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RESUMEN

Este TFM estudia el proceso transitorio del calentamiento de particulas en el interior
de un Receptor de Particulas en Caida, una tecnologia empleada para transformar la
energia solar en electricidad.

La razén de ser de este TFM es el tamano significativamente superior de estas
particulas en comparacion con las utilizadas en otros tipos de receptores solares, ya
que puede afectar fuertemente al tiempo necesario para que las particulas alcancen
las altas temperaturas deseadas.

El Método de los Elementos Finitos y el Método de Monte Carlo para el trazado de
rayos se han utilizado para simular este proceso en un modelo bidimensional escrito
en el programa MATLAB, donde la transferencia de calor mediante radiacion y
conduccion se ha modelado minuciosamente.

Los resultados derivados de este estudio demuestran que, efectivamente, el tiempo
necesario para que las particulas alcancen una alta temperatura no es trivial y
merece una atencion especial.

PALABRAS CLAVE

Receptor de Particulas en Caida, Radiacion, Conduccion, Método de Monte Carlo,
Método de los Elementos Finitos

ORIGINAL ABSTRACT

This Thesis is a study of the transient heating process of the particles inside a Falling
Particle Receiver, a technology used to transform the solar energy in electricity. The
particles used in the Falling Particle Receivers are significantly bigger than the ones
used in other solar receivers more common and studied in more depth, like the Small
Particle Receivers. This important difference in particle size is the raison d’étre of this
Thesis, because it might strongly affect the time needed for the particles to reach the
high temperatures desired.

The Finite Element Method and the Monte Carlo Ray Tracing Method have been used
to simulate this process in a two-dimensional model written in the program MATLAB,
where radiation and conduction heat transfer have been minutely modeled.

Throughout this Thesis, the governing equations of the process are explained, the
model is firsly tested in simple problems with single particles, and secondly run in a
set of particles located inside of the receiver.

The obtained results prove how, effectively, the time needed for the particles to reach
high temperatures is not trivial, and they also show that it is very likely that
recirculation of the particles is necessary in order to reach the desired temperatures.

KEY WORDS
Falling Particle Receiver, Radiation, Conduction, Monte Carlo Ray Tracing Method,

Finite Element Method
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ABSTRACT

NUMERICAL SIMULATION OF
RADIATION AND CONDUCTION HEAT TRANSFER
IN A PARTICLE LADEN AREA

Marta Mufioz Minguez
Universidad de Valladolid
December of 2017

This Thesis is a study of the transient heating process of the particles inside a Falling
Particle Receiver, a technology used to transform the solar energy in electricity. The particles
used in the Falling Particle Receivers are significantly bigger than the ones used in other solar
receivers more common and studied in more depth, like the Small Particle Receivers. This
important difference in particle size is the raison d’“etre of this Thesis, because it might strongly
affect the time needed for the particles to reach the high temperatures desired.

The Finite Element Method and the Monte Carlo Ray Tracing Method have been used
to simulate this process in a two dimensional model written in the program MATLAB, where
radiation and conduction heat transfer have been minutely modeled.

Throughout this Thesis, the governing equations of the process are explained, the model
is firsly tested in simple problems with single particles, and secondly run in a set of particles
located inside of the receiver.

The obtained results prove how, effectively, the time needed for the particles to reach high
temperatures is not trivial. They also show that it is very likely that recirculation of the particles
is necessary in order to reach the desired temperatures.
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CHAPTER 1

Introduction

In the last decades, the concern of the society for the planet’s sustainability and energy
resources has increased noticeably. The environmental considerations together with the
growing dependency on energy have led to an urgent global need for clean and renewable
energy sources. The main challenge in the development of the renewable energy technologies
is its cost, which currently is not competitive with the cost of fossil fuels. Cooperation
between political, economic and scientific institutions is fundamental to guarantee the healthy
sustainability of mankind.

Sunlight is a major source of energy and it holds the greatest potential to meet the energy
demand of the world. The total annual solar energy input into the Earth is more than 15000
times greater than the current yearly use of fossil and nuclear fuels [5]. If only a 0.1% of this
solar energy was converted at an efficiency of a 10%, the electricity obtained would be four
times the world's electricity generating capacity in 2013 (about S000GW) [6].

Solar energy can currently be harnessed with two different technologies: solar
photovoltaic and solar thermal technologies. Solar photovoltaic technologies directly
transform sunlight into electricity in photovoltaic cells and are only effective during daytime,
while solar thermal technologies concentrate sunlight to obtain heat. If said heat is directly
used, the technologies are known as active or passive solar heating, and if it is indirectly
used to generate electric power, the technology is known as concentrating solar power (CSP).
This last technology uses solar energy collectors to reach temperatures high enough to drive
steam turbines that generate the mechanical work necessary to run a generator and produce
electricity [5]. There are three different CSP technologies, primarily separated by their scale
and operating temperatures, including line-concentrating systems (parabolic troughs and linear
Fresnel systems), dish concentrating systems and central tower systems, also known as solar
power towers (SPT) [7,8]. A scheme of these different technologies is shown in Figure 1.1.
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Figure 1.1: Squemes of different CSP technologies [1]

SPT systems use a field of distributed heliostats that individually track the sun and focus
the sunlight onto a central receiver, located in the centre of the heliostat field at the top of a
large solar tower. The concentrated solar energy is absorbed in the central receiver by a working
medium, that then is sent to storage or to a powercycle [9, 10]. The working medium needed to
transport the stored energy can be a gas, a liquid, or be made up of solid particles [11]. There is
a great variety of receiver architectures, that can be divided in three main groups based on how
the radiation is absorbed and transferred to the working medium [8]: fube absorption receivers,
volumetric receivers and particle receivers. Tube absorption receivers use dark tubes to absorb
solar energy and transfer it via convection to a working fluid inside, usually working with
liquids such as molten salts; volumetric receivers have porous materials into which radiation
penetrates and is absorbed, being air its most common working fluid; and particle receivers use
dark solid particles to directly absorb sunlight.

There exist different types of particle receivers, such as Centrifugal Receivers or Falling
Particle Receivers (FPR), and there are several different configurations for a FPR, being one of
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them the Free-Falling Particle Receiver. A simplified scheme of this configuration is shown in
Figure 1.2.

Particle elevator

Hot particles i
storage tank

Heat exchanger

Cold particles
storage tank

Figure 1.2: Squeme of a Free-Falling Particle Receiver [2]

The process works as follows:

(1) Cold sand-size refractory particles fall down freely, forming a curtain after being released
through a slot at the top of the receiver. There, the concentrated sunlight that comes in through
a window directly irradiates them. The particles absorb part of this radiation, having a much a
higher temperature by the time they exit the receiver.

(2) These heated particles are stored in an insulated storage tank, called the “hot storage tank”.
(3) Then they run through a heat exchanger to heat the working fluid for the power cycle
[11,12], serving as both the heat transfer fluid and thermal storage media.

(4) The cooled particles fall into the “cold storage tank™.

(5) Finally, the particles are brought back up by an elevator to the top receiver, and the process
repeats.

The main advantages of the FPR compared to other CSP technologies are the reach of
operational temperatures over of 1000°C', a higher receiver efficiency, a storage media that is
chemically benign and low-cost and a reduction on the thermal stress on the plant components.
However, the overall efficiency is reduced by convection heat transfer through the open aperture
and by heat loss from the particles to the air [13].

Modeling CSP receivers is not an easy task. The developed models are usually specific
to a concrete architecture and application, since the radiation fluxes an related heat transfer are
different in every case. As the geometry of the receiver becomes more complicated, modeling
the radiation between surfaces gets more complicated as well.
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Simulations and experiments regarding the FPR were already done in the 1980s, mostly
by Sandia National Laboratories. One of the reasons why the free-falling PR was proposed as
an alternative to harness solar energy was the study made by Falcone et al. in 1985 [14],
where he studied the costs of the Solid Particle Receiver (SPR) in comparison with other
air receiver concepts for high-temperature applications. In 1986, Stahl and Griffin focused
on identifying appropriate particle materials (Stahl and Griffin, 1986 [15]). Investigations
carried out by Hruby [16] were focused on the receiver design and the particle materials, while
computational models where created to simulate the receiver operation and the temperature of
the particles [17, 18]. In 1988, Hruby et al. [19] developed further work in the study of flow
characteristics and convective heat transfer in a falling particle curtain. In 1999, Meier [13]
performed 2D CFD simulations of a chemical FPR, to study the performance of a FPR in a
pilot plant, using the Monte Carlo method to model the heating of the particles by radiation.
His model contemplated radiation from the gas to and from the particles but did not consider the
change in the radiation field as a response to the absorption by or emission from the particles.
Meier's results were extended to 3D by Chen et al. in 2007 [20], to help in the design of a
prototype receiver by Sandia National Laboratories. Also in 2007, Chen et al. [21] developed
a CFD model in FLUENT where a solar ray-tracing algorithm was used to predict the solar
illumination energy on the walls of different receiver designs. The heating of the particles
considered re-radiation from the walls, but not the direct irradiation from the heliostats.

In the following years, several FPR prototypes were built in order to gather information
about distribution of particles velocity, curtain thickness, curtain opacity... and other properties,
and to experimentally validate new simulation codes. In 2008, a prototype SPR was designed
and tested on-sun at Sandia Nationa Laboratories [22], and Ho et al. [23] developed a
CFD model to try on it. They simulated the solar irradiation and heat transfer with a
discrete-ordinates radiation model in FLUENT, without performing any ray tracing. Their
model solved the radiative transfer equation (RTE) over a domain of discrete solid angles,
transforming it into as many transport equations as there are solid angles. In 2009, Kim et
al. [24] validated the experimental results from a prototype with the computational results
of a 2D MFIX simulation model. Their work was mainly focused on particle velocity,
curtain thickness and transparency, but neglected the heat transfer to the particles. In 2010,
Khalsa [25] developed a program in Microsoft Excel VBA that also used the discrete-ordinates
method for the radiation model. His program characterized multiple beams emanating from a
surface called the solar patch, defined at the center of the receiver aperture and divided into
subpatches, each of which represented irradiation from a unique section of the heliostat field.
In 2011, Khalsa and Ho [26] developed a model that improved the treatment of the radiation
given in [27] and [25], since it considered both the directional and spatial variability of the
incoming radiance distribution. This method allowed to transform the incoming radiation
from the heliostat field into a radiance boundary condition on the solid particle receiver
aperture. In 2015, Wu et al. [28] developed a three-dimensional, steady-state numerical model
of a centrifugal particle receiver. The cavity body was discretized with the Finite Element
Method (FEM), and the discrete particles where not modeled. Instead,they considered that
the receiver wall was fully covered by a single-layered, optically dense, and homogeneously
moving particle film that was represented by a 1D fluid flow element.
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These models focus on different aspects of a FPR: particle velocity, curtain opacity, solar
irradiation... but they often do not simulate the particles themselves, but consider that the rays
bounce randomly in the particle-laden area. Many models neglect the time it takes for heat
transfer to happen inside the particles, considering that because of their small size, the heating
process can be assumed to be instantaneous. That is only a realistic consideration when the size
of the particles is similar or smaller than the wavelength of sunlight - from 0.5 pm to 2.5 um
approximately - which occurs, for example, in the Small Particle Receivers (SPR) that work
with nanoparticles. Since the average diameter of the particles in the FPR is close to 500 um,
the time it takes for a particle to reach the desired temperatures can be an important factor and
should not be disregarded. Figure 1.3 shows a schematic comparison of the sizes of a SPR and
a FPR.

Small Particle Receivers —> Nanoparticles

A:0.5-2.5 um D= 0.00] pm
MWWWWWWWWWWVYWWWWWWWWAO

Falling Particle Receivers = Sand-like particles

D = 600 um

A 0.5-2.5 um

Figure 1.3: Comparison of particle sizes in SPR and FPR

In this Thesis, we simulate the interior of a FPR, using the Monte Carlo Ray Tracing
Method to simulate the radiative energy and the Finite Element Method (FEM) to model
the transient heat transfer in two-dimensional circular particles. Solar irradiation is modeled
by a set of rays that come through the receiver window in random directions and circular
two-dimensional bodies of different sizes are generated in random positions inside the receiver,
in order to simulate a small sample of falling particles. The rays are partially absorbed and
reflected by the particles located in their path or by the receiver walls, bouncing in random
directions until their energy is neglictible or until they go out through the window. Absorption,
reflection and emission from the particles is minutely simulated. Every time a ray reaches a
particle a Neumann boundary condition is implemented in it, that depends on the energy of the
ray in that instant and the properties of the particle material. The radiative energy emitted by the
particles is also simulated by a set of rays, that act in the same way as the solar rays. However,
the gas-particle interaction is neglected and the gas and particle flows are not considered. The
program has been implemented in MATLAB and tested in a single particle initially, and run in
multiple particles secondly to imitate the functioning of a set of particles.
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Chapter 2 of this Thesis introduces the governing equations of radiation and conduction
of the process. Chapter 3 presents the numerical methods used, which are a Monte Carlo ray
tracing method for the solar irradiation and emission from the particles, and the Finite Element
Method (FEM) for the heat transfer through the particles. Chapter 4 introduces the numerical
model developed, applied to simple cases of study and to the complete model. Chapter 5
presents the most important results and the corresponding conclusions. Finally in Chapter
6, propositions of future work in this model are presented. A detailed explanation of the
computational model can be found on Appendix A, and the developed MATLAB code has
been attached in Appendix B.



CHAPTER 2

Governing Equations

2.1 Radiation Heat Transfer

Radiation Heat Transfer consists on the transfer of thermal energy by an electromagnetic
wave. The electromagnetic radiation spectrum ranges from cosmic rays with wavelengths
smaller than 108 um to radio waves with wavelengths up to 10'°sm, where thermal radiation
occupies the portion between 10~ ym and 103um that is detected as heat or light. Radiation
Heat Transfer does not require a physical medium to take place, which is why sunlight can
travel all the way from the Sun to the Earth. However, the Earth’s atmosphere acts as a filter
and only a fraction of the spectrum reaches the surface. As stated in Chapter 1, the part of the
thermal radiation that does has a wavelength approximately between 0.5 and 2.5um , as can be
seen in Figure 2.1.

)-\___

Infrared

Radlio waves
Microwaves

10* 108

viole; 107

1072

Figure 2.1: Part of the electromagnetic spectrum that reaches the surface of the Earth [3]

When radiation incides on the surface of a body, different phenomena can occur:
reflection, if all or part of the energy is reflected by the surface, absorption, if all or part of
the energy penetrates the body and is absorbed by it, or transmission, if all or part of the energy
penetrates the body, is transmitted an emerges from it. If the medium is opaque (as are the
particles in a FPR), all the radiation that penetrates into the medium is absorbed, and therefore
transmission does not occur. The fraction of the incident energy that is reflected, absorbed or
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transmitted by a surface is defined by its reflectivity p , absorptivity o and transmissivity 7,
which are properties of the material and have a value between 0 and 1.

The reflectivity of a surface depends on the direction of the incident rays and on the
direction of the reflected rays. In real surfaces, the reflected rays usually form an irregular
shape, but modeling reflection this way is very complicated. Therefore, different assumptions
are often made for simplification purposes. Surfaces can be classified as smooth or rough
depending their smoothness, which is defined relatively to the wavelength of the incident
radiation. If the height of the surface roughness is bigger than said wavelength, the surface
is rough, and otherwise it is smooth. In rough surfaces reflection is assumed to be perfectly
diffuse, being the radiation equally reflected in all directions, and in smooth surfaces it is
considered to be specular, where the angles of incidence and reflection are equal. A schematic
representation of these different types of reflection is shown in Figure 2.2.

Irregular reflection Diffuse reflection Specular reflection
Normal Normal Normal
Incident Reflected  Incident ‘ Reflected Incident ‘Reﬂected‘
ray s )/ rays ray rays ray . ray /

f
[ o

g ..'

i

Figure 2.2: Different types of reflection [4]

Besides the three phenomena explained before, any body with a temperature higher than
the absolute zero emits radiation, so the phenomenon of emission must also be taken into
account when studying Radiative Heat Transfer. The wavelength of the emitted radiation is in
the range of infrared or visible light depending on the body’s absolute temperature.

In order to properly understand the study of Radiation Heat Transfer it is necessary to
introduce the concept of a black body, which is a theoretical physical body that absorbs all
the energy that it receives (perfect absorber), in every wavelength and from every direction,
and emitts more energy than any other body. The Stefan-Bolztmann law expresses the fotal
emissive power (ep) of a black body as

ep = / eprd\ = 0T, 2.1)
0

where e;) is the emissive power of the black body at a specific wavelength A in%, a s
Stefann-Bolztmann constant (¢ = 5.6704 - 108 mg‘;{4) and T is the absolute temperature of
the body in K. The emissive power of a real surface is expressed as a fraction of the blackbody

emissive power as

€\ — €ENCp , (22)
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being €, the monochromatic hemispherical emissivity of the surface. The emissivity of a
body expresses how well it emits compared to a black body, and it depends on the radiation
wavelength, ans the surface material, temperature and roughness.

For simplifications purposes, in most engineering applications it is assumed that
emissivities of real surfaces are independent of the radiation wavelength. Bodies with this
property are called gray bodies, and their emissive power is expressed as

e=e(T)ey = e(T)oT*. (2.3)
If their emissivity is independent of temperature, then
e=ce, =eoT*. 2.4)

Real bodies can absorb a fraction of the energy that they receive, determined by their
absorptivity (). According to Kirchoffs law, for a specific wavelength the monochromatic
absorptivity (o) and emissivity (€) of a surface at a given temperature are equal

ax(T) = ex(T) . (2.5)
For a gray body with properties independent of temperature, it is expressed as
o =c€. (2.6)

The reflectivity (p) of a surface is the portion of the incident energy that is reflected back.
Considering that for an opaque medium the total energy is either absorbed or reflected, the
reflectivity (p) of a surface with properties independent of temperature can be expressed as

p=1—a, 2.7)

or, from Equation (2.6)
p=1—c¢€. (2.8)

An intermediate solution between the consideration of real or gray bodies is the use of a
multiband model, where the spectrum is discretized into bands of finite width and it is assumed
that radiation quantities are uniform in them. These bands are defined by radiation properties
such as wavelength, frequency. ..
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Figure 2.3: Schematic representation of a two band model, with bands defined by their
wavelength

2.2 Conduction Heat Transfer

Fourier's law describes the conduction of thermal energy through a solid due to a
temperature gradient. For an isotropic medium it takes the form

oT
on’

q= (2.9)
where g is the rate of heat flow per unit area in the n direction, & is thermal conductivity and n
is the normal direction, being the temperature gradient negative in the direction of positive heat
flow. The law of conservation of energy for an isotropic 2D solid with temperature dependent
on the thermal conductivity is

0q,  Ogy or
_ ) = pC,— , 2.10
where Q, p, C, and t are the internal heat generation rate per unit volume, the density, the
specific heat and the time, respectively.

