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Abstract

Motivated by current interest in quantum confinement potentials, especially with respect to the
Stark spectroscopy of new types of quantum wells, we examine several novel one-dimensional singular
oscillators. A Green function method is applied, the construction of the necessary resolvents is reviewed
and several new ones are introduced. In addition, previous work on the singular harmonic oscillator
model, introduced by Avakian et al. is reproduced to verify the method and results. A novel features is
the determination of the spectra of asymmetric hybrid linear and quadratic potentials. As in previous
work, the singular perturbations are modeled by delta functions.

1 Introduction

The bound state spectra in confining potentials, especially of linear and quadratic form, has been a concern
in quark confinement, for example, for some time [1]. The effect on these spectra due to local changes in
the potential at specific points is also of concern and led Avakian et al. [2] (see also [3, 4]) to introduce the
singular harmonic oscillator model V (x) = ax2 + bδ(x) which, along with generalizations, has accumulated
an extensive literature. Of particular interest is the extensive body of fundamental work on these systems
by S. Fassari et al. [5, 6, 7, 8], and that summarized in the book of Albeverio et al. [9] (see also [10])
to which we refer the reader for further references. More recently, these models have arisen in the study
of semi-conductor quantum wells where, since the 1980’s, it has been possible to engineer these entities
with increasingly sophisticated properties. Quantum wells having parabolic confinement in applied electric
fields are fundamental for a growing optical device industry. For a survey of the basic experimental and
theoretical work in this area see, e.g. [11]. In the pioneering work these systems could be treated successfully
as singularly decorated square wells and a Green function matching technique was developed providing an
accurate account of the electro-luminescence of Ga-As based quantum wells [12]. In this note we present
a first attempt to extend this work to the quantum-confined Stark effect in low symmetry and anisotropic
structures now being explored. For details and references see [13], e.g.

Our aim in this note is to reproduce the basic energy level calculations for the harmonic case by the
expeditious Green function method derived in [14] and then to go on to examine a number of new systems,
including the important linear oscillator V (x) = a|x|+ bδ(x− q) which, surprisingly, has not been studied
in detail. For completeness, we begin by deriving the basic Green functions.
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For a one-dimensional simple harmonic oscillator having frequency ω

Hho = − ~2

2m

d2

dx2
+
mω2

2
x2, Ehon = ~ω

(
n+

1

2

)
,

ψhon (x) =
1√

2nn!

(mω
π~

)1/4
e−mωx

2/(2~)Hn

(√
mω

~
x

)
,

(1.1)

the causal propagator

Kho(x, x
′; t) =

∞∑
n=0

ψhon (x)(ψhon (x′))∗e−iE
ho
n t/~

=

√
mω

2πi~ sinωt
exp

[
−mω
2i~

[
(x2 + x′2) cotωt− 2xx′ cscωt

]]
θ(t), (1.2)

where θ(t) represents the Heaviside step function, is derived in many elementary texts, e.g. [15, 16] and
plays an important role in problems concerning electrons in magnetic fields, for example. However, its
time-Fourier transform, the equally useful energy dependent Green function (Schrödinger resolvent)

Gho(x, x
′;E) =

i

~

∫ ∞
0

eiE
+t/~Kho(x, x

′; t)dt (1.3)

is less well-known, although it seems to have first appeared on p. 74 of the classical book of Titchmarsh
[17]. In the case of the three-dimensional oscillator (1.3) was evaluated explicitly by Krebtukov and Macek
[18]. In the next section we present an independent derivation of Gho(x, x

′;E) in one dimension in terms of
the Parabolic Cylinder Function Dν(x) (see Chap. 8 of [19]), by obtaining an integral representation for the
Hermite polynomials resolvent series. We study two applications of this result: the case of adding a linear
potential to the harmonic oscillator and the case of the hybrid asymetric oscillator proposed in [14]; in both
cases the spectrum is analyzed in detail. In section 3 we obtain the Green function for the linear confining
potential V (x) = α3|x|, in terms of Airy functions. The applications to an asymmetric linear potential and
to a couple of different combinations of oscillator and linear potentials are studied. In Section 4 we revisit
the δ-decorated harmonic well problem [2], and we analyze the same type of “decoration” for the linear
confining potential previously mentioned. The paper ends with a summary and discussion.

