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Abstract. In this paper we describe in detail the global and cocycle attractors related to

non-autonomous differential equations with diffusion. The associated semiflows are strongly

monotone which allows us to give a full characterization of the cocycle attractor. In particular,

we prove that the flow is persistent in the positive cone, and we study the stability and the set

of continuity points of the associated minimal set acting as the global attractor for the skew

product semiflow. We illustrate our result with some non-trivial examples showing the richness

of the dynamics on this attractor, which in some situations can be even characterized as a

pinched set with internal chaotic dynamics in the Li-Yorke sense. We also include the sublinear

and concave cases in order to go further in the characterization of the attractors, coping, for

instance, a non-autonomous version of the Chafee-Infante equation. In this last case we can

show exponentially forwards attraction to the cocycle (pullback) attractors.

1. Introduction

The topological and geometrical description of the global attractor of an infinite-dimensional

dynamical system is always a difficult task, so that there is only a small set of examples for

which a full characterization of their attractors is available. One of these classical models is the

Chafee-Infante equation, for which the attractor consists of an odd number of stationary points

(which bifurcate from the origin) and the unstable manifolds joining them (Hale [Hale (1988)];

Henry [Henry (1981)], Chafee-Infante [Chaffe & Infante (1974)]; Robinson [Robinson (2001)]).

1Partially supported by CAPES/DGU 238/11 and FAPESP 2012/00033-3, Brazil.

2Partially supported by FEDER and Ministerio de Economı́a y Competitividad grant # MTM2011-22411,
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Carvalho et al. [Carvalho et al. (2012)] study the asymptotic behaviour of the following

non-autonomous version of the Chafee-Infante equation:
ut = uxx + λu− β(t)u3, 0 ≤ x ≤ π and t > τ

u(0, t) = u(π, t) = 0

u(x, τ) = ϕ(x),

(1.1)

where λ ∈ [0,∞) and ϕ ∈ X := H1
0 (0, π). It is proved for (1.1) that if β(t) is a small non-

autonomous perturbation of an autonomous β0, then the associated pullback attractor can be

described in a similar manner as the global attractor for the autonomous case. However, when

we want to study the asymptotic dynamics of (1.1) when β(t) is not a small non-autonomous

perturbation of an underlying autonomous system we are not able to go much further in the

description of the structure of the attractor.

In this paper we want to focus on the simplest cases of an infinite dimensional dynamical

system, and show the extreme richness of the dynamics. Indeed, we will study non-autonomous

scalar parabolic equation with Neumann or Robin boundary conditions in the positive cone of

solutions, which will include the Chafee- Infante equation as a particular case. Even in this

situation, and for almost-periodic non-autonomous terms, we will find that the attractor in th

positive cone can be characterized as a pinched set for which even chaotic behavior holds (see

Section 4). In the particular case of the Chafee-Infante equation, we will prove that, in the

positive cone, there exists a complete bounded trajectory acting as an exponential forwards

attractor (see Theorem 5.1).

2. Basic notions

Let (P, σ,R) be a minimal, almost-periodic flow on a compact metric space (P, dP ). We

consider an open bounded domain U in Rm, m > 1 with enough regular boundary ∂U . Define

the shift operators θt : P → P as θtp = p(t+ ·).

The goal of this paper is to investigate the behavior of solutions of the family of reaction-

diffusion equations

∂y

∂t
= ∆y + h(θtp, x)y + g(θtp, x, y), x ∈ Ū , t > 0 (2.1)
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with boundary condition

By := α(x)y +
∂y

∂n
= 0

on ∂U . Here, ∆ denotes the Laplace operator on U ,
∂

∂n
denotes the outward normal derivative

on the boundary and the coefficient α : ∂U → R is sufficiently regular.

Let h : P × Ū → R be a function with a Lipschitz variation on trajectories of P , that is,

there exists L > 0 such that

|h(θt1p, x)− h(θt2p, x)| 6 L|t1 − t2|

for all p ∈ P, x ∈ Ū , t1, t2 ∈ R.

Denote by g : P × Ū × R → R a continuous function with continuous first and second

derivatives with respect to u. In addition, g∗ ∈ {g, ∂g
∂u

} has local Lipschitz variation on the

trajectory of P , i.e., there exist Lr > 0 such that

|g∗(θt1p, x, u)− g∗(θt2p, x, u)| 6 Lr|t1 − t2|

for all p ∈ P, x ∈ Ū , ∥u∥ 6 r, t1, t2 ∈ R.

We also assume that

g(p, x, 0) =
∂g

∂u
(p, x, 0) = 0 and ug(p, x, u) 6 0

for all p ∈ P, x ∈ Ū , u ∈ R and

lim
|u|→∞

g(p, x, u)

|u|
= −∞

uniformly on P × Ū .

We consider the Banach space X := C(Ū) with norm || · || of real and continuous functions

on Ū , and

X+ = {z : z(x) ≥ 0 in U}

and

IntX+ = {z : z(x) > 0 in U}.
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Our Banach space is strongly ordered, i.e., IntX+ ̸= ∅ and we can define a strong order

relation in X as follows

z1 6 z2 ⇐⇒ z1 − z2 ∈ X+

z1 < z2 ⇐⇒ z1 − z2 ∈ X+, z1 ̸= z2

z1 ≪ z2 ⇐⇒ z1 − z2 ∈ IntX+

We also consider the differential operator A0z := ∆z defined on

D(A0) := {z ∈ C2(U) ∩ C1(Ū)| A0z ∈ C(Ū), Bz = 0}

Then A, the closure of A0 in C(Ū), it is the generator of a analytic semigroup {T (t)}t>0 which

is strongly continuous, i.e. T (t) is a compact operator for all t > 0.

We denote by h̃ : P → X, h̃(p)(x) = h(p, x) for all p ∈ P, x ∈ Ū . Similarly, g̃ : P ×X → X

is given by g̃(p, z)(x) = g(p, x, z(x)) for all p ∈ P, x ∈ Ū .

We can then consider the family of Cauchy problems u′(t) = Au(t) + h̃(θtp)u(t) + g̃(θtp, u(t)), t > 0

u(0) = z ∈ X
(2.2)

for each p ∈ P . In this case, there exists a unique mild solution u(·) := u(·, p, z) which satisfies

the integral equation

u(t) = T (t)z +

∫ t

0

T (t− s)[h̃(θsp)u(s) + g̃(θsp, u(s))]ds (2.3)

for all p ∈ P, t > 0. In this case, u : R+ × Ū → R is a classic solution of (2.1) (see Smith

[Smith (1995)]).

Now we can define an associated skew product semiflow as

S : R+ × P ×X → P ×X

(t, p, z) 7→ (θtp, φ(t, p)z)
(2.4)

with φ(t, p)z = u(t, p, z), which is well defined and continuous for each p ∈ P, z ∈ X.

