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Abstract

R The degrees of freedom of semiparametric additive monotone models are
derived using results about projections onto sums of order cones. Two impor-
tant related questions are also studied, namely, the definition of estimators
for the parameter of the error term and the formulation of specific Akaike In-
formation Criteria statistics. Several alternatives are proposed to solve both
problems and simulation experiments are conducted to compare the behav-
ior of the different candidates. A new selection criterion is proposed that
combines the ability to guess the model but also the efficiency to estimate
the variance parameter. Finally, the criterion is used to select the model in
a regression problem from a well known data set.

Keywords: additive models, isotonic models, order restricted inference,
Akaike information criterion.

1. Introduction

Semiparametric monotone additive models are receiving special attention
in the statistical literature because they are pragmatic alternatives to linear
and nonparametric models. There are several main advantages. First, the
flexibility, including more forms of regression than the rigid linear formula-
tion. Second, the simple additive structure that guarantees, as shown below,
the solution of the estimation problem with a relatively simple algorithm.
Third, the incorporation of the monotonicity restriction avoids the problem
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of defining user-specified choices, such as bandwidth, or smoothing parame-
ters or number and placement of knots, typical drawbacks of nonparametric
methods as kernel smoother, smoothing splines and regression splines, being
in this sense a robust methodology. And finally, the oracle property, which
implies that the rate of convergence of the least-square estimate of each ad-
ditive component is independent of the number of additive components in
the model (see Chen (2009) and references therein).

The usefulness of monotone models is wide, the papers by Morton-Jones
et al. (2000), Hussian et al. (2004), and De Boer et al. (2002) give some
applications in the biomedical, environmental and toxicology fields respec-
tively. These are only a few among many others in different fields. There are
a lot of settings where isotonic models are suitable as monotone relationships
frequently appear in real practice. Two illustrative examples are: first, the
relation between the risk of getting a disease and exposure, in epidemiolog-
ical applications, where the risk is often known to decrease with increasing
exposure; and second, the prediction of sociological indexes that are known
to monotonically change with important predictors, as is the case in the ex-
ample analyzed in section 4. Besides, the incorporation of linear terms is
useful to model dummy explanatory variables and also to decrease the risk
of overfitting.

The semiparametric additive monotone regression model is defined by:

yi = α +

p∑
j=1

βjxji +

q∑
j=1

hj(zji) + εi, i = 1, ..., n, (1)

where y = (y1, ..., yn)′ is the response vector, xj = (xj1, ..., xjn)′, j =
1, ..., p and zj = (zj1, ..., zjn)′, j = 1, ...q, are linearly independent explanatory
variables, and ε = (ε1, ..., εn)′ is a random error term. It is assumed that each
hj() is a monotone function, which is suppose to be monotone increasing with-
out loss of generality, and that ε ∼ N(0,W−1σ2), where W = diag(w1, ..., wn)
is a matrix of known weights (by instances, in experiments with replicas wi is
the number of replicas under each condition) and σ is unknown. The MLEs

(α̂, β̂1, ..., β̂p, ĥ1, ..., ĥq) are the solution of the optimization problem:

min

(
n∑
i=1

wi(yi − α−
p∑
j=1

βjxji −
q∑
j=1

hj(zji))
2

)
, (2)
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subject to the restriction that α ∈ <, β ∈ <p and each hj() is monotone

and verifies the standard identifiability condition
n∑
i=1

hj(zji) = 0.

In fact, the solution to the optimization problem (2) is not unique, any

other set of monotone functionsmj, j = 1, ..., q, verifyingmj(zji) = ĥj(zji), j =
1, ..., q; i = 1, ..., n would have also solved the least square minimization. De-

fine θ0 = α−
p∑
j=1

βjxji; θj = hj(zj), j = 1, ..., q adn θ = θ0+θ1+ ...+θq. Then,

the least-square estimator ŷ = (ŷ1, ..., ŷn)′, where ŷi = α̂+ β̂1x1i+ ...+ β̂pxpi+

ĥ1(z1i)+ ...+ ĥq(zqi) = θ̂0+ θ̂1+ ...+ θ̂q, is the L2-projection with weights W of
the observed vector y onto K, pw(y/K), where K = L0+S1+ ...+Sq is a con-
vex cone in <n defined by the restrictions imposed, L0 being the linear sub-
space of dimension p+1 spanned by columns in matrix (1n, x1, ..., xp) and each
Sj being the order cone associated to zj, Sj = {u ∈ <n

/
u1j ≤ ... ≤ unj

} ,
where (1j, ..., nj) is a permutation of (1, ..., n) verifying zj1j ≤ ... ≤ zjnj

(if
several observations have the same value of the predictor zj, define Sj using
equalities instead of inequalities between the coordinates corresponding to
these observations). A simple example that illustrates how the cone K is
derived from the initial information on the explanatory variables is given in
section 2. Therefore, the model that dealt with in this paper can be expressed
in a simplified form as:

y = θ + ε, θ ∈ K; ε ∼ N(0,W−1σ2).

Without loss of generality, it can be assumed thatW = I since a linear change
of variable can be made to the unweighted case by considering y∗ = W 1/2y
and the cone K∗ = W 1/2K. Then, pw(y/K) = W−1/2p(y∗/K∗), which im-
plies that most properties of the projections in the weighted case are derived
from those in the unweighted case, in particular those proved or used in this
paper. In addition, the calculation of pw(y/K) can be accomplished via the
PAVA (Pool Adjacent Violators Algorithm) when K is an order cone as Sj,
and the algorithm to obtain the projection when K is the sum of several of
these cones is a general PAVA, which also works with weights. (see Meyer
(1999) and Robertson et al (1988) for the properties of the weighted pro-
jections and the computational algorithms). Therefore, in the following the
notation for the weighting is dropped to simplify the presentation and the
solution to the optimization problem can be expressed as,

θ̂K = arg min
θ∈K
‖y − θ‖2 , (3)
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where ‖u‖2 =
n∑
i=1

u2i .

The simple additive structure of the model guarantees the solution of the
optimization problem with a relatively simple algorithm and good properties
of estimators. Mammen and Yu (2007) derive a backfitting algorithm, a cyclic
PAVA, to get the estimators, and show the oracle property for the model
without linear terms; and Cheng (2009) extends the results to the general
case and derives the asymptotic distribution of the regression estimators.

