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Abstract

We investigate from a global point of view the existence of cohesiveness
among experts’ opinions. We address this general issue from three basic
essentials: the management of experts’ opinions when they are expressed by
ordinal information; the measurement of the degree of dissensus among such
opinions; and the achievement of a group solution that conveys the minimum
dissensus to the experts’ group.

Accordingly, we propose and characterize a new procedure to codify ordi-
nal information. We also define a new measurement of the degree of dissensus
among individual preferences based on the Mahalanobis distance. It is es-
pecially designed for the case of possibly correlated alternatives. Finally,
we investigate a procedure to obtain a social consensus solution that also
includes the possibility of alternatives that are correlated. In addition, we
examine the main traits of the dissensus measurement as well as the social
solution proposed. The operational character and intuitive interpretation of
our approaches are illustrated by an explanatory example.
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Correlation

1. Introduction

A considerable amount of literature has contributed to the research issue
of obtaining consensus in group decision making problems. This issue is an
active subject in several areas such as Social Choice Theory and Decision
Making Theory. From the Social Choice perspective several contributions
can be emphasized, e.g., [9], [49], [25], [2], [4] and [26], among others. From
the Decision Making Theory, it has been successfully tackled by a great
amount of contributions, e.g., [28], [32], [36], [35] and [58], among others.
Besides these main areas, there are some other methodologies that proposed
different definitions of the consensus concept. It is worth mentioning the
work of González Jaime et al. [38] and López Molina, De Baets and Bustince
[47].

Any group decision making problem focused on obtaining consensus in-
volves at least three key pillars. The first one is the way in which experts
give their opinions on a set of alternatives and how such an information is
managed. Once the opinions of the agents have been gathered it seems na-
tural to measure how much cohesiveness these opinions generate. Thus, the
second pillar is to establish a mechanism able to provide such measurements.
Apart from determining the degree of consensus among experts the main aim
of a group decision making problem is to determine a solution. The better
solution the greater agreement this solution generates among experts. Con-
sequently, supplying a method to achieve a group consensus solution is the
third pillar.

We now briefly review the previous literature related to each basic essen-
tials.

Information formats. Generally speaking, experts can express their opinions
by means of ordinal or cardinal information, the former being more exten-
sively used in the research issue addressed in this work. Nonetheless, contri-
butions dealing with cardinal information include the approaches proposed by
Herrera-Viedma, Herrera and Chiclana [36], González-Pachón and Romero
[30] and González-Arteaga, Alcantud and de Andrés Calle [26]. The rep-
resentation of ordinal information has been a subject of study for over two
centuries for linear orders (see e.g., [9] and [3]), weak orders(see e.g., [16],
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[24] and [4]) and fuzzy preferences (see e.g., [12],[22], [51] and [56], among
others).

Regardless of the experts’ information format, it is necessary to mani-
pulate it in order to make suitable computations. In the literature several
procedures to codify linear and complete preorders into numerical values can
be found (see [8], [7], [14] and [25], among others), Borda [8] being the first
author to manage ordinal preferences in such way.

Consensus measurement. This topic was initiated by Bosch [9] from the So-
cial Choice perspective. In this vein McMorris and Powers [49] characterized
consensus rules defined on hierarchies, while Garćıa-Lapresta and Pérez-
Román [25] introduced a class of consensus measures based on distances.
Subsequently, Alcalde-Unzu and Vorsatz [2, 3] proposed and characterized a
family of linear and additive consensus measures based on measuring simi-
larity among preferences. From another point of view, Alcantud, de Andrés
Calle and Cascón [5, 6] introduced the analysis when opinions are dichoto-
mous.

The use of distance and similarity functions has provided interesting in-
sights about cohesiveness measurement. We highlight the role of the Kemeny,
Mannhattan, Jacard, Dice and Cosine distance functions (see e.g., [15],[25],[5]
and [13]). Moreover, it is also possible to apply some association measures
to that purpose (see e.g., [55], [33], [14], [42], [21] and [27]).

Group consensus solution. Finding the best option or solution from alterna-
tives is the main aim in group decision making problems. Recently, various
approaches have been developed to solve this problem from a variety of sci-
ence areas: Operational Research (see e.g., [17] and [20]), Statistical Analysis
(see e.g., [45], [23] and [1]), Fuzzy Theory (see e.g., [18], [59] and [46]), and
Computational Analysis (see e.g., [37] and [60]).

Traditionally, the achievement of a global solution has been considered
as an aggregation problem of experts’ opinions in order to obtain a social
solution. Different methods have been proposed and analyzed for aggregating
agents’ opinions (preferences in the case of ordinal information) into a social
solution. Borda [8] first examined this problem in a voting context and
Kendall [41] subsequently revised Borda’s method in a statistical framework.

Other authors also proposed alternative distance-based aggregation rules
e.g., Eckert and Klamler [19], Klamler [44, 43], Meskanen and Nurmi [50],
Ratliff [52, 53], and Saari and Merlin [54], even though Kemeny’s rule [39]
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could be considered as a landmark in aggregation procedures based on dis-
tances. Following Kemeny’s rule, Cook and Seiford [14] established an equiva-
lence between the Borda-Kendall method [40] and their approach. González-
Pachón and Romero [28] developed a general framework for distance-based
consensus models under the assumption of a generic lp metric. These authors
have recently designed socially optimal decisions in a consensus scenario [31].

Once we have reviewed the related literature we now summarize the main
contributions of this paper.

• We focus on group decision making problems where agents or experts
provide their opinions on a set of alternatives by complete preorders. In
this regard, we propose a new codification procedure to transform the
original opinions/preferences of agents into numerical vectors in order
to manage them. For the purpose of better understanding this process
we investigate exactly which vectors are realizations by a canonical
codification procedure of generic complete preorders. The characteriza-
tion of the new codification procedure is a key point because it ensures
consistency of our approach and its use in any methodology.

• In order to measure the degree of cohesiveness among agents’ pre-
ferences, we design an indicator of dissensus for a finite collection of
complete preorders on a finite set of alternatives based on the Ma-
halonobis distance, which is dependent on a positive definite matrix
(the parameter) that captures the importance and possible cross-rela-
tions of each alternative, namely, the Mahalanobis dissensus measures.
Any such indicator ranks the profiles of complete preorders (in the
form of codified matrices) according to their inherent cohesiveness. The
strength of our measurement unlike other aforementioned approaches
based on distances is the inclusion of the relationships among alterna-
tives. Then, the new measure incorporates relevant information that in
other way is ignored. Moreover, we investigate the main characteristics
of the novel measure and prove that a partial order can be naturally
induced on the parametric class of all Mahalanobis dissensus measures.

• Then we exploit these measures in order to propose a consensus so-
lution especially designed for profiles of preferences on possibly cor-
related alternatives and to overcome the drawbacks of the aforemen-
tioned distance-based methodologies. That solution aggregates individ-
ual opinions into a social preference on the alternatives by minimizing
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dissensus with respect to the original profile of preferences. In order to
facilitate the computation of such compromise solution we prove that
the problem is equivalent to minimizing the Mahalanobis distance to
a single average vector. Whatever the statement of the minimization
problem, the objective function is restricted to feasible codified vec-
tors, which emphasizes the importance of our characterization for the
canonical codification procedure. Some properties of our Mahalanobis
consensus solution are proven and discussed.

In addition, an explanatory example illustrates the operational charac-
teristics and intuitive interpretation of our approaches to find rankings that
best agree with the original opinions.

This paper is organized as follows. Section 2 is devoted to the problem of
transforming ordinal information about individual preferences into numerical
vectors as well as essential notation. Section 3 introduces the basic definition
of dissensus measure and the Mahalanobis class of dissensus measures. Here
we also explore their main traits too. In Section 4 we set forth the definition
of our proposal of Mahalanobis social consensus solutions, prove some of its
properties, and solve a visually appealing example. Finally, some concluding
remarks are pointed out in Section 5.

