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Abstract

We show how to use extended word series in the reduction of continuous and
discrete dynamical systems to normal form and in the computation of formal in-
variants of motion in Hamiltonian systems. The manipulations required involve
complex numbers rather than vector fields or diffeomorphisms. More precisely
we construct a group G and a Lie algebra g in such a way that the elements of G
and g are families of complex numbers; the operations to be performed involve the
multiplicationF in G and the bracket of g and result in universal coefficients that
are then applied to write the normal form or the invariants of motion of the specific
problem under consideration.
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1 Introduction
In this paper we show how to use extended word series in the reduction of continu-
ous and discrete dynamical systems to normal form and in the computation of formal
invariants of motion in Hamiltonian systems of differential equations. The manipula-
tions required in our approach involve complex numbers rather than vector fields or
diffeomorphisms. More precisely, we construct a group G (semidirect product of the
additive group of Cd and the group of characters of the shuffle Hopf algebra) and a Lie
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algebra g in such a way that the elements of G and g are families of complex numbers;
the operations to be performed involve the multiplicationF in G and the bracket of g
and result in universal coefficients that are then applied to write the normal form or the
invariants of motion of the specific problem under consideration.1

The present approach originated from our earlier work on the use of formal series
to analyze numerical integrators; see [15] for a survey of that use. In a seminal pa-
per, Hairer and Wanner [11] introduced the concept of B-series as a means to perform
systematically the manipulations required to investigate the accuracy of Runge-Kutta
and related numerical methods for ordinary differential equations. B-series are series
of functions; there is a term in the series associated with each rooted tree. The letter B
here refers to John Butcher, who in the early 1960’s enormously simplified, through a
book-keeping system based on rooted trees, the task of Taylor expanding Runge-Kutta
solutions. This task as performed by Kutta and others before John Butcher’s approach
was extraordinarily complicated and error prone. Key to the use of B-series is the fact
that the substitution of a B-series in another B-series yields a third B-series, whose
coefficients may be readily found by operating with the corresponding rooted trees and
are independent of the differential equation being integrated. In this way the set of
coefficients itself may be endowed with a product operation and becomes the so-called
Butcher’s group. The set of B-series resulting from a specific choice of differential
equations is then a homomorphic image of the Butcher group. It was later discovered
(see eg [4]) that the Butcher group was not a mere device to understand numerical inte-
grators but an important mathematical construction (the group of characters of a Hopf
algebra structure on the set of rooted trees) which has found applications in several
fields, notably in renormalization theories and noncommutative geometry. In [5] and
[6] B-series found yet another application outside numerical mathematics when they
were employed to average systems of differential equation with periodic or quasiperi-
odic forcing.

Our work here is based on word series [13], an alternative to B-series defined in
[7], [8] (see also [12], [6]). Word series are parameterized by the words of an alpha-
bet A and are more compact than the corresponding B-series parameterized by rooted
trees with coloured nodes. Section 2 provides a review of the use of word series. The
treatment there focuses on the presentation of the rules that apply when manipulating
the series in practice and little attention is paid to the more algebraic aspects. In par-
ticular the material in Section 2 is narrowly related to standard constructions involving
the shuffle Hopf algebra over the alphabet A (see [13] and its references); we avoid
to make this connection explicit and prefer to give a self-contained elementary expo-
sition. Section 3 presents the class of perturbed problems investigated in the paper;
several subclasses are discussed in detail, including nonlinear perturbations of linear
problems and perturbations of integrable problems written in action/angle variables
[2]. In order to account for the format (unperturbed + perturbation) being considered,
we employ what we call extended word series. In the particular case of action/angle
integrable problems, extended word series have already been introduced in [13]; here
we considerably enlarge their scope. Section 4, that is parallel to Section 2, studies the

1In fact it is possible to present G and g in terms of a universal property in the language of category
theory. We shall not be concerned with that task here.
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rules that apply to the manipulation of extended words series. Again many of those
rules essentially appear in [13], but the ad hoc proofs we used there do not apply in
our more general setting so that new, more geometric proofs are required. The main
results of the paper are presented in the final Section 5. We first address the task of
reducing differential systems to normal forms via changes of variables (Theorem 1);
as pointed out above, both the normal form and the change of variables are written in
terms of scalar coefficients that may be easily computed. For Hamiltonian problems the
normal form is Hamiltonian and the change of variables symplectic. We also describe
in detail (Theorem 2) the freedom that exists when finding the normal form/change
of variables. By going back to the original variables, we find a decomposition of the
given vector field as a commuting sum of two fields: the first generates a flow that is
conjugate to the unperturbed problem and the second accounts for the effects of the
perturbations that are not removable by conjugation. This decomposition is the key to
the construction of formal invariants of motion in Hamiltonian problems. We provide
very simple recursions for the computation of the coefficients that are required to write
down the decomposition of the vector field and the invariants of motion. Finally we
briefly outline a parallel theory for discrete dynamical systems.

Some of the results in Section 5 have precedents in the literature. The reduction to
normal form (but not the investigation of the associated freedom) appears in [13] but
only the particular setting of action/angle variables (ie of Example 3 in Section 3.2).
Decompositions of the field as a commuting sum features in [6], but only for a class
of problems much narrower than the one we deal with here. That paper also presents,
in a more restrictive scenario, recursions for the computation of invariants of motion.
However the methodology in [6] is different from that used here and the recursions
found there do not coincide with those presented in this work. The reference [9] is very
relevant. It works in the restricted context of Example 1 in Section 3.2 and emphasizes
the role played by different Hopf algebras, in particular the shuffle Hopf algebra and
the commutative Hopf algebra of rooted trees with colored vertices, and the connection
with Ecalles mould calculus. Studied in detail is the reduction of vector fields and dif-
feomorphisms to their linear parts with the help of series of linear differential operators
rather than of word series (the relation between both kinds of series has been discussed
in [13]).

It should be pointed out that, just as the notion of word series may be modified
to define extended word series adapted to perturbed problems, it is both possible and
interesting (cf [9]) to consider extended B-series, a task that we plan to address in future
contributions.

All the developments here operate with formal series of smooth maps. In order not
to clutter the exposition we shall omit throughout the qualifiers ‘formal’ and ‘smooth’.
It is of course possible, after truncating the expansions, to derive bounds as in [7], [8],
but such a task is out of our scope. The groups used here may be turned into Lie groups
modeled in Fréchet spaces, see [3].
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2 Word series
In this section we briefly review the use of word series, a tool that is essential for the
work in this paper. Proofs and additional details may be seen in [13].