2 Calculation of the harmonic oscillator Green function

In order to determine the Green function of a system uniquely, the boundary conditions must be “built
in” to the solution of the Green function equation. In the case of (1.3) this is achieved by adjusting the
integration contour. For the three dimensional oscillator, this was achieved [18] by assigning the energy an
infinitesimal imaginary part. The subsequent integration was then carried out by taking advantage of the
rotational symmetry of the system. In the one dimensional case this is not an option and we must proceed
differently.

From the familiar eigenstates ψhon (x) and eigenergies Ehon of the harmonic oscillator (1.1), as for any
Sturm-Liouville system [17], we form the Green function (resolvent) as a series, where the boundary
conditions are automatically incorporated into the eigenfunctions,

Gho(x, x
′;E) =

∞∑
n=0

ψhon (x)(ψhon (x′))∗

Ehon − E
=

√
mω

π~
e−mω(x

2+x′2)/(2~)
∞∑
n=0

Hn(
√

mω
~ x)Hn(

√
mω
~ x′)

2nn![~ω(n+ 1
2 )− E]

. (2.1)

As it is well known, this Green function satisfies the general equation1[
− ~2

2m

∂2

∂x2
+ V (x)− E

]
G(x, x′;E) = δ(x− x′) (2.2)

1In operator form (H − E)G = I = G(H − E).
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for the oscillator potential V (x) = mω2x2/2. Sometimes another dimensionless version of the Green

function is used, let us call it G̃(x, x′; ε = E/(~ω)), related to G(x, x′;E) as

G̃(x, x′; ε) = − ~2

2m
G(x, x′;E),

[
∂2x + µ2ε− µ2

~ω
V (x)

]
G̃(x, x′; ε) = δ(x− x′), µ =

√
2mω

~
. (2.3)

In this particular case, in order to simplify the calculations, instead of working with the function (2.1)
let us set up the equivalent dimensionless system obtained by introducing the dimensionless quantities

y = µx/
√

2 and ψ(x) =
√
µ/
√

2φ(y):

Ĥ =
2Hho
~ω

= − d2

dy2
+ y2, φn(y) =

1√
2nn!
√
π
e−y

2/2Hn (y) , λn = 2n+ 1. (2.4)

Then,

Gho(x, x
′;E) =

√
m

ω~3
Ĝ (y, y′; ε) , Ĝ (y, y′; ε) =

e−(y
2+y′2)/2

√
π

∞∑
n=0

Hn(y)Hn(y′)

2nn!
(
n+ 1

2 − ε
) . (2.5)

Next, consider the sum

S(z, w; s) =

∞∑
n=0

Hn(z)Hn(w)

2nn!(n+ s)
=
√
πe(z

2+w2)/2 Ĝ

(
z, w;

1

2
− s
)
, (2.6)

which is a meromorphic function of s having non-positive integer poles. Thus if we obtain its value
in any singularity-free region of the complex plane, analytic continuation can be invoked to determine
its value elsewhere. Let us, therefore, begin by assuming that Re[s] > 2 and use the representation∫ 1

0
un+s−1du = (n+ s)−1 to get

S(z, w; s) =

∫ 1

0

du
us−1√
1− u2

exp

[
2zwu− (z2 + w2)u2

1− u2

]
, (2.7)

where Mehler’s formula (see Sec. 10.13(22) of [19]) has been used to sum the series. Next, by means of the
change of variables t = u2/(1− u2) equation (2.7) becomes the Laplace representation

S(z, w; s) =
1

2

∫ ∞
0

ts/2−1(t+ 1)−s/2−1/2e−(z
2+w2)te2zw

√
t(t+1)dt. (2.8)

Now, according to [20], for ν > 0 and a > b > 0,∫ ∞
0

tν−1

(1 + t)ν+1/2
eb
√
t(1+t)−atdt = 2ea/2 Γ(2ν) D−2ν

[√
a+

√
a2 − b2

]
D−2ν

[
−
√
a−

√
a2 − b2

]
.