The substitution of Equation (2.9) in Equation (2.10) leads to the heat conduction
equation, which for an isotropic material with constant thermal properties, is expressed as
o*T 0*T oT

k—s 4+ k—5 = —. 2.11

k
Dividing by k and regrouping p, C,, and k in this manner « = — , the thermal diffusivity o
PCp
of the solid is obtained and, if the thermal properties are constant and there is no internal heat

generation, the heat conduction equation is reduced to the diffusion equation

PT T 19T

w—l-a—w—a&t. (2.12)
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2.2.1 Initial and Boundary Conditions

In order to solve Equation (2.12), an initial condition and several boundary conditions
must be specified. The initial condition establishes the temperature of the solid at an initial
time. In a two dimensional solid, it is expressed as

T =Ty(z,y). (2.13)

There are different kinds of boundary conditions, but the only kind of interest for the problem
of study is the Neumann boundary condition, that specifies a heat flow across a boundary. It
takes the form

—ka—T = qn , (2.14)
on

where ¢, is the rate of the surface heat flow per area.
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CHAPTER 3

Numerical Methods

3.1 The Monte Carlo Ray Tracing Method

A Monte Carlo Ray Tracing Method (MCRTM) has been developed to simulate the rays
inside the receiver of the FPR. Instead of directly solving the Radiative Transfer Equation
(RTE), the MCRT methods use a statistical approach to model the phenomena involved in the
radiation heat transfer. The MCRT method used in this Thesis traces a statistically significant
number of rays that simulate the behaviour of sunlight along their path inside the receiver:
from their beginning in the window until their remaining energy is negligible or they are
reflected back outside the window, considering their interaction with the particles (absorption
and reflection) and the back wall (reflection). Following the path of a single ray does not give
any significant information; it is the information obtained after the simulation of a large number
of rays what gives a real idea of the way the Radiation Heat Transfer works. Thereby, after a
great number of simulations, reliable estimations of the parameters involved inthe process are
obtained. One of the downsides of this method is that, due to its statistical nature, in order to
obtain accurate results a large number of rays must be simulated, which usually results in large
computation time [29].

3.1.1 Modeling of the solar rays

The total energy transmitted to the interior of the receiver can be estimated as the heat flux
g that reaches the window times the length / of the window section studied. In two dimensions:

QunlW) = () - 1(m). G.1)

m

This energy is then divided by the number of simulated rays, being the results more realistic

when more rays are modeled.

Qray(W) = Quoa (W) 3.2)

Nrays

Figure 3.1 squematizes this process.
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Figure 3.1: Heat flux in the simulated solar rays

The path of the rays is considered to start in the window, from where they follow a
random direction (generated by a Random Number Generator (RNG)) inside the receiver, being
reflected on the particles in random directions if they are located in their stablished path, or in
the back wall otherwise. When a particle is hit by a ray, it absorbs a percentage of its energy,
defined by the particle's material absorptivity «

Qabsorbed = Qincident - Q, (33)

and the remaining energy Qe fiected = Qincident - (1 — @) is redirected in a random direction and
might hit other particles on its way. If the ray hits the back wall of the receiver, it is reflected
in a random direction and it is considered that none of its energy is absorbed. The ray will
continue being reflected, and its energy being absorbed by the particles until its path leads it to
leave the receiver through the window. Along the path of a ray, a counter n stores the number
of times that it has been reflected on any particle, as can be seen in Figure 3.2

Window Back wall

Figure 3.2: Scheme of the reflections of a ray along its path
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This value of n allows to know the ray's energy at any moment. It depends on its initial energy,
on n, and on the absorptivity of the particles «, and can be calculated as

Qray = Qinitial : (1 - a)n . (34)

Qrayl - Qiniﬁal '(l'a)n - aniﬁa]

QrayZ = anfﬁaf (l 'C()n = Qinfﬁal‘(l 'C()J

Qabsorbed: Qray‘(’« = Qiniﬁal a

Window

Figure 3.3: Scheme of the absorption of a ray

3.1.2 Modeling of the emitted rays

The particles emit an amount of energy that depends on their absolute temperature,
following the Stefan-Boltzmann law for a gray body (Equation (2.4)). This energy is also
emitted in the form of rays and modeled by straight lines that, as the solar rays do, follow a
path that changes its direction when they are reflected and partially absorbed by the particles
they find on their way or by the walls, until they are almost completely absorbed or go out the
window.

The percentage of the energy emitted by a particle that is absorbed by another particle depends
on the emissivity e of the particle that absorbs it, being

Qabsorbed = Qincident - € (35)

as can be seen in the following scheme
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()th ()rmrml(l E) Qinr’ﬁal'(l'e)]

() ravl = () initial’ (I-E) () initial \ 1 = 1

_/r .
n=20 O"bmfbed 0 Uray€ = Oiniﬁaz €

Window

Figure 3.4: Scheme of the path of an emitted ray

The energy of a ray in any instant can therefore be calculated as

Qray = Qinitial : (]- - E)n . (36)

3.2 The Finite Element Method for Heat Conduction

Discretization methods are commonly used to approximate the PDEs with numerical
model equations, which are solved with numerical methods. One of them is the FEM, which
divides the domain of study into E elements of n nodes each, being the analytical solution
for the temperature approximated by a numerical solution (T ~ 7). When applied to a two
dimensional transient Heat Conduction problem, the temperature and temperature gradients for
each element can be estimated as

(x,y,t ZN x,y)T; (3.7
aT<6> - aNz
e (x,y,t 2 89c T;(t) and (3.8)
oT® - 8Nl
gy (© 9t ; 5y ©VTO). (3.9)

being 7;(t) and N;(z,y) the value of the temperature and the interpolation function at each
node, respectively. In matrix notation
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T (a,y,t) = [N(z,9) {T (1)}, (3.10)
o7
al‘ ('I‘7y’t)
= [B(z,y) {T(®)},
o1
ay (x7y’t)
being
[N(z,y)] = [N1Na...N,| (3.11)
ONy  ON, ON,,
Or  ox T Ox
[B(z,y)] = : (3.12)
ONi 0Ny ON,
dy dy Oy

{T(t)} the vector of the elements nodal temperature, [N] the temperature interpolation matrix
and [B] the temperature gradients interpolation matrix.

The element equations are derived using Galerkin’s Weighted Residual Method, that minimizes
the residual with the interpolation function.

Equation (2.12) governs heat conduction in the problem of study,and can be rewritten as

0 oT 0 oT oT
— | k— — | k— ) — pC,— =0, 3.13
8m<8x)+6y(8y> Por oy (313)
with initial and boundary conditions
T =Ty(z,y) inQ, t=0 (3.14)
oT oT
k%nx + ka—yny = g on Sl . (315)

To derive the element equations from Equations (3.13), (3.14) and (3.15), the approximate
behaviour of the temperature within each element must be expressed as in Equation (3.7).
Now Galerkin’s Weighted Residual Method is applied in order to minimize the residual with
the interpolation function:

0 o7 0 o7 9T
Vil oz oy — POy = 0. 1
//Q(E) ’ {8.% (k Ox ) T dy (k oy ) pCh It } dzdy =0 (3.16)

To reduce the order of the derivatives and introduce the influence of the natural boundary
conditions, the previous equation is integrated by parts. Focusing the attention on its first two

terms, and according to
b b b
/ udv = uv / vdu , (3.17)

a
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o1 . T .
where u = N; and v = k 1+ k J.
ox dy

The obtained result is the symmetric weak form

oT®© ON; 9T ON; or'e)
- ’ k dedy— | NipC, o dwd
//Q@( 9z 0z "oy ay)“/ /Q@ A

o1 o1
k—n, + k—— N;dI' = 0.
/si"‘)< oz " T oy ny)

The surface integral in the previous equation introduces the natural boundary conditions of
Equation (3.15) for the elements on the boundary of {2

(3.18)

oT) T
kwnl‘ + k‘a—yny = q(e). (319)

Substituting Equations (3.7), (3.8) and (3.9), the result takes the form

dT (e)
1y + e {1 = 1, (.20
being
ON; ON; ON,; ON;
Ki' - k . J k - . dxd ’
J //Q(e)<8x8x+ 8y8y)xy
M,-j:/ pC,N; N dzdy and
Qfe)
i
Globally, the equation becomes
dT’
iy + {5 b= 1), G2

where [K.], [M] and {¢} are the global conductivity matrix, the global mass matrix and the
heat flux stated by the Neumann boundary conditions [30].

Equation (3.21) can be solved with different resolution schemes, that differ in the way
they approximate the value of the derivatives. The first derivative at a point in a curve ¢(z) is
the slope of the tangent line to the function at that specific point, and it can be expressed as

<a¢) iy O AT) = 6(m)

o A0 Az :22)

Ty
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Its value can be approximated by the slope of a line that passes through two nearby points on
the curve. Depending on which these two points are, there are different resolution squemes:
the explicit or forward difference solution if the two points are x; and x; + Az, the implicit or
backward difference solution when the points are z; Az and x;, the central difference solution
when the two points lie on opposite sides of x;... and many other types. Figure 3.5 shows a
graphic example of these schemes.

@ | Exact solution  Backward

Y2 il i

Figure 3.5: Squemes to approximate a derivative.

The approximation improves as the points get closer to each other, which is why grid
refinement is an important step in numerical resolutions. Continuous differentiable functions
¢(x) can be expressed as a Taylor series in the proximity of x; as

6(x) = 6(x:) + (z — 32) (%)i G ;) (a%b)i +

21 0x?

ot (P | e (0

3! ox3 n! ox™

) + h.o.t., (3.23)

where h.o.t. stands for higher-order terms. Approximate expressions for the derivatives at point
x; can be obtained depending on the function values at the points nearby. For example, at z;,1:

(%) _ P — i T — T <5Z¢) (@i —@)? <33¢

) + h.ot., (3.24)

0r); @iy — 2 \02? 6 97
atr;_q:
¢ i — i1 xi—xim (0% (x; — xi—1)2 )
(6’_x)i v s, 2 (0x2 o 5 o) hot.,  (3.25)

and for both x;_; and z;1:

@) i =i (i = m)? = (= @)’ (32¢ B
Oz i B Tit1 — Ti—1 2(5Ci+1 - 1171‘71) Ox? i
(Tis1 — ) + (2 — x9)° (33¢

6($i+1 — 137;_1) 8x3

) + h.ot.. (3.26)
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If the distance between the grid points is small, the higher-order terms will be small in most
cases, and the derivatives can be approximated truncating each of the series after the first terms

09\  Gir1 =i

<%)l ~ iy — , (3.27)
OP\ _ ¢i— dia

<%>l ~ —xi 7y’ (3.28)
[0l0) ~ Git1 — Qi1

(%)Z - Tit1 — Ti—1 ’ (5-29)

being these the forward or explicit, backward or implicit, and central-difference schemes. The
deleted terms from the right hand sides are the truncation errors, which measure the precision of
the approximation and affect how the error is reduced as the spacing between points dicreases.
The first truncated term is usually the main source of error.

3.2.1 Grid Refinement

If the grids are fine enough, the truncation error is proportional to the leading term in the
Taylor series, and can be expressed as

E ~ C(hY + hot., (3.30)

where C is a constant, dependent on the derivatives at the given point, 4 is a measure of grid
spacing and p is the order of convergence. A second-order solution has a value of p = 2.

The initial step in a grid refinement study consists on creating three grids with a different
level of refinement and a constant refinement ratio r between them. The difference between
the solutions on these three grids can be used to estimate the order of convergence p. If the
grid 1 has a spacing of 4h, the grid 2 of 2h and the grid 3 of 4, since the exact solution may be
expressed as

¢ = ¢n+ C(h)" + h.ot. = gop, + C(2h)P + h.o.t. = dup, + C(4h)P + hoot.,  (3.31)

where ¢ is exact solution of the partial differential equation, ¢y, is the solution in a node in grid
3, ¢y, 1s the solution in the same node in grid 2 and ¢4, is the solution in the same node in grid
1, the order of convergence p can be estimated as

ln(¢2h — ¢4h)
_ On — Pan
b= In(r)

(3.32)
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[31]. Since the error dependence on grid size is usually irregular when the grid is coarse, the
grids considered must be sufficiently refined such that the solution is in the Asymptotic Range
of Convergence, where errors decrease at a rate defined by the order of convergence p. In
this range, the grid spacings /& and the errors E result in a constant value C' = h% [32]. The
estimated value of p shows if the studied grids are in said range. For this to be true, p must be
approximately the same as order of the scheme.
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CHAPTER 4

Numerical Model

4.1 Single particle

As a first step in the creation of the model, the FEM has been used to simulate heat transfer
in a single particle. We have considered a simple problem that allows us to create a good model
and test it easily.

Since we are working in two dimensions, the particle is modeled by a circle. This circle
and its location in space are defined by its centre (determined by its coordinates X and Y), its
radius R and the properties of its material. One specific point P in said circle can be defined by
its distance from the center r and an angle 6, or simply by its coordinates X and Y.

(e ye)

Figure 4.1: Parameters that define the location a particle.

In order to start with a simple model where results can easily be tested, one particle of
a generic R = 1 mm has been considered. This particle size has been chosen because most
particles used in FPR have a size in the range of milimeters. One grid will be created for this
particle, that will be properly scaled when working with a different particle size. The material
of the particle of study is a kind of sintered bauxite called CARBOHSP, has the following main

properties: thermal diffusivity o = ﬁ = 7.41310"™ (where the conductivity is k = 2-%,

the density is p = 3550% and the specific heat is C), = 760@%0) [33], absorptivity v = 0.934
and emissivity € = 0.843 [2].

The time required for the heat to diffuse through the particle (from the contour of the
particle to its center) can be calculated from the diffusion equation (2.9) applied to the line that
separates said points, squematically represented in Figure 4.2
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Figure 4.2: Squeme of the distance between the countour and the center of a particle.

PT 10T T,-Ty 1T,—T R? 1-1073m)?
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4.1.1 Initial and Boundary conditions

The initial condition in this specific problem establishes that the initial temperature in
every node is 20°C, and the boundary conditions, that the particle is being heated by a uniform
heat flux ¢ of 600000 % along all its contour.

4.1.2 Analytic solution

The simulation is run during 1.349 s, and considering the heat flux that is transmitted to
the contour of the particle, the length of said contour and the duration of the transmission, the
total heat that the particle receives can be estimated as

W J
Q =q-2rr -t = 600000— - 27(1 - 10~%)m - 1.349s = 5085-— . (4.1)
m

m2
The specific heat is a property of the material that defines the amount of heat per unit mass
necessary to raise the temperature by one degree Celsius. If no change of phase takes place,
the relation between heat and temperature change can be expressed as

Q = C,mAT , 4.2)

being m the mass of the body and AT the increment of temperature. Reordering the previous
equation,

Q

AT = .
Cym

4.3)
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Finally, considering that m = pA (being A the area), AT can be estimated as

5085-L

= == = 600°C . 4.4
CpopA — Cyprr? 760253550 24 (1 - 10-3m)? @5
Ttinat = Tinitiat + AT = 20°C' + 600°C' = 620°C (4.5)

The temperature reached after applying the heat flux for 1.349 s must be approximately 620°C),
so the average temperature obtained with the model must be close to this value.

4.1.3 Grid Refinement study

The particle is divided into E elements of n nodes each with the grid generator Gmsh. The
grid created is made up triangular elements of n = 3 nodes in the interior, and linear elements
of n = 2 nodes on the countour. Grid refinement is carried out to ensure that the results are
valid and accurate enough for the purpose of this Thesis and the simulations take as little time
as possible.

The procedure explained on section 3.1 of this paper is followed. To start the grid
refinement study, three different grids have been generated with Gmsh: grid 1 is the least
refined one, and to get grids 2 and 3 a constant refinement ratio » = 2 is used between them.
The next table sums up the main characteristics of said grids:

Number Number of

of nodes triangular elements
Grid 1 468 868
Grid 2 1801 3472
Grid 3 7073 13888

Table 4.1: Comparison of the characteristics of the three candidate grids.

And figure 4.3 shows a graphic representation of them:
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Figure 4.3: Graphic representation of grids 1, 2 and 3.

The program is run in the same conditions for each of the grids, being the value of
the temperature in the nodes the parameter of interest to study the grid convergence. Using
Equation (3.32) to estimate p in every node shared by the three grids, the obtained values are
very close to 2 (the order of the scheme) being its average value for all the nodes 2.0352,
which shows that the grids are indeed in the Asymptotic Range of Convergence. This can be
graphically checked by plotting the results of the temperature in a straight line that crosses the
particle going through its center for each of the grids, as shown in Figure 4.4
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Figure 4.4: Graphic representation of temperature vs. radius through the particle in grids 1, 2
and 3.

It can be easily seen that these solutions do not differ much, especially for the most refined
grids: for a temperature increment of approximately 526°C' in the center of the particle, the
solution in grid 1 only varies 0.302°C' compared to the solution in grid 3 (the most refined one).
This is a variation of a 0.000574 %, that can be considered negligible for the purpose of this
Thesis. Now that we know approximately what the solution must be, it is important to check
if a similar solution can be obtained with a coarser grid, in order to reduce the computational



cost. Grid 4 is therefore generated:

Number Number of
of nodes triangular elements
Grid 1 468 868
Grid 2 1801 3472
Grid 3 7073 13888
Grid 4 130 224

Table 4.2: Comparison of the characteristics of the four candidate grids.

In Figure 4.5, the new grid is graphically compared to the previous ones
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Figure 4.5: Graphic representation of grids 1, 2 and 3.
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The results of the temperature in the points of a line that crosses the particle going through its
center for this grid and the previous ones are shown in Figure 4.6
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Figure 4.6: Graphic representation of temperature vs. radius through the particlein grids 1, 2,
3 and 4.

This solution differs much more from the solution in grid 3 than grid 1 did, up to 1.572°C" at

some points. That is a difference of a 0.00298 %, a variation 5 times bigger than the obtained
when working with grid 1.

Therefore, a new grid is generated to see if it is possible to find greater accuracy with
another grid that is still coarser than grid 1. Grid 5 has more nodes that grid 4 but less than grid
1, and its main properties are shown in the following table

Number Number of
of nodes triangular elements
Grid 1 468 868
Grid 2 1801 3472
Grid 3 7073 13888
Grid 4 130 224
Grid 5 314 572

Table 4.3: Comparison of the characteristics of the five candidate grids.

Figure 4.7 shows a graphical comparison of all the grids:



AN e
SERACE
SN
SNXARAAS
SKARRERLD
g:}%"lﬁlvﬂmaﬂﬂﬁﬂh

%Y

Y
VAVAVAVAYAVAVAVAV, Y
V7 ARG
&7

S;Avm
KD

RIS
EEHRRE

YA

VA A
& 7

A e T

YAVa

SEO
RRAKS

27

| «107 Grid 3

Radius (m) « 103

N
-
/\
s
%
ANVAN
AN
X
B(

-1 0 1
Radius (m) 1073

e

AV
S

N
e
a:
A
Ik
Y

KA
CRARR
s
B

)

S
Vs
7

VAN

AN
5
K

TAVAY

Radius (m) » 1073

Figure 4.7: Graphic representation of grids 1, 2, 3,4 and 5.