2.1 Definition of word series
Let A be a finite or infinitely countable set of indices (the alphabet) and assume that,
for each ` ∈ A, f` : CD → CD is a map. With each nonempty word `1 · · · `n made
with letters from A we associate a word basis function. These functions are recursively
defined by

f`1···`n(x) = f ′`2···`n(x) f`1(x), n > 1

(f ′`2···`n(x) denotes the value at x of the Jacobian matrix of f`2···`n ). For the empty
word, the associated basis function is the identity map x 7→ x. We denote by W the
set of all words (including the empty word ∅) and by CW the vector space of all the
mappings δ :W → C; the notation δw will be used to refer to the value that δ takes at
the word w ∈W .

Given the maps f`, ` ∈ A, with each δ ∈ CW we associate the formal series

Wδ(x) =
∑
w∈W

δwfw(x),

and say that Wδ(x) is the word series with coefficients δ. It is also possible to consider
the real case with f` : RD → RD and δ ∈ RW .

As an example, consider the nonautonomous initial-value problem

d

dt
x =

∑
`∈A

λ`(t)f`(x), x(0) = x0, (1)

where the λ` are given scalar-valued functions of t. Its solution may be represented as
x(t) = Wα(t)(x0), with the coefficients α(t) given by the iterated integrals

α`1···`n(t) =

∫ t

0

dtn λ`n(tn)

∫ tn

0

dtn−1 λ`n−1
(tn−1) · · ·

∫ t2

0

dt1 λ`1(t1). (2)

The series Wα(t)(x0) is essentially the Chen-Fliess series used in control theory.

2.2 Operations with word series
Given δ, δ′ ∈ CW , their convolution product δ ? δ′ ∈ CW is defined by

(δ ? δ′)`1···`n = δ∅δ
′
`1···`n +

n−1∑
j=1

δ`1···`jδ
′
`j+1···`n + δ`1···`nδ

′
∅

((δ ? δ′)∅ = δ∅δ
′
∅). This product is not commutative, but it is associative and has a unit

(the element 11 ∈ CW with 11 ∅ = 1 and 11w = 0 for w 6= ∅).

4



If w and w′ are words, their shuffle product will be denoted by w ttw′. The set
G consists of those γ ∈ CW that satisfy the shuffle relations: γ∅ = 1 and, for each
w,w′ ∈ W ,

γwγw′ =

N∑
j=1

γwj if w ttw′ =

N∑
j=1

wj .

This set is a group for the operation ?. For γ ∈ G, Wγ(x) may be substituted in an
arbitrary word series Wδ(x), δ ∈ CW , to get a new word series whose coefficients are
given by the convolution product γ ? δ:

Wδ

(
Wγ(x)

)
= Wγ?δ(x). (3)

We denote by g the set of elements β ∈ CW such that β∅ = 0 and for each pair of
nonempty words w,w′,

N∑
j=1

βwj
= 0 if w ttw′ =

N∑
j=1

wj .

With the skew-symmetric convolution bracket defined by

[β, β′] = β ? β′ − β′ ? β,

g is a Lie algebra and, in fact, it may be seen as the Lie algebra of G if this is seen
as a Lie group [3]. The elements in G and g are related by the usual exponential and
logarithmic power series (where, of course, powers are taken with respect to the product
?). For β ∈ g and arbitrary δ ∈ CW , the product β ∗ δ has the following word series
interpretation:

Wβ∗δ(x) = W ′δ(x)Wβ(x).

This implies in particular that the convolution bracket just defined corresponds to the
Lie-Jacobi bracket of the associated word series:

W ′β′(x)Wβ(x)−W ′β(x)Wβ′(x) = W[β,β′](x), β, β′ ∈ g.

For β ∈ g the Dynkin-Specht-Wever formula may be used to rewrite the word series in
terms of iterated commutators:

Wβ(x) =

∞∑
n=1

1

n

∑
`1,...,`n∈A

β`1···`n [[· · · [[f`1 , f`2 ], f`3 ] · · · ], f`n ](x). (4)

(For n = 1 the terms in the inner sum are of the form β`1f`1(x).)
If β(t) ∈ g for each real t, the initial value problems

d

dt
x(t) = Wβ(t)(x(t)), x(0) = x0, (5)

may be solved formally by using the ansatz x(t) = Wα(t)(x0). In fact, in view of (3),
we may write

d

dt
Wα(t)(x0) = Wβ(t)(Wα(t)(x0)) = Wα(t)?β(t)(x0), Wα(0)(x0) = x0,
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which leads to a linear, nonautonomous initial value problem in G

d

dt
α(t) = α(t) ? β(t), α(0) = 11 . (6)

that may be solved by successively determining αw(t),w ∈ Wn, n = 0, 1, . . . For each
t the element α(t) ∈ CW found in this way belongs to the group G. (The solvability
of (6) is referred to as the regularity of G in Lie group terminology.) Conversely, any
curve α(t) of group elements with α(0) = 11 solves a problem of the form (6) with

β(t) = α(t)−1 ?
d

dt
α(t).

A change of variables x = Wκ(X), κ ∈ G, transforms the problem (5) into

d

dt
X(t) = WB(t)(X(t)), X(0) = X0,

with B(t) = κ ? β(t) ? κ−1, Wκ(X0) = x0.
Consider finally the particular case where the dimension D is even and each f`(x)

is a Hamiltonian vector field, i.e. f`(x) = J−1∇H`(x), where J−1 is the standard
symplectic matrix. In view of the correspondence that exists between Hamiltonian
fields/Lie-Jacobi brackets and Hamiltonian functions/Poisson brackets, for each β ∈ g,
the vector field Wβ(x) is Hamiltonian,

Wβ(x) = J−1∇Hβ(x)

and its Hamiltonian function is (see (4))

Hβ(x) =
∑

w∈W, w 6=∅

βwHw(x),

where, for each nonempty word w = `1 · · · `n,

Hw(x) =
1

n
{{· · · {{H`1 , H`2}, H`3} · · · }, H`n}(x). (7)

(We assume that the Poisson bracket has been defined in such a way that the vector
field generated by the Poisson bracket of two Hamiltonians is the Lie-Jacobi bracket of
the fields corresponding to Hamiltonians; in the literature it is more frequent to use as
Poisson bracket the opposite of the one employed here [2].)

If β, β′ ∈ g, the Poisson bracket of Hβ and Hβ′ may be expressed in terms of the
convolution bracket of the coefficients asH[β,β′].

