallelized. This
second invocation generates an augmented version of the XML file, called

BFCA+: Automatic synthesis of parallel code with TLS capabilities 7

$ bfca+ −c program.c
...
program.c:5: Line number: 5
program.c:5: Number of lines: 5
program.c:5: Inclusive Time Percent: 34.2
program.c:5: Exclusive Time Percent: 34.2
program.c:5: It doesn’t contain pointer arithmetic.
program.c:5: Number of Loop Control Variables: 1
program.c:5: Loop Control Variable: (int) P.
program.c:5: Variables read and written: (int) Q,

(int) aux, (int) array[100].
program.c:5: Variables only read: (int) P.
program.c:5: Private Variables: (int) Q, (int) aux,

(int) P.
program.c:5: Speculative Variables: (int) array[100].
program.c:5: It is a well-formed FOR Loop.
...
$ ls
program.c program.xml
$ bfca+ −x program.xml −p 5
$ ls
program.c program.spec.c
program.xml program.spec.xml
$./atlas −threads 4 −block 100 −c program.spec.c −e program
$ ls
program.c program.spec.c program
program.xml program.spec.xml

Fig. 4 Usage of BFCA+ in the parallelization of the loop in line 5 of the program.c file
depicted in Fig. 3. The invocation to the ATLaS compiler framework is also shown.

program.spec.xml, that includes the directives needed to parallelize the loop
(Fig. 6). In addition, this second invocation transform the augmented XML
representation back to C. The result, shown in Fig. 7, is a C file contain-
ing a parallel, speculative version of a loop that can not be parallelized by
parallelizing compilers due to the possibility of dependency violations.

Finally, ATLaS is responsible of transform the parallel version of the code
that contains the non-standard speculative clause into standard OpenMP di-
rectives plus additional code. The intermediate result (before being effectively
compiled) is shown in Fig. 8.

4 Evaluation

In order to evaluate the capabilities of BFCA+, we have used it to generate
the OpenMP constructs (including our proposed speculative clause) for some
synthetic and real-world benchmarks. The experiments have been designed to
verify that the use of BFCA+ leads to executable files that are functionally
equivalent to those manually parallelized by an experienced programmer.

All the benchmarks used in the experiments are not parallelizable at com-
pile time due to several data dependencies, requiring runtime speculative par-
allelization. We have used several real-world applications whose main loops
are not parallelizable at compile time because of the possibility of depen-
dence violations, and therefore require TLS to run in parallel. They are the

8 Sergio Aldea, Diego R. Llanos, Arturo Gonzalez-Escribano

1 <ForLoop condition="P<1000000" initial="P=0;" length="7" lineNumber="6"
2 step="P ++" entryCount="1" absTime="3161466" absTimePercent="41.6"
3 selfTime="3161466" selfTimePercent="41.6">
4 <Statement lineNumber="−1">
5 <ExpressionStatement lineNumber="−1">
6 <Expression>
7 <BinaryExpression lhs="P" operator="=" rhs="0">
8 <AssignmentExpression>
9 <Expression>

10 <IDExpression>
11 <Identifier array="" name="P" opUnary="" type="int"/>
12 </IDExpression>
13 </Expression>
14 <Expression>
15 <Literal>
16 <IntegerLiteral value="0"/>
17 </Literal>
18 </Expression>
19 </AssignmentExpression>
20 </BinaryExpression>
21 </Expression>
22 </ExpressionStatement>
23 </Statement>
24 <Expression>
25 <BinaryExpression lhs="P" operator="<" rhs="1000000">
26 <Expression>
27 ...

Fig. 5 File program.xml: Fragment of the XML representation created by BFCA for the
loop in line 5 of Fig. 4 before being parallelized.

1 <ForLoop annotation="OpenMP" condition="P<1000000" initial="P=0;" length
="5"

2 lineNumber="6" step="P ++" entryCount="1"
3 absTime="3161466" absTimePercent="41.6" selfTime="3161466"

selfTimePercent="41.6">
4

5 <Annotation annotation="#pragma omp parallel for default(none)
6 schedule(static) speculative(array) \
7 private(Q, aux, P)"/>
8

9 <Statement lineNumber="−1">
10 <ExpressionStatement lineNumber="−1">
11 <Expression>
12 ...

Fig. 6 File program.spec.xml: XML representation of Fig. 5 augmented by OMPlizer (high-
lighted code).