2. Ordinal information

Most group decision making problems can usually manage different types
of information. In this contribution we focus on the representation of agents’
opinions by means of rankings allowing ties since most real situations involve
such a kind of information. Dealing with this type of information necessarily
entails determining how it is represented. In the specialized literature it is
possible to find several approaches or procedures to codify ordinal informa-
tion into numerical values (see [8], [7], [14] and [25], among others).

Due to the importance of the choice of the codification procedure to
accomplish any methodology over ordinal information, it should be relevant
to dispose of a consistent codification procedure. Accordingly, in this section
we provide and characterize a new method to handle ordinal information as
well as the basic notation of our proposal.
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2.1. Notation

Consider a society of agents or experts N = {1, 2, ..., N}, N > 1. Let
X = {x1, ..., xk} be a finite set of k issues, options or alternatives |X| > 2.
Abusing notation, on occasions we refer to issue xs as issue s for convenience.

Assume experts grade alternatives by means of complete preorders (also
known as weak orders). Technically speaking, a complete preorder R on X
means a complete and transitive binary relation on X. We write W (X) to
denote the set of all complete preorders on X. 1

Let R ∈ W (X) be a complete preorder on X, then xs �R xk means xs
is strictly preferred to xk, xs ∼R xk means xs and xk are equally preferred
and xs <R xk means alternative xs is at last as good as xk. For a complete
preorder R ∈ W (X), let R−1 be the inverse of R such that xs �R−1 xk ⇔
xk �R xs for all xs, xk ∈ X.

A profile P = (R1, ..., RN) ∈ W (X)×. . .×W (X) = W (X)N of the society
N on the set of alternatives X is a collection of N complete preorders, where
Ri represents the preferences of the individual i on the k alternatives for
each i = 1, ..., N . Given a profile P = (R1, . . . , RN), its inverse is denoted by
P−1 = (R−1

1 , . . . , R−1
N ).

Any permutation σ of the agents/experts {1, 2, ..., N} determines a per-
mutation of P by Pσ = (Rσ(1), ......, Rσ(N)). Analogously, any permutation
π of the alternatives {1, 2, ..., k} determines a permutation of every com-
plete preorder R ∈ W (X) such that the permuted profile is denoted by
πP = (πR1, ......,

π RN). We write P (X) = ∪N>1W (X)N to denote the set of
all profiles for arbitrary societies.

The codification of preferences by numerical vectors has been used ex-
tensively in both theoretical and practical situations. Borda [8] was first to
manage ordinal preferences in such way. His method, known as the “method
of marks” or “Borda-Kendall method”, has been widely disseminated in sev-
eral areas.

Following the Social Choice tradition, the components of a numerical
vector represent the rank or priority assigned to each alternative, or their
average in case of ties. This convention has been exemplified by Black [7],
Cook and Seiford [14] and Garćıa-Lapresta and Pérez-Román [25].

1It is assumed that a linear order on X is an antisymmetric weak order on X.
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We now introduce notation related to the codification of linear and com-
plete preorders by means of numerical vectors.

Let R ∈ W (X) be a complete preorder on X, a codified complete preorder
is a real-valued vector MR = (m1, . . . ,mk) where mj represents the codifica-
tion value corresponding to alternative xj. It relates to R in the sense that
xi <R xj ⇔ mi ≥ mj.

A codified profile of P is a N × k real-valued matrix

MP =

m11 . . . m1k
...

. . .
...

mN1 . . . mNk


N×k

where mij is the codification value of expert i over the alternative xj. We
write MN×k for the set of all N × k real-valued matrices. Thus
MP = (MR1 , . . . ,MRN ) ∈ MN×k produces a unique profile P of complete
preorders, although every profile of complete preorders can be associated
with infinitely many matrices from MN×k. For simplicity, on occasions we
refer to MP as M .

Row i of the profile MP is identified by Mi. It describes the codification
preferences of expert i over all alternatives, Mi = MRi ∈ M1×k. Similarly,
column j of the codification profile MP captures the codification of agents’
preferences on the alternative j, and it is denoted by M j ∈MN×1.

Any permutation σ of the experts {1, 2, ..., N} determines a codified pro-
file Mσ = (Mσ(1), . . . ,Mσ(N)) ∈ MN×k by permutation of the rows of M :
row i of the profile Mσ is row σ(i) of the profile M ∈ MN×k. Similarly, any
permutation π of the alternatives {1, 2, ..., k} determines a codified profile
πM ∈ MN×k by permutation of the columns of M ∈ MN×k: column j of
the profile πM is column π(j) of the codification profile M . Notice that
MPσ = (MP)σ and MπP = π(MP).

2.2. The canonical codification. Definition and characterization

In this subsection we define a new way to represent ordinal preferences by
numerical vectors, namely, the canonical codification. Moreover, we characte-
rize the new codification procedure to associate every profile of complete
preorders with a unique matrix. Therefore, the use of this particular codi-
fication procedure is consistence and it could be used in any approach or
methodology. Along this section, some illustrative examples are included to
put it in practice.

7



Definition 1. The canonical codified complete preorder associated with
R ∈ W (X) is defined by the numerical vector KR = (c1, ..., ck) ∈ ({1, . . . , k})k
where cj = |{q : xj <R xq}| and therefore cj accounts for the number of al-
ternatives that are graded at most as good as xj.

A canonical codified profile associated with P = (R1, ..., RN) ∈ W (X)N is
an N ×k real-valued matrix denoted as KP = (KR1 , ..., KRN ) ∈MN×k. Each
KRi is row i in KP and it corresponds to the canonical codified complete
preorder associated with Ri.

Let us now provide an example in order to improve the understanding of
our codification proposal.

Example 1. Let R1, R2, R3 be the complete preorders on {x1, x2, x3} such
that:

R1 : x1 �R1 x2 ∼R1 x3,
R2 : x2 �R2 x1 �R2 x3,
R3 : x3 �R3 x1 ∼R3 x2.

Following Definition 1 their respective canonical codifications are
KR1 = (3, 2, 2), KR2 = (2, 3, 1), and KR3 = (2, 2, 3). We consider only for
illustration that these complete preorders define a profile, P = (R1, R2, R3).
Then its respective canonical codified profile is

KP =

 3 2 2
2 3 1
2 2 3

 .

In order to motivate the main result of this section, let us observe that not
all vectors of natural values are feasible canonical codified complete preorders.
For example, by means of the canonical codification it is not possible to get
KR = (1, 1, 1) with k = 3 because if there is a tie among the three alternatives
Definition 1 produces (3, 3, 3).

Considering these limitations, we now proceed to identify exactly which
vectors correspond to a canonical codified complete preorder.

Proposition 1. Given a vector c = (c1, . . . , ck) ∈ ({1, . . . , k})k, this vector
is the canonical codified complete preorder KR associated with R ∈ W (X) if
and only if the increasingly ordered vector (c(1), . . . , c(k)) verifies
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(i) c(1) = t1,

(ii) c(j+1) = c(j) + tj+1 ·Dj+1, j ∈ {1, . . . , k − 1},

where tj is the number of values equal to c(j) among the components of c and

Dj+1 =

{
0 if c(j+1) = c(j),
1 otherwise.

Proof 1. Let R ∈ W (X) be a complete preorder whose canonical codifica-
tion is KR = (c1, . . . , ck). Given a permutation on the alternatives τ , Rτ

denotes the permutation τ on the complete preorder R ∈ W (X) such that
KRτ = (c(1), . . . , c(k)) and c(1) 6 . . . 6 c(k).

Throughout the proof, t ∈ Nk stands for the vector containing the number
of coincidences for the elements of KR, t = (t1, t2, . . . , tk) = (|T1|, |T2|, . . . , |Tk|)
where Tj = { t ∈ {1, . . . , k} | ct = c(j) } for j ∈ {1, . . . , k}. Thus |Tj| is the
number of ties equal to c(j). The t vector is also called the ties vector of KR.