For Hamiltonian systems, changes of variables x = Wκ(X), κ ∈ G, are canon-
ically symplectic; after the change of variables the system is again Hamiltonian and
the new Hamiltonian function is obtained by changing variables in the old Hamiltonian
function:

Hβ(Wκ(X)) = HB(X), B = κ ? β ∗ ?κ−1.
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3 Perturbed problems

3.1 Preliminaries
In the remainder of the paper we shall be concerned with initial value problems

d

dt
x = g(x) + f(x), x(0) = x0, (8)

where f, g : CD → CD and f can be decomposed as

f(x) =
∑
`∈A

f`(x) (9)

for a set of indices A, referred to as the alphabet as in Section 2. We work under the
assumption that, for each ` ∈ A, there is ν` ∈ C such that

[g, f`] = ν` f`; (10)

in other words, each vector field f` is an eigenvector of the operator [g, ·] (adjoint of
g), where [·, ·] represents the usual Lie-Jacobi bracket ([g, f ] = f ′g − g′f ). Due to
well-known properties of the Lie-Jacobi bracket, (10) is independent of the choice of
coordinates: if an arbitrary change of variables x = x(X) is performed in (8), then
(10) holds in the x variables if and only if it holds in the X variables.

The next proposition gives an alternative formulation of the assumption; ϕt denotes
the solution flow of g.

Proposition 1 Equation (10) is equivalent to the requirement that for each x ∈ CD,
and each real t,

ϕ′t(x)−1f`(ϕt(x)) = etν`f`(x). (11)

Proof: Assume that (10) holds. If C(t) is the left hand-side of (11), then

d

dt
C(t) = −ϕ′t(x)−1

(
d

dt
ϕ′t(x)

)
ϕ′t(x)−1f`(ϕt(x))

+ϕ′t(x)−1f ′`(ϕt(x))
d

dt
ϕt(x)

= −ϕ′t(x)−1g′(ϕt(x))ϕ′t(x) ϕ′t(x)−1f`(ϕt(x))

+ϕ′t(x)−1f ′`(ϕt(x))g(ϕt(x))

= ν`C(t)

and integration leads to C(t) = exp(tν`)C(0), ie to (11). Conversely, differentiation
with respect to t of (11) at t = 0 results in (10). �

Geometrically (11) says that, for each fixed t, the diffeomorphism ϕt pulls back
the vector field f` to the vector field etν`f`. In other words, f` is an eigenvector with
eigenvalue exp(tν`) of the linear operator that associates with each vector field h its
pull back (ϕ′t(·))−1(h ◦ ϕt)(·).

7



In the applications we have in mind, the differential system in (8) is seen as a
perturbation of the system (d/dt)x = g(x) and the flow ϕt is considered to be known.
If the solution x(t) of (8) is sought in the form x(t) = ϕt(y(t)), then y(0) = x0 and,
after invoking (11), it is trivially found that y(t) satisfies

d

dt
y =

∑
`∈A

etν`f`(y).

Since this system is of the form (1) with

λ`(t) = etν` , ` ∈ A, (12)

we find that y(t) = Wα(t)(x0), where, as we know, the coefficients α(t) are given by
(2). We conclude that the solution of (8) has the representation x(t) = ϕt(Wα(t)(x0)).

3.2 A class of perturbed problems
In what follows we assume that the field g in (8) lies in a finite-dimensional vector
space of commuting vector fields (that is, an Abelian Lie algebra of vector fields), with
a basis {g1, . . . , gd} ([gj , gk] = 0 for j 6= k), and that each f` is an eigenvector of each
operator [gj , ·]. The elements of the Abelian Lie algebra will be denoted by

gv =

d∑
j=1

vj gj , (13)

where v = (v1, . . . , vd) is a constant vector.
More precisely we work hereafter under the following assumption.

Assumption 1 The system (8) is such that:

• f may be decomposed as in (9).

• There are linearly independent, commuting vector fields gj and constants vj ,
j = 1, . . . , d, such that g = gv with gv as in (13).

• For each j = 1, . . . , d and each ` ∈ A, there is νj,` ∈ C such that

[gj , f`] = νj,` f`. (14)

Clearly, (14) implies that (10) holds with ν` given by the (v-dependent) quantity

νv` =

d∑
j=1

vjνj,`. (15)

If we denote by ϕv the flow at time t = 1 of gv , the t-flow of gv coincides with
ϕtv and, according to Section 3.1, the solution of (8) has the representation x(t) =
ϕtv(Wα(t)(x0)), where the coefficients α(t) are given by (2), (12), (15). Note that
these coefficients depend on v and the νj,` but are otherwise independent of g and f .

Let us now examine some classes of differential systems that satisfy Assumption 1.
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Example 1 Consider the case

d

dt
x = Lx+ f(x), (16)

where L is a diagonalizable D × D matrix, and f(x) is polynomial, ie each of its
components is a polynomial in the components of x. Let µ1, . . . , µd denote the distinct
nonzero eigenvalues of L, so that L may be uniquely decomposed as

L = µ1L1 + · · ·+ µdLd,

where the D × D matrices L1, . . . , Ld are projectors (L2
j = Lj) with LjLk = 0 if

j 6= k. Thus (13) holds for gj(x) = Ljx, vj = µj . Furthermore consider, for each
v = (v1, . . . , vd), the diffeomorphism x 7→ exp(v1L1 + · · · + vdLd)x. This pulls f
back into

e−(v1L1+···+vdLd)f(ev1L1+···+vdLdx),

an expression that can be uniquely rewritten as a sum∑
(k1,...,kd)∈A

ek1v1+···+kdvdf(k1,...,kd)(x),

whereA is a finite subset of Zd and, for each k = (k1, . . . , kd) inA, fk is a polynomial
map. It follows that f =

∑
k fk and that the pull back of fk is exp(v1L1 + · · · +

vdLd)fk. According to Proposition 1, (14) holds with

νj,k = kj , k ∈ A, j = 1, . . . , d.

The case where the components of f are power series in the components of x may be
treated similarly, cf [9]. Analytic systems of differential equations having an equilib-
rium at the origin are of the form (16), provided that the linearization at the origin is
diagonalizable; the perturbation f then contains terms of degree≤ 2 in the components
of x.