Furthermore, by using the compactness of T (t) for t > 0 and the variation of constants

formula (see (2.3)), and following the arguments of [Travis & Webb (1974)], it is easy to prove

that the application flow S(t) is compact for each t > 0. More generally, we have:

Theorem 2.1. Let 0 < s < t and B a bounded set in X. Then C := S([s, t])(P ×B) is a

compact subset of P ×X.
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Now we consider the linear part of (2.1)

∂y

∂t
= ∆y + h(θtp, x)y, x ∈ Ū , t ≥ 0 (2.5)

with Neumann or Robin boundary conditions. Then, y ≡ 0 is a solution of (2.5). In a abstract

way, we can represent this problem as v′(t) = Av(t) + h̃(θtp)v(t), t > 0

v(0) = z ∈ X
(2.6)

By using this solution, we obtain a linear skew product semiflow

L : R+ × P ×X → P ×X

(t, p, z) 7→ (θtp, ϕ(t, p)z)
(2.7)

where ϕ(t, p)z := v(t, p, z).

Definition 2.2. We say that the linear skew product L has exponential dichotomy on P if there

are constants β, c > 0 and a family of projectors Πp : X → X, p ∈ P such that

(1) ϕ(t, p) ◦ Πp = Πθtp ◦ ϕ(t, p) ∀p ∈ P, t > 0

(2) For each p ∈ P and t > 0, ϕ(t, p)|Rg(Πp)
: Rg(Πp) → Rg(Πθtp) is an isomorphism. Then,

we can define ϕ(−t, p) := (ϕ(t, p)|Rg(Πp)
)−1.

(3)

∥ϕ(t, p)(I − Πp)∥ 6 ce−βt, ∀p ∈ P, t > 0

∥ϕ(t, p)Πp∥ 6 ceβt, ∀p ∈ P, t 6 0

The fundamental properties of the exponential dichotomy can be found in [Sacker & Sell (1974)]

and [Chow & Leiva (1994)].

Given λ ∈ R, we consider the associated skew product semiflows

Lλ : R+ × P ×X → P ×X

(t, p, z) 7→ (θtp, e
−λtϕ(t, p)z).

Definition 2.3. The Sacker-Sell spectrum is the set

Σ(L) := {λ ∈ R : Lλ has no exponential dichotomy }

The set ρ := R \ Σ(L) is called the resolvent of the linear skew product L.
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For each p ∈ P , we define the Lyapunov Exponent by

λp := lim
t→∞

ln ∥ϕ(t, p)∥
t

.

We define the Upper Lyapunov Exponent by

λP := sup
p∈P

λp.

Following Shen and Yi [Shen & Yi (1998)], we have λP = supΣ(L) < ∞.

The Sacker-Sell spectrum provides a decomposition of the bundle P ×X in invariant subbun-

dles associated with distinct intervals of Σ(L) (see Sacker and Sell [Sacker & Sell (1974)] and

Chow and Leiva[Chow & Leiva (1995)]) in which the dynamics of the semiflow becomes more

simple.

In our context, the equations (2.1) and (2.5) or abstract versions (2.2) and (2.6) generate

strongly monotone semiflows S and L in the sense that

u(t, p, z1) ≪ u(t, p, z2) and v(t, p, z1) ≪ v(t, p, z2)

for all t > 0, p ∈ P and z1, z2 ∈ X with z1 < z2 (see [Smith (1995)]).

This monotone structure determines an important part of the spectral decomposition of the

linear semiflow L, as shown in [Poláčik &Tereščák (1993)] and [Shen & Yi (1998)].

In this paper (P, σ) is uniquely ergodic and then, the continuous spectrum of L can be written

as Σ(L) = {λP}∪Σ1 with supΣ1 < λP with {λP} the upper Lyapunov exponent defined above.

To study the asymptotic behavior of a non-autonomous differential equation such as (2.1),

we need to deal with the following dynamical systems:

a) the skew-product semiflow {S(t) : t ≥ 0} defined on the product space P ×X,

b) the associated non-autonomous dynamical system (φ, θ)(X,P ) with φ(t, s.p)y0 = y(t +

s, p, y0).

Observe that these dynamical systems can possess associated attractors:

(i) A global attractor A for the skew-product semiflow S(t),

(ii) a cocycle attractor {A(p)}p∈p for the cocycle semiflow φ, (see Definition 2.6, and Kloeden

and Rasmussen [Kloeden and Rasmussen (2001)])
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In this paper we always assume that the base flow (P, θ,R) is minimal. We first consider

some topological notions.

Definition 2.4. (i) A minimal set K ⊂ P × X is said an automorphic extension of the base

P if, for some p ∈ P , K ∩ Π−1
P (p) is singleton, with ΠP the projection on the first component

of P ×X. In these conditions we say that the minimal set K is almost-automorphic when the

flow on the base P is almost-periodic.

(ii) A compact invariant set K ⊂ P ×X is called a pinched set if there exists a residual set

P0 ⊂ P such that K ∩ Π−1
P (p) is a singleton for all p ∈ P0 and K ∩ Π−1

P (p) is not a singleton

for all p /∈ P0.

Note that an invariant compact set K ⊂ P ×X is almost automorphic if it is pinched and

minimal.

Suppose that the associated skew product semiflow semigroup {S(t) : t > 0} possesses a

global attractor A on P ×X. We know that {S(t) : t > 0} has a global attractor if and only if

there exists a compact set K ⊂ P ×X such that

lim
t→∞

dist(Π(t)B,K) = 0, (2.8)

for any bounded subset B of P × X, where dist denotes the Hausdorff semidistance between

sets defined as

dist(A,B) = sup
a∈A

inf
b∈b

d(a, b).

Definition 2.5. (i) A non-autonomous set is a family {D(p)}p∈P of subsets of X indexed in

p. We say that {D(p)}p∈P is an open (closed, compact) non-autonomous set if each fiber D(p)

is an open (closed, compact) subset of X.

(ii) A non-autonomous set {D(p)}p∈P is invariant under the NDS (φ, θ)(X,P ) if

φ(t, p)D(p) = D(θtp),

for all t > 0 and each p ∈ P .

Given a subset E of P ×X we denote by E(p) = {x ∈ X : (x, p) ∈ E} the p−section of E;

hence

E =
∪
p∈p

{p} × E(p) (2.9)
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Given a non-autonomous set {E(p)}p∈P we denote by E the set defined by (2.9).

Note that ∪
p∈p

E(p) = ΠXE,

where we denote by ΠX the projection on the second component in P ×X.

Definition 2.6. Suppose P is compact and invariant and that {θt : t ∈ R} is a group over P

and θ−1
t = θ−t, for all t > 0. A compact non-autonomous set {A(p)}p∈P is called a cocycle

attractor of (φ, θ)(X,P ) if

(i) {A(p)}p∈P is invariant under the NDS (φ, θ)(X,P ); i.e., φ(t, p)A(p) = A(θtp), for all

t > 0.

(ii) {A(p)}p∈P pullback attracts all bounded subsets B ⊂ X, i.e., for all p ∈ P ,

lim
t→+∞

dist(φ(t, θ−tp)B,A(p)) = 0.

We can now relate the concept of cocycle attractors for (φ, θ)(X,P ) with the global attractor

for the associated skew–product semiflow {S(t) : t > 0}.

The following result can be found, for instance, in Propositions 3.30 and 3.31 in Kloeden and

Rasmussen [Kloeden and Rasmussen (2001)], or Theorem 3.4 in Caraballo et al. [Caraballo et al. (2013)].