The temperature obtained in the points of a line that crosses the particle going through its center

for all the studied grids is shown in Figure 4.8
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Figure 4.8: Graphic representation of temperature vs. radius through the particlein grids 1, 2,

3,4 and 5.
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The values of the temperature obtained with grid 5 do not differ as much as the previous
ones: for a temperature increment of approximately 526°C' in the center of the particle, the
solution in grid 5 only varies 0.297°C' compared to the solution in the most refined grid. This is
a variation of a 0.000564%, that can be considered small enough for the purpose of this Thesis.
The computation time has been reduced compared to grid 1: from 1.406672 s to 1.339610 s in
this simulation, which is a reduction of a 5.006%.

4.1.4 Numerical solution

The average temperature of the particle obtained with grid 5 in this experiment is 628.4°C),
which is close enough to the solution calculated analytically.

Figure 4.9 shows the evolution of heat transfer in the chosen grid, calculated with the
FEM.
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Figure 4.9: Evolution of heat transfer in grid 5.

4.1.5 Emission from the particle. Steady-state

The previous situation was proposed to verify how the FEM model simulates heat
transfer, therefore in order to simplifly analytical resolution, emission from the particle was not
considered. Taking emission into account would have complicated the analytical calculations
of the increment of the energy in the particle, and the scope of the experiment was not to
have a realistic result but to find an adequate grid to work with and demonstrate the proper
functioning of the FEM on heat transfer. However, to obtain a realistic model of heat transfer
it is absolutely necessary to consider the energy emission from the particles, which follows
the Stefan-Boltzmann Law for a gray body, previously expressed on Equation (2.4). As the
temperature in the particle increases, its emitted energy increases as well and at some point, a
condition of equilibrium is reached. This equilibrium state is called steady-state, and it should
be properly simulated by the model.

Furthermore, instead of considering a generic particle size of R = 1 mm, this example is run
with the estimated average size of CARBOHSP R = 0.3495 mm.

The temperature evolution is obtained after running a simulation for 8 s, in the same
conditions of the previous experiment but adding emission from the particle, is shown in
Figure 4.10.
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Figure 4.10: Evolution of the temperature in one particle.

This result proves that the program succesfully simulates the reach of the steady-state by
the particle.

4.1.6 Solar rays simulation

Now that the working grid has been chosen and it has been demonstrated that the FEM
works correctly, the interaction with the modeled rays must be tested. Again, in this first
experiment the emission from the particles is not considered, since that would make more
difficult to estimate the increment of the temperature in the particle. The simulation is run
during 2.69799 s, the total incoming heat flux from the heliostats is considered to be 600000%
(2D), and the section of the window receiver studied has a length of 0.697mm. According to
Equation (3.1), the total energy transmitted to the studied domain is

W W J
Quindow = -1 = 600000— - 0.697 - 10%m = 418.2— = 4182——.  (4.6)
m m m - S

Considering the duration of this heat transfer, the total energy that reaches the particle is

J
Qparticle = Quindow -t = 418.2 -0.65534s = 274.06E , 4.7)

m-s
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and the increment in the temperature of the particle can be estimated as

Q 274.062 .
AT = - = - . 2 = 266.23°C . (4.8)
pCymr?® 3550, 4760 25m(0.3485 - 10~3m)?
Ttinat = Tinitia + AT = 20 + 266.23 = 286.23°C (4.9)

Since the initial temperature of the particle is 20°C), the temperature reached after 0.65534 s
must be approximately 286.23°C. The average temperature obtained in the model must be
close to this value.

Three different simulations have been run, modeling a different number of rays in each
one of them.

Simulation 1 - 3 rays

In the first simulation, one ray has been considered for every 0.3495 mm of window. Since the
section of the window of interest in this experiment is 0.697 mm long, only 3 rays have been
simulated. Since the model is two dimensional, these rays must transmit a total of 274.06 J,
which means that each one of them transmits 91.35 J. The final average temperature reached
by the particle in this particular case is 287 °C'. This result can be seen in the subfigure (a) of
Figure 4.11.

Simulation 2 - 21 rays

One ray has been simulated for every 0.03495 mm of window, which means that in the
correspondig section of the window, 21 rays have been simulated, each one of them transmiting
13.05J. The final average temperature reached by the particle is 287.12 °C'. The resut of this
simulation is graphically represented in the subfigure (b) of Figure 4.11.

Simulation 3 - 201 rays

One ray has been simulated for every 0.003495 mm of window. In the correspondig section of
the window, 201 rays have been simulated, each one of them transmiting 1.36J. The final
average temperature reached is 287.13 °C/, and the result can be graphically seen in the
subfigure(c) of Figure 4.11.

As expected, these three results are close enough to the estimated final temperature for
the particle. Figure 4.11 shows a comparison of the heat transfer in these three cases, where
the grid lines have been erased for a smoother appearance. It can be seen that, even though
the final average temperature is similar in all the cases, the temperature distribution is more
realistic when a higher number of rays is simulated.
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Figure 4.11: Evolution of the temperature in one particle with a different number rays.

4.2 Multiple particles

Now that the code has been tried out in simpler situations, it can be developed for the
main problem of study in this Thesis: a sample of particles falling inside a FPR that are heated
by sunlight. The code created has been divided in six different parts: parts 1 and 2 generate
randomly located particles in the computational domain, parts 3 and 4 generate a grid inside
each of these particles, part 5 initializes the heat transfer according to the Initial Conditions
and part 6 generates a set of rays and uses the FEM to model the heat transfer. A much more
detailed explanation of the code can be found on Appendix A.

4.2.1 Generation of the particles

The user of the program must choose the material of the particles of study. According

to said material, the values of conductivity k, density p specific heat C), absorptivity  and
emissivity € of the particles must be introduced.
A two band model has been used to model the absorptivity of the particles. The bands are
defined by the wavelength of the incident radiation: if it is shorter than 2.5 pum (solar radiation)
the absorptivity of the particle is the one defined by the material properties, and if it is longer
than 2.5 pm (radiation emitted by other particles) the absorptivity is equal to the particle
emissivity.

The user of the program is able to choose the area of the receiver where the particles are
created, the void ratio of that area, the distance between the window and the curtain of particles
and the location of the back wall of the receiver.

Figure 4.12 shows the particles generated in an area of 15 ¢m? — being the length of the
window section simulated 5 cm and the depth of the receiver simulated 3 cm —, with a distance
of 0 mm from the window to the curtain of particles, the back wall at a distance of 3 cm from
the window and a void ratio of a 99 %, 90 % and 80 %, respectively.
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Figure 4.12: Generation of particles inside the receiver with a different void ratio.

4.2.2 Generation of the rays
Solar rays are simulated as explained in subsection 3.1.1.

4.2.3 Simulations

Running a simulation for a group of particles as numerous as the ones showed above
would take too much time. In order to get some initial results for the developed code in less
time, a smaller section of the receiver is modeled.The particles are located in an area of 25
mm? — being the length of the window section of said area 5 mm and the depth of the receiver
5 mm as well —. Three simulations have been run for three groups of particles with a different
number of particles, size and spatial distribution.

The group of particles is irradiated with solar rays, that instead of coming only from the
section of the window of 5 mm in front of which the particles are located, are coming also from
from 10 mm above and 10 mm below. This has been modelesd this way because it is realistic
to assume that these particles will receive sunlight coming from different parts of the window.

The total energy coming from these 25 mm of window is

w w J
Quindow = ¢ - 1 = 600000— - 2.5 - 107*m = 1500— = 1500—— . (4.10)
m m m-s

The energy emitted by the particles due to their temperature is also simulated in the way
explained in subsection 3.1.2.
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It is important to highlight that in this models the particles do not move, which might
lead to unrealistic results in some particles if they are surrounded by others and do not receive
enough sunlight.

4.2.3.1 Simulation 1 - Same sized particles

In this case, four particles have been simulated, all of them with a radius of 0.3495 mm,
the average value for CARBOHSP particles. The simulation has been run during 8.1 s, where
2500 rays have been used to model sunlight (1 ray every 0.01 mm of window).

The location of the particles of study can be seen in Figure 4.13.

4 ®
®

(S

Window length (m)

0 2 - 6 8
Depth (m) <1073

1
[ ST

Figure 4.13: Location of the particles of study.

The solar rays are represented by blue lines, as seen in Figure 4.14, which shows a close look
of the area of study so that it is possible to appreciate the different lines.
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Figure 4.14: Close look of the area of study.

The rays emitted by the particles are represented by red lines, as shown in Figure 4.15.

«1073 Time: 5.13 s °C
500
g B
= 4 400
ST
5 300
=7
24 200
=]
5 100
=0
-2 0 2 4 6 8
Depth (m) «1073

Figure 4.15: Location of the particles in Simulation 1

Both Figures 4.14 and 4.15 show the rays at a specific moment in time. These are not static,
but change their paths in every timestep.

Figure 4.16 shows the evolution of the temperature of the particles after the simulation of 8.1
s. The two particles that are closer to the window are heated faster than the other two, which
makes sense because they receive more solar rays. However, it looks like the particles begin
to reach the steady state at around 240 °C', a temperature way below the one that is desired to
reach.
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Figure 4.16: Temporal evolution of the average temperature of the particles

4.2.3.2 Simulation 2 - Different sized particles

Seven particles of various sizes have been simulated. The simulation has been run during
13.8 s and, as in the previous case, 2500 rays have been used to model sunlight (1 ray every
0.01 mm of window).

The location of the particles is shown in Figure 4.17 and the evolution of their temperature, in
Figure 4.18.
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Figure 4.17: Location of the particles in Simulation 2
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Figure 4.18: Temporal evolution of the average temperature of the particles

The result obtained in the particle of R = 0.1405 mm (the dark blue line in Figure 4.18)
stands out, since the temperature of the particle does not increase, but remains almost stable.
This is due to its location: since it is surrounded by other particles, it does not get enough
sunlight to increase its temperature. It emitts radiation due to its temperature and absorbs
radiation emitted by other particles and some sunlight, which allows it to keep a temperature
somehow stable. This would not occur if particle flow had been simulated, because the particle
would not have been surrounded by other particles all the time.
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4.2.3.3 Simulation 3 - One particle smaller than the
others

Four particles have been created, being one of them slightly smaller than the others. The
simulation has been run during 8.1 s and in this last case, 5001 rays have been used to model
sunlight (1 ray every 0.005 mm of window). This is two times more rays than in the previous
simulations to model the same amount of energy, which will lead to a more accurate result but
at the expense of more computational time.

The location of the particles is shown in Figure 4.19 and the evolution of their temperature, in
Figure 4.20.
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Figure 4.19: Location of the particles in Simulation 3
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Figure 4.20: Temporal evolution of the average temperature of the particles

These last results show how all the particles are uniformly heated and how they start reaching
the steady state at, as was said when discussing simulation 1, temperatures way below what is
desired in a FPR. These results present how the smallest particle is heated in a similar manner
as the other three particles, which serves to prove that in simulation 2 the results in the smallest
particle where not due to its size, but to its location.
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CHAPTER 5

Results and Conclusions

The transient heating process of small particles inside a FPR has been simulated, and the
results obtained show that the time necessary for the particles to increase their temperature is
not negligible.

Also, according to the results the particles will not reach the desired temperatures in the
time it takes for them to fall in the curtain, and might need recirculation in the receiver to reach
said temperatures. The particles have the capacity to reach them, as was proven in subsection
4.1.5 when modeling an ideal situation where a single particle is uniformly heated in all its
contour (Figure 4.10), but do not get enought sunlight when being irradiated only from one
side as they fall.

The program created consists on two different parts: the radiation model and the
conduction model, and both of them can be individually used to model different problems
or technologies.
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CHAPTER 6

Future Work

The following improvements to the model are proposed:

The addition of particle flow, so that the location of the particles changes and the results
obtained are more realistic.

The consideration of heat losses in the back wall, since in this model it has been assumed
that the wall was ideal and did not absorb any of the radiation.

The limitation of the direction of the incoming rays with an appropiate study of the angles
of incidence of the concentrated rays from the heliostat field.

The simulation with different particle materials.

And finally, the extension of the model to three dimensions.
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A - Manual of the code

The following code simulates the heat transfer in a sample of particles inside a FPR.
It has been divided in five parts:
Part 1: Generation of randomly located particles with different radii
Part 2: Relocation of the generated particles to the axes of interest
Part 3: Generation of a mesh inside the particles
Part 4: Initial Solution
Part 5: Heat transfer in the particles
Part 5.1: Generation of random rays and their reflections
Part 5.2: Heat Transfer resolution with the FEM

A.1 Explanation of the different parts

Part 1: Generation of randomly located particles with different radii

The original version of this part of the code was developed by Andrea Chiarelli, Andrew
Dawson, Alvaro Garcia from The University of Nottingham (The MIT License).

Its purpose is to generate particles randomly located in a two-dimensional area, that do not
overlap each other and have a random raius inside a chosen range. The code has been slightly
modified, and the parameters have been chosen to meet the requirements of the present Thesis.
The process of generation of particles in the desired area is a little complicated, since there are
some limitations derived from the use of an already existing code. I has been decided that the
easiest way to go is to, first, generate the particles in an area that does not lead to any problems
in the original code and, secondly, relocate said particles in the real area of interest.

Thereby, the particles are initially generated in a area of 3x5 m, and have a radius in the range
of cm. Since this dimensions are obviously way too big for the area and particles that we want
to study, everything must be scaled and relocated, which is later done in Part 2.

It is important to highlight that the user can choose the maximum and minum radii
that desires for the particles, introducing said values in the parameters max_radius and
min_radius in mm. In order to generate and study a manageable number of particles, the
target planar void ratio used in the example simulations has been between 99% and 90%
(target _planar_void_ratio from 99 to 90), a parameter that can easily be changed by the user
according to his needs if desired.

Part 2: Relocation of the generated particles to the axes of interest
The first step in this part of the code is the definition of the parameter scale = 0.01. Multiplying

the dimensions obtained in Part 1 by this parameter, we obtain the units that we desired: the
unit 1 becomes cm and the unit cm becomes 0.1 mm. This means that the area where particles
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are generated is now a rectangle of 3x5 ¢m, and the radii of the particles is in the range of 0.1
mm. The process carried out in this part is simply a relocation of the centers of the particles in
the area of 3x5 cm, taking into account geometric considerations.

Part 3: Generation of a mesh inside the particles

This section of the code has been developed in combination with a code created by Emmanuel
Lefrangois from the Université de Technologie de Compiegne for the resolution of conduction
heat transfer using the FEM.

With the mesh generator Gmsh, a default grid has been created for a generic circle of R = 1
mm, as was explained in section 4.1.3 of this report. This same grid is implemented in every
particle studied, but the position of the nodes and elements must be properly relocated for each
of them, according to their particular radii.

The program reads a file named circle.msh created with Gmsh generator that has a specific
format, and then the process followed is just a relocation of the grids considering the centers
of the particles, and of the position of the nodes considering the radii of the particles (scaling).
If the user wants to work with another grid, he must provide a file named circle.msh created
with Gmsh generator, and in order for it to have the correct format he must make some
modifications to it.

First, the user must check if the number of nodes is written in the 5th row of the file and
followed by the number and coordinates that correspond to all the nodes, like this:

$MeshFormat
2.2 0 8
$EndMeshFormat
$Nodes

314

1 000

0.001 0 0

0 0.001 O
0.001 0O
0 0.001 0

|9, = S US I ]

If there are more lines above, the user must change the file get_mesh.m so that it ignores all
those lines and the first thing it reads is the number of nodes.

If the file circle.msh has the number of nodes in the 5th row as said above, the file get_mesh.m
ignores the lines above this way:

fid = fopen(filename);

% Lecture of the fist 4 uselessl lines
for i = 1:4

s = fgetl (fid);
end
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So if, for example, the number of nodes was written in the 15th row of the file circle.msh, the
file get_mesh.m should be:

fid = fopen(filename);

% Lecture of the fist 14 useless lines
for 1 = 1:14

s = fgetl(fid);
end

Secondly, the user must change the numbers of the file that correspond to the elements, so that
they have this format:

$Elements

624

1 1211126

2 1211167

3 1211178

4 1211189

5 121119 10

6 12111 10 11

7 1 2 111 11 12

8 1 211 1 12 13

9 12111 13 14

101 2 11 1 14 15

53 2 2 31 6 235 79 148
54 2 2 31 6 128 235 148
55 2 2 31 6 74 128 148
56 2 2 31 6 94 193 139
57 2 2 31 6 95 194 138
58 2 2 31 6 79 235 150
59 2 2 31 6 108 150 235
60 2 2 31 6 66 112 184
61 2 2 31 6 87 184 112
62 2 2 31 6 66 282 228
63 2 2 31 6 113 254 175
64 2 2 31 6 115 174 255

The explanation of this format is, reading the rows of numbers from the left to the right:

The first number is the element number.

The second number is a 1 if the element is a line with n = 2 nodes and a 2 if the element is a
triangle with n = 3 nodes, and will directly come out like this from Gmsh generator.

The third number must be a 2 and will be ignored by the program.

The fourth number must be changed by the user. He must write 11 for the linear elements
(being 11 the initial condition that means that no ray has hit the boundary line that surrounds
that element), and 31 for the triangular elements (a number later used to obtain the material
properties stored in other part of the program). Once the program is run, everytime a ray hits a
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linear element the number 11 will be change to a 12.
The next numbers must not be changed, being the last two or three the numbers of the nodes
that make up each element.

Part 4: Initial Solution

The initial value of the temperature in every node of every particle is the one introduced
by the user as initial_temperature, in °C. 1In all the examples presented in this paper,
initial_temperature = 20. In this part of the program all the particles generated in Parts 1
and 2 will be plotted in their positions — in Figure 1 —, and the smaller area of particles that
has been chosen to use for the heat transfer resolution will be plotted too — in Figure 2 —. In
both cases, the particles will be shown in the color corresponding to their initial temperature
according to the colorbar located on the side of the figures. The vertical yellow line represents
the window where rays come from, and the vertical blue line represents the back wall of the
receiver cavity, where rays are reflected every time they reach it. The position of the window is
established when the user defines the distance between the curtain of falling particles and the
window, with the parameter distance_window_curtain. The curtain of falling particles starts
at X=0, so the distance chosen will set the window in a negative position of the coordinate X.
The positions of both the window and the back wall are chosen by the user. The position of the
back wall in Figures 1 and 2 does not have to be the same. It may be convenient to simulate
it closer to the window than it is in reality, since we are working with a reduced model. This
position of the back wall in Figure 2 is defined by the user with the parameter xdest.