Example 2 In some applications, including Hamiltonian mechanics, the system (16)
possesses some symmetry that implies that the nonzero eigenvalues of L occur in pairs
±µ, with +µ and −µ having the same multiplicity. Let us then assume that, in the
preceding example, d is even and the nonzero eigenvalues satisfy µd−j+1 = −µj
for j = 1, . . . , d. The matrix v1L1 + · · · + vdLd considered above does not have
for arbitrary choices of the parameters vj a symmetric spectrum and, in order to not
loose the symmetry, one may consider an alternative way of satisfying Assumption 1.
Specifically, we may take

ḡj(x) = Ljx− Ld+1−jx, j = 1, . . . , d/2,

the alphabet Ā obtained from A through the formula

Ā = {(k1 − kd, k2 − kd−1, . . . , kd/2 − kd/2+1) : (k1, . . . , kd) ∈ A ⊂ Zd/2},

and f̄(k̄1,...,k̄d/2) given, for each (k̄1, . . . , k̄d/2) ∈ A, as the sum of all f(k1,...,kd) such
that

(k̄1, . . . , k̄d/2) = (k1 − kd, k2 − kd−1, . . . , kd/2 − kd/2+1).
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Example 3 We now consider real systems of the form

d

dt

[
y
θ

]
=

[
0
ω

]
+ f(y, θ),

where y ∈ RD−d, 0 < d ≤ D, ω ∈ Rd is a vector of frequencies ωj 6= 0, j = 1, . . . , d,
and θ comprises d angles, so that f(y, θ) is 2π-periodic in each component of θ with
Fourier expansion

f(y, θ) =
∑
k∈Zd

exp(ik · θ) f̂k(y).

After introducing the functions

fk(y, θ) = exp(ik · θ) f̂k(y), y ∈ RD−d, θ ∈ Rd,

the system takes the form (8)–(9) with x = (y, θ), A = Zd, and

g(y, θ) =

[
0
ω

]
.

If some fk(x) are identically zero, then A may of course be taken to be a subset of Zd.
Assumption 1 holds with vj = ωj (j = 1, . . . , d), each gj(x) a constant unit vector,
and

νj,k = i kj

for each j = 1, . . . , d and each k = (k1, . . . , kd) ∈ A.

Example 4 Assume that in (8), the dimension D is even with D/2− d = m ≥ 0 and
that the vector of unknowns takes the form

(p1, . . . , pm; a1, . . . , ad; q1, . . . , qm; θ1, . . . , θd),

where pj is the momentum conjugate to the co-ordinate qj and aj is the momentum
(action) conjugate to coordinate (angle) θj . Consider the Hamiltonian function

d∑
j=1

ωjHj(a) +H(p; a; q; θ), Hj(a) = ωja
j , j = 1, . . . , d, (17)

where H is 2π-periodic in each of the components of θ and has Fourier expansion

H(p; a; q; θ) =
∑
k∈Zd

Hk(p; a; q; θ); Hk = exp(ik · θ)Ĥk(p; a; q), k ∈ Zd.

We set νj,k = ikj ; it is then an exercise to check that

{Hj , Hk} = 0, j 6= k, {Hj , Hk} = νj,kHk.

If gj and fk denote the Hamiltonian vector fields corresponding to Hj and Hk respec-
tively, we have

[gj , gk] = 0, j 6= k, [gj , fk] = νj,kfk,

so that Assumption 1 holds for the Hamiltonian system associated with (17). Of course
this example is a particular instance of the one we just considered above.
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If v is a d-vector and w = `1 · · · `n a word, we extend the notation introduced in
(15) and set

νvw = νv`1 + · · ·+ νv`n =

d∑
j=1

vj (νj,`1 + · · ·+ νj,`n)

(νv∅ = 0). In the construction of normal forms, we shall consider, for each d-vector v,
the vector space V(v) of all d-vectors u for which νuw = 0 whenever νvw = 0, w ∈ W .
This vector space is useful to describe resonances, as we now illustrate in a particular
case. In the situation described in Example 3, assume that d = 2. The components v1

and v2 are the frequencies ω1, ω2, of the unperturbed motion, the letters are of the form
k ∈ Z2 and νvw = i(s(w)1v1 + s(w)2v2), where s(w)1 ∈ Z and s(w)2 ∈ Z denote the
first and second components of the sum s(w) ∈ Z2 of the letters of the word w. If v1

and v2 are rationally independent then νvw = 0 if and only if s(w)1 = s(w)2 = 0 and
V(v) comprises all 2-vectors. However if v2 6= 0 and the quotient v1/v2 is a rational
number p/q, then νvw = 0 if and only if (s(w)1, s(w)2) is proportional to (q,−p)
and V(v) is the one-dimensional subspace spanned by (p, q). Generally speaking, the
presence of resonances results in a decrease of the dimension of V(v); this in turn
implies that in Section 5 fewer invariant quantities will exist.

Remark 1 The relations [gj , f`] = νj,`f` and [gk, f`] = νk,`f` imply that for each
pair of complex numbers cj , ck

[cjgj + ckgk, f`] = (cjνj,` + ckνk,`)f`.

It is then clear that if Assumption 1 holds for the Abelian Lie algebra spanned by the
gj , j = 1, . . . , d, then it also holds for all its linear subspaces (equivalently for all its
Abelian Lie subalgebras). Moving to a subspace/subalgebra in Section 5 will in general
simplify the computations required to find normal forms at the expense of reducing the
number of linearly independent invariant quantities. An instance of the possibility of
moving to a subspace appeared above In Example 2.

4 Extended word series

4.1 The definition of extended word series
The material in the preceding section suggests the following definition.

Definition 1 Given the commuting vector fields gj , j = 1, . . . , d, and the family of
vector fields f`, ` ∈ A, with each (v, δ) ∈ Cd × CW we associate its extended word
series:

W (v,δ)(x) = ϕv(Wδ(x)).

In the particular case envisaged in Example 3 of Section 3.2 extended word series
were introduced in [13]; the definition given in this paper applies in the more general
context of Assumption 1. Most of the properties of extended word series discussed in
[13] remain valid in the present general setting, but they require different proofs.

Now the solution of (8) may be compactly expressed as x(t) = W (tv,α(t))(x0).
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4.2 The operators Ξv and ξv

For each d-vector v, we shall use the linear operator Ξv in CW that maps each δ ∈ CW
into the element of CW defined by

(Ξvδ)w = exp(νvw) δw.

Similarly the linear operator ξv on CW is defined by

(ξvδ)w = νvw δw.

Thus Ξv and ξv are diagonal operators with eigenvalues exp(νvw) and νvw respectively.
Observe that

d

dt
Ξtv = Ξtvξv = ξvΞtv.

The operator Ξv maps G into G and g into g. Furthermore Ξv is a homomorphism
for the convolution product: Ξv(γ ? δ) = (Ξvγ) ? (Ξvδ) if γ, δ ∈ CW . This implies
that exp?(Ξvβ) = Ξv exp?(β) for β ∈ g and that ξv is a derivation: ξv(δ ? δ′) =
(ξvδ) ? δ

′ + δ ? (ξvδ
′) for δ, δ′ ∈ CW .

The formulae in the next proposition will be used later.