2-dimensional Convex Hull problem (2D-Hull) [7], the Delaunay Triangulation
using the Jump-and-Walk strategy [9], the 2-dimensional Minimun Enclosing
Circle (2D-MEC) problem [26], and a C implementation of TREE [5]. The
loops considered in the first three applications are the main loop of the codes,
that consumes almost 100% of the execution time. For TREE, we have par-
allelized the ACCEL loop, that consumes 95.17% of the total execution time.
2D-Hull and 2D-MEC are executed with a ten-million-point dataset, Delaunay
with a one-million-point dataset, and TREE with a dataset of 4096 nodes.

BFCA+: Automatic synthesis of parallel code with TLS capabilities 9

1 #define NITER 1000000, MAX 100
2 int array[MAX];
3 ...
4 #pragma omp parallel default(none) \
5 private(P, Q, aux) speculative(array)
6 for (P = 0 ; P < NITER ; P++)
7 Q = P % (MAX) + 1;
8 aux = array[Q − 1];
9 Q = (4 ∗ aux) % (MAX) + 1;

10 array[Q − 1] = aux;
11 }

Fig. 7 File program.spec.c: C representation of program.spec.xml as returned by the
Sirius module of BFCA+.

1 #define NITER 1000000, MAX 100
2 int array[MAX];
3 ...
4 specbegin(NITER)
5 #pragma omp parallel default(none) \
6 private(P, Q, aux, ini, current, tid, retflag, value)
7 shared(array, wheel_ns, wheel_ms, wheel, upper_limit, varblock)
8 {
9 #pragma omp for schedule(static) nowait

10 for (tid = 0; tid <= 3; tid = tid + 1) {
11 ini = 0;
12 current = tid;
13 P = varblock[0][current]+ini;
14 if (i > upper_limit - 1)
15 goto labelSquash_1;
16 varblock[2][current] = varblock[2][current]+1;
17 labelStartIteration_1:
18 Q = P % (MAX) + 1;
19 //aux = array[Q − 1];
20 if (specload_pointer((unsigned char *) &(array[Q-1]),
21 sizeof (array[Q-1]), current, (unsigned char *) &value) == -1)
22 earlySquash(1);
23 aux=value;
24 Q = (4 ∗ aux) % (MAX) + 1;
25 //array[Q − 1] = aux;
26 specstore_pointer((unsigned char *) &(array[Q-1]),
27 sizeof (array[Q-1]),current,(unsigned char *) &value);
28 labelEndIteration_1:
29 if ((P != varblock[1][current] + ini) && (i < NITER - 1)) {
30 P = P + 1;
31 goto labelStartIteration_1;
32 }
33 labelSquash_1:
34 retflag = threadend_pointer(¤t);
35 if (retflag == JOBDONE) goto labelEndLoop_1;
36 if (retflag == JOBTODO) {
37 i = varblock[0][current] + ini;
38 varblock[2][current] = varblock[2][current] + 1;
39 goto labelStartIteration_1;
40 }
41 labelEndLoop_1:
42 ;
43 } // for loop
44 } // pragma omp parallel

Fig. 8 Code generated by ATLaS after processing the source code of the synthetic bench-
mark augmented by BFCA+ (shown in Fig. 7).

10 Sergio Aldea, Diego R. Llanos, Arturo Gonzalez-Escribano

 0

 2

 4

 6

 8

 10

 12

 14

 16

12 4 8 12 16 20 24 32 40 48 56 64

S
p

e
e

d
u

p

Number of processors

2D-Hull

2D-Hull (manual)
2D-Hull (auto)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

12 4 8 12 16 20 24 32 40 48 56 64

S
p

e
e

d
u

p

Number of processors

2D-MEC

2D-MEC (manual)
2D-MEC (auto)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

12 4 8 12 16 20 24 32 40 48 56 64

S
p

e
e

d
u

p

Number of processors

Delaunay

Delaunay (manual)
Delaunay (auto)

 0

 1

 2

 3

 4

 5

 6

 7

 8

12 4 8 12 16 20 24 32 40 48 56 64

S
p

e
e

d
u

p

Number of processors

TREE

TREE (manual)
TREE (auto)

Fig. 9 Performance of the codes parallelized by using BFCA+ plus ATLaS compared with
the performance achieved by the corresponding manually parallelized codes.