A simulation has been run to exemplify what has been explained above, with the following
values for the parameters of interest:

initial _temperature =20

distance_window_curtain =0

target_planar_void_ratio =90

Area where particles are created (not chosen by the user):
zorigmin_part =0

rorigmax_part = 0.030

yorigmin_part = xorigmin_part

yorigmaz_part = 0.050

Area where the particles will be studied:

xmin_area =0

rmaz_area = 0.005

ymin_area =0

ymax_area = 0.005

Area that will be plotted, slightly bigger than the previous one:
razxismin_area = -0.0030

razxismax_area = 0.008

yazxismin_area = -0.0005

yaxismaz_area = 0.0055
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Figure A.1: Example of plotted Figures 1 and 2.

Part 5: Heat transfer in the particles

In this last part of the code, the rays are created and the simulation of radiation and conduction
heat transfer takes place. It has been divided in two parts, the first one for the generation of the
rays and the second one for the heat transfer modeling.

Part 5.1: Generation of random rays and their reflections

This section is also separated in two parts: one for the solar rays, and one for the rays emitted
by the particles because of their temperature.

Solar rays

The solar rays are considered start at the window, and are separated between them a uniform
distance dy defined by the user. This means that the origin point of all the solar rays has the
same X coordinate, and the Y coordinate of the origin point of every ray varies a distance dy
with the previous ray.

The destination point of every ray is a has the same X coordinate as the back wall, and a
random Y coordinate inside the range [ydestmin,ydestmax] defined by the user, that also has
a distance of dy between every possible point in said range.

The code has been written in a way that runs ray by ray in a big loop. Inside it, there is
another loop that runs every section of the studied ray, being a section the straight line the ray
describes between reflection consecutives points. In order to calculate the point where the ray
will be reflected, the code equalizes the equation of a line of the studied section of the ray
(y = m - x + n) with the equation of a circle of every particle (r = (x — a)* + (y — b)?). If
there are points of the line of the ray that coincide with any points of the circumferences of
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the particles, the code chooses the closest point found in this calculation as the next reflection
point. This is graphically exemplified in the following Figure A.2, where, after finding four
possible intersection points of the ray with the circumferences, the code chooses the closest

one and ignores the rest. Then the ray is redirected in a random direction and the process
continues.

Point 1

Point 1
Point 2

Point 3

Window Window

Figure A.2: Choice of the point of reflection of a ray.

If the ray does not find any particle in its way and reaches the back wall, it will be reflected
by it. However, if it reaches the window it will not be reflected back into the receiver but will go
out of the area of study.The choice of the new direction folowwed by a ray after being reflected

by a particle takes various steps. First, an angle « is calculated, in a range from 0° to 360° as
shown in Figure A.4.

Quadrant 1
€ [0°, 90°]

Quadrant 4

Quadrant 3 , ,
o€ [270°, 360°]

ae [180°, 270°]

Figure A.3: Angle o from the reflection point.

Secondly, a random angle +y is generated in a range from 0° to 180°.
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180° 0°

Figure A.4: Random angle .

We want to find a destination point for the ray that is realistic. We can combine v and « in the
following manner to obtain a new direction for the ray:

Ldestinationpoint — Lreflectionpoint + COS(’V +a— 900)

Ydestinationpoint — Yreflectionpoint + 52”(7 + o — 900)

However, the destination point obtained this way will be too close to the particle and inside the
area of study. This can be graphically seen in the example Figure A.S.

Destination point

o= 150°
y =45°
y+a-90°= 105°

Figure A.5: Example of a destination point after a reflection that would be too close to the
particle.

To solve this small problem we multiply by a constant K (named k_length in the code), so that
the destination point is further from the particle and outside of the area of study:
Ldestinationpoint — Lreflectionpoint + K - COS(’V + o — 900)

Ydestinationpoint = Yreflectionpoint + K- COS('Y + o — 900)

This final solution is seen in Figure A.6.
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o= 150°
y = 45°
y +0-90° = 105°

Figure A.6: Destination point after a reflection.

The rays can be reflected as many times as the user desires. Since every time that they are
reflected by a particle a big part of their energy is absorbed by it, after a few reflections its
energy can be considered negligible. The maximum number of sections allowed for each solar
ray is then decided by the user with the parameter n_sections_ray.

Information about every reflection that has been experimented by a solar ray along its path is
stored in the matrix ray_intersections, and information about every reflection of solar rays
that has happened in the surface of a particle is stored in the matrix particle_intersections.

Emitted rays

As was explained in section 4.1.3, a grid has been used in every particle to model the
conduction heat transfer. The contour of the circular grid is made up of a number of linear
elements of n = 2 nodes each, while the interior of the particles is made up of triangular
elements of n = 3 nodes each. In order to model the emission of radiation by the particles, it
has been considered that every linear element of the boundary of the particles (that we often
refer to as boundary lines) emits one ray. Since the chosen grid has 52 linear elements in the
contour of the circle (paramenter n_bars in the code), every particle will emit 52 rays due to
its temperature.

The energy of these emitted rays is calculated with the Stefan-Boltzann law for gray bodies
(Equation (2.4)), using for the value of the temperature the mean between the temperature of
the two nodes of each element.

From this point, the emitted rays are modeled just like the solar rays: as straight lines that are
reflected and absorbed by other particles, also reflected on the back wall or that go out through
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the receiver window. The maximum number of sections allowed for each emitted ray is the
same as for the solar rays: n_sections_ray. Information about every reflection that has been
experimented by an emitted ray along its path is stored in the matrix ray_intersections_em,
and information about every reflection of rays emitted by other particles that has happened in
the surface of a concrete particle is stored in the matrix particle_intersections_em.

Part 5.2: Heat Transfer resolution with the FEM

This part of the code models the heat transfer as a result from the interaction between the rays
and the particles. Every time that a solar ray hits a particle, information about this fact is
stored in particle_intersections and ray_intersections, and every time that a ray emitted by
one particle hits another particle, the information is stored in particle_intersections_em and
ray-intersections_em. The information about all the rays emitted by the particles is stored in
emission_radiation.

These interactions between rays and particles generate a heat transfer that is modeled with the
Finite Element Method. A very important part of this code consists on the treatment on the
boundary conditions implemented in the boundary lines of every particle, that change in every
time step, due to the impact of rays and the emission of rays. This treatment is explained step
by step in the following paragraphs.

The energy absorbed by a particle when it is hit by the first section of one solar ray (which
means that it just came from the window and has all the energy) is (representing the initial
energy of the ray as Ez4,):

Esolar(W) e’

The energy absorbed by a particle when it is hit by the second section of one solar ray is the
initial energy that the ray had minus the energy that it has lost when it was absorbed in its first
reflection times the absorptivity a:

(Esolar(W) - Esolar(W) : Oé) = Esolar<W) : (1 - 04) e

The energy absorbed by a particle when it is hit by the third section of one solar ray is the
initial energy that the ray had minus the energy that it has lost when it was absorbed in its first
and second reflections times the absorptivity «:

(Esola'r(W) - Esolar(W) : (]- - Oé) : Oé) Q= Esola'r(W) ' (]- - Oé)Q e

The energy absorbed by a particle when it is hit by the fourth section of one solar ray is the
initial energy that the ray had minus the energy that it has lost when it was absorbed in its first,
second and third reflections times the absorptivity a:

(Bsotar(W) - (1 —a)? ) - @ = Egar (W) - (1 —)? -

... and so on.
This way, the energy that one boundary line absorbs can be easilly calculated if it is known
how many rays in each section hit it. For example, if one specific boundary line is hit by 5
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solar rays that are in their first section, 7 solar rays that are in their second section and 2 solar
rays that are in their fifth section, the total absorbed energy:

Eoolar W) -5 (1—a)’+7-1—-a) ' +0- (1 —a)*+0-(1—a)*+2- (1—a)*+0..]

In our code, this absorption is calculated when the Neumann boundary conditions are applied

on the boundary lines (in the file data_boundaryconditions_lines.m).

It is necessary to highlight that the code does not work with Eg,,. (W), but with
Flux (%) B W

arc_length(m?) sotar(W).

The exact appearance found in the file data_boundaryconditions_lines.m of the energy

absorbed by a boundary line is

fluxs«absp/arc_length(p,1))*incident_sun (ie,l,p)

being incident_sun a sumation in the style of one shown in the example above. The program
will make this calculation for every boundary line of every particle.

The calculation of the energy from rays emitted by other particles that is absorbed by one
boundary line when it is hit by them follows the same logic. For every ray in every boundary
line, the code calculates the energy absorbed as

Flux (%)
Eemission W)-(1—¢€)"-e= -
(W)-(L—e)"-e arc_length(m?)

(1—€)-e

being n the number of times that the ray has been reflected and absorbed by other particles
(without including the times that is has been reflected on the wall).
The exact appearance of this calculation in the code is:

(particle_intersections_em (row(j,1) ,4,p)/ arc_length(p,l))*e=((1 e)"n);

In order to calculate the total energy that comes in or goes out of a specific boundary line, the
code sums the energy absorbed from solar rays and the rays emitted by other particles, and
substracts the energy that the boundary line emits because of its temperature:

Total energy absorbed = Energy absorbed from solar rays + energy absorbed from emitted rays
- energy emitted

The appeareance of this calculation in the file data_boundaryconditions_lines.m is:

(fluxs=absp/arc_length(p,1))*incident_sun(ie,l,p) + emission_radiation (ie ,p)
emission_radiation_incident (ie ,p)

A.2 Parameters and Matrices

General parameters
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solar_fluz: Input value. Concentrated solar flux considered in watts.
n_reflections: Input value. Number of sections that will be simulated for each ray.
s_b: StefanBoltzmann constant.

e: Emissivity of the particles.

absp: Absorptivity of the particles.

k: Conductivity of the particles in %
dens: Density of the particles in %.
cp: Specific heat of the particles in kg—ﬁfK.

Part 1: Generation of randomly located particles with different radii
Parameters

raxismin: Input value. Minimum value for the axis of the X-coordinate.

razrismax: Input value. Maximum value for the axis of the X-coordinate.

yaxismin: Input value. Minimum value for the axis of the Y-coordinate.

yaxismaz: Input value. Maximum value for the axis of the Y-coordinate.
target_planar_void_ratio: Input value. Planar void content as a percentage.

max_radius: Input value. Maximum value desired for the radius od the particles in mm.
min_radius: Input value. Minimum value desired for the radius od the particles in mm
origin_of _cartesian_axes: Input value. Origin of the cartesian axes for the rectangular
domain where particles are created (m).

rectangle_width: Rectangle width (m).

rectangle_height: Rectangle height (m).

number_of_domains: Number of packed domains to generate.

number_of _particles: Input value. Number of particles in the first generation seeded
new_particles_per_generation: Number of particles added in each new generation
mazimum_radius: Minimum radius of the generated particles in m, directly derived from the
value introduced by the user in max_radius.

manimum_radius_seeded: Maximum radius the generated particles in m, directly derived
from the value introduced by the user in min_radius.

counter: Counter of the number of particles in each iteration.

can_it_grow: Logical condition that will indicate if a particle is allowed to grow.
squared_sum_of _radii: Squared sum of the radii of the particles, later used to obtain the total
area of the circles.

n_particles: Number of particles that have been generated. This number will change when a
smaller number of particles is chosen for the heat transfer study.

n_particles_initial: Number of particles that were generated initially. Matrices

radius: Radii of the particles (m).



Particle

number  Radius
1 radius,
2 radiuss

n_particles \radius,

centre: X and Y coordinates of the particles’ centers.

Particle
number X-coordinate Y-coordinate
1 X1 Yi
2 Xo Y,
n_particles X, Y,

angles_for_parametric_circle: Angles for the equation for parametric circumferences.
x_coordinates_circles: X-coordinates of the particles.
y-coordinates_circles: Y-coordinates of the particles.

Part 2: Relocation of the generated particles to the axes of interest
Parameters

zorig: Input value. Value of the X-coordinate for the origin of the rays.

xdest: Input value. Value of the X-coordinate for the destination of the rays.

yorigman: Input value. Minimum value of the Y-coordinate for the origin of the rays.
yorigmaz: Input value. Maximum value of the Y-coordinate for the origin of the rays.
ydestmaz: Input value. Minimum value of the Y-coordinate for the destination of the rays.
ydestmin: Input value. Maximum value of the Y-coordinate for the destination of the rays.
dy: Input value. Separation between rays in the Y-axis (m).

yorigmin_part: Input value. Lower limit of the Y-coordinate to relocate the particles (m).
yorigmaz _part: Input value. Upper limit of the Y-coordinate to relocate the particles (m).
r_standard: Input value. Desired value for the average radius (m).

scale: rstandard times 10.

xmed: Middle point in the studied range of the X-coordinate.

ymed: Middle point in the studied range of the Y-coordinate.

x1: X-coordinates of the rays’ origins. Constant value.

y1: Range for the Y-coordinates of the rays’ origins. Equally spaced values.

n_rays: Number of rays.

x2: X-coordinates of the rays’ destinations. Constant value.

y2: Range for the Y-coordinates of the rays’ destination. Random value in this range.
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Matrices

centre_initial: Coordinates of the centers of the particles generated in the part 1 of the
program.
radius_initial: Radii of the particles generated in the part 1 of the program (m).

Particle

number  Radius
1 radius,
2 radiuss,

n_particles \radius,

radius: Scaled radii of the particles (m).

Particle

number  Radius
1 radius;
2 radiuss

n_particles \radius,
Part 3: Generation of a mesh inside the particles
Parameters
nnt: Total number of nodes.
n_bn: Number of boundary nodes.
n_bars: Number of boundary lines (elements with n = 2 nodes where the boundary conditions
are applied).

Matrices

veorg_stored: Correct coordinates of the nodes.

Node
number X-coordinate Y-coordinate
1 X1 Y1
2 Xo Y,

nnt X, Y,
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veorg_original: Coordinates of the nodes before they were moved to its right location for each

particle.
Particle
number X-coordinate Y-coordinate
1 X Y,
2 X5 Y,
n_particles Xn Y,

r_1: Distance between the corresponding node and the center of the corresponding particle (1)

Node
number Distance
1 distance;
2 distances
nnt distance,,
r_2: r_1 correctly scaled (m).
Node
number Distance
1 distance;
2 distances
nnt distance,,

veorg_scaled: Coordinates of every particle’s nodes.

Node

number X-coordinate Y-coordinate
1 X Y;
2 X, Y,
nnt X, Y,

boundary_nodes: Number of the boundary nodes that form every boundary line.



Boundary line

number Node number 1 Node number 2
1 Nodenumber Nodenumber
2 Nodenumber Nodenumber
n_bars

boundary_nodes_vector: List of the numbers of the boundary nodes.

Node number
1
2

n_bn

veorg_scaled_boundary: Coordinates of the boundary nodes of every particle.

Node
number X-coordinate Y-coordinate
1 X Y;
2 X, Y,
n_bn X, Y,

arc_length: Length of the boundary lines of every particle (m).

Particle

number Arc length
1 arclength
2 arclength

n_particles_initial \ arclength

Part 4: Initial Solution

Parameters

Region where particles will be initially generated, plotted in Figure 1:
rorigmin_part: Minimum value of the X- coordinate.

60
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rorigmax_part: Maximum value of the X- coordinate.

yorigmin_part: Minimum value of the Y- coordinate.

yorigmax _part: Maximum value of the Y- coordinate.

Choice of smallest region inside the previous one where heat transfer will be studied in the
particles:

xmin_area: Input value. Minimum value of the X- coordinate.

xmax_area: Input value. Maximum value of the X- coordinate.

ymin_area: Input value. Minimum value of the Y- coordinate.

ymaz_area: Input value. Maximum value of the Y- coordinate.

Choice of the region that will be plotted in the study of heat transfer, plotted in Figure 2. It is
recommended to choose an area slightly bigger than the one defined above.

razxismin_area: Input value. Minimum value of the X- coordinate.

razrismax_area: Input value. Maximum value of the X- coordinate.

yaxismin_area: Input value. Minimum value of the Y- coordinate.

yaxismaz_area: Input value. Maximum value of the Y- coordinate.

initial _temperature: Input value. Initial temperature of the particles.
distance_window_curtain: Input value. Distance in m between the window and the curtain
of falling particles. This value directly establishes the position of the window, which is the
X-coordinate for the origin of the solar rays.

count_f1ig: Counts the number of figures plotted.

time_previous_iteration: Time when the previous iteration ended (s).

Matrices

area_study_1: Checking the centers of every particle, writes a 1 if the coordinates of their
centers are bigger than the minimun of the area of interest, and a 0 otherwise.

Value correspondent Value correspondent

Particle to the X-coordinate to the Y-coordinate
number of the center of the center
1 0-1 0—-1
2 0-1 0—-1
n_particles_initial 0-1 0-1

area_study_2: Checking the centers of every particle, writes a 1 if the coordinates of their
centers are smaller than the maximum of the area of interest, and a 0 otherwise.
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Value correspondent Value correspondent

Particle to the X-coordinate to the Y-coordinate
number of the center of the center
1 0-1 0—-1
2 0-—-1 0—-1
n_particles_initial 0-1 0-1

area_study_3: Sums the numbers (0 or 1) obtained in area_study_1 and area_study_2 for the X
coordinates of the centers, and the numbers obtained for the Y coordinates of the centers. The
results can be 0, 1 or 2.

Value correspondent Value correspondent

Particle to the X-coordinate to the Y-coordinate
number of the center of the center
1 0—-1—-2 0—1-2
2 0—1—-2 0—1-2
n_particles_initial 0-1-2 0-1-2

area_study_4: Sums the numbers obtained in area_study_3 fot both the X coordinates and the
Y coordinates. The results can be 0, 1, 2, 3 or 4, being the particles where a 4 is obtained inside
the area of interest. particles_area_study: numbers of the particles that have been found inside
the area of interest.

Particle Value correspondent
number to the center
1 0-1-2-3-4
2 0-1-2-3-4

n_particles_initial \ 0 —1—-2—-3—-4

vsol: Temperature of the nodes (°C").

Node
number Temperature
1 temperature;
2 temperatures

nnt temperature,
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Part 5: Heat transfer in the particles
Parameters

flux: Thermal flux in every solar ray ().

n_rays_em : number of rays emitted by a particle.

DV1: Input value. Default value for the number of rows in the matrices: rays, unions,
tangents, true_xint, true_int.

DV2: Input value. Default value for the number of rows in the matrices: xint, X X, Y'Y, DD.
DV3: Input value. Default value for the number of rows in the matrix:
particle_intersections_em.

DV 4: Input value. Default value for the number of rows in the matrix: particle_intersections.

Matrices

average_temp: stores the average temperature of the nodes of every particle every 10
timesteps.
time_axis: stores the time every 10 timesteps.