Proposition 2 For each β ∈ g, v ∈ Cd,

[gv,Wβ ](x) = Wξvβ(x), (18)

ϕ′v(x)−1Wβ(ϕv(x)) = WΞvβ(x). (19)

Furthermore, for each γ ∈ G, v ∈ Cd,

Wγ(ϕv(x)) = ϕv(WΞvγ(x)), (20)

and
(W ′γ(x))−1gv(Wγ(x)) = gv(x)− (W ′γ(x))−1Wξvγ(x). (21)

Proof: From the Jacobi identity and (14)

[gv, [f`1 , f`2 ]] = (νv`1 + νv`2)[f`1 , f`2 ] = νv`1`2 [f`1 , f`2 ],

and, by induction, for the iterated commutator

I`1···`n = [[· · · [[f`1 , f`2 ], f`3 ] · · · ], f`n ]

we find
[gv, I`1···`n ] = νv`1···`nI`1···`n .

Therefore (18) is a consequence of (4). Proposition 1 then establishes (19).
From (19), the change of variables x = ϕv(X) pulls back the vector field Wβ into

the vector field WΞvβ ; for the corresponding flows at t = 1 we then have Wexp?(β) ◦
ϕv = ϕv◦Wexp?(Ξvβ), where, as pointed out above,Wexp?(Ξvβ) = WΞv exp?(β). Since
all elements γ ∈ G are of the form exp?(β), β ∈ g, we have proved (20).

To obtain (21), write (20) with tv replacing v, differentiate with respect to t and
evaluate at t = 0. �
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4.3 The group G
The symbol G denotes the set Cd × G. For each t, the solution coefficients (tv, α(t))
found above provide an example of element of G. For (u, γ) ∈ G and (v, δ) ∈ Cd×CW
we set

(u, γ)F(v, δ) = (v + δ∅u, γ ? Ξuδ) ∈ Cd × CW .

For this operation G is a noncommutative group; (Cd, 11 ) and (0,G) are subgroups of
G. The unit of G is 11 = (0, 11 ). Note that, for each (u, γ) ∈ G,

(u, γ) = (0, γ)F(u, 11 ), (u, 11 )F(0, γ) = (u,Ξuγ).

In particular (0, γ) and (u, 11 ) commute if Ξu leaves γ invariant.
By using (3) and (20), it is a simple exercise to check that

W (v,δ)

(
W (u,γ)(x)

)
= W (u,γ)F(v,δ)(x), γ, δ ∈ G.

In fact the operationF has been defined so as to ensure this composition rule.

4.4 The Lie algebra g

As a set, the Lie algebra g of the group G consists of the elements (v, β) ∈ Cd × g; by
differentiating curves in G, it is found that the Lie bracket of two elements in g has the
expression

[(v, β), (u, η))] = (0, ξvη − ξuβ + [β, η]).

With each element (v, β) of g we associate the vector field gv(x) +Wβ(x). From (18)
in Proposition 2 we find for arbitrary (v, β), (u, η) ∈ g,

[gv +Wβ , g
u +Wη] = W[(v,β),(u,η)],

and therefore the correspondence between g and vector fields preserves the Lie algebra
structure.

4.5 Differential equations in G
Consider the initial value problem

d

dt
x(t) = gv(x(t)) +Wβ(t)(x(t)), x(0) = x0, (22)

where β(t) ∈ g for each t, and v ∈ Cd. By using Proposition 2, it is found that a time-
dependent change of variables x = ϕtv(z) = W (tv, 11 )(z), transforms the problem
into

d

dt
z(t) = WΞtvβ(t)(z(t)), z(0) = x0,

and thus, (22) may be solved as x(t) = ϕtv(Wα(t)(x)), ie x(t) = W (tv,α(t))(x0),
where α(t) is the solution of the initial value problem in G

d

dt
α(t) = α(t) ? Ξtvβ(t), α(0) = 11 .

13



This may be integrated as we integrated (6). It is of interest to point out that, after using
the definition of F, it is easily checked that the function of t (tv, α(t)) found in this
way is the solution of the following nonautonomous initial value problem in G

d

dt
(u, α) = (u, α)F(v, β(t)), (u(0), α(0)) = 11 ;

this, in turn, is clearly analogous to the problem (6) in G.
By means of (21) it may easily be shown that a change of variables x = W (u,κ)(X),

κ ∈ G, transforms the differential equation in (22) into

d

dt
X(t) = gv(X(t)) +WB(t)(X(t)), ,

where B(t) is determined from

B(t) = κ ∗ (Ξuβ(t)) ∗ κ−1 − (ξvκ) ∗ κ−1.

The following result, to be used later, is easily checked and corresponds to the
well-known fact that changes variables commute with the computation of Lie brackets
of vector fields.

Proposition 3 Assume that (u, κ) is an element in the group G. Let the elements
(v1,∆1), (v2,∆2), (v3,∆3) ∈ g be related to the elements (v1, δ1), (v2, δ2), (v3, δ3) ∈
g through

∆j = κ ? (Ξuδ
j) ? κ−1 − (ξvjκ) ? κ−1, j = 1, 2, 3.

Then [(v1,∆1), (v2,∆2)] = (v3,∆3) if and only if [(v1, δ1), (v2, δ2)] = (v3, δ3).

4.6 The exponential of an element in g

The exponential of an element (v, β) ∈ g is, according to the preceding material,
(v, α(1)), where α(t) is found by solving

d

dt
α = α ? Ξtvβ, α(0) = 11 . (23)

At variance with the case of the group G and its Lie algebra g, where the exponential
is a bijection from the Lie algebra to the group, there are elements in G that are not
the exponential of an element in g. However, inverting the exponential for a given
(v, γ) ∈ G is always possible provided that v is such that exp(νvw) 6= 1 for each word
w ∈ W for which νvw 6= 0.

Proposition 4 Given v ∈ Cd such that

νvw 6= 2kπ i for all k ∈ Z\{0} and w ∈ W, (24)

the restriction of the exponential to the set {(v, β) : β ∈ g} ⊂ g is injective, and gives
a bijection from this set to {(v, γ) : γ ∈ G} ⊂ G.
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Proof: Given γ ∈ G, in order to find the logarithm of (v, γ) we have to determine
β ∈ g such that α(1) = γ, where α satisfies (23). Assume that the values of β at all
words with < n letters have already been determined and choose w ∈ Wn. Then

d

dt
αw =

(
Ξtvβ

)
w

+ · · · = exp(tνvw)βw + · · · ,

where the dots stand for terms involving values of β at words with < n letters. Inte-
gration leads to an equation

γw =

∫ 1

0

exp(tνvw) dt βw + · · ·

that may be solved uniquely for βw because, under the hypothesis of the proposition,
the integral does not vanish. �

4.7 Perturbed Hamiltonian problems
If for each j, gj(x) is a Hamiltonian vector field with Hamiltonian function Hj(x),
and each f`(x) is a Hamiltonian vector field with Hamiltonian function H`(x), then
for each (v, β) ∈ g, the vector field gv(x) +Wβ(x) is Hamiltonian, with Hamiltonian
function

H(v,β)(x) =

d∑
j=1

vj Hj(x) +
∑
w∈W

βwHw(x), (25)

where the Hw(x) are as in (7). For any (u, κ) ∈ G, the map x 7→W (u,κ)(x) is canoni-
cally symplectic. When this canonical map is used to change variables in the Hamilto-
nian system with Hamiltonian function H(v,β) the new system is Hamiltonian and its
Hamiltonian function is found by composing the old Hamiltonian with the change of
variables.