Let us first examine necessity. Given a canonical codified complete pre-
order KR = (c1, . . . , ck) ∈ ({1, . . . , k})k of R ∈ W (X), let us check conditions
(i) and (ii).

(i) To deduce c(1) = t1, we consider Definition 1

c(1) = |{q : x(1) < xq}|,

where x(1) is the alternative associated with c(1). Then, c(1) = t1 due
to the fact that c(1) is the number of alternatives equally preferred to x(1).

(ii) To deduce c(j+1) = c(j) + tj+1 · Dj+1, j ∈ {1, . . . , k − 1}, we claim
that if alternative x(j+1) is equally preferred to alternative x(j), then
c(j+1) = c(j). In other case, by Definition 1

c(j+1) = |{q : x(j+1) < xq}|.

Hence, c(j+1) is the sum of the number of the strictly less preferred
alternatives to x(j+1) plus the number of equally preferred alternatives
to x(j+1). Formally,

c(j+1) = |{q : x(j+1) � xq}|+ |{q : x(j+1) ∼ xq}|.

Then, c(j+1) = c(j) + tj+1.
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We now proceed to prove sufficiency. Suppose a numerical vector that
verifies conditions (i) and (ii), c = (c1, . . . , ck) ∈ ({1, . . . , k})k. We are in a
position to build a complete preorder R ∈ W (X) such that KR = c as follows.

By ordering in an increasing order the vector c, we obtain an ordered
vector, c() = (c(1), . . . , c(k)) and it is easy to compute its associated ties vector
t = (t1, . . . , tk) = (|T1|, . . . , |Tk|). Then

c() = (c(1), . . . , c(k)) = (

t1 times︷ ︸︸ ︷
t1, . . . , t1,

t2 times︷ ︸︸ ︷
t1 + t2, . . . , t1 + t2, . . . ,

tk times︷ ︸︸ ︷
k, . . . , k)

and consequently, we can deduce the complete preorder Rτ :

xk−tk+1 ∼ . . . ∼ xk � . . . � xt1+1 ∼ . . . ∼ xt1+t2 � x1 ∼ . . . ∼ xt1

whose associated canonical codification is c(). The proof is completed due to
KR = c. �

Now we proceed to exemplify the relevance of this result.

Example 2. In order to verify the necessity of establishing a characteriza-
tion of the codification procedure, let us check if some numerical vectors can
actually represent codified complete preorders for the case of four alterna-
tives.

• Consider the numerical vector c = (3, 4, 1, 1). First, its increasingly or-
dered vector and its corresponding ties vector are determined,
c() = (1, 1, 3, 4) and (|T1|, |T2|, |T3|, |T4|) = (2, 2, 1, 1), respectively. Se-
cond, by Proposition 1, we check that if c represents a canonical codi-
fication KR for some complete preorder R ∈ W (X) then the first el-
ement of KR should be 2. Therefore, c is not a canonical codified
complete preorder.

• We repeat the previous exercise for the numerical vector c = (2, 3, 3, 1).
Then, c() = (1, 2, 3, 3) is its increasingly ordered vector and
(|T1|, |T2|, |T3|, |T4|) = (1, 1, 2, 2) is its ties vector. Using Proposition 1,
the first, second and third element of KR should be 1, 2 and 2 + 2 = 4,
respectively. However, the latter is not true since c(3) = 3. Thus, the
vector c does not represent any complete preorder by the canonical
codification.
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• Finally, given c = (4, 2, 2, 1) a numerical vector, being its correspon-
ding increasingly ordered vector c() = (1, 2, 2, 4) and its ties vector
(|T1|, |T2|, |T3|, |T4|) = (1, 2, 2, 1). By means of Proposition 1, if c re-
presents a canonical codification KR for some complete preorder
R ∈ W (X), the first and second element ofKR should be 1 and 1+2 = 3
respectively, but it is not true because c(2) = 2. Therefore, c does not
represent any complete preorder by the canonical codification.

3. A new dissensus measure for ordinal information: The class of
Mahalanobis dissensus measures

A considerable amount of the most cited contributions on consensus mea-
surement have addressed this topic considering functions that assign to every
ranking profile a real number from the unit interval. Therefore, the higher
the assignment, the more coherence among agents’ preferences.

In this contribution we focus on the notion of dissensus measurement,
concretely, our approach resembles the notion of a “measure of statistical
dispersion”, in the sense that 0 captures the natural notion of unanimity
as total lack of variability, and then increasingly higher numbers mean more
disagreement among rankings in the profile. Then, we introduce a new broad
class of dissensus measures associated with a reference matrix, namely the
Mahalanobis dissensus measures that includes the possibility of cross-related
alternatives. Moreover, some important properties of the new measurement
are included.

Definition 2. A dissensus measure is a mapping δ : W (X)N → [0,∞) given
by

δ(P) = δ∗(MP)

for each profile P ∈ W (X)N and its codified profile MP ∈MN×k, where δ∗ is
a mapping δ∗ : MN×k → [0,∞) with the property:

(I) δ(P) = 0 if and only if P is unanimous. In other words, δ∗(MP) = 0
if and only if MP is unanimous.

Henceforth we also deal with dissensus measures that are normal, in the
following sense:

11



Definition 3. A dissensus measure is normal if it further verifies:

(II) Anonymity: δ(Pσ) = δ∗ ( (MP)σ) = δ∗(MP) = δ(P) for each permuta-
tion σ of the agents and MP ∈MN×k.

(III) Neutrality: δ(πP) = δ∗ (π(MP)) = δ∗(MP) = δ(P) for each permuta-
tion π of the alternatives and MP ∈MN×k.

Before providing our main definition, we recall the Mahalanobis distance
[48] on which our measure is based. This distance is a common tool in
multivariate statistical analysis, e.g., in regression models. We select it in
our proposal because it allows to take into account cross relations among
alternatives which is frequent in real situations.

Definition 4. Let Σ ∈ Mk×k be a positive definite matrix and x, y ∈ Rk be
two row vectors. The Mahalanobis (squared) distance on Rk associated with
Σ is defined by 2

dΣ(x, y) = (x− y)Σ−1(x− y)t

The Mahalanobis distance includes some particular distances such as the
(squared) Euclidean distance when Σ is the identity matrix.

Definition 5. Let Σ ∈ Mk×k be a positive definite matrix and let us fix a
codification procedure for profiles of complete preorders, P ∈ W (X)N . The
Mahalanobis dissensus measure associated with Σ is the mapping
δΣ : W (X)N → [0,∞) given by

δΣ(P) = δ∗Σ(MP),

for each profile P ∈ W (X)N and its codified profile MP ∈ MN×k, where δ∗Σ
is the mapping δ∗Σ : MN×k → [0,∞) given by

δ∗Σ(MP) =
1

C2
N

·
∑
i<j

dΣ(Mi,Mj),

and C2
N = N(N−1)

2
is the number of unordered pairs of the N agents.

2Our choice of dΣ(x, y) coincides with Mahalanobis’ original definition [48].
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Notice that δ∗Σ is the arithmetic mean of the Mahalanobis distances be-
tween each pair of codified complete preorders for each agent following Hays’s
approach [34].

Remark 1. The Mahalanobis dissensus measure satisfies the assumption of
Definition 2 because

δΣ(P) = δ∗Σ(MP) = 0

if and only if P is unanimous. This fact is easy to prove since dΣ is a
distance.

Along this contribution we use the codification procedure given in Section
2 even though the Mahalanobis dissensus measure is compatible with different
codification procedures.

To emphasize the advantages of our proposal, it could be interesting not
only to obtain values but to compare them in order to rank the original
profiles attending to their degree of dissensus. In this sense, next definition
is provided.

Definition 6. Each dissensus measure δΣ, for a positive definite matrix
Σ ∈Mk×k, produces a ranking of profiles of complete preorders <δΣ by esta-
blishing that

P <δΣ P ′ iff δ∗Σ(MP ′) > δ∗Σ(MP),

for P ,P ′ ∈ W (X)N two profiles with codified profiles MP ,MP ′ ∈MN×k.