Part 5.1: Generation of random rays and its reflections
Parameters

zorig: X- coordinate where the window is located, which is also the X-coordinate of the origin
of the rays.

xdest: X- coordinate where the back wall is located, which is also the X-coordinate of the
destination of the rays.

yorigmain: minumum value of the Y-coordinate of the window from where the solar rays will
be originated.

yorigmaz: maxiumum value of the Y-coordinate of the window from where the solar rays will
be originated.

dy: distance between consecutive rays that come from the window (m).

The parameters yorigmin and yorigmax are respectively lower and higher than the area where
heat transfer is studied in the particles. This is due to the fact that it is realistic to assume that
the particles will not only be irradiated by rays coming from the section on the window located
exacly at their height (Y-coordinate), but also by rays coming from lower and higher parts of
the window.

ydestmaz: maximum value of the Y-coordinate of the back wall towards where the solar rays
will be directed.

ydestmin: minimum value of the Y-coordinate of the back wall towards where the solar rays
will be directed.

These parameters can be schematically seen in Figure A.7.
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vdestmax
Yorigmax
Window Back wall
yorigmin
xorig
vdestmin
xdest

Figure A.7: Area where rays are generated.

xl: xorig.

y1: vector that contains all the Y-coordinates of the origin points of the solar rays.

n_rays: number of solar rays.

x2: xdest.

y2: vector that contains all the possible Y-coordinates of the destination points of the solar
rays.

a: X-coordinate of the center of the studied particle.

b: Y-coordinate of the center of the studied particle.

r: Radius of the studied particle.

prev_ref in_part: Indicates if the ray’s previous reflection was on a particle (1: Yes, 0: No).
n_wall_refl: Number of times the ray has been reflected on the back wall.

Mathematically speaking, when a line intersects with a circle, there are two intersection
points. In reality, rays cannot go through the particles, which is why there is only one
intersection point, where reflection happens (reflection point). The other point calculated has
been called impossible point. This has been graphically exemplified in Figure A.8.
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Reflection point

Impossible point

Figure A.8: Graphical example of the two intersection points between a ray and a particle.

The equation of a line is y = mx + n, being:
m: Intersection point of the line with the ordinate axis (value of Y when X=0).
n: Slope of the line.

m1: m for the studied ray.

nl: n for the studied ray.

xreflection_point: X-coordinate of the reflection point.

yre flection_point: Y-coordinate of the reflection point.

ximpossible_point: X-coordinate of the impossible point.

yimpossible_point: Y-coordinate of the impossible point.

(' Indicates if there has been an intersection (1:Yes, 0:No).

shortest_d: Shortest distance in matrix DD.

row_previous: Number of the particle that reflects the studied ray.

xint_true: X-coordinate of the intersection point.

yint: Y-coordinate of the intersection point.

x_or: X-coordinate of the origin of the studied ray.

y_or: Y-coordinate of the origin of the studied ray.

gamma: Random angle in the range [0,pi] (rad).

alpha: Angle between the reflection point and the horizontal line of the first quadrant of the
circle (rad). See Figure A .4.

beta: Angle necessary to get the right reflection direction for the ray (rad). beta = alpha—90°.
k_length: Input value. Number high enough to make sure the destination point of the ray is
out of the studied boundary.

xor_c0: X-coordinate of the origin of the ray.

yor_c0: X-coordinate of the origin of the ray.

xdest_c(: X-coordinate of the initial destination of the ray.

ydest_c0: Y-coordinate of the initial destination of the ray.

x_wall: X-coordinate of the back wall.

y-wall: Y-coordinate of the reflection of the ray on the back wall.
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gammal: Random angle in the range [0,pi] (rad).

betal: Input value. Angle necessary to get the right reflection direction for the ray (rad).
x_r: X-coordinate of the final random point that the ray will be reflected towards.

y_r: Y-coordinate of the final random point that the ray will be reflected towards.

m?2: m for reflected ray.

n2: n for the reflected ray.

prev_ref_in_part_em: Indicates if the emitted ray’s previous reflection was on a particle
(1:Yes,0:No).

n_wall_refl_em: Number of times the emitted ray has been reflected on the back wall.
xor_c0_em: X-coordinate of the origin of the ray.

yor_c0_em: X-coordinate of the origin of the ray.

xdest_c0)_em: X-coordinate of the initial destination of the ray.

ydest_c0_em: Y-coordinate of the initial destination of the ray.

position: Keeps the count of the number of reflections in a particle.

n_times: Number of times that the studied ray is reflected on the studied particle.

nodel: First node of the studied boundary line.

node2: Second node of the studied boundary line.

x_nodel: X-coordinate of nodel.

y_nodel: Y-coordinate of nodel.

x_node2: X-coordinate of node2.

y-node2: Y-coordinate of node2.

x_orig: X-coordinate of the origin of the emitted ray.

y-orig: Y-coordinate of the origin of the emitted ray.

x_dest: X-coordinate of the initial destination of the emitted ray.

y_dest: Y-coordinate of the initial destinacion of the emitted ray.

temp_nodel: Temperature of the nodel.

temp_node2: Temperature of the node2.

temp_med_line: Average temperature between temp_nodel and temp_node2.

reps: Number of times that the studied ray is reflected on the studied particle .

repetitions: Number of rays that are reflected on the studied boundary line of the studied
particle.

total_abs_em: Total energy is that is absorbed by the studied boundary line of the studied
particle coming from other particles’ emission (V).

ray_n: Ray that hits the studied boundary line of the particle.

part_n: Number of the particle that emitted said ray.

n: Number that helps calculate the energy of said ray when it hits the studied boundary line.
abs_energy: Energy of that ray that is absorbed by the studied boundary line.

n_rays-em: Number of rays emitted by every particle.

Matrices

points_origin: Coordinates of the solar rays’ origins.
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Ray
number X-coordinate Y-coordinate
1 X, Y
2 X5 Y,
n_rays X, Y,

points_destination: Coordinates of the solar ray’s inital destinations (they will change if the
ray is reflected).

Ray
number X-coordinate Y-coordinate
1 X, Yi
2 X, Y,
n_rays X, Y,

rays: Stores the values m1 and nl for every ray.

Ray
number m n
1 ma ny
2 Mo  MNa

nrays \m, n,

true_zvint: X-coordinate of every reflection point.

Reflection Ray 1 Ray 2 Ray n
number X-coordinate X-coordinate ... X-coordinate
1 Xl Xl oo Xl
2 X2 X2 oo X2
n_sections_ray X, X, X,

true_yint: Y-coordinate of every reflection point.
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Reflection Ray 1 Ray 2 Ray n
number Y-coordinate Y-coordinate ... Y-coordinate
1 Y, Y, Y
o) Y, Y, Y,
n_sections_ray Y, Y, Y,

ray_intersections: For every solar ray, it stores the number of the particle where it has been
reflected, the X and Y coordinates of the reflection point, the section of the ray in that reflection,
the total number of times that the ray has been reflected on the back wall in that moment and
the number of times that the ray has been reflected on the particles on that moment (which is
the difference between the two previous values).

X-coordinate Y-coordinate

of the of the Section Number of Number of
Ray Particle reflection reflection number reflections on reflections on
number number point point of the ray the wall the particles
1 p.number X Yi 1 refl.number  refl.number
2 p.number X5 Y, 2 refl.number  refl.number
p.number refl.number  refl.number
p.number refl.number  refl.number
n_rays \p.number X, Y, n_sections_ray refl.number refl.number

xint: Values of the X-coordinates of all the mathematical intersection points of the studied ray
with each particle.

Particle
number X-coordinate 1 X-coordinate 1
1 X4 X4
2 X X
n_particles X4 X,

X X Stores the real values of the X-coordinate of the possible reflection points, and DV2 in
the remaining points.
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Particle X-coordinate 1 X-coordinate 2
number or DV2 or DV2

1

2

n_particles

Y'Y': Stores the real values of the Y-coordinate of the possible reflection points, and DV2 in the
remaining points.

Particle Y-coordinate 1 Y-coordinate 2
number or DV2 or DV2

1

2

n_particles

DD: Stores the distance between the origin of the ray and the possible reflection point and
DV2 in the remaining points.

Particle Distance Distance
number or DV2 orDV2
1
2

n_particles

particle_intersections: Stores the number of the solar ray reflected by the particle at one
moment, the X and Y coordinates of that reflection point, the number of the section of the
solar ray that is reflected, the number of the boundary line of the particle where said reflection
happens and the number of times that the solar ray has been reflected on the particles at that
moment. Since it is not possible to know a priori how many solar rays are going to be reflected
on the surface of a particle, a big default value DV4 defined by the user is used to establish the
size of the matrix. This way, the matrix particle_intersections will be able to store a total of
DV4 reflections of solar rays on the surface of every particle.
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X-coordinate Y-coordinate Affected Number of
of the of the Section  boundary reflections of
Ray reflection reflection number line the ray on
number point point of theray number the particles
1 r.number X Yi s.number b.l.number refl.number
2 r.number Xo Y, s.number b.l.number refl.number
r.number s.number  b.l.number refl.number
r.number s.number b.l.number refl.number
DV4 \r.number X, Y, s.number b.l.number refl.number

distance_to_intersection: Distance from every boundary node to the studied reflection point

(m).

Boundary
node number Distance
1
2

n_bn

n_intersections: Stores the number of rays reflected on each particle.

Number of the particle
1 2 ... n_particles

Number of
rays reflected

nrays_l_z: Stores the number of rays that are reflected on the same boundary line of a particle
and belong to the same section of their corresponding rays.

Number of the boundary line
b.l.1 b.l.2 n_lines
Number of
reflections
1
2

n_reflections

rays-_em: Stores m and n for all the rays emitted by every particle.
points_origin_em: Coordinates of the emitted rays’ origins.
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Ray
number X-coordinate Y-coordinate
1 X Y;
2 X5 Y,
n_rays-em Xn Y,

points_destination_em: Coordinates of the emitted rays’ initial destinations (they will change
if the ray is reflected).

Ray
number X-coordinate Y-coordinate
1 X Y;
2 X5 Ys
n_rays_em X, Y,

ray_intersections_em: Every particle emits one rays from every one of its boundary lines.
Since, in the chosen grid, every particles has 52 boundary lines (n_bars), every particle emits
52 rays. For every ray emitted by every particle, ray_intersections_em stores: the number of
the particles where it has been reflected, the X and Y coordinates of said reflection points, the
section of the ray in that reflection, the total number of times that the ray has been reflected on
the back wall in that moment and the number of times that the ray has been reflected on the
particles on that moment (which is difference between the two previous values).

X-coordinate Y-coordinate

of the of the Section Number of Number of
Ray Particle reflection reflection number reflections on reflections on
number number point point of the ray the wall the particles
1 p.number X4 Yi 1 refl.number  refl.number
2 p.number Xs Y, 2 refl.number  refl.number
p.number refl.number  refl.number
p.number refl.number  refl.number
n_bars \p.number X, Y, n_sections_ray refl.number refl.number

true_zint_em: X-coordinates of every reflection point.
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Reflection Ray 1 Ray 2 Ray n_rays_em
number X-coordinate X-coordinate .. X-coordinate
1 X, X4 X4
n_sections_ray X, X, X,

true_yint_em: Y-coordinates of every reflection point.

Reflection Ray 1 Ray 2 Ray n_rays_em
number Y-coordinate Y-coordinate .. Y-coordinate
1 Yi Yi Yi
2 Y, Y5 Y,
n_sections_ray Y., Y., Y.,

emission_radiation: Energy emitted by every boundary line of every particle ().

Boundary
line Particle 1 Particle 2 ... Particle n_particles
1 emittedenergy emattedenergy ... emittedenergy
2 emittedenergy emittedenergy ... emittedenerqy
n_bars emittedenergy emittedenergy ... emittedenerqy

particle_intersections_em: For every particle, it stores: the number of the rays emitted by
other particles that have been reflected on the studied particle, the number of the particles that
emitted each one of said rays, the section of those rays at the moment they were reflected
on the studied particle, the initial energy (W) that those rays had when they were emitted, the
boundary lines of the studied particle where they are reflected, and the number of reflections on
the particles. Since it is not possible to know a priori how many rays emitted by other particles
are going to be reflected on the surface of a particle, a big default value DV3 defined by the user
is used to establish the size of the matrix. This way, the matrix particle_intersections_em will
be able to store a total of DV3 reflections of rays emited by other particles on the surface of
every particle.
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Initial  Affected

Emitting  Section energy boundary  Number of
Ray particle number  of the line reflections on

number number of the ray ray number the particles
1 r.number pnumber s.number energy b.l.number refl.number
2 | r.number pnumber s.number energy b.l.number refl.number
r.number p.number s.number energy b.l.number refl.number
. | mnumber p.number s.number energy b.l.number refl.number
DV3 \r.number p.number s.number energy b.l.number refl.number

indices: Positions (rows) where the studied ray is reflected on the studied particle.
emission_radiation_incident: Energy absorbed by every boundary line of every particle
coming from other particles’ emission (V).

Boundary
line Particle 1 Particle 2 Particle n_particles
1 absorbedenergy absorbedenerqgy absorbedenergy
2 absorbedenergy absorbedenerqgy absorbedenergy
n_bars absorbedenergy absorbedenerqgy absorbedenergy

Part 5.2: Heat Transfer resolution with the FEM
Parameters

scheme: Input value. Number that stablishes the resolution squeme used (1: Implicit, O:
Explicit, 0.5: Crank Nicholson).

n_ray_sets: Input value. Number of times that a new set of incoming solar rays is simulated.
dt: Input value. Time step value.

nsteps: Input value. Number of time steps.

node_number: Boundary node closest to the reflection point.

line_change_BC': Boundary line these nodes belong to in this particle.

ndle: Input value. Number of nodes per triangular element.

tnel: Input value. Number of nodes of the studied element (the default value is 2, which is the
number of nodes for the line elements).

itype: Type of element (1:Boundary line with Neumann BC, 2:Boundary line with Cauchy
BC, 3:Triangular element).

tclass: Number that specifies the boundary condition that will be applied (1 or 2).

vres: Residue for time control.

vdu: Incremental solution.

nres: Euclidean norm of vector vres.

time: Time of the studied iteration (s).
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Matrices

n_BC _matriz: Numbers assigned to every node in every particle that will be used to
implement in them their corresponding boundary conditions. For the nodes in the bounday,
11 means that no ray has hit its surrounding boundary line, and 12 means and one or more
rays have. For the nodes in the interior of the particle, this number will always be 31, and
is used to obtain the material properties stored in other part of the program. The election of
these numbers is due to the fact that the original code for the FEM resolution for heat transfer
belongs to Emmanuel Lefrangois from the Université de Technologie de Compiegne, and he
used them to assign different boundary conditions and material properties to the solids of study.
To lean more information about the reasons why, the user should look for his original code.

Node
number Particle 1 Particle 2 ... Particle n_particles
1 assignednumber assignednumber ...  assignednumber
2 assignednumber assignednumber ...  assignednumber
nnt assignednumber assignednumber ...  assignednumber

vkg_particles: Global rigidity (conductivity) matrix of every particle. Its size is
nntrnntaxn_particles.

vmg _particles: Global mass matrix of every particle. Its size is nntxnntxn_particles.
vfg_particles: Global sollicitation vector of every particle. Its size is nntxlzn_particles.
incident_sun: Total solar energy that incides in every boundary line of every particle ().

Boundary
line Particle 1 Particle 2 ... Particle n_particles
1 ncidentenergy incidentenergy ... incidentenerqgy
2 incidentenergy incidentenergy ... incidentener gy
n_bars incidentenergy incidentenergy ... incidentenergy

vkg: Global rigidity (conductivity) matrix of the studied particle. Its size is nntznnt.
vmg: Global mass matrix of the studied particle. Its size is nntznnt.

v fg: Global sollicitation vector of the studied particle. Its size is nntx1.

kloce: Localization table for the degrees of freedom of the studied element.

veore: X and Y coordinates of the studied element.

vkt: Tangent matrix. Its size is nntxnntzn_particles.

vsol_stored: Stores the temperature of the nodes of every particle every 10 timesteps
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B - Main script of the MATLAB code

clc
clear all
close all

% Code by:

% Copyright (c) 2017

% Marta Mu oz M nguez

% Volunteer Staff at SDSU, student at University of Valladolid

% This code simulates the transient heating process of the particles inside
% a Falling Particle Receiver. A Monte Carlo Ray Tracing Method is used to
% model radiation to and from a polydisperse particle phase, and a Finite
% Element Method is used for the simulation of conduction heat transfer

% inside the particles.

% The code has been divided in five parts:
% Part 1: Generation of randomly located particles with different radii

% Part 2: Relocation of the generated particles to the axes of interest
% Part 3: Generation of a mesh inside the particles

% Part 4: Initial Solution

% Part 5: Heat transfer in the particles

% Part 5.1: Generation of random rays and their reflections
% Part 5.2: Heat Transfer resolution with the FEM

%
% THE USER MUST DEFINE THE FOLLOWING PARAMETERS:
(04
(&

%
% GENERAL PARAMETERS
%

solar_flux 600000; % W/m"2
n_sections_ray 1; % Maximum number of sections allowed for each ray
s_b = 5.670373%10e 8; % Stefan Boltzmann constant [W/m"2 K "4]

% Material properties

e = 0.843; % Emissivity

absp = 0.934; % Absorptivity

k = 2; % Conductivity [W/ m K]
dens = 3550; % Density [kg/m"3]

cp = 760; % Specific heat [J/kg K]
%

% INPUT PARAMETERS FOR
% PART 1 GENERATION OF RANDOMLY LOCATED PARTICLES WITH DIFFERENT RADII

%
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% Choice of the target planar void ratio on the region of the particles
target_planar_void.ratio = 99;

% Choice of the maximum and minimum radius desires in the particles
% generated in mm

max_radius = 0.35; % mm
min_radius = 0.5¢ 3; % mm
(A

(2

% INPUT PARAMETERS FOR
% PART 4 INITIAL SOLUTION
%

% From all the particles initially generated in the area X:[0 0.030]
% Y:[0 0.050], the user can chose to model the heat transfer process only
% in the particles located in a smaller region of this area.

% This is recommended because solving the problem for all the particles
% would require too much computational time.