After a simple calculation we obtain

S(z, w; s) = e(z
2+w2)/2 Γ(s)D−s(

√
2 z>) D−s(−

√
2 z<), (2.9)

where z< (z>) represent the smaller (larger) of z, w. The expression (2.9) is analytic throughout the s-
plane, except at the poles of the gamma function. This expression for S does not seem to appear in the
literature on Hermite functions.

We can now replace in (2.9) z, w, s in terms of x, x′, E and take into account (2.5)–(2.6) to obtain

Gho(x, x
′;E) =

√
m

πω~3
Γ

(
1

2
− ε
)
Dε− 1

2
(µx>) Dε− 1

2
(−µx<) , (2.10)

where now x< (x>) represent the smaller (larger) of x, x′, and the physical parameters µ, ε are given in
(2.3). The poles of (2.10), and therefore the bound states, are precisely the poles −n of the Gamma
function, giving back the result (1.1).

In Figure 1 we show plots of Gho(x, x
′;E) as a function of x and x′, for a couple of values of the

energy. One can appreciate a lot of symmetry in these plots due to the fact that the eigenfunctions of the
oscillator entering the Green function (2.1) are real, and either even or odd, implying that Gho(x, x

′;E) =
Gho(x

′, x;E) and Gho(x, x
′;E) = Gho(−x′,−x;E), as is clearly seen in the figures.
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Figure 1: Green function (2.10) in units such that ω = ~ = m = 1 for two energy values: on the leftGho(x, x
′;E = 2)

and on the right Gho(x, x
′;E = 4.3).

2.1 Harmonic oscillator plus uniform electric field

Let us analyze first the case of a uniform electric field, given by the linear potential α3 x, added to the
original oscillator potential. By completing the square in the Schrödinger equation, it is easily seen that
the system is again a simple harmonic oscillator, but with shifted coordinate xα = x+ϕ and shifted energy
Eα = ~ω(ε− (µϕ/2)2):

Hho,α = − ~2

2m

d2

dx2
+

1

2
mω2x2 + α3x =

[
− ~2

2m

d2

dx2α
+

1

2
mω2x2α

]
− ~ω

(µϕ
2

)2
, (2.11)

where

ε =
E

~ω
, ϕ =

α3

mω2
, µ =

√
2mω

~
, σ = ε+

(µϕ
2

)2
. (2.12)

The Green function for this system is then simply

Gho,α(x, x′;E) = Gho
(
x+ ϕ, x′ + ϕ;E + ~ω(µϕ/2)2

)
(2.13)

=

√
m

πω~3
Γ

(
1

2
− ε− µ2ϕ2

4

)
Dσ− 1

2

(
µ(x> + ϕ)

)
Dσ− 1

2

(
−µ(x< + ϕ)

)
,

where all the physical parameters are given in (2.12).
A plot of the Green function Gα(x, x′;E) is shown in Figure 2 for E = 2 and four different values of

the electric field. The symmetry that appeared in Gho(x, x
′;E) is still present in Gα(x, x′;E) because they

are related through (2.13); the symmetry center is no longer the origin but the point (−ϕ,−ϕ) on the
(x, x′)–plane. The poles of (2.13), and therefore the bound states, are

Eαn = ~ω
(
n+

1

2
−
(µϕ

2

)2)
, n = 0, 1, 2, . . . (2.14)

From these expressions it is quite obvious that in the limit α,ϕ→ 0 we recover the bound states energies
and the Green function of the simple harmonic oscillator.