Before the publication of the papers mentioned in the last paragraph,
other authors dealt with this type of models. Some important references are
Stone (1982) and Stone (1985), who studied the rates of convergence of re-
gression estimators and first showed the oracle property for additive models;
Bachetti (1989) who first estimated the additive functions with backfitting;
and Huang (2002) who dealt with the case q = 1. There have also been
many other authors, who have dealt with additive models or isotonic regres-
sion models, whose research has been the basis for recent development. We
highlight the works by Brunk (1970), Hanson (1973), Dykstra (1983), Hastie
and Tibsirani (1986), among many others.

However, there is still an unsolved and important question around these
models that has to do with the determination of the degrees of freedom or the
dimensionality of the model. Several authors have dealt with the question
of dimensionality. Meyer and Woodroofe (2000) dealt with the univariate
monotone and shape regression models, while Kato (2009) dealt with the
question in shrinkage regression with application to the Lasso. For a general
convex cone C, these authors introduced the concept of degrees of freedom of
the associated model, also called the divergence, which is defined by DC(y)
as follows:

DC(y) = divC(θ̂C) =
n∑
i=1

∂

∂yi
θ̂i(y), (4)

where, θ̂C(y) = p(y/C) = (θ̂1(y), ..., θ̂n(y))′.
When q = 0 (p = 0 and q = 1), the cone K is defined using inequality

restrictions andDK(y) is easily derived as dim(LyK), where LyK is the subspace
defined by the inequalities that the projection verifies as equalities and verifies
p(y/K) = p(y/LyK). It is also given by counting among these inequalities, the
maximum number being linearly independent. Something similar happens
in the applications given in Kato (2009), including the Lasso among others.
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In these cases, the convex cone is expressed explicitly by a set of linear
inequalities and equalities.

However, the derivation of DK(y) is not straightforward in the general
case q > 0 and p > 0 from the results in previous papers. The aim of this
paper is to achieve it in a simple way.

The derivation of DK(y) is also relevant for solving two important aspects
in model fitting the estimation of σ and the model selection. In the former,
the degrees of freedom is used to correct the bias of the MLE estimator
and in the latter to derive the AIC measure penalty term. Several authors
have considered the first problem in univariate regression, Meyer (2000) and
Rueda et al. (2010) among others. But again, as far as we know, the question
is not solved in the general case. On the other hand, the problem of variable
selection is a very important problem in statistical modeling that has recently
gained a lot of attention in semiparametric models (see Li and Liang (2008)
and Xiao et al. (2010) among others). The AIC approach is considered in
this paper for this question. In this paper, several alternative proposal are
given to solve both questions which are validated with numerical simulations
and in a example.

The outline for the rest of the paper is as follows: in section 2, a practical
formula for DK(y) for semiparametric additive monotone models is derived
using new algebraic results in relation with the projection onto the sum of
order cones. In section 3, the question of the estimation of σ is discussed and a
new AIC criterion for model selection that uses a corrected bias estimator for
σ is proposed. The estimator and the criterion are validated using simulation
experiments. Finally, the results are applied in section 4 to the well known
Prestige data set and some general conclusions are given in section 5.

2. Degrees of freedom

In this section, the subscript K is eliminated from θ̂ and D(y) to make
the presentation easier. The solution to the optimization problem (3) is then

given by θ̂ = p(y/K), which is the maximum likelihood estimator of θ.
As Meyer and Woodroofe (2000) have shown, the divergence D(y) defined

in (4), gives the degrees of freedom of the model. When K is a convex
polyhedral, K = {u ∈ </a′iu ≤ 0, i = 1, ...,m}, D(y) is the dimension of the
linear subspace where the projection is obtained, D(y) = dim(LyK),
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LyK =
{
u ∈ </a′iu = 0, for all i for which a′iθ̂(y) = 0

}
.

Let F y
K = LyK ∩K , the set of polyhedral cones F y

Ky are called faces of K
and each LyK is the linear subspace associated with the face F y

K . The faces of
a polyhedral cone are involved in the algebraic result derived in this section.

Lemma 2.1(i), below, shows that K = L0 + S1 + ... + Sq is a polyhedral
cone (this is a known result given here for completeness). Lemma 2.1 (ii)
and (iii) give other results on projections on convex cones that will be used
later on.

However, D(y) cannot be derived from Lemma 2.1(i) in a straightforward
manner because it does not provide an explicit version of K as a set of linear
inequality restrictions.

In the simple case of L0 and each Sj being orthogonal linear subspaces, we
have, from the properties of projections, that p(y/K) = p(y/L0) + p(y/S1) +
... + p(y/Sq) and also that D(y) = dim(L0) + dim(S1) + ... + dim(Sq).
Even in the case where orthogonality is not verified but each Sj is a linear
subspace, the dimension can be derived from the individual dimensions and
dimensions on the intersections. In the case q = 1, the equation is very
simple: D(y) = dim(L0 + S1) = dim(L0) + dim(S1) − dim(L0 ∩ S1). This
is not true when Sj are cones, as the example shows. The example also
illustrates the derivation of D(y) in a simple case.

Example Let n = 3, z = (3, 2, 1), x =

 1 1
1 1
1 0

 .

L0 = {u ∈ <3/u1 = u2} , S1 = {u ∈ <3/u1 ≥ u2 ≥ u3} , L0∩S1 = {u ∈ <3/u1 = u2 ≥ u3} .
dim(L0) + dim(S1)− dim(L0 ∩ S1) = 2 + 3− 2 = 3.

Let y = (y1, y2, y3) = (1, 2, 2), the backfitting algorithm (Cheng (2009))is

applied to find θ̂(y). The runs of the algorithm are as follows:

θ̂
(0)
0 (y) = (y, y, y); θ̂

(1)
0 (y) = (0, 0, 0)

θ̂
(1)
0 (y) = p(y− θ̂

(0)
1 (y)/L0) = (y1+y2

2
, y1+y2

2
, y3);

θ̂
(1)
1 (y) = p(y− θ̂

(1)
0 (y)/S1) = (0, 0, 0).