As we have illustrated in Example 4 above, in some cases the following additional
assumption holds:

Assumption 2 The Hamiltonian functions Hj(x), j = 1, . . . , d, H`(x), ` ∈ A are
such that

{Hj , Hk} = 0, j 6= k, {Hj , H`} = νj,`H`.

Clearly this assumption implies that the Hamiltonian system satisfies Assumption 1.
We point out that, in addition, each Hj is a conserved quantity for the Hamiltonian
flow generated by Hk, k 6= j.

Under Assumption 2, the Poisson bracket of two Hamiltonian functions H(v,β),
H(v′,β′) may be expressed by means of the bracket in g asH[(v,β),(v′,β′)]. Furthermore
for the change of variables we have the formula

H(v,β)(W (u,κ)(X)) = H(v,B)(X),

with
B = κ ? (Ξuβ) ? κ−1 − (ξvκ) ? κ−1.
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5 Normal forms
Let us present our main results.

5.1 Normal forms for elements in the Lie algebra g

We now study autonomous systems of the form

d

dt
x = gv(x) +Wβ(x), β ∈ g. (26)

This format yields the original problem (8)–(9) in the particular case where β is chosen
as

βw = 1 if w ∈ W1, βw = 0 if w /∈ W1; (27)

other choices of β [13] are of interest eg in the analysis of numerical integrators for
(8)–(9) in relation to the so-called modified equations [14], [10]. Our aim is to change
variables x = Wκ(X) = W (0,κ)(X), κ ∈ G, in order to simplify (26). According to
Section 4.5, in the new variables we have

d

dt
X = gv(X) +Wβ̂(X), (28)

with
β̂ = κ ∗ β ∗ κ−1 − (ξvκ) ∗ κ−1. (29)

We choose (v-dependent) elements β̂ ∈ g and κ ∈ G subject to (29) and such
that β̂ is as simple as possible; then the system is said to have been brought to normal
form. The maximum simplification given by β̂ = 0 can only be reached if the relations
κ ∈ G, ξvκ = 0 imply κ = 11 , ie if νvw 6= 0 for all nonempty words w. If νvw = 0 for
some nonempty words, there are parts of the perturbation that commute with gv and of
course those cannot be eliminated by means of a change of variables, see eg [1]. The
aim is then to get β̂ ∈ g such that [gv,Wβ̂ ] = 0 (rather than Wβ̂ = 0). In terms of the

coefficients of the series we demand [(v, 0), (0, β̂)] = (0, ξvβ̂) = 0, ie

νvw β̂w = 0, (30)

for each nonempty word w. Equivalently, β̂w = 0 for all words w such that νvw 6= 0.
We have the following result:

Theorem 1 Given (v, β) ∈ g, there exists κ ∈ G such that the element β̂ ∈ g defined
in (29) satisfies that [(v, 0), (0, β̂)] = (0, ξvβ̂) = 0. In addition (0, β̂) commutes with
all elements (u, 0), u ∈ V(v).

Therefore, the change of variables x = Wκ(X), reduces the system (26) to the
normal form (28) in such a way that the vector fields gv(X) and Wβ̂(X) commute and
the solutions of (28) satisfy

X(t) = ϕtv(ϕ̂t(X(0))) = ϕ̂t(ϕtv(X(0))),
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where ϕ̂t is the solution flow of the system (d/dt)X = Wβ̂(X). Moreover, the vector
field Wβ̂(X) commutes with gu(X) for all vectors u ∈ V(v).

Solutions of (28) possess the extended word series representation

X(t) = W (tv,α̂(t))(X(0)),

where

(tv, α̂(t)) = (tv, exp?(tβ̂)) = (0, exp?(tβ̂))F(tv, 11 ) = (tv, 11 )F(0, exp?(tβ̂)).

Proof: The commutativity of (0, β̂) with all (u, 0), u ∈ V(v) is clearly implied by
(30). The (constructive) proof of the remaining assertions is parallel to that presented
in Section 6.2 of [13] and will not be reproduced here. �

Remark 2 If the vector fields gj and f` are Hamiltonian, then the change of variables
is canonical symplectic and the transformed system (28) is Hamiltonian; this follows
from the fact that, if gj and f` belong to a Lie subalgebra of the Lie algebra of vector
fields, then, in the proof of the theorem, all fields (respectively all changes of variables)
also belong to that subalgebra (respectively to the corresponding subgroup). From (25)
the Hamiltonian function of (28) is

H(v,β̂)(X) =

d∑
j=1

vj Hj(X) +
∑
w∈W

β̂wHw(X). (31)

Remark 3 For Hamiltonian problems under Assumption 2, for each u ∈ V(v), the
Poisson bracket of

Hu(X) =

d∑
j=1

uj Hj(X)

and (31) vanishes, because [(u, 0), (0, β̂)] = 0. Then each Hu is is a first integral of
the normal form system (28). If V(v) is of dimension d′ ≤ d, then (28) has d′ linearly
independent first integrals, in addition to its own Hamiltonian function (31).

For given v, the change of variables κ ∈ G and the resulting β̂ ∈ g in Theorem 1
are, in general, not unique:

Theorem 2 Let κ ∈ G, β̂ ∈ g be the elements related by (29) whose existence is
guaranteed by Theorem 1 (ξvβ̂ = 0). Then another change of variables κ̃ ∈ G leads to

an element ̂̃β ∈ g with ξv
̂̃
β = 0 if and only if, after defining δ = κ̃ ? κ−1, the relations

ξvδ = 0,
̂̃
β = δ ? β̂ ? δ−1 (32)

are satisfied.
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Proof: For the ‘if’ part, recall that ξv is a derivation and that then

ξvδ
−1 = −δ−1 ? (ξvδ) ∗ δ−1

and

ξv(δ ? β̂ ? δ
−1) = (ξvδ) ? β̂ ? δ

−1 + δ ? (ξvβ̂) ? δ−1 + δ ? β̂ ? (ξvδ
−1).