Theorem 2.7. Let (φ, θ)(X,P ) be a non-autonomous dynamical system, where P is compact,

and let {Π(t) : t > 0} be the associated skew–product semiflow on P ×X with a global attractor

A. Then {A(p)}p∈P with A(p) = {x ∈ X : (x, p) ∈ A} is the cocycle attractor of (φ, θ)(X,P ).

The following result offers a converse (see Proposition 3.31 in [Kloeden and Rasmussen (2001)],

or Lemma 16.5 in [Carvalho et al. (2013)]).

Theorem 2.8. Suppose that {A(p)}p∈P is the cocycle attractor of (φ, θ)(X,P ), and {S(t) : t > 0}

is the associated skew–product semiflow. Assume that {A(p)}p∈P is uniformly attracting, i.e.,

there exists K ⊂ X compact such that, for all B ⊂ X bounded,

lim
t→+∞

sup
p∈P

dist(φ(t, θ−tp)B,K) = 0,

and that
∪

p∈P A(p) is precompact in X. Then the set A associated with {A(p)}p∈P , given by

A =
∪
p∈P

{p} × A(p),
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is the global attractor of the semigroup {Π(t) : t > 0}.

3. Cocycle attractors for reaction-diffusion equations

From now on we will write p.t or simply pt for θtp, p ∈ P.

We consider the non-autonomous reaction-diffusion equations with the regularity conditions

of Section 2, 
∂y

∂t
= ∆y + h(θtp, x)y + g(θtp, x, y) = ∆y +G(θtp, x, y)

By = 0 on ∂U.
(3.1)

with Neumann (By =
∂y

∂t
= 0) or Robin (By = α(x)y +

∂y

∂t
= 0) boundary conditions.

In general Σ(L) = Σp(L) ∪ Σ1(L) with Σp(L) = [αp, λp] and supΣ1(L) < αp. If (P, σ) is

uniquely ergodic, then Σp(L) = {λp} is a singleton.

The following concepts and results are in [Núñez et al. (2010)] and [Núñez et al. (2012)].

Definition 3.1. A Borel map a : P → X such that φ(t, p)a(p) is defined for any t > 0 is said

to be

a) an equilibrium if a(θtp) = φ(t, p)a(p), for any p ∈ P and t > 0,

b) a super-equilibrium if a(θtp) > φ(t, p)a(p), for any p ∈ P and t > 0,

c) a sub-equilibrium if a(θtp) 6 φ(t, p)a(p), for any p ∈ P and t > 0.

Definition 3.2. A super-equilibrium (resp. sub-equilibrium) a : P → X is semi-continuous if

the following holds

i) Γa = closureX{a(p) : p ∈ P} is a compact subset in X;

ii) Ca = {(p, x) : x 6 a(p)} (resp. Ca = {(p, x) : x > a(p)}) is a closed subset of P ×X.

An equilibrium is semi-continuous if it holds i) and ii) above. We name a semi-equilibrium

for a sub-equilibrium or a super-equilibrium. Every semi-continuous semi-equilibrium admits a

residual invariant set of continuity points.

Definition 3.3. A super-equilibrium (resp. sub-equilibrium) a : P → X is strong if there exists

δ > 0 such that a(p · δ) ≫ u(δ, p, a(p)) (resp. a(p · δ) ≪ u(δ, p, a(p))) for all p ∈ P .
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Proposition 3.4. i) If a(·) is a semi-continuous super-equilibrium (resp. sub-equilibrium)

and there exists δ > 0, p0 ∈ P point of continuity of a(·) such that a(p0 · δ) ≫

u(δ, p0, a(p0)) (resp. ≪), then a(·) is strong.

ii) If a(·) is a strong semi-continuous super-equilibrium (resp. sub-equilibrium), then there

exists e ≫ 0 and δ > 0 such that u(s, p, a(p)) + e 6 a(p · s), (resp. u(s, p, a(p)) − e >
a(p · s)) for all p ∈ P and s > δ.

Theorem 3.5. Let a : P → X be continuous such that for all p ∈ P , the map ap : [0,∞)×Ū →

R given by ap(t, x) := a(pt)x is continuously differentiable in (0,∞) × Ū , twice continuously

differentiable with respect to x ∈ U for all t > 0 and satisfies the boundary condition

Bap(t, x) = 0 for all x ∈ ∂U, p ∈ P.

Denote by

a′(p)(x) :=
∂

∂t
a(θtp)(x)|t=0 for all p ∈ P, x ∈ Ū

If a′(p)(x) > ∆a(p)(x) + G(p, x, a(p)(x)) for all p ∈ P, t > 0, then a(·) is a strong super-

equilibrium. Furthermore, if a′(p)(x0) > ∆a(p0)(x0)+G(p0, x0, a(p0)(x0)) for some p0 ∈ P, x0 ∈

U , then the super-equilibrium is strong.

Proof. The proof is in [Núñez et al. (2010)] (Lemma 2.11 (ii)) in the Neumann case. We recall

the arguments for Robin boundary conditions. The fact that a is a super-equilibrium is a

standard argument by comparison ([Fife & Tang (1981)]). So we have a(p · s) > u(s, p, a(p)),

s > 0, p ∈ P . To prove that the equilibrium is strong, we apply the following argument

a(pt) > u(t, p, a(p)), ∀t > 0, p ∈ P.

Furthermore, there exist ϵ0 > 0 (near to 0) with a(p0 · ϵ0) > u(ϵ0, p0, a(p0)). Since the flow is

strongly monotone, if t = t0 + ϵ0, t0 > 0, then

a(θtp) > u(t0, p0 · ϵ0, a(p0 · ϵ0)) > u(t0, p0 · ϵ, u(ϵ, p0, a(p0))) = u(t, p0, a(p0))

and the result follows by Proposition 3.4 (i). �

We consider the first eigenvalue λ0 > 0 and the correspondent eigenfunction e0 ∈ IntX+, ∥e0∥ =

1. There exists δ > 0 such that inf
x∈Ū

e0(x) = δ.

We choose r∗ > 0 such that:
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• if r > r∗δ, then G(p, x, y) > 0 ∀p ∈ P, x ∈ Ū , y > r

• if r 6 r∗δ, then G(p, x, y) < 0 ∀p ∈ P, x ∈ Ū , y > r.

The applications a : P → X, p 7→ ap(x) = re0(x) ∀x ∈ Ū are:

• strong super-equilibrium if r > r∗

• strong sub-equilibrium if r 6 −r∗

If r1, r2 ∈ R, r1 6 r2, we denote

[r1e0, r2e0] := {z ∈ X : r1e0 6 z 6 r2e0}

We consider C1 := S(1)(P × [−r∗e0, r
∗e0]) which is a compact subset of P ×X.

Proposition 3.6. C1 is an absorbing compact set, i e, given (p, z) ∈ P × X, there exists

t0 = t0(p, z) such that S(t, p, z) ∈ C1 for all t > t0.

Proof. Is sufficient to prove that the set P × [−r∗e0, r
∗e0] is absorbing.