Then, θ̂(y) = θ̂0(y) + θ̂1(y) = (y1+y2
2
, y1+y2

2
, y3) + (0, 0, 0).

Now, D(y) =
3∑
i=1

∂
∂yi
θ̂i(y) =

3∑
i=1

∂
∂yi

1∑
j=0

θ̂ji(y) = 2.

In the general case, it is much more complicated to find D(y) because the

backfitting algorithm does not give an explicit version of θ̂ in terms of y. To
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solve the problem, as in the example above, any representation of θ̂ will be
used from the backfitting algorithm that is given by: θ̂ = θ̂0 + θ̂1 + ... + θ̂q,

θ̂0 ∈ L0, θ̂j ∈ Sj, j = 1, ..., q.
To make this representation useful to derive D(y), lemma 2.2 (i) proves

that D(y) = dim(L0 + Ly1 + ... + Lyq), where each Lyj is the linear subspace

associated with a face of the cone Sj such as θ̂j ∈ Lyj . Lemma 2.2(ii) also
provides an easy way to calculate D(y) in practical applications.

The proofs of the two lemmas are deferred to the appendix.

Lemma 2.1. (i) Let L be a linear subspace and let Cj, j = 1, ..., q be poly-
hedral cones. Then K = L+ C1 + ...+ Cq is a polyhedral cone.

(ii) Let L and C be a linear subspace and a convex cone respectively and
let L ⊂ C. Then, C = L+ C ∩ L⊥ and p(y/C) = p(y/L) + p(y/L⊥ ∩ C).

(iii) Let L and C be a linear subspace and a convex cone respectively.
Then, p(y/L+ C) = p(y/L) + p(y/L⊥ ∩ (L+ C)).

Lemma 2.2. Let K = L0+S1+ ...+Sq be a convex cone where L0 is a linear
subspace and each Sj is an order cone. For a given y ∈ <n, the backfitting

algorithm gives: p(y/K) = θ̂ = θ̂0+ θ̂1+...+ θ̂q, θ̂0 ∈ L0, θ̂j ∈ Sj, j = 1, ..., q.
Then,

(i) D(y) = dim(L0 + Ly1 + ... + Lyq), where each Lyj is a linear subspace

associated with a face of Sj that has θ̂j as an interior point.

(ii) Let us denote {aji}Nj

i=1 as the Nj different components of θ̂j. For each
j = 1, ..., q and i = 1, ..., Nj, let vij be the n-dimensional vector defined by

vijk = 1⇐⇒ θ̂jk = aji, v
i
jk = 0⇐⇒ θ̂jk 6= aji, k = 1, ..., n.

Then, for each j, dim(Lyj ) = Nj, and the set
{
vij
}Nj

i=1
is a minimal set of

generators for Lyj .

Remark From the generators for the subspaces, Lyj j = 1, .., q, given in
Lemma 2.2(ii), select a maximal set of linearly independent vectors and define
a matrix, V , with these vectors as columns. Then, rank(V, 1n, x1, ...xp) =
D(y).

Moreover, from the properties of projection onto the sum of subspaces,
we have that,

D(y) = dim(L0+L
y
1+...+L

y
q) = p+1+dim(Ly1+...+L

y
q)−dim(L0∩(Ly1+...+L

y
q))
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and,

dim(Ly1+...+L
y
q) =

∑
j

dim(Lyj )−
∑
l,j

dim(Lyl ∩L
y
j )+

∑
l,m,j

dim(Lyl ∩L
y
m∩L

y
j )−....

=
∑
j

Nj −
∑
l,j

Nl,j +
∑
l,m,j

Nlmj − ...,

where Nj is the number of different values in the set
{
θ̂ji

}n
i=1

, Nlj is the

number of different values that occur simultaneously (in the same coordi-

nates) in the sets
{
θ̂ji

}n
i=1

and
{
θ̂li

}n
i=1

, etc... We then have a constructive

equation that shows the contribution of the linear component, the monotone
components and the intersections to D(y).

3. Variance estimation and AIC statistics

3.1. Discussion and definitions

Let us consider first the estimation of σ2. The problem of the bias of

σ̂2
MLE =

‖y−θ̂K‖2
n

is a well known problem in linear modeling, where K = L
is a linear subspace and an unbiased estimator is usually defined as σ̂2

UB =
‖y−θ̂K‖2
n−DK(y)

, in which DK(y) = p + 1 is the total number of coefficients in the
linear model.

Sampson et al. (2003) deal with the problem in monotone regression when
n = 2 and propose the use of σ̂2

UB. Also, Rueda et al. (2010) use the latter
estimator to estimate the variance in a univariate monotone mixed model.

On the other hand, in monotone univariate regression problems, Meyer
and Woodroofe (2000) propose an estimator for σ2 that corrects the bias, as
follows:

σ̂2
MW =

∥∥∥y − θ̂K∥∥∥2
n−Min(1.5DK(y), n/2)

.

The estimator above uses the penalty 1.5DK(y) instead of DK(y) in the
denominator. An insight behind this correction is given below in Lemma 3.1.
Moreover, the final version of the penalty as Min(1.5DK(y), n/2) assure that
σ̂2
MW has good asymptotic properties (Meyer and Woodroofe (2000)).
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In this paper, two estimators are defined for the semiparametric model
following the research of these authors. Lemma 3.1, below, shows an inequal-
ity that will be useful to derive the estimators. The proof of the lemma is
deferred to the appendix.

Lemma 3.1. Let y = θ + ε, θ ∈ C; ε ∼ Nn(0, σ2I) where, C = L+C0, L is
a linear subspace of dimension r and C0 a convex cone. Then, ∃c ∈ <, 2 ≥
c ≥ 1 such as:

E

∥∥∥y − θ̂C∥∥∥2
σ2

= n− c(EDC(y)− r)− r.

