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Abstract  30 

Ammonia borane is a promising hydrogen storage material due to its high gravimetric 31 

capacity (19.6 % wt), but it also presents limitations such as a slow hydrogen release with 32 

a long induction time, a difficult regeneration, or the formation of foams and gaseous by-33 

products during thermolysis. Previous studies have shown that by nanoconfinement of 34 

ammonia borane within a porous support some of these limitations can be overcome due 35 

to the reduction and stabilization of ammonia borane particle size. However, this effect 36 

was only observed with moderate ammonia borane loadings, as with higher loadings the 37 

pores of the support became obstructed. In this work, silica aerogels produced by CO2 38 

drying, with pore volumes up to 2 cm
3
/g, have been used to confine ammonia borane. 39 

The influence of the amount of ammonia borane loaded on the aerogel support on the 40 

thermal and structural properties of the material has been analyzed. It has been found that 41 

more than 60 wt% of ammonia borane can be effectively stored in the pores of the 42 

aerogel support. The resulting material shows faster hydrogen release kinetics by 43 

thermolysis at 80ºC, due to a significant reduction in the mea size of ammonia borane 44 
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after confinement and the participation of SiOH and SiOSi groups of silica aerogel in the 45 

decomposition mechanism. 46 

 47 

Keywords: solid state hydrogen storage, ammonia borane, silica aerogel, 48 

nanoconfined, supercritical carbon dioxide. 49 

 50 

1. Introduction 51 

As fossil fuel reserves are increasingly limited and their use constitute a constant source 52 

of greenhouse gases and other environmental problems, the development of alternative 53 

energy sources is attracting a considerable attention [1, 2]. In contrast with fossil fuels, 54 

which can be easily stored and used when needed, the production of energy from most 55 

renewable sources is variable and it cannot be directly controlled. A possible solution 56 

for this limitation could be to use hydrogen (H2) as an energy vector, according to the 57 

approach commonly known as ‘hydrogen economy’ or ‘hydrogen society’ [3]: 58 

Hydrogen can be produced from water (by electrolysis, thermal decomposition, 59 

thermochemical processes, photolysis etc.) using renewable energy sources, and stored 60 

until needed. Furthermore, the efficiency of the combustion of hydrogen (by 61 

combustion in internal combustion engines, catalytic combustion or fuel cells) is high, 62 

and it is one of the most environmentally favorable fuels, as it produces nearly zero 63 

gaseous emissions. 64 

At large scales, hydrogen can be transported through pipelines (gas H2) or tankers 65 

(liquid H2), and it is a good energy vector with an energy density of 33 kwh/kg, 66 

containing three times more energy than any hydrocarbon fuel on a weight basis [4]. 67 

However, the storage of hydrogen in small mobile units such as vehicles or small 68 

electronic equipment is more challenging. 69 
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These challenges can be quantified analyzing the targets set by the US Department of 70 

Energy for 2020 for automotive hydrogen systems: a hydrogen storage gravimetric 71 

capacity of 5.5 wt% and a volumetric capacity of 0.040 kg/L, with a maximum cost of 72 

333$/kg H2 stored [5]. Hydrogen storage by some of most obvious systems using 73 

compressed or condensed H2 cannot fulfill these requirements due to the physical 74 

properties of hydrogen. In the former case, high pressures (700 bar to reach a volumetric 75 

concentration of 0.042 kg H2/L) or huge volumes are needed, and in the latter, high 76 

energy consumption is unavoidable in order to maintain the required cryogenic 77 

temperatures [6]. For these reasons, solid state hydrogen storage materials have been 78 

intensively studied, as hydrates [7], metal-organic frameworks [8] or metallic and 79 

chemical hydrides [9].  80 

Ammonia borane (AB) is considered as a promising chemical hydride, due to its high 81 

hydrogen gravimetric capacity (19.6%wt H2) and volumetric capacity (140 g/L), 82 

moderate decomposition temperature, non-toxicity [10] and stability at room 83 

temperature, even in the range 50-60ºC, which is important from the point of view of 84 

safety and engineering implications [11]. The thermal decomposition of neat AB 85 

releases one mole of hydrogen per mole of AB in each of the following reactions (1), 86 

(2) and (3) [12]. In the first decomposition step, AB releases H2 forming a complex 87 

polymeric aminoborane (PAB) below its melting point (114 ºC): 88 

  BH3NH3  → BH2NH2 + H2   T > 120ºC  (1) 89 

Thereafter, PAB decomposes above 120 ºC, forming polymeric iminoborane and small 90 

fractions of undesirable volatile byproducts: 91 

  BH2NH2  → 1/3 (BHNH)3 + H2  T  > 120ºC (2) 92 

  (BHNH) → BN + H2    T > 500ºC (3) 93 

Nevertheless, the use of this compound as hydrogen storage material also faces some 94 
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important limitations. One of them is the kinetic limitation due to the long induction 95 

time needed to disrupt the dihydrogen bonding and initiate the release of hydrogen. 96 

Furthermore, AB is difficult to regenerate: after thermolysis, it is not possible to restore 97 

the initial AB by direct hydrogenation, and complex chemical regeneration routes 98 

comprising several steps are needed. Additionally, it forms foams during thermolysis 99 

that also complicate the regeneration due to the disruption of the physical structure of 100 

the material. Moreover, during the decomposition process, the emission of some volatile 101 

byproducts as borazine, diborane or ammonia can be released which could be poisonous 102 

for downstream processes and, particularly, hydrogen fuel cells. 103 

Several strategies have been tested to overcome these barriers, including the addition of 104 

catalysts as silicon (Si),  nickel (Ni), ruthenium (Ru), palladium (Pd) or zinc (Zn) [13-105 

16], confinement of ammonia borane into porous solid supports [17-21], dissolution of 106 

AB in ionic liquids [22,23] or using polymers composites [24]. Regarding confinement 107 

of AB, different supports have been tested: silica scaffolds as SBA-15 or MCM-48 [18], 108 

metal organic frameworks (MOF) [16, 25] or carbon based materials [17] among others. 109 