Consider z = re0 with r > r∗. We define

Lr := {r1 ∈ [r∗, r] : ∃ t(r1) > 0 such that u(p, t, re0) ≪ r1e0 ∀p ∈ P, t > t(r1)}

Since ar is a strong super-equilibrium, it follows that r ∈ Lr. Moreover, if r1 ∈ Lr, then

[r1, r] ⊂ Lr. Define r2 := inf Lr. We will prove by contradiction that r2 = r∗. Suppose

r∗ < r2 6 r. Then u(t, p, r2e0) ≪ r2ρ0 for all p ∈ P, t > 0 (by strong super-equilibrium

properties). Fixed t1 > 0, there exists ϵ > 0 such that u(t1, p, r3e0) ≪ (r2 − ϵ)e0 for all

r3 ∈ [r∗, r∗ + ϵ], p ∈ P .

Fix r2 + ϵ, there exists t2 = t(r2 + ϵ) with u(t2, p, rρ0) ≪ (r2 + ϵ)ρ0. Thus

u(t+ t2, p, re0) = u(t, θtp2, u(t2, p, re0)) ≪ u(t, θtp2, (r2 + ϵ)e0) ≪ (r2 − ϵ)e0

for all t > t1. This contradicts the definition of r2 and then Lr = [r∗, r], i e, for all x = re0,

there exists t(r) with u(t, p, re0) ≪ r∗e0, ∀t > t(r), p ∈ P .

Similarly, for any x = −re0, r > 0, there exists t(r) with u(t, p,−re0 ≫ −r∗e0) for all t > t(r).

Finally, for each z ∈ X, there exists r > 0 such that −re0 6 z 6 re0, so that the conclusion

holds for all (p, z) ∈ P ×X and the set P × [−r∗e0, r
∗e0] is absorbing.

Finally, C = S(1)(P × [−r∗e0, r
∗e0]) is compact absorbing. �
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The arguments used in the theorem below are in [Cheban et al. (2002)], [Kloeden and Rasmussen (2001)],

[Caraballo et al. (2013)].

Theorem 3.7. The non-linear skew product semiflow (2.4) generated by (2.1) admits a global

attractor A =
∪
p∈P

{p}×A(p) ⊂ P ×Br∗. Furthermore, the family {A(p)}p∈P with A(p) := {z ∈

X : (p, z) ∈ A} is a cocycle attractor of the non-autonomous system (φ, θ)(X,P ).

We now use the method of construction of the cocycle (pullback) attractor described in

section 3 of [Caraballo et al. (2013)].

Proposition 3.8. Let r > r∗ and

aT (p) = u(T, p · (−T ),−re0), and bT (p) = u(T, p · (−T ), re0),

for each p ∈ P . Then

a(p) := lim
T→∞

aT (p) and b(p) := lim
T→∞

bT (p).

are well defined and are semi-equilibrium. Moreover,

a(p) = min{x ∈ X : x ∈ A(p)} and b(p) = max{x ∈ X : x ∈ A(p)}

for each p ∈ P .

Proof. Since S has global attractor A, it follows that

distH(S(T )(P × {−r∗e0}),A) → 0 as T → +∞;

and then

d(S(T )(p · (−T ),−r∗e0),A) → 0 as T → ∞;

but S(T )(p · (−T ),−r∗e0) = (p, u(T, p · (−T ),−r∗e0)) = (p, aT (p)) so that

d(aT (p), A(p)) → 0 as T → ∞;

and then, for each sequence {Tn}n∈N with Tn
n→∞−→ ∞, there exists a subsequence {Tnk

}k∈N with

aTnk

k→∞→ x for some x ∈ A(p). Let a ∈ A(p). Then there exist ak ∈ A(p · (−Tnk
)) such that

u(Tnk
, p · (−Tnk

), ak) = a and so

aTnk
(p) = u(Tnk

, p · (−Tnk
),−r∗e0) 6 u(Tnk

, p · (−Tnk
), ak) = x
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so that x 6 a. Thus x = minA(p) and aT (p)
T→∞→ a(p) = minA(p) for each p ∈ P .

By monotonicity we have

aT (p) = u(T, p · (−T ),−r∗e0) 6 u(T, p · (−T ), a(p · (−T ))) = a(p)

for all p ∈ P . Thus

{(p, x) : x > a(p)} ⊇
∩
T>0

{(p, x) : x > aT (p)}

On the other hand, if x > aT (p) for all T ∈ [0,∞), so that x > a(p). Then

{(p, x) : x > a(p)} =
∩
T>0

{(p, x) : x > aT (p)}

The proof of properties for b(·) is analogous. �

In the following we consider a family of linear equations that are relevant to our paper. Let

λ0 > 0 the first eigenvalue and e0 ∈ X the eigenfunction for ∆u+ λu = 0, x ∈ U

Bu = 0, x ∈ ∂U
(3.2)

We now that e0(x) > const > 0 for all x ∈ Ū and ∥e0∥ = 1.

Theorem 3.9. Let a, b : P → X defined above. Then

(i) The functions a, b admit a residual set Pr of points of continuity.

(ii) The function b (resp. a) satisfies one of the two conditions:

(ii1) b(p) = 0 (resp. a(p) = 0) for all p ∈ P or

(ii2) there exist λ0 > 0 such that b(p) ≫ λ0e0 ≫ 0 (resp. a(p) ≪ −λ0e0) for all p ∈ P .

Proof. The proof is similar to Proposition 15 of [Caraballo et al.]. By the strong monotonicity,

it is easy to prove that b(p) = 0 implies b(θtp) = 0, ∀t ∈ R. Otherwise we would have b(p) ≫ 0.

In fact, b(p) = u(t, p · (−t), b(p · (−t))).

Suppose there exists p1 ∈ P with b(p1) ≫ 0, i.e., does not satisfy (ii1). We can assume

b(p1) > 2λ1e0 for some λ1 > 0. By continuity, there exist r1 > 0 such that if dist(p, p1) 6 r1,

then b(p) > λ1e0 > 0.
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Since (P, σ) is minimal, there exists τ > 0 such that if p ∈ P , we can find t = t(p) ∈ [0, τ ]

with p · (−t) ∈ B(p1, r1). Let D := [0, τ ]×B(p1, r1)× (ΠX(C1)∩ [δe0, r
∗e0]) for some δ > 0 and

C1 the compact set defined in Proposition 3.6. Then

u : D → IntX+

(t, p, z) 7→ u(t, p, z) ≫ 0

is continuous and strongly positive. So there exists δ1 > 0 with u(t, p, z)(x) > δ1 for all

(t, p, z, x) ∈ D × Ū . Then there exists λ0 > 0 with u(t, p, z) > λ0e0 > 0 for all (t, p, z) ∈ D.

Let p ∈ P and t = t(p) with p · (−t) ∈ B(p1, r1) and then b(p · (−t)) ∈ ΠX(C1) ∩ [δe0, r
∗e0].

In fact,

b(p · (−t)) = u(1, p · (−t− 1), b(p · (−t− 1)))

with b(p · (−t− 1)) ∈ P × [−r∗e0, r
∗e0]. Thus,

b(p) = u(t, p · (−t), b(p · (−t))) > λ0e0

which is the item (ii2).

The result is analogous for a(·). �

Now we will characterize the structure of cocycle attractor for (2.1) as a function of the upper

Lyapunov exponent λp of the linear equation (2.5). In particular, we analyze the cases when

λP ̸= 0.

Note that (2.5) is a linearized version of (2.1) on the solution y ≡ 0.