From lemma 3.1, applied to K = L0 + S1 + ... + Sq, we have the following
equation,

E

∥∥∥y − θ̂K∥∥∥2
σ2

= n− c(EDK(y)− p− 1)− (p+ 1),

for a given unknown c, 2 ≥ c ≥ 1.
The quantity c depends on θ but it is not strainforward to estimate. We

consider two values that have also been considered before in the literature.
Firstly, the smallest value, c = 1, is considered as it is the natural extension
to the linear case and it has been successfully used by Rueda et al (2010),
even though it provides a positive biased estimator. Secondly, in order to
correct the positive bias, we consider c = 1.5 as a compromise intermediate
value that has been also considered by Meyer and Woodroofe (2000). These
authors have studied the behavior of other choices and their recommendation
is to use c = 1.5 to correct the bias of the estimator with the inclusion of an
upper limit. The corresponding estimators for σ2 are given by:

σ̂2
K,1.5 =

∥∥∥y − θ̂K∥∥∥2
n−Min(1.5DK(y)− 0.5(p+ 1), n/2)

; σ̂2
K,1 =

∥∥∥y − θ̂K∥∥∥2
n−DK(y)

.

In addition, the performance of both estimators is compared with the simu-
lation experiments below, showing that the MSE are very close to each other
relative to that of the MLE.
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The AIC approach is considered for the second question. The AIC is
a very popular criterion to model selection in a broad class of statistical
problems. From the definition of the first AIC statistics, Akaike (1973),
there has been a very large number of papers dedicated to the definition of
alternative AIC for specific applications. Isotonic models are no exception:
Kato (2009) proposes to use a standard AIC statistic with penalty term equal
to 2DK(y), while Zhao and Peng (2002) and Liu et al (2009) propose AIC
measures with smaller penalty terms. However, these measures have not been
validated in regression scenarios. Different proposals to solve both questions
are provided and validated in this paper.

Now, in order to define the AIC measures, let us consider for the moment
that σ is a known parameter. Usually, the AIC is defined as a penalized
loglikelihood. AIC(θ̂) = −2l(θ̂) + 2k, where k is the number of parameters
in the model and accounts for the bias when estimating the expected log-
likelihood (l(θ̂). In the context of the model subject to restrictions on the
parameters given by a cone K, Anraku (1999) shows that the bias is the
following quantity:

b(θ) = n
2

+ 1
2σ2Eθ(

∥∥∥θ − θ̂K∥∥∥2 − ∥∥∥y − θ̂K∥∥∥2).
It is straight forward to show that:

b(θ) = 1
2σ2Eθ(‖y − θ‖2 +

∥∥∥θ − θ̂K∥∥∥2 − ∥∥∥y − θ̂K∥∥∥2) =

= 1
σ2Eθ(< y − θ, θ̂K − θ >) = Eθ(DK(y)),

where the last equality follows from Stein’s (1981) lemma.
Thus, we can define an AIC criterion for restricted regression when σ is

known as follows:

AIC(θ̂K) = −2l(θ̂K) + 2EθDK(y).

In the framework of simple order restricted mean problems, several au-
thors have dealt with the question, giving different proposals. Anraku(1999)

proposes using ORICA(θ̂) = −2l(θ̂) + 2B, where B = infθ Eθ(DK(y)) =
Eθ0(DK(y)), where θ0 ∈ LK , the largest subspace verifying LK ⊂ K. Then,
B is usually too small, except when θ ∈ LK , which is a very strong assump-
tion.

Also, Zhao and Peng (2002) and Liu et al. (2009) propose the use of a
penalty term defined by 2λDK(y), where λ < 1 and is chosen from different
values, depending on the number of replications. These authors focus on spe-
cific questions, like the detection of the multiplicity of the largest parameter.
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They consider simulations with very small values of n (n ≤ 5) and compare

the performance of the new criterion only against the ORICA(θ̂K) and the
standard AIC with a penalty term equal to DK(y). These results are not very
relevant for our problem, as n is much higher in regression contexts, there are
no replications and the focus is on the model selection within a wider family
of models. However, for comparative purposes, an AIC measure defined us-
ing a penalty 2K(y) with λ < 1 has also been considered, to show the effect
of reducing the penalty. From the several choices in the literature, which
usually depends on n, (see Zhao and Peng (2002)), we have selected, for our
simulations, the value λ = 0.75 . It is not worth to test other alternatives
because numerical result clearly point out that λ = 1 is the best choice in
this context.

Moreover, there is the problem of σ being unknown. It is hopeless to
derive the corresponding AIC criterion in this case if the properties of the
candidate estimators for σ cannot be obtained. A simple approach is there-
fore followed and the following general criterion is proposed:

AICλ,µ(θ̂K) = −2l(θ̂K , σ̂K,µ) + 2λDK(y),

where λ ∈ {1, 0.75} and µ ∈ {1, 1.5}. In preliminary studies, smaller values
for λ have also been considered but, as their performance is bad, they are
not include here in order to simplify the output.

For a given pair (λ, µ), let K∗ = argK minAICλ,µ(θ̂K) be the cone associ-
ated to the selected model and σ̂∗ = σ̂K∗,µ the corresponding estimator for σ.
The MSE of σ̂∗ will be estimated in the simulations, besides the probability
of correct detection, to determin the goodness of the AICλ,µ(θ̂K) criterion.

On the other hand, when the MLE for σ is used instead of σ̂K,µ the AIC
statistic reduces to:

AICλ,MLE(θ̂K) = log(σ̂MLE) + 2λDK(y), λ ∈ {1, 0.75} .

AIC1,MLE(θ̂K) is the most widely used AIC statistic in the literature when

σ is unknown. As shown below, the performance of AIC1,MLE(θ̂) is worse
than the new proposals in most scenarios.

Finally, for the case when σ is known, we consider:

AICλ(θ̂K) = −2l(θ̂K) + 2λDK(y), λ ∈ {1, 0.75} .

The combination of the different options gives eight criteria (six for the case
when σ is unknown and two for when σ is known) that are compared with
simulation experiments in the next subsection.
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3.1.1. Monte Carlo studies

Two simulation experiments, A and B, have been conducted. A uses sim-
ulated independent explanatory variables and B uses the explanatory vari-
ables from the example in section 4. In both cases, the sample size equals
102, which is the sample size in the example.