The last expression vanishes if ξvδ = 0 and ξvβ̂ = 0. It remains to show that δ?β̂ ?δ−1

is the element associated to κ̃ as in (29). To achieve that goal it is enough to multiply
(29) by δ on the right and δ−1 on the left and use again that ξv is a derivation.

For the (more difficult) ‘only if’ part, we begin by noting that the map

κ 7→ κ ∗ β ∗ κ−1 − (ξvκ) ∗ κ−1

is an action of the group G on g. From there we obtain the homological equation

ξvδ = δ ? β̂ − ̂̃β ? δ.
It is then clear that the proof will be ready if we show that ξvδ = 0. Since by assump-

tion ξvβ̂ = 0, ξv
̂̃
β = 0, the homological equation implies

ξv(ξvδ) = (ξvδ) ? β̂ − ̂̃β ? (ξvδ),

ie

(νv`1···`n)2δ`1···`n =

n−1∑
j=1

(
(ξvδ)`1···`j β̂`j+1···`n −

̂̃
β`1···`j (ξvδ)`j+1···`n ,

)
for each nonempty word `1 · · · `n. If we assume inductively that (ξvδ)w = 0 for words
with less than n letters, then (ξvδ)`1···`n = νv`1···`nδ`1···`n = 0, because when νv`1···`n 6=
0 the last displayed formula shows tha δ`1···`n = 0. �

Remark 4 The relations (32) may be rewritten as κ−1 ? β̂ ? κ = κ̃−1 ?
̂̃
β ? κ̃ and

κ−1 ? ξvκ = κ̃−1 ? ξvκ̃. Note also that, for each u ∈ V(v), ξvδ = 0 implies that
ξuδ = 0 and hence κ−1 ? ξuκ = κ̃−1 ? ξuκ̃.

Remark 5 If for all nonempty words νvw 6= 0, then ξvβ̂ = 0 and β̂∅ = 0 lead to β̂ = 0.
In Theorem 2, δ∅ = 1 and ξvδ = 0 imply δ = 11 or κ = κ̃; therefore the normal form
coincides with the unperturbed problem and the change of variables κ is unique.

5.2 Back into the original variables
Let us now push forward the pairwise commuting vector fields gv(X), gu(X), u ∈
V(v), and Wβ̂(X) to the original variables x. After applying the recipe for changing
variables given in Section 4.5 and Proposition 3, we obtain commuting fields gv(x) +
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Wκ−1?ξvκ(x), gu(x) + Wκ−1?ξuκ(x), u ∈ V(v), and Wκ−1?β̂?κ(x). In particular we
may rewrite the right hand-side of (26) as a commuting sum of two terms:

d

dt
x = gv(X) +Wβ(X) =

︷ ︸︸ ︷
gv(x) +Wκ−1?ξvκ(x) +

︷ ︸︸ ︷
Wκ−1?β̂?κ(x) . (33)

Obviously both terms in braces commute with their sum gv(x) + Wβ(x). The first
vector field in braces in (33) generates a flow

x(t) = W (0,κ−1)F(tω, 11 )F(0,κ)(x(0)) = W (tω,κ−1?Ξtωκ)(x(0))

conjugate to the flow ϕtv(x0) = W (tω, 11 )(x(0)) of the unperturbed original system in
(26). The second term in braces generates a flow

x(t) = Wκ−1?exp?(tβ̂)∗κ(x(0));

this second term is necessary whenever the solution flows of (26) and the unperturbed
system cannot be conjugated to one another (for instance if the unperturbed problem
has periodic solutions whose period changes after the perturbation).

According to Remark 4, the v-dependent elements β = κ−1?β̂?κ and ρ(u) = κ−1?
ξuκ do not depend on the choice of κ ∈ G in Theorem 1. To summarize, the original
field gv(x) +Wβ(x) has been decomposed as a commuting sum of gv(x) +Wρ(v)(x)
and Wβ(x) in such a way that Wβ(x) and gv(x) + Wρ(v)(x) also commute with all
fields gu(x) + Wρ(u)(x), u ∈ V(v), which in turn commute among themselves. We
shall present below an algorithm for computing the coefficients β and ρ(u) needed to
write these fields.

Remark 6 In the Hamiltonian case, under Assumption 2, for each u ∈ V(v),

H(u,ρ(u))(x) =

d∑
j=1

uj Hj(x) +
∑
w∈W

ρ(u)wHw(x)

is a first integral of the system (26). Such formal integral depends linearly on u and
therefore (26) possesses d′ ≤ d linearly independent invariants (d′ is the dimension of
V(v)) in addition to its own Hamiltonian function H(v,β)(x). These invariants may be
written down easily using the algorithm presented below to compute β and ρ(u).

The next results provides, under an additional hypothesis, a characterization of β
and ρ(u). In the context of Example 3 in Section 3.2, the word 0 ∈ Zd has νv0 = 0 and
the hypothesis holds whenever the Fourier coefficient f̂0(y) is not identically zero.

Theorem 3 Given (v, β) ∈ g assume that there is a letter 0 ∈ A such that νv0 = 0 and
β0 6= 0. Then for each u ∈ V(v), the element ρ(u) ∈ g is uniquely determined by the
relations

[(v, β), (u, ρ(u))] = ξvρ(u)− ξuβ + [β, ρ(u)] = 0, (34)
ρ(u)`1···`n = 0 if νv`1 = · · · = νvv = 0, (35)
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and β ∈ g is uniquely determined by the relations

[(v, β), (0, β)] = ξvβ + [β, β] = 0, (36)

β`1···`n = β`1···`n if νv`1 = · · · = νv`n = 0. (37)

Proof: We already know that (34) and (36) are fulfilled. Induction on n can be used to
prove (35). The relation (37) is implied by β = β − ρ(v).

We next show that (36)–(37) uniquely determine β ∈ g. (That (34)–(35) uniquely
determine ρ(v) is proved in a very similar way.) We work by induction on the number
of letters. The condition (36) for words with one letter ` ∈ A yields νv` β` = 0.
Therefore, if νv` 6= 0, then β` = 0; otherwise, β` = β` by virtue of (37). For a word
w = `1 · · · `n, n > 1, (36) reads

νvwβw −
n−1∑
k=1

(β`1···`kβ`k+1···`n − β`1···`kβ`k+1···`n) = 0

a relation that obviously determines βw when νvw 6= 0. If νvw = 0, we distinguish two
cases. If νv`1 = · · · = νv`n = 0 then β`1···`n is determined by condition (37). Otherwise,
we consider (36) for the word w = 0`1 · · · `n, to obtain

β`1···`n −
β`n
β0

β0`1···`n−1
= · · ·

where the right-hand side is, by the induction hypothesis, uniquely determined, but
β0`1···`n−1

may in principle pose difficulties because it refers to a word with n letters.
If νv`n = 0, then νv0`1···`n−1

= 0 so that β0`1···`n−1
cannot be found by means of (36).