This is to say, a profile P conveys at least as much consensus as the profile
P ′ when the dissensus measure of codified profile of P ′ is at least as large as
the dissensus measure of the codified profile of P .3

By way of illustration, we present the following example.

Example 3. Let Σ be the identity matrix and P1,P2 ∈ W (X)2 be two
profiles whose numerical codifications are

MP1 =

(
3 2 2
2 2 3

)
and MP2 =

(
3 2 2
2 3 1

)
.

Their Mahalanobis dissensus measures are computed as:

3 As is standard practice, the asymmetric part of the complete preorder <δΣ is denoted
by �δΣ .
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• δΣ(P1) = δ∗Σ(MP1) = (1, 0,−1)Σ−1(1, 0,−1)t = 2.

• δΣ(P2) = δ∗Σ(MP2) = (1,−1, 1)Σ−1(1,−1, 1)t = 3 .

Assuming Definition 6 we can conclude P1 �δΣ P2.

The major source of uncertainty in the Mahalanobis dissensus measure
is the choice of the Σ matrix. In this regard, we propose next definition for
establishing a partial order on the set of all Mahalanobis dissensus measures
and then to overcome this possible drawback.

Definition 7. Let ∆ be the set of all Mahalanobis dissensus measures. For
any δΣ1 , δΣ2 ∈ ∆ associated with Σ1,Σ2 ∈ Mk×k, a binary relation R∆ is
defined by

δΣ1 <R∆
δΣ2 ⇔ δ∗Σ1

(M) ≥ δ∗Σ2
(M),

for each N and for all codified profile M ∈MN×k.

This relation verifies the property of reflexivity, antisymmetry and transi-
tivity. Therefore, R∆ is a partial order in ∆.

In order to analize the properties of the Mahalanobis dissensus mea-
sures, it seems reasonable that we initially explore if these measures satisfy
anonymity and neutrality, that is, if the Mahalanobis dissensus measures are
normal dissensus measures and then the rest of their properties.

Let Σ ∈ Mk×k be a positive definite matrix and let us fix a codification
procedure for profiles of complete preorders, P ∈ W (X)N such that for
each profile P produces its codified profile MP ∈ MN×k. The Mahalanobis
dissensus measures verify:

Anonymity. Given permutation σ of the agents in the profile P , a Maha-
lanobis dissensus measure δΣ verifies anonymity since

δΣ(P) = δ∗Σ(MP) = δ∗Σ ( (MP)σ) = δΣ(Pσ)

for any codified profile MP ∈MN×k.
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Neutrality. A Mahalanobis dissensus measure δΣ verifies neutrality if and
only if the associated Σ matrix is a diagonal matrix whose diagonal
elements have to be equal among them. Formally:

δΣ(P) = δ∗Σ(MP) = δ∗Σ(πMP) = δΣ(πP),

for any codified profile MP ∈ MN×k and for any permutation π of
{1, . . . , k} if and only if Σ = diag{λ, . . . , λ} for a value λ > 0. 4

Noting the previous result and being critical of our measure, it could
be considered as a drawback the fact that neutrality is only verified
when Σ matrix is so specific. Thinking about it, we can point out that
the main contribution of our approach is to allow different roles for
alternatives. This fact produces that traditional neutrality property is
only verified when alternatives are not related and are exchangeable.

In order to overcome this drawback and emphasize the advantages of
the Mahalanobis dissensus measures (cross relations among alternatives
allowed), we propose to recall the neutrality property. If the alterna-
tives are relabeled, there exists a way to recover the same value of the
Mahalanobis dissensus measure, δΣ for each profile, as Proposition 2
shows.

Proposition 2. (Weak neutrality). Let Σ ∈ Mk×k be a positive defi-
nite matrix. For each profile P ∈ W (X)N , its codified profile
M ∈MN×k and for each permutation π of the alternatives, it is verified

δΣ(P) = δ∗Σ(MP) = δ∗Σπ(πMP) = δΣπ(πP),

where Σπ = Πt
π Σ Ππ and Ππ ∈ Mk×k the permutation matrix corres-

ponding to π.5

4A diagonal matrix Σ with diagonal elements {λ, . . . , λ} is represented as
Σ = diag(λ, . . . , λ).

5 Let π be a permutation of {1, 2, ..., k} and ei be the i -th vector of the canonical
base of Rn, that is, eij = 1 if i = j, eij = 0 otherwise. The matrix Ππ ∈ Mk×k whose
rows are eπ(i) is called the permutation matrix associated to π. The rearrangement of the
corresponding rows (resp. columns) of a matrix A using π is obtained by left (resp., right)
multiplication of Ππ, ΠπA (resp., AΠπ).
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Proof 2. Proposition 2 proof is similar to analogous result in González-
Arteaga, Alcantud and de Andrés Calle [26].

Compatibility. Let P ,P ′ ∈ W (X)N be two profiles and
MP ,MP ′ ∈ MN×k be their respective codified profiles. A Mahalanobis
dissensus measure δΣ is compatible with linear transformations of co-
dified profiles if

δ∗Σ(MP ′) > δ∗Σ(MP) ⇔ δ∗Σ(f(MP ′)) > δ∗Σ(f(MP))

where f(MP), f(MP ′) are respective cell-by-cell transformations of the
codified profiles MP and MP ′ by any linear transformation f .

Note compatibility refers to the behavior of the ranking of the profiles
previously provided in Definition 6.

Proof 3. Let f be a linear transformation f : R −→ R defined by
f(x) = a+bx . Using this transformation cell-by-cell on MP and MP ′, it
is obtained f(MP) = a· 1N+b·MP and f(MP ′) = a· 1N+b·MP ′, where
1N = (1, 1, . . . , 1). Then, (f(MP))i = a · 1N + b · (MP)i = f((MP)i)
and analogously for MP ′. This implies

f((MP)i)−f((MP)j) = a·1N+b·(MP)i−a·1N+b·(MP)j = b·((MP)i−(MP)j).

δ∗Σ(f(MP)) =
1

C2
N

∑
i<j

dΣ [ (f(MP))i, (f(MP))j ] =

=
1

C2
N

∑
i<j

dΣ [ f((MP)i), f((MP)j) ] =

=
1

C2
N

∑
i<j

dΣ ( a · 1N + b · (MP)i , a · 1N + b · (MP)j) =

=
1

C2
N

∑
i<j

[
( f((MP)i)− f((MP)j) ) Σ−1 ( f((MP)i)− f((MP)j) )

t
]

=

=
1

C2
N

∑
i<j

[
( b · (MP)i − b · (MP)j ) Σ−1 ( b · (MP)i − b · (MP)j )

t
]

=

=
1

C2
N

∑
i<j

b2
[
( (MP)i − (MP)j ) Σ−1 ( (MP)i − (MP)j )

t
]

=

= b2
1

C2
N

∑
i<j

dΣ [ (MP)i, (MP)j ] =

= b2 δ∗Σ(MP).
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Therefore, we have δ∗Σ(f(MP)) = b2 δ∗Σ(MP) and δ∗Σ(f(MP ′)) = b2 δ∗Σ(MP ′).

Now, it is easy to complete the proof. �

Reciprocity. Reciprocity means that if all individual complete preorders are
reversed, then the degree of dissensus does not change. A Mahalanobis
dissensus measure δΣ is reciprocal if

δΣ(P) = δ∗Σ(MP) = δ∗Σ(MP−1) = δΣ(P−1)

for all P = (R1, ..., RN) ∈ W (X)N and a codification procedure such
that MP−1 = (k + 1) · 1N −MP where 1N = (1, 1, . . . , 1).