2.2 Asymmetric harmonic oscillator potential

As a second application, consider the asymmetric oscillator potential

V (x) =

{ 1
2mω

2
1x

2, x ≤ 0,

1
2mω

2
2x

2, x ≥ 0,
(2.15)
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Figure 2: Green function (2.13) in units such that ω = ~ = m = 1 for a fixed value of the energy (E = 2) and four
different values of the electric field: from left to right, and from top to bottom, α3 = 0, 0.5, 1.3, and 2.

and let Gj(x, x
′;E) denote the Green function Gho(x, x

′;E) given in (2.10) evaluated for ω = ωj . Then
the asymmetric oscillator states, which do not coincide with (n+ 1/2)~ωj , j = 1, 2, are given by [14]

G1(0, 0;E) +G2(0, 0;E) = 0. (2.16)

In terms of ε = E/(~ω1) and λ = ω1/ω2, this is

1

Γ

(
1

4
− λ ε

2

)
Γ

(
3

4
− ε

2

) +
λ1/2

Γ

(
1

4
− ε

2

)
Γ

(
3

4
− λ ε

2

) = 0. (2.17)

Note that, from equation (2.17), ε(λ) = ε(1/λ)/λ, so we need only examine 0 < λ < 1. For λ = 1 (the
symmetric harmonic oscillator ω1 = ω2) there are clearly no new eigenvalues, apart from the already known
(1.1). A plot of the eigenvalues ε = E/(~ω1) as a function of λ = ω1/ω2 is given in Figure 3, where the
harmonic oscillator eigenvalues are also indicated by the horizontal red lines. Note that in this plot it is
quite clear that when λ = 1, that is, for the symmetric oscillator, the correct eigenvalues are recovered.

For λ → 0, that is, ω2 → ∞ and ω1 fixed, the potential (2.15) physically corresponds to an infinite
barrier for x > 0 and a semioscillator of frequency ω1 for x < 0; in this case the spectrum is well known to
be (2n+ 1 + 1

2 )~ω1, something that is also clearly seen in the left part of Figure 3: note that the states of
the simple harmonic oscillator (λ = 1) evolve as λ→ 0 in such a way that

lim
λ→0

ε0(λ) =
3

2
, lim

λ→0
ε1(λ) =

7

2
, . . . lim

λ→0
εn(λ) = 2n+ 1 +

1

2
, n = 0, 1, . . . , (2.18)

and then the spectrum εn(λ = 1) = (n+ 1
2 ) is rescaled in a continuous way to become εn(λ = 0) = (2n+1+ 1

2 )
in the limit λ→ 0 or ω2 →∞.

The case λ → ∞ can be imagined as ω2 → 0 and ω1 fixed, and corresponds to a semi-oscillator of
frequency ω1 for x ≤ 0 and V = 0 for x ≥ 0, a situation without bound states, a fact that is suggested in

5



Figure 3: Bound states of the asymmetric oscillator εn = En/(~ω1) vs λ = ω1/ω2 (solid curves), for small values
of λ (on the left) and bigger values of λ (on the right). The harmonic oscillator energy eigenvalues are indicated
with dot-dashed horizontal red lines, and the harmonic oscillator case with a vertical dashed orange line.

the right part of Figure 3 by the fact that

lim
λ→∞

εn(λ) = 0, n = 0, 1, . . . (2.19)

We should mention that, although in the present application we have concentrated in obtaining a
closed transcendental expression for the bound states, it is also possible to obtain the Green function for
the asymmetric potential. Nevertheless, the task is quite cumbersome and we reserve it for the future.

3 Calculation of the Green function for V (x) = α3 |x|
As a second example, let us consider now the Schrödinger equation for a linear potential of the form

− ~2

2m

d2ψ(x)

dx2
+
(
α3 |x| − E

)
ψ(x) = 0. (3.1)

A related problem was considered in Ref. [21]. It is well known that equation (3.1) can be solved in terms
of Airy functions. The general solution is

ψ(x) =

{
C1 Ai(−ζx− %) + C2 Bi(−ζx− %), x ≤ 0,

C1 Ai(ζx− %) + C2 Bi(ζx− %), x ≥ 0,
(3.2)

where

% =
E

α2

(
2m

~2

)1/3

, ζ = α

(
2m

~2

)1/3

. (3.3)

As we require ψ(±∞) = 0, C2 = 0. Now consider the differential equation defining the Green function

Gα(x, x′;E) for equation (3.1), similar to (2.2), or G̃ζ(x, x
′; %) = −~2Gα(x, x′;E)/(2m), similar to (2.3):[