Denote by λP the upper Lyapunov exponent of the linear semiflow (2.7) generated by (2.5).

Theorem 3.10. Suppose λP < 0. Then it holds:

(i) For all 0 < ϵ < |λP |, there exist Cϵ such that

∥u(t, p, z)∥ 6 Cϵe
(λP+ϵ)t∥z∥, ∀t > 0, p ∈ P, z ∈ X.

(ii) The global attractor of the skew product semiflow (2.4) is A = P × {0}.

Proof. Let z ∈ X, then −|z(x)| 6 z(x) 6 |z(x)| for all x ∈ U . The monotonicity of the semiflow

implies u(t, p, |z|) > 0 and furthermore

−u(t, p, |z|) 6 u(t, p, z) 6 u(t, p, |z|)
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for all t > 0, p ∈ P . Standard comparison arguments for parabolic equations imply

0 6 u(t, p, |z|) 6 v(t, p, |z|)

for all t > 0, p ∈ P .

Let 0 < ϵ < |λP |. Then there exist Cϵ > 0 (see Lemma 3.2 in [Chow & Leiva (1994)]) with

∥u(t, p, z)∥ 6 ∥u(t, p, |z|)∥ 6 ∥v(t, p, |z|)∥ 6 Cϵe
(λP+ϵ)t∥z∥

for all t > 0, p ∈ P . This proves (i), from which it follows that A = P × {0}. �

Theorem 3.11. Suppose λP > 0. Then:

(i) The semiflow (2.7) is uniformly persistent in the positive cone, i.e., there exist λ0 > 0

such that for all p ∈ P, z > 0 (resp. z < 0) there exists t0 = t0(p, z) > 0 with

u(t, p, z) > λ0e0 (resp. u(t, p, z) 6 −λ0e0) for all t > t0(p, z). Moreover, the semiflow S

admits a global attractor A+ ⊂ A ∩ (P × intX+). in the positive cone.

(ii) Let b(p) = max{x ∈ A(p)}, p ∈ P and P 1
c the residual set of continuity points of b.

Then b(p) > λ0e0 for all p ∈ P . Let p1 ∈ P 1
c and K1 := {(p1 · t, b(p1 · t)) : t ∈ R}. Then

(K1, S) is a minimal flow which defines an almost automorphic extension of the base

(P, σ) and if LK1 is the linearized semiflow on K1, then its principal spectrum satisfies

Σp(LK1) ∩ (−∞, 0] ̸= 0.

(iii) If λK1 < 0, then b : P → X+ is continuous, K1 := {(p, b(p)) : p ∈ P} and (K1, S) is a

minimal almost periodic flow.

(iv) The application c : P → X+ given by c(p) := min{z ∈ X : (p, z) ∈ A, u(t, p, z) >
λ0e0 ∀t ≥ 0} is well defined and c(p) ∈ A(p) for each p ∈ P . Moreover, c is a semi-

continuous equilibrium and admits a residual set P 2
c of continuity points. Moreover,

A+(p) = A(p) ∩ [c(p), b(p)] for all p ∈ P.

(v) Let p2 ∈ P 2
c and K2 := {(p1 · t, c(p1 · t)) : t ∈ R}. Then (K2, S) is a minimal flow which

defines an extension almost automorphic of the base (P, σ) and if LK2 is the linearized

semiflow on K2, then its principal spectrum satisfies Σp(LK2) ∩ (−∞, 0] ̸= 0.

(vi) If λK2 < 0, then c : P → X+ is continuous and (K2, S) is an almost periodic flow.

(vii) If λK1 < 0, λK2 < 0 and K1 ̸= K2, then there exists a minimal set K3 ⊂ ∪p∈P{p} ×

[c(p), b(p)] which is unstable on A.
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Remark 3.12. Similarly there exists a global attractor A− for the restriction of the semi flow

S to (P × intX+), with a similar characterization as in the above theorem.

Proof. (i) This item is proved in [Mierczyński & Shen (2004)] (Theorem C) and [Novo et al. (2013)]

(Theorem 5.6).

(ii) Let (p, z) ∈ P × IntX+. Then there exist t0 = t0(p, z) with u(t, p, z) > λ0e0 for all

t > t0. Denote by C the omega limit of (p, z). Then C ⊂ A. There exist z′ ∈ X+ with

(p, z′) ∈ C and then λ0e0 6 z′ 6 b(p).

Follows from Theorem 3.9 that the function b : P → X+ is semi-continuous and admits

a residual set P 1
c of continuity points. Let p1 ∈ P 1

c , K := {(p1 · t, b(p1 · t)) : t ∈ R}. The

uniqueness properties for the backwards extension of the parabolic equations ([Temam (1988),

Henry (1981)]) proves that (K,S) is a minimal semiflow.

Suppose (p, x) ∈ K with p ∈ Pc and tn such that θtnp1 → p. Then, by continuity, we

also have that b(θtnp1) → b(p). Thus, x = b(p) and K1 ∩ Π−1
P (p) = {(p, a(p))}. This

implies that K1 are minimal semiflows and sections (in p) are singleton if p ∈ Pc, so

that they are almost automorphic extensions of (P, θ).

Finally, let λK1 the upper Lyapunov exponent of the linear semiflow LK1 given by

linearization of (2.1) on the solutions inK1. If the principal spectrum Σp(LK1) ⊂ (0,∞),

it follows from [Novo et al. (2013)] that the semiflow is strongly persistent on K1, i.e.,

there exist a minimal set K ′ ⊂ P × X+ and a constant λ′
0 > 0 such that (p, z′) ∈ K ′

satisfies b(p) + λ′
0e0 6 z′. This contradicts the definition of b. Consequently λK1 6 0.

(iii) We now prove that (K1, S) is an almost automorphic extension of the base (P, σ). Let

us prove that it is a copy of the base K = {(p, b(p)) : p ∈ P} with b : P → X continuous

and moreover that it is exponentially stable. Let us fix p1 = (p, z1) ∈ K1 and denote

p1t = S(t, p, z1) for t > 0. We denote y1(t, x) = u(t, p, z1)(x) for all t > 0, x ∈ Ū .

The linearized equation through p1 is defined by


∂y

∂t
= ∆y + h1(p

1t, x)y + h2(p
1t, x)y, t > 0

By = 0, on ∂U.
(3.3)
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where h1(p
1, x) = h(p1, x), h2(p

1, x) =
∂g

∂y
(p1, x, z1(x)). Its solutions generate a skew

product semiflow S1 : R+ × K × X → K × X, (t, p1, z) 7→ (p1t, u1(t, p1, z)) with

u1(t, p1, z) = ϕ1(t, p1)z, ϕ1(t, p1) ∈ L(X) for all (t, p1) ∈ R+ ×K.