The data generating model in experiment A is an additive regression
model of the form:

y =
3∑
j=1

mj(uj) + ε,

with predictor vector u1, u2, u3 i.i.d U [0, 1]102, ε ∼ N102(0, σ
2I) and σ ∈

{1, 5} .The functions
∑
mj() have been defined, in four different forms, fol-

lowing the suggestions of other authors (Borra and Ciaccio(2002), Curtis and
Ghosal(2010) and Yang(2008)) as follows:

M1 : exp(1.1u31) + log((e2 − 1)u2 + 1)− sin(2πu3);

M2 : exp(1.1u31)− sin(2πu2) + u3;

M3 : − sin(2πu1) + u2 + 5u3;

M4 : u1 + 2u2 + 3u3.

M1 is a nonparametric model in the three components (p = 0, q = 3), M2
is nonparametric in the first two components and linear in the third (p =
1, q = 2), M3 is nonparametric in the first component and linear in the rest
(p = 2, q = 1) and M4 is a linear model (p = 3, q = 0). In each scenario, the
same four models have been fitted with intercept.

On the other hand, the data generating model in experiment B, is given
by:

y =
3∑
j=1

hj(xj) + ε,

the predictor vectors x1, x2, x3 being the explanatory variables in the Pres-
tige data set (section 4), ε N102(0, σ

2I) and σ ∈ {2, 10} . The selection of
other values for σ to those in experiment 1 allows to show the performance
of the approaches under different uncertainty levels. The functions hj() have
been defined to imitate the relationship between the explanatory variables
and the Prestige Score, the response in the real problem, in four different
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σ̂ σ M1 M2 M3 M4 H1 H2 H3 H4

σ̂1.5, low 0.0086 0.0076 0.0066 0.0056 0.3527 0.1795 0.0306 0.0245
σ̂1 low 0.0108 0.0056 0.0060 0.0056 0.3249 0.2131 0.0435 0.0245
σ̂MLE low 0.0330 0.0131 0.0069 0.0401 0.9850 0.7440 0.2013 0.0269

σ̂1.5 high 0.1535 0.1604 0.1459 0.1406 1.0487 0.9070 0.6305 0.6124
σ̂1 high 0.1951 0.1648 0.1483 0.1406 2.1531 1.6040 0.7622 0.6124
σ̂MLE high 0.4897 0.3194 0.2158 0.1609 6.8484 4.6655 1.7758 0.6731

Table 1: MSE for σ̂1.5, σ̂1, and σ̂MLE under different scenarios.

forms, as follows:

H1 : 15logx1 + x42/2000− log(x3 + 1);

H2 : 15logx1 + x42/2000;

H3 : 8(x1 − x1)/sx1 + x42/2000;

H4 : 8(x1 − x1)/sx1 + (x2 − x2)/sx2 .

H1 is a monotone model in the three components, H2 is monotone in the
first two components, H3 is linear in the first component and monotone in
the second and H4 is a linear model in the first two components. In each
scenario the same four models have been fitted.

A total of 16 scenarios, eight models with low and high values for σ, have
been simulated, 100 replications were generated in each scenario and for each
data set four models were fitted being among them the correct one. The
simulation addresses two questions. First, which estimator of σ is preferred
in terms of MSE?. Second, which of the AIC statistics defined in section
3.1 performs better?. For the first question, assuming the correct model, the
empirical estimators of the MSE are derived for the new proposals. For the
second question, the four models fitted are considered and for each of the
16 scenarios and each criterion, AICλ,µ, the frequency of correct detection
(FCD) is derived and the empirical estimator of the MSE of σ̂∗ are obtained,
where σ̂∗ has been defined in section 3.1. A good criterion should be one
with a high FCD that gives an accurate estimator for σ under the selected
model. The FCD of AICλ and AICλ,MLE and the MSE of σMLE have also
been obtained for comparative purposes.

The results are given in tables 1, 2, 3 and 4.
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AIC σ M1 M2 M3 M4 H1 H2 H3 H4 Mean

AIC1,1.5 low 0.78 0.41 0.53 0.61 0.99 0.53 0.15 0.70 0.59
AIC1,1 low 0.90 0.40 0.44 0.36 0.93 0.59 0.16 0.46 0.53
AIC1,MLE low 0.99 0.36 0.23 0.25 0.99 0.53 0.02 0.32 0.46
AIC.75,1.5 low 0.98 0.30 0.21 0.13 0.99 0.47 0.01 0.26 0.42
AIC.75,1 low 1.00 0.20 0.10 0.05 0.98 0.54 0.02 0.10 0.37
AIC.75,MLE low 1.00 0.17 0.04 0.01 0.99 0.47 0.01 0.04 0.34
AIC1 low 0.79 0.42 0.52 0.73 0.58 0.72 0.70 0.78 0.66
AIC.75 low 1.00 0.26 0.16 0.16 0.75 0.63 0.28 0.39 0.45

AIC1,1.5 high 0.13 0.09 0.15 0.59 0.32 0.59 0.25 0.58 0.34
AIC1,1 high 0.18 0.12 0.14 0.55 0.43 0.58 0.19 0.53 0.34
AIC1,MLE high 0.24 0.11 0.15 0.48 0.51 0.58 0.14 0.49 0.34
AIC.75,1.5 high 0.46 0.17 0.17 0.24 0.45 0.61 0.21 0.31 0.33
AIC.75,1 high 0.50 0.16 0.12 0.18 0.60 0.48 0.12 0.26 0.30
AIC.75,MLE high 0.58 0.10 0.10 0.16 0.74 0.42 0.11 0.16 0.30
AIC1 high 0.13 0.09 0.12 0.59 0.23 0.64 0.23 0.72 0.34
AIC.75 high 0.48 0.16 0.16 0.26 0.45 0.62 0.20 0.33 0.33

Table 2: FCD for different AIC statistics and simulated sccenarios.