These experiments have been run on a 64-processor server, equipped with
four 16-core AMD Opteron 6376 processors at 2.3GHz and 256GB of RAM,
which runs Ubuntu 12.04.3 LTS. All threads had exclusive access to the pro-
cessors during the execution of the experiments, and we used wall-clock times
in our measurements.

In order to test the performance of the applications automatically trans-
formed, we compare two different, parallel versions of each benchmark. The
first version, called auto in the plots, has been obtained with the use of BFCA+,
and therefore include OpenMP parallel directives that make use of the specu-
lative clause. The second one, called manual, has been obtained by manually
augmenting the same loop with all the code needed by the runtime specula-
tive library, a rather complex transformation procedure that transforms the
original code to something similar to the code shown in Fig. 72.

Figure 9 shows the relative performance between these two versions of each
benchmark. We have found that the use of the OpenMP speculative clause in-
serted by BFCA+ leads to slightly better execution times than those obtained
with the equivalent manual transformations. The reason is that ATLaS is not
a preprocessor than first produces a code similar to the manual one, and later
asks gcc to compile it. Instead, ATLaS is a GCC plugin that works directly
with the GIMPLE intermediate representation, performing the transforma-
tions after several optimizations have been triggered by gcc. In the benchmarks
considered, the auto versions are faster than the manual versions, although it

2 Note that the manual transformation process include to figure out which loop would
be more profitable to be parallelized, and then perform an in-depth analysis of the data
elements being accessed inside the loop. This is an error-prone, time-consuming process
that, for the benchmarks considered, took between ten and 30 hours.

BFCA+: Automatic synthesis of parallel code with TLS capabilities 11

is not guaranteed that this will be the case for any other application. See [19]
for additional details on the behaviour of the ATLaS GCC plugin.

For the 2D-Hull, our solution achieves a peak speedup of 13×, with an
improvement of 30% over the manual parallelization of the code. The paral-
lelization of the loop with our solution is straightforward, while the manual
changes needed to use the TLS runtime library needs more than thirty hours
of carefully replacing all loads and stores with function calls and changing
the loop structure to support thread scheduling. In the case of the 2D-MEC,
with a larger amount of dependency violations, our solution achieves minor
speedups, with peaks of 2.6×. Although these are not big figures, the manual
use of the TLS library to parallelize this application requires more than ten
hours of a very specialized work. Moreover, our solution leads to a 39% of
performance improvement. Delaunay’s execution produces a high number of
dependency violations, which affects the speedup. Delaunay achieves a peak
performance of 3.1× speedup with our solution, a 18% faster than the man-
ual approach. The programming effort to obtain a speculative version for this
benchmark is very similar to the one needed for 2D-Hull. TREE obtains a
peak of 6.5× speedup with our solution, improving the manual parallelization
in a 12%. This benchmark is characterized by the presence of reductions over
sum and maximum operations that involve speculative variables, which avoid
the parallelization by the compiler. These situations are easily resolved by our
proposed clause, while handling them manually requires more than ten hours
of programming effort.

Finally, in all cases it can be seen that performance starts to degrade if we
keep adding more threads to the work. The reason is that the TLS management
cost increases with the number of threads. Please refer to [1] for a detailed
analysis of the management costs and the potential performance losses of the
ATLaS framework.

5 Conclusions

This paper shows a solution to the problem of the automatic synthesis and
generation of OpenMP constructs, including those needed to support thread-
level speculation. We propose a system, called BFCA+, that takes advantage
of two existing frameworks (BFCA and ATLaS) to allow the automatic par-
allelization of a given loop, regardless of the presence of potential dependency
violations, by simply indicating its line number. Our future work includes the
automatic selection of the most promising target loop, a decision that requires
the use of appropriate heuristics. BFCA+ is freely available under request.

Acknowledgements This research has been partially supported by MICINN (Spain) and
ERDF program of the European Union: HomProg-HetSys project (TIN2014-58876-P), CAPAP-
H5 network (TIN2014-53522-REDT), and COST Program Action IC1305: Network for Sus-
tainable Ultrascale Computing (NESUS).

12 Sergio Aldea, Diego R. Llanos, Arturo Gonzalez-Escribano

References

1. Sergio Aldea, Alvaro Estebanez, Diego R. Llanos, and Arturo Gonzalez-Escribano. An
OpenMP extension that supports thread-level speculation. IEEE Transactions on Par-
allel and Distributed Systems, 2015. to appear.