The amount of AB that has been successfully loaded in the support depends on their 110 

structural properties (SBET and Vpores), getting a maximum amount of 50%wt using silica 111 

scaffolds [17]. In all the cases that have been reported, hydrogen kinetic and 112 

thermodynamic properties have been improved respect to neat hydride due to the 113 

reduction in mean size. In our previous work [26], microparticles of silica aerogel were 114 

used as support, getting a maximum concentration of 5%wt AB loaded in hydrophobic 115 

silica aerogel.  Liquid antisolvent technique was used to precipitate the hydride prior 116 

supercritical carbon dioxide drying, resulting in enhanced hydrogen release kinetic 117 

compared to pure AB. 118 

In this work, we report the confinement of AB using silica aerogel as porous host. The 119 
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aerogel has been produced by liquid or supercritical CO2 drying, a technique that 120 

enables to produce a silica material with a high pore volume, and a correspondingly 121 

high potential capacity for storage of ammonia borane inside its pores. Several samples 122 

with different concentrations of AB up to 60 wt% have been prepared in order to 123 

analyze the influence of the loading of AB on the thermal and structural properties of 124 

the material. Scanning electron microscopy, N2 adsorption isotherms, FT-IR 125 

spectroscopy and X-ray diffraction have been used in order to characterize the final 126 

product prior to the measurement of hydrogen release kinetics by decomposition at 127 

80ºC.  128 

 129 

2. Experimental methods 130 

2.1 Materials 131 

Tetramethylorthosilicate (TMOS, 98.0% purity), ammonium hydroxide (NH4OH, 28.0-132 

30.0% ammonia purity) and ammonia borane (AB, 97% purity) were supplied by 133 

Sigma-Aldrich. Figure 1 shows a micrograph of neat AB as received. As shown in this 134 

Figure, AB was constituted by agglomerated particles with sizes in the range of 100 m 135 

and with a porous structure. Methanol (MeOH; 99.8% purity), n-hexane (95% purity) 136 

and dry tetrahydrofuran (THF; with maximum water of 0.0075wt %) were purchased 137 

from Panreac. Carbon dioxide (CO2, 99.95% purity) was supplied by Carburos 138 

Metálicos S.A.  139 

(FIGURE 1)      140 

2.2 Preparation of AB loaded in silica aerogel microparticles 141 

As presented in Figure 2, the procedure for the preparation of AB-loaded silica aerogel 142 

microparticles consists of three key steps: preparation of silica gel microparticles, 143 
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addition of ammonia borane by a wet impregnation method, and drying of the AB-144 

loaded gel particles with pressurized carbon dioxide in order to produce the final, dry 145 

AB-loaded aerogel microparticles. 146 

(FIGURE 2) 147 

In the first step of this procedure, hydrophilic silica alcogel was prepared using the well-148 

known method of hydrolysis condensation sol-gel reaction, using TMOS as precursor 149 

and methanol as solvent. While with this procedure it is common to prepare large gel 150 

monoliths, in this work the gel was synthetized as microparticles, in order to reduce the 151 

possible heat and mass transfer resistances that could be caused by larger aerogel 152 

monoliths. To do this, and according to the procedure described in a previous work [26], 153 

the sol-gel reaction media was dispersed in hexane under mechanical stirring, in order to 154 

obtain small droplets of TMOS in methanol dispersed within the hexane continuous 155 

phase. After 10 minutes of mechanical stirring of this mixture with a two bladed axial 156 

stirrer set at 600 rpm, an aqueous solution of NH4OH was added as condensation 157 

catalyst, which induced the gelation of TMOS. The molar ratio used was the following: 158 

1 mol TMOS: 4.4 mol MeOH: 3.3 mol H2O: 4.5 mol hexane: 0.08 mol NH4OH. As 159 

methanol or water produced during the condensation reaction can induce the 160 

decomposition of ammonia borane during the subsequent drying processes [26], after 2 161 

hours of gelation the alcogel microparticles were retrieved and immersed in THF. Gel 162 

particles were then kept during 7 days immersed in THF in a closed vessel, to let the gel 163 

age and strengthen its structure. During this ageing period, the THF solvent was 164 

renewed at least twice in order to remove the last traces of methanol and water.  165 

After the ageing process, microparticles of alcogel are ready for wet impregnation, 166 

adding a solution of ammonia borane dissolved in THF. This method has the advantage 167 

that impregnation can be performed under milder temperature conditions compared to 168 
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melt infiltration, and only one impregnation step is necessary in contrast to incipient 169 

impregnation methods [27]. Again, THF was used instead of methanol as solvent in 170 

order to avoid methanolysis and therefore the decomposition process of the hydride not 171 

only during wet impregnation (due to SiOH groups) but also during drying process [26].  172 

Different samples with different concentrations of ammonia borane were prepared, 173 

adding different amounts of hydride (0-0.4g AB dissolved in 5mL of THF) to 2 g of 174 

microparticles of alcogel (gel before drying, therefore with the pores filled with the 175 

organic solvent) in order to study his influence on the properties of the final solid 176 

product. With this, concentrations of AB in the final product ranging from 10 to 60 wt% 177 

AB were obtained, where the concentration of AB is defined as presented in equation 178 

(4): 179 

                (4) 180 

The third and last step is the removal of the organic solvent in order to obtain the final, 181 

dry AB/SiO2 particles. The drying method employed is a key aspect that determines the 182 

textural properties of the porous support. If the solvent is removed by evaporation or 183 

lyophilization, the capillary stresses associated to the formation of vapor-liquid 184 

interfaces inside the pores of the support cause fractures and a partial collapse of the 185 

pore structure of the material. In the case of SiO2 matrixes, the materials obtained by 186 

these drying methods usually show pore volumes below 0.5 – 1.0 cm
3
/g. Some 187 

examples are the well-known SBA-15 or MCM-41 mesoporous silica matrixes. In 188 

contrast, if pressurized or supercritical carbon dioxide is used to extract the solvent, the 189 

collapse of the pore structure is minimized, because under these conditions carbon 190 

dioxide can be completely miscible with the organic solvent, and therefore the 191 

extraction proceeds without formation of gas-liquid interfaces and without capillary 192 
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stresses. Due to this enhanced preservation of the pore structure, with this method it is 193 

possible to reach pore volumes in the range 2 – 4 cm
3
/g [28]. Additionally, during this 194 

drying process CO2 can act as antisolvent for solutes dissolved in the organic solvent, as 195 

it is completely miscible with the organic solvent, but it cannot dissolve high-molecular 196 

weight solutes dissolved in the organic solvent. This precipitation method is commonly 197 

referred in the literature as “Gas Anti Solvent” (GAS) or “Supercritical Anti Solvent” 198 