Proof 4. Let P = (R1, ..., RN) ∈ W (X)N be a profile whose codified
profile is MP ∈MN×k. The reverse of the complete preorders produces
a new profile P−1 = (R−1

1 , ..., R−1
N ) ∈ W (X)N whose codified profile is

MP−1 ∈MN×k. The proof is easy from

dΣ(MR−1
i
,MR−1

j
) = dΣ((k + 1) · 1N −MRi , (k + 1) · 1N −MRj) =

= dΣ(MRi ,MRj).

�

4. Reaching a social consensus solution based on Mahalanobis dis-
tance

The problem of reaching a social consensus solution intends to determine
the ranking of alternatives that best agrees with individual preferences, or in
other words, the ranking that minimizes the disagreement among individuals.

In this section we present a new proposal to obtain a social consensus
solution based on the Mahalanobis distance as well as its properties. The
Mahalanobis social consensus solution preserves the advantages of the Ma-
halanobis distance since it takes into account the correlation among alterna-
tives. In addition, an illustrative example is included to show the graphical
interpretation of our proposal.
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4.1. Our proposal: The Mahalanobis social consensus solution

Our aim is to determine a complete preorder R̂ that provides the best
agreement for N rankings taking into account the Mahaloanobis distance.
This relation R̂ is called the Mahalanobis social consensus solution.

Following the traditional approaches and in order to obtain a consensus
solution, first of all it is necessary to establish the objective function to
optimize. In this contribution, this function is called Mahalanobis consensus
distance function (MCDF).

Definition 8. Let Σ ∈ Mk×k be a definite positive matrix and
P = (R1, . . . , RN) ∈ W (X)N be a profile of complete preorders. Given a
codification procedure, MP = (MR1 , . . . ,MRN ) ∈ MN×k is the codified profile
of P. The Mahalanobis consensus distance function (MCDF) is a mapping
CΣ,P : MN×k −→ [0,∞) defined by

CΣ,P(MR) =
N∑
i=1

dΣ(MRi ,MR) =
N∑
i=1

(MRi −MR)Σ−1(MRi −MR)t

and it regards the sum of the Mahalanobis distances from each of the N
agent’s preferences to a complete preorder R whose codification is MR.

Once the Mahalanobis consensus distance function has been defined, we
proceed to establish our optimization problem:

min
MR

CΣ,P(MR) = min
MR

N∑
i=1

dΣ(MRi ,MR)

s.t. MR ∈ F s.t. MR ∈ F
where the feasible set F is the set with elements MR that are codified com-

plete preorders, so that MR = (m1, . . . ,mk).

Solving the above optimization problem we obtain the following solution,
MR̂.
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Definition 9. A Mahalanobis consensus solution is an ordinal ranking of
the alternatives obtained by solving

min
MR

CΣ,P(MR) = min
MR

N∑
i=1

dΣ(MRi ,MR) = CΣ,P(MR̂)

s.t. MR ∈ F s.t. MR ∈ F

where MR̂ = (m̂1, . . . , m̂k) is a vector which minimizes the Mahalanobis con-
sensus distance function.

The proposed optimization problem can generate complete preorders or
linear orders like ranking solutions. If no ties are required, the set of con-
straints in F has to provide for.

In order to simplify and facilitate the computation of Mahalanobis con-
sensus solutions we present Theorem 1. This new result allows to esta-
blish an equivalence between rankings obtained by the method of minimized
Mahalanobis consensus distance function (MCDF) and rankings closest to
the mean vector M defined by the component-wise averages. This theorem
makes the method analytically rigorous and provides an intuitively appealing
approach. 6

Theorem 1. Let Σ ∈ Mk×k be a positive definite matrix and MP ∈ MN×k
be a codified profile. The following statements are equivalent:

1. MR̂ minimizes CΣ,P(MR) =
N∑
i=1

dΣ(MRi ,MR).

2. MR̂ minimizes dΣ(MP ,MR) being

MP = (M1, . . . ,Mk ) = (
1

N

N∑
i=1

mi1, . . . ,
1

N

N∑
i=1

mik).

6 The degree of computational complexity of our approach is not higher than other
related well-known approaches [11]. Nowadays there are several powerful computational
tools able to solve this kind of problems for a reasonable size (see e.g., [10] and [57], among
others).
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Proof 5.

CΣ,P(MR) =
N∑
i=1

dΣ(MRi ,MR) =
N∑
i=1

(MRi −MR)Σ−1(MRi −MR)t =

=

N∑
i=1

(
MRi Σ−1M t

Ri − 2MRiΣ
−1M t

R +MRΣ−1M t
R

)
=

=

(
N∑
i=1

MRi Σ−1M t
Ri

)
− 2

(
N∑
i=1

MRiΣ
−1M t

R

)
+

(
N∑
i=1

MRΣ−1M t
R

)
=

=

(
N∑
i=1

MRi Σ−1M t
Ri

)
− 2

(
N∑
i=1

MRi

)
Σ−1M t

R +NMRΣ−1M t
R =

=

(
N∑
i=1

MRi Σ−1M t
Ri

)
− 2NM Σ−1M t

R +NMR Σ−1M t
R =

=

(
N∑
i=1

MRi Σ−1M t
Ri

)
+N

(
−2M Σ−1M t

R +MR Σ−1M t
R

)

dΣ(MP ,MR) = (MP −MR)Σ−1(MP −MR)t =

= MP Σ−1MP
t
+
(
−2MP Σ−1M t

R +MR Σ−1M t
R

)
As we can observe the minimization of CΣ,P(MR) and dΣ(MP ,MR) only

depends, in both cases, on −2MP Σ−1M t
R+MR Σ−1M t

R. Then, both problems
are equivalent. �

A strong evidence of the strength of our proposal to obtain a social con-
sensus solution is given through the consistency between the methodology
proposed by Cook and Seiford [14] based on Euclidean distance and ours
based on Mahalanobis distance. Concretely, Cook and Seiford [14] formalized
the so-called monotone non-decreasing property for the case of the Minimum
Variance method in order to realize the potential of the alignment between
the average point and the ranking that minimizes the Euclidean distance. If
we apply Cook and Seiford’s idea but using a Mahalanobis distance associ-
ated with Σ ∈Mk×k, then their relationship is satisfied when the vectors are
expressed in the space of the eigenvectors of the matriz Σ. More precisely,
the Mahalanobis consensus solution and the mean vector are linked like the
next proposition shows.

Proposition 3. A Mahalanobis consensus solution MR̂ = (m̂1, . . . , m̂k) does

not reverse preferences given by the average point M = (M1, . . . ,Mk ) when
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both are expressed in the basis of the eigenvectors of the matrix Σ, M
e

and
M e

R̂
, respectively. More precisely:

M i e < M j e =⇒ m̂e
i < m̂e

j for i, j ∈ {1, . . . k}, i 6= j

Proof 6. Consider the spectral decomposition of the matrix Σ = ΓtDλΓ
where Γ and Dλ contain eigenvectors (by columns) and the corresponding
eigenvalues of Σ as diagonal elements, respectively.

Let E = ΓD
− 1

2
λ be the matrix that defines the linear transformation in

order to change N-dimensional vectors to coordinates of the eigenspace of Σ.
Applying the aforementioned transformation on the vectors M, and MR̂, it

yields M
e

= M E = (M1 e, . . . ,Mk e) and M e
R̂

= MR̂E = (m̂e
1, . . . , m̂

e
k), res-

pectively.

We must prove that if M i e < M j e then m̂e
i ≤ m̂e

j for i, j ∈ {1, . . . k},
i 6= j. Suppose M i e < M j e and m̂e

i > m̂e
j. Let M

′
be a vector such that

M
′e = M

′
E = (m

′e
1 , . . . ,m

′e
k ) and its elements are obtained from M e

R̂
by

interchanging m̂e
i and m̂e

j, i.e.,

m
′e
r =


m̂e
j if r = i,

m̂e
i if r = j,

m̂e
r otherwise.