2. Sergio Aldea, Diego R. Llanos, and Arturo Gonzalez-Escribano. Support for thread-level
speculation into OpenMP. In IWOMP’12 Proceedings, pages 275–278, June 2012.

3. Sergio Aldea, Diego R. Llanos, and Arturo Gonzalez-Escribano. Using SPEC CPU2006
to evaluate the secuential and parallel code generated by commercial and open-source
compilers. The Journal of Supercomputing, 59(1):486–498, 2012.

4. Sergio Aldea, Diego R. Llanos, and Arturo Gonzalez-Escribano. The BonaFide C an-
alyzer: Automatic loop-level characterization and coverage measurement. The Journal
of Supercomputing, 68(3):1378–1401, 2014.

5. Joshua E. Barnes. TREE. Institute for Astronomy. University of Hawaii.
ftp://hubble.ifa.hawaii.edu/pub/barnes/treecode/, 1997.

6. Marcelo Cintra and Diego R. Llanos. Toward efficient and robust software speculative
parallelization on multiprocessors. In PPoPP’03 Proceedings, pages 13–24, June 2003.

7. K. L. Clarkson, K. Mehlhorn, and R. Seidel. Four results on randomized incremental
constructions. Comput. Geom. Theory Appl., 3(4):185–212, 1993.

8. Francis H. Dang, Hao Yu, and Lawrence Rauchwerger. The R-LRPD Test: Speculative
parallelization of partially parallel loops. In IPDPS’02 Proceedings, pages 20–29, 2002.

9. L. Devroye, E. P. Mücke, and B. Zhu. A note on point location in Delaunay triangula-
tions of random points. Algorithmica, 22:477–482, 1998.

10. Chirag Dave et al. Cetus: A Source-to-Source compiler infrastructure for multicores.
IEEE Computer, 42(12):36–42, 2009.

11. Chunhua Liao et al. Automatic parallelization using OpenMP based on STL semantics.
Languages and Compilers for Parallel Computing (LCPC), 2008.

12. Cos S. Ierotheou et al. Generating OpenMP code using an interactive parallelization
environment. Parallel Computing, 31(10–12):999–1012, October 2005.

13. Haoqiang Jin et al. Automatic multilevel parallelization using OpenMP. Journal of
Scientific Programming, EWOMP’11, 11(2)(2):177–190, April 2003.

14. Konrad Trifunovic et al. Graphite two years after: First lessons learned from real-world
polyhedral compilation. In GROW’10 Proceedings, pages 4–19, 2010.

15. Laksono Adhianto et al. Tools for OpenMP application development: The POST
project. Concurrency - Practice and Experience, 12:1177–1191, 2000.

16. Luigi Nardi et al. YAO: A generator of parallel code for variational data assimilation
applications. In HPCC’12 Proceedings, pages 224–232, June 2012.

17. Mehdi Amini et al. PIPS is not (just) polyhedral software. In IMPACT’11, 2011.
18. Mehdi Amini et al. Par4All: From convex array regions to heterogeneous computing.

In IMPACT’12, withing HiPEAC 2012, 2012.
19. Sergio Aldea et al. A new GCC plugin-based compiler pass to add support for thread-

level speculation into OpenMP. In Euro-Par’14 Proceedings, 2014.
20. Stephen Johnson et al. The ParaWise expert assistant - Widening accessibility to

efficient and scalable tool generated OpenMP code. In WOMPAT’04 Proceedings, 2005.
21. Uday Bondhugula et al. A practical automatic polyhedral parallelizer and locality

optimizer. In PLDI’08 Proceedings, pages 101–113, 2008.
22. T. Grosser, H. Zheng, R. Aloor, A. Simbrger, A. Grsslinger, and Louis-Nol Pouchet.

Polly - Polyhedral optimization in LLVM. In IMPACT’11, 2011.
23. Serge Guelton. Building Source-to-Source Compilers for Heterogeneous Targets. PhD

thesis, Universit europenne de Bretagne, Rennes, France, 2011.
24. Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program

analysis transformation. In CGO’04 Proceedings, pages 75–86, 2004.
25. Julien Taillard, Frdric Guyomarc’h, and Jean-Luc Dekeyser. A graphical framework for

high performance computing using an MDE approach. In PDP’08 Proceedings, pages
165–173, February 2008.

26. Emo Welzl. Smallest enclosing disks (balls and ellipsoids). In New results and new
trends in computer science, volume 555 of Lecture notes in computer science, pages
359–370. Springer-Verlag, 1991.