(SAS) precipitation [29,30]. In the case of this work, as ammonia borane is insoluble in 199 

CO2 [26], when the THF-immersed alcogels are mixed with CO2, AB dissolved in the 200 

THF that fills the pores of the alcogels quickly precipitates according to a GAS 201 

precipitation mechanism, thus favoring the formation of small particles within the pores 202 

of the gels.  203 

In a previous work, it was observed that due the interaction of AB with the SiO2 matrix, 204 

the temperature needed to initiate the decomposition of AB is drastically decreased [26]. 205 

Thus, in order to avoid the thermolysis of AB, the drying process was carried out at a 206 

near-ambient temperature of 25ºC and at a pressure of 100 bar, thus employing 207 

pressurized, liquid CO2. As in the previous work [26], a batch drying apparatus, 208 

depicted in Figure 2, was used. Using this apparatus, the alcogels immersed in THF 209 

were loaded into the extraction vessel and the system was pressurized with CO2 using an 210 

air-driven piston pump. The system was slowly pressurized at a rate of 0.5 bar/min in 211 

order to avoid breakages in the alcogel/aerogel and mechanical stresses that could 212 

damage the structural properties of the final product. Once the desired pressure and 213 

temperature were reached, the recirculation pump that connects the extraction vessel 214 

with the CO2 reservoir was connected, thus bubbling CO2 through the THF-immersed 215 

alcogels and enhancing the extraction of the solvent. As CO2 gradually becomes 216 

saturated with the solvent during the extraction process, CO2 in the system was renewed 217 
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after a predefined extraction time.  In this work, four drying cycles were needed (each 218 

cycle lasting 60 min, 60 min, 120 min and finally 40 min) to assure the total elimination 219 

of organic solvent from the final solid sample. During the CO2 renewal step after every 220 

cycle, the extraction vessel was isolated closing its inlet-outlet valves and kept at the 221 

pressure conditions of the drying process to avoid the damages in the structure of the 222 

aerogels that could be caused by repeated pressurization-depressurization processes. 223 

The rest of the circuit was depressurized till ambient pressure and refilled with the air-224 

driven pump until the extraction pressure of 100 bar. After the last cycle, the entire 225 

system was slowly depressurized at a rate of 0.5 bar/min, and samples were retrieved 226 

from the extractor and stored until further analysis. 227 

Finally, neat ammonia borane was also recrystallized by GAS process using pressurized 228 

CO2 as antisolvent. These experiments allow evaluating if the recrystallization has a 229 

separate, specific influence on the hydrogen release properties of the material. As during 230 

aerogel drying AB precipitates inside the pores of the aerogel by a similar mechanism as 231 

in these GAS experiments, a similar influence of the recrystallization may be expected 232 

that would be combined with the influence of the nanoconfinement within the pores of 233 

the aerogel. In these GAS experiments, the same apparatus and experimental procedure 234 

previously described for aerogel drying experiments was used, loading the extraction 235 

cell with a solution of AB in THF (concentration: 24 mg AB/mL THF).      236 

2.3 Characterization of AB loaded in silica aerogel 237 

2.3.1 Properties of AB/SiO2 238 

Structural properties were analyzed by Fourier Transform Infrared Spectroscopy (FTIR 239 

Bruker, model Alpha with a Platinum-ATR single diffraction sampling module). These 240 
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analyses were performed before and after dehydrogenation for every concentration of 241 

AB loaded in silica aerogel. 242 

The N2 adsorption-desorption isotherms data were acquired using a Micrometrics 243 

Analyzer (ASAP 2020) with N2 at -196ºC as sorbate. Prior to the analyses, the samples 244 

loaded with AB were outgassed under vacuum at room temperature for 2 hours and the 245 

silica aerogel without any impregnation compound was degassed under vacuum at 246 

150ºC for several hours (3-5) until the mass of the sample was constant. Total specific 247 

surface areas were determined by the multipoint BET method at P/P0 = 0.3, and total 248 

specific pore volumes were evaluated from N2 uptake at P/P0 = 0.99. Pore sizes were 249 

calculated using BJH equations. 250 

Scanning electron microscopy (SEM) was performed using a Jeol JSM 820 equipment. 251 

Energy Dispersive Microanalysis (EDX) was done with microanalysis Bruker Quantax 252 

2000 at 20Kv obtaining 10000 signals/second. No metallic coating pretreatment was 253 

necessary prior to analyses.  254 

X-ray diffraction (XRD) analyses (model Bruker Discover D8) were done at CuKα 255 

radiation, λ=1.5418 Å, 2θ angle ranging from 5º to 7º with a scan rate of 4 s/step and a 256 

step size of 0.020º. These analyses were also performed before and after thermal 257 

dehydrogenation. 258 

2.3.2 Thermal decomposition properties 259 

Thermal gravimetric analyses (TGA) were undertaken in a Mettler Toledo TGA system 260 

from 30 to 300ºC at 5ºC/min heating rate under a nitrogen flow rate of 60 mL/min. 261 

Differential scanning calorimetry (DSC) assays were carried out in a Mettler Toledo 262 

model 822e with a ceramic sensor of high sensitivity. Nitrogen gas flow was also used 263 
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at 60 mL/min, with the same heating rate (5ºC/min) from 0 to 250ºC using 5-8 mg of 264 

sample. 265 

Kinetic measurements of hydrogen release by thermolysis were carried out using a 266 

stainless steel cell of 4.7 mL equipped with a certified pressure transducer model 267 