% Choice of the smaller region where particles will be studied, inside the
% area X:[0 0.030] Y:[0 0.050]

Xmin_area = 0;
Xxmax_area = 0.005;
ymin_area = 0;
ymax_area = 0.005;

% Region that will be plotted. It is recommended to choose an area slightly
% bigger than the one defined above.

xaxismin_area = 0.0030;
xaxismax_area = 0.008;
yaxismin_area = 0.0005;
yaxismax_area = 0.0055;

initial_temperature 20; %Initial temperature of the particles [ C]

distance_window_curtain

0; % This number determines where the position of
% the window in both Figures 1 and 2

% INPUT PARAMETERS FOR
% PART 5 HEAT TRANSFER IN THE PARTICLES

%

% PART 5.1 GENERATION OF RANDOM RAYS AND THEIR REFLECTIONS

% Section of the window where solar rays are simulated
% (Parameters to define the origin and destination of the rays)

Xorig = 0 distance_window_curtain;
xdest 0.0075; % This number determines the position of the back

yorigmin = 0.010; % wall in Figure 2

yorigmax = 0.015;

dy = 0.00005; % Distance between rays in the window
ydestmax = 0.035;
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ydestmin = 0.030;

% PART 5.2 HEAT TRANSFER RESOLUTION WITH THE FEM

scheme = 1; % Resolution squeme (l:Implicit ,0: Explicit,
n_ray._sets = 3; % 0.5:Crank Nicholson)

dt = 0.027;

nsteps = 10;

%

% END OF INPUT PARAMETERS

Y%

950

%

% PART 1 GENERATION OF RANDOMLY LOCATED PARTICLES WITH DIFFERENT RADII
%

% Code by:

% Copyright (c) 2017

% Marta Mu oz M nguez

% Volunteer Staff at SDSU, student at University of Valladolid

% This PART 1 is mainly based on the original code by:

% The MIT License (MIT)

% Copyright (c) 2016

% Andrea Chiarelli , Andrew Dawson, Alvaro Garcia

% The University of Nottingham

% Permission is hereby granted, free of charge, to any person obtaining a
% copy of this software and associated documentation files (the ”Software”),
% to deal in the Software without restriction , including without limitation
% the rights to use, copy, modify, merge, publish, distribute , sublicense ,
% and/or sell copies of the Software, and to permit persons to whom the

% Software is furnished to do so, subject to the following conditions:

% The above copyright notice and this permission notice shall be included
% in all copies or substantial portions of the Software.

% THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
% OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

% MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

% IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

% CLAIM, DAMAGES OR OTHERLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
% OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
% THE USE OR OTHER DEALINGS IN THE SOFTWARE.

%

% THE USER MUST NOT CHANGE THE FOLLOWING PARAMETERS:

% Region where the particles are initially generated Figure 1
xorigmin_part = 0;

xorigmax_part = 0.030;
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yorigmin_part = xorigmin_part;
yorigmax_part = 0.050;

% xorigmin_part and yorigmin_part must be equal

% Region plotted initially Figure 1

xaxismin = 0.0025;

xaxismax = 0.030; % This number also determines the position of the
yaxismin = 0; % back wall in Figure 1

yaxismax = 0.050;

desired_width = abs(xorigmax_part xorigmin_part);

desired_height

abs(yorigmax_part yorigmin_part);

factor = desired_height/desired_width;
origin_of_cartesian_axes = 0;
rectangle_width = 3;

rectangle_height

factorxrectangle_width ;

xmin_generation = origin_of_cartesian_axes;

Xxmax._generation = xmin_generation + rectangle_width;

xmed_generation = (xmin_generation + xmax_generation)/2;

ymin_generation = origin_of_cartesian_axes;

ymax_generation = ymin_generation + rectangle_height;

ymed_generation = (ymin_generation + ymax_generation)/2;

% INPUT VARIABLES INITIALIZATION (START) %
number_of_particles = 2;
new_particles_per_generation = 2;
maximum_radius = max_radius/10;%This parameter is in meters
minimum_radius_seeded = min_radius/10;%This parameter is in meters

% INPUT VARIABLES INITIALIZATION (END) %

% Generation of a vector of radii, one row for each particle

radius = minimum_radius_seeded+ones(number_of_particles ,1);

% Generation of the centres with random positions, one row for particle

centre (:,1) = minimum_radius_seeded+(rectangle_width 2=
minimum _radius_seeded)*rand (number_of_particles ,1);

centre (:,2) = minimum_radius_seeded+(rectangle_height 2=

minimum_radius_seeded )*rand (number_of_particles ,1);
% Generation of the angle for the equation for parametric circumferences

angles _for_parametric_circle = 0:0.01:2x%pi;

% Initialisation of the first generation of particles

x_coordinates_circles = zeros(length(angles_for_parametric_circle),
number_of_particles);

y_-coordinates_circles = x_coordinates_circles;

% Counter for later use

counter = number_of_particles;

% Beginning of the packing process

iteration = 2;

planar_void_ratio(2) = 100; % This needs to start at 2 because in the

%loops below it compares the current void ratio to its previous value

while planar_void_ratio(iteration) =planar_void_ratio (iteration 1) &&




211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

80

planar_void_ratio(iteration)>target_planar_void_ratio
iteration = iteration+1;
for k=1:number_of_particles
% Condition 1: Is the distance between particle k and all other
% particles smaller than the sum of their radii plus the minimum
% radius growth? This must return 1, because in order to grow this
% condition must be O when particle k is compared to all other
% particles but when it will be compared to itself the result will
% be 1.
condition (1) = sum(sqrt((centre(:,1) centre(k,1))."2+(centre (:,2)
centre(k,2))."2)<(radius (k)+minimum_radius_seeded+radius));
% Conditions 2 5: If the radius grows by 'minimum-_radius_seeded ’,
% will it still be inside the rectangle defined above?

condition(2) = (centre(k,l)+radius(k)+minimum_radius_seeded<
rectangle_ Wldth)
condition (3) = (centre(k,1) radius(k) minimum_radius_seeded > .
origin_of_cartesian_axes);

condition(4) = (centre(k,2)+radius (k)+minimum_radius_seeded<

rectangle_ helght)
(centre(k,2) radius(k) minimum_radius_seeded> .
origin_of_cartesian_axes);
% Condition 6: If the radius grows by 'minimum_radius_seeded ’, will
% it still be smaller than the maximum radius allowed?
condition(6) = (radius(k)+minimum_radius_seeded <=maximum_radius) ;
% Logical condition: if all the conditions above are true (=1), the
% particle k is allowed to grow
can_it_grow = condition (1)==1 && condition (2)==1 &&
condition (3)==1 && condition (4)==
&& condition (5)==1 && condition (6)==1 ;
% The radius of particle k is increased by 'minimum_radius_seeded’
if can_it_grow==1
radius (k)=radius (k)+minimum_radius_seeded ;
x_coordinates_circles (: ,k)=radius (k) .=
cos(angles_for_parametric_circle)+centre (k, 1)
y_-coordinates_circles (: ,k)=radius (k) .=*
sin(angles_for_parametric_circle )+centre (k, 2)

condition (5)

end
end
% The planar void ratio is calculated for the current iteration
squared_sum_of_radii = sum(radius (l: number_of_particles)."2);
planar_void_ratio(iteration) = (rectangle_widthsrectangle_height

pixsquared_sum_of_radii)/(rectangle_widthxrectangle_height)=100;

% 1f the planar void ratio is lower than the target the calculation
% must stop
if planar_void_ratio(iteration)<target_planar_void_ratio

quit_the_calculation = 1; % If this is equal to 1, the algorithm is
break % stopped

end

quit_the_calculation = 0;

end

% From now on, new generation of particles are created and added.

% When the planar void ratio drops below certain values, it is

% best to seed more particles per generation than the default value.

% This is done to have a better chance that they will fall in empty space.
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increase_particles_per_generation = 0;

% In the ’if’ conditions below this is increased to 1 and then 2 and 3

% just so that the increase in ’new_particles_per_generation ’ happens

% only once at each planar void ration mentioned

while planar_void_ratio(iteration)>target_planar_void_ratio &&

quit_the_calculation==

i_new_generation = counter;
if planar_void_ratio(iteration)<35 && .

increase_particles_per._ generat10n==0
new_particles_per_generation=new_particles_per_generation+1000;
increase_particles_per_generation = 1;

end

if planar_void_ratio(iteration)<25 &&

increase_particles_per_generation==
new_particles_per_generation=new_particles_per_generation+5000;
increase_particles_per_generation = 2;

end

if planar_void_ratio(iteration)<I5 &&

increase_particles_per_generation==

new_particles_per_generation=new_particles_per_generation+10000;

increase_particles_per_generation = 3;
end
% The next condition avoids that no new generation of particles is empty
while counter == i_new_generation

for gq=i_-new_generation+1:
i_new_generation+new_particles_per_generation
% A new particle is initialised

centre(q,l) = minimum_radius_seeded+(rectangle_width
2xminimum_radius_ seeded)*rdnd
centre (q,2) = minimum_radius_seeded+(rectangle_height

2xminimum_radius_ seeded)*rdnd
radius (q) = minimum_radius_seeded ;
% 1s the particle acceptable? If yes, it is added to the vectors of
% centres and radii
if sum(sqrt((centre(:,1) centre(q,1))."2+(centre (:,2)
centre(q,2))."2)<(radius (q)+minimum_radius_ seeded+rad1us))——1

counter = counter+1;
centre (counter ,:) = centre(q,:);
radius (counter) = radius(q);
end
end
end

% The vectors of centres and radii are cleaned from the unused values

centre (counter+1l:end,:) = [];

radius (counter+1:end) = 11;

iteration = iteration+1;

% This is re initialised due to the counters used below
planar_void_ratio(iteration) = 100;

while planar_void_ratio(iteration) =planar_void_ratio(iteration 1)
&& quit_the_calculation==0
iteration = iteration+1;
for k = i_new_generation+1:counter
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% For the meaning of these conditions see above.
condition (1) = sum(sqrt((centre(:,1) centre(k,1))."2+
(centre (:,2) centre(k,2))."2)<(radius (k)+
minimum_radius_seeded+radius));
condition(2) = (centre(k,l)+radius (k)+minimum_radius_seeded<
rectangle_width);
(centre(k,1) radius(k) minimum_radius_seeded >
origin_of_cartesian_axes);
condition(4) = (centre(k,2)+radius(k)+minimum_radius_seeded< .
rectangle_height);
(centre(k,2) radius(k) minimum_radius_seeded >
origin_of_cartesian_axes);
condition(6) = (radius (k)+minimum_radius_seeded <=maximum_radius) ;

condition (3)

condition (5)

can_it_grow = condition (l)==1 && condition (2)==1 &&

condition (3)==1 && condition (4)==

&& condition (5)==1 && condition (6)==1;
if can_it_grow ==

radius (k) = radius(k)+minimum_radius_seeded;
end
end
% The planar void ratio is calculated for the current iteration
squared_sum_of_radii = sum(radius (l:counter)."2);
planar_void_ratio(iteration) = (rectangle_widthsrectangle_height

pixsquared_sum_of_radii)/(rectangle_widthxrectangle_height)=100;

% 1f the planar void ratio is lower than the target the calculation
% must stop
if planar_void_ratio(iteration)<target_planar_void_ratio

quit_the_calculation = 1; % If this is equal to 1, the algorithm is
break % stopped
end
end
planar_void_ratio(end);
end
% The planar void ratio vector is saved as a simple number
planar_void_ratio = planar_void_ratio(end);

clear x_coordinates_circles y_coordinates_circles planar_void_ratio

n_particles = counter;

n_particles_initial = n_particles;

hold on

9o

%:: f—— —_= p—— p— p— p— —_= p——

% PART 2 RELOCATION OF THE GENERATED PARTICLES TO THE AXES OF INTEREST

%:: == == == = = = == ===

% Code by:

% Copyright (c) 2017

% Marta Mu oz M nguez

% Volunteer Staff at SDSU, student at University of Valladolid

scale = 0.01; % 1 m becomes 1 cm, 1 cm becomes 0.1 mm
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Xxmax = xorigmax_part;
Xxmin xorigmin_part;

ymax = yorigmax_part;

ymin = yorigmin_part;

xmed = (xmax+xmin)/2;

ymed = (ymax+ymin)/2;
centre_initial = centre;
radius_initial = radius;

radius = radius_initial=scale;

% Scalation of the centres to the axis of interest
for i = l:n_particles_initial
if xmin_generation<=centre_initial (i,1) && centre_initial (i,1)
<=xmed_generation &&
ymax_generation >=centre_initial (i,2) &% centre_initial (i,2)
>ymed_generation
% 1f the particle is in the quadrant 1:
centre (i,l) = (((xmed xmin)/xmed_generation)*centre_initial (i,1))+xmin;
centre (i,2) = (((ymax ymed)/ymed_generation)=*(centre_initial (i,2)
ymed_generation ) )+ymed;

elseif xmin_generation<=centre_initial(i,l) &% centre_initial (i,l)
<=xmed_generation &&
ymed_generation >=centre_initial (i,2) && centre_initial (i,2)
>=ymin_generation
% If the particle is in the quadrant 2:
centre(i,l) = (((xmed xmin)/xmed_generation)*centre_initial (i,1))+xmin;
centre (i,2) = (((ymed ymin)/ymed_generation)*centre_initial (i,2))+ymin;

elseif xmax_generation>=centre_initial (i,1) && centre_initial (i,l)
>xmed_generation &&
ymed_generation >=centre_initial (i,2) && centre_initial (i,2)
>=ymin_generation
% 1f the particle is in the quadrant 3:

centre (i,l) = (((xmax xmed)/xmed_generation)=*(centre_initial (i,1)
xmed_generation) )+xmed;
centre(i,2) = (((ymed ymin)/ymed_generation)scentre_initial (i,2))+ymin;

elseif xmax_generation>=centre_initial (i,1) && centre_initial (i,l)
>xmed_generation &&

ymax_generation>=centre_initial (i,2) &% centre_initial (i,2)

>ymed_generation
% 1f the particle is in the quadrant 4:

centre(i,1) (((xmax xmed)/xmed_generation)=*(centre_initial (i,1)
xmed_generation) )+xmed;

(((ymax ymed)/ymed_generation)=(centre_initial (i,2)
ymed_generation ) )+ymed;

centre (i,2)

end
end
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% PART 3 GENERATION OF A MESH INSIDE THE PARTICLES
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% Code by:

% Copyright (c) 2017

% Marta Mu oz M nguez

% Volunteer Staff at SDSU, student at University of Valladolid

% Generic grid of radius R = 1 mm
% Data reading
datageneral _Gmsh

vcorg_stored = zeros(nnt,2,n_particles_initial);

vcorg_original = vcorg;

% Relocation of the nodes considering the centers of the particles.
% real size of the particles is not taken into account yet

for i=1l:n_particles_initial

vcorg = [vcorg_original (:,1)+centre(i,l) vcorg_original (:,2)+centre
vcorg_stored (:,:,1) = vcorg;

end

% Scaling of the grid in each particle considering its real radius:
% relocation of the nodes to their final positions

r_1 = zeros (nnt,2);

r.2 = zeros (nnt,2);

vcorg_scaled zeros (nnt,2,n_particles_initial);

for i=1l:n_particles_initial

r_1(:,1) = vcorg._stored (:,1,1) centre (i,1);
r_1(:,2) = vcorg._stored (:,2,1) centre (i,2);
r.2 = r_1=(radius(i)/0.001);

vcorg_scaled (:,1,i) = r_2(:,1) + centre(i,l);
vcorg_scaled (:,2,1) = r-2(:,2) + centre(i,2);
end

% Plotting of the particles

for i=l:n_particles_initial
meshplot(vcorg_scaled (:,:,1),kconec)
hold on

end

axis ([ xaxismin xaxismax yaxismin yaxismax ])

% Information about the mesh

boundary_nodes = kconec(find (kconec (:,3)==0),1:2);
boundary_nodes_vector unique (boundary_nodes) ;
vcorg_scaled_boundary zeros (max(size (boundary_nodes_vector)) ,2,

%

The

(i,2) 15

n_particles_initial);

%Stores the coordinates of the nodes in the boundary

for p = l:n_particles_initial

vcorg_scaled_boundary (:,:,p) = vcorg_scaled(boundary_nodes_vector ,:
end
n_bars = numel (find (kconec (:,3)==0));

n_bn

max(size (boundary_nodes_vector));

P
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arc_length = zeros(n_particles_initial ,1);
for p=1l:n_particles_initial

arc_length (p,1)=2=«pixradius(p))/n_bars;
end

950

Yo== = = = ==
% PART 4 INITIAL SOLUTION

Yo== = = = ==
% Code by:

% Copyright (c) 2017

% Marta Mu oz M nguez

% Volunteer Staff at SDSU, student at University of Valladolid

vsol = initial_temperature.xones(ndlt,n_particles_initial);

% Plotting of the initial solution
% Initial solution for all the particles generated
figure (1)
for p=1l:n_particles_initial
caxis ([20 1200])
femplot(vcorg_scaled (:,:,p),kconec,vsol(:,p),1)
shading interp;
title_plot = [ 'Time: 0 s’];
title (title_plot)
colorbar

% This yellow line represents the window

rectangle (...

"Position’ ,[0 distance_window_curtain ,yaxismin ,0.0001 ,...
abs(yaxismax yaxismin)],

"EdgeColor’, 'y’ ,...

"LineWidth’, 1.5,...

"LineStyle’,” )

% This blue line represents the back wall

rectangle (...

"Position’ ,[ xaxismax ,yaxismin ,0.0001,abs(yaxismax yaxismin)],...
"EdgeColor’, ’b’ ,...

’LineWidth’, 1.5,...

"LineStyle’,” )

% This red rectangle represents the area where heat transfer is modeled

rectangle (...

"Position’ ,[xmin_area ,ymin_area ,abs(Xxmax_area Xxmin_area),
abs(ymax_area ymin_area)],...

"EdgeColor’, 'r’° ,...

"LineWidth’, 1.5 ,...

"LineStyle’,” 7)

set(gca, fontsize ,16);

set(gca, ’FontName’, “Times New Roman’);
axis ([ xaxismin xaxismax yaxismin yaxismax ])
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hold on
title (colorbar,” C )
xlabel (" Depth (m) )
ylabel (’Window length (m)’)
end
time_previous_iteration = 0;
% Selection of the particles inside the area of study %
Xxmin_area_vector = xmin_areasxones(n_particles_initial ,1);
Xmax_area_vector = xmax_area%xones(n_particles_initial ,1);
ymin_area_vector = ymin_areaxones(n_particles_initial ,1);
ymax_area_vector = ymax_areaxones(n_particles_initial ,1);
area_study_1 = [xmin_area_vector <=centre (:,1) ymin_area_vector <=
centre (:,2) ];
area_study_2 = [centre (:,l)<=xmax_area_vector centre (:,2)<=
ymax_area_vector ];
area_study_3 = [area_study_-1(:,l)+area_study-2(:,1)
area_study_1(:,2)+area_study_2(:,2)];
area_study_4 = [area_study_3 (:,1)+area_study_3(:,2) ];
particles_area_study = find (area_study_4==4);

centre = centre(particles_area_study ,:);
n_particles = size(centre ,1);

radius = radius(particles_area_study ,:);
average_radius = sum(radius)/n_particles;

vcorg_scaled = vcorg_scaled (:,:, particles_area_study);
vsol = initial_temperature .xones(ndlt,n_particles);
% Initial solution only for the particles located in the area of study

figure (2)
for p=1l:n_particles
caxis ([20 1200])
femplot(vcorg_scaled (:,:,p) ,kconec,vsol(:,p).1)
shading interp;
title_plot = [ 'Time: 0 s’];
title (title_plot)
colorbar

% This yellow line represents the window

rectangle (...