∂2x + ζ2%− ζ3 |x|
]
G̃ζ(x, x

′; %) = δ(x− x′). (3.4)

Clearly G̃ζ(x, x
′; %) must be continuous for x = x′ and G̃ζ(x, x

′; %) = G̃ζ(x
′, x; %). Hence, the solution must

have the form

G̃ζ(x, x
′; %) =

{
C Ai(ζx− %) Ai(−ζx′ − %), x ≥ x′,

C Ai(−ζx− %) Ai(ζx′ − %), x ≤ x′.
(3.5)

6



But, there is also the jump condition in the first derivative. In order to generate the δ-function on the
RHS of (3.4), the partial derivative ∂xG̃ζ(x, x

′; %) must be discontinuous:

lim
ε→0

(
∂xG̃ζ(x, x

′; %)
∣∣∣
x=x′+ε

− ∂xG̃ζ(x, x
′; %)

∣∣∣
x=x′−ε

)
= 1. (3.6)

In the present case we must have

C ζ
[
Ai(ζx′ − %) Ai′(−ζx′ − %) + Ai(−ζx′ − %) Ai′(ζx′ − %)

]
= 1. (3.7)

Since the quantity in (3.7) is essentially the Wronskian, it is independent of x′, so we can set x′ = 0 to get

Gα(x, x′;E) = −
(

2m

~2

)2/3
1

2α

Ai(ζx> − %) Ai(−ζx< − %)

Ai(−%) Ai′(−%)
, (3.8)

where, as in the previous section, x< (x>) represent the smaller (larger) of x, x′, and the physical parameters
% and ζ are given in (3.3). The poles of (3.8) are the bound states of this problem: basically the alternating
zeros of Ai′(z) (even states) and Ai(z) (odd states). Formulas and list of numerical values of these zeros
can be found in many references, for example [22]

In Figure 4 we show plots of Gα(x, x′;E) as a function of x and x′, for a couple of values of the energy.
As in the harmonic oscillator, a lot of symmetry is also present in these plots, a fact which is due to the
symmetry of the potential, implying that Gα(x, x′;E) = Gα(x′, x;E) = Gα(−x′,−x;E), as it is clearly
seen in the figures.

Figure 4: Green function of equation (3.8) for ~2 = 2m and α = 1, that is, % = E and ζ = 1, for two energy values:
on the left Gα=1(x, x′;E = 2.3) and on the right Gα=1(x, x′;E = 3.2).

3.1 Asymmetric linear potential

As an application of the result we have obtained in (3.8), let us consider the asymmetric linear potential

V (x) =

{
−α3

1x, x ≤ 0,

α3
2x

2, x ≥ 0,
(3.9)

and let Gαj
(x, x′;E) denote the Green function Gα(x, x′;E) given in (3.8) evaluated for α = αj . Then the

asymmetric linear states, are given by the general result (2.16) (taken from [14]):

Gα1
(0, 0;E) +Gα2

(0, 0;E) = 0. (3.10)

In terms of % = (2m/~2)1/3E/α2
1 and β = α1/α2, this can be written as

− Ai(−%)/Ai′(−%)

Ai(−%β2)/Ai′(−%β2)
= β. (3.11)

7



A plot of this result is shown in Figure 5. There, it can be seen, for example, how the energy of the state
n varies as α2 changes, for α1 constant: as α2 → 0 (β → ∞) the right branch of the potential goes to
zero, and the bound states disappear; as α2 → ∞ (β → 0) the right branch of the potential becomes an
infinite barrier and the discrete bound states that “survive” are only those coming from the solutions of
Ai(−%) = 0 (those coming from Ai′(−%) = 0, which are also poles of (3.8), are no longer solutions of the
limit case).

Figure 5: Bound states of the asymmetric absolute value potential (3.9) given implicitly by (3.11): the physical
parameter giving the energy, % = (2m/~2)1/3E/α2

1, is represented as a function of the frequency quotient β = α1/α2.