AIC σ M1 M2 M3 M4 H1 H2 H3 H4

AIC1,1.5 low 0.0087 0.0069 0.0063 0.0089 0.3531 0.2233 0.1454 0.0315
AIC1,1 low 0.0084 0.0070 0.0097 0.0191 0.3249 0.2536 0.2050 0.1305
AIC.75,1.5 low 0.0114 0.0068 0.0063 0.0095 0.3531 0.2252 0.1501 0.0402
AIC.75,1 low 0.0106 0.0069 0.0108 0.0228 0.3269 0.2545 0.2130 0.1125

AIC1,1.5 high 0.1535 0.1464 0.1516 0.1563 1.0950 1.0444 0.8907 0.7613
AIC1,1 high 0.1812 0.1763 0.1828 0.1928 2.1289 2.0359 1.6390 1.0471
AIC.75,1.5 high 0.1586 0.1476 0.1547 0.1590 1.0256 0.9962 0.9109 0.7924
AIC.75,1 high 0.1995 0.1853 0.2064 0.2187 2.1790 2.0205 1.7979 1.1877

Table 3: MSE of the corresponding σ̂ for each criterion and simulated model.
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3.2. Conclusions

As explained below, there are clear, winning candidates among the esti-
mators for σ and the AIC criteria, namely, the bias corrected estimator, σ̂1.5,
and the AIC defined using this latter estimator and a penalty term equal to
2DK(y), which corresponds with AIC1,1.5.

Table 1 gives the MSE of the three estimators for σ for the 16 different
model choices. Assuming that the true model is known, σ̂1.5 outperforms σ̂1
in most scenarios. Only for low σ and selected scenarios have we found that
σ̂1 has a smaller MSE. Moreover, compared with the σ̂MLE, both estimators
have a smaller MSE in the 16 scenarios. Note that in the particular case of
linear models M4 and H4 the MSE of the σ̂1.5 equals the MSE of σ̂1 which
is the unbiased estimator in the linear model framework.

In table 2, the FCD for the AIC measures considered is shown. Attending
to the figures in the last column of the table, where the mean value of the
FCD across scenarios is obtained, it can be concluded that when σ is assumed
unknown, AIC1,µ outperforms AIC.75,µ and that with the new proposals,
AIC1,µ outperforms the classical AIC1,MLE.

On the other hand, when σ is assumed to be known, AIC1 is also pre-
ferred to AIC.75. Note that these two measures are only comparable among
themselves as sigma is assumed known.

Looking at each scenario (the best performer is given in bold), the best
behavior is again exhibited by AIC1,1.5, which outperforms the rest in terms
of FCD, except when the true model is complex, which is favored by AIC.75,µ
or AIC.75,MLE. However, AIC.75,µ performs badly in the rest of the scenarios
and AIC.75,MLE even worse.

From the results in table 2, it could be concluded that the AIC statistic
defined using σ̂1.5, and with a penalty term equal to 2DK(y), is the best
performer.

In table 3, the M̂SE of σ̂∗ are given for each scenario and the new criteria.
These figures are useful to evaluate each criterion as an estimation method,
as this also gives insights about the behavior when the selected model is

not the correct one. In terms of M̂SE(σ̂∗), AIC1,1.5 also gives the best
results, except when the true model is complex. However, even in these
settings, this criterion is the second best performer (except for H1 and σ

low), and the M̂SE( σ̂∗) are close to those in table 1 obtained under the
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AIC fc fs
AIC1,1.5 0.55 0.45
AIC1,MLE 0.71 0.29

Table 4: Frequency of complex fc and simple fs model selection.

true scenario. In order to show if AIC1,1.5 favors complex or simple models
compared with the standard AIC1,MLE, the frequency of selection of complex
models (M1,M2, H1, H2) and simple models (M3,M4, H3, H4) has been
included in the 1600 samples generated using both criteria, and the results
are given in table 4. From the figures in table 4, it can be concluded that the
criterion AIC1,1.5 favors complex models, but in a less extended form than
AIC1,MLE does.

4. Prestige data

The Canadian occupational prestige data from the census 1971 (Fox(1997))
is a popular data set that has been analyzed by several authors. A recent
reference where this data set has been analyzed is Griffin and Steel (2010)
where a fully bayesian nonparametric approach is adopted. Prestige score(y)
on 102 occupations, is linked to three explanatory variables, average income
(in $1000s)(x1), education (in years ) (x2) and the percentage of incumber
that are women (x3). It is assumed that the score increases with the values
of x1 and x2 and decreases with x3.

Eight candidate models has been considered according to how the auxil-
iary information is used to obtain the estimators. Other models have been
discarded as they give clearly worse fits. The description of the models is
given in table 1, within the values of AIC1,1.5, σ̂

2
1.5, D(y), and AIC1,MLE.

From the AIC1,1.5 values in table 5, the model m5, which includes x1 in
a linear form and x2 in a nonparametric form with 15 degrees of freedom
and σ̂ = 7.37, is selected. It is interesting to note that using AIC1,MLE

the most complex model which includes the three explanatory variables in
a nonparametric form, would have been selected. This fact agrees with the
conclusions following the simulation results, that AIC1,MLE favors the more
complex models.

Other authors have adopted a fully nonparametric approach to analyze
these data, using x1 and x2, but this is the first time a semiparametric model
has been proposed, and also the first time a model selection criterion that
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model linear monotone AIC1,1.5 σ̂2
1.5 D(y) AIC1,MLE

m1 x2 - 554.562 82.869 2 554.543
m2 - x2 547.911 73.203 16 544.548
m3 x1, x2 - 524.307 60.998 3 524.261
m4 x2 x1 525.937 59.028 19 523.912
m5 x1 x2 518.014 54.338 15 515.369
m6 - x1, x2 524.394 54.541 29 511.188
m7 x1, x2, x3 - 526.253 61.567 4 526.172
m8 - x1, x2, x3 525.501 54.867 30 511.145

Table 5: Model description and fitting results with the Prestige data.

tries to choose between parametric and nonparametric alternatives has been
used.

5. Conclusions and future research

The problem of the derivation of the degrees of freedom, DK(y), for semi-
parametric monotone models has been solved. This quantity is incorporate
in new AIC measures and in the estimators for the variance parameter, which
are shown to be useful in model selection. Besides, DK(y) is also useful to de-
rive inferential tools as hypothesis tests in nested models which is a question
to be dealt with in our future research.