First, we obtain dΣ(M,MR̂):

dΣ(M,MR̂) = (M −MR̂)Σ−1(M −MR̂)t =
= (M −MR̂)ΓD−1

λ Γt(M −MR̂)t =

= (M −MR̂)ΓD
− 1

2
λ D

− 1
2

λ Γt(M −MR̂)t =
= (M −MR̂)E Et(M −MR̂)t =
= (M E −MR̂E)(M E −MR̂E)t =

= (M
e −M e

R̂
)(M

e −M e
R̂

)t

Analogously, we compute dΣ(M,M
′
):

dΣ(M,M
′
) = (M −M ′

)Σ−1(M −M ′
)t = (M

e −M ′e)(M
e −M ′e)t.

Next, we must get dΣ(M,MR̂)− dΣ(M,M
′
):
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dΣ(M,MR̂)− dΣ(M,M
′
) =

= (M
e −M e

R̂
)(M

e −M e
R̂

)t − (M
e −M ′e)(M

e −M ′e)t =

=
(
M

e
M

e t − 2M
e
M e t

R̂
+M e

R̂
M e t

R̂

)
−
(
M

e
M

e t − 2M
e
M
′ e t +M

′ eM
′ e t
)

=

= (M
e

1, . . . ,M
e

i , . . .M
e

j , . . .M
e

k)
(
m
′ e
1 , . . . ,m

′ e
i , . . . ,m

′ e
j , . . . ,m

′ e
k

)
−

−(M
e

1, . . . ,M
e

i , . . .M
e

j , . . .M
e

k)
(
m̂e

1, . . . , m̂
e
i , . . . , m̂

e
j , . . . , m̂

e
k

)
=

= (M
e

1, . . . ,M
e

i , . . .M
e

j , . . .M
e

k)
(
m̂e

1, . . . , m̂
e
j , . . . , m̂

e
i , . . . , m̂

e
k

)
−

−(M
e

1, . . . ,M
e

i , . . .M
e

j , . . .M
e

k)
(
m̂e

1, . . . , m̂
e
i , . . . , m̂

e
j , . . . , m̂

e
k

)
=

= 2
(
M

e
M
′ e t − M

e
M e t

R̂

)
= 2

(
me
i m̂

e
j +me

jm̂
e
i −me

i m̂
e
i −me

jm̂
e
j

)
=

= 2(m̂e
i − m̂e

j)(m
e
j −me

i ).

Then, dΣ(M,MR̂) − dΣ(M,M
′
) = 2 (m̂e

i − m̂e
j)(m

e
j − me

i ) > 0, so

dΣ(M,MR̂) > dΣ(M,M
′
) and, thus dΣ(M,MR̂) is not minimal and MR̂ is not

the Mahalanobis consensus solution. In that way, a contradiction is reached.
Consequently, the hypothesis M i e < M j e =⇒ m̂e

i < m̂e
j is verified. �

Additionally to the previous results it should be interesting to study if Ma-
halanobis social consensus solutions satisfy other properties usually claimed
in Social Choice Theory. In the next subsection we explore some of them.

4.2. Properties of the Mahalanobis social consensus solution

We now proceed to define and prove the main properties of the Maha-
lanobis social consensus solution. These properties ensure the suitability and
avoid weird behaviors of the new approach. Moreover, these good theoretical
properties make it easier to accept the social solution obtained for the group.

• Anonymity. Any member’s ranking is considered equal in importance
to the ranking preferred by any other member. More precisely, given
a profile P ∈ W (X)N , a Mahalanobis social consensus solution does
not change for each permutation σ of the agents. The problem to solve
then is

min
MR

N∑
i=1

dΣ(Mσ(i),MR)

s.t. MR ∈ F
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Proof 7. It is straightforward that a ranking R̂ whose codified complete
preorder is MR̂ given by Definition 9 is also a solution to the above
problem since CΣ,P(MR) = CΣ,Pσ(Mσ

R) for all MR and σ. �

• Unanimity. If all agents show the same preferences on all alternatives,
then a Mahalanobis social consensus solution coincides with such com-
mon complete preorder.

Proof 8. This is easily seen since the column means of the codified
profile is equal to that common codified complete preorder. That means,
it belongs to the feasible set F and Theorem 1 produces the result. �

• Neutrality. Generally speaking, this property means all alternatives are
treated strictly equal. More precisely, any relabelling of the alterna-
tives or issues induces the corresponding permutation of a Mahalanobis
social consensus solution. Due to the fact that our proposal presents
a collection of functions MCDFs, relying on Σ matrix, it should be
reasonable that the verification of this property depends on Σ.

Consider a Mahalanobis social consensus solution MR̂ obtaining by
Definition 9. Given π a permutation of the set of alternatives. The
MCDF after permuting the alternatives can be written as

CΣ,πP(MR) =
N∑
i=1

dΣ(MπRi ,MR) =
N∑
i=1

dΣ(πMRi ,MR)

Due to the previous reasoning, the property to prove is:

min
MR

CΣ,πP(MR) = min
MR

N∑
i=1

dΣ(MπRi ,MR) = CΣ,πP(MπR̂)

s.t. MR ∈ F s.t. MR ∈ F

where MπR̂ =π MR̂ = (m̂π(1), . . . , m̂π(k)) is a consensus solution for this
problem if and only if Σ = diag{λ, . . . , λ} for some λ > 0.

Proof 9. We consider the following two problems to solve:
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• min
MR

CΣ,P(MR) = min
MR

N∑
i=1

dΣ(MRi ,MR)

s.t. MR ∈ F s.t. MR ∈ F

• min
MR

CΣ,πP(MR) = min
MR

N∑
i=1

dΣ(MπRi ,MR)

s.t. MR ∈ F s.t. MR ∈ F

By Theorem 1 the resolution of these problems can be reduced to mini-
mize dΣ(M , MR) and dΣ(πM,MR), respectively.

dΣ(M, MR) = (M −MR)Σ−1(M −MR)t.

In order to simplify the notation and due to the equivalence among the
set of complete preorders and the set of their permutations, we can write
πMR for some MR. Thus,

dΣ(πM, πMR) = (πM −π MR) Σ−1 (πMi −π MR)t =

= (MΠπ −MRΠπ) Σ−1 (MΠπ −MRΠπ)t =

= (M −MR) Ππ Σ−1 Πt
π (M −MR)t.

Let us first prove sufficiency. If Σ = diag{λ, . . . , λ} for a value λ > 0,
then Ππ Σ−1 Πt

π = Σ−1 and consequently,

dΣ(M, MR) = dΣ(πM, πMR)

that is, the distance to minimize coincides for both problems and the
result is straightforward.7

Let us now prove necessity. Assuming that given a codified profile
M ∈ MN×k and for each π, dΣ(M, MR) = dΣ(πM, πMR), therefore
Ππ Σ−1 Πt

π = Σ−1, we must prove that Σ = diag{λ, . . . , λ}.

7Recall Ππ is the permutation matrix corresponding to π.
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The proof of this point is similar to the demonstration included in
González-Arteaga, Alcantud and de Andrés Calle [26, Appendix A,
Proof of Property 1]. �

In the same way that happens to the Mahalanobis dissensus measure,
the Mahalanobis social consensus solution preserves the advantages of
the Mahalanobis distance, concretely, it takes into account the correla-
tion among alternatives. Therefore, on the question of neutrality for the
consensus solution, the reasons and the clarifications aforementioned in
Section 3 (Property 2) are maintained. We now present a weak version
of the neutrality property.

• Weak neutrality. Any relabelling of the alternatives or issues induces
the corresponding permutation of the Mahalanobis social consensus so-
lution associated to the appropriate permutation on Σ. Formally:

Let Σ ∈ Mk×k be a positive definite matrix. For each profile
P ∈ W (X)N whose codified profile is M ∈ MN×k and for each per-
mutation π of the alternatives, the problem to solve is

min
MR

CΣπ , πP(MR) = min
MR

N∑
i=1

dΣπ( πMRi ,MR),

s.t. MR ∈ F s.t. MR ∈ F

where Σπ = Πt
π Σ Ππ.