3.2 Half-oscillator-half-linear potential

As an application of the results of the previous sections, let us consider an interesting example, the com-
posite potential consisting of a harmonic oscillator for x ≤ 0 and a constant force for x ≥ 0:

V (x) =
1

2
mω2x2 θ(−x) + α3 x θ(x). (3.12)

In this case, the equation providing the bound states (2.16) turns out to be

Gho(0, 0;E) +Gα(0, 0;E) = 0, (3.13)

where Gho(0, 0;E) is given in (2.10) and Gα(0, 0;E) in (3.8). Using the two parameters ε = E/~ω and
ξ = (2m~ω3)1/6/α = (2/(µϕ))1/3, where µ, ϕ were already introduced in (2.12), equation (3.13) adopts the
form

Ai′(−ξ2ε)
Γ
(
3
4 −

ε
2

) −√2

(
~2

2m

)1/3

ξ
Ai(−ξ2ε)
Γ
(
1
4 −

ε
2

) = 0. (3.14)

In Figure 6 a plot of the first bound states of the composite potential (3.12) as a function of ξ is shown.
If α → 0 (that is, ξ → ∞) the potential becomes zero for x ≥ 0 and then the bound states disappear
completely. If α→∞ (that is, ξ → 0) an infinite barrier emerges for x ≥ 0, and only the odd states of the
harmonic potential survive.

For the special value ξ =
√

2, a plot of the left hand side of equation (3.14) as a function of ε is given in
Figure 7. In this last plot the zeros of the function are clearly visible, and can be computed numerically.
The calculation yields the results shown on Table 1 for the first ten bound states, which are graphically
represented on the RHS of Figure 7.
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Figure 6: The first bound states of the asymmetric composite potential (3.12) from equation (3.14) as a function
of ξ = (2m~ω3)1/6/α, for ~2 = 2m; the particular value ξ =

√
2 is stressed with a vertical dashed orange line.

Figure 7: For the particular value ξ =
√

2, a plot of the LHS of equation (3.14) (with ~2 = 2m) as a function of
ε, where the zeros are clearly visible, is given on the left. On the right a plot of the numerical values of the zeros,
given in Table 1.

3.3 Harmonic oscillator and symmetric linear potential

Let us consider now the following potential, which is clearly related to the previous examples:

V (x) =
1

2
mω2x2 + α3 |x|. (3.15)

Using the parameters ε, µ, ϕ and σ defined in (2.12), the wave function solution of the corresponding
Schrödinger equation, which is continuous at x = 0 and bounded at ±∞, can be expressed in terms of
parabolic cylinder functions as

ψ(x) =

{
ψ1(x) = C Dσ−1/2

(
µx+ µϕ

)
, x ≥ 0,

ψ2(x) = C Dσ−1/2
(
−µx+ µϕ

)
, x ≤ 0.

(3.16)

The results of [21] show us how to build the Green function for a problem like the previous one, gluing
the solutions in two different regions (a, 0) and (0, b). In particular, as in the present case, if we consider
a→ −∞ and b→ +∞, the Green function, as a solution of an equation similar to (2.3) or (3.4), is obtained
taking the appropriate limits in equation (12) of [21], and we get

G̃(x, x′;E) =
ψ1(x>) ψ2(x<)

W [ψ1(x′), ψ2(x′)]
, G(x, x′;E) = −2m

~2
ψ1(x>) ψ2(x<)

W [ψ1(x′), ψ2(x′)]
, (3.17)

9



ε0 0.50501 ε5 3.41789
ε1 1.27615 ε6 3.86844
ε2 1.88901 ε7 4.29867
ε3 2.43392 ε8 4.71332
ε4 2.94119 ε9 5.11461

Table 1: First ten bound states energies for the composite potential (3.12), evaluated numerically from
(3.14) for the particular value ξ =

√
2.

where the denominator in (3.17) is the Wronskian of the functions ψ1(x′) and ψ2(x′). Using the two
functions in (3.16), and evaluating the Wronskian at x′ = 0, we get for the present problem

Gµ,ϕ(x, x′;E) =
2m

µ~2
Dσ−1/2

(
−µx< + µϕ

)
Dσ−1/2

(
µx> + µϕ

)
Dσ−1/2

(
µϕ
) [
µϕDσ−1/2

(
µϕ
)
− 2Dσ+1/2

(
µϕ
)] . (3.18)