Given 0 < λ < |λK1 | there exists c1 = c(λ) with |ϕ(t, p1)| ≤ c1e
−λt , for all p1 ∈

K1, t ≥ 0. Consider (p, z1) ∈ K1, (p, z) ∈ P × X. Denote by y(t, x) = u(t, p, z)(x),

y1(t, x) = u(t, p, z1)(x), for t ≥ 0, x ∈ U. We now introduce a new variable ŷ(t, x) as

ŷ(t, x) = y(t, x)− y1(t, x) which satisfies
∂ŷ

∂t
= ∆ŷ + h1(p

1t, x)ŷ + h2(p
1t, x)ŷ + g1(p

1t, x, ŷ), t > 0

Bŷ = 0, on ∂U.
(3.4)

where

g1(p
1, x, y) =

∫ 1

0

[
∂g

∂y
(p, x, r1(x) + δy)− ∂g

∂y
(p, x, r1(x))]yds

so that we can write the Cauchy problem u′(t) = Au(t) + h1(p
1t)u(t) + h2(p

1t)u(t) + ĝ1(p
1t, u(t)), t > 0

u(0) = z − z1 on ∂U.
(3.5)

Now, by the constants variation formula

u(t) = Φ1(t, p1)(z − z1) +

∫ t

0

Φ(t− s, p1s)ĝ1(p
1s, u(s))ds.

Moreover, for each 0 < ϵ < λ there exists σ > 0 such that

||ĝ1(p1, v)|| ≤ ϵ||v|| for ||v|| ≤ σ.

Finally, by Gronwall inequality we get c2 > 0 with

|ŷ(t, x)| ≤ c2||z − z1||e−(λ−ϵ)t for all t ≥ 0,

which implies (iii).

(iv) We consider the restriction of semiflow in P × IntX+. It follows from Proposition 3.6

and item (i) that

D = P × {z ∈ X+ : λ0e0 6 z, ∥z∥∞ 6 r∗}

is an absorbing set. Consequently C3 := S(1)D is a compact absorbing. Thus, it fol-

lows from [Cheban et al. (2002)] and [Caraballo et al. (2013)] the existence of a global
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attractor in A ∩ (P × IntX+).

To see that c : P → X+ is semicontinuous equilibrium, just note that c(p) = lim
T→∞

cT (p)

with cT (p) = u(T, p · (−T ), λ0e0) and the proof follows as in Proposition 3.8.

(v) Let p2 ∈ P 2
c and K2 := {(p2 · t, c(p2 · t)) : t ∈ R} which is an almost automorphic exten-

sion of the base.

Consider the linearized semiflow on K2, denoted by LK2 and its principal spectrum

Σp(LK2), then the semiflow is uniformly persistent below K2. Consequently, as in ii),

Σp(LK2) ∩ (−∞, 0] ̸= ∅.

(vi) It is analogous to (iii).

(vii) We have K1 = {(p, b(p)) : p ∈ P}, K2 = {(p, c(p)) : p ∈ P}. Fix p0 ∈ P. As A

is connected there exists a continuous function γ : [0, 1] → A with γ(0) = (p0, b(p0),

γ(1) = (p0, c(p0). Let

I = {s0 ∈ [0, 1] such that P (γ(s)) = K1 for all 0 ≤ s ≤ s0},

where P (·) denotes the omega-limit set. Since K1 is exponentially stable, it is clear that

0 ∈ I, I ⊂ [0, 1) and it is open. Let δ = sup I. If P (δ)) ∪ K1 ̸= ∅, then P (δ)) = K1

and this is true in a neighbourhood of δ, which s a contradiction. In the same way,

P (δ)) ∪ K1 = ∅. Moreover, there exists a minimal K3 ⊂ P (δ)). It is clear that K3 is

unstable in A.

�

4. Examples

We next introduce some examples of dissipative differential equations that illustrate different

properties of the global attractor A in the positive cone. Indeed, we consider the families of

dissipative scalar parabolic equations with Neumann boundary conditions
∂y

∂t
= ∆y + yg(y), x ∈ [0, 1], t > 0

∂y

∂x
(t, 0) =

∂y

∂x
(t, 1) = 0, t > 0.

(4.1)


∂y

∂t
= ∆y + ϵh(θtp)y + yg(θtp, y), x ∈ [0, 1], p ∈ P, t > 0

∂y

∂x
(t, 0) =

∂y

∂x
(t, 1) = 0, t > 0.

(4.2)



CONTINUITY AND CHARACTERIZATION OF COCYCLE ATTRACTORS 19


∂y

∂t
= ∆y + y + µh(p · (µt))y + yg(p · (µt), y), x ∈ [0, 1], p ∈ P, t > 0

∂y

∂x
(t, 0) =

∂y

∂x
(t, 1) = 0, t > 0.

(4.3)

whose coefficients and non-linear terms are defined in the Examples 1,2 and 3 below.

(ES EN ESTE PUNTO DONDE DEBEMOS PONER, SI ES POSIBLE, EL RESULTADO

SOBRE SOLUCIONES ESPACIALMENTE HOMOGENEAS EN EL ATRACTOR)

The global attractors of these reaction-diffusion equations preserve the main dynamical prop-

erties of the associated ODE models, which we now pass to study in detail.

4.1. Example 1: an autonomous equation. We consider an autonomous ODE

ẋ = x+ xg(x) (4.4)

where g ∈ C1(R), g(0) = 0, g(x) ≤ 0 for x > 0 and lim
|x|→∞

g(x) = −∞. Let us fix 0 < x1 <

x2 < · · · < x2n. Define k(x) = −(x − x1) · · · (x − x2n) and g(x) =
k(x)− x

x
for x > x0. We

also assume a convenient definition of g on (−∞, x0] such that all the previous conditions are

satisfied.

If x > x0, (4.4) becomes

ẋ = −(x− x1) · · · (x− x2n)

The constants x1, . . . , x2n are solutions. The attractor in the positive cone has x2n as the upper

equilibrium which is asymptotically stable, and xi, i = 1, · · · , 2n − 1 has one stable and one

unstable direction, joining the ordered sequence of equilibria. This clarifies the statement of

the theorem.

4.2. Example 2: a pinched cocycle attractor. We define

B(P ) := {d ∈ C0(P ) : sup
t∈R

∣∣∣∣∫ t

0

d(p · s) ds
∣∣∣∣ < ∞, ∀p ∈ P}

and U(P ) := C0(P ) \B(P ).

B(P ), U(P ) are dense subspaces of C0(P ). B(P ) is a first category set in C0(P ) and U(P )

is a residual set in C0(P ) (see [Gottschalk & Hedlund (1955)]).
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We consider the non-autonomous family of ODEs

ẋ = x+ ϵh(θtp)x+ xg(θtp, x), p ∈ P (4.5)

where ϵ is small, h ∈ U(P ), g is differentiable in the x-component with g,
∂g

∂x
∈ C(P × R),

g(p, 0) = 0, g(p, x) 6 0 for every p ∈ P , x ∈ R and lim
|x|→∞

g(p, x) = −∞ uniformly on p ∈ P .

Let us fix x0 > 0 and k ∈ C1(R) with k(x) 6 0 for all x ∈ R, k(x) = 0 for x ∈ [−2x0, 2x0], and

lim
x→∞

k(x)

x
= −∞.

Let us define g(p, x) =
−ϵh(p)x0 − x+ k(x)

x
, for p ∈ P , x > x0, which is negative if ϵ is

small enough. We also assume a convenient definition of g on P × (−∞, x0] such that all the

previous conditions are satisfied.