But we may then repeat the process until we eventually obtain

β`1···`n −
β`n · · ·β`k+1

βn−k+1
0

β0···0`1···`k = · · ·

with νv0···0`1···`k 6= 0, and hence β0···0`1···`k determined via (36) . �

Remark 7 The proof of Theorem 3 provides very simple recursions for the coefficients
of β and ρ(v) corresponding to the original problem (8)–(9) where β ∈ g is given by
(27):

β` = 1, if νv` = 0,

β` = 0, if νv` 6= 0,

β`1···`n =
β`1···`n−1

− β`2···`n
νv`1···`n

, if n > 1, νv`1···`n 6= 0,

and if n > 1 and νv`1···`n = 0,

β`1···`n =

{
0, if νv`1 = · · · = νv`n = 0,

β0`1···`n−1
, otherwise.
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The recursions for ρ(u), u ∈ V(v) are obtained by replacing the first two lines above
by

ρ(u)` = 0, if νv` = 0,

ρ(u)` =
νu`
νv`
, if νv` 6= 0;

and the last three lines remain the same, with ρ(u) in lieu of β.

5.3 Normal forms for elements in the group G
Given an element (v, η) ∈ G, it is sometimes desirable (in particular, when (v, η)
represents an integrator for the system (26)) to reduce it to normal form. The following
developments are parallel to those presented above for elements in the algebra; full
details will not be given. Assume that we study the iteration

xn = W (v,η)(xn−1), n = 1, 2, 3, . . .

A change of variables xn = Wκ(Xn), κ ∈ G, gives

Xn = W (v,η̂)(Xn−1) = ϕv(Wη̂(Xn−1)), n = 1, 2, 3, . . . ,

with
(v, η̂) = (0, κ)F(v, η)F(0, κ)−1 = (v, κ ? η ? (Ξvκ

−1)) ∈ G. (38)

If we find κ ∈ G such that (0, η̂) ∈ g commutes with (v, 0) ∈ g, then xn = Wκ(ϕnv(zn))),
where zn satisfies the simpler (normal form) recursion

zn = Wη̂(zn−1), n = 1, 2, 3, . . . ,

with z0 = X0 = Wκ−1(x0).
Since (v, 0) ? (0, η̂) = (v,Ξv η̂) and (0, η̂) ? (v, 0) = (v, η̂), we have that (0, η̂) and

(v, 0) commute if and only if
Ξv η̂ = η̂. (39)

Moreover, if u ∈ Cd satisfies

exp (νuw) = 1 for all w ∈ W such that exp (νvw) = 1, (40)

then Ξuη̂ = η̂, and thus

(u, 11 )F(0, η̂) = (0, η̂)F(u, 11 ).

The following analogue of Theorem 1 holds.

Theorem 4 Given (v, η) ∈ G, there exists κ ∈ G such that (v, η̂) ∈ G given by (38)
satisfies (39). Hence, the map W (v,η) is conjugate to

W (v,η̂) = ϕv ◦Wη̂ = Wη̂ ◦ ϕv

through the transformation x = Wκ(X). Also, ϕu and Wη̂ commute for all u ∈ Cd
satisfying (40).
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As we now discuss, this normal form result for elements in the group G is actually
related to the analogous result for elements in the Lie algebra g. Under the assumption
(24), the element (v, η) ∈ G is the exponential of an element (v, β) ∈ g. The appli-
cation of Theorem 1 to the logarithm (v, β) yields an element κ ∈ G (which is used
to change variables) and an element β̂ ∈ g (which appears in the normal form). Then
(v, η̂) ∈ G in the statement of Theorem 4 can be taken to coincide with the exponential
of (v, β̂) (ie η̂ can be chosen as exp? β̂). And, in addition, the same κ that changes β
into β̂ changes η into η̂.

Remark 8 In the Hamiltonian case, for each η ∈ G the series W(v,η) is canonical
symplectic. The transformation Wκ and the conjugate map W (v,η̂) provided by the
theorem are also canonical symplectic.

Remark 9 Consider the Hamiltonian case and suppose that Assumption 2 is satisfied.
If in addition condition (24) holds true, then ξv η̂ = 0, and thus, for all u ∈ V(v),
ξuη̂ = 0. Then, for all u ∈ V(v), Hu(X) is an invariant for the map Wη̂ (and hence,
also for the map W (v,η̂) = ϕv ◦Wη̂) because

Hu(W (0,η̂)(X)) = H(u,0)(W (0,η̂)(X))

= H(u,−(ξuη̂)?η̂−1)(X)

= H(u,0)(X)

= Hu(X).

The pair (κ, η̂) in the statement of Theorem 4 is not unique. The freedom in the
choice of this pair is described in our next result.

Theorem 5 Let η ∈ G, and assume that (κ, η̂) ∈ G × G satisfies (38)– (39). Given
(κ̃, ̂̃η) ∈ G × G such that

(v, ̂̃η) = (0, κ̃)F(v, η)F(0, κ̃)−1 = (v, κ̃ ? η ? (Ξvκ̃
−1)) ∈ G,

then Ξv̂̃η = ̂̃η if and only if Ξvδ = δ, where δ = κ̃ ? κ−1, and in that case, ̂̃η =
δ ? η̂ ? δ−1.

Back into the original variables, one obtains a decomposition of (v, η) as the prod-
uct of two commuting elements in G, namely,

(0, κ)−1F(v, 11 )F(0, κ) = (v, κ−1 ? (Ξvκ)) ∈ G

and
(0, κ)−1F(0, η̂)F(0, κ) = (v, κ−1 ? η̂ ? κ) ∈ G,

which provides a representation of the original map W (v,η) as the composition of two
commuting maps W (v,κ−1?(Ξvκ))) and Wκ−1?η̂?κ. Theorem 5 implies that both κ−1 ?
(Ξvκ) and η = κ−1 ? η̂ ? κ) are independent of the choice of κ.

We finally have:
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Remark 10 For Hamiltonian problems satisfying Assumption 2 and under the addi-
tional non-resonance condition (24), the quantity H(u,κ−1?(ξuκ))(x) is, for each u ∈
V(v), a formal invariant of the map W (v,η). In fact, from the last remark we know that
Hu(X) is an invariant for the map X 7→W (v,η̂)(X) and thus

Hu(Wκ−1(x)) = H(u,0)(W (0,κ−1)(x))

= H(u,−(ξuκ−1)?κ))(x)

= H(u,κ−1?ξu(κ)))(x),

is an invariant for the map x 7→W (v,η)(x), where x = Wκ(X).
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