DPI104 provided by GE Druck (Germany), which had an uncertainty of ± 0.01 bar and 268 

was connected to a data acquisition computer. The cell was loaded with about 100 mg 269 

of sample, determining the precise sample weight with an analytical balance with an 270 

uncertainty of ± 0.0001 g. Then, the cell was subjected to vacuum, down to an absolute 271 

pressure below 0.04 bar. The sample was maintained under vacuum at ambient 272 

temperature for at least 30 min, in order to remove small amounts of entrapped gases or 273 

moisture that could influence the measurement. Afterwards, the sample was heated to 274 

80ºC introducing the cell inside a chromatographic oven. The pressure evolution in the 275 

cell was recorded every 10 seconds using the pressure transducer acquisition software. 276 

The amount of hydrogen released was calculated from pressure recordings using the 277 

Hydrogen Reference Equation of State [31] implemented in the Reference Fluid 278 

Thermodynamic and Transport Properties Database (REFPROP) software developed by 279 

the National Institute of Standards and Technology (NIST) [32]. 280 

3. Results and discussion 281 

3.1 Incorporation of ammonia borane in silica aerogel 282 

3.1.1 FT-IR studies of neat AB and AB/SiO2 before thermal decomposition  283 

Figure 3 shows the FT-IR spectra of neat and recrystallized AB [33-35], and of samples 284 

with AB-loaded silica aerogel with different concentrations of AB. In the spectra of neat 285 

AB, absorption peaks from 3000 to 3500 cm
-1

 can be associated to N-H stretching 286 

whereas B-H stretching appears in the range 2000-2500cm
-1

. Other characteristic peaks 287 
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in the IR of neat AB appear at 1602 cm
-1

 (N-H deformation), 1372 cm
-1

(which may be 288 

attributed to double B-N bonds [33] or N-H bonds [34]), 1155 cm
-1

 (B-H scissor), 1051 289 

cm
-1

 (N-B-H rock), and N-B bond in the range 720-800 cm
-1

. As shown in Figure 3, the 290 

FT-IR spectrum of recrystallized AB is nearly identical as that of neat AB, indicating 291 

that AB has not undergone degradation during the recrystallization. 292 

As presented in Figure 3, the spectrum of silica aerogel shows characteristic peaks at 293 

798 cm
-1

 (Si-O-Si bond), 950cm
-1

 (Si-OH) and 436 cm
-1 

(O-Si-O) [36]. Samples with 294 

silica aerogel loaded with AB yield a combination of the characteristic spectra of AB 295 

and silica. AB peaks corresponding to B- H bonds near 2000-2500cm
-1 

and N-H bonds 296 

near 1600 cm
-1

 are particularly prominent. It can be also observed that, as expected, 297 

these peaks show higher intensities in samples with higher proportion of AB. These 298 

results indicate that AB is present in samples and has also not undergone degradation 299 

during drying of silica aerogel with CO2. 300 

(FIGURE 3) 301 

3.1.2 Textural properties of AB-loaded silica aerogels 302 

Figure 4 shows the nitrogen adsorption and desorption isotherms of different samples, 303 

and Table 1 shows the textural properties obtained from these isotherms. All these 304 

isotherms correspond to class IV according to the classification of International Union 305 

of Pure and Applied Chemistry (IUPAC), which is typical of mesoporous materials. 306 

They show hysteresis due to the capillary condensation, which is observed at higher 307 

relative pressure in samples with a higher amount of AB.  308 

(FIGURE 4) 309 

(TABLE 1) 310 
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The support obtained in this work shows the typical textural properties of silica aerogels 311 

reported in many previous works [37, 38]. Comparing to other mesoporous materials, 312 

the surface area of the silica aerogel obtained in this work is similar to that of the Santa 313 

Barbara Amorphous (SBA) or MCM silica materials used in previous studies of 314 

nanoconfination of AB, but the pore volume is almost twice as high [18, 39], which is a 315 

favorable property since this higher pore volume can host a higher concentration of AB. 316 

Moreover, both BET and BJH analyses (see table 1) demonstrate that the surface area 317 

and the volume of free pores decrease linearly as concentration of AB increases, 318 

variations that correspond well with the amount of AB incorporated into the material 319 

[17]. Regarding the BJH distributions of pore volume, the bimodal distribution of the 320 

empty support is converted to a unimodal distribution for the sample with highest 321 

concentration of AB, as the pores with lower size are filled first with AB, leaving 322 

partially empty the biggest ones. In the case of the sample with the highest 323 

concentration of AB (60 wt%), only 8% of the pore volume remains free, indicating that 324 

this concentration of AB is close to the maximum host capacity of the aerogel. These 325 

results suggest that AB was successfully confined inside the pores of the aerogel. 326 

In comparison, in previous works the maximum amount of ammonia borane loaded in 327 

SBA or MCM silica supports by a conventional solvent infiltration method was 50 wt% 328 

[18, 40], but it was observed that when the concentration of AB was higher than a 33%, 329 

it started to aggregate outside the pores of the silica support as the internal pore volume 330 

of the material became saturated [25]. In the case of metal organic frameworks (MOF), 331 

from 20% wt AB [16] till 50% wt AB [41] has been encapsulated depending on the 332 

impregnation method or the MOF used. Also, carbon cryogels have been used as 333 

supports employing a wet impregnation method, but achieving a maximum 334 
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concentration of only 24%wt AB [17] due to the comparatively lower surface area (300 335 

m
2
/g) and volume of pores (0.70 g/cm

3
) of this support. 336 

3.2 Structural characterization of AB-loaded silica aerogels 337 

3.2.1 Morphology of neat AB, recrystallized AB and AB loaded in silica aerogel 338 

Figure 5-A shows a SEM micrograph of AB recrystallized from THF solutions using 339 

pressurized CO2 as antisolvent. As observed in this figure, the compound is 340 

recrystallized as highly agglomerated flat particles. Due to this morphology, it is 341 

difficult to obtain precise particle size measurements, but the size estimated by image 342 

analysis of SEM micrographs is in the range of 0.5 m of thickness and 5 m of length, 343 