If x > x0, the family (4.5) becomes

ẋ = ϵh(θtp)(x− x0) + k(x), p ∈ P. (4.6)

The point x ≡ x0 is a constant solution of (4.6) and the structure of A above x0 is described

in [Caraballo et al.]. Indeed, there exists a semicontinuous function b : P → [x0,∞) such that

b(p) = x0 for p ∈ Pc the residual invariant set of continuity points of the map. This fact leads

to a pinched set on the attractor in the positive cone of solutions. In addiction b(p) > x0 for

every p ∈ Pf = P \Pc that is an invariant subset of first category. In the case where m(Pf ) = 1,

the set A∪(P ×{x > x0}) is chaotic in measure in the sense of Li-Yorke (see [Caraballo et al.].)

Finally, for any h ∈ U(P ), if A = ∪p∈P{p}×A(p) the family of cocycle attractors {A(p)}p∈P
is not uniform. The elements p ∈ Pf are such that A(p) is forwards attracting of the process

on P × {x > x0} (see [Caraballo et al.]).

4.3. Example 3: strange non-chaotic cocycle attractors. We consider an almost periodic

flow (P1, σ1) and a concave a quadratic equation

x′
1 = −x2

1 + h(θtp)x1 + k(θtp), p ∈ P (4.7)

with h, k ∈ U(P ) that induces a local skew-product semiflow on P × R verify the following

properties

(i) P × R contains a unique minimal set K that is an almost automorphic extension of

(P1, σ1). We denote by m1 the ergodic measure under σ1 on P1.
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(ii) If b1(w) := sup{x : (w, x) ∈ K}, a1(w) := inf{x : (w, x) ∈ K}, then b0, a0 are semicon-

tinuous ( ) is a residual invariant set of points of continuity with m1(P1,s) = 0 such that

b1(w) = a1(w) for every w ∈ P1 and an invariant subset P1,f = P1 \ P1,s first category

with m1(P1,s) = 1 and b1(w) > a1(w) for every w ∈ P1,f .

(iii) The relations ∫
P×R

fdvb =

∫
P

f((w, b1(w)))dm1∫
P×R

fdva =

∫
P

f((w, a1(w)))dm1

for every f ∈ C(K), it defines a ergodic measures µa, µb on (K1, ?). In addiction

νa =

∫
K

(−2x1 + h(w))dµa > 0 >

∫
K

(−2x1 + h(w))dµb = νb,

that is the flow (K1, τ1) is not unique ergodic and the graph {(w, b1(w)) : w ∈ P} defines

a strong chaotic attractor in the terminology of [Glendinning et al. (2006)]. Johnson

[Johnson (1982)] showed that a quadratic equation (4.7) with these properties can be

constructed as the Ricatti equation of a two dimensional Hamiltonian equation uniformly

weakly disconjugate with positive upper Lyapunov Exponent β > 0 and Sacker Sell

Spectrum [−β, β] (see [Jorba et al. (2007)])

Examples of such almost periodic hamiltonian systems have been provided by Mil-

lionščikov [?] and Vinograd [?].

Taking a translation in the x1-component if was necessary we can assume the existence

of x0 > 0 such that x1 > x0 for every (0, x1) ∈ K. For each µ > 0, the map σ1 : R×P1 →

P1, (t, p1) 7→ p1 · (t.µ) define a continuous flow on P1. We denote by x1(t, p, x0) the

solution of (4.7) through p with x1(0, p, x0) = x0. Then the function x(t) = x1(tµ, p, x0)

satisfies

x′ = −µx2 + µh(p · (µt))x+ k(p · (µt)), p ∈ P1. (4.8)

We fix µ > 0 with µ|K|∞ < x0, µ|K|∞ < 1. Note that (K1, τa) is a minimal set the flow

induzed by (4.8).

Now we take a non-autonomous family of ODEs

x′ = x+ µh(p · (µt))x+ xg(p · (µt), x), p ∈ P1 (4.9)
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where g is differentiable in the x-component with g,
∂g

∂x
∈ C(P1 × R), g(p, 0) = 0,

g(p, x) 6 0 for every (p, x) ∈ P1 × R and lim
|x|→∞

g(p, x) = −∞ uniformly on p ∈ P1. In

particular, if we take g(p, x) =
−µx2 + µk(p)− x

x
for every x > x0 that we assume that

is extended on P × (−∞, x0] satisfying all the previous properties.

If x > x0, the family (4.9) becomes

x′ = −µx2 + µh(p · (µt))x+ µk(p · (µt)), p ∈ P1

In consequence, the minimal set K is in the global attractor A+ = A ∩ (0,∞) which

exhibits ingredients of highly complexity several ergodic measure and the Lyapunov

Exponents. In addiction, there is P2 ⊂ P1,f invariant with m1(Pi) = 1 that if p ∈ P2,

x1 > b1(p) and x(t, p, x1) denote the solution of (4.9) through p with x(0, p, x1) = x1,

then

lim
t→∞

[x(t, p, x1)− b1(p · (µt))] = 0.

This implies that if A = ∩p∈P{p} × A(p) and b3(p) := supA(p) then this map is

semicontinuous and b3(p) = b2(p) for every p in an invariant set of complete measure.

The graph {(p, b3(p)) : p ∈ P} is a strange non-chaotic attractor. We conclude again

that the family of pullback attractors (A(p))p∈P is not uniform.

5. The sublinear and concave cases

Suppose that the function G : P × Ū × R → R satisfies the conditions of section 1. The

following semiflows will be considered:

The function G : P × Ū × R+ → R is sublinear (in the y component) if it satisfies:

G(p, x, λy) > λG(p, x, y), ∀p ∈ P, x ∈ Ū , y ∈ R+, λ ∈ [0, 1] (5.1)

The function is strongly sublinear at a point p0 ∈ P if

G(p0, x, λy) > λG(p0, x, y), x ∈ Ū , y > 0, λ ∈ (0, 1) (5.2)

Following the arguments of [Novo et al. (2005)] for parabolic equations of type (2.1) its easy

to proof that if G satisfies (5.1), then the semiflow (2.4) generated by the solutions of the
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differential equation is sublinear in the positive cone, i.e.,

u(t, p, λz) > λu(t, p, z), ∀t > 0, p ∈ P, z ∈ X+, λ ∈ [0, 1] (5.3)

Moreover, if G satisfies (5.1) and (5.2), then there exist t1 > 0, p1 ∈ P such that u satisfies

u(t1, p1, λz1) > λu(t1, p1, z1), ∀z1 ∈ X+, λ ∈ (0, 1) (5.4)

Note that if G is sublinear, then it admits a decomposition

G(p, x, y) = h(p, x)y + g(p, x, y) for y > 0

checking the conditions considered in Section 1.

The function G : P × Ū × R+ → R is concave (in the y component) if satisfies:

G(p, x, λy1 + (1− λ)y2) > λG(p, x, y1) + (1− λ)G(p, x, y2), (5.5)

for all p ∈ P, x ∈ Ū , y1, y2 ∈ R+ and λ ∈ [0, 1].

In these conditions, the semiflow satisfies the concavity condition (see [Novo et al. (2005)])

u(t, p, λz1 + (1− λ)z2) > λu(t, p, z1) + (1− λ)u(t, p, z2), (5.6)

for all p ∈ P, z1, z2 ∈ X+, z1 6 z2 and λ ∈ [0, 1]

Note that if the vector field G is concave, then it is sublinear and verifying the above prop-

erties. We define the function G̃ by

G̃(p, x, y) = −G(p, x, y), y > 0, p ∈ P, x ∈ Ū .