"Position’ ,[xorig ,yorigmin ,0.000001,abs(yorigmax yorigmin)],...
"EdgeColor’, 'y’ ,...

’LineWidth’, 1.5,...

"LineStyle’,” )

% This blue line represents the back wall
rectangle (...
"Position’ ,[ xdest ,ydestmin ,0.000001,abs(ydestmax ydestmin)],...
"EdgeColor’, ’b’ ,...
"LineWidth’, 1.5,...




589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621

622
623
624
625
626
627

628

629
630
631

632
633

634
635

636
637

638

639

640

641

642

"LineStyle’,” )

set(gca, fontsize ,16);

set(gca, ’FontName’, *Times New Roman’);
hold on

title (colorbar,’” C )

xlabel (’Depth (m)’)
ylabel (*Window length (m)’)
axis equal

axis ([ xaxismin_area xaxismax_area yaXxismin_area yaxismax_area |)

end

time_previous_iteration = 0;

count_fig = 2;
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Y=

% PART 5 HEAT TRANSFER IN THE PARTICLES
Y=

% Code by:

% Copyright (c) 2017
% Marta Mu oz M nguez
% Volunteer Staff at SDSU, student at University of Valladolid

% The FEM resolution code was taken from
% E. Lefrancois UTC/2014

% GENERATION OF THE RAYS

% Rays’ coordinates

% Origin points of solar rays

x1 = Xxorig;

yl yorigmax :dy: yorigmin;
n_rays length (yl);

% Destination points of solar rays

x2 = xdest;

y2 = ydestmax:dy:ydestmin;

% INPUT VARIABLES INITIALIZATION (START)
% Total energy emitted from the studied section of the window
flux_window = solar_flux=*abs(yorigmax yorigmin); % W
flux = flux_window/n_rays;

n_rays_.em = n_bn;

DVl = 300;

Dv2 = 500;

DV3 = 500;

Dv4 = 100;

% INPUT VARIABLES INITIALIZATION (END)
average_temp = zeros(n_particles ,n_ray_sets+1);

time_axis zeros(l,n_ray_sets+1);
average_temp (:,1) initial_temperature ;
time_axis (1,1) = 0;
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%

%
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for set_rays=l:n_ray_sets
%:: —t—v —t—v —t—v — — — —t—v —_——_——
% PART 5.1 GENERATION OF RANDOM RAYS AND THEIR REFLECTIONS
%:: —t+— =t =t = == = - _-_—=
% Solar rays generation (start) %
points_origin = zeros(n.rays,2);
for i=l:n_rays
points_origin(i,l) = x1;
points_origin(i,2) = yl(i);
end
points_destination = zeros(n.rays ,2);
for i=1l:n_rays
points_destination(i,l) = x2;
points_destination (i,2) = ydestmax (((ydestmax ( ydestmin))/(1 0))=
(1 rand));
end

% Reflection of the rays in the particles

rays = ones(n_sections_ray ,2,n_rays)*DVI1;
true_xint = ones(n._sections_ray ,n_rays)=DVl;
true_yint = ones(n_sections_ray ,n_rays)=DVI;
ray_intersections = zeros(n_sections_ray ,6,n_rays);
for i=l:n_rays % Runs ray by ray
prev_refl_in_part = O0;
n_wall_refl = 0;
for z=1:n_sections_ray % Runs all the reflections of one ray
xint = ones(n_particles ,2)xDV2;
if z==1 %Initial section of the ray
% Deduction of the line ecuation
ml = (points_destination(i,2) points_origin(i,2))/
(points_destination(i,l) points_origin(i,l));
nl = (points_destination(i,l)*points_origin(i,2)
points_origin(i,l)*points_destination(i,2)) /...
(points_destination(i,l) points_origin(i,l));
rays(z,l,i) = ml;
rays(z,2,i) = nl;
else
ml = rays(z,l,i); % Already stored, in the previous iteration of z
nl = rays(z,2,1i);
end
for j=1l:n_particles % Runs particle by particle
a = centre(j,l);
b = centre(j,2);
r = radius(j,1);
% Calculation of the intersection points with each particle

X1

nt(j,l1) = ( sqrt( a"2+ml"2 + 2xaxbxml 2xa+*ml+nl b"2 +
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2%bxnl + ml"2xr"2
(sqrt( a”2*ml"2 + 2=xaxbsxml
2xbxnl + ml 21”2

xint(j,2) =
end
XX = ones(n_particles ,2)%«DV2;

for h=1:n_particles

real_1 = isreal(xint(h,1));
if real_1 ==
XX(h,1)= xint(h,1);
end
real_2 = isreal(xint(h,2));
if real_2 ==
XX(h,2)= xint(h,2);
end
end

YY = ones(n_particles ,2)*DV2;

for u=l:n_particles
if XX(u,1) = DV2
YY(u,1)= ml«XX(u,1)+nl;
end
if XX(u,2)"= DV2
YY(u,2)= ml*«XX(u,2)+nl;
end
end
for p=1l:n_particles
if YY(p,1)==DV2
XX(p,1)=DV2;
end
if YY(p,2)==DV2
XX(p,2)=DV2;
end
end

% This loop prevents the reflected
if prev_refl_in_part==1 && z7=1
if abs(XX(row_previous ,1) true_xint(z 1,i))
xreflection_point = XX(row_previous ,1);
yreflection_point YY(row_previous ,1);
ximpossible_point XX(row_previous ,2);
yimpossible_point YY(row_previous ,2);
end
if abs(XX(row_previous ,2) true_xint(z 1,1))
xreflection_point = XX(row_previous ,2);
yreflection_point YY(row_previous ,2);
ximpossible_point XX(row_previous ,1);
yimpossible_point = YY(row_previous ,1);
end
if yreflection_point > yimpossible_point
% Points lower than yreflection_point are
for ii=l:n_particles

rays to go

b"2 + .

through the particles

<= 0.0000000001

<= 0.0000000001

erased
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nl"2 + r"2)+a+bxml ml*nl)/(ml"2+1);
2xa+mlxnl
nl"2 + r"2)+a+bs+ml ml+«nl)/(ml"2+1

):
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if YY(ii,1) < yreflection_point
YY(ii ,1) = DV2;
XX(ii ,1) = DV2;
end
if YY(ii ,2) < yreflection_point
YY(ii ,2) = DV2;
XX(ii ,2) DV2;
end
end
else % if yreflection_point < yimpossible_point
% Points higher than yreflection_point are erased
for ii=l:n_particles
if YY(ii,1) > yreflection_point
YY(ii ,1) = DV2;
XX(ii ,1) = DV2;
end
if YY(ii,2) > yreflection_point
YY(ii ,2) = DV2;
XX(ii ,2) DV2;
end
end
end
% The intersections with the same particle that reflected the ray
% are erased

XX(row_previous ,1) = DV2;
XX(row_previous ,2) = DV2;
YY(row_previous ,1) = DV2;
YY(row_previous ,2) = DV2;
end
A = XX"=DV2;
B =A(:);
C = any(B); % If C=1: There are intersections with particles
% 1f C=0: There are no intersections , all the possible
% ones were ideal
if C==1
if z==
Xx_or = points_origin(i,l);
y_.or = points_origin(i,2);
end

% 1f z>1, the origin of the ray will be the intersection point of
% the previous iteration of z
DD = ones(n_particles ,2)*DV2;
for s=1:n_particles
if XX(s,1)"= DV2
DD(s,1)= sqrt((abs(x_or XX(s,1))) "2+(abs(y-or YY(s,1)))"2);
end
if XX(s,2)"= DV2
DD(s,2)= sqrt((abs(x_or XX(s,2))) " 2+(abs(y_-or YY(s,2)))"2);
end
end

shortest_d min (min (DD)) ;
[row, col] = find (DD==shortest_d); % Position of the shortest
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row ; % distance in matrix DD
XX(row, col) ; % (row:particle intersected)
xint_true ;

mlxxint_true+nl;

yint;

row_previous
xint_true
true_xint(z,i)
yint
true_yint(z,1)

row ; % Stores the number of the
% particle intersected

xint_true; % Stores the X coordinate of
% the intersection

ray_intersections (z,1,1)

ray_intersections (z,2,1)

ray_intersections(z,3,i) = yint; % Stores the Y coordinate of
% the intersection
ray_intersections (z,4,i) = z; % Stores the number of the

% reflection
n_wall_refl;

ray_intersections (z,5,1)

ray_intersections (z,4,1)

ray_intersections (z,6,1)
ray_intersections (z,5,1);

x_or = xint_true; % This will be the origin of the ray for the
y_or = yint; % next iteration of z

a = centre (row,1) ;

b = centre (row,2) ;

% Generation of a random angle gamma in the range 0 180 degrees
gamma = pixrand;

% Calculation of the angle alpha between the intersection point and
% a horizontal line that goes across the center of the circle
alpha = mod(atan2 ((yint b) ,(xint_true a)),2%pi);

beta = alpha (pi/2);

% Calculation of the final random point that the ray will be

% reflected towards

k_length = 30; % This number must simply be high enough so that the
% random point(x_r,y_r) is outside the area of study

X_r xint_true + k_length=xcos(gamma+beta);
y-r yint + k_length=*sin (gamma+beta);

% Line parameters for the ecuation of the reflected ray
m2 = (y.r yint)/(x_r Xxint_true);
n2 (x_rxyint xint_truesxy_r)/(x_r xint_true);

rays(z+1,1,1i) = m2;
rays(z+1,2,1) n2;

% Plotting of the rays (Postprocessing)
if z==
plot ([ points_origin(i,l) true_xint(z,i)],[points_origin(i,2)
true_yint(z,i)],’b")
hold on
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else
plot([true_xint(z 1,1) true_xint(z,i)],[true_yint(z 1,1) .
true_yint(z,1)],’b")

hold on
end
prev_refl_in_part = 1;
elseif C==0 %There is no intersection
if z==
xor_c0 = points_origin(i,l);
yor_cO = points_origin(i,2);
xdest_cO0 = points_destination(i,l);
ydest_cO = points_destination (i,2);
elseif z7=1
xor_cO = true_xint(z 1,1);
yor_cO = true_yint(z 1,1);

if prev_refl_in_part==
if yreflection_point < yimpossible_point
ydest_.cO = 0.030;
xdest_c0 = (ydest_.cO rays(z,2,i))/rays(z,1,i); % x=(y n)/m
elseif yreflection_point > yimpossible_point

ydest_cO0 = 0.030;
xdest_cO0 = (ydest_cO rays(z,2,i))/rays(z,1,i); % x=(y n)/m
end

elseif prev_refl_in_part==
xdest_cO = 0.030;
ydest_cO = rays(z,l,i)xxdest_cO+rays(z,2,i); % y=mx+n
end
end

if xdest_cO>xor_cO

x_wall = xdest;

y_wall = rays(z,l,i)*x_wall + rays(z,2,i);

true_xint(z,i) = x_wall;

true_yint(z,i) = y_-wall;

ray_intersections(z,1,i) = 100; % Stores the number of the
% particle intersected
%(100: reflection in wall)

ray_intersections (z,2,i) = x_wall; % Stores the X coordinate of
% the intersection

ray_intersections(z,3,i) = y_wall; % Stores the Y coordinate of
% the intersection

ray_intersections (z,4,i) = z; % Stores the number of the
% reflection

n_wall_refl = n_wall_refl+1; % Increase of 1 because the

% reflection is in the back wall
ray_intersections(z,5,i) = n_wall_refl;

ray_intersections (z,6,1) ray_intersections (z,4,1)

ray_intersections (z,5,1);
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x_or = x_wall; % This will be the origin of the ray for the
y_.or = y_wall; % next iteration of z

gammal = pixrand;

betal = (pi/2);

% Calculation of the final random point that the ray will be
% reflected towards
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k_length = 30; % This number must simply be hight enough so that

% the random point(x.r,y._r) is outside the area
% study
x.r = x_wall + k_length#cos(gammal+betal);
y.r = y_wall + k_length=#sin (gammal+betal);
m2 = (y_r y_wall)/(x_.r x_wall);
n2 = (x_rxy_wall x_wallxy_r)/(x_.r x_wall);
rays(z+1,1,i) = m2;
rays(z+1,2,i) = n2;
plot ([ xor_cO0 x_wall],[yor_cO y_wall],’b")
hold on
prev_refl_in_part = O0;
elseif xdest_cO<xor_cO
plot ([ xor_cO0 xdest_cO],[yor_cO ydest_cO],’b")
hold on
end
end % from if C==
if C==0 && xdest_cO<xor_cO % If there is not a reflection, finish
% the corresponding ray
break
end
axis ([ xaxismin_area xaXxismax_area yaxismin_area yaXxismax_area ])
end
end
% Solar rays generation (end)

% Storage of information about the solar rays reflections
particle_intersections = zeros(DV4,6,n_particles);
for p=1l:n_particles
position = 0;
for j=l:n_rays
if find(ray_intersections (:,1,j)==p) % If the studied ray is
% reflected by the studied
% particle

[row,col] = find(ray_intersections (:,1,j)==p);
n_times = max(size (row));
for z = l:max(size (row))
position = position+1;
particle_intersections (position ,1,p) = j;

particle_intersections (position ,2,p) = .
ray_intersections (row(z) ,2,]
particle_intersections (position ,3,p) = .
ray_intersections (row(z) ,3,]

of

%

)
)
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particle _intersections (position ,4,p) =
ray_intersections (row(z) ,4,j);
% Storage of the distance from every boundary node to the
% intersection point
distance_to_intersection = zeros(n_bn,1);
for jj = 1l:n_bn
distance_to_intersection (jj ,1) =
sqrt ((particle_intersections (position ,2,p)
vcorg_scaled_boundary (jj,1,p))"2 +
(particle_intersections (position ,3,p)
vcorg_scaled_boundary (jj ,2,p))"2);
end
% Calculation of the two nodes closest to the reflection point:
% node_numberl and node_number2
[min_distancel , node_numberl ] = min(distance_to_intersection);
distance_to_intersection (node_numberl) = Inf;
[min_distance2 , node_number?2] = min(distance_to_intersection);
% Finding of the boundary line where the reflection occurs
[roww, columnn] = find (boundary_nodes==node_numberl);
if boundary_nodes (roww (1) ,columnn(2))==node_number2
particle_intersections (position ,5,p) = roww(l);
elseif boundary_nodes (roww(2) ,columnn(1))==node_number2
particle_intersections (position ,5,p) = roww(2);
end
particle_intersections (position ,6,p) =
ray_intersections (row(z) ,6,j);
end
end
end
end

n_intersections = zeros(l,n_particles);

for p=1l:n_particles

aux = size(find(particle_intersections (:,1,p) =0));
n_intersections (1,p) = aux(l,1);

end

nrays_l_z = zeros(n_sections_ray ,n_bars ,n_particles);

for p=1l:n_particles
for line=1:n_bars
for z=1:n_sections_ray
n=1z1;
%It that particle has an intersection in that line
if sum(ismember(particle_intersections (:,5,p),line)) =0
[row]=find (particle_intersections (:,5,p)==line);
contador=0;
for i=1:max(size (row))
if particle_intersections (row(i) ,6,p)==n
contador=contador+1;
end
end
nrays_l_z(z,line ,p)=contador;
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end
end
end
end
% Emitted rays generation (start) %
if set_rays "=I1
rays_em = ones(n_sections_ray ,2,n_rays_.em ,n_particles)*DVI;
points_origin_em = zeros(n_bn,2,n_particles);
points_destination_em = zeros(n_bn,2,n_particles);

for p=1l:n_particles
for i=1:n_bn

nodel = boundary_nodes(i,1);
node?2 = boundary_nodes (i ,2);
x_nodel = vcorg_scaled(nodel,1,p);
y_nodel = vcorg_scaled(nodel ,2,p);
x_node2 = vcorg_scaled(node2,1,p);
y-node2 = vcorg_scaled(node2,2,p);

% Origin coordinates
X_orig (x_nodel+x_node2)/2;
y-orig = (y-nodel+y_node2)/2;

points_origin_em (i,1,p)
points_origin_em (i,2,p)

X_orig;
y-orig;

% Destination coordinates

a = centre(p,1);
b = centre(p,2);
if X_orig > a

x_dest = xdest; %xdest=0.015
y_dest = ((x_dest x_orig)/(a x_orig))=(b y_orig)+y_orig;
elseif x_orig < a

x_dest = xdest;
y_dest = ((x-dest x_orig)/(a x_orig))=(b y_orig)+y._orig;
end
if x_orig == a
if y-orig > b
y-dest = xdest;
x_dest = a;
elseif y_orig < b
y_dest = xdest;
x_dest = a;
end
end
points_destination_em (i,1,p) = x_dest;
points_destination_em (i,2,p) = y_dest;
end
end
ray_intersections_em = zeros(n_sections_ray ,6,n_rays_em ,n_particles);

for p=1l:n_particles
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% Reflection of the rays in the particles
true_xint_em = ones(n_sections_ray ,n_rays_em )=DVl;
true_yint_em = ones(n_sections_ray ,n_rays_em )=DVl;
for i=l:n_rays_em % Runs ray by ray from one particle
prev_refl_in_part_em 0;
n_wall_refl_em = 0;
for z=1:n_sections_ray % Runs all the reflections of one ray from
% one particle
xint = ones(n_particles ,2)*DV2; % Stores de values of all the
% ”intersections”, real or ideal
if z==1 %Initial section of the ray
% Deduction of the line ecuation:

ml = (points_destination_em (i,2,p) points_origin_.em (i,2,p)) /...
((points_destination_em (i,l,p) points_origin_-em(i,l,p)));
nl = (points_destination_em (i,l,p)*points_origin_em(i,2,p)

points_origin_em (i,]1,p)*points_destination_em (i,2,p)) /...
(points_destination_em (i,l,p) points_origin_em(i,1,p));

rays_.em(z,l,i,p) = ml;
rays.em(z,2,i,p) = nl;
else
ml = rays_em(z,l,i,p); % Previously stored, in the previous

nl = rays_.em(z,2,i,p); % iteration of z
end
for j=l:n_particles

a = centre(j,1);

b = centre(j,2);

r = radius(j,1);
% Calculation of the intersection points with each particle
xint(j,l) = ( sqrt( a"2+ml"2 + 2=xaxbxml 2xaxml+nl b2 +
2%xbxnl + ml " 2%1"2 nl"2 + r"2)+a+bsxml mlxnl)/(ml"2+1);
xint(j,2) = (sqrt( a"2«ml"2 + 2xaxbsml 2xa+ml=nl b"2 +
2+%bxnl + ml"2xr"2 nl"2 + r"2)+a+bxml ml*nl)/(ml"2+1);
end