The poles of this Green function, that is, the zeros of the denominator, are given by

Dσ−1/2
(
µϕ
) [
µϕDσ−1/2

(
µϕ
)
− 2Dσ+1/2

(
µϕ
)]

= 0. (3.19)

Figure 8: The bound states for the potential (3.15) obtained from equation (3.19): on the left in terms of the
parameters σ and µϕ given in (2.12); on the right the dimensionless energy ε = E/~ω as a function of µϕ. The
even states (orange curves) correspond to the solutions of (µϕ)Dσ−1/2

(
µϕ

)
= 2Dσ+1/2

(
µϕ

)
, and the odd states

(blue curves) are the solutions of Dσ−1/2

(
µϕ

)
= 0.

It is possible to analyze the limit α,ϕ → 0 (which implies σ → E/~ω) of this expression, which
corresponds to the simple harmonic oscillator Green function (2.10):

Gµ,0(x, x′;E) =

√
~

4πmω
Γ

(
1

2
− E

~ω

)
D E

~ω−
1
2

(
µx>

)
D E

~ω−
1
2

(
−µx<

)
= Gho(x, x

′;E). (3.20)

4 Additional Dirac δ interaction potential

The appearance of the Dirac delta function and its derivative as potentials in problems of the sort we
consider has been examined in depth by Albeverio et al. [9], whose work indicates that including them is
compatible with the Green function techniques we have been using. In 1987 Avakian et al. [2] introduced
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the singular oscillator model V (x) = 1
4ω

2x2 + Ωδ(x − q), q = 0, and discussed its bound states. We shall
generalize their results by letting q 6= 0:

Va(x, q) = a δ(x− q), a ∈ R. (4.1)

This generalization will be studied for the unperturbed potential Vu(x) to be both the harmonic oscillator
and the absolute value potential considered in the previous section.

We take into account the fact that the eigenfunction of eigenvalue E, corresponding to the potential
V (x) = Vu(x) + Va(x, q), must satisfy the Lippman-Schwinger equation2

ψ(x) = −
∫ ∞
−∞

dx′ Gu(x, x′;E)Va(x′, q)ψ(x′), (4.2)

with Gu(x, x′;E) the “unperturbed Green function” given either by (2.10) or by (3.8).

4.1 Harmonic oscillator with additional δ interaction

Let us consider first the presence of a δ-perturbation, like in (4.1), on the harmonic oscillator potential.
Then, the Lippman-Schwinger equation (4.2) is

ψ(x) = −a
∫ ∞
−∞

dx′ Gho(x, x
′;E) δ(x′ − q)ψ(x′) = −aGho(x, q;E)ψ(q). (4.3)

Now, we set x = q and find that the eigenvalues of the energy are given by Gho(q, q;E) = −1/a, that is,

τ Dε− 1
2

(p) Dε− 1
2

(−p) +
1

Γ
(
1
2 − ε

) = 0, (4.4)

with ε = E/~ω and p = µq, where µ is given in (2.12) and τ = a
√
m/πω~3. Note that (4.4) generalizes

equation (12) of [2]. Indeed, for q = p = 0 our result completely agrees with that of Avakian et al. [2].

Figure 9: First bound states of (4.4) as a function of the intensity of the Dirac delta perturbation τ ∝ a, for two
different positions of the singularity: p = 1/2 (blue line) and p = 2 (green line). The dotted red lines correspond to
the energies of the unperturbed harmonic oscillator states, obtained also for τ = 0 (orange dashed line).

The result we have obtained is completely symmetric in q, therefore, as in [2], and without loss of
generality, we will take in the sequel q, p ≥ 0. In Figures 9 and 10 we show plots of the bound states
of the oscillator modified by the presence of the Dirac delta perturbation Va(x, q). Note that if a, τ < 0
(attractive Dirac delta), the resulting bound state energies are lower than the unperturbed ones; on the
contrary, if a, τ > 0 (repulsive Dirac delta), the new energies are higher than the unperturbed ones.