values that are considerably smaller than the dimensions of neat AB particles as 344 

presented in Figure 1. Furthermore, the recrystallized particles do not show the porous, 345 

intertwined structure observed in neat AB (Figure 1). 346 

Figure 5-B shows a micrograph of silica aerogel loaded with a 30 wt% of AB. It can be 347 

observed that the host silica material is constituted by prismatic particles of 10 – 20 m, 348 

in agreement with the results obtained in a previous work [26]. Furthermore, in SEM 349 

micrographs of AB-SiO2 samples (Figure 5-B), particles with the flat morphology and 350 

the dimensions observed in the recrystallized AB (Figure 5-A) are not observed, 351 

suggesting that AB did not precipitate as segregated particles outside the aerogel. This 352 

impression is confirmed by the results of mapping assays of silica and nitrogen 353 

presented in Figure 5. Silica mapping confirms that all the particles that can be observed 354 

in the SEM micrograph presented in Figure 5-B indeed correspond to silica aerogel, 355 

while nitrogen mapping show that ammonia borane is dispersed within all these 356 

particles and is not present as segregated crystals. Therefore it can be concluded that AB 357 

is homogenously embedded in the pores of the aerogel. Similar results were obtained in 358 
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the mapping of samples with higher concentration of AB, up to the maximum 359 

concentration of 60 wt% tested in this work. 360 

(FIGURE 5) 361 

3.2.2 XRD patterns  362 

Figure 6 shows the XRD pattern of neat ammonia borane, which matches well with 363 

JCPDS reference 01-074-0894 suggesting the typical polycrystalline structure with 364 

tetragonal lattice symmetry, in agreement with literature information about the structure 365 

of AB at ambient temperature [42]. The crystallite size estimated using the Scherrer’s 366 

equation formula is 40 nm, and the dominant sharp peak of the pattern is located at 367 

23.75º, corresponding to (110) planes. After recrystallization by GAS process, slight 368 

modifications in the XRD pattern can be observed at 2 = 17 and 30º. A similar 369 

modification can be observed in silica-loaded AB samples, although with less defined 370 

peaks due to the strong signal produced by the silica support. This modification in the 371 

pattern can suggest the formation of diammoniate of diborane (DADB), an isomer of 372 

AB. This compound shows some differences regarding the hydrogen release mechanism 373 

compared to its isomer AB: the temperature for decomposition  of DADB is about 10ºC 374 

lower than that of AB, and DADB undergoes solid-phase decomposition without 375 

melting or induction period even at moderate temperature, while AB suffers from a long 376 

induction period prior to H2 release [43]. Therefore, the formation of this compound 377 

may justify some of the observed thermal properties, as it will be discussed in the 378 

following sections. 379 

Nevertheless, in GAS recrystallized samples, the dominant pattern is equivalent to that 380 

of neat AB, also corresponding to tetragonal crystal structure is observed, although 381 

diffraction peaks are not so well defined, and the estimated crystallite size increases to 382 
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75 – 150 nm. In the case of AB loaded in silica aerogel, the peaks are merged, therefore 383 

suggesting a reduction of crystallinity or an increased inhomogeneity in the properties 384 

of the crystals   due to the incorporation in the pores [44]. Additionally, as shown in 385 

Figure 5b it can be seen that the XRD pattern of amorphous silica, characterized by a 386 

broad peak around 24º, is overlaid to the dominant peaks related to AB. Therefore 387 

results show that AB retains its crystalline structure after nanoconfination within the 388 

pores of the aerogel, with estimated crystallite sizes in the range 100 – 200 nm, similar 389 

to those obtained by recrystallization of AB by GAS process.  390 

(FIGURE 6) 391 

3.3 Thermal characterization of AB-loaded silica aerogels 392 

Figure 7 shows the differential scanning calorimetry (DSC) traces of neat and 393 

recrystallized AB compared to samples in which the hydride is loaded in silica aerogel. 394 

In the case of the curve of neat AB, a sharp endothermic peak is observed whose onset 395 

temperature (Ton=108.5 ºC) and peak temperature (Tp=110.8ºC) is dramatically reduced 396 

when AB is loaded in silica aerogel (see table 2). This first peak is associated to the 397 

melting point [14] or the dissociation of the intermolecular hydrogen bonding [18]. The 398 

reduction or elimination in this first peak suggests that the degree of hydrogen bond in 399 

the samples in which AB is embedded in silica aerogel is decreased, favoring the 400 

reduction of the induction time. A similar result has been observed when AB was 401 

embedded in other silica supports [18]. Regarding recrystallized AB, DSC results also 402 

show reduction in the onset and peak endothermic temperatures, maintaining the shape 403 

of the curve of neat AB. In this case, variations in characteristic temperatures of the 404 

DSC traces can be associated to the reduction in the mean particle size achieved by 405 

recrystallization of AB.  As described by Varin et al [45], a reduction of particle size 406 

into the subicrometric or nanometric scale is generally associated to a reduction of the 407 
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onset and peak temperatures of hydrogen evolution thermal events, due to the 408 

destabilization of the material induced by the increased particle surface. Additionally, 409 

the reduction of onset temperatures and induction time can be associated to the 410 

formation of DADB by recrystallization suggested by XRD assays. 411 

Similar results have been obtained in other works where AB is confined in different 412 

supports. In the case of SBA and MCM silica supports, reductions in the onset and peak 413 

temperatures to 48ºC and 100ºC have been reported [18], but as previously described 414 

lower temperatures have been obtained in this work. This fact can be due to the higher 415 

volume of pores of aerogel support that avoids the agglomeration of AB in meso-416 

channels. Therefore higher contact between the particle and the surface of the silica 417 

aerogel takes place, enhancing the influence of silica surface groups on the 418 

decomposition mechanism. In experiments with MOFs [42] or carbon cryogels [17, 20] 419 

as supports, similar modifications in the thermal response of the material have been 420 

reported. However, Srinivas et al. [16] observed a reduction of 30ºC in the onset and 421 

peak temperatures of decomposition using MOFs, whereas in our case a displacement of 422 

almost 70ºC is obtained.  423 

Moreover, DSC results indicate a reduction of the exothermic enthalpy associated with 424 

hydrogen release as the proportion silica/AB is increased. The measured enthalpy of 425 

reaction for H2 release from neat AB is -24.9 kJ/mol AB, which is in good agreement 426 

with results reported in literature. However, when the proportion silica/AB is increased, 427 

the corresponding enthalpy of reaction changes to -10.9 kJ/mol AB for the sample with 428 