XX = ones(n_particles ,2)*DV2;

for h=1:n_particles
real_1 = isreal (xint(h,1));

if real_.1 == 1
XX(h,1)= xint(h,1);
end
real_2 = isreal(xint(h,2));
if real_2 ==
XX(h,2)= xint(h,2);
end
end

YY = ones(n_particles ,2)xDV2;

for u=1l:n_particles
if XX(u,1)"= DV2
YY(u,1)= ml+«XX(u,1)+nl;
end
if XX(u,2)"= DV2
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YY(u,2)= ml«XX(u,2)+nl;
end
end
for g=1l:n_particles
if YY(q,1)==DV2
XX(q,1)=DV2;
end
if YY(q,2)==DV2
XX(q,2)=DV2;
end
end
if z==
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% points_origin_em (i,2,p)) is Y from the origin of the emission

if points_origin_em(i,2,p) > centre(p,2)

% Points lower than yreflection_point are erased

for ii=l:n_particles
if YY(ii,l) < points_origin_em (i,2,p)
YY(ii,1) = DV2;
XX(ii, 1) DV2;
end
if YY(ii,2) < points_origin_em (i,2,p)
YY(ii ,2) = DV2;
XX(ii ,2) = DV2;
end
end
elseif points_origin_em(i,2,p) < centre(p,2)

% Points higher than yreflection_point are erased

for ii=l:n_particles
if YY(ii,1) > points_origin_em (i,2,p)
YY(ii ,1) = DV2;
XX(ii ,1) DV2;
end
if YY(ii,2) > points_origin_em (i,2,p)
YY(ii ,2) = DV2;
XX(ii ,2) = DV2;

possible)

end
end
end
XX(p,1) = DV2; % The intersections with the particle that EMITS
XX(p,2) = DV2; % the ray are erased (they are not
YY(p,1) = DV2;
YY(p,2) = DV2;
end

% This loop prevents the reflected rays to go through the

% particles
if prev_refl_in_part_em==1 && z7=1
if abs(XX(row_previous ,1) true_xint_em(z 1,1i)) <=
xreflection_point = XX(row_previous ,1);
yreflection_point = YY(row_previous ,1);
ximpossible_point = XX(row_previous ,2) ;
yimpossible_point = YY(row_previous ,2);
end
if abs(XX(row_previous ,2) true_xint_em(z 1,1)) <=
xreflection_point = XX(row_previous ,2);

0.0000000001

0.0000000001
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yreflection_point = YY(row_previous ,2);
ximpossible_point = XX(row_previous ,1);
yimpossible_point YY(row_previous ,1);
end
if yreflection_point > yimpossible_point
% Points lower than yreflection_point are erased
for ii=l:n_particles
if YY(ii,1) < yreflection_point
YY(ii ,1) = DV2;
XX(ii ,1) DV2;
end
if YY(ii,2) < yreflection_point
YY(ii ,2) = DV2;
XX(ii ,2) = DV2;
end
end
elseif yreflection_point < yimpossible_point
% Points higher than yreflection_point are erased
for ii=l:n_particles
if YY(ii,l1) > yreflection_point
YY(ii ,1) = DV2;
XX(ii ,1) = DV2;
end
if YY(ii,2) > yreflection_point
YY(ii ,2) = DV2;
XX(ii ,2) DV2;
end
end
end

XX(row_previous , 1)
XX(row_previous ,2)
YY(row_previous ,1)

DV2; % The intersections with the particle
DV2; % that reflects the ray are erased
DV2; % (they are not possible)

YY(row_previous ,2) = DV2;
end
A = XX"=DV2;
B = A(:);
C = any(B):
if C==1
if z==
Xx_or = points_origin_em(i,l,p);
y_or = points_origin_em(i,2,p);

end % If z>1, the origin will be the intersection point of the
% previous iteration of z
DD = ones(n_particles ,2)«DV2;
for s=1:n_particles
if XX(s,1)"= DV2
DD(s,1)= sqrt((abs(x_or XX(s,1)))"2+(abs(y_or YY(s,1)))"2);
end
if XX(s,2) = DV2
DD(s,2)= sqrt((abs(x-or XX(s,2))) "2+(abs(y-or YY(s,2)))"2);
end
end
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shortest_d = min(min(DD)) ;
[row, col] = find (DD==shortest_d);
row_previous = TOwW;

xint_true

XX(row,col);
true_xint_em (z,1) Xxint_true ;

yint mlxxint_true+nl;
true_yint_.em (z,i) = yint;

row ; % Stores the number
% of the particle
% intersected
xint_true; % Stores the
% X coordinate of
% the intersection
yint; % Stores the
% Y coordinate of
% the intersection
z; % Stores the section
% of the reflection
n_wall_refl_em;

ray_intersections_em (z,1,i,p)

ray-intersections_em(z,2,i,p)

ray_intersections_em (z,3,1,p)

ray_-intersections_em(z,4,i,p)

ray_intersections_em (z,5,1,p)

ray_intersections_em(z,6,i,p)
ray._intersections_em(z,4,i,p) ray_-intersections_em(z,5,i,p);

X_Oor = Xxint_true;
y_or = yint;

a = centre (row,1);
b = centre (row,2);

% Generation of a random angle gamma in the range 0 180 degrees
gamma = pixrand;

% Calculation of the angle alpha between the intersection point
% and a horizontal line that goes across the center of the

% circle

alpha = mod(atan2 (yint b, xint_true a),2%xpi);

beta = alpha (pi/2);

% Calculation of the final random point that the ray will be
% reflected towards

X_T = xint_true + k_length=xcos(gamma+beta);

y_r = yint + k_length=sin (gamma+beta);

% Line parameters for the ecuation of the reflected ray:
m2 = (y.r yint)/(x_r xint_true);

n2 = (x_rxyint Xxint_truexy._r)/(Xx_.r Xxint_true);
rays_.em(z+1,1,i,p) = m2;
rays_.em(z+1,2,i,p) = n2;

% Plotting of the rays
if z==
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plot ([ points_origin_em (i,l,p) true_xint_.em(z,i)],
[points_origin_em (i,2,p) true_yint_.em(z,i)],’ 1)
hold on
else
plot ([ true_xint_em(z 1 ,i) true_xint_.em (z,i)],
[true_yint_em(z 1,i) true_yint_.em(z,i)], ")

hold on
end
prev_refl_in_part_em = 1;
elseif C==0 % There is no intersection
if z==1
xor_cO_em = points_origin_em (i,l,p);

yor_cO_em
xdest_cO_em
ydest_cO_em
elseif z7=1
xor_cO_em = true_xint_em(z 1,i);
yor_cO_em = true_yint_.em(z 1,1i);
if prev_refl_in_part_em==1
if yreflection_point < yimpossible_point
ydest_cO_em 0.030;
xdest_cO_em (ydest_.cO_em rays_em(z,2,i,p))/
rays_em(z,l,i,p); %x=(y n)/m
elseif yreflection_point > yimpossible_point
ydest_.cO_em = 0.030;
xdest_.cO_em = (ydest_.cO_em rays_.em(z,2,i,p))/
rays_.em(z,1l,i,p); %x=(y n)/m

points_origin_em (i,2,p);
points_destination_em (i,1,p);
points_destination_em (i,2,p);

end
elseif prev_refl_in_part_em==
xdest_cO_em = 0.030;

ydest_cO_em = rays_.em(z,l,i,p)=*xdest_.cO_em+rays_em(z,2,i,p);
end Yoy =mx+n
end
if xdest_cO_em>xor_cO_em
x_wall = xdest;
y_wall = rays_em(z,1,i,p)*x_wall + rays_em(z,2,i,p);
true_xint_em(z,i) = x_wall;
true_yint_em(z,i) = y-wall;

100; % Stores the number
% of the particle
% intersected (100:
% reflection in wall)
x_wall; % Stores the
% X coordinate of the
% intersection
y_-wall; % Stores the
% Y coordinate of the
% intersection
Stores the number
% of the reflection

ray_intersections_em (z,1,i,p)

ray._intersections_em(z,2,i,p)

ray_intersections_em (z,3,i,p)

I
N
R

ray-intersections_em(z,4,i,p)

n_wall_refl_em = n_wall_refl_em+1; % Increase of 1 because
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% the reflection 1is in
% the back wall
ray_intersections_em(z,5,i,p) = n_wall_refl_em;

ray_intersections_em (z,6,i,p)
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ray_intersections_em(z,4,i,p) ray_intersections_em (z,5,i,p);

x_.or = x_wall; % This will be the origin of the ray for the
y_or = y_wall; % next iteration of z

gammal = pixrand;

betal = (pi/2);

% Calculation of the final random point that the ray will
% reflected towards

x_.r = x_wall + k_length=cos(gammal+betal);

y.r = y_wall + k_length=sin (gammal+betal);

m2 = (y-r y-wall)/(x_.r x_wall);

n2 = (x_rxy_wall x_wallxy_r)/(x_.r x_wall);
rays_.em(z+1,1,i,p) = m2;
rays_.em(z+1,2,i,p) = n2;

plot ([ xor_cO_em x_wall],[yor_.cO_em y_wall], 1)
hold on
prev_refl_in_part_em = O0;

elseif xdest_.cO_em<xor_cO_em
plot ([xor_cO_em xdest_cO_em],[yor_.cO_.em ydest.cO_em], r’)
hold on

end

end % from if C==I

be

if C==0 && xdest_cO_em<xor_cO_em % If there is not a reflection ,

break % finish the corresponding ray
end
end
end
end
axis ([ xaxismin_area Xxaxismax_area yaxismin_area yaxismax_area ])

% Calculation of the emitted energy
emission_radiation = zeros(n_rays_em ,n_particles);

for

p = l:n_particles

for i=1:n_bars

nodel boundary_nodes(i,1);
node2 = boundary_nodes(i,2);

temp_nodel = vsol(nodel,p);
temp_node2 = vsol(node2,p);

temp-med_line = (temp_nodel+temp_node2)/2;

emission_radiation(i,p) = exs_bx(temp_med_line+273.15)"4;
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end
end

% Storage of the emitted energy INCIDENT in the boundary lines

particle_intersections_em = zeros(DV3,6,n_particles);
for particle=1:n_particles % Studied particle
counter = 0O;
for p=1l:n_particles % Particle by particle , studying their emitted
% rays

for i=1l:n_rays_.em % Ray by ray emitted by the corresponding
% particle
% 1f the ray i emitted by particle p hits the particle "particle”
if ismember(particle ,ray_intersections_em (:,1,i,p))==

indices = find(ray_intersections_em (:,1,i,p)==particle);

reps = numel(find (ray_intersections_em (:,1,i,p)==particle));

for j=1l:reps
counter = counter+1;
particle_intersections_em (counter ,1, particle) = i;
particle_intersections_em (counter ,2, particle) = p;

particle_intersections_em (counter ,3, particle)
ray_intersections_em (indices(j) ,4,i,p);
particle_intersections_em (counter ,4, particle) =
emission_radiation (i,p)*arc_length(p,1); % W

% Calculation of the affected boundary line

distance_to_intersection = zeros(n_bn,l);
Xx_int = ray_intersections_em (indices(j).,2,i,p);
y_int = ray-intersections_em (indices(j),3,i,p);

% Storage of the distance from every boundary node to the
% intersection point
for jj = 1l:n_bn
distance_to_intersection (jj ,1) = sqrt((x_int
vcorg_scaled_boundary (jj,l,p))"2 + (y-int
vcorg_scaled_boundary (jj ,2,p))"2);
end

% Calculation of the two nodes closest to the reflection

% point: node_numberl and node_number2

[min_distancel , node_numberl]= min(distance_to_intersection);
distance_to_intersection (node_numberl) = Inf;

[min_distance2 , node_number2]= min(distance_to_intersection);

% Finding of the boundary line where the reflection occurs

[row, column] = find (boundary_-nodes==node_numberl);

if boundary_nodes(row (1) ,column(2))==node_number2
particle_intersections_em (counter ,5, particle )=row(1);

elseif boundary_nodes(row(2) ,column(1))==node_number2
particle_intersections_em (counter ,5, particle )=row(2);

end

particle_intersections_em (counter ,6 , particle) =

ray_intersections_em (indices(j),6,i,p);
end
end
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end
end
end
emission_radiation_incident = zeros(n_bars,n_particles);
for p = l:n_particles
for i = 1l:n_bars
repetitions = numel(find(particle_intersections_em (:,5,p)==1));
[row, column] = find(particle_intersections_em (:,5,p)==1);
total_abs_em = O0;
for j=l:repetitions
ray_-n = particle_intersections_em (row(j,1),1,p);
part_n = particle_intersections_em (row(j,1) ,2,p);
n = particle_intersections_em (row(j,1) ,6,p);
abs_en = (particle_intersections_em (row(j,1) ,4,p)/
arc_length(p,1))*e=((1 e)"n); % W/m"2
total_abs_em = total_abs_em + abs_en;
end
emission_radiation_incident(i,p) = total_abs_em; % W/m"2
end
end
end

%:: == == == == === === ==

% PART 5.2 HEAT TRANSFER RESOLUTION WITH THE FEM

%__ j— J— J— — J—— [ —— J——

n_BC_matrix = zeros(nelt ,l,n_particles);
vkg_particles zeros (ndlt ,ndlt ,n_particles);
vmg _particles zeros (ndlt ,ndlt ,n_particles);
vfg_particles zeros (ndlt,1,n_particles);

incident_sun = zeros(n_bars ,1,p);
for p = l:n_particles
n_BC_matrix (:,:,p) = n.BC;
end
if set_rays==
emission_radiation = zeros(n_rays_em ,n_particles);

emission_radiation_incident
particle_intersections_em
end

zeros (n_bars ,n_particles);
zeros (DV3,5,n_particles);

% Change of the BC vector according to the rays reflections
for p = l:n_particles

for i = l:n_intersections (1,p)
n_BC_matrix (particle_intersections (i,5,p),p) = 12;
end
end

% Assembling of vmg, vkg and vfg
for p = l:n_particles

vkg = zeros(ndlt);

vmg zeros (ndlt) ;

vfg zeros (ndlt ,1);
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1507 ndle = 3;

1508 kloce= 0x(1:ndle);

1509

1510 for ie = l:nelt

1511 inel = 2;

1512 itype = mod(floor(n_BC_matrix(ie,1,p)/10),10); % Number of tens
1513 iclass = mod(floor (n_-BC_matrix(ie,l,p)),10); % Number of units
1514 if (itype == 3)

1515 inel = 3;

1516 end

1517 vcore = vcorg_scaled (kconec(ie, 1l:inel) ,:,p);

1518 if ie<=n_bars

1519 for ii = l:n_sections_ray

1520 n = ii 1;

1521 incident_sun (ie ,1,p) = incident_sun (ie,l,p) +
1522 nrays_l_z (ii ,ie,p)=*(1l absp) n;
1523 end

1524 end

1525 switch itype

1526 case 1

1527 data_boundaryconditions_lines

1528 vprel = vprel_Neumann(iclass ,:) ;

1529 barre_neumann ;

1530 case 2

1531 data_boundaryconditions_lines

1532 vprel = vprel_Cauchy(iclass ,:);

1533 barre_cauchy;

1534 case 3

1535 data_boundaryconditions_triangles

1536 vprel = vprel_T3 (iclass ,:);

1537 ther _T3;

1538 end

1539 kloce = [];

1540 for in = 1l:inel

1541 kloce = [kloce ,(kconec(ie, in) 1)*ndln+(1:ndln)];
1542 end

1543 % Assembling of vke

1544 vkg(kloce ,kloce) = vkg(kloce ,kloce) + vke;

1545 % Assembling of vme

1546 vmmg (kloce , kloce) = vmg(kloce , kloce) + vme;

1547 % Assembling of vfe

1548 vfg (kloce ,1) = vfg(kloce,l) + vfe;

1549 clearvars vcore

1550 end

1551 vkg_particles (:,:,p) = vkg;

1552 vmg_particles (:,:,p) = vmg;

1553 vfg_particles (:,:,p) = vfg;

1554 end

1555

1556 vkt = zeros(ndlt ,ndlt,n_particles);

1557 for p = l:n_particles

1558 vkt(:,:,p) = vmg_particles (:,:,p) + (schemexdt)xvkg_particles (:,:,p);
1559 vkt (:,:,p) = sparse(vkt(:,:,p)); % sparse

1560 end
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vsol_stored = zeros(nnt,l,(nsteps/10),n_particles); % Stores the solution
% every 10 timsteps
for istep = l:nsteps
time = time_previous_iteration + istep=xdt;
for p = l:n_particles
vres = vfg_particles (:,:,p) vkg_particles (:,:,p)*vsol(:,p);
% Residue for time control
vdu = vkt (:,:,p)\(dtxvres);
vsol (:,p) = vsol(:,p) + vdu; % The solution is updated
end

% Display of the solution every 10 timesteps
if (mod(istep ,10)==0)

count_fig = count_fig + 1;
figure (count_fig)
for p = l:n_particles

vsol_stored (:,1,istep/10,p) = vsol(:,p);

caxis ([20 500])
femplot(vcorg_scaled (:,:,p) ,kconec,vsol_stored (:,:,istep/10,p),1)
shading interp;

set(gca, fontsize ,16);

set(gca, 'FontName’, ’'Times New Roman’);

title_plot = [ 'Time: °~ num2str(time),’ s ];

title (title_plot)

colorbar

rectangle (" Position’ ,[xorig ,yorigmin ,0.000001,
abs(yorigmax yorigmin)], EdgeColor’,’y’, LineWidth’, 1.5, .
"LineStyle’,” )

rectangle (’Position’ ,[ xdest,ydestmin ,0.000001,
abs(ydestmax ydestmin)], EdgeColor’, °b’, LineWidth’, 1.5, .
"LineStyle’,” )
hold on
title (colorbar,” C )
xlabel (" Depth (m)’)
ylabel (’Window length (m)’)
axis equal
axis ([ xaxismin_area xaxismax_area yaxismin_area yaxismax_area ])

end
time_axis(l,set_rays+1) = time;
for p=1l:n_particles
average_temp(p,set_rays+1) = sum(vsol(:,p))/nnt;
end
end
end
time_previous_iteration = time;
end
[radius_ascend ,indexes] = sort(radius);
sorted_average_temp = average_temp (indexes ,:);

radius_ascend_mm=radius_ascend «10"3;
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figure (200)
for p=1l:n_particles
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title (° Temporal evolution of the average temperature of the particles’)

xlabel ("Time (s)’) % x axis label
ylabel (’ Temperature ( C)’) % y axis label
plot(time_axis ,sorted_average_temp (p,:))

hold on
end
legend (strcat(’r = ’, num?2str(radius_ascend_mm),’

mm’), Location’,
"northwest’)

*Note: The symbols - have not been properly displayed.
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