It has been shown, by simulation experiments and in the example, that
semiparametric models compares favorably with linear alternatives, being the
fitting and model selection steps easily achieved. For researchers who dislike
the non continuity of the monotone fitted curve with the cyclic PAVA, the
consideration of a two-step fitting process is proposed. In a first step, the
linear and nonparametric terms defining the model are determined with the
AIC1,1.5 and, in the second step, the nonparametric modeling is performed
using alternative approaches, following the researcher’s preferences. Within
these alternatives is a hybrid approach that produces monotone estimators,
with properties similar to those of nonparametric regression estimators apply-
ing a smoother to each monotone component obtained from the backfitting
algorithm (for details see Mukerjee(1988)).

Finally, there are several interesting extensions to model (1) that will also
benefit from the results derived in the present paper.

17



The first extension is the semiparametric additive mixed model:

yi = α +

p∑
j=1

βjxji +

q∑
j=1

hj(zji) + u+ εi,

where u ∼ N(0, σ2
u) is a random effect. Rueda et al. (2010), deal with

this type of model, when p = 0 and q = 1, to solve small area estimation
problems.

The second extension is the general isotonic model where the monotone
restrictions are replaced by more general shape restrictions, including concave
relationships among others. An interesting reference dealing with isotonic
regression models is Meyer (2008), where univariate shape models (p = 0
and q = 1) are studied.

6. APPENDIX

6.1. Proof of lemma 2.1

(i) A polyhedral cone, K, is one that can be defined by a set of lin-
ear inequalities: K = {u ∈ <n/a′iu ≤ 0, i = 1, ...,m}. Let us denote by
span+ {b1, ..., bs} the subset of <n defined by the non negative linear combi-
nations of {b1, ..., bs}.

It is a known result (Goldman and Tucker (1956)) that a convex cone
C is a polyhedral cone, if and only if, it is finitely generated (with positive
coefficients) by a finite number of vectors, that is:

∃a1, ..., am : C = {u ∈ <n/a′iu ≤ 0, i = 1, ...,m}

⇔ ∃b1, ..., bs : C =

{
u ∈ <n/u =

s∑
i=1

αibi, αi > 0

}
= span+ {b1, ..., bs} .

Therefore, as Cj are polyhedral cones, we have that, Cj = span+
{
bj1, ..., bjsj

}
, j =

1, ..., q, also, as L is a subspace, ∃ {d1, ..., dl} such as L = span {d1, ..., dl} =
span+ {d1, ..., dl} + span+ {−d1, ...,−dl}. Then, K = span+ {b11, ..., b1s1} +
... + span+

{
bq1, ..., bqsq

}
+ span+ {d1, ..., dl} + span+ {−d1, ...,−dl} is also a

polyhedral cone.
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(ii) let y ∈ C, p(y/L⊥) = y − p(y/L) ∈ C because L ⊂ C. Then,
p(y/L⊥) = p(y/L⊥ ∩ C) and y = p(y/L) + p(y/L⊥ ∩ C) ∈ L + L⊥ ∩ C. We
have proven: C ⊂ L+ L⊥ ∩ C.

The opposite is also true as L ⊂ C.
Now, let y ∈ <n, p(y/C) = p(p(y/C)/L)+p(p(y/C)/L⊥) where, p(p(y/C)/L⊥)

= p(y/C)− p(p(y/C)/L) ∈ C, because L ⊂ C. Then,

p(p(y/C)/L⊥) = p(p(y/C)/L⊥∩C) and p(y/C) = p(p(y/C)/L)+p(p(y/C)/L⊥∩C)

Moreover, from lemma 2.2 in Raubertas (1986),

p(p(y/C)/L) = p(y/L) and p(p(y/C)/L⊥ ∩ C) = p(y/C ∩ L⊥)

and (ii) follows.

(iii) From (ii), as L ⊂ L + C, we have that: L + C = L + (L + C) ∩ L⊥
and

p(y/L+ C) = p(y/L) + p(y/(L+ C) ∩ L⊥) and the result follows.

6.2. Proof of lemma 2.2

(i) To prove the result several properties of projections onto polyhedral
cones will be used (see Meyer(1999) and references therein). From lemma
2.1 (ii), K = L0 + S1 + ...+ Sq = L0 + ((L0 + S1 + ...+ Sq)∩L⊥0 ) = L0 +K0,
where K0 = (L0 +S1 + ...+Sq)∩L⊥0 and dim(L0) = p+1. Also, from Lemma
2.1(iii),

p(y/K) = p(y/L0) + p(y/K0) (5)

and DK(y) = p+ 1 +DK0(y).
Now, from lemma 2.1(i), K0 is polyhedral and then, K0 is defined by a

subset of generators, as follows,

∃ {δi, i = 1, ...,M} ⊂ L⊥0 : K0 = span+ {δi, i = 1, ...,M} =

{
u ∈ L⊥0 /u =

M∑
i=1

biδi, bi ≥ 0

}

and also by a subset of inequality restrictions:

∃ {γj, j = 1, ...,m} ⊂ L⊥0 : K0 =
{
u ∈ L⊥0 /u′γj ≤ 0, j = 1, ..,m

}
,
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where span+ {γj, j = 1, ...,m} = Kp
0 ∩ L⊥0 .

Moreover, from proposition 3 in Meyer(1999), for each y ∈ L⊥0 we can
define the sets Iy ⊂ {1, ...,M} , Jy ⊂ {1, ..,m} and the corresponding sub-
spaces : L(Iy) = span {δi, i ∈ Iy} , L(Jy) = span {γj, j ∈ Jy} such as:

p(y/K0) = p(y/L(Iy)), p(y/Kp
0 ) = p(y/L(Jy)) (6)

and
L(Iy)⊥ ∩ L⊥0 = L(Jy), L(Iy) = (L(Jy))⊥ ∩ L⊥0 . (7)

On the other hand, let be θ̂j, j = 0, 1, ..., q a sequence given by the back-
fitting algorithm, we have that:

p(y/K) = θ̂0 + θ̂1 + ...+ θ̂q, θ̂0 ∈ L0, θ̂i ∈ Sj.