Therefore, the minimization of the MCDF, CΣπ , πP(MR) produces a
Mahalanobis social consensus solution πMR̂ = MπR̂ obtained from MR̂.

Proof 10. Let us consider the set of codified complete preorders in the
form πMR = MπR like possible solutions. Since Definition 9, it is
sufficient to prove

dΣπ(πMRi ,
πMR) = dΣ(MRi ,MR) for i = 1, . . . N.
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Using the fact that the permutation matrix Ππ is orthogonal

dΣπ(πMRi ,
πMR) = (πMRi −π MR) (Σπ)−1 (πMRi −π MR)t =

= (MRiΠπ −MRΠπ) (Πt
πΣΠπ)−1 (MRiΠπ −MRΠπ)t =

= (MRi −MR) Ππ Πt
πΣ−1Ππ Πt

π (MRi −MR)t =

= (MRi −MR)Σ−1(Mi −MR)t =

= dΣ(MRi ,MR).

Then, the proof is straightforward. �

• Consistency. Given a set of agents divided in two disjoint subcommi-
ttees. Suppose that Mahalanobis social consensus solutions obtained
for each subcommittee coincide. Then, Mahalanobis social consensus
solutions derived from the original set of agents are the same that the
obtained for the subcommittees.

Proof 11. Let N = N(1) ∪N(2) be a partition of the set N of agents
in two disjoint subcommittees. The Mahalanobis social consensus solu-
tions for each subcommittee are MR̂(1) and MR̂(2), respectively. Accord-
ing to the hypothesis: MR̂(1) = MR̂(2). The MCDF for the set of agents
N can be written as

CΣ,P(MR) =
N∑
i=1

dΣ(MRi ,MR) =

=
∑
i∈N(1)

dΣ(MRi ,MR) +
∑
i∈N(2)

dΣ(MRi ,MR) =

= CΣ,P(1)(MR(1)) + CΣ,P(2)(MR(2)).

MR̂(1) = MR̂(2) minimizes the first and the second summand. There-
fore, the minimum of the first term in the above equality is reached in
MR̂(1) = MR̂(2) because both summands are positive. �

• Compatibility. Let M∗ = a ·1N +b ·M the matrix arising from an affine
transformation of M ∈MN×k which represents the codified profile asso-
ciated with P ∈ W (X)N . The Mahalanobis social consensus solution
obtained for M∗ is M∗

R̂
= a · 1N + b ·MR̂ being MR̂ the corresponding

Mahalanobis social consensus solution for M .
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Proof 12. The problem to solve is

min
M∗R

N∑
i=1

dΣ(M∗
Ri
,M∗

R)

s.t. M∗
R ∈ F ∗

where F ∗ is the set of all possible vectors that represent codified complete
preorders using the affine transformation.

Replacing M∗
Ri

= a ·1N + b ·MRi and M∗
R = a ·1N + b ·MR , we obtain:

N∑
i=1

dΣ(M∗
i ,M

∗
R) =

N∑
i=1

(M∗
i −M∗

R)Σ−1(M∗
i −M∗

R)t =

= b2

N∑
i=1

(Mi −MR)Σ−1(Mi −MR)t =

= b2

N∑
i=1

dΣ(Mi,MR).

Therefore, M∗
R̂
∈ F ∗ if and only if there exists MR̂ ∈ F such that

M∗
R̂

= a · 1N + b ·MR̂. �

• Reciprocity. Reciprocity means that if all individual rankings in a pro-
file are reversed, then the consensus solution is obtained by reversing
the original solution. This is true for Mahalanobis social consensus so-
lution under a basic condition on the codification procedure. Formally:

Let P ∈ W (X)N be a profile and P−1 ∈ W (X)N be its reverse, whose
associated codified profiles are MP , MP−1 ∈MN×k, respectively. Fixed
a positive definite matrix Σ ∈ Mk×k, the problems to solve are the
following:

(P1) min
MR

CΣ,P−1(MR) = min
MR

N∑
i=1

dΣ(MP−1)i,MR)

s.t. MR ∈ F s.t. MR ∈ F

(P2) min
MR

CΣ,P(MR) = min
MR

N∑
i=1

dΣ(MP)i,MR)

s.t. MR ∈ F s.t. MR ∈ F
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Then, the solution of the problem (P1) has to be the reverse of the
solution of the problem (P2).

Reciprocity is fulfilled if the codification procedure used on R ∈ W (X)
verifies MR−1 = a · 1N + b ·MR = (a + bm1, . . . , a + bmk) for a, b ∈ R.
Therefore, (MP−1)i = a · 1N + b · (MP)i.

Notice that our codification proposal, the canonical codification, satis-
fies the aforementioned condition since

MR−1 = a · 1N + b ·MR = (a+ bm1, . . . , a+ bmk) =
= (n+ 1−m1, . . . , n+ 1−mk) =
= (n+ 1) · 1N −MR.

Proof 13. In order to solve problems (P1) and (P2), Theorem 1 is
used. Thus, it is enough to minimize dΣ(MP−1 ,MR) and dΣ(MP ,MR)
subject to MR ∈ F , respectively.

Considering that MP−1 = a · 1N + b ·MP and being MR̂ a solution of
problem (P1), it is easy to check that a · 1N + b ·MR̂ is a solution of
problem (P2) since

dΣ(MP−1 , a · 1N + b ·MR̂) = dΣ(a · 1N + b ·MP , a · 1N + b ·MR̂) =

= b2 dΣ(MP , MR̂).

�

• Non-dictatorship. The Mahalanobis social consensus solution is never
dictatorial. Recall that in a dictatorship, social choices are based on the
preferences of only one expert or agent. Formally, an agent j ∈ N exists
such that for all alternatives xr, xs ∈ X and for all profiles P ∈ W (X)N

xr <Rj xs =⇒ xr <R̂ xs.

Proof 14. Immediate from Theorem 1. �
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4.3. Graphical interpretation and discussion: An illustrative example

To clarify and discuss the new approach presented in Subsection 4.1, we
develop an explanatory example.

By way of illustration, we suppose the following group decision making
problem: a set of students have to choose the destination of their graduation
trip. Students should order destinations offered by a travel agency.

We consider a set of three students of the Faculty of Sciences (experts)
N = {e1, e2, e3} and a set of three destinations (alternatives) X = {x1 =
Paris, x2 = Berlin, x3 = Istanbul}. Each student participates in a survey
about her/his preferences on the trip destinations where she/he is asked to
order them.

Their responses are summarized as follows:

Student e1 : x3 �Re1 x1 ∼Re1 x2

Student e2 : x3 �Re2 x1 ∼Re2 x2

Student e3 : x1 ∼Re3 x2 �Re3 x3

The previous complete preorders generate a particular profile P . Applying
Definition 1 to each complete preorder the codified profile for P is

MP =

 2 1 3
2 1 3
3 3 1

 ,

or also MP = (MRe1
,MRe2

,MRe3
).

In order to obtain a group solution that captures the minimum possible
dissensus among students’ preferences (i.e., the maximum possible consen-
sus), we must solve the following general optimization problem:

min
MR

CΣ,P(MR)

s.t. MR ∈ F
where F is the feasible set computed by Proposition 1 and

CΣ,P(MR) =
N∑
i=1

dΣ(MRi ,MR) =
N∑
i=1

(MRi −MR)Σ−1(MRi −MR)t.

This problem adapted to our specific case takes the form gathered in
Table 1. Moreover, the corresponding feasible set is displayed in Figure 1.
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Min dΣ(MRe1
,MR)+ dΣ(MRe2

,MR)+ dΣ(MRe3
,MR)

Subject to MR belongs to:
(3, 3, 3) (3, 3, 1) (1, 3, 2)
(2, 2, 3) (3, 1, 3) (2, 3, 1)
(3, 2, 2) (1, 3, 3) (2, 1, 3)
(2, 3, 2) (1, 2, 3) (3, 1, 2)
(3, 2, 1)

Table 1: Formulation of the optimization problem.