60% of AB, and -5.5 kJ/mol AB for the sample with 30% of AB. A reduction of the 429 

enthalpy of reaction for H2 release from AB was also observed by Gutowska et al. [40] 430 

in their studies of incorporation of AB in mesoporous SBA-15 silica scaffold. However, 431 

these authors report a more drastic variation of the enthalpy to -1.0 kJ/mol AB. These 432 
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authors indicate that the reason for the reduced exothermicity is the suppression of the 433 

formation of boron compounds as byproducts of the PAB that is the main 434 

decomposition product of AB according to reaction 1, which had the favorable 435 

consequence of reducing the production of gaseous byproducts.  436 

(TABLE 2) 437 

(FIGURE 7) 438 

This hypothesis agrees well with the results obtained in this work by TGA assays. 439 

Figure 8 shows the results of TGA analysis performed on neat AB and AB-loaded silica 440 

aerogel. In the case of neat AB, two important weight loss steps, which correspond to 441 

the decomposition of the hydride, are observed: the first one till 129ºC corresponds to a 442 

weight loss of 12.7 wt% and the second one, which finishes at 213ºC, corresponds to a 443 

weight loss of 27.5 wt%. In comparison, and in agreement with the results of DSC 444 

assays, TGA analysis shows that the AB confined in silica aerogel initiates its 445 

decomposition at lower temperatures. It is also noticeable that in this case, weight loss 446 

is not confined to sharp steps at defined temperatures, but it proceeds continuously over 447 

the temperature range studied. In particular, at temperatures above 200ºC, where as 448 

previously discussed neat AB does not experience any additional weight losses, a 449 

continuous weight loss is still observed in the case of AB confined in aerogel. This 450 

result indicates that the third step of the thermal decomposition mechanism, indicated in 451 

reaction (3), also begins at lower temperatures in the case of confined AB compared to 452 

neat AB. Moreover, as shown in Table 2, in both cases the total weight loss per unit 453 

mass of AB in the sample is significantly larger than the maximum amount of hydrogen 454 

that can stored in the compound. Similar results have been reported in [18], suggesting 455 

that when AB is heated to high temperatures above 200ºC, other gases apart from 456 

hydrogen are produced, as borazine, diborane, ammonia, etc. However, analyzing the 457 
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results reported in Table 2, it is noticeable that the total amount of volatile compounds 458 

produced by heating up to 300ºC is reduced when AB is confined in silica aerogel. This 459 

result, together with the variations in DSC assays of confined AB presented before, 460 

suggest that interactions between AB and the silica support are taking place that 461 

influence the decomposition mechanism of AB. Such interactions were suggested to 462 

happen between AB and hydroxyl groups from the silica surface of the host by Lai et al. 463 

[18]. These groups can interact   with the BH3 group, loosening the covalent bond 464 

between BH3 and NH3 groups of AB, thus destabilizing and promoting the 465 

decomposition of the compound. Furthermore, by this interaction BH3 is kept bound to 466 

the scaffold reducing the production of borazine and precluding the formation of 467 

poliiminoborane 468 

(FIGURE 8) 469 

In figure 9, FTIR of neat AB and AB loaded in silica aerogel is shown before and after 470 

dehydrogenation at 80ºC. It is observed that most of the peaks at frequencies related to 471 

N-H and B-H bonds are broadened, shifted and decreased of intensity which indicates 472 

the disruption of the bonds due to the release of hydrogen [13] in both samples. The 473 

same behavior is observed for all the concentrations of AB loaded in silica aerogel, 474 

although it is more pronounced at higher concentrations of AB. B-N band in the range 475 

700-900 cm
-1

, which is observed in all the samples, is weakened but is still detected 476 

after dehydrogenation; this fact clarifies that B-N is not disrupted and ammonia 477 

formation is avoided during the decomposition [14]. On the other hand, in the sample in 478 

which AB is loaded, the bonds related to silica are present without any change after 479 

thermal treatment due to its stability at these conditions. 480 

(FIGURE 9) 481 



 

21 
 

Regarding the crystallinity of the samples after thermal dehydrogenation, figure 10 482 

shows XRD analyses of byproduct after isothermal dehydrogenation at 80ºC. According 483 

to ICDD 00-019-0418, 2θ= 20.1º, 23.6º and 41.1º are assigned to amorphous PAB 484 

(NH2BH2)5 [46]. In the case of AB/SiO2 samples, amorphous silica peak is present apart 485 

from amorphous PAB byproduct. 486 

(FIGURE 10) 487 

3.4 Kinetics of hydrogen release by thermolysis at 80ºC 488 

Figure 11 shows the kinetics of hydrogen release by thermolysis at 80ºC of neat AB 489 

compared with AB confinement in silica aerogel. Results in this figure are normalized 490 

reporting the amount of hydrogen released by unit mass of AB in the sample. Due to the 491 

design of the cell used to measure kinetics, it was not possible to analyze samples of the 492 

gas evolved during themolysis. However, it is assumed that at this temperature, the gas 493 

which is released is H2 [12, 19, 41, 47] and no other volatile gases are present in the gas 494 

stream in neat AB nor confined in silica aerogel.  Regarding the shape of the curve in 495 

neat AB, it follows a sigmoidal kinetic, typical of nucleation and growth pathway, with 496 

a long induction time of more than 2 h, as reported in previous works [48].  After 497 

confinement in silica, the induction time is reduced significantly. This means that the 498 

silica could act as a catalyst (SiOH groups) [40] creating defect sites in the support that 499 

initiate the decomposition at lower temperature. On the other hand, at lower 500 

concentration of AB in the solution (prior to the drying), the hydride could precipitate in 501 

the pores of the silica with lower mean size as was also suggested with XRD analyses 502 

and corroborated in BET results. This suggests that smaller particles have more contact 503 

with the surface of the silica and an easier way to form different bonds between the two 504 

free pair of electrons of O in the Lewis base of Si-O-Si or Si-OH bond from the silica 505 
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with BH3 or NH3 from AB. As result, the intermolecular hydrogen bond is reduced, 506 

following the mechanism proposed by Lai et al. [18].  507 

In the case of neat AB, 2 hours are needed to start releasing H2, and more than 4 hours 508 

to get half of its content in H2 at this temperature (0.025gH2/gAB) whereas only it takes 509 