2In operator form we have Gu(Hu − E) = I for general unperturbed Hamiltonian Hu and Green function Gu. If we
consider an eigenstate |ψ〉 of the perturbed Hamiltonian Hu+Va with eigenvalue E, then (Hu+Va−E)|ψ〉 = 0. In addition,
Gu(Hu − E)|ψ〉 = |ψ〉 = −GuVa|ψ〉. In the x-representation we have then (4.2).
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Figure 10: Energy of the first bound states of (4.4) as a function of the singularity coordinate p = µq, for several
intensities τ ∝ a of the Dirac delta perturbation. On the left we have three cases of “repulsive” delta-perturbations::
τ = 0.5, (blue line), τ = 1 (orange line) and τ = 1.2 (green line); on the right, three cases of attractive delta-
perturbations: τ = −0.5, (blue line), τ = −1 (orange line) and τ = −1.2 (green line). In both figures the dotted
red lines correspond to the energies of the unperturbed harmonic oscillator states, obtained also for τ = 0. Observe
that as p grows, the perturbation on the lower states decreases. For either attractive or repulsive perturbation, at
p = 0 the energy of the odd states do not change, but it does for the even states.

4.2 Absolute value potential with additional δ interaction

Let us analyze now the effect of the presence of a δ perturbation Va(x, q) = a δ(x − q), a ∈ R, on the
eigenstates of the absolute value potential. This problem was considered in the past [23], but only for
q = 0. In the present case case, the Lippman-Schwinger equation (4.2) is

ψ(x) = −a
∫ ∞
−∞

dx′ Gα(x, x′;E) δ(x′ − q)ψ(x′) = −aGα(x, q;E)ψ(q), (4.5)

where Gα(x, x′;E) is given in (3.8). Now, we set x = q and find that the eigenvalues of the energy are
given by Gα(q, q;E) = −1/a, where Gα(x, x′;E) in given in (3.8), that is,

ηAi(ζq − %) Ai(−ζq − %) = Ai(−%) Ai′(−%), (4.6)

where % and ζ are defined in (3.3), and

η =
a

2α

(
2m

~2

)2/3

.

The complete Green function for this model can be obtained from the Dyson equation

G(x, x′;E) = Gα(x, x′;E) +

∫ ∞
−∞

Gα(x, y;E)Va(y, q)G(y, x′;E) dy, (4.7)

and turns out to be

G(x, x′;E) = Gα(x, x′;E) + a
Gα(x, q;E) Gα(q, x′;E)

1− aGα(q, q;E)
, (4.8)

where Gα(x, x′;E) is given in (3.8).
In a similar way transcendental equations can be obtained giving the variation of the energy levels

of the harmonic oscillator plus linear potential (2.11) and the harmonic oscillator plus symmetric linear
potential (3.15) as a consequence of the addition of a Dirac delta perturbation as (4.1).

12



5 Summary and discussion

In this report we have applied the Green function technique to study a number of simple, but apparently
new, quantum mechanical problems dealing with confining quadratic and linear potentials in one spatial
dimension. For completeness we have derived the Green functions involved, though at least one of them has
been available in the literature for many years [19]. Specifically, we have examined the harmonic oscillator in
a constant force field, the asymmetric linear and quadratic oscillators, two hybrids thereof and two cases of
decoration by Dirac delta potentials. By means of a composite Green function matching technique, we have
streamlined the formulation of the transcendental equations determining the bound-state energy levels and
their dependence on various parameters. We have treated the decoration problem by means of the Lipmann-
Schwinger bound-state formula which leads to the necessary eigenvalue equations more expeditiously than
by the wave function matching analysis used in prior studies [2, 8] of the decorated harmonic oscillator,
confirming these pioneering calculations. We hope in the future to return to the construction of the exact
Green functions for the composite oscillators. This work also serves as an exploratory study of models and
techniques which we hope to apply to a new class of inhomogeneous quantum wells. Another natural step
is to study stronger singular perturbations such as the Dirac delta derivatives considered in [8, 24, 25, 26].
This analysis requires a more careful study and is work in progress.
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