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Big Data in Human Genomics/Proteomics: The amount of data generated in our world has increased
exponentially so that we now live in the world of Big Data. A new field has arisen that is called Data
Analytics/Data Science. In genomic science, we have 23 chromosomes leading to 20,000-25,000 genes,
3-billion-letter (ATCG) in the human genome project, millions of protein sequences, more than 100,000
protein structures, each with many large number of variables. There are many challenges from drug
discovery to stem cell research. Image Courtesy of U.S. Human Genome Project and Professor Gabriela
C. Freue.
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1 Introduction
This work is motivated by a problem encountered in Molecular Biology where researchers are
interested in correlating angular data from two oscillatory systems. The observations are the
time to peak expression (also known as phase angle) of periodic genes under two different con-
ditions (dose levels, organs or even species). In particular, we deal here with expression data
from genes participating in the cell-cycle. Cell-biologists are often interested in drawing infer-
ences regarding the phase angle of cell-cycle genes since they are considered to be associated
with the gene’s biological function (Jensen et al 2006).
Several distinctive features should be taken into account to derive a correct model for this ap-
plication. First, since the cell division cycle is a carefully orchestrated and periodic process, the
peak expressions of cell-cycle genes follow an order according to their functions and the same
order should apply for the tow different conditions (which will play the role of the response and
the explicative variables). Then, the model should assure that the response must run exactly one
cycle as the explicative runs one cycle without moving back. Second, since cells goes through
4 phases with different biological functions and even with different lengths across species, the
model approach should be flexible to deal with possible different correlations from phase to
phase.
While the regression model proposed in Downs and Mardia (2002) is likely to perform well
when the duration of time spent by a cell in different phases of a cell-cycle is same across
all species, it may be too rigid when the duration of time is not same across different species
as the lengths of the four phases in which the cell-cycle is divided change from one species
to another, so that the functional relationship between species may be different in each of the
phases. On the other side, the non-parametric alternatives, in particular the proposal developed
in Di Marzio et al (2013) do not always fulfill the two important conditions, commented above,
that the regression should verify: monotonicity and synchronicity.
In this paper we develop regression models able to deal with these features. In particular, we
introduce a general isotonic regression model and a flexible piecewise regression model that
can be useful for drawing inferences when the duration of time spent in different phases by a
cell varies across species.

2 Circular Isotonic Regression models
Let (ψi, θi), i = 1, ..., n denote a random sample from the circular response Ψ and from the
circular independent variable Θ. Assume that the ψi values come from independent von Mises
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distributions M(φi, κ).

2.1 The general Isotonic Model

The CIRE (Circular Isotonic Regression Estimator) of Ψ is defined as

Φ̃(O) = arg min
Φ∈CΘ

SCE(Ψ,Φ),

where CΘ is the circular order induced by the independent Θ variable,

CΘ = {Φ ∈ [0, 2π)n : φa ≤ φb ≤ φc ≤ φa ⇔ θa ≤ θb ≤ θc ≤ θa}.

The CIRE exists, is almost sure unique, may be obtained from circular means of adjacent angles
and is the restricted MLE under the Von-Mises model (see Rueda et al 2009).
The Circular Isotonic regression Model is simply defined as Φ = f(Θ) where f preserves the
order induced by Θ.

2.2 A Piecewise Isotonic Model

Consider k different sectors (pieces) in the independent variable. Then, we have (ψij, θij) with
i = 1, ..., k and j = 1, ..., n where ni is the number of observations in sector i, and θ∗i , i =
1, 2, ..., k are the sector borders or change points with θ∗i < θij ≤ θ∗i+1 and θ∗k+1 = θ∗1.
The Piecewise Circular-Circular Model is defined as

φij = µ+ 2 arctan

(
ωi tan

1

2
(θij − νi)

)
, subject to,

ωi tan
1

2
(θ∗i − νi) = ωi−1 tan

1

2
(θ∗i − νi−1) for i = 1, . . . , k,

where ν0 = νk, ω0 = ωk, µ is a global location parameter quantifying the rotation of the
response that allows a better congruence with the independent variable; νi is the location pa-
rameter in sector (θ∗i , θ

∗
i+1) and ωi is the slope parameter in the sector (θ∗i , θ

∗
i+1).

In the particular application of cell-cycle data, the sectors are determined by four phases of the
cell-cycle and the estimation problem is solved via maximum likelihood subject to the following
restrictions:
Continuity Restrictions:

ωi =
tan
(
θ∗i+1−νi+1

2

)
tan
(
θ∗i+1−νi

2

) ωi+1 for i = 1, . . . , k − 1.

Monotonicity Restrictions:
ωi ≥ 0 for i = 1, . . . , k.

Synchronicity Restrictions:
Let zi = νi + 2 arctan

(
1
ωi

tan
(−µ

2

))
for i = 1, . . . , k, be a possible zero of ith piece of the

function. Then

]
{
zi : zi ∈

(
θ∗i , θ

∗
i+1

]}
= 1.

This model is presented in the forthcoming paper Rueda et al (2015).

102



3 Application
We have analyzed data from 32 periodic genes in two species of yeast, S. cerevisiae and S.
pombe, considering 2 experiments from S. cerevisiae that we denote as Ca (which is the ex-
plicative in all models considered) and Cb (which is used as response in one of the models) and
2 experiments from S. pombe that we denoted as Pa and Pb (used as responses in the other two
models presented here).
We have fitted the Circular-Circular regression model from Downs and Mardia (2002), the non-
parametric circular model from Di Marzio et al (2012), and the two models defined in section
2.
The statistics used to select between models are, the Circular Distance Criterion CDC(M),
which is a sort of lack of fit criterion and is defined as CDC(M) = 1

N

∑k
i=1

∑ni
j=1 eij , where

eij = 1 − (cos(ψij − ψ̂ij)) and a Generalized Akaike Information measure (GAIC) that is
defined as GAIC(M) = 2 ln(l(M))− 2GDF , where l(M) is the model likelihood and GDF
is a penalization factor obtained as the sum of the sensitivity of each fitted value to perturbation
in the corresponding observed value. The main advantage of this measure is that is applicable
to complex modeling procedures including nonparametric and restricted models (see Ye 1998
and Zhang et al 2012). Full details of this criterion appear in Rueda et al (2015).
The goodness of fit statistics for the different regression models are given in the following table.
Full interpretation of these results together with the appropriate graphs will be given during the
talk.

Experiment Statistic Parametric Piecewise Isotone Non-Parametric
Pa/Ca CDC 0,3938 0,3323 0,2688 0,1671
Pb/Ca CDC 0,3682 0,1657 0,2289 0,1970
Cb/Ca CDC 0,1570 0,1461 0,0806 0,1292
Pa/Ca GAIC 19,4116 19,8093 22,4058 31,1877
Pb/Ca GAIC 23,4580 37,6419 46,4377 36,4998
Cb/Ca GAIC 55,9770 55,4740 61,9504 57,4613

4 Conclusions
Restricted regression models have proved very useful to describe relationships between cell-
cycle data expressions from different species. In particular, the piecewise model has several
interesting advantages for this application. It is simple and interpretable, flexible enough to
describe different correlations depending on the sector and versatile, as it can handle restrictions
of monotonicity and synchronicity.
Related problems arise in other fields such as in circadian biology, metabolic cycle, evolutionary
psychology or motor behavior. Other application where the piecewise model will be useful is
for characterizing patterns of hormones during the menstrual cycle (with three distinct phases:
follicular, ovulation and luteal).
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