22 minutes in the case of 13%AB loaded in silica aerogel. This fact shows the 510 

improvement of silica aerogel as support for this chemical hydride system.  511 

Regarding to recrystallized sample, it can be observed that the release profile maintains 512 

the sigmoidal shape characteristic of neat AB, with a slower hydrogen release than 513 

samples loaded in silica aerogel during the first 30 min of thermolysis. However, 514 

compared with neat AB, with the particle size reduction achieved by GAS 515 

recrystallization the induction time is drastically reduced and the release of hydrogen is 516 

accelerated, to the point that after one hour an equivalent amount of hydrogen is 517 

released from GAS-recrystallized AB as from AB loaded silica aerogel with a 30 wt% 518 

of AB. 519 

(FIGURE 11) 520 

As a complement to Figure 11, Table 3 presents the total hydrogen release per unit mass 521 

of solid product (AB + silica aerogel support). Results in this table clearly indicate the 522 

weight penalty caused by the use of silica aerogel as porous host, as this material does 523 

not contribute to the hydrogen storage capacity, thus reducing the total gravimetric 524 

capacity of the material [27]. However, it can be seen that this disadvantage is 525 

counterbalanced by a faster hydrogen release during the first 1-2 h of thermolysis. 526 

(TABLE 3) 527 

Moreover, there is a significant visual change in the morphology of neat AB in contrast 528 

to AB encapsulated in silica aerogel. Figure 12 shows the different result of AB after 529 
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thermal decomposition at 80ºC. In the case of neat AB, foaming process takes place at 530 

the same time that H2 is released from the hydride. Thus, even if the material was 531 

micronized before thermolysis, this morphology and its associated advantages are 532 

completely lost during the thermolysis and therefore in possible future hydrogen cycles, 533 

if the material is regenerated [49]. However, when AB is encapsulated in silica aerogel, 534 

this process is avoided obtaining particles with the same physical appearance. To 535 

confirm this observation, Figure 13 presents SEM/EDX micrographs of the 536 

60%AB/SiO2 sample after thermolysis. As shown in this figure, the original 537 

morphology of the material is preserved after the thermolysis. Furthermore, as indicated 538 

by the results of nitrogen mapping, the decomposition products of AB remain 539 

homogeneously dispersed within the SiO2 aerogel matrix. Therefore it can be concluded 540 

that by incorporation of AB inside the aerogel the morphological variations of the 541 

material due to foaming are avoided. 542 

(FIGURE 12) 543 

(FIGURE 13) 544 

4. Conclusions 545 

Ammonia Borane has been recrystallized and nanoconfined inside the pores of silica 546 

aerogel by a novel process, based on a simultaneous aerogel drying and ammonia 547 

borane gas antisolvent precipitation using compressed carbon dioxide. Due to the 548 

favorable textural properties of the aerogel materials obtained with this method, it has 549 

been possible to load aerogels with up to 60 wt% of ammonia borane, without blocking 550 

of pores and with a homogeneous dispersion of ammonia borane within the aerogel. By 551 

analysis of the thermolysis process, it has been observed that by nanoconfinement the 552 

temperature required to initiate the thermolysis process is reduced and the release 553 

kinetics are accelerated as they do not show induction time. Furthermore, by 554 



 

24 
 

nanoconfination of AB, the morphological properties of the material are stabilized and 555 

foaming is eliminated, which could be favorable properties for a subsequent material 556 

regeneration process. The feasibility of implementation of the multi-step chemical 557 

process required to re-hydrogenate AB when this compound is embedded in the silica 558 

matrix remains to be tested. 559 

 560 

Supplementary Information 561 

Video 1: Thermolysis of neat ammonia borane at 80ºC. Time is accelerated by a factor 562 

of 64. 563 

Video 2: Thermolysis of 60%AB/SiO2 sample at 80ºC. Time is accelerated by a factor 564 

of 64. 565 
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Figure Captions 658 

Figure 1. - SEM micrograph of neat ammonia borane as received 659 

Figure 2. - Steps for preparation of silica aerogel microparticles loaded with ammonia 660 

borane. 661 

Figure 3. FTIR spectra of a) silica aerogel b) neat AB c) recrystallized AB 662 

d)30%AB/SiO2 e)60%AB/SiO2. Curves are vertically displaced for clarity 663 

Figure 4.-Nitrogen adsorption-desorption isotherms and BJH pore size distribution of 664 

silica aerogel and AB loaded in silica with different concentration (   ) adsorption (  ) 665 

desorption 666 

Figure 5.- SEM images of A) Recrystallized  AB after recrystallization in THF using 667 

liquid CO2 as drying method B) 30%AB loaded in silica aerogel and mapping of sample 668 

B (blue is referred to silica and red to Nitrogen)  669 

Figure 6. –a) XRD of neat ammonia borane, recrystallized ammonia borane and AB 670 

loaded in silica aerogel with different concentrations b) Amplification of XRD signal 671 

showing the characteristic pattern of silica aerogel. Curves are vertically displaced for 672 

clarity 673 

Figure 7. - DSC curves of AB and AB loaded in silica aerogel with different 674 

concentration. The curves are normalized according to the weight of AB, and vertically 675 

displaced for clarity. 676 

Figure 8. - TGA curves of AB and AB loaded in silica aerogel  677 

Figure 9. - FTIR spectra of neat AB and AB loaded in silica aerogel before and after 678 

thermolysis dehydrogenation at 80ºC. Curves are vertically displaced for clarity 679 