This optimization problem can be simplified by means of Theorem 1 hence
it boils down to:

Min dΣ(M,MR) = Min (M −MR)Σ−1(M −MR)t

Subject to MR belongs to:

(3, 3, 3) (3, 3, 1) (1, 3, 2)
(2, 2, 3) (3, 1, 3) (2, 3, 1)
(3, 2, 2) (1, 3, 3) (2, 1, 3)
(2, 3, 2) (1, 2, 3) (3, 1, 2)
(3, 2, 1)

where M = (2.34, 1.67, 2.34) is the vector of column means of MP .

The solution of this problem hinges on the Σ matrix. We now provide Ma-
halanobis social consensus solutions under the assumption of three different
Σ matrices to enrich the case of study and promote the discussion:

1. Case 1. In the simplest case, the Σ matrix is the identity matrix,
Σ = I = diag(1, 1, 1). In our example this means that all destinations
are equally treated. By solving the corresponding optimization problem
the following solutions are obtained (see Table 2):

• MR2 = (2, 2, 3), that is, x3 � x1 ∼ x2.

• MR3 = (3, 2, 2), that is, x1 � x2 ∼ x3.

About graphical interpretation, on the left of Figure 2 the elements of
the feasible set F are displayed like dots using a color scale. Dots have
different colors depending on their Mahalanobis distance, dI , to the
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mean point M (black triangle). Associated distance values are shown
in Table 2.

Additionally, Figure 3 shows the minimum equidistant surface to M ,
that in this case is a blue sphere centered at M . Moreover, Figure 3
includes two different perspectives in order to improve the view.

Notice that considering the Σ matrix as the identity matrix is equivalent
to using the Euclidean distance (lp = l2) to compute a solution. The
Euclidean distance has been extensively used in other approaches like
[14], [29] and [30]. Then, Case 1 could be used to compare our approach
with other methods and to show its efficiency. Next cases include the
importance and the cross-relations of alternatives by means of several
Σ matrices.

2. Case 2. Now we account for a case where alternatives are considered
differently by means of a diagonal Σ matrix. In our example this means
that all destinations are not equally treated. Suppose for instance
Σ = D = diag(0.3, 0.8, 1.2) where the third alternative has the biggest
significance. In Table 2 we can find the social consensus solution for
this particular case:

• MR2 = (2, 2, 3), that is, x3 � x1 ∼ x2.

Analogously to the previous case, on the right of Figure 2 the ele-
ments of the feasible set are shown. The color scale is built for the
Mahalanobis distance, dD, between dots and the mean point M (black
triangle). Such distance values are also shown in Table 2.

In addition, the aforementioned social solution can be found in Figure
4 from two perspectives. It shows the minimum equidistant surface to
M , that is a blue ellipsoid centered at M . On the right, after rotating
the ellipsoid, our figure makes clear that dots with labels v1 and v3 are
outside of the ellipsoid, farther away than the dot v2.

3. Case 3. Finally, we examine the case of a non-diagonal matrix, which
allows to incorporate the interdependence of the alternatives because
the role of Σ in the Mahalanobis distance. Let us assume the following
particular matrix
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Σ = Σ1 =

 0.30 0.37 −0.36
0.37 0.80 −0.29
−0.36 −0.29 1.20

 .

Since Σ matrix can be considered as a variance-covarince matrix in the
Mahalanobis distance, it is easy to compute the corresponding corre-
lation matrix Corr, that is, the correlation among the alternatives.8

Corr = Corr1 =

 1.00 0.75 −0.60
0.75 1.00 −0.30
−0.60 −0.30 1.00

 .

In our example this matrix implies not only that all destinations are
not equally treated but they are also correlated. Alternatives x1 and
x2 are highly positively correlated whereas alternatives x1 and x3, and
x2 and x3, are negatively correlated. Therefore, it is assumed that
Paris and Berlin are “positively” correlated destinations. However,
the preferences relative to Paris versus Istanbul are more intensively
opposite than Berlin versus Istanbul.

In order to solve the optimization problem for this case we observe the
corresponding distance values, dΣ1 , contained in Table 2. In this case,
we conclude that the solution is:

• MR11 = (2, 1, 3), that is, x3 � x1 � x2

Regarding graphical interpretation, Figure 5 shows the minimum equi-
distant surface to M . In this case, it is a blue oriented ellipsoid centered
at M . After a rotation, the graph on the right reveals that dots v2 and
v4 are outside of the ellipsoid, farther than the dot v11.

5. Concluding remarks

This study is aimed at proposing a new approach to obtain a group con-
sensus solution under the assumption of ordinal information. A new proce-
dure based on an optimization model has been developed, obtaining a social

8The element ij of the corelation matrix Corr is
Σij√

Σii

√
Σjj

, where Σij is the element

ij of variance-covariance matrix Σ.
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consensus solution based on the Mahalanobis distance. To accomplish such
target two new contributions have been developed in addition of the main re-
sult: the characterization of a codification procedure for ordinal information,
namely, the canonical codification and the definition and analysis of a new
dissensus measure, namely, the Mahalanobis dissensus measure. The use of
the Mahalanobis distance as a base of our approaches brings advantage by
considering possible cross relations among alternatives. Moreover, the ope-
rational character and intuitive interpretation of our approaches have been
illustrated by an explanatory example.

The findings of this study have a number of important implications for fu-
ture practice. Many problems from a variety of fields can be managed by our
methods such as the performance of consumers’ preferences, Clinical Deci-
sion Making problems, allocation of projects, Human Resources Department
problems, etc.
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Figure 1: Graphical display of complete preorders included in Table 1 and
Table 2. MRi is labeled by vi.
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Figure 2: A display of elements in F with colored dots depending on the
distance (on the left dI and on the right dD) to the mean point M (black
triangle). In addition, squares denotes the codified complete preorders (MR5

and MR11) included in M .

Complete
preorders

Codified complete
preorders

Graphic
labels

dI dD dΣ1

R1 : x1 ∼ x2 ∼ x3 MR1 = (3, 3, 3) v1 2.67 4.07 4.43
R2 : x3 � x1 ∼ x2 MR2 = (2, 2, 3) v2 0.67 0.88 1.99
R3 : x1 � x2 ∼ x3 MR3 = (3, 2, 2) v3 0.67 1.71 2.85
R4 : x2 � x1 ∼ x3 MR4 = (2, 3, 2) v4 2.00 2.69 12.51
R5 : x1 ∼ x2 � x1 MR5 = (3, 3, 1) v5 4.00 5.19 3.07
R6 : x1 ∼ x3 � x2 MR6 = (3, 1, 3) v6 1.33 2.41 14.45
R7 : x2 ∼ x3 � x1 MR7 = (1, 3, 3) v7 4.00 8.52 39.08
R8 : x3 � x2 � x1 MR8 = (1, 2, 3) v8 2.33 6.44 22.04
R9 : x2 � x3 � x1 MR9 = (1, 3, 2) v9 3.67 8.24 47.00
R10 : x2 � x1 � x3 MR10 = (2, 3, 1) v10 3.67 4.07 18.27
R11 : x3 � x1 � x2 MR11 = (2, 1, 3) v11 1.00 1.30 0.77
R12 : x1 � x3 � x2 MR12 = (3, 1, 2) v12 1.00 2.13 9.77
R13 : x1 � x2 � x3 MR13 = (3, 2, 1) v13 2.33 3.10 2.32

Table 2: Mahalanobis distances dI(MRi ,M), dD(MRi ,M) and dΣ1(MRi ,M)
from codified complete preorders MRi (elements in F ) to the mean point M .
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Figure 3: Graphical interpretation of case 1 in Subsection 4.3 using dI .
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Figure 4: Graphical interpretation of case 2 in Subsection 4.3 using dD.
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Figure 5: Graphical interpretation of case 3 in Subsection 4.3 using dΣ1 .
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