If G̃ is concave in P × Ū × R+, then G is convex in P × Ū × R− and the cocycle u gets the

same properties.

See also [Zhao (2003)] and [Mierczyński & Shen (2004)].

The following result completes the conclusions to sublinear or concave vector fields.

Theorem 5.1. Suppose that λP > 0 and let

b(p) = max{x ∈ A(p)} and c(p) = min{x ∈ A(p) ∩ IntX+}

for all p ∈ P .
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(i) If G satisfies the condition of sublinearity (5.1), then the functions b, c are continuous

equilibria.

If G also satisfies (5.2), then b = c, A(p)∩ IntX+ = {b(p)}, for all p ∈ P , and for all

z > 0, we have that b(·) is forwards attracting, i.e.

lim
t→∞

∥u(t, p, z)− b(θtp)∥ = 0.

(ii) If G satisfies (5.1) and c(p) < b(p) for some p ∈ P , then there exist δ0 with b(p)−c(p) >
δ0e0 for all p ∈ P . The compact invariant set A+ ⊂ (P × IntX+) is uniformly stable

and there exists 0 < ρ < 1 such that c(p) = ρb(p), p ∈ P and it holds that

A+ = {(p, λb(p)) : p ∈ P, ρ ≤ λ ≤ 1}.

Moreover,

g(p, x, y) = g(p, x, b(p)(x))y for all p ∈ P, x ∈ U, and ρb(p)(x) ≤ y ≤ b(p)(x).

(see case A2 of the Theorem 3.8 in [?]).

(iii) If G satisfies (5.5), then b = c and

A ∩ (P × IntX+) = K1 = {(p, b(p)) : p ∈ P}

is a compact invariant exponentialy stable set, i.e, λK1 < 0 and for all 0 < ϵ < |λK1 |, ρ >

1, there exist cϵ,ρ > 0 such that if z ∈ X+ and
1

ρ
e0 6 z 6 ρe0, then b(·) is exponentially

forwards attracting, i.e.,

∥u(t, p, z)− b(θtp)∥ 6 cϵ,ρe
(λK−ϵ)t∥z − b(p)∥,

for all p ∈ P, t > 0.

Proof. (i) In this case, the semiflow S is sublinear, i.e., satisfies (5.3) in the positive cone.

As the semiflow is persistent, the dynamic structure of A∩ (P × IntX+) is described by

one of the A1 or A2 cases in Theorem 3.13 in [?]

(HACE FALTA ESCRIBIR QUE ES EXACTAMENTE A1 y A2.).

If G satisfies (5.2), then u satisfies (5.4) and the dynamics corresponding to case A1,

the compact invariant A ∩ (P × IntX+) = K1 = {(p, b(p)) : p ∈ P} is asymptotically

stable.
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(ii) Suppose c(p) < b(p) for some p ∈ P . We now follow the argument of Proposition 3.8

in [Novo et al. (2005)]. There exists a continuous and connected family {Ks}s∈[0,1] of

strongly positive ordered minimals sets with K0 = {(p, c(p)) : p ∈ P}, K1 = {(p, b(p)) :

p ∈ P} and for 0 ≤ s1 < s2 ≤ 1 we have that Ks1 < Ks2 ; so that, for every (p, z1) ∈ Ks1

there exists (p, z2) ∈ Ks2 with z1 ≤ z2.

Note that for 0 < λ < 1

u(t, p, λb(p)) ≥ λu(t, p, b(p)) = λb(pt),

i.e., the map bλ(p) = λb(p), p ∈ P is a continuous sub-equilibrium.

Fix s ∈ (0, 1) and take

Js = {λ ∈ [0, 1] : λb(p) ≤ z for every (p, z) ∈ Ks}.

Let λ0 = sup Js. It is obvious that λ0 ∈ Js, i.e. λ0b(p) ≤ z for every (p, z) ∈ Ks. Note

that it does not hold that λ0b(p) < z for every (p, z) ∈ Ks. Indeed, suppose at some

point (p0, z0) we have λ0b(p0) < z0. Then, by the extensibility of S on minimal sets we

can take z−t = u(−t, p0, z0) with (p(−t), z−t) ∈ Ks for t ∈ [−1, 0]. Then λ0b(p(−t)) ≤ z−t

and there exists ϵ > 0 such that λ0b(p(−t)) < z−t for t ∈ [0, ϵ]. The strong monotonicity

of the semi flow implies

λb(p) ≤ u(t, p(−t)), λb(p(−t)) < u(t, p(−t), z−t) = z0.

As a consequence, there exists (p0, z0) ∈ K with z0 = λ0b(p0). The above argument also

implies that zs = u(s, p0, z0) = λ0b(ps) for all r ≤ 0.Taking the alpha limit set of (p0, z0)

we conclude that

Ks = λ0K1 = {(p, λ0b(p)) : p ∈ P}.

Thus, there exists ρ > 0 such that c(p) = ρb(p) for all p ∈ P. Finally, we conclude that

{(p, λb(p)) : p ∈ P} is a minimal set for every λ ∈ [ρ, 1]. They define the lamination of

minimal sets joining K1 and K0.

It now follows from [Novo et al. (2005)] that B = {(p, λb(p)) : p ∈ P, λ ∈ [ρ, 1]}

is a uniformly stable compact invariant set. We show that it coincides with A+. It is

clear that B ⊂ A+. Now let (p∗, z∗) ∈ A. It has a backwards extension and we consider

a minimal set K∗ in its alpha-limit set. The above argument proves the existence of
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ρ∗ ∈ [ρ, 1] with K∗ = {(p, ρ∗b(p)) : p ∈ P}. For every ϵ > 0 there exists δ > 0, t∗ < 0

such that

||u(t, p∗, z∗)− ρ∗b(p∗t)|| < δ for all t ≤ t∗

and

||u(t, p∗, z∗)− ρ∗b(p∗t)|| ≤ ϵ for all t ≥ t∗.

Thus,

||z∗ − ρ∗b(p∗)|| ≤ ϵ for every ϵ > 0,

so that z∗ = ρ∗b(p∗) and (p∗, z∗) ∈ B.

Finally, define

g0(p, x, y) =
g(p, x, y)

y
.

Then g0 is continuous and negative. Moreover, g is sublinear in the y− component for

y ≥ 0 if and only if g0 is decreasing in the y− component for y ≥ 0. By the restriction

in A+ we conclude that

g(p, x, λb(p)(x)) = λg(p, x, b(p)(x)) for every p ∈ P, x ∈ Ū , λ ∈ [ρ, 1].

Thus,

g0(p, x, λb(p)(x)) = λg0(p, x, b(p)(x)) for every p ∈ P, x ∈ Ū , λ ∈ [ρ, 1]

and

g(p, x, y) = g0(p, x, b(p)(x)) for every p ∈ P, x ∈ Ū , and ρb(p)(x) ≤ y ≤ b(p)(x).

(iii) In this case the semiflow induced is concave, i.e., satisfies (2.2). As the flow is uni-

formly persistent over 0, the dynamic of A ∩ (P × IntX+) is described by case A1 of

[Núñez et al. (2012)].

�
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