Let vij, i = 1, ..., n − 1; j = 1, ...q be the generators of the order cones,

then, Sj = span+
{
vij, i = 1, ..., n− 1

}
. Now, for each y ∈ <n and each θ̂j,

there exists a set of indexes Iyj such as Lyj = span
{
vij, i ∈ I

y
j

}
determine

F y
j = Lyj ∩ Sj, which is the face of the cone Sj that has θ̂j as an interior

point. Then, necessarily,

θ̂j =
∑
i∈Iyj

λijv
i
j, λij > 0,∀i, j. (8)

Moreover, from (5) and lemma 2.2 in Raubertas (1986), we have that:

p(y/K) = p(y/L0) + p(y/K0) = θ̂ = p(θ̂/L0) + p(θ̂/K0) = p(y/L0) + p(θ̂/K0) =⇒
p(y/K0) = p(θ̂/K0) = θ̂ − p(θ̂/L0) = θ̂1 + ...+ θ̂q − p(θ̂1 + ...+ θ̂q/L0).

Now, from the last equality, (5), and (8) we have that,

p(y/K0) =

q∑
j=1

∑
i∈Iyj

λijv
i
j −

q∑
j=1

∑
i∈Iyj

λijv
iL
j =

q∑
j=1

∑
i∈Iyj

λijv
iK
j ,

where, for each i and j, vij = viLj + viKj , vij ∈ K, viLj ∈ L0, v
iK
j ∈ K0.

Now, from (6) and (7) it follows,

∀l ∈ L(Jy), 0 = γ′lp(y/K0) =
q∑
j=1

∑
i∈Iyj

λijγ
′
lv
iK
j .
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However, λji > 0 from (8), and γ′lv
iK
j ≤ 0,∀i ∈ Iyj , j = 1, ..., q, l ∈ Jy

(from the definition of K0,) which implies, γ′jv
iK
j = 0,∀i ∈ Iyj , j ∈ Jy, l ∈ Jy.

This last property and (7) imply that,

viKj ∈ (L(Jy))⊥ ∩ L⊥0 ,∀i ∈ I
y
j , j ∈ Jy ⇒ viKj ∈ L(Iy),∀i ∈ Iyj , j ∈ Jy

⇒ vij = viLj + viKj ∈ L0 + L(Iy),∀i ∈ Iyj , j ∈ Jy.

Thus, we have proven that,

L0 + Ly1 + ...+ Lyq ⊂ L0 + L(Iy). (9)

Now, from the equality p(y/K) = p(p(y/K)/L0 + Ly1 + ... + Lyq), which is a
consequence of p(y/K) ∈ L0 + Ly1 + ... + Lyq , obtained from the backfitting
algorithm, and the statements (5) and (6) we have that,

p(y/K) = p(p(y/K)/L0 + Ly1 + ...+ Lyq) = p(p(y/L0) + p(y/K0)/L0 + Ly1 + ...+ Lyq)

= p(p(y/L0) + p(y/L(Iy))/L0 + Ly1 + ...+ Lyq).

Finally, this last statement, the fact that L0 and L(Iy) are orthogonal sub-
spaces and (9) imply:

p(y/K) = p(p(y/L0 + L(Iy))/L0 + Ly1 + ...+ Lyq) = p(y/L0 + Ly1 + ...+ Lyq)

and the result follows.

(ii) The subspaces associated with faces of order cones have the following
general expression:

L = {u ∈ <n/uk = ul, (k, l) ∈ P} ,where P ⊂ {(k, l), k = 1, ..., n; l = 1, ..n} .

Let u0 be any vector belonging to L with a maximal number of different
components. Let us denote this number by N and let us denote the different
values by {u0i}Ni=1. Then, N = dim(L) and a minimal set of generators for

L is given by the set {vi}Ni=1 , where:

vik = 1⇐⇒ u0k = u0i; v
i
k = 0⇐⇒ u0k 6= u0i, k = 1, ..., n.

Now, the subspace associated with the face containing θ̂j as an inte-
rior point is defined as follows: Lyj =

{
u ∈ <n/uk = ul, (k, l) ∈ P y

j

}
, where
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P y
j =

{
(k, l)/θ̂jk = θ̂jl, k, l ∈ {1, ..., n}

}
. θ̂j is a vector belonging to Lyj with

a maximal number of different components (otherwise other case θ̂j would

not be an interior point of the corresponding face). Moreover, if {ajk}
Nj

k=1 are

the values of the Nj different components of θ̂j, then dim(Lyj ) = Nj and a

minimal set of generators for Lyj is given by the set
{
vij
}Nj ,

i=1
where,

vijk = 1⇐⇒ θ̂jk = aji; v
i
jk = 0⇐⇒ θ̂jk 6= aji, k = 1, ..., n

and the result follows.

6.3. Proof of lemma 3.1

The proof follows the same steps to close result close to that found in the
paper by Meyer and Woodofre(2000). From Stein’s (1981) identity:

E
∥∥∥y − θ̂C∥∥∥2 = E ‖y − θ‖2 − 2E < y − θ, θ̂C − θ > +E

∥∥∥θ̂C − θ∥∥∥2 =

= nσ2 − 2σ2EDC(y) + E
∥∥∥θ̂C − θ∥∥∥2 . (10)

Now, from lemma 2.1(iii), and the orthogonality between L and L⊥ , we have
that:

E
∥∥∥θ − θ̂C∥∥∥2 = E ‖p(θ/L)− p(y/L)‖2 +

+E
∥∥p(θ/(L+ C0) ∩ L⊥)− p(y/(L+ C0) ∩ L⊥)

∥∥2 ≥ rσ2. (11)

Moreover, from properties of projections and the Stein identity again:

0 ≤ E < y − θ̂C , θ̂C − θ >= E < y − θ, θ̂C − θ > −E
∥∥∥θ̂C − θ∥∥∥2 =

= σ2ED(y)− E
∥∥∥θ̂C − θ∥∥∥2 . (12)

Now, from (10)and (11) we have that:

E
∥∥∥y − θ̂C∥∥∥2
σ2

≥ n− 2ED(y) + r = n− 2(ED(y)− r)− r, (13)
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and from (10)and (12) we have that:

E
∥∥∥y − θ̂C∥∥∥2
σ2

≤ n− ED(y) = n− (ED(y)− r)− r. (14)

Then, the result follows from (13) and (14).
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