Figure 10. - XRD of neat AB and AB loaded in silica aerogel after thermolysis 680 
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dehydrogenation at 80ºC. * indicates the peaks related to polyaminoborane (PAB) and + 681 

refers to amorphous silica peak 682 

Figure 11. - Isothermal kinetic of hydrogen releases from AB and AB loaded in silica 683 

aerogel with different concentrations at 80ºC. (The curves are normalized according to 684 

the amount of AB in the sample)  685 

Figure 12.- Photographs of neat AB and 60%AB/SiO2 before and after the isothermal 686 

H2 release by thermolysis at 80ºC a) neat AB before thermolysis, b) neat AB after 687 

thermolysis, c) AB/SiO2 before thermolysis, d) AB-SiO2 after thermolysis. Video clips 688 

of the thermolysis process are provided as Supplementary Information 689 

Figure 13.- SEM image of 60%AB/SiO2 sample after thermolysis (A), with results of N 690 

(B) and Si (C) mapping. 691 

692 
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Tables 693 

 694 

Table 1.-BET surface areas and BJH pore volumes and pore diameters of silica aerogel 695 

dried with liquid or supercritical CO2 at and AB-loaded silica aerogel  696 

Sample BET surface area  Pore volume Pore diameter 

  (m
2
 g

-1
) (cm

3 
g

-1
) (nm) 

SiO2 sc drying 723.1±2.0 1.35 7.6 

SiO2 Liquid drying 887.3±1.4 1.94 8.7 

13AB/SiO2 216.6±0.3 0.82 11.1 

30AB/SiO2  137.3±0.3 0.56 10.9 

60AB/SiO2 30.4±0.1 0.17 13.7 

 697 

698 



 

32 
 

Table 2. - Temperature data and weight losses of neat and recrystallized AB vs loaded 699 

in silica aerogel with different concentration obtained from DSC and TGA analyses 700 

respectively. 701 

702 

Sample 

Ton1 

(ºC) 

Tp1  

(ºC) 

Ton2 

(ºC) 

Tp2 

(ºC) 

Total wt 

loss per 

wt AB 

Neat AB 108.5 110.8 113.9 114.1 40.2 

Recrystallized AB  70.5 77.9 102.4 113.4 - 

60% AB/SiO2 37.6 62.3 84.8 108.9 33.0 

30% AB/SiO2 39.5 68.7 83.1 99.0 
- 
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Table 3. - Amount of H2 released at different times by isothermal thermolysis at 80ºC in 703 

neat and recrystallized vs. AB loaded in silica aerogel with different concentration 704 

  15min  30min  45min  1h 2h final 

Sample mgH2/gtotal mgH2/gtotal mgH2/gtotal mgH2/gtotal mgH2/gtotal mgH2/gtotal 

neat AB 0 0 0 0 2 52 

AB recrystallized 1,66 7,45 20,19 30,45 43,98 52 

13%AB/SiO2 2,26 4,28 5,28 5,80 6,38 6,76 

30%AB/SiO2 1,69  4,43 7,30 9,07 12,31 14,56 

60%AB/SiO2 2,48 9,42 17,79 20,65 27,27 32,24 

705 
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Figures 706 

 707 

 708 

Figure 1. - SEM micrograph of neat ammonia borane as received 709 

710 
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 711 

Figure 2. - Steps for preparation of silica aerogel microparticles loaded with ammonia 712 

borane. 713 

714 
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 715 

Figure 3. FTIR spectra of a) silica aerogel b) neat AB c) recrystallized AB 716 

d)30%AB/SiO2 e)60%AB/SiO2. Curves are vertically displaced for clarity. 717 

718 
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 719 

Figure 4.-Nitrogen adsorption-desorption isotherms and BJH pore size distribution of 720 

silica aerogel and AB loaded in silica with different concentration (   ) adsorption (  ) 721 

desorption 722 

723 
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 724 

Figure 5.- SEM images of A) Recrystallized  AB after recrystallization in THF using 725 

liquid CO2 as drying method B) 30%AB loaded in silica aerogel and mapping of sample 726 

B (blue is referred to silica and red to Nitrogen)  727 

728 



 

39 
 

 729 

Figure 6. –a) XRD of neat ammonia borane, recrystallized ammonia borane and AB 730 

loaded in silica aerogel with different concentrations b) Amplification of XRD signal 731 

showing the characteristic pattern of silica aerogel. Curves are vertically displaced for 732 

clarity 733 

734 
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 735 

Figure 7. - DSC curves of AB and AB loaded in silica aerogel with different 736 

concentration. The curves are normalized according to the weight of AB, and vertically 737 

displaced for clarity. 738 

739 
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 740 

Figure 8. - TGA curves of AB and AB loaded in silica aerogel  741 

742 
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743 
Figure 9. - FTIR spectra of neat AB and AB loaded in silica aerogel before and after 744 

thermolysis dehydrogenation at 80ºC. Curves are vertically displaced for clarity 745 

746 



 

43 
 

 
* 

* 

* 
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 747 

Figure 10. - XRD of neat AB and AB loaded in silica aerogel after thermolysis 748 

dehydrogenation at 80ºC. * indicates the peaks related to polyaminoborane (PAB) and + 749 

refers to amorphous silica peak 750 

751 
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 752 

Figure 11. - Isothermal kinetic of hydrogen releases from AB and AB loaded in silica 753 

aerogel with different concentrations at 80ºC. (The curves are normalized according to 754 

the amount of AB in the sample)  755 

756 
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 757 

               758 

Figure 12.- Photographs of neat AB and 60%AB/SiO2 before and after the 759 

isothermal H2 release by thermolysis at 80ºC a) neat AB before thermolysis, b) 760 

neat AB after thermolysis, c) AB/SiO2 before thermolysis, d) AB-SiO2 after 761 

thermolysis. Video clips of the thermolysis process are provided as 762 

Supplementary Information 763 

764 

A B 
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A B C

 765 

Figure 13.- SEM image of 60%AB/SiO2 sample after thermolysis (A), with results of N 766 

(B) and Si (C) mapping. 767 


